

 An Anti-Malware Product Test Orchestration
Solution for Multiple Pluggable Environments

 UNIVERSITY OF TURKU Department of Future Technologies Master of Science in Technology Thesis Networked Systems Security November 2018 Habibul Islam Supervisor: Bruno Amaro Almeida (F-Secure) Examiners: Seppo Virtanen Antti Hakkala The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin Originality Check service.

UNIVERSITY OF TURKU Department of Future Technologies HABIBUL ISLAM: An Anti-Malware Product Test Orchestration Solution for Multiple Pluggable Environments Master of Science in Technology Thesis, 62 pages. Networked Systems Security November 2018 The term automation gets thrown around a lot these days in the software industry. However, the recent change in test automation in the software engineering process is driven by multiple factors such as environmental factors, both external and internal as well as industry-driven factors. Simply, what we all understand about automation is - the use of some technologies to operate a task. The choice of the right tools, be it in-house or any third-party software, can increase effectiveness, efficiency and coverage of the security product testing. Often, test environments are maintained at various stages in the testing process.
Developer’s test, dedicated test, integration test and pre-production or business readiness test are some common phrases in software testing. On the other hand, abstraction is often included between different architectural layers, ever-changing providers of virtualization platforms such as VMWare, OpenStack, AWS as test execution environments and many others with a different state of maintainability. As there is an obvious mismatch in configuration between development, testing and production environment; software testing process is often slow and tedious for many organizations due to the lack of collaboration between IT Operations and Software Development teams. Because of this, identifying and addressing test environment-related compatibility becomes a major concern for QA teams. In this context, this thesis presents a DevOps approach and implementation method of an automated test execution solution named OneTA that can interact with multiple test environments including isolated malware test environments. The study was performed to identify a common way of preparing test environments in in-house and publicly available virtualization platforms where distributed tests can run on a regular basis. The current solution allows security product testing in multiple pluggable environments in a single setup utilizing the modern DevOps practice to result minimum efforts. This thesis project was carried out in collaboration with F-Secure, a leading cyber security company in Finland. The project deals with the company’s internal environments for test execution. It explores the available infrastructures so that software development team can use this solution as a test execution tool. Keywords: Test Automation, Continuous Integration, DevOps, Automated Malware Testing, Python

 Table of Contents
1 Introduction ... 1

1.1 Background ... 3

1.2 Aims and objectives .. 4

1.3 Research outline .. 6

1.4 Thesis structure ... 7

2 Test Automation and DevOps Practice .. 9

2.1 Defination of DevOps ... 9

2.2 The rise of Agile and DevOps ... 10

2.3 The key areas of DevOps .. 12

2.4 Test automation in DevOps ecosystem ... 13

2.5 Automation in testing .. 14

2.6 DevOps tools and technological solutions .. 15

2.7 Automation framework Ansible .. 17

2.8 Virtualization in Test Automation ... 18

3 Overview of the Target Environments ... 19

3.1 Pluggable test environments.. 19

3.1.1 Bare-metal environment .. 20

3.1.2 Dynamic Virtual Machine Provisioning Systems (DVMPS) 21

3.1.3 AWS EC-2 .. 23

3.1.4 Sandbox solution ... 25

3.1.5 Isolated malware test environment: Red Cloud .. 26

4 Defining the Test Related Requirements and Problems 30

4.1 Specifying the functionality .. 30

4.2 Infra instability and inconsistency ... 31

4.3 Future consideration for a widespread range of cloud platforms .. 31

4.4 Security considerations related to handling real malware ... 32

4.5 Main requirements for OneTA solution .. 32

5 Design and Implementation of the Orchestration Solution 34

5.1 Logical architecture and main workflow of OneTA solution .. 34

5.2 Fragmentation of tools and required resources ... 35

5.3 Backend and client-side infrastructures .. 38

5.4 Test machine creation in DVMPS environment .. 39

5.5 Inclusion of in-house remote execution tool “FSExec” .. 40

5.6 Python Paramiko for SSH connectivity... 41

5.7 REST API for the Sandbox solution ... 42

5.8 Ansible for AWS configuration management ... 43

5.9 JSON to YAML conversion .. 44

5.10 JSON to manage test configuration in Python .. 45

5.11 Automating workflow with Python ... 47

5.12 Jenkins for continuous integration .. 49

5.13 Running the Tests .. 49

5.14 Packer for machine image creation ... 53

6 Results: Justification of the Proof of Concept 54

6.1 Justification of requirements ... 54

6.2 Validity, Reliability and Stability of the concept .. 56

6.3 Test cases .. 56

6.4 Test coverage and core features .. 57

7 Conclusion .. 59

7.1 Limitations and suggestions for future work ... 61

References ... 63

List of Figures
Figure 1: The principal of OneTA test orchestration solution .. 5

Figure 2: Research workflow of the OneTA solution ... 6

Figure 3: General overview of DevOps in the software development lifecycle 11

Figure 4: Manual steps for creating VM in DVMPS environment ... 23

Figure 5: Overview of the Red cloud architecture and purposes of labeling 28

Figure 6: Actual system design and principal of workflow of the OneTA solution 34

Figure 7: Life cycle of OneTA in anti-malware product test use cases 52

List of Tables
Table 1: List of commonly used DevOps tools ... 15

Table 2: List of target environments for conducting the tests ... 20

Table 3: Purposes and labeling of different environments inside the organization 27

Table 4: List of OneTA components and roles in the test process .. 38

Table 5: Sandbox REST API use cases .. 42

Table 6: List of parameters required for running the test .. 51

Table 7: Currently available supports for test orchestration through OneTA 55

Code Snippets
Code Snippet 1: Code snippet for creating Ansible playbook using JSON values 45

Code Snippet 2: Example of JSON for AWS use case ... 46

Code Snippet 3: Implementation of command-line interface using docopt 48

 Abbreviations and Acronyms
 AV Anti-Virus AWS Amazon Web Services AMI Amazon Machine Image API Application Programming Interface CI Continuous Integration CD Continuous Delivery CLI Command-line interface CPU Central Processing Unit EC2 Elastic Compute Cloud EICAR European Institute for Computer Antivirus Research GUI Graphical User Interface GNU General Public License HW Hardware IT Information Technology IaaS Infrastructure-as-a-Service JSON JavaScript Object Notation KVM Kernel-based Virtual Machine MIT Massachusetts Institute of Technology PyPI Python Package Index PoC Proof of Concept QA Quality Assurance SSH Secure Shell SSL Secure Sockets Layer SHA Secure Hash Algorithm SHA1 Secure Hash Algorithm 1 SCM Source Code Management TA Test Automation TCP Transmission Control Protocol TEM Test Environment Management UDP User Datagram Protocol URL Uniform Resource Locator VPN Virtual Private Network VM Virtual Machine VCS Version control systems WWW World Wide Web YAML YAML Ain't Markup Language

1

1 Introduction
We all know that computers are wonderful machines. They give us the power to
accomplish anything that we want these days. They can be taught to perform many tasks
in a time effective way. Over the last several years, there have been significant advances
in the adoption of new automation technologies in IT industries. The main reason for this
is to accelerate the ongoing digital transformation.

In any professional endeavor, people usually deal with different kinds of systems. Being
able to deal with different computer systems not only entails knowing what specific
requirements need to be fulfilled but it also entails having the ability to think like a
computer. Significantly, most of the software development teams demand an effective
and secure test execution process where reliable tests can run on a daily basis. However,
the execution process often relies on multiple environments and they are often distinctive.
Real-time remote management and simplified edge infrastructure are pivotal where more
data-intensive computing workload is involved. In this context, the power to make this
bidding for us is the appropriate implementation of “Programming Paradigm” which can
make the compatibility to accomplish our needs programmatically.

Nowadays test automation (also called as TA) is fundamental in the agile development
context. By adopting the automated testing approach, we can speed up the process of
software validation and increase test coverage. It has become commonplace in the field
of malware analysis and development of anti-malware software to perform the software
testing programmatically. However, there are many challenges in applying test
automation for applications under validation [2]. In any security software development
process, the malware handling needs to be automated but secure. Moreover, the test
environment needs to be able to execute malware without allowing it to escape to other
computers and networks. An effective and efficient management of anti-malware
product test environments with structured execution process can deliver significant
benefits and bring down the walls between the teams and align incentives through
automation, lean principles and measurement practices. Many test automation
frameworks are available, and they supply different purposes in the software testing

2

process. A framework can be defined in many ways and there are various definitions
available for it. However, in test automation domain it can be defined as such:

“A test automation framework is a collection of interacting components facilitating the

creation and execution of automated tests and the reporting of the results thereof.” [8]

The term automation comes into force when we need to deal with repetitive tasks. Test
automation can automate some repetitive tasks and it is critical for continuous delivery
(CD) and continuous testing. In this context, testing of anti-malware software in an
automated form requires an end-to-end secure connection, where simulated malware
samples and infections are heavily involved. Additionally, testing real malware adds
many requirements for the test environment and infrastructure. To ensure the
effectiveness of any anti-malware software, automated functional testing in different
systems is necessary. Unfortunately, there is no comprehensive generic solution available
for it [30]. Many automation tools and frameworks are available in the market, but it is
hard to find an absolute support that we oftentimes require in our systems. Anti-malware
vendors and security research teams often need to implement their own testing solution
to support multiple environments they use. To mitigate the potential drawbacks and
obtain ultimate advantages, it is reasonable to take a hybrid approach for testing the
software on various levels of test target abstraction.

As there was a need to build a new integrated tool or extend existing software engineering
tools and design a clear DevOps pipeline, this thesis work seeks to solve an unsolved on-
premise IT orchestration challenge by developing a clear automation process of complex
multi-tier workflows under a single banner. This thesis presents an approach and
implementation method of an automated test execution solution named OneTA, which
is mainly a collection of Python scripts for distributed execution of automated anti-
malware product tests in multiple environments. However, the scripts enable the reuse of
functions, test scenarios, and the collection of user actions, which results in less effort.
The proposed approach, consists of two main elements; a controller machine, and test
infrastructures. The project aimed to design and implement a secure solution that satisfies
the main requirements for automated network connectivity for different test environments

3

used by this thesis commissioning software vendor. The project also deals with totally
isolated cloud-based malware test environment and provide a significant solution to
execute the test as a pluggable test environment. Furthermore, it enables various
stakeholders of the test execution domain to perform the test in a Continuous Integration
(CI) method and deal with time-consuming and repetitive tasks.

However, the underlying meaning behind OneTA is “One Test Automation” and this
naming was inspired from another solution of this thesis commissioning organization.
OneTA combines a wealth of different tools and technologies, all preconfigured into a
single framework for vendor’s internal use. Therefore, it allows multiple automation
components to provide end-to-end test automation for many test cases. In a nutshell,
OneTA can be summarized in the following way:

OneTA is a collection of Python scripts and libraries unified by one namespace that
provides a standard set of instructions to access multiple systems simultaneously and
interact with them by covering all their dependencies.

1.1 Background
 In the test consulting domain, the testers and test managers change domains frequently
due to a large set of test cases involved. Virtualization platforms have grown to play an
essential role in this change. In this research conducting organization, several test
execution environments are in use and they are in different states of maintainability.
Similarly, different methods for test execution are available and they are preferred to be
done programmatically. On the other hand, a secure way of conducting the tests is always
a big challenge, because testing anti-malware products usually performed against real
malware samples as well as crafted malware samples. Moreover, some tests in the in-
house environments often involve manual tasks. Manual testing is laborious, and it is also
a time-consuming process. In this scenario, some common problems faced in existing
implementations were identified by the test managers in this test consulting domain prior
to their analysis and those problems are outlined below:

4

• Widespread range of in-house test environments and tools
• Ever changing providers of virtualization platforms such as VMWare, OpenStack,

AWS, etc.
• No common provisioning support for multiple test environments
• No clear abstraction between different architectural layers
• No infra stability and consistency
• Many tools and framework in a different state of maintainability
• Manual and poorly maintained crafted template images

1.2 Aims and objectives
 The prime goal of this thesis project was to allow development and QA teams to perform
product testing against multiple systems using a simple test definition. It also focuses on
the broad analysis of techniques, tools and knowledge needed to manage test
environments in the software engineering processes and infrastructure automation to
solve those problems.

