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Autonomous vehicles are expected to make a profound change in auto industry. An
autonomous vehicle is a vehicle that is able to sense its surroundings and travel with
little or no human intervention. The four key capabilities of autonomous vehicles are a
comprehensive understanding of sensor data, knowledge of their positions in the world,
building the map of unknown environment, as well as following the planed route and
collision avoidance.

This thesis is aimed at building a low-cost autonomous vehicle prototype that is
capable of localization and 2D mapping simultaneously. In addition, the prototype
should be able to detect obstacles and avoid collision. In this thesis, a Redbot is
utilized as a moving vehicle to evaluate collision avoidance functionality. A mechnical
bumper in front of the Redbot is used to detect obstacles, and a remote user can send
appropriate commands to control the Redbot via Zigbee network, then Redbot acts
accordingly, including driving straightly, changing direction to right or left, and stop.
Redbot are also used to carry the lidar scanner which consists of Lidar Lite V3 and a
servo motor. Lidar data are sent back to a Laptop running ROS via Zigbee network. In
ROS, Hector SLAM metapackage is adopted to process the lidar data, and realize the
functionality of simultaneous localization and 2D mapping.

After implementing the autonomous vehicle prototype, a series of tests are con-
ducted to evaluate the functionality of localization, 2D mapping, obstacle detection, and
collision avoidance. The results demonstrated that the prototype is capable of building
usable 2D maps of unknown environment, simultaneous localization, obstacle detection
and collision avoidance in time. Due to the limited scan range of the low-cost lidar
scanner, boundary missing problem can happen. This limitation can be solved through
the use of a lidar scanner with larger scan range.

Keywords: autonomous vehicles, 2D lidar, localization, 2D mapping, SLAM, ROS, ob-

stacle detection and avoidance
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Chapter 1

Introduction

Autonomous vehicles (AVs) are expected to make a great change in our transportation

system. It has potential influence on traffic safety, congestion and way of traveling[4].

Giants in automotive industry like Daimler, new technology companies like Google and

Apple, and educational laboratories are all working on the research and development of

autonomous vehicles[5].

One of the major challenges for autonomous vehicle designers is the use of data from

different sensors to control the vehicles. Typical sensors used on AVs are lidar, radar,

ultrasonic sensors, GPS, inertial measurement unit (IMU) and stereo vision[6][7]. Gen-

erally, modern AVs use simultaneous localization and mapping (SLAM) algorithms[8] to

detect the surrounding environment and other moving vehicles. Other technologies like

real-time locating system (RTLS) and Sensor Fusion[1] are also used in simpler systems.

Mobile robots and robot operating system (ROS) are widely used in R&D phases of

AVs. Mobile robots refer to the robots that can move around. Some of the mobile robots

are capable of navigating without any guidance while others need the pre-defined route or

some guidance devices. With the help of ROS, researchers and engineers can test more

algorithms on the mobile robots instead of starting from “reinventing the wheels”.

In this thesis, a mobile robot called RedBot and a single lidar called Lidar-Lite V3 are

employed for 2D SLAM system. The hector-SLAM package provided by ROS is adopted
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to realize the mapping and localization functionalities. The main idea is to develop a low

cost system that can prototype the AVs with navigation and mapping functionalities. The

following sections describe the motivation, and the research objectives of the thesis in

detail.

1.1 Motivation

The initial motivation of this thesis is to prototype an AV with basic functionalities. AVs,

also known as self-driving cars, are one of the dramatic innovations in auto industry. It

will not only change people’s way of traveling, but also affect the way we perceive the

world. Prototyping AVs can help engineers to evaluate and test the designs, including

hardware and software. As a student of embedded systems, I want to apply what I have

learned on such an important process.

After doing some literature research on AVs, I found the key point of AVs is to let the

vehicles be aware of the surrounding area as human do, and it is realized by two technol-

ogy: computer vision and sensor fusion. Among the sensors used by the vehicles, lidar is

used most. Besides, lidar is easily accessible to me. Therefore, my second motivation is

to apply low cost lidar on controlling the AVs.

SLAM is the algorithm widely used to localize the vehicles with the given sensor data.

SLAM can help the vehicles to know where they are in the world. SLAM can also work

properly even without IMU and GPS. Hence, my another motivation is to employ SLAM

algorithm on vehicles without IMU or places with no GPS.

The last motivation is to use limited resources to prototype an AVs for research pur-

poses. Under some circumstances, we only have restricted fundings and research equip-

ments, a low-cost prototype can solve this problem while achieving the research goals

like verifying the improved algorithms or testing the sensor performance.
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1.2 Research Objectives

This thesis aims at building a low cost 2D lidar SLAM system using a mobile robot and

ROS. The system can produce the 2D map of the surrounding environment of the mobile

robot using the lidar data. The mobile robot can avoid the obstacles autonomously and

move according to the remote control commands. The system operates wirelessly.

Figure 1.1: AVs’ Working Process[1]

There are five typical research areas in AVs (see Figure 1.1):

1. Computer vision: to enable the AVs to see the world as human do;

2. Sensor fusion: to integrate the data from different sensors, and to make the AVs

have a comprehensive understanding of the surrounding area;

3. Localization: to let the AVs know where they are in the world with high accuracy;

4. Path Planning: to calculate the best route to where they want to go;

5. Control: to control the AVs to follow the planned trajectory, including avoiding

obstacles.
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In this thesis, the latter four steps mentioned above are focused. The hardware selected

and the technologies used are listed below:

• Redbot from SparkFun Electronics: The mobile robot to move the lidar sensor

around.

• Lidar-Lite v3 from GARMIN: The light detection and range sensor to provide the

sensor data.

• Arduino Mega: The controller to control the servo and interface the lidar sensor.

• Servo MG995: The servo to rotate the lidar sensor horizontally.

• Xbee pro S1 from DIGI: The Xbee module to form the Zigbee networks for trans-

mitting the sensor data and interfacing the mobile robot wirelessly.

• ROS: The robotics middleware to process the sensor data, map the surrounding area

and control the mobile robot.

• SLAM: The algorithm to localize the mobile robot and produce the 2D map accord-

ing to the sensor data.

1.3 Thesis Structure

This thesis is organized into five chapters. Chapter 1 introduces the general topics, re-

search motivation and objectives of the thesis. Chapter 2 explains the technologies be-

hind AVs briefly and compares the differences among alternative choices of the mobile

robots, ROS versions, sensors and SLAM packages. Chapter 3 takes a deeper look into

the design and implementation of the system, including the mobile robot, lidar sensor,

ROS software and the obstacle detection and avoidance with remote control. Chapter 4

evaluates the system performance with respect to the 2D mapping and obstacle detection
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and avoidance. This chapter also discusses the limitations of the system. Chapter 5, as

the last chapter, summarizes the thesis and suggests some future work.



Chapter 2

Background

This chapter presents the detailed description of the research topics and technologies used

in this thesis. This chapter consists of seven sections. The first three sections are the gen-

eral research area focused in this thesis, i.e. autonomous vehicles, embedded systems and

Internet of Things. Meanwhile, the latter four sections describe the specific technologies

and hardware used in this thesis, and compare the alternative technologies that can also

be employed.

