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Protein Phosphatase 2A (PP2A), a major serine/threonine phosphatase, is known to be involved in
the wide range of cellular functions in many cell types. Notably, PP2A’s tumor suppressor function
has a great potential for therapeutic use in cancer patients. However, understanding basic functions
as well as translational potential of PP2A is complex and is at its infancy. Identification of PP2A
targets, and especially target sites nearby the recurrent mutations can potentially provide insights on
PP2A’s function in the context of cancer. Thus, the focus of this thesis was to identify target sites
which are directly or indirectly dephosphorylated by PP2A and thereby map the sites nearby the

significant recurrent mutations in cancer samples.

Thesis presented here in made use of in-house as well as published phosphosproteomics datasets to
identify the potential targets of PP2A. A protein was considered as a target of PP2A if its
phosphopeptide was significantly regulated as assessed either from student’s t-test or alternatively
defined in respective publications. In order to identify the significantly mutated residues as compared
to background mutation rate, ActiveDriver methodology was employed in this study. ActiveDriver
tests the null hypotheses given mutational, intrinsic disorder and phosphosite information. The null

hypothesis assumes that mutations in protein sequences follows Poisson distribution.

As an example of PP2A target identification process, an in-house generated B56 dataset of PP2A
phosphpoproteomics dataset was used. Two sided students t-test was performed to find differentially
regulated peptides and the analysis revealed 1249 out of 6739 peptides were statistically significant
(unadjusted p value < 0.05). Volcano plot and heatmap for the analysis of B56 dataset were used to
visualise most significant peptides. A comprehensive dataset of non-redundant phosphosites from
various PP2A phosphoproteomics datasets (three groups of PP2A families) was built to reflect the
broader coverage of PP2A targets. ActiveDriver analysis on cBioportal pancancer study revealed that
there were 19 genes with 248 active regions (p-value < 0.05). Similar analysis on COSMIC
mutational dataset revealed 57 genes with 2,723 active regions (p-value < 0.05). Network analysis
was carried out on proteins having at least one significant active region. The resulting protein-protein

interaction network from STRING database for the target list of proteins after ActiveDriver analysis



is significantly enriched as compared to any random network and it was also significant (5e-15).
Functional enrichment analysis also provided strong evidence among those analysis and PPI
enrichment p- value also significant in both cases. Based on false discovery rate, biological and
molecular function among the selected genes also showed significant.

This mutational study provides better understand to identify target sites which are directly or
indirectly dephosphorylated by PP2A and thereby likely provide potential clues for mechanisms of
action for PP2A function.

Keywords: Protein Phosphatase 2A, Mutation, Dephosphorylation, cBioportal, COSMIC,

ActiveDriver
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CCDS- Consensus Coding Sequence

COSMIC- Catalogue Of Somatic Mutations In Cancer
DEPOD- the human DEPhOsphorylation Database
DisProt- Database of Protein Disorder

GLM- Generalized Linear Model

HPRD- Human Protein References Database

PP- Protein Phosphatase

PP2A- Protein Phosphatase 2A

PPI- Protein Protein Interaction

PPPs- Phosphoprotein Phosphatase

PTM- Post Translational modification

PTP- Protein Tyrosine Phosphatase

PSP- Protein Serine/Tyrosine Phosphatase
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1. Introduction

1.1 Phosphorylation and dephosphorylation

The most functions of proteins in human are regulated by Post-Translational Modifications
(PTM) which play a major role in many biological functions including cell apoptosis, cell division,
proliferation, survival and development. Phosphorylation is one of the predominant post-translational
modification. The process of addition and subtraction of phosphate (PO4*") by and from protein is
called phosphorylation and dephosphorylation. Phosphate group binds with hydroxyl group of
serine, threonine or tyrosine amino acid side chain to form complex phosphate monoesters (Lad,
Williams, & Wolfenden, 2003). Depending on the condition in cell, protein shifts from
phosphorylation to dephosphorylation and vice versa. The phosphorylation and dephosphorylation
process are controlled dynamically by counteracting protein kinase and phosphatase respectively.
Protein kinase and phosphatase act like as control switches and regulators (Figure: 1) (Mumby &

Walter, 1993).

Phosphorylation
(kinase)

ADP ADP
Dephosphorylation

| Protein
(Phosphatase)

Figure 1: Overview of phosphorylation and dephosphorylation processes. Addition of phosphate
group to a protein is called phosphorylation while removal phosphate group from protein is called
dephosphorylation.



The opposite process of phosphorylation, dephosphorylation, is also important for cellular

function (INGEBRITSEN & COHEN, 1983).

Phosphorylation normally occurs on serine, threonine and tyrosine residues in eukaryotes and
acts as a major mediator of intracellular signaling transduction (Jin & Pawson, 2012). The rate of
phosphorylation is most common on phosphoserine among the three amino acid residues. The rate
on phospshoserine is about 86.4% followed by phosphothreonine at 11.8% and phosphotyrosine is
1.8% (Krijgsveld, 2012). In the presence of water molecule, PP attack the phosphate group for
catalysis and dephosphorylate these phosphorylated residues.

There are two major classes of phosphatases, namely, protein tyrosine phosphatases (PTPs) and
protein serine/threonine phosphatases (PSPs). PSPs have three subfamilies: metal dependent protein
phosphatases (PPM;), aspartate based phosphatase and phosphoprotein phosphatases (PPPs). PPP;
also divided into subfamilies known as PP1, PP2A, PP2B (calcium activated), PP4, PP5, PP6 and
PP7. The PPM; family subdivided into PP2C and pyruvate dehydrogenase phosphatases. PTP;
remove phosphate group from post transnationally modified tyrosine residues (Seshacharyulu,
Pandey, Datta, & Batra, 2013). In human, there are 119 protein phosphatases of which 98 are protein
tyrosine specific phosphatases and 21 are protein serine/ threonine phosphatases (Seshacharyulu et

al., 2013).

1.2 Protein Phosphatase 2A

Protein phosphatase 2A (PP2A) is a widely expressed serine threonine phosphatase, which
plays a crucial role in cellular processes such as cell proliferation, signal transduction and apoptosis
(Sablina & Hahn, 2007). PP2A controls the activity of serine and threonine residues as an enzyme by
removing phosphate modifications from them. The presence of PP2A found almost 1% content of
cellular protein (Kremmer, Ohst, Kiefer, & Brewis, 1997). Moreover, PP2A phosphatase has a well-
established tumor suppressor function although understanding of the mechanisms by which PP2A
achieves this relevant function is well known (Sangodkar et al., 2016). PP2A is known to exhibit both
positive and negative regulation in signalling networks as consequence of its complex roles in cellular

functions (Thompson & Williams, 2018).



1.2.1 Functional and structural complexity of PP2A

PP2A is a heterotrimeric holoenzyme, which has three subunits in mammals namely a
structural/ scaffolding A subunit, a catalytic C subunit and a regulatory B subunit. In PP2A, A and C
subunits recruit with B subunit to control substrate binding and form heterotrimeric protein complex

(Figure: 2).

The regulatory subunit B has four subfamilies [B(PR53), B'(PR55 or PR61), B”'(PR72),
B"""(PR93 or PR110)], with minimum 16 classes (Xu et al., 2006). The both scaffolding and catalytic
subunits have two isoforms (a,3) on each and both share high sequence similarity. However, it is

opposite to regulatory subunit which share low sequence similarity among subfamilies (Janssens &

Goris, 2001).

- Regulatory

Catalytic -PP2Ac o or

Scaffold -A/ PR65 o or

Figure 2: Structural overview of heterotrimeric Protein Phosphatase 2A. PP2A consist of scaffolding
A subunit (blue), regulatory B subunit (green) and catalytic C subunit (red). Subunits A and C, each
consist of two different isoforms a and . Regulatory subunit B is subdivided into four subfamilies
with different isoforms.

The combinational assembly of various subunits permit to form many distinct complexes
which have been implicated in the control of cellular processes such as cell survival, proliferation and
adhesion. Many cancer cell lines appear to lack of B56 y protein expression and overexpression of
PP2A B56 y in such cancer cell lines partially reverse the tumorigenic phenotype of the cells
(Westermarck & Hahn, 2008).



1.3 Mutations and cancer

Tumor genome sequencing has revealed complex landscape of somatic DNA mutations in
multiple types of tissues and cancer including pancreas, blood, bone, breast, colon, lung, liver, and
brain (Wood et al., 2007) and one of the main goals in cancer research has been to characterize and
identify driver mutations. These ranges from small piece of DNA mutations to genomic copy number
changes, alteration in gene expression and epigenetic regulation. Although, wide-range of tumor
genome sequencing approaches have discovered thousands of gene mutation, it is challenging to

identify tumor driver mutations from passenger mutations (Reimand & Bader, 2013).

1.3.1 Cancer

Cancer does not refer to a collection of malignancies with diverse characteristics. Different
alterations requires for the progression of cancer, which may occur on epigenetic and genetic level.
The proliferation and uncontrolled growth of cell lead to fatal condition if it can continue and spread.
Based on characteristics of cancer, there are mainly two types of growth patterns named tumor and
metastasis.

a) Uncontrolled cell division lead to overgrowth of cells called tumor.
b)The process of spreading of tumor to build-up new tumor in the body called metastasis (Griffiths,

2005).

The study of the cancer genomics is based on oncogene expression and DNA sequence which
differ between tumor and the normal cells. According to Bert Volgelstein et. al study (Vogelstein et
al., 2013), has shown till now that around 140 genes can promote or drive tumorigenesis and a typical

tumor contains 2 to 8 driver genes and the remaining are passenger genes (Vogelstein et al., 2013).



1.3.2 Mutation and Cancer

A mutation is the change of gene pattern information that occur in DNA sequence, either due
to mistake when DNA information is copied or as the result of environmental factors. Mutation can
disrupt normal cell function and causes disease such as cancer. Cancer is most common human
genetic disease and it is caused by mutations occurring in growth controlling genes. In common
tumors, which is derived from the breast, colon, pancreas or brain, an average of 33 to 66 genes
display somatic mutations that are expected to change protein functions. Among the mutations, 95%
of them are single base substitution and the remainder are insertions or deletions of one or few bases
(Vogelstein et al., 2013). The driver mutation is a mutation within a gene that confers a selective
growth advantage and push cells lead to form cancer. On the other side, the cells which also
functionally change but do not provide a growth advantage called passenger mutation. Each driver
mutation provides only a few selective growth advantages to the cell and about 0.4% increases in the
cell apoptosis process (Yachida et al., 2010). It is really difficult to identify driver and passenger
mutation in somatic cell. However, it is important to point out between driver gene and driver
mutation. Although, driver gene contains driver gene mutation, but driver gene also contain passenger
mutations. Several statistical methods are available for identification of driver genes. Cancer can be
driven by mutation in protein involved phosphorylation signalling and gene centric method called

Active driver helps to detect such mutations comprehensively (Reimand, Wagih, & Bader, 2013).