In summary, the objectives which were formed before the study are listed below:

i. A common test automation model needs to be implemented for available services
ii. The solution/library can be used via command-line (standalone) or integrated with

other in-house systems
iii. Must support in-house sandboxing solution as a pluggable environment to allow

testing against unknown files and URLs
iv. Must support Amazon Web Services (AWS) infrastructure as the pluggable

environment
v. Empirical results of this solution should be effective against vendor’s Red Test

Automation use cases
vi. Should have the ability to rerun existing tests on new infrastructure

vii. Must allow measurements such as performance, detection capabilities and other
factors in a safe/isolated environment

5

viii. Able to eliminate errors due to manual interventions and delays due to
dependencies

ix. Provide an efficient solution for a security research team in the test execution

process using supporting technologies

To give an illustration of the overall concept and requirements, Figure 1 presents the high-
level architectural overview of the OneTA solution. For the sake of clarity, those
components which are not closely related to OneTA workflow are excluded from figure
1. The actual implementation process will be explained in chapter 5.

The research project, as well as this thesis, is about developing a Python-based library
that helps in saving time and reduction of manual intervention. The solution should allow
to write, run, and analyze automated tests, except for the tests themselves. Also, it
involves a broad analysis of knowing how existing tools can be integrated into this
solution and implement a fully functional test automation process to support multiple

Figure 1: The principal of OneTA test orchestration solution

6

environments. In this thesis, “development and test” mainly refers to the various tools
and industry-driven practices applied when unifying test orchestration process.

1.3 Research outline
 This thesis presents a DevOps methodology, which explores the challenge of unification
of different tools and execution methods. Additionally, it tries to address the dependency
related issues, which were identified by the test managers. The project was very technical
in nature, and Python 3 was used as the main scripting language to make the systems
functional and operational. Therefore, the system was verified against a few test cases for
the functionality. Figure 2 shows the overall research workflows that were followed
during the development of the OneTA solution.

Figure 2: Research workflow of the OneTA solution

7

The overall research was conducted concentrating on these areas:
• DevOps methodology
• Automated provisioning
• Configuration automation
• Virtualization
• Anti-malware product testing
• Malware analysis
• Continuous integration

1.4 Thesis structure
 In this thesis, the discussion centred on a security product test automation solution that is
suited for different test environments with different business requirements along with
multiple virtualization platforms. The project thoroughly followed the test automation
strategies. This thesis is divided into seven chapters. The primary intent of this chapter
was to provide an overall idea of the work and some problem definitions. The rest of the
chapters present common terminologies, related technologies, theoretical background,
system specification, architectural overview and justification of the proof of concept. This
thesis is structured as follows:
 Chapter 2 describes the theoretical knowledge of DevOps and the importance of DevOps
as a practice in modern software development process. The description of this chapter is
based on the knowledge acquired during the thesis study. Additionally, it also outlines
some of the commonly used DevOps tools, which are predominantly used in the modern
software industries.
 Chapter 3 will introduce the target environments for which this solution was developed.
It tries to give an overall architecture of the systems that OneTA interact throughout the
test orchestration process. It will briefly explain how the internal systems work and their
main purpose of use.

8

Chapter 4 presents the common challenges that are usually faced in the test automation
context. It discusses some of the issues which were particularly identified during this
study.

Chapter 5 provides a broad description of the different components which were used to
develop the solution. It describes the higher-level architecture, supporting technologies
and OneTA specific approach. It provides a broad view of the actual solution and required
methods needed to fulfil the thesis objectives.

Chapter 6 highlights the actual outcomes of this project and justification of the proof of
concepts. It evaluates the objectives that were mentioned in chapter 1. It discusses the
overall performance and acceptance of the solution.

Chapter 7 concludes with the solution that has been presented with the corresponding
outcomes. It discusses the future possibility of expansion of this solution. It also outlines
how we can support more pluggable environments with a similar approach.

9

2 Test Automation and DevOps Practice
To enable teams to unlock the potential of the modern technologies, especially in the
infrastructure and operations realm, many factors are fueling the IT automation in the
modern software industry. According to “State of DevOps Report” by Puppet from 2016,
uncovered that high-performing IT teams spend 50 percent less time solving security
issues [33]. Utilizing DevOps in practice, then developing automation solutions and
processes in the security software testing was the main motive of this thesis project.
Indeed, it is important to understand why DevOps exists in modern software development
lifecycle and what crucial role test automation plays in DevOps ecosystem. Most
importantly, why does it seem like most of the companies are moving in the direction of
DevOps and how we can get the benefit from it.

The present chapter of this thesis tries to define what DevOps brings to an organization
regarding the automation process. The primary objective of this chapter is to give a brief
introduction about DevOps and technical perspective of this term in the software
development process. It mainly focuses on the importance of DevOps practice and how
test automation fits into it. Also, it introduces some DevOps tools and technologies that
have greater impact on ongoing IT automation and DevOps practices.

2.1 Defination of DevOps
 There has been a significant improvement in test automation in the last few years. As it
happens in any growing industry, many trends were set. The trend nowadays in many IT
organizations is having a culture shift towards DevOps in their everyday work practices
[36]. In the first place, what is known as DevOps? DevOps, the combination of
Development and Operation, is a practice that is followed by the software companies for
better collaboration, for better results and for building trust among the teams [20] [44].
More specifically, it is a mindset and culture. DevOps is not confined to one tool, or it is
not a role, it reduces the unnecessary back and forth issues between teams [37].

10

Not so long ago, the typical IT story involved highly skilled sysadmins who used to create
and maintain the systems manually they were responsible for. These systems were often
totally managed by hand and trusted to live a long and productive life. Moreover, there
was a heavy division between application developers and the system administrators
running the systems that an application would run on. To alleviate these issues, DevOps
facilitates application developers and sysadmins to work intently to automate the delivery
process [42]. Thus, it minimizes the abstraction between software developers and system
administrators who are involved in building applications and keep the infrastructure
running respectively.

As we can see, DevOps is a mix of software development, operations and services. It is a
fusion of these disciplines to stress cohesion, collaboration, and communication between
the conventionally distinct development and IT operations teams [15]. DevOps practices
yield remarkable results for IT teams and organization [38]. DevOps practices are made
possible by automation, both because it cuts out time-consuming manual work and
eliminates human errors. In brief, Development and Operations work closely together
under the common term that we call DevOps.

2.2 The rise of Agile and DevOps
 Waterfall is a well-known traditional software development methodology, which used to
be very popular among many organizations. Although this methodology is very simple
and easy to understand and use, it also has many disadvantages. However, when Waterfall
is dead, agile comes in and fills some of the gaps [58]. One major advantage of Agile is,
it speeds up the delivery rate of the products and solves the problem of lengthy releases
as well [32]. It helps product owners to define sprint backlogs, and development teams to
prioritize work. Furthermore, it gives business or client the ability to say what works and
what doesn't and see that feedback loop quickly. That said, a development team can
rearrange tasks based on the bottleneck or business priority, which brings more flexibility.
Usually, a typical application lifecycle consists of three major parts:

• Development

11

• Testing
• Operations

Typically, in Waterfall, these three areas are kept separate and are run by different groups.
Despite agile solving the development and testing issues which were present
predominantly in the Waterfall method, it does not include the operations [32].

One factor which has led DevOps in priority is- it brings these three groups together. To
illustrate the ongoing discussion, the overall concept of the DevOps practice and how it
fits into the agile methodology is presented in figure 3. Although Agile and DevOps are
not the same but are typically closely associated. It allows the same group to perform all
the functions. However, one justification that could be given for this is- Agile is a
development methodology, and DevOps is a culture. This implies more like thinking
about an application lifecycle. As a consequence, not the entire development can move
quickly but the entire release can. The DevOps methodology empowers a team that
closely define develop and release. As we see it, DevOps is a huge culture change not

Figure 3: General overview of DevOps in the software development lifecycle [17]

12

only for developers but also for the whole organization. Many tools have emerged that
allow application development teams to work more quickly and efficiently than before.
As a matter of fact, the adoption of a new set of tools is simple compared to changing the
whole organizational culture.

2.3 The key areas of DevOps
 DevOps involves automating the process of software delivery and infrastructure changes.
The largest problem in most areas is lack of automation. Without mature automation in
place, true DevOps culture will struggle. Achieving the velocity that needed will be hard.
Two major sides of DevOps can be identified in the following characteristics:

1. Operation Centric:
• Manage inventory of servers automatically- Provisioned, configured

automatically
• Monitoring analysis of operations

2. Developer Centric:
• Continuous Deployment
• Push code to production through the pipeline

To elaborate, in Dev section of DevOps, the main activities that took place are, build and
release, run test cases and much more. On the other hand, the Ops section performs the
activities such as server orchestration, provisioning, automation of almost everything that
comes in the way. The main principle of any DevOps team is to automate everything from
infrastructure provisioning to software testing and deployments. It is the standard way of
performing operational activities for businesses. Also, the team is responsible for writing
configuration management codes or scripts to make the deployment infrastructure to the
desired state instead of configuring the software and hardware manually. The manual
activities for configuration management, for example, application configuration,
hardware specification, OS specification, Web servers, etc. is being gradually replaced
by the implementation of DevOps. So, if the pure DevOps practice is in place, server
provisioning, scaling, application testing and deployment can be automated [40].

13

Security has drawn a remarkable attention in the DevOps world. To enable security into
DevOps practice, this has led to the rise of a new field called DevSecOps [1]. Prudent use
of security automation into DevOps culture is to allow the teams to maintain both security
and speed during the application development phase. In a nutshell, DevOps combines the
needs and wants of multidisciplinary teams, and it brings many capabilities such as
continuous planning, continuous integration and testing, continuous development,
continuous infrastructure monitoring and optimization and so on. On top of it, DevOps
requires both dev and ops skills as well as knowledge.

2.4 Test automation in DevOps ecosystem
 DevOps involves automating the process of software delivery and infrastructure changes.
Many organizations struggle managing workflows during continuous integration (CI) and
continuous delivery (CD) due to the hands-off between development and operations
stages [9]. Achieving automation across process flows is not an easy task. In addition, the
power of automation in the DevOps lifecycle is huge. In DevOps context, automation is
considered as a key to effective collaboration and integration between deployment and
operations. As a matter of fact, DevOps community is also active in this case and they
are consistently pushing new approaches, tools and open-source artifacts to implement
such automated processes [50]. In addition to this, test automation can be defined as a set
of assumptions, concepts and tools that provide support for automated software testing
by adopting pre-recorded and predefined actions [23].

By empowering the integration technologies, we can bring the tools together as used by
different stakeholders. In order to implement DevOps successfully, integrating
participating tools is vital to automate process flow. Test automation is just the use of
special software or tools to control the execution of tests. Tooling is required to
implement end-to-end automation deployment processes. It should not be forgotten that
time matters in agile or DevOps culture. Anything that we can do quicker will help the
process succeed. One major fact in this context is the practice of configuration
management automation to meet increasing infrastructure demands. In this thesis project,

14

the research centered on how we can perform all our testings quickly for available
infrastructures.

2.5 Automation in testing
 In any software development process, one major part is devoted to running test cases.
Typically, automated testing refers to a process of automating the execution of test cases.
Before starting the discussion on test automation design, it is essential to define some of
the most common terms related to the topic. Regarding continuous testing, there is a slight
distinction that often needs to be considered when it comes to automation. Along similar
lines, two types of automation underlying in the field of testing particularly in continuous
testing [26].

• Automated testing
• Test automation

Although these terms seem to represent the same thing, at some point, actually it has
underlying slightly different meanings. A closer look at the terms indicates that automated
testing actually is the act of conducting specific tests via automation [26]. By contrast,
test automation generally specifies automating the process of tracking and managing
different tests [26]. Then again, the common goal for test automation is increasing the
speed of test execution and also to increase the test coverage. With automation, including
automated testing, we can promote work far more quickly through the pipeline. Also, it
brings confidence, which ensures that systems are all working as they should be. Some
advantages that test automation brings for us are:

• Saves a lot of time in the test process
• Helps to increase test coverage
• Allows to perform the unattended execution
• Enables parallel execution
• Supports execution of repeated test cases
• Ensure more accuracy by reducing human-generated errors
• Improves quality

15

In a typical scenario, there are fundamental reasons tells us what type of test cases to
automate. Based on the available information, the following test cases can be automated
[28].