2.1 Autonomous Vehicles

The early experiments on autonomous driving have started since the 1920s[9] and emerg-

ing prototypes appeared in the 1950s. More autonomous prototypes came out in the

1980s, including Carnegie Mellon University’s Navlab[10] and ALV[11][12] projects

in 1984 and Mercedes-Benz and Bundeswehr University Munich’s Eureka Prometheus

Project[13] in 1987. The Tsukuba Mechanical Engineering Laboratory developed the first

real automated car in 1997, in Japan. The Tsukuba automated car was capable of tracking

the white street markers and marching at the speed of 30 kilometers per hour. Many com-

panies and R&D groups have built prototypes since the second DARPA Grand Challenge

in 2005[13][14][15][16][17]. The U.S. National Automated Highway System program
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demonstrated a combination of automated vehicles and highway network successfully in

1997 but only on a small scale[18]. Navlab drove 98% of 4501 kilometers autonomously

across America in 1995[19], and the record was not broken until 2015 when an Audi

drove 99% of over 5472 kilometers with the help of Delphi technology[20]. Many states

of the US allowed tests on public roads after that[21]. One recent break was that Waymo

announced its autonomous vehicles had traveled for over 13,000,000 kilometers in July

2018[22].

In the autonomous vehicle industry, many terminologies are used to describe the ve-

hicles that can drive themselves. It can cause many safety problems when a fully au-

tonomous self-driving car and one that needs driver assistance technologies are confused

by the users[23]. Autonomous, automated, cooperative and self-driving are most used

among the terminologies. Autonomous refers to fully self-governing[24] while automated

stresses the artificial aids. One approach to realize autonomous is to build communication

networks among vehicles. Cooperative stands for the system that has a remote driver. To

standardize the degree of automation, Society of Automotive Engineers (SAE) Interna-

tional published a classification system in 2014 and updated it in 2016[25]. SAE’s clas-

sification defines six automation levels, ranging from fully manual to fully autonomous

vehicles. The brief description of each level is given below[25]:

• Level 0: The system handles warnings but has no lasted vehicle control.

• Level 1: The driver and the system work together, for example, adaptive cruise

control (ACC) and parking assistance.

• Level 2: The system controls accelerating, braking and steering, but the driver has

to monitor the process and be ready to take over the control whenever the system

fails.

• Level 3: The driver can turn attention to text or watching a movie when driving,

which is called ”eyes off”. In 2018, Audi A8 Luxury Sedan was the first commercial
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car with level 3 automation, but it only works for one-way traffic on high-ways.

• Level 4: No more safety issues. The driver can sleep or sit in the passenger’s seat.

• Level 5: No human involvement any more. One possible example is the robotic

taxi.

Apart from the ambiguous terminology and classification issue, there are many other

challenges to be solved. Technically, the main challenge for designers is to make the AVs

to understand the surrounding environment, including other vehicles and the road with

the sensory data input, as human do. Generally, SLAM and RTLS are the mainstream al-

gorithms used. Typical sensors used to provide data for these algorithms are lidar, stereo

vision, GPS and IMU. Sensor fusion, which integrates data from different sensors, is em-

ployed to decrease the uncertainty when each sensor is used individually. Autonomous

vehicles also apply deep learning for visual object recognition. Deep neural networks,

which is an approach to simulate neurons that activate the network[26], are used to de-

velop the autonomous cars[6]. Recently, one big progress has been made that researchers

in MIT announced that their automated car can navigate unmapped roads with the system

called MapLite[27]. The system employs GPS, OpenStreetMay and many sensors to con-

trol the vehicles[28]. From human side, one big challenge is that human need to build up

more confidence on the vehicles with the elevated automation level, .

There are two main fields of application in autonomous vehicles. One is automated

trucks. Uber’s self-driving truck startup Otto demonstrated their products on the highway

in August 2016[29]. Embark, a startup in San Francisco, also announced their collabora-

tion with truck manufacturer Peterbilt in May 2017[30]. Besides, Waymo was said to have

a project on self-driving trucks[31]. In March 2018, Starsky Robotics, as the first player

to drive in autonomous mode without a driver in the trucks, completed a 11-kilometer

trip in Florida. In Europe, Safe Road Trains for the Environment (SARTRE) project is

deploying truck Platooning[32]. Another application is in transport systems. In Europe,
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countries like Belgium, the UK, France, the Netherlands, Spain, Germany and Italy have

allowed testing in public traffic, and are planning the transport systems for autonomous

vehicles[33][34][35].

The motivation behind the fast development progress of autonomous vehicles is its

potential advantages with regard to the following factors:

• Safety: Experts predict that traffic accidents like head-on, road departure, rear-

end, side collisions and rollovers that caused by human errors can be substantially

reduced with the wider use of AVs[36]. McKinsey estimated 90% accidents can be

eliminated and thousands of lives and money can be saved[37].

• Welfare: AVs can reduce labor costs[38] and leave travelers with more leisure

time[36]. It also increases the mobility of the young, the elderly and the disabled[39].

With the removal of the steering wheel, the space inside the cabin can be more cozy

and flexible[40].

• Traffic: There can be higher speed limits, larger road capacity and less traffic

congestion[41]. The traffic flow can be easier to manage even with less traffic poli-

cies and road signals. Besides, more traffic data can be provided to better predict

the traffic behavior.

• Lower costs: Less traffic accidents can reduce the vehicle insurance costs. Apart

from that, higher fuel efficiency can reduce the fuel costs[39].

• Parking space: The need of parking space can be dramatically reduced because the

AVs can be used continuously after finishing on journey.

• Related effects: With more and more sharing services of AVs, the number of indi-

vidually owned cars will be reduced, which can be more environment-friendly[42].

Moreover, illegal behavior like deliberate crash can be avoided.
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Despite the above advantages, there are several challenges and limitations of AVs

that can hinder its development. One is the liability problem. No consensus has been

reached until now on who is responsible for the accidents, the operator company or the

one that is in the car[43]. Besides, there are other related government regulations that

need to be implemented. There will be a long time that AVs and non AVs are sharing

the roads, and this will cause not only technical challenges but also policy problems.

Unemployment caused by the wide spread of AVs is also a big challenge. Drivers, workers

at repair shops and public transit services will lose their jobs. The other disadvantage

is loss of privacy. With the data provided by the third party, anonymous traveling will

be impossible, people’s daily life will be under surveillance of the AV companies and

government[44]. In contrast to one advantage mentioned above, another opinion thinks

that AVs can cause more use of fuel polluting the environment even more. People will be

inclined to living far away from the cities and working in the city centers due to the travel

comfort and convenience[45].

2.2 Embedded Systems

An embedded system is a programmed controlling and operating system. It usually has a

dedicated function within an electrical system, and has real-time computing constraints[46].

It is often embedded in devices with hardware and mechanical components. Embedded

systems are indispensable in many devices today[47]. 98% of the microprocessors are

used in embedded systems[48]. The first modern embedded system was the Apollo Guid-

ance Computer developed by Charles Stark Draper at the MIT. The first embedded system

put into mass production was the Autonetics D-17 guidance computer for the Minuteman

missile in 1961. After some early applications in the 1960s, embedded systems lowered

the price and had an improvement on processing power and functionality. In 1980s, input

and output systems and memory were integrated into one chip with microprocessors so
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that microcontrollers were formed. As the cost fell, microcontrollers took the place of

general-purpose computers in many places. Even software prototype and hardware tests

are quicker and cheaper in embedded systems compared to redesigning of a circuit.