1.3.3 Mutational data sources

Different databases are available for searching and analysing mutational data. One can easily
obtain mutational information and analyse them as required. cBioportal (http://www.cbioportal.org/)
and COSMIC (https://cancer.sanger.ac.uk/cosmic) databases are examples of most commonly used
mutational databases for cancer genome research. In this study data was collected from these two

databases.

Large-scale cancer genomics data from different platforms pose a great challenge to perform
data integration, analysis and exploration, especially for biologists without a computational skills.

The cBioportal (http://www.cbioportal.org/) server is specially designed for biological researchers to

facilitate easy access to the complex dataset. The cBioportal provides a web tool for visualizing,

exploring and analysing multidimensional oncogenes data. To date, the portal contains almost 220



different cancer studies for which data is available. This web source provides graphical representation
of gene level data from multiple platforms and mutational status of the specific gene. The portal also
provides information about the network visualization and analysis, survival analysis and software
programmatic access (Gao et al., 2013). The summary of graphical representation of specific gene
mutation status is given in Figure 3. cBioportal always needs HUGO gene symbols or gene aliases

information for data input.

Pan-Lung Cancer (TCGA, Nat Genet 2016) e - & 2
Tumor Samples with sequencing and CNA data (1144 samples) / 1 Genes Gene Set / Pathway is altered in 24 (2.1%) of queried samples

OncoPrint ~ Cancer Types Summary  Plots | Mutations | Enrichments = Survival = Network = CN Segments = Download = Bookmark

ABL1
UniProt: ABL1_HUMAN
Transcript: ENSTO0000318560

5 Somatic Mutation Frequency: 1.6% @

# Mutations.

% . & 3 T 5 Fie e €D Missense @ Truncating
o Inframe Other
Quome @
0 200 400 800 800 1000 1130aa View 3D Structure

18 Mutations (page 1 of 1) ¥ & | Columns~ Q
Sample ID Cancer Type Protein Change Annotation ¥ Mutation Type Copy # COSMIC Allele # Mut in
Freq (T) Sample

LUAD-RT-S01813-T... Lung Adenocarcinoma G251C (@] Missense ShallowDel 1 047 506
TCGA-86-2786-01 Lung Squamous Cell Carcinoma E453Q ! Missense Dipiod 3 0.06 21
TCGA-22-5483-01 Lung Squamous Cell Carcinoma R785Gfs"3 FS del ShallowDel 0.67 188
LUAD-E00443-Tumor Lung Adenocarcinoma P408L Missense Dipiod 1 021 421
LUAD-S01408-Tumor Lung Adenocarcinoma G634V Missense ShallowDel 1 0486 555

Figure 3: The query of mutation status of ABL1 in the pan lung cancer study. Five of the 18 ABL1
mutations in pan lung cancer occur in a hotspot in the kinase domain. The graphical view has been
shown in the Pfam protein domains and the position of the specific mutations. As also shown in the
Figure, somatic mutation frequency of ABL1 is 1.6% and this specific gene had 15 missense and 3
truncating mutations. Additionally, the tabular view is provided for more information about all
mutations in specific query gene.

COSMIC (Catalogue Of Somatic Mutation In Cancer) is the largest and the most
comprehensive resource in the world for exploring of somatic mutations in human cancer. COSMIC
is divided into several projects and each section presented separate dataset. COSMIC has two main
types of data,: high precision data, and genome wide screen data. High precision data section is
manually curated by analysts and work with different targeted gene screening panels, metadata and
so on. Genome wide screening section not only provides peer reviewed large scale genome screening
data, but also provides unbiased, genome level profiling. It can be used to find novel driver genes.
These two-section compilations of data provide extensive coverage of the cancer genomics landscape

from a somatic perspective (Forbes et al., 2016).
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1.4 Statistical analysis of mutation data

The degree of specific mutations selection may depend on the type of amino acid change
information in the protein sequences. In specific, splice site and nonsense mutations can lead to
reduced or truncated mutation, respectively (Greenman, Wooster, Futreal, Stratton, & Easton, 2006).
Many different models of mutation processes have been identified and explored to model the
mutational analysis of cancer genome. Recently introduced ActiveDriver tool, which is based on
generalized linear regression model, was employed to help us find phosphosite whose mutations are

unexpected given the backbone of mutation rate (Reimand & Bader, 2013).

1.4.1 Regression model and Generalized linear models

Regression analysis is a fundamental tool for analysing and modelling data. The regression
analysis can be used to establish the relationship between independent variables and dependent
variables. This technique is used for different mutation analysis in cancer genome to find the causal

relationship between the variables (Yusuff, Mohamad, Ngah, & Yahaya, 2012).

Logistic regression is one of the most popular and commonly used multivariate tools used in
biomedical informatics. In logistics regression, the predicted odd ratio is expressed as positive
outcome of variables. Variable is formed by multiplying the values of its coefficient and its
independent variables (Yusuff et al., 2012). Since the detection of cancer and prediction of mutation

changes information is important, many types of research has been conducted in this area.

Linear regression model build-up a relationship between dependent variable (Y) and one or

more independent variables (X) using a regression line and it represent by an equation

y =Py + Bx+€

where, f; is intercept, (3, is the slop line and € stands for error. There is a different between simple
linear regression and multiple linear regression, whereas simple linear model has only one variable

but multiple regression model has more than one independent variables.

Logistic regression is a type of regression model which is used for the finding the probability
event which has two conditions as success or failure. Logistic regression model uses the dependent

variable is binary (0/1, True/False, Yes/No) in nature. Along with logistic regression model there are
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several categories of regression model under the generalized linear models based on the link function

(Table 1).

Table 1: The overview of different generalised liner models (Agresti, 2003).

Model Random Link Systematic
Linear Regression Normal Identity Continuous
ANOVA Normal Identity Categorical
ANCOVA Normal Identity Mixed
Logistic Regression Binomial Logit Mixed
Loglinear Poisson Log Categorical
Poisson Regression Poisson Log Mixed
Multinomial Response Multinomial Generalized Logit Mixed

Protein intrinsic disorder sequences are in binary format and it is used in mutational analysis by

logistic regression method.

Generalized Linear Models (GLMs) are commonly used to predict the relationship between one
response and one or more covariates. A GLM has three parts. The first part is called the linear

predictor,

N = B + f2x and the second part is the link function assuming,
pn=E®)
g =

Where g is a smooth, monotonic function. The linear predictor builds the relationship between 1 and
the covariate x. Here, the assumption is that, there exists a linear relationship between 1 and x where

p1 is the intercept and [, is the slope. The link function is a function that links the expected value

u of the response variable to the linear predictor 1. The third component is the random or stochastic

component. The stochastic component specifies the distribution of the response variable y. The

12



observations yi,...... yn are assumed to be independent and it is assumed that the density of y; is from

the exponential family.

1.4.2 Poisson Distribution

A variable is considered to follow Poisson distribution when the values are count. In Poisson
regression, the mean y; is explained in terms of explanatory variables with an appropriate link
function. So, we can write the Poisson regression model as,

yi~P(u); g(u) = x;8
Popular choices for g(u;) are the identity link y; = x;$ and log link logy; = x; If we use log link

U = e*if is positive, but with the identity link, positivity is not always true (De Jong & Heller, 2008).

13



2. Aim of the study

Protein Phosphatase 2A (PP2A) is an important and ubiquitously expressed serine threonine
phosphatase and plays a critical role in various cellular processes. PP2A constitutes ~ 1% of total
cellular proteins. However, understanding basic functions as well as translational potential of PP2A
is complex and is at its infancy. The common theme in this study has been the use of mutational

approaches of PP2A functions in cancer biology.
The specific aims of the thesis study are listed below-

I.  Identify target sites which are directly or indirectly dephosphorylated by PP2A.
II.  Tried to understand whether mutations in oncogenes are in the proximity of PP2A-regulated

phosphorylation sites.

14



3. Methods

PP2A is involved in tumor suppressor functions in addition to playing important role in signal
transduction in the human cell. This thesis tried to perform systematic investigation of mutational

landscape nearby the amino acids dephosphorylated by PP2A.

3.1 Phosphorylation data

Phosphosites and kinases associated with these sites were retrieved from three different
publicly available databases named PhosphoELM (Dinkel et al., 2010), PhosphoSitePlus (Hornbeck
et al., 2011) and Human Protein References Database(HPRD) (Keshava Prasad et al., 2008).
Consensus Coding Sequence (CCDS) database was used for mapping of the phosphosites to high
confidence protein sequences. In this study, phosphopeptides were mapped to CCDS sequences using
exact sequence matching to avoid discrepancies between the protein isoforms and to discard the
unwanted or non-matching peptides. Phosphosites with overlapping protein isoforms sequence were
merged together into new continuous regions. In this study, Hugo Gene Nomenclature Committee
(HGNC) symbol is used for collecting all gene information from different databases.

PhosphoELM (version 9.0) (Dinkel et al., 2011) dataset contains around 43,000 non redundant
instances of phosphorylated residues in over 11,000 different protein sequences. All those validated
sites, over 37,000 belongs to Homo sapiens. Among those phosphorylation sites, 90% of all
phosphorylation occurs in serine or threonine residues and the number of phosphorylation sites

among serine, threonine and tyrosine sites are 27421, 6256 and 3467 respectively.

3.2 Dephosphorylation data

Dephosphorylation is an independent mechanism in allosteric control of protein function. For
further understanding of serine or threonine behavior in protein function, dephosphorylation
mechanisms hold a huge potential for therapeutic modulation of cell signaling. Dephosphorylation

data is needed for understanding of protein phosphatases and their roles in cancer cell signaling.