• High Risk- business critical test cases
• Test cases that are repeatedly executed
• Test cases that are very tedious and difficult to perform manually
• Test cases which are time-consuming

2.6 DevOps tools and technological solutions
 The recent trends, particularly towards DevOps, tell us the number of new technologies
that are being released into the market is growing remarkably [47]. Some of the
commonly used DevOps tools and related use cases are given in table 1.

Table 1: List of commonly used DevOps tools

Servers Provisioning Technologies
Configuration/Deployment Management Tools Continuous Integration Infrastructure Provisioning

AWS Ansible Jenkins Terraform OpenStack Chef Hudson VMware Puppet Bamboo Cloud front SaltStack Travis CI Microsoft Azure uDeploy Google Cloud Digital ocean Artifactory Management Tools
Source Code Version Management Tools Build Tools Infrastructure Monitoring Tools Nexus Bit Bucket Maven Nagios Artifactory GitHub Ant Prometheus JFrog Git lab Gulp Subversion Gradle Perforce CVS

16

This is, however, the most challenging part of knowing how a DevOps oriented team can
accomplish the things discussed earlier. In the software development process, the DevOps
tools and technologies are predominantly applicable to these particular use cases:

• Machine provisioning
• Configuration/Deployment management
• Continuous Integration
• Artifactory management
• Source code version management
• Build systems

In the DevOps domain, automating different technologies is beyond limits and people
constantly working with integrating numerous systems. There seems to be no compelling
reason to argue that technologies like clouds have changed the expectations for
development team exponentially. AWS, Microsoft Azure, Google Cloud, OpenStack,
VMWare are the most popular cloud providers among many organizations. Especially in
the malware testing process, cloud service has remarkable contribution because of
virtualization technologies in available computing infrastructure services.
 This section lies at the heart of the discussion of how these above mention tools and
technology work together. With this in mind, in the development process, it is a
compulsory practice to maintain the application’s source code using version control

systems. Github, Git lab and Bitbucket are some of the most commonly used tools for the
source code version management segment. CI tools such as Jenkins, Hudson, and
Bamboo are mainly used for automating code test, build and deploy. Using these tools,
we can get the latest code automatically from the version control systems (VCS).
Moreover, CI tools also have the extended capability of automating the infrastructure
provisioning and destroying with the help of configuration management tools.

Some of the most popular tools in DevOps toolchain, for instance, Puppet, Chef, Ansible
and SaltStack provides different paths to achieve a common goal of managing large-scale
server infrastructure and deploy the code to different environments efficiently. By
utilizing these tools, we can actually code our infrastructure to instruct how it should look

17

and behave. Furthermore, to store the executable artifacts, Nexus and JFrog are widely
used across many organizations. Moreover, containerization technology, for example,
Docker is a big name in the DevOps ecosystem, which allows running distributed
application in a single virtual machine without launching an entire VM for each app [45].

One good thing is that these tools require very minimal input from developers and
sysadmins in order to manage those infrastructures. They are designed to reduce the
complexity of configuring distributed infrastructure resources. From the point of view,
these toolsets can be seen as the operating systems of the future. Using the right tools, be
it for testing or from an application’s development to the production environment, paves
the way to get faster and better outcomes. Furthermore, there are many tools and plugins
with many more capabilities are introduced to the market every single day.

2.7 Automation framework Ansible
 Application developers started to define their environment expectation which translates
well into configuration management directives. Ansible is one of the most common
DevOps tools used these days for automating configuration management and deployment.
One good side of using Ansible is getting the benefits of both configuration management
and deployment in a single tool, which makes the operation tasks much simpler [18]. The
directives in Ansible are expressed in a way that both developers and operators can
understand.

In addition, the Ansible engine has minimal installation requirements that basically
requires Python with a few additional libraries. On the other hand, agent software is not
required on the host that will be managed. The action Ansible takes on target hosts is
called tasks which is a descriptive bit of YAML code written by the developer in order to
complete the desired action on remote machines. In this project, this tool has significant
applicability throughout the testing environment management process.

18

2.8 Virtualization in Test Automation
 Virtualization is not a new technology. The available information indicates that the
concept was developed back in the early 1970s by an IBM programmer Jim Rymarczyk,
later it severed as inspiration for VMware [7]. This is the technology which allows
running multiple machines utilizing a single hardware resource [24]. However, in the
domain of cloud computing, it plays a major role as it provides virtual storage and
computing services. VirtualBox and VMware are popular virtualization platforms which
are able to spawn one or multiple parallel machines. Isolation of applications through
virtualization increases security compared to the traditional bare metal deployment model
[1]. The most significant part of adopting virtualization in the test automation context is
the achieving of high uptime of mission-critical systems. It provides the ability to delete,
recovering and re-provisioning the infected machines easily. Nevertheless, the cloud
provides an environment, rich with automation opportunities.

19

3 Overview of the Target Environments
Since vendor’s client testing mainly involves installation, manipulation and uninstallation

of security products, different virtualization solutions are commonly used for running
machines in order to run the tests. Throughout this thesis, the terms ‘Infrastructure’ and

‘Test Environment’ were used interchangeably by the practice of the department where
this study was conducted. To give an illustration, infrastructure is often refers to whole
physical machines or hand managed virtual machines provisioned from limited capacity
[49]. Similarly, a test environment refers to a setup of software and hardware [11].

The main goal of this section is to provide an overall description of the environments
which were used for the test execution. It also highlights some issues that were found
during the analysis of the systems. On top of that, a general overview of the actual
implementation plan for the test automation is included in the description. Due to a non-
disclosure agreement, a detailed description of some part of the internal systems was
outside the scope of this thesis. At this point, this chapter describes the minimal outline
of the different test environments and presents the most prominent interaction points of
this project. However, the actual architecture and explanation of implementation the
method related to this solution will follow in chapter 5.

3.1 Pluggable test environments
 The purpose of OneTA solution is to initially cover pluggable supports for five different
test environments. There are mainly four main internal environments, and they are fully
owned and maintained by this thesis commissioning organization. Each of them has a
specific purpose of use. The terms “Extensible” and “Pluggable” both are closely related

but underlay slightly different approaches. “Pluggable supports” here, represents the
ability to remove the environment or substituting according to the needs, whereas
extensible generally refers using the application or environment from its base. In short,
the pluggable approach provides the ability of just dropping any of the environments and
keep the other environments still usable. The proposed solution includes an in-house

20

private cloud infrastructure, a sandbox system, pre-configured physical or bare metal
machines and an isolated OpenStack cloud-based real malware test environment as part
of the internal infrastructure. On the other hand, one other environment is AWS (-EC2).
Table 2 summarizes the overall use cases of the target environments which were primarily
used and implemented for running the tests.

Target Environments Test Use Case
Bare-metal AV product testing against physical

hardware-based test machine
DVMPS

AV product’s performance analysis

against windows environment
AWS-EC2 AV product’s performance analysis

both windows and Linux networked
public cloud environment

Sandbox solution Execution of unknown files and URLs
(including malware with possibility of
behavioral metadata extraction)

Red Cloud Execution of any kinds of unknown
files (including malware)

Table 2: List of target environments for conducting the tests

3.1.1 Bare-metal environment
 It is a common finding that there is a performance variation between the physical machine
and the virtual machine even with the same number of cores [22]. The term “Bare-metal”

is used nowadays to distinguish the physical machine from modern forms of
virtualization. As a matter of fact, it should not be denied that not everything behaves the
same in virtual and physical machines. One important aspect in this case is to note that it

21

is often not possible to get both the systems running on the exact same HW and
environment, thus, consumer level results might not be same in both scenarios. Having
said that, hidden contention for physical resources may impact performance differently
in different workload configurations [53]. As for the causes, a significant variance is often
noticed in a system throughput.

By running multiple VMs in a shared physical machine, we can enable high utilization of
hardware resources. In the virtualization technology, hardware utilization is achieved by
using the technology called hypervisor, which provides access to the physical machine
and allows sharing of CPU resources. In the testing process, it is a common approach to
conduct the anti-malware product’s performance testing against “single-tenant physical
machine”. For the sake of validation, performing the same tests in virtual and physical

machines is essential. One of the most prominent use cases in this context was to validate
if problems reproduce both in physical and virtual machines. Additionally, bare-metal
tests are often run against consumer grade hardware to understand the actual customer
experience. The power or the performance optimization methods may create a big
difference on various workloads. It provides more visibility what the end user would
actually experience when it comes to performance of the vendor’s security solution. It

gives the QA team more understanding about what to expect from the actual setup. In
order to get the exact views of the test cases, OneTA also includes the support for running
the anti-malware product test against the physical machine. It allows executing
commands on a remote physical machine which is already provisioned. In this solution,
the connection to the physical machine was implemented using SSH. By including Bare-
metal in the test scopes, the result can be compared with test running at the same time in
the virtual machine or analyze actual consumer HW grade scenario.

3.1.2 Dynamic Virtual Machine Provisioning Systems (DVMPS)
 One major part of this TA process was to orchestrate the test execution process in one of
the legacy on-premise virtualization platforms called DVMPS. In testing operations, this
kernel-based virtualization platform or KVM is mainly used for performing the test in

22

Windows environments. In this virtual machine provisioning system, each machine has
private virtualized hardware such as a network card, disk, graphics adapter, etc. and is
accessible via the internal network. It allows few options for creating the disk image, for
instance, installing the guest OS from scratch or converting an existing guest image to
KVM qcow2 format. The QCOW image format is one of the disk image formats
supported by the QEMU processor emulator [46]. KVM specifically eases Linux to turn
into a hypervisor and therefore, allow a host machine to run multiple isolated virtual
environments [51]. Virtual environments here referred to guests or virtual machines
(VMs).

However, while dealing with windows environment, there could be many options, but not
all of them provide a way to make it easy to test software and then roll back to a clean
state, and on top of that there is a question of licensing requirements. Because all
Windows computers, be it a real physical PC or a virtual machine have a unique ID. Using
the same ISO image, clean installation on a new VM, the machine gets totally new ID
and signature. This arises the issue of licensing requirements. There are different
implementation approaches adopted by the developers of this platform to eliminate the
dependency when it comes to Windows OS. This in-house virtualization solution allows
reusability of windows images by creating “Machine Snapshot”. A guest operating
system is created on the host server, and similarly, new machines are provisioned on a
whim by accessing the environment through the internal network.

In this thesis scope, OneTA needed to fulfil the requirements to automate the provisioning
of VMs from available templates and run the test by integrating the remote execution tool
as a part of the OneTA library. DVMPS consists of a wide range of windows templates.
Machines here configured from these templates that enable implementing the test mainly
in Windows virtual environment using specific test execution methods.

Virtual machines in DVMPS have a short lifespan and intend to use and complete the test
in a maximum of two hours. The platform provides simple GUI in which machines are
manually created and provisioned by following few steps. Figure 4 depicts the manual
steps required for creating a test environment in DVMPS platform.

23

Figure 4: Manual steps for creating VM in DVMPS environment
Once the selected VM is provisioned, the new machine is available in the currently active
machine list and accessible via VNC software such as TightVNC. Each test VMs in
DVMPS includes the following information:

• Name of the test
• Expire time
• Template name
• Image ID
• IP address
• VNC, e.g. 10.133.32.23:5908

Virtual machines in DVMPS require a particular remote execution tool called “FSExec”
in order to access and execute commands remotely on Windows systems, which was
developed by this thesis commissioning organization. Furthermore, FSExec is one of the
major components of the OneTA and slightly modified version of the originally
developed version. A client software installation for FSExec is required in every VMs in
order to perform remote test execution. Additionally, all the windows machines in
DVMPS are preconfigured with FSExec client installation during the creation of the
image. In this project, the creation of new machines in DVMPS was fully automated
through Python. OneTA includes FSExec as a compulsory unit and is only used for
executing remote commands in DVMPS environment.

3.1.3 AWS EC-2
 Amazon Elastic Compute Cloud (Amazon-EC2) is one of the most popular web-based
cloud computing services in enterprise level that provides secure and resizable computing
ability [27]. The idea of having public cloud infrastructure is the ability to rent virtual

24

computers on which to run computer applications without concerning the hardware.
Amazon Web Services (AWS) is a commonly used public cloud computing platform in
this thesis commissioning organization for various services.