In comparison with general-purpose counterparts, typical embedded computers have

many advantages. It usually has low power consumption, small size, wide operating

ranges and low costs at the price of limited processing resources. The programmers need

to be more careful with the programming and interaction. But with the help of intelli-

gence mechanisms, such as randomized algorithms and robustness analysis, programmers

can utilize sensors and networks to balance the optimal performance and the available

resources[49]. Furthermore, embedded systems are designed to do specific tasks, and

some have to meet the real-time constraints for safety or usability. Embedded systems

can have no user interface at all, or they can even have complex graphical user interfaces

that are similar to modern computer desktop. Most embedded devices have buttons, LEDs

and LCDs. More complex devices can have graphical screens, and some interfaces can be

accessed remotely with a serial or network connection. Embedded systems can be clas-

sified into two, the first one is the microprocessors with separate circuits for peripherals

and the other one is microcontrollers with on-chip peripherals. For small embedded sys-

tems, ready-made computer boards are used, and mostly based on x86. They usually use

DOS, Linux or an embedded real-time operating system. For very high volume embed-

ded systems, system on a chip (SoC) based design paradigm is preferred. This kind of

system has multiple processors, multipliers, caches and interfaces integrated on a single

chip. The typical implementation options for such system is either application-specific

integrated circuit (ASIC) or field-programmable gate array (FPGA).

The applications of embedded systems are pervasive throughout everyday life. Com-

ponents in telecommunications systems, such as telephone switches, cell phones, routers

and network bridges, employ numerous embedded systems. Consumer electronics like

video game consoles and digital cameras, household appliances such as ovens and dish-
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washers, and systems like smart home are composed of embedded systems. Transporta-

tion systems including planes, trains, and automobiles employ embedded systems to con-

trol the mechanical processes and interact with different sensors. Embedded systems

are also applied to medical equipment for monitoring vital signals, amplifying sounds of

electronic stethoscopes and medical imaging.

Embedded systems apply several types of software architecture. One is the simple

control loop. It has a single loop, and some subroutines are called in the loop to manage

the hardware or software. Interrupts are also commonly used. For tasks that are simple

and need quick responses, interrupts can be triggered by different events, and the event

handlers can turn to execute the tasks. Triggers can be a predefined timer or receiving

a specific byte. Multitasking systems are used in embedded systems too. One is the

cooperation multitasking, also known as non-preemptive multitasking. Similar to the

simple loop control, its loop is in an application programming interface (API), and each

task runs in its own environment. Another one is the preemptive multitasking, also known

as multi-threading. Tasks or threads are switched in a low-level piece of code based on a

timer. Many synchronization strategies are used to deal with shared data among different

tasks.

2.3 Internet of Things

With the development of autonomous vehicles, the Internet of Vehicle, as a branch of the

Internet of Things (IoT), has gained attention[50]. The main idea of IoT is to build a

smart network that interconnect “anything”, and can be accessed by “anyone” at “any-

time” through “any path” and “any service”[51]. IoT is the network of smart devices like

vehicles, household appliances and others with electronics, sensors and wireless modules.

The network enables smart devices to connect, collect and exchange data[52]. IoT’s main

vision is to build a smart environment that can put more intelligence to the industries,
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healthcare, cities, transport and many other aspects of our daily life[51].

Figure 2.1: IoT Layered Architecture (Source: ITU-T)

As depicted by Figure 2.1, IoT is a new infrastructure with multiple layers. Smart

devices deliver their services through four layers: device layer (devices like sensors and

RFID, gateways), network layer (transport and networking capabilities for forwarding

data to processing centers), service and application support layer (to hide the complex

lower layers and provides generic services) and application layer. Each layer has many

research topics. Application layer and network layer is introduced in detail in the follow-

ing sections.

2.3.1 Applications

As illustrated in Figure 2.2, IoT infrastructure can be divided into three dimensions: ap-

plications, enabling technologies and general requirements need to be taken into account.

IoT has wide applications in our daily life, such as healthcare, energy, building, trans-

port, cities and industries. The enabling technologies include sensors, nanoelectronics,
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Figure 2.2: IoT 3D Matrix[2]

wireless sensor networks (WSN), identification, localization, storage and Cloud. Some

of the main requirements for IoT applications are security, privacy, safety, integrity, trust,

dependability, transparency, anonymity and ethics are taken into consideration[2].

Applications in IoT are usually classified into four types: consumer, commercial, in-

dustrial and infrastructure[53]. Wearable devices are the typical consumer applications.

Others like smart home and elder care also belong to this category. Not as close to our

daily life as consumer applications do, commercial applications include Internet of Medi-

cal/Health Things for hospitals, Internet of Vehicles for autonomous vehicles and building

automation systems. Industrial applications are widely spread in manufacturing and agri-

culture. In manufacturing industries, it is also known as Industrial IoT (IIoT). In farming,

IoT systems utilize many kinds of sensors to collect data on humidity, temperature, wind

speed and soil content. The data collected can be analyzed in the systems and assist the

farmers to have better decisions, so the risk can be minimized and the quality and quan-

tity of the crops can be improved. In the meantime, infrastructure applications refer to

those monitoring and controlling operations on the civil infrastructures like railways and

bridges. IoT can benefit the construction by reducing the cost and time, improving the
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quality and increasing the productivity.

2.3.2 Wireless Sensor Networks

Wireless sensor networks (WSNs) are one of the vital components in the IoT. WSNs

not only facilitate the extension of the communication range of IoT networks, but also

introduce the computing power of daily necessities. A wireless sensor network refers to a

self-configuring network of spatially dispersed sensors (also called motes). These sensors

are used to collect data and monitor the environment. The collected data are processed at

a central location.

In essence, sensor nodes are small computers with very limited functions. All nodes

consist of five main elements: processor, power source, memory, radio and sensors. Pro-

cessor is in charge of processing locally sensed and forwarded information from other

nodes. It usually has three modes: sleep mode to save power, idle mode to be ready for

the data from other nodes and active mode when sensing, sending or receiving data. Power

source is another important component of sensor nodes. Since many nodes are deployed

in remote areas for months, they have to consume as little power as possible. End user

can reduce the throughput to extend the lifetime of the power source. Rechargeable bat-

teries, solar panels and capacitors are the common power sources[51]. Memory is used to

store the execution program and the collected data. Radio is used to transfer data among

nodes. Radio used in WSNs typically has low-rate (10-100 Kbps) and short range (less

than 100 meters). Radio communication is a very power-intensive task, so many energy-

efficient techniques are adopted to save the power of nodes. Customized algorithms and

protocols are adopted to increase the network quality. Three wireless radio protocols are

introduced and compared in the following section. Many different sensors are deployed

in sensor nodes. There are three main categories: physical, chemical and biological sen-

sors. Sensors can monitor a number of parameters of the ambient environment, such as

“temperature, humidity, light, pressure, noise level, acceleration and soil moisture”[51].
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There are two different nodes in WSNs. One is called sensor node. It is used to

sense the surroundings and transmit the data to another kind of node, i.e. sink node. Sink

node is also known as “base station”. Sink nodes collect data from sensor nodes. It can

either pass data to the gateway for further processing or function as a gateway itself. A

sink node has minimal processing and communication capabilities, but it does not have

sensing capabilities. A typical multi-hop wireless sensor network is illustrated in Figure

2.3.