The human DEPhOsphorylation Database (DEPOD) (version 1.1) (Duan, Li, & K6hn, 2014)
is manually curated database which collects information on human phophatases and their substrates
along with information on dephosphorylation site. In this study, DEPOD used for studying human

phosphatases and to understand their molecular mechanisms. It also connecting phosphatases with
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kinases through their common substrate and compiling the human dephosphorylation network
junction. DEPOD focuses only human phosphatases with enzymatic activities.

PP2A data collected from different research groups and their collaboration work platforms.
For example, from Westermarck’s lab (Kauko, Imanishi, et al., 2018), used the cell line of Hela and
A549 and data was statistically significant, whereas Narla’s (Wiredja et al., 2017) data was

statistically insignificant.

3.3 Mutational data

Somatic mutation from different cancer project are downloaded from cBioportal (Gao et al.,
2013) and COSMIC (Forbes et al., 2016) data sources. Mutation data was formatted to be compatible
with ActiveDriver software. ActiveDriver needs wild type residue, position and mutated residue.
Mutation information from cBioportal and COSMIC database was split into three different categories

called wild type residue, position and mutated residue.

cBioportal offers 216 different cancer datasets (as on 21.06.2018) from different projects.
Additionally, webserver helps mining of underlying mutational of data. For example, the mutational
tab provides both graphical and customized table about the nonsynonymous mutations identified in
specific gene. The position and frequency of all mutations in the context of Pfam protein domain find
in the graphical summary section. In this study, we had chosen the large data sets with different cancer
types for example pan cancer (MSKCC, Nat Med 2017; 10945 samples) (Zehir et al., 2017), breast
cancer (METABRIC, Nature 2012 & Nat Commun 2016; 2509 samples) (Pereira et al., 2016). The
graphical summary of all nonsynonymous mutations is presented in table format. This table can be
filtered and sorted, provides the information about case ID, amino acid change, type of mutation
(nonsense, missense, splice site, frameshift insertion or deletion, in-frame insertion or deletion,
nonstop, non-start), predicted functional impact of missense mutations, mutation status, validation
status and exact genomic position. To avoid potential errors while using ActiveDriver, data were
further filtered to remove the data for which amino acid information is missing and these missing
data were mainly coming from non-coding mutation, frameshift, splice and truncated mutation.
Isoform of specific gene was chosen based on their matching with phosphosites isoform information

and selection of the right isoform was hard in this study.

Mutation data downloaded from COSMIC (version85) for targeting specific gene with its

amino acid change information. All genes followed with entrez ID and HGNC ID.

16



3.4 Intrinsic disorder score

Intrinsic disorder scores play crucial role pathologies associated with aggregation and mis-
folding of protein. The lacking of tertiary structure of a protein called intrinsic disorder of protein.
Manycomputational methods are developed to predict whether a protein is disordered, given its amino
acid residues. For this study intrinsic disorder scores of all proteins were computed using DisProt
(Vucetic et al., 2005) as available from DP2 database (http://d2p2.pro/). If intrinsically disordered
protein in the absence of mutation information for these amino acid sequences, thenthe scores are
then binerised as required by ActiveDriver software. This dataset of intrinsic disorder scores are given

as input to ActiveDriver tool along with phosphosite dataset.

3.5 Statistics analysis of phosphosite and mutation data

ActiveDriver package was used in R (RStudio version 1.0.1336 with R v 3.0.1) for statistical
analysis. It uses the GLM (generalized linear regression model) approach which helps find out the
driver genes for cancer with frequent mutations in protein signaling sites such as phosphosites. It uses
the Poisson regression model which finds out the genes where the mutations in signaling sites are
more frequent by assuming that missense mutations follow Poisson probability distribution in cancer
gene sequences. The idea behind Poisson regression and estimating of the parameters has been shown

below step by step.

The Poisson distribution has the following distribution function

P(y; ) = W with E(Y) = pand Var(Y) = u

Where y > 0,y € N the observed number of amino acid sequences and u > 0, 4 € R the average rate
of mutations of the protein sequence in a gene. Since it is considered as a regression model an

independent variable x must be considered and a simple linear model can be written as,

) S — (1) with an identity link function
or

(0T TP R —— (2) with a log-link function

Equation (2) can be expressed as
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Where f =p; ... ... B a vector of coefficients. One common drawback of the identity link is that the
independent variable x can have any real value whereas the mean p on the left-hand side must be
non-negative since it represents the expected value of a count variable. However, this problem can
be solved by considering a log-link function which is equation (2). As mentioned in the introduction
a Poisson linear regression model does not directly models the dependent variable y with the
independent variable x but it considers the function of the mean of y which is commonly known as
linear predictor.

To find out the parameters of a distribution function the maximum likelihood approach is
used. In summary to find out the maximum estimate for the parameter u, derivative of the log
likelihood function for the probability distribution function (for Poisson distribution) would be set
equal to zero and thus the value of u will be estimated and this value will be the maximum value.
Here, considering the link function in equation (2) the likelihood function for Poisson distribution

will be,

—Kiyyi
_\xn ¢ Hi

i

and the log-likelihood function will be,

logL(8) = ) {y;log(u) = H; —log(vi)}

considering the value of y; from equation (3)

n

log () = ) {yilog(e"#) — % ~10g(yD)

=1
= S {7 (i) — eF —log(yih)}  as we know loge = 0-------- (4)

If the model considers only one independent variable then it can also be expressed as,

logp; = x;B = Py + Pax;+€

Now going back to equation (4)

= X {yi By + Boxy) — ePrtbheri) (5)
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The part of € and log(y;!) has been ignored since they are constant. The next step will be to find
out the differentiation of (5) with respect to [5; that is why the constant parts in the equation can be

ignored since they will be equal to zero.

Now differentiating of (5) with respect to £,

Z{yi (B1 + Box;) — eﬁ1+ﬁzxi}] -0

d
dp,

n
=> Z(yl — eﬁl"‘ﬁzxi) — 0
i=1

n

n
=> Zyi = Z eB1tB2x;
i=1

i=1

There is no closed form solution for B, in the above equation. To find the optimal value an
iteratively reweighted least squares (IRLS) is used (Fox & Monette, 2002). Similar equation can be
shown for 5, as well. For this thesis work the Poisson GLM has been used to see if a phosphosite
region has significant mutation rate than other parts of the gene. Like every other regression model

this Poisson model has considered null (hy)and alternative (h;)hypothesis.

ho: M — 331"‘329‘21’:331eﬁzxzizeﬁ1eﬁzexzi — e(ﬁ1+32+x2i)

The null hypothesis assumes that mutations in protein sequences follows Poisson distribution
with intercept parameter [5; linearly combined with a predictor or independent variable which

represent disordered or non-ordered protein sequence and corresponding coefficient f3,.

hy:u= eB1+B2X2i+B3X3i=pB1pB2%2i o B3X3i=pP1p B2 B3 pX2ipX3i = o (B1+B2+X2i+PB3+x3;)

In the alternative hypothesis, the mutations in the phosphosite region three might have effect on
the observed number of protein sequences. The effect of other independent variables on mutation are
set to zero in amino acid sequences outside the considered phosphosite region and encode relative
phosphosites position within the region. A flanking region (+/- 7) of residues around the sequence

position i has been used in ActiveDriver methodology.

19



Benjamini and Hochberg (1995) method for controlling FDR can be used. The formula for

calculating adjusted p-value according to Benjamini and Hochberg (1995) is,

N
Qi:piT

Where p; is the i smallest P-value out of N total P-values for the experiment.
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The general methodology overview in this study is given bellow.
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4. Results and Discussion

The focus of this thesis was to identify the dephosphorylation sites of PP2A target proteins in
the neighbourhood of significant recurrent mutations in cancer samples. To achieve this goal, large
scale mutational and phosphorylational datasets were integrated. Before performing the final
analysis, the data have been cleaned to obtain accurate results. This results and discussion section has

been divided into the following sub-sections in order to achieve the main aim of this thesis.

4.1 |dentification of PP2A targets

Most cancer therapy resistance pathways are controlled by PP2A which regulates large
number of cellular processes (Kauko, O’Connor, et al., 2018). The mechanisms by which PP2A
performs its functions is very unclear. The identification of PP2A targets and functions behind those
target proteins may provide valuable insights about PP2A biology. In this section, target identification
process for PP2A was described using an in-house PP2A phosphoproteomics dataset (hereafter
referred to as PP2A-B56 dataset), which was generated by knocking-down of a subunit of B56 (i.e.,
PPP2R5A). Student’s t-test for each peptide followed by multiple hypotheses correction (Greenwood
et al., 2016) (FDR analysis) was performed to identify the targets of PP2A.

Two sample t-test on log2-transformed data was performed to assess whether the means of
two groups (i.e., control vs. siRNA knock-down) from B56 samples were significantly different for
each peptide. As the statistical test was performed for 6739 peptides in this dataset simultaneously,
multiple hypothesis correction was performed to reduce the chances of type 1 errors which happens
when a null hypothesis has incorrectly been rejected. Top hits coming from student’s t-test analysis

of B56 subset is presented in Table 2.
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Table 2: Top hits coming from student’s t-test analysis in PP2A-B56 dataset.