Complete orchestration of anti-malware product tests against some use cases in AWS
environment was one of the objectives of this automation solution. The pluggable support
for this publicly available infrastructure was implemented to create a virtual machine and
run various kinds of tests, for instance, load testing, acceptance testing, performance
testing, etc. against vendor’s anti-malware software products. AWS is very effective in
each of these scenarios and phases. Software configuration, for example, the operating
system in AWS is prepared upon a template called Amazon Machine Image (AMI). In
addition, virtual machines in AWS-EC2 are called instance, and furthermore, AWS
provides many publicly available AMIs containing software configuration, which
provides complete control of computing resources. Instant remote access to the machine
can be established by using SSH.

In DevOps culture, it is not worthy to manually set up the EC2 instances, therefore,
automating all the EC2 builds by provisioning only the resources needed for the duration
of development phases or test runs was a major concern in this case. In response to EC2
instance creation, AWS provides the ability to set up a development and test infrastructure
within a minute [37]. AWS “Access Key ID” and “Secret Access Key” are required to

create an end to end secure connection. In the Ops part, there are still some manual tasks
involved, for instance, in creating a security group- that needs to be done while preparing
the AWS account for a particular user group before automating the provisioning of the
resources.

While AWS focuses on more efficient lifecycle on the “Scriptable infrastructure”, OneTA

enables solutions that provide only a subset of the functionality for infrastructure
provisioning by using compatible DevOps tools. In OneTA approach, the AWS
configuration management was implemented by using the popular configuration
management tool Ansible.

25

3.1.4 Sandbox solution
 To enable more scope in the project, OneTA includes a cloud-based sandbox environment
as a part of the pluggable approach which allows the execution of unknown objects such
as files or URLs in a safe environment and generates an in-depth report about their
behaviour. Typically, a sandbox referred to an isolated computing environment in which
a file or an unknown object can be executed without affecting the application in which it
runs [39]. Cuckoo and Malware Jail are two popular open source sandboxing solutions,
which can be referred to in this case [12].
As detecting and removing malware artifacts in endpoint protection is not enough these
days, it is vitally important to understand how they operate in order to understand the
actual context. The sandboxing concept widely applied in malware analysis to run an
unknown and untrusted application relying on signature-based scanning to detect and
block malicious activity [43]. In a typical scenario, an attacker only needs to bypass
behavioural analysis components in order to infect the system [41].
This sandboxing solution was developed with years of industry experience and
maintained by this thesis commissioning organization. While this sandboxing solution
focuses on the “Deep Analysis” enabled by the automated malware analysis system,
OneTA utilizes the technology to provide smaller solutions to some use cases where
unknown files or URLs can be tested in continuous integration practice. The main intent
of this inclusion was to integrate the vendor’s easily deployable extensive threat
intelligence automation solution. It is a cloud-based service and uses a Black box
approach in the automated analysis process. The solution consists of different
components of the malware analysis technology on a dedicated system that provides a
thorough analysis of any given files and URLs. All the communication between different
components takes place within an encrypted network, and due to its technical necessity,
the network is labeled as a part of the Red network.
The web-based service allows throwing any suspicious files or URLs into this
environment, and therefore, it generates a set of information outlining the behaviour of
the file, which can be retrieved with the related task ID once ready. In the testing process,
the submission of files and URLs was implemented using REST API. A hooking API

26

allows making a request of submission of objects in the sandboxed environment.
However, a common approach in the headless testing process is storing the checksums
(hashes) of files and schedule a detonation for a file with a given SHA1 or SHA256 value.

3.1.5 Isolated malware test environment: Red Cloud
 Red Cloud is an OpenStack-based virtualization environment that runs in an isolated
malware testing network called Red. OpenStack offers a free, open-source and IaaS based
software platform for cloud computing. More details on this topic can be found in [29].
Since malware is very disruptive in nature, considerable attention must be paid when
executing them for the test purposes. This cloud computing environment was developed
and maintained by the thesis commissioning organization with the goal of executing real
malware. The environment allows execution of any malicious file in an isolated network
without compromising the security of the safe network.

However, the network or the environment is labeled as “Red” due to the nature of

handling and executing live malware. The Red environment is intended to supply the
following purposes:

• Replicate the "real world" malware tests performed by the third-party
organizations (VB100, AV-Test etc.)

• Test and compare the detection capabilities of vendor’s current and next
generation AV products

• Test the latest (alpha) AV engines with real malware
Red Cloud is a technical necessity for highly malicious use cases, and it requires a
technically separate deployment. That is to say; virtual machines are completely isolated
by default in this cloud environment. Furthermore, test machines in the red environment
are either virtual machines in OpenStack, or physical machines plugged in directly to the
Red network. The overall infrastructure of the “Red Cloud” spans several network

environments in order to support safe handling of live malware.

27

Red Cloud includes the malware isolation capabilities of OneTA and provides a broader
scope of the solution as stated in the thesis objectives. In addition to that, OneTA utilizes
Red Test Automation (RedTA) as a pluggable component in user-level context, since the
overall infrastructure was fully developed by this thesis conducting organization.

However, multiple environments are used within the organization to maintain security
among different components of the network and they are labeled with different names
based on the use cases. The network fragmentation of the overall structure is divided into
three levels and they support different purposes. Table 3 summarizes this project’s related
environments and their main purposes.

Environments Name Purposes
Green or Blue environment • Used as a common test

environment
• Facilitates functional and non-

functional test cases
• Does not allow any malware

samples to store and execute

Orange environment • Allows the storage and handling
of raw/unencrypted malware
samples

• Allows static analysis of
malware samples, but the
execution is not permitted

Red environment • Allows similar functionalities as
Orange environment

• Scanning, storage and execution
of any type of malware samples
(e.g. EICAR) are allowed

Table 3: Purposes and labeling of different environments inside the organization

28

The primary intent of this project was to communicate with the Red environment by
understanding the overall system architecture and requirements, therefore, providing an
interaction point between different components of the Red Cloud service to fulfil the Red
TA use case. Moreover, the test system implemented for the Red TA use cases required
to integrate the continuous integration workflows of the organization. That is to say, the
automation server for hosting the Red tests is nested in the Green environment which
provides the interaction points for OneTA. All other interaction points, for instance, the
Orange environment for malware storage and test execution in the Red Cloud initiated
from this automation server machine which is actually a Jenkin specific special slave
machine or OneTA controller machine.

Since Red cloud is highly secure and isolated due to technical essentiality, there is no
direct connection between the Green and Red environment. Figure 5 depicts the overall
scenario that illustrates how Red cloud interacts with the Red platform. Required tests
artifacts, for instance, test cases from the Green environment to the Red environment are
transferred using a special “Gateway Server” which is placed in the Orange environment.
Only specific Jenkins slave has access to this Gateway channel in order to transfer files
and initiate the execution of live malware in the Red environment. The actual process in
the Red Cloud is highly technical in nature, and it follows certain rules to keep the other

Figure 5: Overview of the Red cloud architecture and purposes of labeling

29

environments safe. Only selected slaves in the green environment have firewall access to
machine in the Orange environment.

30

4 Defining the Test Related Requirements and Problems
While dealing with different test environments, there usually involves some challenges
and that can be seen internally and externally. For example, the compatibility of different
tools and approaches for different environments is often uncertain. Similarly, different
teams inside the organization have different ways of achieving the same goal. The
objective of OneTA orchestration solution was to address a solution to those commonly
identified problems so that it can minimize the effort, especially for the test managers in
various test scenarios. With this in mind, the final selection of tools and approaches were
made based on the consultation of senior engineers who have already worked on those
systems and have better understanding regarding commonly known issues.

The implementation of this test orchestration solution required clear understanding on
target infrastructures that were discussed in the previous chapter and development of
corresponding execution methods using the Python programming language to achieve a
common goal in various abstractions. In this project, the operational requirements were
derived from organization’s choices and industry standard practices. The challenge was
to find a way to make testing simple, effective, and automated in number of pluggable
environments. This section tries to define some of the common issues, requirements and
considerations while reviewing the target environments during the test automation
solution process.

4.1 Specifying the functionality
 The main functionality of this solution was to allow test execution for desired use cases
utilizing DevOps practice on top so that it can support those target environments under
single deployment. OneTA supports multiple synced execution types, multiple
provisioners to set up the machine, automatic SSH, API request, creating secure tunnels
into the test environment, and more. These can be configured using JSON files as a
common entry point. In the test process, OneTA consists of different test phases where
various kinds of tests take place, including load testing, performance testing, detection

31

capabilities testing etc. in a single setup. In the process of test environment automation,
the tasks mainly include: automating configuration, refreshing test data and deploying the
software to the test environment. The execution of automated tests should be followed by
after that.

4.2 Infra instability and inconsistency
 The backend infrastructures mainly consist of web servers, application servers, databases,
task queues, etc. which run in a distributed set of computing resources and communicate
through different protocols. The primary need was to deploy and maintain virtual machine
instances in services such as Infrastructure-as-a-Service (IaaS). One of the major issues
in this kind of infrastructure is the availability of enough computing resources during the
test execution process. In a typical scenario, if the service is unable to provide enough
resources, for example, memory or disk during the process, it may cause data loss. It is
not unusual to see that service is broken during the test execution process. Due to the
unavailability of the resources may result in test failure. There are a considerable amount
of network issues that were observed earlier in one of the legacy infrastructures of the
target environments. This is, however, found that the network is often unreliable, and the
connection is being cut in middle of the test run.

4.3 Future consideration for a widespread range of cloud platforms
 Test environments can be quickly and easily built across a wide variety of cloud platforms
such as Amazon EC2, Google Cloud, Microsoft Azure, DigitalOcean, CloudStack,
OpenStack and many more. Although these platforms fulfil similar demands, the best
option may not always involve just in one cloud provider. It is a common fact, decision-
makers in the organization select some platforms and teams must go with the change, or
some project or test may require newer or older software/hardware systems. These
changes in test environment management are obvious and different features in each
platform play a crucial role in this case. Often, Legacy IT systems are not prepared for

32

the change. In this scenario, OneTA adopted a pluggable approach so that new systems,
meanwhile, are far more flexible and easier to adopt in the future on an as-needed basis.
That means OneTA should have the capability to support different types of platforms in
future with the similar configuration.

4.4 Security considerations related to handling real malware
 OneTA intent to provide a solution which is minimum viable in the security context. For
example, in the development phase, it was considered how we can set up tools and
processes such as version control, collaboration environments, and automated build
processes securely and durably. In the testing phase, the focus was on how to set up test
environments in an automated fashion, and how to run various types of tests including a
real malware.

In this scenario, especially, while handling real malware; a considerable amount of
caution should be taken to keep the network safe. Since the creation of test suits and
storing the malware sample was outside the scope of the OneTA solution, the main
activities involve enabling the service required to initiate the test flow to the red
environment from the green environment. Usually, the organization facilitates special
training for those who are directly involved in administering the Red environment.
OneTA implements the logic and follows the procedure to run the test programmatically
so that it fulfils at least the minimum security considerations while dealing with an
isolated malware test environment.

4.5 Main requirements for OneTA solution
 As OneTA seeks to solve some in-house test related issues, all in all, it primarily targeted
to meet the following requirements:

33

• OneTA can be used as a common solution for various test related activities in
multiple environments.

• The solution must allow continuous integration practice considering Jenkins as a
base.

• Primarily, it should be able to provision new test machines in AWS and DVMPS
environment.

• The solution must be able to integrate Red environment with proper security
consideration.

• All the tools and other related dependencies should be covered in one space so
that it can be used as an independent tool.

• The network connection, test coverage and test execution method in the target
environments must be automated and stable.

34

5 Design and Implementation of the Orchestration Solution
This chapter covers the broad view of the actual technical work of the OneTA solution.
It describes definitions of the logic and control flow, explanation of the tools used for the
test execution resulting from OneTA development phase. It covers the functional
requirements and specifically, focuses on the actual server-side test automation
implementation such as how they were executed and how the results were processed in
the main workflow. The actual development phase concentrated to implement a Python-
based workable test automation library for target environments, thus integrated with the
existing systems and continuous integration flows.