Figure 2.3: Multi-hop Wireless Sensor Network Architecture

2.3.3 Wireless Protocols

The use of wireless technologies is one of the drivers of IoT. Nodes need to utilize wireless

protocols to build a communication channel to send and receive data. In this subsection,

three wireless communication protocols that are widely used in the IoT field[54] are dis-

cussed. For each protocol, a brief description, its pros and cons, its technical features and

some application scenarios are introduced.
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Wi-Fi

Wi-Fi is a technology developed for device connection of wireless local area networking

(WLAN). It is for devices based on the IEEE 802.11 standards. Wi-Fi is the trademark

of the Wi-Fi Alliance. It uses the 2.4 gigahertz (12 cm) ultra high frequency (UHF) and

5.8 gigahertz (5 cm) super high frequency (SHF) industrial, scientific and medical (ISM)

radio bands. Wi-Fi has several securing methods like wired equivalent privacy (WEP),

Wi-Fi protected access(WPA), Wi-Fi protected access II(WPA2). It can be used with or

without passwords.

Wi-Fi has been widely used in the IoT because it can utilize the current infrastructure

for the new IoT. It works in the range of 10 to 100 meter. The data rate is between 11

to 105 Mbps. It is mostly applied on IoT routers, smart traffic management and office

automation. The pros and cons of Wi-Fi for IoT are shown in the Table 2.1.

Table 2.1: Pros & Cons of Wi-Fi

Pros Cons

low cost high power consumption

easy installation interference from other devices working in the same bands

scalable limited range

less secure

Zigbee

Zigbee is a wireless communication protocol based on IEEE 802.15.4 standard. It is de-

signed for personal area networks with short range, low transfer data rate and low power.

Zigbee network is simpler and cheaper than others. The advantages of Zigbee are its low

power consumption, its high security, its robustness and its high scalability. It can be

utilized with different network topologies, which makes it possible to transmit data over
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longer distance.

Zigbee operates in 2.4 GHz worldwide, though some devices also use 784 MHz in

China, 868 MHz in Europe and 915 MHz in the USA and Australia. Its data rate is

250 Kbps (2.4 GHz band). It is mostly used on monitoring, controlling, medical data

collection and wireless sensor networks.

The pros and cons of Zigbee for IoT are shown in the Table 2.2.

Table 2.2: Pros & Cons of Zigbee

Pros Cons

support multiple topologies like mesh, star low data rate of 250 kbps

long communication range of 1.5 to 2 kilometer
very expensive compared to the

license-free protocols

scalable with easy configurations
the frequencies other than 2.4 GHz

require license in some countries

Bluetooth Low Energy

Bluetooth low energy (BLE) is a wireless personal area network technology aimed at new

applications in the IoT field like healthcare, fitness and home entertainment appliances.

Like Bluetooth, BLE is also designed by the Bluetooth Special Interest Group (Bluetooth

SIG), but it is intended to reduce energy consumption and cost. BLE has special sleep

mode and awake mode to save power consumption, which is very important to IoT devices

with limited power supply.

BLE works at 2.4 GHz and the data rate is about 1 Mbps. It is commonly used on

mobile phones, smart home systems, wearable devices, healthcare and fitness devices.

The pros and cons of BLE for IoT are shown in the Table 2.3.
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Table 2.3: Pros & Cons of BLE

Pros Cons

high data rate of 1Mbps
interference from other devices working in the

same band

low power consumption more initial setup time

medium range of 60 meter expensive and energy-intensive bluetooth tags

2.4 Mobile Robot

Mobile robots is a subfield of robotics. It refers to robots with locomotion capability.

Mobile robots can move themselves around and not stay in a fixed place. Some mobile

robots need guidance systems so they can travel in a pre-defined paths, while some are

autonomous, i.e. they can navigate in an unknown environment without any help from

physical or electro-mechanical guiding devices.

Mobile robots consist of controllers, control software, sensors and actuators. Con-

trollers are mainly microprocessors. Control software can either be assembly language or

high-level languages like C, C++ or special real-time software. Dependent on the require-

ments, the sensors vary from physical ones to chemical ones. Requirements are proximity

sensing, collision avoidance, obstacle detection, position location and others.

Mobile robots have become very common in both commercial and industrial scenar-

ios. In hospitals, autonomous mobile robots are used to move materials, and the same

use in warehouses. Mobile robots are also one of the research focuses[55]. As consumer

products, mobile robots are adopted as entertainment robots or household tools such as

vacuum cleaner. Mobile robots’ applications can also be found in industrial, military and

security field.

Mobile robots can be classified in two ways. One is the environment they travel.

Land or home robots are called Unmanned Ground Vehicles (UGVs). Delivery and trans-
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portation robots move supplies in a work environment. Robots work in air are named

Unmanned Aerial Vehicles (UAVs), while robots work under water are referred to as

Autonomous Underwater Vehicles (AUVs). There are also robots specially designed to

navigate icy environments called polar robots. Another is the way in which they travel.

human/animal-like mechanical legs, wheels or tracks are the three main ways.

Navigation ways are very different among robots. The basic type is a manually tele-

operated robot and the robot is completely under control of the driver with control de-

vice. Some robots can sense obstacles and avoid collision automatically, which are called

guarded tele-op robots. The earliest automated robots followed visual lines to navigate.

The autonomously randomized robot can bounce off walls with random motion. With

higher automation level, autonomously guided robots can localize themselves and nav-

igate according to the tasks given. The robots with the highest automation level uses a

system called sliding autonomy. Three commonly used mobile robots are introduced in

the following subsections.

2.4.1 PR2

Figure 2.4: PR2

PR2 is a robotic platform for research and development developed by Willow Garage.
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The typical model has two arms, a stereo cameras on the top for distance measurement

and a tilting laser. As is shown in Figure 2.4, PR2 combines mobility, navigation ability

and the ability to grasp and manipulate objects.

2.4.2 TurtleBot

Figure 2.5: TurtleBot Family

TurtleBot is a personal robot kit. It costs relatively lower and it uses open-source

software. TurtleBot was created by Melonee Wise and Tully Foote at Willow Garage in

November 2010. At first, the creators wanted to build a cheaper platform using ROS, so

the first generation of TurtleBot consists of a Kinect and a iRobot Create[56]. TurtleBot

provides the basic combination of laptop, sensors and the mobile bases for people work

on robots with a reasonable price. It can travel around the house, build a 3D map and

create more exciting applications based on the 3D map. Three generations of TurtleBot

models are shown in Figure 2.5.
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2.4.3 RedBot

RedBot is a platform developed by SparkFun (see Figure 2.6). It integrates the basic

robotics and sensors. It is based on the SparkFun RedBoard and can be programmed using

Arduino. It consists of top and bottom chassis, two motors and two wheels, two wheel

encoders, three line followers, two mechanical bumpers, mainboard, a accelerometer and

a buzzer. It is power by four AA batteries. RedBot is the mobile platform used in this

thesis, and the details of each part are introduced in Chapter 3.

Figure 2.6: RedBot

2.5 Robot Operating System

Robot Operating System (ROS) is robotics middleware. Robotics middleware refers to

collection of software frameworks to be used in complex robot control systems, so ROS is

not an operating system. It provides several services for heterogeneous computer cluster.

It has hardware abstraction and low-level device control. Some commonly used function-

ality is also implemented. It standardizes message-passing format between processes, as

well as manages package. Although it is important to have low latency and real-time re-
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action, ROS is not a real-time OS (RTOS). The support for real-time systems is provided

in ROS 2.0.

ROS has three levels of concepts[3]. The first is the filesystem level. This level covers

the resources stored on disk, such as:

• Packages: A package is the main unit to organize software. It can contain runtime

processes, libraries, datasets and configuration files. A package is the most atomic

thing that can be built and released in ROS.