Gene | Peptides p- Log fold | P- P-
sites | Change | valu | adjust
e ed

NBN 060934 _IPNYQLSPTKLPSINK,[7] Phospho (S) S432 | 1.05 0

SSRP | Q08945 GLKEGMNPSYDEYADSDEDQHDAYLER,[6] S444 | 1.01 0

1 Oxidation; (M)|[16] Phospho (S)

CPD 075976_SLLSHEFQDETDTEEETLYSSKH,[11] Phospho | T136 | 1.04 0 0
(T) 8

SPEN | Q96T58 SNSPRGEAQKLLELK,[3] Phospho (S) $1857 | 1.06

DDX4 | Q9UJV9 _TDEVPAGGSRSEAEDEDDEDYVPYVPLR,[11] S23 1.09

1 Phospho (S)

LMN | P20700_LLEGEEERLKLSPSPSSR,[12] Phospho (S) $391 | 1.17 0 0

B1

CYBR | Q53TN4_NLALDEAGQRSTM,[12] Phospho; (T)|[13] T285 | 0.88 0 0

D1 Oxidation (M)

NBN 060934 _IPNYQLSPTKLPSINK,[7] Phospho (S) S432 | 1.06

ZC3H | Q722W4_FLENGSQEDLLHGNPGSTYLASNSTSAPNWK, | S335 | 1.05

AVl [6] Phospho (S)

TICRR | Q7Z2Z1_NLFNQELLSPSKR,[9] Phospho (S) $923 | 1.18

FAMS5 | Q9NYF3_FSLSPSLGPQASR,[4] Phospho (S) $234 | 1.07 0 0

3C

NCL P19338 AIRLELQGPRGSPNAR,[12] Phospho (S) S563 | 1.04 0.00 | 0.14

1

THRA | Q9Y2W1_RIDISPSTFR,[5] Phospho (S) S682 | 1.05 0.00 | 0.14

P3 1

TOP2 | P11388 KPIKYLEESDEDDLF,[9] Phospho (S) $1525 | 1.04 0.00 | 0.14

A 1

SIPA1 | 043166 _TLSDESIYNSQREHFFTSR,[3] Phospho (S) $1585 | 1.05 0.00 | 0.14

L1 1

KRT7 | P0O8729 LSSARPGGLGSSSLYGLGASRPR,[12] Phospho | S37 1.13 0.00 | 0.14
(S) 1

NUFI | Q7Z417_GLERNDSWGSFDLR,[7] Phospho (S) S$652 | 1.05 0.00 | 0.14

P2 1

CDC2 | Q9UJX2_RVSPLNLSSVTP,[3] Phospho (S) S588 | 1.05 0.00 | 0.14

3 1

BCLA | Q9NYF8_LKDLFDYSPPLHKNLDAR,[8] Phospho (S) S$512 | 1.06 0.00 | 0.14

F1 1

PIEZO | Q92508 TASELLLDRR,[3] Phospho (S) S1646 | 1.09 0.00 | 0.14

1 1

Resulting data revealed that 1249 out of 6739 peptides were statistically significant (p value < 0.05).

However, adjustment of multiple hypothesis correction resulted in 11 significant peptides (adjusted

p-value < 0.05).
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Figure 4: Volcano plot for the analysis of PP2A-B56 dataset, comparing knock-down vs. control
group. Adjusted p-values (q values) on y-axis and log2 fold change values on x-axis are shown. Most

significant peptides are marked.

In order to facilitate easy interpretation of significant hits from PP2A dephoshorylation

experiment, results from t-test are visualized using volcano plot (Figure 4) where most significant top

ten proteins with peptides are shown. Additionally, scaled expression values for the top ten peptides

are shown in heatmap (Figure 5).
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Figure 5: Heatmap shows top ten significant genes in PP2A-B56 dataset, comparing control and
siRNA knock-down groups in Hela cell lines. Scale bar on the upper left shows scaled expression
levels of peptides and the degree of redness, blueness colors represent negative and positive values
of z-scores.

We retained all significant peptides (adjusted p <0.05) to construct a PP2A dephosphorylome dataset.
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4.2 Building a comprehensive PP2A dephosphorylome

PP2A target identification was explained using a PP2A-B56 dataset as described in earlier
section. Comprehensive compilation of PP2A targets can facilitate our understanding about the role
of PP2A in a broader context. We therefore combined the targets from PP2A-B56 dataset with other
PP2A manipulations (Table 3). The target identification process for each dataset was described in
respective publication. Three groups of PP2A families was combined to build a comprehensive

dataset.

Table 3: Collection of datasets for building comprehensive PP2A dephosphorylome.

Conditions Source /Publication

PP2R1A, CIP2A, SET, | (Kauko, Imanishi, et al., 2018)

and PME1
SMAPs (Wiredja et al., 2017)
B56 (Hertz et al., 2016)
B55 (Cundell et al., 2016)

Only unique entries were retained in final PP2A dephosphorylation database which comprise 3,398

peptides. This database was later used as input data in ActiveDriver software.
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4.3 Collection of mutational data

Recently published data from Pancancer study (MSK-IMPACT clinical sequencing cohort)
from cBioportal was used as a dataset for recurrent mutations (Zehir et al., 2017). Mutational
information of the dataset was collected from 10,336 patients. The study revealed 530 mutated genes
of which, “TP53” gene is most frequently mutated gene (frequency rate 41.67 %). The information
from mutational data include amino acid change, its wild type and mutation information and position.
This information is necessary for the input of ActiveDriver software. As dephosphorylation sites of
PP2A were identified using canonical isoform of proteins in uniprot database, the mutations data that
are mapped to canonical isoform of uniprot proteins are retained. Based on different mutational type,
only thirty-five genes with their mutation type, amino acid change and chromosome number

information have been shown in Table 4.

Table 4: Mutational data for Top thirty-five genes from cBioportal cancer genomic web source. Wt=

Wild type; Mt= Mutation; Chr= Chromosome.

Gene Mutation type Amino acid Wt Position | Mt Chr
change residue residue

HLA-B Frame_Shift_Del L154Rfs*18 L 154 Rfs*18 6
HLA-C Frame_Shift_Del R7Efs*13 R 7 Efs*13 6
ACVR1 Frame_Shift_Del T507Lfs*14 T 507 Lfs*14 2
ARAF Frame_Shift_Del R255Gfs*37 R 255 Gfs*37 23
APC Frame_Shift_Del K581Gfs*20 K 581 Gfs*20 5
PMAIP1 | Frame_Shift_Del L43* L 43 * 18
ASXL1 Frame_Shift_Del Y700* Y 700 * 20
ASXL1 Frame_Shift_Del W796Gfs*3 W 796 Gfs*3 20
ARID1B | Frame_Shift_Del K1130Sfs*68 K 113 0Sfs*68 6
ARID5B | Frame_Shift_Del 1497* [ 497 * 10
ARID5B | Frame_Shift_Del Q941Hfs*16 Q 941 Hfs*16 10
ARID2 Frame_Shift_Del R80Efs*10 R 80 fs*10 12
ARID2 Frame_Shift_Del Q961Hfs*14 Q 961 Hfs*14 12
ARID2 Frame_Shift_Del G735Efs*23 G 735 Efs*23 12
CDKN2A | Frame_Shift_Del VI5Afs*22 \Y 95 fs*22 9
ARID1A | Frame_Shift_Del L2016Cfs*14 L 201 6Cfs*14 1
ARID1A | Frame_Shift_Del P224Rfs*8 P 224 Rfs*8 1
TP53 Missense_Mutation | C238W C 238 w 17
TP53 Frame_Shift_Del H297Tfs*48 H 297 Tfs*48 17
BRAF Missense_Mutation | P422A P 422 A 7
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BRAF Missense_Mutation | I572F I 572 F 7
CIC Nonsense_Mutation | S1105* S 110 5* 19
CEBPD Nonsense_Mutation | Y194* Y 194 * 8
CENPA Nonsense_Mutation | R52* R 52 2
CHEK1 Nonsense_Mutation | E183* E 183 * 11
KIT In_Frame_Del W557_K558del | W 557 _K558del |4
KIT In_Frame_Del M552_Y570del | M 552 _Y570del | 4
MDC1 In_Frame_Del G207_F214del G 207 _F214del |6
MDC1 In_Frame_Del G207_F214del G 207 _F214del |6
MN1 In_Frame_Del Q550del Q 550 del 22
MN1 In_Frame_Del Q549 _Q550del | Q 549 _Q550del | 22
MN1 In_Frame_Del Q549_Q550del | Q 549 _Q550del | 22
MAP2K1 | In_Frame_Del E102_1103del E 102 _1103del 15
TP53 Nonsense_Mutation | Q144* Q 144 * 17
TP53 Nonsense_Mutation | Q144* Q 144 * 17

4.4 Integration of DEPOD data with significant recurrent mutations

In order to find the extend of overlapping sites between documented dephosphorylation sites
of any phosphatase and known phosphosites nearby significantly mutated residues, ActiveDriver was
used. The known phosphosite information of all proteins were collected from PhosphoSitePlus
(https://www.phosphosite.org/homeAction.action) and HPRD (http://www.hprd.org/). Resulting data
obtained from ActiveDriver were integrated with DEPOD data which has valuable information
regarding dephosphorylational sites catalogued against respective phosphatases. The data integration
was accomplished by matching with PTM position in the output of ActiveDriver results with
dephoshorylation sites of DEPOD. The merged results for top fifteen genes with significant active
region p-values are shown in Table 5. Strikingly and as expected, we found only fewer known
dephosphorylated sites were overlapped with the results from ActiveDriver and the poor overlapping
can in part be attributed to limited characterisation target sites of human phosphatases. For example,
these analyses demonstrated cases where significantly mutated amino acid is nearby the
dephosphorylation sites by any phosphatase. For example, TP53 gene had phosphorylated serine at
position at 37 and 315 and were found to be nearby significantly mutated amino acids (p-value <
0.05) and DEPOD data also showed those phosphosites were dephosphorylated by CDC14A and
CDC14B respectively. Other genes, MET and JAK?2, which has residues named “Tyrosine”. DEPOD
also gave same position for MET and JAK2 and its phosphatase name were PTP1B CBL gene had
PTM position at 731 which has residue name “Tyrosine” and its showing significant (p-value <0.05),

DEPOD also gave at same position and its phosphatase name was RPTPeta.
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Overall, this small exploratory study done by integrating DEPOD data with results from ActiveDriver
revealed that very little is known on human phosphatases to link to those functions that mutated
residues play in cancer studies. Dephosphorylated sites nearby recurrent mutations may play similar
signalling role as mutated amino acids. However, PP2A related target sites were very poorly
elucidated. Thus, there is greater need for identifying the targets of important phosphatases such as

PP2A which is known to play tumour suppression functions in cancer.

Table 5: Merged results from DEPOD and ActiveDriver results from MSK-IMPACT clinical
sequencing cohort (Zehir et al., 2017) mutational data.