5.1 Logical architecture and main workflow of OneTA solution
 To give a visual illustration, the overall test process and the principal of OneTA solution
are described in figure 6.

Figure 6: Actual system design and principal of workflow of the OneTA solution

35

Several test related services OneTA covers, consisting of physical and virtual
infrastructures. The first part of the test process, test planning and test description, is vital
because it defines objectives of the testing and specification of the test activities. Then
again, the end-to-end full solution includes a total of five different environments for test
execution, including a sandbox solution and an isolated malware execution environment.

The test specific solution throughly follows the DevOps approach in the test execution
method similar to other test jobs available in the organization. The actual workflow
consists of a few major areas of DevOps toolchain such as source control management
(SCM) tool Git, continuous integration tool Jenkins and configuration management tool
Ansible. On top of that, there were other in-house remote command execution tools, for
instance, FSExec used in the main workflow. In addition, OneTA utilizes Red TA runner
for executing real malware on the Red cloud. Automation scripts are executed during this
phase, and they require the input of test data before being set to run.

The main workflow in the current solution maintains a specific sequence during the test
process. The first test process starts from the Bare-metal environment, and final test
process is Red test execution. The sequence of the test processes is also numbered in
figure 6. However, OneTA involves the creation of test VM only in the AWS and
DVMPS environments during the test flow. Moreover, it includes some networking
protocols that interact together in the scope of an automatic network connection. While
the connection and configuration are established in the target environments, it initiates
the test execution. Test outcomes or any error messages during the test flow are visible
in the test controller server machine’s console output, and test results are available in the
Jenkins artifactory.

5.2 Fragmentation of tools and required resources
 OneTA uses both in-house and publicly available tools and resources to cover the overall
testing process. The related testing tools do not perform the actual testing by themselves.
Indeed, a set of preconfigured tools nested in its service lifecycle loop so that they can

36

facilitate all the planned test cases. Table 4 summarizes the core components and their
role in the test orchestration process of the OneTA solution. Each of these components
are essential elements of this solution to obtain the full outcome.

Name of the component Role in the testing process Git Server (Bitbucket) • Used for source control
management

• Used for storing OneTA core
project files containing source
code

• Also includes FSExec agent
scripts for remote execution in
DVMPS environment

Jenkins • Used for preparing “Automation

Server”
• Allows maintaining the

continuous integration and
continuous delivery practice

• The controller Jenkin slave
machine pulls the project source
codes automatically

Automation server • One of the special Jenkins slave
machines, which can initiate the
test in the Red Cloud.

• Used for accessing the in-house
networking tools and also
eliminates the manual activates
that mostly required for the Red
use cases

TA Runner • Special agent used for
establishing the communication
into the Red environment.

37

• It has selective test running
capabilities to run the test in Red
Cloud

Sandbox REST API • Used for making API calls to
automate the task of analyzing
any malicious file or URL

• Also responsible for retrieving the
general behavioural information
of the file

FSExec agent • FSExec is responsible for running
remote commands and also
uploading and downloading files
to and from the VM in DVMPS

See section 5.5 for more details.
FSExec client • FSExec client is installed in every

windows VMs in DVMPS
environment.

• Must require tool for executing a
remote command in the VM

SSH • Used to log into a remote machine
and execute commands securely

• Public key authentication was
implemented for passwordless
login to the remote host.

Ansible • Responsible for configuration
management, application
deployment, task automation in
AWS environment.

38

JSON • Used by main Python script to
read the test definitions in human-
readable format

• Default JSON configuration files
provide the guideline for test
related configuration

YAML • Used as a configuration file for
AWS environment provisioning

• YAML only meets the
requirements for AWS use cases

Payload Payload contents:
• Test related scripts, libraries, tools

etc.
• Remote shell or bash commands

 Table 4: List of OneTA components and roles in the test process

5.3 Backend and client-side infrastructures
 The solution this thesis presents covers three main functional areas and they are based
on these following domains:

• End-to-end Testlab infra
• Virtual and Bare-metal environments
• Client-side test automation

 The Testlab infrastructure is fully developed and typically maintained by the system
engineering teams of the organization. The backend infrastructure is mainly involved in
delivering the artifacts to and from the test environments after the test process. In the test
execution process, OneTA uses specific test-runner scripts (Python scripts) in order to
interact with internal virtualization solutions. The test-runner is the core component in
terms of running the actual tests. Similarly, the test controller machine or automation

39

server subject to the high-level abstraction of different operations on the VM. The Testlab
infra also spans to the Green, Orange and Red environments, was discussed in the
previous chapter.

The client-side automation mainly executes the actual tests scripted by the system. There
are mainly two kinds of test scenarios in the test process. Having said that, the tests can
be outlined in terms of “test cases” and “test sets”. For instance, “test cases” commonly
test a single feature of the anti-malware software. On the other hand, “test sets” are
generally understood to mean a collection of test cases which has been applied to the
same test session. Furthermore, OneTA exposes all necessary endpoints of the test
scenarios and executes them to the corresponding client-side infrastructures in a single
setup.

5.4 Test machine creation in DVMPS environment
 One of the major use cases of this orchestration solution was to automate the test process
in the DVMPS environment. This is, however, a poorly maintained platform but provides
usefulness in many use cases. In addition to that, several technology templates provide
the service, but there was no comprehensive orchestration solution available for it. As
mentioned earlier, DVMPS environment intends to use for running the AV product test
against Windows-based operating systems. The main purpose of including DVMPS in
OneTA is to provide the orchestration solution by performing the exactly needed
activities in the target network in order to create a new machine from available
preconfigured machine images and executes the commands for running the test using in-
house remote execution tool.
 DVMPS is hosted in the in-house server and accessibly via VPN. Since OneTA
automation server machine has the full access to the DVMPS host, and both are connected
to the same VPN, Web API request was considered as the basis for the DVMPS
orchestration solution. OneTA is scripted to create a new request in DVMPS host using
Python request.post() method with inclusion of the DVMPS configuration

40

properties such as base image name, test name, machine expiration time and the allocated
host name. When the machine gets created in the DVMPS environment, it returns the
JSON response with machine’s information, for instance, machine address, port number,
machine name etc. To perform rest of the actions in the machine, OneTA includes FSExec
in the loop to fulfil the test process. However, the FSExec agent only requires the machine
address, typically the IP address of the newly created machine in order to perform the rest
of the tests related activities inside the machine.

5.5 Inclusion of in-house remote execution tool “FSExec”
 Both WinExec and PsExec allow launching interactive command-prompts on remote
systems [48] [31]. The main purpose of these windows utilities is to execute a command-
line process on a remote machine. Since test cases in the DVMPS environment require
executing commands with administrative privileges, it is required to use a remote
execution tool for making the target VM to run commands and download and upload test
related files.

However, the additional problem is that, earlier the security research team in this thesis
conducting organization noticed network issues with those utilities during the test run in
the DVMPS environment. One of the drawbacks to adopting those utilities in the Testlab
infra is that the connection is being cut or raises frequent network issues during the test
execution process. This raises many questions while implementing end-to-end
automation. The finding related to this use case tended to suggest that it is often due to
vendor’s own anti-malware products that terminate the connection. On the other hand, it
is also required to have AV products installed in the target VM while testing some
features of the product.

“FSExec”- the in-house remote execution tool is a solution for this issue which is also
similar to PsExec and WinExec type approach with a more reliable solution. Additionally,
it also provides the functionality to get and put files in the remote systems without relying
on “Windows shares” and “Samba” utilities in the Jenkins controller machine. FSExec

41

was used as an integral part of the OneTA solution in order to fulfil the test execution
process in the DVMPS environment. The hard-coded solution of FSExec was included
as a part of the OneTA library and only used for running the test in the DVMPS
environment. OneTA included the functionality of FSExec using the Python subprocess
module since it is usable via Command-line.

5.6 Python Paramiko for SSH connectivity
 One of the use cases of this solution is to execute remote commands in a bare-metal
machine which is already provisioned. In order to log into any bare-metal machine and
execute commands, the client-server based SSH approach was adopted into this solution.
Although there are other communication protocols used for remote communication, SSH
is commonly used and provides a very secure encryption that protects the communication
between the client and the server [56]. In this technique, the client machine is responsible
for authenticating using a password or private key and checks the server’s host key. The

server machine is responsible for deciding which users, passwords, and keys to allow,
and what kind of channels to allow [56]. Unlike SSL, SSH protocol does not require
certificates signed by a certification authority, and the key exchange mechanism is fairly
easy.

Paramiko is one of the popular Python modules for implementing SSHv2 protocol and
available under GNU license. Although it depends on third-party C wrappers for low-
level crypto, it is entirely written in Python and moreover, it is a pure Python interface
around SSH networking concepts [54]. Moreover, it is also the low-level SSH client
behind the high-level automation framework Ansible. To accomplish the tasks of
accessing the bare-metal machine and controlling the command prompts, Python
Paramiko was included in the solution. The end-to-end automatic network connection to
the bare-metal machine was implemented on top of this native Python SSHv2 protocol
for initiating the test using public key authentication.

42

5.7 REST API for the Sandbox solution
 OneTA solution includes the vendor’s own Sanbox solution in the test scope which
includes scheduling files using REST API to analyze and later collects those results. The
main task for this implementation is to submit an analysis through its web application
using given <SHA1>, <SHA256> or <URL>.

Since the actual REST API for this in-house Sandbox solution was on on-going
development during this project implementation period, a different approach was adopted
in order to simulate the actual scenario to this solution so that it can work afterwards.
Having said that, this was done by using API mocking, more specifically using Python
mock objects. However, the initial plan was made using the conditions outlined in table
5.

Suggested API methods Usage
POST /api/schedule Schedule the analysis with given <SHA1>, <SHA256> or <URL>
GET /api/results/report/<TASK_ID> Retrieves a JSON of the behavioral information
GET /api/results/report/<SHA1 or SHA256> Retrieves a JSON with the latest known behavioural information
GET /api/results/artifacts/<TASK_ID> Retrieves a zip with all the artifacts collected in a particular execution

 Table 5: Sandbox REST API use cases
 The API mocking was implemented through Python scripts and tested in the main
workflow to simulate the actual scenario during the test process. Technically, a mock is
a fake object that we can construct to look and act like real data [3]. This approach is
useful when we need to make the request to the API endpoint, and returning outcome
depends on the live server. The main goal of this mocking was to simulate the actual
process of scheduling the analysis, then wait for some time and get a response of the
behavioural information of the object in the JSON format. The mock data that was used

43

in the simulation process was based on the assumption that the real data would also use.
For the scope of the project, the main step was making a call to the actual API and taking
note of the data that was returned.

5.8 Ansible for AWS configuration management
 The OneTA solution includes Ansible to create, execute the test, terminate, start or stop
an instance in AWS-EC2 in the test orchestration process. Other tools, for instance, Chef
or Puppet could be options for this particular purpose, but configuration management tool
Ansible was justified as a better DevOps tool especially for AWS instance provisioning.
For pluggable environment support, it has modules (also known as “module library”) to
create infrastructure, as well as modules to assert the configuration on that infrastructure.
The reasoning behind this is to allow achieving higher level solutions and ensure a
pluggable approach support across a large variety of platforms in the future. On top of
that, it is highly scalable which means we can control ten machines, or we can control ten
thousand machines in a single setup.

However, Ansible by default manages remote machines over SSH (Linux & Unix) or
WinRM (Windows), and they already exist natively on those platforms. The main purpose
of including Ansible into solution was to deploy VM with configuration assets to ensure
automation of test workflows and test environment in AWS environment. This action was
performed by using AWS specific Ansible “Playbooks” modules. In addition to that,
Ansible’s Playbooks are written in simple YAML and used as a configuration,
deployment, and orchestration language. The current solution includes a primary
structure of a playbook to test the functionality of the OneTA solution in the target
environment. In the simplest form, the Playbook can be run from the command-line of
the machine where Ansible is installed in the following way:

$ ansible-playbook playbooks/sample.yml –i /ansible/hosts

OneTA utilizes the simplicity of the Ansible framework and includes the functionality to
manage configurations of and deployments to the remote machines in AWS-EC2

44

environment in Pythonic way. In this thesis project, the ansible-subprocess method was
used to trigger the workflow of Ansible.