• Metapackages: Metapackages are special packages. They are used to represent a

group of related packages. They are commonly served as a backwards compatible

place holder for converted rosbuild stacks.

• Package Manifests: Manifests store matadata about a package, such as its name,

version, description, license information and dependencies,

• Repositories: A collection of packages that can be released together with catkin

tool bloom.

• Message (msg) types: Definition of the data structures for messages in ROS.

• Service (srv) types: Definition of the request and response data structures for ser-

vices in ROS.

The second is the Computation Graph level. As is shown in Figure 2.7, there are five

components that provide data to the Graph.

Figure 2.7: ROS Computation Graph Level
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• Nodes: Processes performing computation are called Nodes. A robot control sys-

tem consists of many nodes.

• Master: Each node registers their name and finds each other on Master.

• Parameter Server: It allows data to be stored by key in a central location, and it is

part of Master.

• Messages: Communication between processes, i.e. data transferred between pro-

cesses, are called messages in ROS.

• Topics: Communication tunnels between nodes are referred as topics. Each topic

has a unique name. The direction of communication can be set as publish or sub-

scribe. The types of topics are defined to be same as the types of messages.

• Services: ROS service is another way that nodes can communicate. Services allow

nodes to send requests and receive responses.

• Bags: Bags are the format to save and play back ROS message data.

Figure 2.8: ROS Communication Model[3]

The last level is the Community level. ROS community is where ROS users can exchange

software and knowledge, including different distributions, repositories are for different
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institutions to develop and release their own software, ROS Wiki is for documenting in-

formation, ROS answers site and ROS blogs.

In the ROS ecosystem, software are separated into three groups:

• tools that are language- and platform-independent, used for building and distribut-

ing ROS-based software;

• implementation of ROS client library, such as roscpp, rospy and roslisp;

• packages that can be used in different applications and use one or more ROS client

libraries.

Language-independent tools and client libraries are released under the terms of the Berke-

ley Software Distribution (BSD) license, so they are open source software and can be used

for free both commercially and in research. Most of the packages are also licensed un-

der open source licenses. These packages implement the commonly used functionality

like hardware drivers, robot models, data types, route planning, environment perception,

simultaneous localization and mapping (SLAM), simulation tools and other algorithms.

The main ROS client libraries (C++, Python and Lisp) are for a Unix-like system. Client

libraries are supported in Ubuntu Linux.

ROS-Industrial is an open source project. It applies capabilities of ROS to manufactur-

ing automation and robotics. It provides interfaces for common industrial manipulators,

grippers, sensors, and device networks. It also provides software libraries for automatic

2D/3D sensor calibration, route planning, application called Scan-N-Plan, developer tools

like the Qt Creator ROS Plugin, and training curriculum that is specially designed for the

needs of manufacturers.

ROS releases many versions that are called distribution. Each distribution includes

different set of ROS packages. Each distribution has its own name. Indigo Igloo is more

friendly to beginners of ROS for its stability and abundant community support. Catkin,

which is a build system, is only supported by Indigo and later. Kinetci Kame is the mostly



CHAPTER 2. BACKGROUND 26

used distribution with new capabilities. Melodic Morenia is the newest distribution.

2.6 Sensors

Today’s semi-autonomous vehicles apply different designs of radar and camera systems,

high-resolution and low-cost LIDAR systems are also under development. To realize

level 4 and level 5 automation, various numbers and kinds of sensors have to be used.

This chapter describes the main features and applications of the commonly used sensors

in autonomous vehicles field.

2.6.1 Radar

Radar is a detection system which uses radio waves to determine the properties of ob-

jects. It can measure range, angle or velocity of objects. A radar system consists of a

transmitter to produce the radio waves, a transmitting and receiving antenna, a receiver

and a processor. Radar sensors are classified by their operating distance ranges: short

range radar (SRR) works from 0.2 to 30 meter range, medium range radar (MRR) works

from 30 to 80 meter range and long range radar (LRR) works from 80 to more than 200

meter range. Currently, LRR is used in Adaptive Cruise Control (ACC) and highway

Automatic Emergency Braking Systems (AEBS). One advantage of radar is it needs less

computation than other sensors, and it works in almost all the environmental conditions

like rain, dust or sunlight.

2.6.2 Ultrasonic Sensor

Similar to radar, ultrasonic sensors calculate the distance of an object by measuring the

time between sending an ultrasound signal and receiving the echo. It is very sensitive to

dirt so it is not suitable for heavy outdoor use. It is widely used in parking. It is also used

to aid autonomous navigation.
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2.6.3 Lidar

Lidar is an acronym of light detection and ranging. Lidar measures the distance to an ob-

ject by calculating the time needed by a pulse of laser light to travel to an object and back

to the sensor. Lidar is commonly used to make 3D representations of objects according

to the different return times and wavelengths. In autonomous vehicles, lidar sensors are

placed on the top of the vehicles to provide the 360°3D view of the environment, so the

vehicles can be able to detect obstacles and avoid them. There are some aspects that lidar

companies are working on. One is to reduce the size and cost. Another is to use longer

wavelength to increase the detection range and accuracy. Recently, solid state lidar (SSL)

with no moving parts is replacing the scanning lidar for its higher reliability.

(a) Hokuyo Lidar (b) RPLIDAR (c) Lidar Lite

Figure 2.9: Three Commonly Used Lidar Sensors

As is illustrated in Figure 2.9, three lidar sensors that are commonly used for research

purpose are introduced:

• Hokuyo Scanning Rangefinder: Hokuyo has many kinds of lidar sensors, the fre-

quently used ones are called scanning laser rangefinders. The detectable range is

from 100mm to 30m, it takes 25 millisecond per scan. It works under 12V. It has

270°area scanning range with 0.25°resolution. It uses USB 2.0 interface. However,

it costs around USD $4500 each.

• RPLIDAR: RPLIDAR is another commonly used lidar sensor brand. Its working
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range is from 0.15m to 12m. It can scan 360°with 0.45°to 1.35°resolution. The

scan rate is from 5 to 15Hz. It costs USD $380 each.

• LIDAR-Lite: LIDAR-LiTe is a 1D laser rangefinder. It works up to 40 meter. It can

be interfaced with I2C or PWM. It can work together with a spinning module as a

scanning lidar. It costs about USD $150 each.

2.6.4 Camera

Camera sensors are indispensable to autonomous systems. It is the only sensors that can

capture texture, color and contrast of the objects. It can also capture the details of the

environment. It is applied on all sides of an autonomous vehicle. Like human eyes,

however, it is susceptible to severe weather and light conditions, so it needs to collaborate

with other sensors. With the increasing pixel resolution and the decreasing price, camera

sensors are becoming more and more important to autonomous vehicles.

2.6.5 GPS

GPS stands for Global Positioning System. It is a global navigation satellite system owned

by the US government. It can provide geolocation and time information. GPS signals can

be weak in mountains and buildings. GPS is a very important part in autonomous vehicle

system, because it can provide location information and assist the navigation.

2.6.6 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is an electronic device that can measure an object’s

specific force, angular rate and the magnetic field around. It is typically used to maneuver

vehicles. It is needed for some localization algorithms. It can predict the location and

velocity of an object according to the object’s previous pose. As a result, it can help
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an object to localize itself when GPS signals are unavailable, like inside buildings or in

tunnels.

2.7 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) is a very important part in robotic fields.