Gene PTM Residue | Active region | Phosphatase | Position
position p value
TP53 37 S 1.31E-196 CDC14A Ser-37
TP53 315 S 4.41E-36 CDC14B Ser-315
RET 952 Y NA RPTPeta Tyr-905
RET 905 Y 0.023199 RPTPeta Tyr-905
PTEN 398 T 4.42E-10 PTEN Ser-380
PDGFRB | 857 Y NA LMW-PTP Tyr-857
MET 1234 Y 0.010267 PTP1B Tyr-1234
MET 1003 Y 2.22E-12 PTP1B Tyr-1234
KIT 553 Y 3.54E-09 SHP1 N/A
JAK2 1007 Y 0.11465 PTP1B Tyr-1007
EGFR 511 S 0.000288 CDC25A N/A
EGFR 290 T 1.26E-21 CDC25A N/A
CDK4 172 T 0.147357 CDC25A N/A
CBL 731 Y 0.002554 RPTPeta Tyr-731
BRCA1 967 T 0.056432 PP1lalpha Ser-988
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Location of dephosphorylated sites can be important for the functional insights. Therefore,
lollipop plot (Jay & Brouwer, 2016) was used to display phosphosites. As an example, Figure 6 shows
the lollipop plot for TP53 gene which shows S37 and S315 positions in active region 1 and 9. Both
of these dephosphorylated positions are located in disordered regions of TP53.
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7 P53 DNA-binding domain /M- W
62 95 289 k1 368 kL]

B P53 tetramerisation motif _

Disordered region (Pfam/|lUPred)
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I P53 transactivation motif

&

Figure 6: A lollipop plot of TP53 gene showing dephosphorylated sites at S37 and S315.

4.5 Identification of PP2A target sites nearby recurrent mutations

Once PP2A target sites are known, the information can then be integrated with mutation
information in cancer samples using ActiveDriver method. Datasets downloaded from cBioportal and
COSMIC were used as example mutation datasets in this thesis. Specifically, data generated from a
recent pancancer study on 10,945 samples (MSK-IMPACT clinical sequencing cohort, Nat Med
2017) from cBioportal databases was used. The mutational, phosphorylational and intrinsic disorder
data were used as input datasets for ActiveDriver software. The summary of resulting analysis as
obtained as merge report from ActiveDriver is shown in Table 6. The merge report provides
information such as gene name, active region, mutational position, post-translational modification,
kinase and its active region p-value. Table is sorted based on active region p-value and the only
significant values are shown here in table format. We found 19 genes with 248 active regions have
significant p-value < 0.05. Most significant result found in “TP53” gene and its S315 and S392
positions, which identify the influence of mutation in binding of PP2A target (Figure 9 a). There are

75 genes are non-significant. The active region p- values are depicted with histogram in Figure 7.
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Figure 7: Histogram of active region p-values from ActiveDriver as analysed from C-bioportal
dataset. X-axis represents active region p-values and Y-axis represents for frequency of significant
level.

However, there are number of genes which did not give any p-values. It might have
been caused with little or no data for modelling in ActiveDriver because analysis was restricted to
flank region (+/- 7) around phosphosite position. Similar data analysis has been performed based on
the data from “Breast cancer (METABRIC, Nature 2012 and common 2016)” from cBioportal
(Appendix).
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Table 6: Merge report of genes with significant active regions in the analysis with pan-cancer dataset

(Zehir et al., 2017) from cBioportal.

Gene Mutation Active | Frequenc | PTM Residu | Dataset Active
position region |y positio | e source regionp
n Value
TP53 392 2 385 392 S PIPs 6.27E-17
TP53 392 2 393 392 S PIPs 6.27E-17
TP53 317 1 308 315 S A549 SMAP | 3.53E-10
RB1 251 1 242 249 S A549 SMAP | 1.07E-06
RB1 251 1 256 249 S A549 SMAP | 1.07E-06
RB1 255 1 242 249 S A549 SMAP | 1.07E-06
RB1 255 1 256 249 S A549 SMAP | 1.07E-06
KMT2A | 1855 2 1865 1858 S A549 SMAP | 0.000121
KMT2A | 1855 2 1851 1858 S A549 SMAP | 0.000121
KMT2A | 1862 2 1865 1858 S A549 SMAP | 0.000121
KMT2A | 1862 2 1851 1858 S A549 SMAP | 0.000121
KMT2A | 1864 2 1865 1858 S A549 SMAP | 0.000121
KMT2A | 1864 2 1851 1858 S A549 SMAP | 0.000121
KMT2A | 1852 2 1865 1858 S A549 SMAP | 0.000121
KMT2A | 1852 2 1851 1858 S A549 SMAP | 0.000121
NCOR1 | 2185 6 2191 2184 S PIPs 0.001952
NCOR1 | 2185 6 2177 2184 S PIPs 0.001952
NCOR1 | 2183 6 2191 2184 S PIPs 0.001952
NCOR1 | 2183 6 2177 2184 S PIPs 0.001952
FOXK1 | 420 2 452 420 S PIPs 0.00396
FOXK1 | 420 2 452 416 S PIPs 0.00396
FOXK1 | 420 2 452 413 S PIPs 0.00396
FOXK1 | 420 2 400 420 S PIPs 0.00396
FOXK1 | 420 2 400 416 S PIPs 0.00396
FOXK1 | 420 2 400 413 S PIPs 0.00396
KMT2D | 4849 5 4856 4849 S A549 SMAP | 0.003975
KMT2D | 4849 5 4842 4849 S A549 SMAP | 0.003975
SETD2 831 2 824 831 S H358 SMAP | 0.004247
SETD2 831 2 838 831 S H358 SMAP | 0.004247
TOE1 7 1 1 5 S PIPs 0.005099
TOE1 7 1 1 5 S A549 SMAP | 0.005099
TOE1 7 1 12 5 S PIPs 0.005099
TOE1 7 1 12 5 S A549 SMAP | 0.005099
CTNNB | 67 1 67 60 S H358 SMAP | 0.00745
1
CTNNB | 67 1 53 60 S H358 SMAP | 0.00745
1
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CTNNB | 63 1 67 60 S H358_SMAP | 0.00745
1

CTNNB | 63 1 53 60 S H358_SMAP | 0.00745
1

GSK3A | 284 2 272 279 Y A549_SMAP | 0.008155
GSK3A | 284 2 286 279 Y A549_SMAP | 0.008155
TSC1 500 1 498 505 S A549_SMAP | 0.009679
TSC1 500 1 512 505 S A549_SMAP | 0.009679
TSC1 509 1 498 505 S A549_SMAP | 0.009679
TSC1 509 1 512 505 S A549_SMAP | 0.009679
TSC1 502 1 498 505 S A549_SMAP | 0.009679
TSC1 502 1 512 505 S A549_SMAP | 0.009679
ATRX 895 5 882 889 S A549_SMAP | 0.010994
ATRX 895 5 896 889 S A549_SMAP | 0.010994
ATRX 886 5 882 889 S A549_SMAP | 0.010994
ATRX 886 5 896 889 S A549_SMAP | 0.010994
ATRX 892 5 882 889 S A549_SMAP | 0.010994
ATRX 892 5 896 889 S A549_SMAP | 0.010994
ATRX 885 5 882 889 S A549_SMAP | 0.010994
ATRX 885 5 896 889 S A549_SMAP | 0.010994
ATRX 896 5 882 889 S A549_SMAP | 0.010994
ATRX 896 5 896 889 S A549_SMAP | 0.010994
SRSF2 25 1 33 25 T A549_SMAP | 0.015415
SRSF2 25 1 33 26 S PIPs 0.015415
SRSF2 25 1 18 25 T A549_SMAP | 0.015415
SRSF2 25 1 18 26 S PIPs 0.015415
CDK12 | 319 1 316 325 S PIPs 0.015929
CDK12 | 319 1 316 323 S PIPs 0.015929
CDK12 | 319 1 332 325 S PIPs 0.015929
CDK12 | 319 1 332 323 S PIPs 0.015929
CDK12 | 327 1 316 325 S PIPs 0.015929
CDK12 | 327 1 316 323 S PIPs 0.015929
CDK12 | 327 1 332 325 S PIPs 0.015929
CDK12 | 327 1 332 323 S PIPs 0.015929
CDK12 | 329 1 316 325 S PIPs 0.015929
CDK12 | 329 1 316 323 S PIPs 0.015929
CDK12 | 329 1 332 325 S PIPs 0.015929
CDK12 | 329 1 332 323 S PIPs 0.015929
CDK12 | 322 1 316 325 S PIPs 0.015929
CDK12 | 322 1 316 323 S PIPs 0.015929
CDK12 | 322 1 332 325 S PIPs 0.015929
CDK12 | 322 1 332 323 S PIPs 0.015929
NCOA3 | 218 1 221 214 S A549_SMAP | 0.021552
NCOA3 | 218 1 207 214 S A549_SMAP | 0.021552
NCOA3 | 217 1 221 214 S A549_SMAP | 0.021552
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NCOA3 | 217 1 207 214 S A549_SMAP | 0.021552
NCOA3 | 213 1 221 214 S A549_SMAP | 0.021552
NCOA3 | 213 1 207 214 S A549_SMAP | 0.021552
TGFBR2 | 349 1 345 352 S A549_SMAP | 0.041689
TGFBR2 | 349 1 359 352 S A549_SMAP | 0.041689
TGFBR2 | 356 1 345 352 S A549_SMAP | 0.041689
TGFBR2 | 356 1 359 352 S A549_SMAP | 0.041689
TGFBR2 | 355 1 345 352 S A549_SMAP | 0.041689
TGFBR2 | 355 1 359 352 S A549_SMAP | 0.041689
TGFBR2 | 357 1 345 352 S A549_SMAP | 0.041689
TGFBR2 | 357 1 359 352 S A549_SMAP | 0.041689
MAX 10 1 18 11 S PIPs 0.046041
MAX 10 1 1 11 S PIPs 0.046041
MAX 8 1 18 11 S PIPs 0.046041
MAX 8 1 18 2 S PIPs 0.046041
MAX 8 1 1 11 S PIPs 0.046041
MAX 8 1 1 2 S PIPs 0.046041
MAX 15 1 18 11 S PIPs 0.046041
MAX 15 1 1 11 S PIPs 0.046041
NPM1 125 2 144 125 S PIPs 0.054797
NPM1 125 2 144 125 S A549_SMAP | 0.054797
NPM1 125 2 118 125 S PIPs 0.054797
NPM1 125 2 118 125 S A549_SMAP | 0.054797

In order to find the influential substrates of PP2A, the network analysis was also

performed on PP2A target substrates for which there exist at least one significant active

region. The analysis was performed using STRING database ( https://string-db.org ). TP53

gene was a densely connected node (degree 14) with other 14 genes. Other important genes

include, NCOR1, KMT2A, NPM1 which have eight, seven and six as their degree

respectively. However, some genes such as FOXK1 has zero degree, showing no interaction

with other genes. The degree distribution of all genes are shown in Table 7.
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Table 7: Most significant genes and their degree. Here, degree means number of undirected edges.