Furthermore, the Ansible-subprocess is the Python library for Ansible available via PyPI
originally developed by MIT to run Ansible dynamically via Python subprocess module
[5]. The module was integrated directly as a part of the OneTA library in a way so that it
can run the specific Ansible playbook commands. This module was further developed
and customized for performing integration and end-to-end testing. Python does
everything using this special method. Required parameters needed to be passed in order
to construct the playbook command using Python subprocess.

5.9 JSON to YAML conversion
 YAML was used to describe the properties needed for AWS-EC2 environment. This is,
however, a compulsory component for Ansible for instance creation, machine’s

configuration and termination of the test VM in AWS environment. To make this solution
more dynamic and simple, the creation of Ansible playbook or YAML configuration file
for AWS use case was achieved programmatically. Having said that, this was
implemented by transforming specific JSON values into YAML format. The following
Python code snippet illustrates the approach taken for creating Ansible playbook during
AWS configuration management.

Configuration for AWS provisioning
 yaml_file = "aws_tmp.yaml" # New filename to write aws config data

 file = open(yaml_file, 'w')

Reading AWS specific standard YAML file

 with open('yaml_sample.yaml') as test_file:

line = test_file.readline()

while line:

line = test_file.readline().strip('\t\n\r')

w_line = line.split(':')

if len(w_line) == 2 and w_line[1].strip() == "xyz":

 if w_line[0].strip() in data['environment']['aws']:

45

 w_line[1] = data['environment']['aws'][w_line[0].strip()]

 file.write(w_line[0] + ': ' + w_line[1] + "\n")

 else:

 file.write(line + "\n")

 else:

 file.write(line + "\n")

 file.close ()

 Code Snippet 1: Code snippet for creating Ansible playbook using JSON values

One of the main reasons to implement YAML through JSON is to make the test definition
simple and keep the JSON configuration file as a single entry point for the test process.
However, from the functional perspective, it was a proper utilization of open-source
DevOps tool Ansible. As a result of this, the tester does not need to dive right into
complex automation tools or configuration scripts. All it requires is the right parameters
that are needed for creating Ansible playbook. In addition, playbooks are more likely to
be described as executable documentation. The main OneTA solution script designed in
a way so that it can take the inputs from the JSON configuration needed for YAML and
capable of creating Ansible playbook during the test run. A temporary YAML file is
created in each iteration of the process.

5.10 JSON to manage test configuration in Python
 JSON is intended to be a lightweight data-interchange format [21]. OneTA uses a pair of
separate JSON files that should be used for entering data needed by the main test script
to enable the test orchestration process. A set of example JSON configuration files are
included in the main library to define configuration variables in each test scenarios.
Writing JSON file is easy, and it is more convenient while dealing with more
configuration variables.

The preference of JSON as a configuration input was derived from the organization’s
standard practice that is predominantly maintained in other test automation solutions. On
the other hand, if the tester does not have prior experience with configuration

46

management, it will provide a guideline that the tester can understand. In this solution,
the main script loads the configuration values defined in the external file, not in the built-
in data structures. Furthermore, configuration in built-in data structure may rise a security
issue, especially with secret values, for instance, database information, AWS credentials
or other passwords. As for the causes, this issue can be encountered in every place where
configuration management is needed. In the worst case scenario, web application or
server resources could be compromised if secret values are misused carelessly.

By allowing the configuration data as separate resources can minimize the security issues
in general. On the other hand, configurations for different test cases will vary. It is more
convenient to describe the test definition in separate configuration files because this way
the main script will treat the configuration as just configuration, not as a part of the code.
To illustrate, the following section is an example of the JSON configuration that was used
to provide the support for AWS:

{

 "testcase": {

 "test_name": "OneTA Test",

 "test_set": "Example: av_load_performance.set"

 },

 "environment": {

 "aws": {

 "yaml_file": "./.yaml",

 "ansible_hosts_file": "/etc/ansible/hosts",

 "keypair": "product_test_automation",

 "instance_type": "t2.micro",

 "image":"ami-97e953f8",

 "region": "eu-central-1",

 "aws_access_key": "XXXXXXXXXXXXX",

 "aws_secret_key": "YYYYYYYYYYYYY"

 },

Code Snippet 2: Example of JSON for AWS use case

47

As we can see, JSON is easy for humans to read and write and most importantly a machine
can parse easily. In this test automation approach, OneTA only accepts JSON values to
feed the test cases. To keep the test definition more specific, it accepts <config.json> and
<test.json> as command-line arguments. The idea behind this is to separate the test
environments and test configuration respectively. For example, when the test case needs
a simple change tester does not need to modify the whole configuration. Then again, a
reference template of JSON files have been included in the main library with the ability
to modify using command-line options in order to specify the test cases. A reference
configuration provides a template of a proven solution by using a set of preferred
execution methods and capabilities.

5.11 Automating workflow with Python
 With the help of several other scripts, the main program provides all the required
functionalities, such as environment specific logic and execution method to interact with
other systems and send the test sets to the desired destination to run the test. OneTA
predominantly used Python “subprocess” module for accessing system commands in
various conditions, for instance, FSExec in DVMPS and red test automation. This module
was used to spawn new processes, connect to their input/output/error pipes, and obtain
their return codes.

The libraries and related configuration files used in this solution are structured as follows:

• Test processing assets
o Execution methods
o Red TA specific functions
o Sandbox mock helper
o Remote execution hooks

• FSExec assets
o Channel libraries
o Installer libraries
o Agent libraries

48

• Test specification assets
o JSON files
o Standard YAML file

• Reference Assets
o Test files (for future reference)

The above assets are saved into a single directory and usable through the command-line
of the Python 3 installed controller machine. To install python packages that are required
by the programs into the controller machine, python setup script is included in the root
directory of the project. It is used to make the correct installation of the external software
and packages. The main test script accepts a maximum of two JSON files as command-
line arguments using dynamic loading function and has available options for configuring
the JSON inputs. It provides useful help messages using --help for a full list of current
options.

The command-line arguments are passed as a list of strings, which avoids the need for
escaping quotes. In this approach, the Pythonic command-line argument parser “docopt”

was included as a solution to create the command-line interface. The docopt module able
to generate help and usage messages, therefore, automatically issues errors when users
give the program invalid arguments. More information about the docopt implementation
method is available here [13]. The following example shows the current implementation
of docopt in OneTA solution:

Usage: oneta_main.py(-h | --help)

 oneta_main.py - c < file > -i < file > ...

 oneta_main.py - c < file > -i < file > [options]

 oneta_main.py - c < file > -i < file > [--payload = < ipconfig >]

Options:

 -h--help Show this screen

 Code Snippet 3: Implementation of command-line interface using docopt

49

5.12 Jenkins for continuous integration
 The Linux based automation server or the test controller machine stated earlier was
prepared using the Jenkins slave machine. The Jenkins server is hosted in the green
environment and has the special ability to access the Red environment. Having said that,
the most important technical aspects it has is the ability to initiate the malware execution
in the red cloud environment. This makes it easier to cover all the dependencies and
manage test workflows of OneTA. In addition, the controller machine required to fulfil
project related dependencies such as Python 3.5, paramiko, docopt, boto3 and Ansible.

In this project, Jenkins paves the way for the standard practice of DevOps in anti-malware
product testing and automate the non-human part of the test process. This allows running
the tests on the target environments every time new test sets are defined. The actions the
controller machine does in the OneTA orchestration process are listed below:

• Allows setting up the system for backend infrastructure
• Copy artifacts from other Jenkins jobs
• Maintain the continuous integration workflows
• Provides real-time monitoring of the test flows
• Allows detecting the errors
• Save the artifacts from successful test execution (artifacts are typically the result

of the build process or test outcomes [4])
• Allows to view the test logs

5.13 Running the Tests
 The fundamental expectation for this solution was to provide a harmonized and
synchronized support with a light-weight and fully featured foundation to interact
multiple backend systems from a single configuration. To accomplish this, the primary
requirement was to keep the test definition very simple and allow running the test using
the command-line interface (CLI). To run the tests, all it requires is to define the directory
where the test cases are saved and run the OneTA specific command.

50

To achieve the simplicity, the JSON-formatted test description defines the flow of the
actions during the test execution process. When running with the appropriate arguments,
it prints currently configured values and initiates the test process. The executable
oneta_main.py can be invoked with different combinations of commands, options and
positional arguments. Together, these elements form valid syntax for this program and
make it usable via command-line. The program accepts specific inputs as arguments to
enable the test process in five different environments. A list of available command-line
arguments and their description are given in table 6.

Option Description
--test_name Name of the test job. For example, the

purpose of the test.
--test_set Name of the test files. For example, which

test sets will be used.
--yaml_file Path of the of the standard YAML file. On

the basis of this YAML file, required
values will be replaced in the temporary
YAML file.

--ansible_hosts_file Path of the file. The host file is required to
construct the Ansible command. The
instance will be created on this target host
of the AWS environment.

--aws_keypair Name of AWS key pair. The public key
cryptographic key pair is created manually
in the target AWS account.

--aws_instance_type Name of the AWS instance type.
--aws_image Name of the Amazon machine image.
--aws_region Name of the Amazon-specific region and

availability zone.
--aws_access_key Security credential for AWS. Highly

confidential.
--aws_secret_key AWS specific confidential item.

51

--dvmps_base_image Name of the available image. The image
can be chosen from a list of available
templates.

--dvmps_expiration Machine termination time. Should be
defined in seconds. After that time the
machine will be destroyed.

--comment Heading of the DVMPS test case.
--dvmps_url DVMPS specific host name. There is a list

of hosts which can be used to create the
DVMPS test machine.

--ssh_username Bare-metal machine’s username.
--ssh_host_ip IP address of the bare-metal machine.
--ssh_pvtkey Path of the SSH private key of the

controller machine.
--ssh_payload Remote shell or bash commands that

should be executed in the bare-metal
machine.

--dvmps_payload A remote shell command that should be
executed in the newly created machine in
DVMPS environment.

--sandbox_url <URL> that will be scheduled to analyze
--sandbox_file <SHA1> or <SHA256> of the file that

will be analyzed .
--red_mode Red cloud-specific item. Mainly used for

specifying the test domain, for example,
Windows or Linux.

--red_config Red cloud-specific item. Mainly some
Red TA specific Python scripts.

--red_payload Red cloud-specific scripts, tools, test files
etc.

Table 6: List of parameters required for running the test

52

The test is intended to run from the Jenkins slave machine with the prior setup of the
required files in the same place. The test related configuration JSON file can be imported
from other resources as well. On the other hand, the default JSON values can be modified
from the command-line arguments. The following commands illustrate how the test
process can be initiated from the console of the controller machine with the given JSON
files having overwriting capability:

$ python3 one-ta/src/oneta_main.py -c config.json test.json

Or

$ python3 one-ta/src/oneta_main.py -c config.json test.json --red_payload=tests.py

The overall process contains several steps and it maintains specific elements that shown
in figure 7.

OneTA has a similar test setup and teardown functionality as other Jenkins related test
jobs. The library is managed by VCS tool Git in the bitbucket server. Jenkins use set of
bash commands to obtain the library from the VCS and perform several test specific

Figure 7: Life cycle of OneTA in anti-malware product test use cases

53

actions to prepare the test. Typically, the test specific settings in Jenkins are prepared by
the test managers. That said, OneTA is expected to be used by the test managers as a test
execution tool for multiple test cases through continuous integration practice. All it
requires is the test specific configuration and test sets and then trigger the “Build” on

Jenkins. After the test jobs get finished, Jenkins saves all the related artifacts for future
references.

5.14 Packer for machine image creation
 One of the optional plans of this thesis project was automatically built machine image for
the publicly available cloud environments. The initial plan was to include the crafted
machine image for AWS use case. In this case, Packer was considered as an approach to
automate the creation of test specific machine image. Having said that, it allows creating
identical machine images for different platforms using a single source configuration. The
primary intend of this approach was to support the building of crafted images for more
platforms, for instance, VMware, VirtualBox, Microsoft Azure, Docker, Google Cloud
Engine, etc. and get running machines quickly. Since Ansible was found to be very
compatible to install software onto the machine and obtain the needs for AWS use case,
as an objective of this thesis, a study was performed to justify the appropriate tool for the
OneTA solution.