It is a computational problem of building and updating a map of an unknown environment,

and keeping track of the robot’s location simultaneously at the same time[57][58][59].

There are several algorithms to solve this chicken-and-egg problem, such as particle fil-

ter (aka. Monte Carlo methods), extended Kalman filter and GraphSLAM. Since SLAM

algorithms are limited to the available resources, it is not aimed at perfection, but at oper-

ational compliance. It is widely applied on autonomous vehicles, newer domestic robots

and even inside the human body[60].

The SLAM problem is to compute an estimate of the robot’s location and a map of the

environment with the given sensor observation data over discrete time steps. Statistical

techniques, including Kalman filters and particle filters, provide the estimation of the

posterior probability function for the pose of the robot and for the parameters of the map.

Set-membership techniques, which are based on interval constraint propagation, provide

a set which encloses the pose of the robot and a set estimation of the map. Another

technique is Maximum a posteriori estimation (MAP), which uses image data to jointly

estimate poses and landmark positions to increase map fidelity. It is the technique used

by Google’s ARCore.

There are several important aspects that can affect SLAM algorithms:

• Map: Maps are classified as topological maps which represent the environment with

topology, and grid maps that use arrays of discretized cells to represent a topological

world.

• Sensors: Laser scans can provide details of many points within the area with tactile
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sensors only contain points very close to the agent. Most practical SLAM tasks fall

between this two kinds of data. Optical sensors can be one dimension or 2D, even

3D.

• Kinematics model: The kinematics model of the robot improves the estimation of

sensing under conditions of inherent and ambient noise.

• Loop closure: It is the problem of recognizing a location that visited previously and

updating accordingly.Typical methods compute sensor measure similarity and reset

the location priors when a match is found.

Many SLAM algorithms are implemented in ROS libraries, three mostly used are

described and compared below:

• Gmapping: Gmapping is a laser-based SLAM. It is substantially a particle filter. It

needs odometry and laser scan data to produce 2D occupancy grid map.

• Hector SLAM: Hector SLAM is an algorithm developed by researchers at Technis-

che Universitat Darmstadt. It can be used without odometry and on platforms that

can roll or pitch. It benefits from the high rate lidar systems and provides 2D pose

estimation at scan rate of the sensors. It is accurate enough although it dose not

provide explicit loop closing ability[61].

• Cartographer: Cartographer is an algorithm developed by Google in 2016. It achieves

real time loop closure by using a branch-and-bound approach to compute scan-to-

submap matches as constraints. It works well with portable platform and limited

computational resources[62].



Chapter 3

Design and Implementation

In this chapter, the design and implementation of the low-cost AV prototype with map-

ping functionality is presented. The prototype is capable of localizing itself and building

2D map of unknown environment simultaneously, and it can avoid collision with remote

control command via Zigbee network.

3.1 System Architecture

The system in this thesis is a low-cost AV prototype that is capable of localization and

mapping using lidar sensor. As is illustrated in Figure 3.1, the architecture of the system

consists of five components:

• RedBot: it is the mobile platform used to carry the lidar scanner to build the map

and travel around to test the obstacle detection and avoidance function;

• Lidar scanner: it is is composed of an Arduino Mega, a servo motor and a lidar

sensor;

• Zigbee network: it is a multi-point network that made up of three XBee modules to

transfer data between RedBot and the laptop running ROS;
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• Hector SLAM: a metapackage in ROS to realize the localization and mapping func-

tions;

• Remote control: to control the RedBot by sending commands via serial port and

Zigbee network.

Figure 3.1: System Architecture

The detailed implementation is described in the following sections.

Figure 3.2: Hardware
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3.2 Hardware

This section describes the hardware employed in this thesis (see Figure 3.2) and their

configurations, including the SparkFun Inventor’s Kit for RedBot, a microcontroller, a

lidar sensor, a servo and three XBee modules.

3.2.1 RedBot

As is shown in Figure 3.3, the SparkFun inventor’s kit for RedBot is composed of many

pieces. Each component is described below.

Figure 3.3: The SparkFun Inventor’s Kit for RedBot

Mainboard

Mainboard is marked with P in Figure 3.3. It is a combination of a motor driver and

Arduino with many headers and connections. It is designed to be very versatile. The

headers and pins of the mainboard are depicted in Figure 3.4.

Motors and Wheels

The motors help the RedBot to travel around by turning the rubbery wheels. Motors are

marked with K and wheels are marked with L in Firgure 3.3.
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Figure 3.4: RedBot Mainboard

To drive the motors, there are two ways. One is to call function drive() (see Listing

3.1), and another is to call functions rightMotor() and leftMoter() separately (see Listing

3.2). Besides, function stop() and brake() are slightly different ways to stop the RedBot,

stop() stops the RedBot immediately, while brake() stops the RedBot gradually.

Listing 3.1: Code for Driving two Motors Together

# i n c l u d e <RedBot . h>

RedBotMotors motors ;

vo id s e t u p ( )

{

/ / Turn on l e f t and r i g h t moto rs a t f u l l speed f o r w a r d .

moto rs . d r i v e ( 2 5 5 ) ;
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d e l a y ( 2 0 0 0 ) ;

moto rs . s t o p ( ) ;

}

vo id loop ( ){}

Listing 3.2: Code for Driving two Motors Separately

# i n c l u d e <RedBot . h>

RedBotMotors motors ;

vo id s e t u p ( )

{

/ / Turn on r i g h t motor c l o c k w i s e , motorPower =150

motors . r i g h t M o t o r ( 1 5 0 ) ;

/ / Turn on l e f t motor c o u n t e r c l o c k w i s e , motorPower =150

motors . l e f t M o t o r (−150) ;

d e l a y ( 2 0 0 0 ) ;

moto rs . b r a k e ( ) ;

}

vo id loop ( ){}

Wheel Encoders

Wheel encoders are simple add-on sensors, they are marked with N and O in Figure 3.3.

It can detect the rotation number of each wheel. The wheel encoders in this kit use multi-

pole diametric ring magnets attached to the motor shaft. The ring magnets spin with the

motors and can be detected by the hall effect sensors. The encoder counts the number of

magnetic poles’ change. There are four counts for every one turn of the magnet, and one

turn of the wheel is equal to 48 turns of the motor, so the counts per revolution are 196.
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The wheel’s diameter is denoted as D, and the circumference of the wheel is equal to πD.

Hence the traveling distance of the RedBot can be calculated by

distance =
counts

countsPerRev
πD (3.1)

Code for getting the counts of the wheel encoders are shown in Listing 3.3.

Listing 3.3: Code for Getting Wheel Encoder’s Counts

# i n c l u d e <RedBot . h>

RedBotEncoder e n c o d e r = RedBotEncoder ( A2 , 1 0 ) ;

/ / v a r i a b l e t o s t o r e t h e c o u n t s o f l e f t e n c o d e r

long lCo un t = 0 ;

/ / v a r i a b l e t o s t o r e t h e c o u n t s o f r i g h t e n c o d e r

long rCount = 0 ;

vo id loop ( )

{

lC oun t = e n c o d e r . g e t T i c k s ( LEFT ) ;

rCoun t = e n c o d e r . g e t T i c k s (RIGHT ) ;

}

The function called travelDistance() returns the traveling distance of the RedBot. The

function called driveStraight() uses the wheel encoders to drive a certain distance in a

straight line, and the function called turn() employs the encoders to help the RedBot turn

a 90 degree angle. The full code written for employing the wheel encoders can be found

in Appendix A.1.