Gene

Degree

TP53

NCOR1

KMT2A

NPM1

CTNNB1

RB1

SETD2

MAX

KMT2D

CDK12

NCOA3

ATRX

TGFBR2

GSK3A

SRSF2

SPEN

TOE1

TSC1

FOXK1

OlR|IPIFPININWWWwWw|Id{pPLNLO|O | |00

Functional enrichment analysis was performed on PP2A targets from above results to explore

their association with any cancer —specific functions. The analysis was done by comparing the input

above gene set (Table 7) to each of the bins in the gene ontology. In this analysis, minimum required

interaction score was 0.40. For functional enrichment analysis and network statistics, these significant

genes also have been performed on Among these genes, there are 24 number of edges are connected

and average node degree is 5.33 (Figure: 8). An important results from the analysis is that PPI network

is enriched significantly ( p-value < 2.68e-1) which means above 19 genes have more interactions

among themselves than at random, indicating co-ordinated biological role of these genes. The false

discovery rate also found significant in this analysis.
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Figure 8: Dephosphylated regulatory network of genes nearby the significant mutations (MSK-
IMPACT clinical sequencing cohort, Nat Med 2017). Confidence (score) cut off value was 0.4.
Hierarchical layout of the string network is displayed here. The different colors indicates different
genes. The arrow of the nodes indicates the degree of connectivity of the nodes. Among 19 genes
TP53 has been shown highly influence directly with 14 other genes. On the other hand, FOXK1 has
been shown least influence to others. The figure is generated from STRING database (version 10.5).

Functional enrichment analysis was performed based on neighborhood algorithm. Biological
process and molecular function process also showed significant output. For example, gene expression

counted 16 genes among 17 and it’s false discovery rate was 5.81 e-07.
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Figure 9: Lollipop plot of three significant genes. Outside boxes (blue color) indicate the active region
position (a) PP2A dephosphorylation effect on TP53 shows it has S315 and S392 position with active
region 1 and 2 and it has mutation position at 317 and 392 (b) NCORI1 gene has also PP2A
dephosphorylation at S2184 position, which has highly significant and influence to bind with
mutational position at 2183 (c) The p-value of KMT2A is near zero and it has also dephosphorylation

effect of PP2A at S1858 position.
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4.6 Dephosphorylation of PP2A output from COSMIC data

Similar analysis as performed in section 4.5 was repeated with mutational data from COSMIC

database (https://cancer.sanger.ac.uk/cosmic/download). The mutational, phosphorylational and

intrinsic disorder data were used as input datasets for ActiveDriver software. The summary of
resulting analysis from is shown in Table 8. The merge report provides information such as gene
name, active region, mutational position, post-translational modification, kinase and its active region
p-value. Table is sorted based on active region p-value and the only significant values are shown here
in table format. We found 57 genes with 2,723 active region which gave significant p value (< 0.05)

with different position

Table 8: Merge report of top 50 significant genes with their dephosphorylation effect on PP2A target
(COSMIC coding point mutation data) from COSMIC.

Gene Mut Active PTM Residu | Dataset Active region p
position region position e source value
BRAF 449 1 447 S A549 SMAP | 4.56E-248
BRAF 454 1 447 S A549 SMAP | 4.56E-248
BRAF 451 1 447 S A549 SMAP | 4.56E-248
BRAF 442 1 447 S A549 SMAP | 4.56E-248
BRAF 441 1 447 S A549 SMAP | 4.56E-248
BRAF 453 1 447 S A549 SMAP | 4.56E-248
BRAF 444 1 447 S A549 SMAP | 4.56E-248
BRAF 443 1 447 S A549 SMAP | 4.56E-248
BRAF 446 1 447 S A549 SMAP | 4.56E-248
BRAF 447 1 447 S A549 SMAP | 4.56E-248
BRAF 440 1 447 S A549 SMAP | 4.56E-248
BRAF 450 1 447 S A549 SMAP | 4.56E-248
USP8 725 1 718 S A549 SMAP | 1.59E-185
USP8 721 1 718 S A549 SMAP | 1.59E-185
USP8 722 1 718 S A549 SMAP | 1.59E-185
USP8 713 1 718 S A549 SMAP | 1.59E-185
USP8 720 1 718 S A549 SMAP | 1.59E-185
USP8 715 1 718 S A549 SMAP | 1.59E-185
USP8 718 1 718 S A549 SMAP | 1.59E-185
USP8 716 1 718 S A549 SMAP | 1.59E-185
USP8 719 1 718 S A549 SMAP | 1.59E-185
USP8 717 1 718 S A549 SMAP | 1.59E-185
TP53 391 1 392 S PIPs 2.44E-116
TP53 389 1 392 S PIPs 2.44E-116
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TP53 386 1 392 S PIPs 2.44E-116
TP53 390 1 392 S PIPs 2.44E-116
TP53 392 1 392 S PIPs 2.44E-116
CTNNB | 546 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 550 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 547 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 549 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 555 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 553 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 545 2 551 T A549_SMAP | 1.02E-92
1

CTNNB | 56 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 58 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 55 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 54 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 53 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 65 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 67 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 61 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 60 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 59 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 57 1 60 S H358_SMAP | 3.26E-49
1

CTNNB | 66 1 60 S H358_SMAP | 3.26E-49
1

RB1 248 1 249 S A549_SMAP | 1.48E-08
RB1 251 1 249 S A549_SMAP | 1.48E-08
RB1 255 1 249 S A549_SMAP | 1.48E-08
RB1 249 1 249 S A549_SMAP | 1.48E-08
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Functional and networks analysis on 57 significant genes from COSMIC data have been

analysed using STRING database ( https://string-db.org ). Among 57 number of nodes, there are 166

number of edges are connected and average node degree is 5.82 (Figure: 10). An important results
from the analysis is that PPI network is enriched significantly p-value < 5e-15) which means above
57 genes have more interactions among themselves than at random, indicating co-ordinated biological
role of these genes. The false discovery rate also found in this analysis and it is less than 0.05, which

means the influence level of mutation in binding of PP2A to these genes are high in COSMIC data.
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Figure 10: Dephosphorylated regulatory network of significant genes from COSMIC. Confidence
(score) cut off value was 0.7. Hierarchical layout of the string network is displayed here. The arrow
of the nodes indicates the degree of connectivity of the nodes. Among 57 genes TP53 has been
connected densely with 17 other genes. On the other hand, some genes are loosely connected,
indicating less interaction with others. This data have been analysed from STRING tool version 10.5.
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5. Conclusions

In this thesis, systematic investigation of mutational landscape nearby PP2A-driven
dephosphorylated sites in PP2A targets was performed. To achieve this goal, large scale mutational
and phosphorylational datasets were integrated. Before performing the final analysis, the data was
cleaned to obtain accurate results. In order to accomplish the proposed aim in my thesis, we utilised
in-house as well as published phosphosproteomics datasets as starting point to identify the potential
targets of PP2A. Student t-test and false discovery rate (FDR) analysis were performed all
phosphosproteomics dataset to identify the significant peptides. The most significant genes also
showed in the volcano plot and their p value and false discovery rate are near to 0. We collected all

significant peptides to form comprehensive dataset for targeting PP2A dephosphorylation database.

Publicly available large-scale cancer genomics data resources such as cBioportal

(http://www.cbioportal.org/index.do) and COSMIC (http://cancer.sanger.ac.uk/cosmic) were utilised

in our analysis. From cBioportal, pancancer study data from MSK-IMPACT clinical sequencing
cohort study and Breast cancer study (METABRIC, Nature 2012 and Nat commun 2016) for

mutational analysis.

A study named “MSK-IMPACT clinical sequencing cohort, Nat Med 2017 dataset has been
chosen from cBioportal. From 10,945 samples, found 19 genes 248 active regions gave significant p
value (<0.05) with different position, which have dephosphorylation effect on PP2A target. There are
75 genes are non-significant. Another mutational data from COSMIC database with PP2A
dephosphorylation dataset also performed in ActiveDriver. From 508,561 samples from COSMIC
database, found statistically significant 57 genes with 2,723 active regions, which have

dephosphorylation effect on PP2A target.

The network analysis was performed among 19 significant genes from cBioportal data. TP53
gene highly connected with 14 other genes among 19. However, there is no connection between
FOXKI and other genes, which means FOXK1 does not have any interaction with other genes.
NCORI, KMT2A, NPMI have number of connections between other genes which have eight, seven
and six respectively. Among these genes, there are 24 number of edges are connected and average
node degree is 5.33 and PPI enrichment value also significant and it is 2.68e-12. The false discovery

rate also found in this analysis and it is less than 0.05, which means the influence level of mutation
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in binding of PP2A to these genes are high. The network analysis also performed among 57 significant
genes from COSMIC database. Among 57 number of nodes, there are 166 number of edges are
connected and average node degree is 5.82 (Figure: 10). PPI enrichment p- value has significant and

it is Se-15.
Last but not least, finally we can conclude that mutational study help us understand whether

existing mutations correlate with dephosphorylation sites of PP2A targets and thereby likely provide

potential clues for mechanisms of action for PP2A function.
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Appendix

1. The Onco Query Language (OQL) data types and functionality (Gao et al., 2013).

Date type

Keyword

Code

Description

Example

Mutation

MUT

MUT=x

Show case with
specific
mutation or

mutation types.

TP53: MUT=MISSENSE; TP53:
MUT=NONSENSE; TP53:
MUT=NON-START; TP53:

MUT=NONSTOP; TP53:
MUT=FRAMESHIFT; TP53:

MUT=INFRAME; TP53:
MUT=INFRAME; TP53:
MUT=SPLICE; TP53:
MUT=TRUNCATED

2. Merge report of “Breast cancer (METABRIC, Nature 2012 and common 2016)” study from

cBioportal and genes with their dephosphorylation effect on PP2A target.