54

6 Results: Justification of the Proof of Concept
In the first place, the OneTA solution intends to be applicable to multiple target
environments in a single setup. In this thesis scope, some parts of the target environments,
for instance, the Red cloud automation with the underlying malware sample storage, were
integrated as an existing solution but implemented for the test execution. Additionally,
the creation of actual test sets was outside the scope of this thesis project. Each part of
the solution was tested and verified against general applicability or known test sets during
the development phase. Since the actual solution was intended to develop for internal use
of this thesis commissioning organization, the outcomes were justified by the manager of
this thesis project.

6.1 Justification of requirements
 By implementing the approaches that are thoroughly described in chapter 5, the outcome
that was found provided confirmation and evidence that the test execution in multiple
environments using simple JSON configuration was successful during the functionality
test of this solution. Moreover, the empirical results of this solution were effective against
the vendor’s Red Test Automation use cases. The test was performed with known test
sets and justified by the manager of this thesis project.

The approach for DVMPS use case was significant in terms of automatic machine
provisioning and test execution. It was found that OneTA is more dynamic and useful for
DVMPS use case, whereas the earlier approach required some manual interventions.
Similarly, the solution for AWS use case utilizing Ansible provides a reliable and
effective test execution process. The process is very effective in terms of instant machine
creation and deploying related configuration. The core part of the Ansible playbook
creation was customized programmatically to support AWS-EC2 machine creation using
single configuration and found effective in the test process. Table 7 outlines the currently
available supports that have been achieved implementing this solution.

55

Environments Current Support
Bare-metal • Automatic remote connection to

the specific machine
• Execution of remote commands

inside the machine
DVMPS • Dynamic creation of VM from

available templates
• Automatic remote connection to

the newly created machine
• Support for executing remote

commands through FSExec
• Automatic deletion of the machine

AWS • Dynamic creation of instance in
vendor’s AWS environment

• Provisioning support for the test
instance with Ansible playbook

• Remote execution of commands
Sandbox Solution • Support scheduling the scanning

of files and URLs using REST API
Red Cloud • Support the execution of known

test sets in the Red environment

Table 7: Currently available supports for test orchestration through OneTA

In this method, the test requires to follow a specific sequence to avoid the concurrency
issues. The sequence was justified against some use cases. Thus, the current sequence
was found more reliable and less error-prone. The reliability analysis of the solution was
performed against the overall consistency of the workflow and possible outcomes from
the test definition. In this test execution process, the test gets triggered to the target
environments maintaining that sequence. As for the reference, the sequence was
highlighted in figure 6 of chapter 5. Furthermore, the OneTA solution is consistent in

56

executing automated tests as a part of the Jenkins pipeline to produce immediate feedback
associated with the target environments.

To justify the OneTA’s capabilities, the final outcomes were presented to the members
of the development team and managers of the security research team. The actual solution
involved proper utilization of known technologies and assembling of existing tools,
therefore, harmonizing them programmatically.

6.2 Validity, Reliability and Stability of the concept
 The proposed solution intends to support the security research team in the procedure of
efficiently incorporating test automation as a practice in the security software testing
process of their lab activities. OneTA designed to be minimal in nature, adjustable,
consistent and reliable throughout multiple execution processes with an extremely low
configuration setup. The solution was developed on top of the available infrastructures,
which are utilized by various teams inside the organization for different purposes. The
method used in this solution is able to integrate those infrastructures based on prior usage
of Python programming language which is a common practice for most of the test related
activities in the organization. That also indicates the solution can be used as a common
test automation model for present scenarios as well as future scenarios.Besides, the
solution can help many stakeholders of the security research unit by automating
execution, distribution, and result analysis of the test cases for supporting in-house and
public infrastructures. Furthermore, it is useable as a command-line tool which accepts
various inputs as arguments with overwriting capability. For the future scenarios, it also
has the supporting capability for the pluggable approach with the minimal modification.

6.3 Test cases
 The OneTA solution shall cover the functionality of the AV product test against these
possible use cases:

57

a. Run functional test suite for product X on all Windows versions that support
b. Run performance tests on known fixed environment comparing version X with

version X-1
c. Check engine X coverage against known malware/known clean sets
d. Run Windows certification tests for product X
e. Run in-house tests for Windows 10 performance requirements
f. Manually run test suite X on product Y on platform Z

6.4 Test coverage and core features
 The technique and applicability included in this solution can provide more benefits to the
people in this organization who actually write the test cases. This includes Developers,
Test Engineers, Operation Engineers, Malware Analysts, Security Researchers and so on.
The advantage includes an improvised way of conducting different test processes in the
same pipeline; thus, reducing the complexity of maintaining different tools and resources.
As a result of this, many test environments came under automated support from
operational aspects with this basic refactoring. To summarize, the current OneTA solution
includes the following features:

• Follows pure DevOps strategies
• Applicable in different test scenarios
• The library is usable via command-line
• Test definition is customizable via command-line options
• Supports parsing multiple config files in single command
• Full test coverage for five different environments
• Usable in the Jenkins environment
• Capable of provisioning a new test machine in AWS and DVMPS
• Supports sandbox API to schedule analysis
• Supports remote logging, file copying and executing commands through FSExec

in newly provisioned machine
• Zero external dependencies of the core libraries
• Test coverage is expandable for future pluggable environments

58

• Test outputs are viewable through Jenkins console
• Test Artifacts can be retrieved from Jenkins server
• Integration of Ansible can support more cloud platforms
• Supports execution of repeated test cases
• Aids in testing a large test matrix
• Supports execution of repeated test cases
• Saves test preparation time

59

7 Conclusion
Initially, the idea of this orchestration solution was proposed as a concept, but never
implemented in this thesis commissioning organization. The plan was to design and
implement a solution that satisfies the fundamental requirements for different cloud-
based systems and automation tools, then integrate it into a single framework. Several
solutions for test execution were already available, but the security research team wanted
to have their own variants. This study was the first step to go some way towards
enhancing some known parts of the existing solution and expand the current test coverage
in the continuous integration practice. After identifying problems with widespread range
of in-house test environments and tools, the thesis addressed a solution focusing on
network level automation in the process of anti-malware product test.

However, test automation has been proposed as a solution, but the available tools and
techniques experience a lack of general applicability. The scope of the thesis mainly
consisted of automating the test process and analysis. The project demands a research on
internal infrastructures, different execution methods and existing test automation
processes. During the implementation of the plan, a broad analysis of the target
environments including related tools and technologies and existing test cases was
performed intensively to maintain the industry standard practices. The proper solution
involved identifying the right automation tools for infrastructure provisioning,
implementation method for the in-house test execution process, developing scripts for
preparing test environments and simplification of test the definition.

Adopting a new test execution infrastructure and automating the process is not easy due
to lack of information, knowledge and skills and typically it requires a plan that spans
people, process, and technologies [44]. On the other hand, the main difficulty in the
management of infrastructure involves communication between different stockholders
inside the organization. For developers and testers, it is a common problem to suffer from
project complexity and repetitive manual process. However, we can prepare services by
hand, for example, setting up the SSH connections to each one, modifying config files,
installing required packages and so on. Performing these tasks are not only tedious but

60

also time-consuming, therefore, it leads to encounter errors. Furthermore, admins of each
system need to find one advent of good CI solution and configure them accordingly. In
addition, there are a variety of testing tools, ranging from free and open-source tools that
support different testing types and technologies. Also, organizations write software to
support customizing or integrating other software or solution into internal IT systems.
These create more dependencies among many teams inside the organization.

Each tool tends to support particular situations. The selection of an appropriate testing
tool to satisfy the needs could be one of the big challenges in the test automation process.
Plus, in many cases, developers do not conduct enough research before deciding on tool
selection. Some workarounds are often made to tackle particular use cases. These
scenarios emphasize the need for a modular solution in a single namespace. In this case,
the current solution tried to enable people inside the organization without let them
emphasizing how the network communication establishes in different environments to
execute the tests and thereby offers comprehensive guideline that can easily be applied to
perform various types of tests in a single process.

The challenge is that significant effort is needed in designing a test process that will
capitalize on the potential for improvement that is offered by many automation tools.
Producing this kind of solution not only requires experienced engineers, but also IT
resources, which are subject to constraints such as time, communication, and expertise.
OneTA focused to provide a harmonized solution for all related components so that the
cross-system requirements are fulfilled for different environments. The work has proved
that these requirements can be fulfilled by applying systematic DevOps approach.
Nevertheless, the thesis successfully developed a minimum viable solution based on the
requirements, which were set by the managers of the security research team to overcome
an in-house test automation challenge. Thus, it encouraged applying a more
programmatic approach to bring the test automation solution into reality. Moreover, there
was proper utilization of Python programming language for the test automation purpose.

The actual work targeted testing of a new possibility and envision for software
engineering teams by developing something new that solves several test related problems.

61

A fully functional test automation solution for target infrastructures was the base for this
proof of concept (PoC). The project or the solution itself concentrated on DevOps or more
specifically DevSecOps approach so that it can collaborate with the security product
development and operation teams. The final outcome provides a significant usefulness
and indicates that by utilizing OneTA solution, the security research team can boost
efficiency, cut dependency and help other teams flourish better. However, justification of
usable technologies and tools for target environments as functional and operational
requirements were mainly made with the consultation of senior engineers of this thesis
commissioner organization.

On logical grounds, there is no compelling reason to argue that antivirus tests need better
methodology. There might be controversies about whether we should promote test
automation in anti-malware product testing activities or not. From where I stand, test
automation might have a huge payback, and it should not be forgotten that test automation
is nowadays dominating in agile development context and it has received much attention
in the last few years. Many test automation projects have a proven record of successes
when people are creative and able to overcome the challenges effectively [35]. Needless
to say, the next decade is likely to see a considerable rise of DevOps in the software
development process where cloud-native approach will play a vital role.

7.1 Limitations and suggestions for future work
 Many different test cases and experiments have been left for the future work due to a lack
of time. Until now, the outcomes are promising and validated by a couple of use cases.
Since the validity of this solution was performed mainly against a minimum number of
use cases, further work needs to be done to establish the justification of whether the
solution is consistent in actual scenarios. Future work should concentrate on justifying
the solution against actual payload.

62

The current solution only allows performing the test against the configuration for five
different environments. The solution is valid for a specific sequence of task execution.
Error handling rules were not implemented in this case yet. This is an important issue for
future considerations. OneTA solution should provide support for conditional execution
of tasks. The selection of the test environments should be considered as future
implementation to make the solution more useful.

As of now, the test consistency has been checked against currently supported
environments, and it was performed against simple use cases. In the actual scenario, when
lengthier test cases will be performed, performance may not be the same. The
performance evaluation of the OneTA solution should be considered as a future study.

As we know, Ansible supports many cloud platforms as a configuration management tool.
Thus, it creates more scope to integrate other cloud platforms such as vCloud, Microsoft
Azure, Google Cloud, etc. as pluggable environments. The solution can be extended to
support more cloud platforms with a similar approach. The current implementation will
serve as a base for future integration of other cloud platforms. In future, OneTA should
target adding more cloud environments. Besides, further development could be
undertaken in the following areas:

• The execution of all test cases at the same time
• Proper JSON schema should be prepared for a test definition
• Integration of Packer for automatic image creation through test definition
• Test related logic can be improved in the main Python script

63

References
 [1] R. Anderson, “From Bare Metal to Private Cloud: Introducing DevSecOps and Cloud
Technologies to Naval Systems,” M.S. Thesis, Dept. of Softw. Eng., Auburn Univ., Alabama,
USA, 2018.

[2] S. Amaricai and R. Constantinescu, “Designing a Software Test Automation Framework,”
Informatica Economica, vol. 18, no. 12014, pp. 152-161, Jan. 2014.

[3] “API Mocking,” Soapui.org, 2018. [Online]. Available:
https://www.soapui.org/learn/mocking/what-is-api-mocking.html [Accessed: 03- Mar- 2018].

[4] “Artifact-JenkinsAPI 0.2.26 documentation,” Pythonhosted.org, 2018. [Online]. Available:
https://pythonhosted.org/jenkinsapi/artifact.html [Accessed: 11- Apr- 2018].