Line Follower

Line follower is marked with Q in Figure 3.3. It is infrared reflectance (IR) sensors to

detect the surface below the RedBot. The way to get readings from the IR sensors is

shown in Listing 3.4, and the full code of line follower is in Appendix A.2.
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Listing 3.4: Code for Getting Readings from IR Sensor

# i n c l u d e <RedBot . h>

RedBotSensor IRSensor1 = RedBotSensor ( A3 ) ;

vo id s e t u p ( )

{

S e r i a l . b e g i n ( 9 6 0 0 ) ;

}

vo id loop ( )

{

S e r i a l . p r i n t ( ” IR S en so r Read ings : ” ) ;

S e r i a l . p r i n t l n ( IRSensor1 . r e a d ( ) ) ;

d e l a y ( 1 0 0 ) ;

}

Mechanical Bumpers

Mechanical bumpers are switches that close a circuit when the whisker pushes against an

obstacle, as is marked with T and U in Figure 3.3. The code to avoid collision with the

help of bumpers are shown in Listing 3.5, and the full code is in Appendix A.3.

Listing 3.5: Code for Mechanical Bumpers

# i n c l u d e <RedBot . h>

RedBotMotors motors ;

RedBotBumper lBumper = RedBotBumper ( 3 ) ;

RedBotBumper rBumper = RedBotBumper ( 1 1 ) ;

i n t l B u m p e r S t a t e ;

i n t r B u m p e r S t a t e ;
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vo id s e t u p ( ){}

vo id loop ( )

{

motors . d r i v e ( 2 5 5 ) ;

/ / d e f a u l t INPUT s t a t e i s HIGH ,

/ / i t i s LOW when bumped

l B u m p e r S t a t e = lBumper . r e a d ( ) ;

r B u m p e r S t a t e = rBumper . r e a d ( ) ;

/ / l e f t s i d e i s bumped

i f ( l B u m p e r S t a t e == LOW)

{

r e v e r s e ( ) ; / / backs up

t u r n R i g h t ( ) ; / / t u r n s

}

/ / r i g h t s i d e i s bumped

i f ( r B u m p e r S t a t e == LOW)

{

r e v e r s e ( ) ; / / backs up

t u r n L e f t ( ) ; / / t u r n s

}

}

Accelerometer

Redbot uses MMA8452Q 3-axis accelerometer with 12 bits of resolution. It is marked

with R in Figure 3.3. It is a small add-on sensor. It can detect speed, tilt and bumps.

It uses I2C bus interface. The code to access the X, Y, and Z-axis acceleration and the

angles in X-Z, Y-Z, and X-Y planes is shown in Listing 3.6. The RedBot can perceive its



CHAPTER 3. DESIGN AND IMPLEMENTATION 39

motion accordingly.

Listing 3.6: Code for Accelerometer

# i n c l u d e <RedBot . h>

RedBotMotors motors ;

RedBotAccel a c c e l e r o m e t e r ;

i n t xAccel , yAccel , zAcce l ;

f l o a t XZ, YZ, XY;

vo id s e t u p ( vo id ){}

vo id loop ( vo id )

{ / / u p d a t e s t h e x , y , and z−a x i s r e a d i n g s

a c c e l e r o m e t e r . r e a d ( ) ;

/ / g e t t h e X, Y, and Z−a x i s a c c e l e r a t i o n

xAccel = a c c e l e r o m e t e r . x ;

yAccel = a c c e l e r o m e t e r . y ;

zAcce l = a c c e l e r o m e t e r . z ;

/ / t h e r e l a t i v e a n g l e between t h e X−Z , Y−Z , and X−Y

XZ = a c c e l e r o m e t e r . angleXZ ;

YZ = a c c e l e r o m e t e r . angleYZ ;

XY = a c c e l e r o m e t e r . angleXY ;

}

Buzzer

Buzzer is used to make some sounds, and it is marked with S in Figure 3.3. The code to

set the buzzer’s tone and play time is shown in Listing 3.7.

Listing 3.7: Code for Buzzer
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# i n c l u d e <RedBot . h>

c o n s t i n t b u z z e r P i n = 9 ;

vo id s e t u p ( )

{

/ / c o n f i g u r e s t h e b u z z e r P i n as an OUTPUT

pinMode ( b u z z e r P i n , OUTPUT ) ;

}

vo id loop ( )

{

/ / P l ay a 1kHz t o n e on t h e p i n number h e l d i n

/ / t h e v a r i a b l e ” b u z z e r P i n ” .

t o n e ( b u z z e r P i n , 1 0 0 0 ) ;

d e l a y ( 1 2 5 ) ; / / Wait f o r 125ms .

noTone ( b u z z e r P i n ) ; / / S top p l a y i n g t h e t o n e .

}

3.2.2 LIDAR Sensor

(a) Lidar Lite V3 (b) Interface Pins

Figure 3.5: Lidar Lite V3 and Interfaces
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Lidar sensor used in this thesis is the Lidar Lite V3 (see Figure 3.5a). It is mounted

on a servo, which is described in subsection 3.2.3. By spinning the lidar sensor, together

with the ROS and SLAM algorithm, a 2D distance map can be created. As is shown in

Figure 3.5b, it has six wires. A microcontroller can communicate with it over I2C. It can

also use a pulse-width modulated (PWM) signal to denote measured distances. The code

to access measured distances is shown in Listing 3.8.

Listing 3.8: Code for Lidar Lite

# i n c l u d e <Wire . h>

# i n c l u d e <LIDARLite . h>

/ / G l o b a l s

LIDARLite l i d a r L i t e ;

i n t c a l c n t = 0 ;

vo id s e t u p ( )

{

/ / S e t c o n f i g u r a t i o n t o d e f a u l t and I2C t o 400 kHz

l i d a r L i t e . b e g i n ( 0 , t r u e ) ;

/ / b a s i c c o n f i g u r a t i o n

l i d a r L i t e . c o n f i g u r e ( 0 ) ;

}

vo id loop ( )

{

i n t d i s t ;

/ / At t h e b e g i n n i n g of e v e r y 100 r e a d i n g s ,

/ / t a k e a measurement wi th r e c e i v e r b i a s c o r r e c t i o n

i f ( c a l c n t == 0 ) {

/ / With b i a s c o r r e c t i o n
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d i s t = l i d a r L i t e . d i s t a n c e ( ) ;

} e l s e {

/ / Wi thou t b i a s c o r r e c t i o n

d i s t = l i d a r L i t e . d i s t a n c e ( f a l s e ) ;

}

/ / I n c r e m e n t r e a d i n g c o u n t e r

c a l c n t ++;

c a l c n t = c a l c n t % 100 ;

d e l a y ( 1 0 ) ;

}

3.2.3 Servomotor

In this thesis, servo MG995 made by TowerPro is used to spin the lidar sensor. According

to its specification, its operating speed is 0.2sec/60degree (4.8V), 0.16sec/60degree(6.0v).

But according to the actual measurement, it works at the speed of 0.01sec/degree when

driven by four AA batteries, and it can rotate between 2°and 160°. The code to control

the servo to rotate between 2°and 160°continuously, in step of 1°is shown in Listing 3.9.