Gene Mut_position | Active_region | PTM_position | Residue | Dataset Active_region_p
source
SMARCC2 | 303 2 304 S A549 MEK | 0.002179
SMARCC2 | 303 2 302 S A549 MEK | 0.002179
SMARCC2 | 303 2 304 S A549 MEK | 0.002179
SMARCC2 | 303 2 302 S A549 MEK | 0.002179
SMARCC2 | 303 2 304 S A549 MEK | 0.002179
SMARCC2 | 303 2 302 S A549 MEK | 0.002179
SMARCC2 | 303 2 304 S A549 MEK | 0.002179
SMARCC2 | 303 2 302 S A549 MEK | 0.002179
AHNAK2 | 1260 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1260 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1251 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1251 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1248 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1248 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1252 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1252 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1254 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1254 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1252 8 1253 S A549 MEK | 0.003844
AHNAK2 | 1252 8 1253 S A549 MEK | 0.003844
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AHNAK 210 1 210 S A549 MEK | 0.005277
AHNAK 210 1 212 S A549 MEK | 0.005277
AHNAK 210 1 216 S A549 SMAP | 0.005277
AHNAK 210 1 210 S A549 MEK | 0.005277
AHNAK 210 1 212 S A549 MEK | 0.005277
AHNAK 210 1 216 S A549 SMAP | 0.005277
AHNAK 218 1 212 S A549 MEK | 0.005277
AHNAK 218 1 220 S A549 SMAP | 0.005277
AHNAK 218 1 216 S A549 SMAP | 0.005277
AHNAK 218 1 212 S A549 MEK | 0.005277
AHNAK 218 1 220 S A549 SMAP | 0.005277
AHNAK 218 1 216 S A549 SMAP | 0.005277
AHNAK 210 1 210 S A549 MEK | 0.005277
AHNAK 210 1 212 S A549 MEK | 0.005277
AHNAK 210 1 216 S A549 SMAP | 0.005277
AHNAK 210 1 210 S A549 MEK | 0.005277
AHNAK 210 1 212 S A549 MEK | 0.005277
AHNAK 210 1 216 S A549 SMAP | 0.005277
AHNAK 5795 26 5794 T A549 MEK | 0.008118
AHNAK 5795 26 5790 S A549 MEK | 0.008118
AHNAK 5795 26 5794 T A549 MEK | 0.008118
AHNAK 5795 26 5790 S A549 MEK | 0.008118
AHNAK 5799 26 5794 T A549 MEK | 0.008118
AHNAK 5799 26 5794 T A549 MEK | 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
AHNAK 5779 26 5780 S A549 MEK | 0.008118
AHNAK 5779 26 5784 S PIPs 0.008118
ATR 433 1 435 S A549 MEK | 0.008968
ATR 433 1 435 S A549 MEK | 0.008968
ATR 436 1 435 S A549 MEK | 0.008968
ATR 436 1 435 S A549 MEK | 0.008968
CHD1 96 1 90 S Francisbar 0.011364
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CHD1 96 1 90 S Francisbar 0.011364
CHD1 96 1 90 S Francisbar 0.011364
CHD1 96 1 90 S Francisbar 0.011364
CHD1 96 1 90 S Francisbar 0.011364
CHD1 96 1 90 S Francisbar 0.011364
AHNAK 5578 22 5582 S H358 SMAP | 0.017355
AHNAK 5578 22 5582 S H358 SMAP | 0.017355
AHNAK 5586 22 5589 S H358 SMAP | 0.017355
AHNAK 5586 22 5582 S H358 SMAP | 0.017355
AHNAK 5586 22 5589 S H358 SMAP | 0.017355
AHNAK 5586 22 5582 S H358 SMAP | 0.017355
AHNAK 5592 22 5589 S H358 SMAP | 0.017355
AHNAK 5592 22 5589 S H358 SMAP | 0.017355
AHNAK 5592 22 5589 S H358 SMAP | 0.017355
AHNAK 5592 22 5589 S H358 SMAP | 0.017355
SMARCC1 | 322 1 328 S H358 SMAP | 0.033298
SMARCC1 | 322 1 328 S H358 SMAP | 0.033298
SMARCC1 | 335 1 328 S H358 SMAP | 0.033298
SMARCC1 | 335 1 330 S H358 SMAP | 0.033298
SMARCC1 | 335 1 328 S H358 SMAP | 0.033298
SMARCC1 | 335 1 330 S H358 SMAP | 0.033298
SMARCC1 | 337 1 330 S H358 SMAP | 0.033298
SMARCC1 | 337 1 330 S H358 SMAP | 0.033298
AHNAK 4908 16 4908 S H358 SMAP | 0.048773
AHNAK 4908 16 4908 S H358 SMAP | 0.048773
AHNAK 5326 19 5332 S H358 SMAP | 0.048773
AHNAK 5326 19 5332 S H358 SMAP | 0.048773
AHNAK 5332 19 5332 S H358 SMAP | 0.048773
AHNAK 5332 19 5332 S H358 SMAP | 0.048773
AHNAK 516 5 511 S PIPs 0.048773
AHNAK 516 5 511 S PIPs 0.048773
AHNAK 510 5 511 S PIPs 0.048773
AHNAK 510 5 511 S PIPs 0.048773
AHNAK 511 5 511 S PIPs 0.048773
AHNAK 511 5 511 S PIPs 0.048773
ARID1A 1184 1 1184 S A549 MEK | 0.057132
ARID1A 1184 1 1184 S A549 MEK | 0.057132
CHD1 1097 2 1100 S PIPs 0.065391
CHD1 1097 2 1098 S PIPs 0.065391
CHD1 1097 2 1096 S PIPs 0.065391
CHD1 1097 2 1100 S PIPs 0.065391
CHD1 1097 2 1098 S PIPs 0.065391
CHD1 1097 2 1096 S PIPs 0.065391
CHD1 1094 2 1100 S PIPs 0.065391
CHD1 1094 2 1098 S PIPs 0.065391
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CHD1 1094 2 1096 S PIPs 0.065391
CHD1 1094 2 1100 S PIPs 0.065391
CHD1 1094 2 1098 S PIPs 0.065391
CHD1 1094 2 1096 S PIPs 0.065391
SETD2 2080 1 2082 S PIPs 0.066734
SETD2 2080 1 2080 S PIPs 0.066734
SETD2 2080 1 2082 S PIPs 0.066734
SETD2 2080 1 2080 S PIPs 0.066734
SETD2 2079 1 2082 S PIPs 0.066734
SETD2 2079 1 2080 S PIPs 0.066734
SETD2 2079 1 2082 S PIPs 0.066734
SETD2 2079 1 2080 S PIPs 0.066734
AHNAK2 | 305 1 298 T A549 MEK | 0.12026

AHNAK2 | 305 1 298 T A549 MEK | 0.12026

AHNAK2 | 593 4 598 T A549 MEK | 0.12026

AHNAK2 | 593 4 593 S H358_SMAP | 0.12026

AHNAK2 | 593 4 598 T A549 MEK | 0.12026

AHNAK2 | 593 4 593 S H358_SMAP | 0.12026

AHNAK2 | 5720 15 5715 T A549_SMAP | 0.13349

AHNAK2 | 5720 15 5715 T A549_SMAP | 0.13349

AHNAK 5854 27 5857 S H358_SMAP | 0.134511
AHNAK 5854 27 5851 S H358_SMAP | 0.134511
AHNAK 5854 27 5857 S H358_SMAP | 0.134511
AHNAK 5854 27 5851 S H358_SMAP | 0.134511
AHNAK 4711 15 4715 S A549 MEK | 0.135898
AHNAK 4711 15 4715 S A549 MEK | 0.135898
AHNAK 4710 15 4715 S A549 MEK | 0.135898
AHNAK 4710 15 4715 S A549 _MEK | 0.135898
AHNAK2 | 920 7 923 S A549 _MEK | 0.148609
AHNAK2 | 920 7 923 S A549 _MEK | 0.148609
AHNAK2 | 928 7 923 S A549 _MEK | 0.148609
AHNAK2 | 928 7 923 S A549 _MEK | 0.148609
AHNAK2 | 927 7 923 S A549 _MEK | 0.148609
AHNAK2 | 927 7 923 S A549 _MEK | 0.148609
AHNAK2 | 923 7 923 S A549 _MEK | 0.148609
AHNAK2 | 923 7 923 S A549 _MEK | 0.148609
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3. Programming coding on R platform (RStudio version 1.0.1336 with R v 3.0.1).

# install pakage
install.packages("ActiveDriver")
library(ActiveDriver)

data(ActiveDriver_data)

phos_results = ActiveDriver(sequences, sequence_disorder, mutations, phosphosites)
phos_results

#Overian cancer mutation

ovarian_mutations = mutations[grep("ovarian", mutations$sample_id),]
ovarian_mutations

gene_name_ovarian_mutations= ovarian_mutations[,1]

#Breast cancer

breast_cancer_mutations = mutations[grep("breast_cancer", mutations$sample_id),]
breast_cancer_mutations

gene_name_breast_cancer= breast_cancer_mutations|[,1]

gene_name_breast _cancer

length(gene_name_breast_cancer)

#Pancancer_mutation

pancancer_mutations = mutations[grep("pancreatic_cance", mutations$sample_id),]
pancancer_mutations

gene_name_pancancer_mutations= pancancer_mutations[,1]
gene_name_pancancer_mutations

#GBM_muts

GBM_muts = mutations[grep("glioblastoma”, mutations$sample_id),]

GBM_muts

gene_name_GBM_muts= GBM_muts[,1]

gene_name_GBM_muts

kin_rslt GBM = ActiveDriver(sequences, sequence_disorder, GBM_muts, kinase_domains,
simplified=TRUE)

kin_results = ActiveDriver(sequences, sequence_disorder, mutations, kinase_domains,

simplified=TRUE)
Is()

data(ActiveDriver_data)

phos_results = ActiveDriver(sequences, sequence_disorder, mutations, phosphosites)
phos_results
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HIHHHHH

library(seqinr)
all_seq_dis<-
read.table("D:/fif_data/Desktop/prdos_scores_human_final_seq_binary.txt",header=TRUE)

unique(all_seq_dis[,3])

x=as.vector(all_seq_dis[,3])

X[1:3]

y=as.vector(all_seq_dis[,4])

aafile<- read.fasta("D:/fif_data/Desktop/sequences_for TCGA_pancancer.fa", seqtype =
llAAll)

Segs=unlist(getSequence(aafile, as.string=T))

names(Seqs)=names(aafile)

names(Seqs[1:3])

disfile<- read.fasta("D:/fif_data/Desktop/sequence_disorder_for_ TCGA_pancancer.fa",
seqtype = "AA")

dis=unlist(getSequence(disfile, as.string=T))

names(dis)=names(disfile)

names(dis[1:3])

m=read.table("D:/fif_data/Desktop/all_mutations_for TCGA_pancancer.tab",
header=TRUE)

p=read.table("D:/fif_data/Desktop/all_phosphosites_for TCGA_pancancer.tab",
header=TRUE)

phosresults.pan = ActiveDriver(Seqgs,dis,m,p)

capture.output(phosresults.pan, file = "phosresults.pan.txt")
edisummary(phosresults.pan.txt)

phosresults

head(m)

head(p)