[5] “ansible-subprocess,” PyPI, 2018. [Online]. Available: https://pypi.org/project/ansible-
subprocess/ [Accessed: 11- Apr- 2018].

[6] S. Berner, R. Weber and R. K. Keller, “Observations and lessons learned from automated
testing,” in Proc. of the 27th Int. Conf. on Softw. Eng., St. Louis, NY, USA, pp. 571-579, May
2005.

[7] J. Brodkin, “With long history of virtualization behind it, IBM looks to the future,” Network
World, 2009. [Online].
Available: https://www.networkworld.com/article/2254433/virtualization/with-long-history-of-
virtualization-behind-it--ibm-looks-to-the-future.html [Accessed: 16- Mar- 2018].

[8] B. Dijkstra, “A guide to automation testing frameworks and how to build yours,” TechBeacon,
2018. [Online]. Available: https://learn.techbeacon.com/units/guide-automation-testing-
frameworks-how-build-yours [Accessed: 16- Apr- 2018].

[9] A. Chatterjee, “How to Achieve DevOps Through Automation,” dzone.com, 2016. [Online].
Available: https://dzone.com/articles/what-is-devops-and-how-automation-helps-achieve-it
[Accessed: 18- May- 2018].

64

[10] D. Firesmith, “Common Testing Problems: Pitfalls to Prevent and Mitigate,”
insights.sei.cmu.edu, 2013. [Online].
Available: https://insights.sei.cmu.edu/sei_blog/2013/05/common-testing-problems-pitfalls-to-
prevent-and-mitigate-1.html [Accessed: 23- Mar- 2018].

[11] C. Conde and N. Attila, “Development and Test on Amazon Web Services,”

amazonwebservices.com, 2012. [Online].
Available: https://media.amazonwebservices.com/AWS_Development_Test_Environments.pdf
[Accessed: 13- May- 2018].

[12] “Cuckoo Sandbox- Automated Malware Analysis,” cuckoosandbox.org, 2018. [Online].
Available: https://cuckoosandbox.org/ [Accessed: 27-May- 2018].

[13] “docopt-language for description of command-line interfaces,” docopt.org, 2018. [Online].
Available: http://docopt.org/ [Accessed: 09-Apr- 2018].

[14] A. Singh, “DevSecOps: Integrating Security into DevOps,” Algoworks, 2018. [Online].
Available: http://www.algoworks.com/blog/devsecops-integrating-security-into-devops/
[Accessed: 11-Jun- 2018].

[15] C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, "DevOps," IEEE Software, vol. 33, no.
3, pp. 94-100, Jun 2016.

[16] M. Fewster and D. Graham, “Software Test Automation,” New York, NY, USA: Addison-
Wesley Professional, pp. 04-25, 1999.

[17] D. Linthicum, “DevOps tools best practices: A 7-step guide,” TechBeacon, 2016. [Online].
Available: https://techbeacon.com/7-steps-choosing-right-devops-tools [Accessed: 01-Mar-
2018].

[18] L. Hochstein and R. Moser, “Ansible: Up and Running,” California, USA: O'Reilly Media,
pp. 01-08, 2017.

65

[19] “Instances and AMIs - Amazon Elastic Compute Cloud,” docs.aws.amazon.com, 2018.

[Online]. Available: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instances-
and-amis.html [Accessed: 06-Jun- 2018].

[20] R. Jabbari, N. Ali, K. Petersen and B. Tanveer, “What is devops? A systematic mapping
study on definitions and practices,” in Proc. of the Scientific Workshop Proc. of XP2016,
Edinburgh, Scotland, pp. 12-13, May 2016.

[21] “JSON,” json.org, 2018. [Online]. Available: https://www.json.org/ [Accessed: 07-Apr-
2018].

[22] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen and C. Pu, “An analysis of
performance interference effects in virtual environments,” in Proc. of the 2007 IEEE Int.
Symposium on Perform. Analysis of Syst. & Softw. San Jose, CA, USA, pp. 200-209, May 2007.

[23] E. Kim, J. Na and S. Ryoo, “Test automation framework for implementing continuous
integration,” in in Proc. of 2009 Sixth Int. conf. on Inf. Technol.: New Generations, Las Vegas,
NV, USA, pp. 784-789, Jun. 2009.

[24] L. Malhotra, D. Agarwal and A. Jaiswal, "Virtualization in Cloud Computing," Journal of
Inf. Technol. & Softw Eng., vol. 04, no. 02, 2014.

[25] “Mocking External APIs in Python,” realpython.org, 2018. [Online]. Available:
https://realpython.com/testing-third-party-apis-with-mocks/ [Accessed: 25-May-2018].

[26] K. McMeekin, “Test Automation vs. Automated Testing: The Difference Matters,”

QASymphony, 2017. [Online]. Available: https://www.qasymphony.com/blog/test-automation-
automated-testing/ [Accessed: 27- May-2018].

[27] G. Narcisi, “8 AWS Offerings Gaining Popularity Right Now,” crn.com, 2018. [Online].
Available: https://www.crn.com/slide-shows/cloud/300099476/8-aws-offerings-gaining-
popularity-right-now.htm [Accessed: 21-Jun-2018].

66

[28] M. Nabil, “The Automation Testing and Agile,” medium.com, 2017. [Online]. Available:
https://medium.com/@Moatazeldebsy/the-automation-testing-and-agile-7a8a8c983ed0
[Accessed: 26-Feb-2018].

[29] “Open source software for creating private and public clouds,” openstack.org, 2018.

[Online]. Available: https://www.openstack.org/ [Accessed: 28-Apr-2018].

[30] R. Peltonen, “Automated Testing of Detection and Remediation of Malicious Software,”

M.S Thesis, Dept. of Info. Tech. Eng., Helsinki Metropolia Univ. of Applied Sci., Helsinki,
Finland, 2017.

[31] M. Russinovich, “PsExec- Windows Sysinternals,” docs.microsoft.com, 2016. [Online].

Available: https://docs.microsoft.com/en-us/sysinternals/downloads/psexec [Accessed: 18- Apr-
2018].

[32] “Parallel Worlds: Agile and Waterfall Differences and Similarities,” Software Engineering
Institute- Carnegie Mellon University, Massachusetts, USA, Oct. 2013. [Online]. Available:
http://www.dtic.mil/dtic/tr/fulltext/u2/a610501.pdf [Accessed: 24-Mar-2018].

[33] “2016 State of DevOps Report Puppet,” puppet.com, 2017. [Online]. Available:
https://puppet.com/resources/whitepaper/2016-state-devops-report/thank-you [Accessed: 07-
Jun-2018].

[34] “The Python Package Index,” pypi.org, 2018. [Online]. Available: https://pypi.org/
[Accessed: 19-May-2018].

[35] B. Pettichord, “Success with Test Automation,” in Proc. of the Ninth International Quality
Week, San Francisco, CA, USA, pp. 02-07, May 1996.

[36] M. Rajkumar, A. Pole, V. Adige and P. Mahanta. “DevOps culture and its impact on cloud

delivery and software development,” in Proc. of the Int. Conf. on Advances in Computing,
Communication, & Automation. (ICACCA’16), Dehradun, India, pp. 01-06, Sep. 2016.

67

[37] V. Roy, “Top 10 Best DevOps video tutorials | Learn DevOps step by step,” topzenith.com,

2018. [Online]. Available: https://www.topzenith.com/2018/02/top-10-best-devops-video-
tutorials.html [Accessed: 25-Feb-2018].

[38] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen and T. Männistö, “DevOps
adoption benefits and challenges in practice: a case study,” in Proc. of Int. Conf. on Product-
Focused Softw. Process Improvement, Trondheim, Norway, pp. 590-597, Nov. 2016.

[39] M. Rouse, “What is sandbox?,” WhatIs.com, 2018. [Online]. Available:

https://searchsecurity.techtarget.com/definition/sandbox [Accessed: 14-May-2018].

[40] “Skillsets to Work In DevOps Environment- A Comprehensive Guide,” DevopsQube, 2018.

DevopsQube. [Online]. Available: https://devopscube.com/skillsets-to-work-in-devops-
environment/ [Accessed: 19-Mar-2018].

[41] K. Sadhukhan, R. A. Mallari and T. Yadav. “Cyber Attack Thread: A control-flow based
approach to deconstruct and mitigate cyber threats,” in Proc. of 2015 Int. Conf. in Computing and
Network Communications (CoCoNet), Trivandrum, India, pp. 170-178, Feb. 2015.

[42] J. Smeds, K. Nybom and I. Porres, “DevOps: a definition and perceived adoption
impediments,” in Proc. of Int. Conf. on Agile Softw. Develop, Helsinki, Finland, pp. 166-177,
May 2015.

[43] “Sandboxing- Cuckoo Sandbox v2.0.6 Book,” cuckoo.sh, 2018. Available:
https://cuckoo.sh/docs/introduction/sandboxing.html [Accessed: 19-Mar-2018].

[44] S. Sharma, “What is DevOps?,” in DevOps for Dummies, 3rd ed., New Jersey, USA, John
Wiley & Sons, pp. 03-17, 2017.

[45] J. Turnbull, “The Docker Book,” dockerbook.com, 2014. [Online]. Available:

http://opisboy.bandungbaratkab.go.id/books/James.Turnbull.The.Docker.Book.Containerization
.is.the.new.virtualization.B00LRROTI4.pdf [Accessed: 29-Jun-2018]

68

[46] M. McLoughhlin, “The QCOW2 Image Format,” people.gnome.org, 2008. [Online].

Available: https://people.gnome.org/~markmc/qcow-image-format.html [Accessed: 28- Mar-
2018.

[47] “What Can Enterprises Expect from DevOps In 2018? – Powered by Algoworks,”
Medium.com. 2018. [Online]. Available: https://medium.com/all-technology-feeds/what-can-
enterprises-expect-from-devops-in-2018-5694461bf44f [Accessed: 23-Mar-2018]

[48] A. Hajda, “Winexe,” kali.org, 2014. [Online]. Available: https://tools.kali.org/maintaining-
access/winexe [Accessed: 18-Apr-2018].

[49] “What does IT Infrastructure mean?,” Techopedia.com, 2018. [Online]. Available:
https://www.techopedia.com/definition/29199/it-infrastructure [Accessed: 21-Jun-2018].

[50] J. Wettinger, U. Breitenbücher, O. Kopp and F. Leymann, “Streamlining DevOps automation
for Cloud applications using TOSCA as standardized metamodel,” in Future Generation
Computer Systems, pp. 317-332, Mar 2016.

[51] “What is KVM?,” RedHat, 2018. [Online]. Available:
https://www.redhat.com/en/topics/virtualization/what-is-KVM [Accessed: 28-Jul-2018].

[52] “Working with Playbooks,” Ansible Documentation, 2018. [Online]. Available:

https://docs.ansible.com/ansible/2.5/user_guide/playbooks.html [Accessed: 03-Jul-2018]

[53] J. Giménez, “What Is Jenkins and Why Should You Be Using It?,” bugfender.com, 2017.
[Online]. Available: https://bugfender.com/blog/what-is-jenkins-and-why-should-you-be-using-
it/ [Accessed: 25-Jun-2018].

[54] “Paramiko,” Paramiko.org, 2018. [Online]. Available: http://www.paramiko.org/ [Accessed:
21-May-2018].

[55] “What is Devops? What does it really mean?,” DevOpsQube, 2016. [Online]. Available:
https://devopscube.com/what-is-devops-what-does-it-really-mean/ [Accessed: 22-Feb-2018].

69

[56] T. Ylonen and C. Lonvick, “The secure shell (SSH) protocol architecture,” No. RFC 4251,
2006. [Online]. Available: https://www.ietf.org/rfc/rfc4251.txt. [Accessed: 23-Jul-2018].

[57] S. Zohrah, “How to choose the right DevOps tools,” atlassian.com, 2016. [Online].

Available: https://www.atlassian.com/blog/devops/how-to-choose-devops-tools [Accessed: 15-
Apr-2018].

[58] M. Sumrell, "From Waterfall to Agile - How does a QA Team Transition?," In Agile Conf.
Agile 2007, IEEE, Washington, DC, USA, pp. 291-295, Aug. 2007.