ActiveDriver

HHHHH R
msk_2017=read.csv("D:/fif_data/Desktop/data_save_msk 2017_26.10.2017.csv",header=
TRUE,sep=",")

dim(msk_2017)

#Finding common genes###

msk_2017_gene_table=table(msk_2017$gene_symbol);
r=row.names(msk_2017_gene_table);r

length(r)
gene_sym=read.table("D:/fif_data/Desktop/gene_symbol_to_refseq.tab",header=T)
head(gene_sym)
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length(gene_sym$gene)

gene_sym_table=table(gene_sym$gene)

r2=rownames(gene_sym_table)

length(r2)

common_genes=intersect(r,r2)

common_genes=as.vector(common_genes)

length(common_genes)

HHHHAE 200 +HEHEHE
data_common_genes=msk_2017[is.element(msk_2017$gene_symbol,common_genes),]
head(data_common_genes)

write.csv2(data_common_genes, "D:/fif_data/Desktop/data_common_genes.csv")
HH IR R

msk_2017=read.csv("D:/fif_data/Desktop/Thesis/data_save_msk 2017_22.11.2017.csv",h
eader=TRUE,sep=",")

head(msk_2017)

colnames(m)

colnames(msk_2017)
head(msk_2017)

mO=subset(msk_2017,
select=c("gene_symbol","mutation_status","case_id","position","wt_residue","mt_residue"))
head(mO0)
colnames(m0)<-c("gene
head(mO0)

,'cancer_type",

sample_id","position","wt_residue", "mut_residue")

phosresults_0 = ActiveDriver(x,y,m0,p)

names(p)
m1=m0[2:9,]
m1

#i# GNAS data #HHHHHEHEHEE
seq_temp<-sequences[which(names(sequences) == "GNAS")]
dis_temp<-disorder_values[which(names(disorder_values) == "GNAS")]
names(dis_temp) <- c("GNAS_095467","GNAS_P63092","GNAS_Q5JWF2")
names(seq_temp) <- c("GNAS_095467","GNAS_P63092","GNAS_Q5JWF2")
m1=mO0[grep("GNAS_",as.vector(m0$gene)),]

grep("GNAS_",as.vector(m0$gene),"GNAS_095467")
m1=mO0[grep("GNAS_",as.vector(m0$gene)),]
which(as.vector(p1$gene)=="GNAS")
p1[which(as.vector(p1$gene)=="GNAS"),]
p2=p1[which(as.vector(p1$gene)=="GNAS"),]
p2$gene=as.vector(p2$gene)

p2%gene

p2%gene[1]="GNAS_P63092"
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ActiveDriver(seq_temp,dis_temp,m1,p1)
#iHHHHBreast_cancer_2016 study###H
breast_cancer_01.03.2017 = ActiveDriver(sequences,disorder_values,m2,p1)

write.csv(breast_cancer_01.03.2017$merged_report, file =
"breast_cancer_01.03.2017_merged_report.csv")
HIHHAHHHHHHAAAHHHH Find commpon genefHHHH HEHE
library(ggplot2)

library(magrittr)

library(ggpubr)

library(ggrepel)
library(tidyverse)

trp1 <- read_csv("phosresults_20.02.2017_merged_report.csv",col_names= TRUE)

tr1 <- read_csv("phosresults_20.02.2017_merged_report.csv",col_names= TRUE) %>%
select(gene)

tr1

tn1 <- read_csv("Dephsopsho_db_signi - Copy.csv",col_names= TRUE) %>% select(gene)

tn1

trn1 <- intersect(tr1,tn1) %>% as.data.frame
dim(trn1)
dim(trp1)

write.csv(trn1, file = "int_th17vstreg.txt",row.names=TRUE)

trn2 <- left_join(trn1,trp1,by="gene") %>% mutate(gene_comm=gene) %>% as.data.frame
trn3 <- inner_join(trn1,trp1,by="gene") %>% as.data.frame

write.csv(trn3, file = "common_gene_pancancer_2.csv",row.names=TRUE)

trn2

dim(trn2)

trn4 <-na.omit(trn3%active_region)

HiHHHEHHHHHA active driver on PP2A dephosphorylome (P1) with MSK##H#HEE HHHHE

setwd("D:/fif_data/Desktop/Thesis/")
all_seq_dis<-read.table("prdos_scores_human_final_seq_binary.txt",header=TRUE)

cc<-load(file="prdos_scores_human_final_seq_binary.rav") ##dis_data_final
gene_sym=read.table("D:/fif_data/Desktop/Thesis/hugoformat_uniprot_16.02.17.csv",head
er=TRUE,",")

hug_set<-gene_sym[,c(1,4)]

hug_set

colnames(all_seq_dis)

colnames(hug_set)<-c("Uniprot","HuGO_gene")

all_seq_dis_names<-merge(dis_data_final,hug_set, by="Uniprot", x.all=TRUE)
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head(all_seq_dis_names)
sequences<-as.character(all_seq_dis_names|[,3])

names(sequences)<-as.vector(all_seq_dis_names$HuGO_gene)
sequences[1:3]

disorder_values<-as.character(all_seq_dis_names|[,5])
names(disorder_values)<-as.vector(all_seq_dis_names$HuGO_gene)
disorder_values[1:3]

msk_2017_mut=read.csv("D:/fif_data/Desktop/Thesis/mutation_new_msk 2017_22.11.201
7_COPY.csv",header=TRUE,sep =",")

colnames(msk_2017_mut)

mO=subset(msk_2017_mut,
select=c("gene_symbol","case_id","position","wt_residue","mt_residue"))
colnames(mO0)<-c("gene","sample_id","position","wt_residue", "mut_residue")

head(mO0)

p_PP2A=
read.csv("D:/fif_data/Desktop/Thesis/Dephsopsho_db_signi_24.09.18.csv",header=TRUE,s
ep="")

colnames(p_PP2A)

pO=subset(p_PP2A, select=c("gene_name","position","residue","kinase"))
colnames(p0)<-c("gene","position","residue","kinase")

dephospho_MSK2017_24.09.18= ActiveDriver(sequences,disorder_values,m0,p0)
write.csv(dephospho_MSK2017_15.03$merged_report, file =

"dephospho_MSK2017_15.03_merged_report.csv")

HiHHHHHHHHHAHf cosmic data#HtHH
cosmic_mut <-read.csv("D:/fif_data/Desktop/Thesis/cosmic_mutant.csv",header=TRUE,sep

colnames(cosmic_mut)
m2=subset(cosmic_mut,
select=c("Gene.name","Sample.name","position","wt_residue","mt_residue"))

colnames(m2)<-c("gene","sample_id","position","wt_residue", "mut_residue")
head(m2)

p_PP2A=
read.csv("D:/fif_data/Desktop/Thesis/Dephsopsho_db_signi.csv",header=TRUE,sep =",")
colnames(p_PP2A)

pO=subset(p_PP2A, select=c("gene_name","position","residue","kinase"))

colnames(p0)<-c("gene","position","residue","kinase")
dephospho_cosmic= ActiveDriver(sequences,disorder_values,m2,p0)

HiHHHHAL t test and fdr testiHH
require(graphics)

a= read.csv("C:/Users/mfifar.UTU/Desktop/c.csv",header=TRUE,sep=",")
colnames(a)
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pv<-matrix(NA, nrow = dim(a)[1], ncol = 1)
for (i in 1:dim(a)[1])
{

xx<-t.test(a[i, 2:4], a[i, 5:7], var.equal = FALSE, paired = FALSE, alternative = "two.sided")
pv[i]<-xx$p.value

}

p=round(pv,3)

p
write.csv(p, file = "pv_B56_dataset 3.csv")

padj<-round(p.adjust(p, method = "BH"),3)
padj

write.csv(padj, file = "fdr_B56.csv")

a$pvalue<-pv
a$padj<-padj

##olcano plotHiHHHHEHEHE
##ldentify the genes that have a p-value < 0.05
a$threshold = as.factor(a$p.adjusted < 0.05)

##Construct the plot object
g <- ggplot(data=a,
aes(x=log2(Fold.Change), y =-log10(P.value) ,
scale_color_manual(values=c("green", "red")) ))+
geom_point(alpha=0.4, size=1.75) +
xlim(c(-1.5, 1.5)) +

xlab("log2 fold change") + ylab("-log10 q.value") +

theme_bw() +

theme(legend.position="none")
scale_color_manual(values=c("green", "red"))
g+geom_text_repel(data=head(a, 10), aes(label=Gene))
g

HHHHHE heatmap##if #HE
a1= as.vector(a)
heatmap3(a1,

RowSidelLabs = FALSE,

showRowDendro=FALSE,

showColDendro=FALSE,

main = "Heatmap of Significant genes")
dev.off()
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#iHHHHE histogram of MSK_2017##HHH

z= read.csv("C:/Users/mfifar.UTU/Desktop/z.csv",header=TRUE,sep=",")
z1=z%active_region_p

as.vector(z)

hist(z1)

hist(z1,

main = paste("Histogram of Active region" ),

xlab = "Active region p value", ylab= "frequency",
axes = TRUE, plot = TRUE, labels = FALSE

)

dev.off()
hist(z1,

+ main="0ld Faithful Eruptions", # the main title
+ xlab="Duration minutes")
HHHHHEHRAHHE heatmapiHHHEH#
library(RColorBrewer)

library(gplots)

j1=read.table("C:/Users/mfifar.UTU/Downloads/c.csv",header=T,sep=",")
Genes <- as.vector(j1[,1])

data<-as.matrix(j1[,-1])
colnames(data)<-gsub("SCR.*","SCR",colnames(data))
colnames(data)<-gsub("A.*","A.sub",colnames(data))

heatmap.2(data,
dendrogram="none",
Rowv=T,
Colv=T,
scale="row",
key=T,
trace="none",
col = colorRampPalette(c("red","white","blue"))(512),
#breaks=col_breaks,

na.rm=F,
labRow = Genes,
keysize=1.5,

density.info="none"
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