Listing 3.9: Code for Servo

# i n c l u d e <Servo . h>

# i n c l u d e <Wire . h>

# i n c l u d e <LIDARLite . h>

Servo myservo ;

LIDARLite m y L i d a r L i t e ;

/ / v a r i a b l e t o s t o r e t h e s e r v o p o s i t i o n

i n t pos = 2 ;

f l o a t d i s t ;
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vo id s e t u p ( ) {

S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ;

/ / a t t a c h e s t h e s e r v o on p i n 9

myservo . a t t a c h ( 9 ) ;

m y L i d a r L i t e . b e g i n ( 0 , t r u e ) ;

}

vo id loop ( ) {

f o r ( pos = 2 ; pos <= 160 ; pos += 1) {

/ / t e l l s e r v o t o go t o p o s i t i o n i n v a r i a b l e ’ pos ’

myservo . w r i t e ( pos ) ;

d e l a y ( 1 0 ) ;

S e r i a l . p r i n t ( pos ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

S e r i a l . p r i n t l n ( m y L i d a r L i t e . d i s t a n c e ( ) ) ;

d e l a y ( 1 0 ) ; }

f o r ( pos = 160 ; pos >= 2 ; pos −= 1) {

myservo . w r i t e ( pos ) ;

d e l a y ( 1 0 ) ;

S e r i a l . p r i n t ( pos ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

S e r i a l . p r i n t l n ( m y L i d a r L i t e . d i s t a n c e ( ) ) ;

d e l a y ( 1 0 ) ; }

}
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3.2.4 XBee

The RedBot employs XBee Pro S1 RF modules (produced by Digi) to communicate wire-

lessly with its XBee header. In addition, one XBee RF module (see Figure 3.6) is used

along with another microcontroller Arduino Mega, and another one is connected to the

laptop.

Figure 3.6: Arduino Xbee Shield and RF module

The XBee modules are able to talk to each other with their default settings, using

Arduino serial commands. In this thesis, two Arduino boards with XBee modules com-

municate with a master XBee connected to the laptop running ROS, so each XBee needs

to be configured. The detailed configurations are described in section 3.3.

3.2.5 Microcontroller

Due to the limited GPIO capability of the microcontroller board on the RedBot, another

microcontroller, Arduino Mega 2569 is employed to control the servo, interface the lidar

and send lidar scan information back to the laptop running ROS via XBee. Besides Ar-

duino Mega’s GPIO capability, it has lager storage space than Arduino Uno (256kb flash
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memory), which is needed for large array of float type in the code. In addition, Arduino

boards can work as ROS nodes directly using the rosserial arduino package.

3.3 Zigbee Network

There are three XBee modules, which are denoted as XBee C0, XBee 1 and XBee 2

separately, to form the Zigbee network. XBee C0 represents the master XBee module

that is connected to the laptop, XBee 1 is the module used on RedBot to send back the

signal of obstacle detected at the vicinity to the ROS and receive the commands from

serial port, XBee 2 is the module used on Arduino Mega to send back the lidar scanning

data to the ROS.

Figure 3.7: Zigbee Network

In this thesis, XBee modules are configured with XCTU. Three XBee module need to

be in the same network and channel so that they can communicate. A module’s destination

address is detonated as DH and DL. When a module’s DH is zero and DL is less than

0xFFFF, data sent by this module can only received by the module whose MY parameter

is equal to DL. Both XBee 1 and 2 send data to XBee C0, and XBee C0 only needs to send

data to XBee 1, so to configure them to work under transparent mode, network parameter

ID to be 1331, channel parameter CH to be D, baud rate to be 57600 which is the highest

baud rate for XBee to work with ROS, addressing parameter DH to be 0, DL of XBee C0

to be 1 and DL of the other two to be 0. Self address parameter MY to be 0, 1 and 2 for
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XBeeC0,1and2,respectively.SinceeveryZigbeenetworkneedsacoordinatortoform

thenetworkinthefirstplace,IsetXBeeC0asthecoordinatorandXBee1and2asthe

enddevices.TheillustrationoftheZigbeenetworkisinFigure3.7.

3.4 ROSSoftware

AsisshowninFigure3.8,ROSsoftwareconsistsofseveralnodes,topics(communica-

tionchannels)andservices.Therearefourmainnodesgroup,lidarscannernode,XBee

node,tfnodeforcoordinateframestransformationandhectorslamnodegroup. The

implementationofeachnodeisdescribedbelow.

Figure3.8:ROSNodes’Graph

3.4.1 LidarScannerNode

Acquiringsourceofsensormsgs/LaserScantypedataisthefirststeptobuilda2D

mapwithhectorSLAM.AlidarscannernodeisbuiltwithLidarLiteV3,servoand

ArduinoMega2560.Tousetherosserialarduinopackage,theheaderfiles

#include<ros.h>

#include<sensormsgs/LaserScan.h>
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must be included. Then ROS node handle, laser scan message and Publisher scan pub

need to be defined:

r o s : : NodeHandle nh ;

s e n s o r m s g s : : Lase rScan scan ;

r o s : : P u b l i s h e r s c a n p u b ( ” scan ” , &scan ) ;

In setup(), besides the configurations of lidar sensor and servo, parameters of the lidar

scanner need to be defined. In loop(), the lidar scanner scans from 16°to 160°in a step of

16°, and spins back. The degree increment of 16°is chosen by the buffer size of Zigbee

module which can only store limited scan results. The code

scan . r a n g e s = r a n g e s ;

s c a n p u b . p u b l i s h (& scan ) ;

publishes the laser scan data to the topic \scan. The complete code for lidar scanner is in

Appendix B.1.

3.4.2 Zigbee Network

rosserial xbee package is provided by ROS to allow multi-point communication between

rosserial nodes with XBee modules. After configuring XBee modules as section 3.3 de-

scribes, ROS node xbee network.py needs to be launched. First launching roscore with

the command:

$ r o s c o r e

then opening a new terminal, and entering the following commands:

$ r o s r u n r o s s e r i a l x b e e x b e e n e t w o r k . py / dev / ttyUSB0 1 2

/dev/ttyUSB0 is the serial port that is connected to XBee C0. The launched node

xbee network.py builds the Zigbee network, and forward the data received to the rest

of the ROS.



CHAPTER 3. DESIGN AND IMPLEMENTATION 48

3.4.3 Hector SLAM

After entering the following command in a new terminal, we can subscribe to the rostopic

\scan and see the outcome of the scanning (see Figure 3.9).

$ r o s t o p i c echo scan

Figure 3.9: Sample Output of Lidar Scanner

hector slam metapackage includes three main packages:

• hector mapping: the SLAM node;

• hector geotiff : to save map and robot trajectory to geotiff images files;

• hector trajectory server: to save tf based trajectories.

hector slam employs hector mapping node for SLAM approach, which can work

only with sensor msgs/LaserScan data, i.e. without odometry. This node also can

estimate the platform’s 2D pose at laser scanner frame rate. The transformation between
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frames need to set correctly. The tf tree is: map → odom → base link → laser base.

According to the documentation of hector slam, the transformation between map and

odom frame is provided, and since odom frame is not used for RedBot, the transformation

between odom and base link can be set in the launch file with:

<l a u n c h>

<param name=” pub map odom t rans fo rm ” v a l u e =” t r u e ” />

<param name=” map frame ” v a l u e =”map” />

<param name=” b a s e f r a m e ” v a l u e =” b a s e f r a m e ” />

<param name=” odom frame ” v a l u e =” b a s e f r a m e ” />

< / l a u n c h>

The transformation between base link and laser base can be set with the static transform

publisher:

<l a u n c h>

<node pkg=” t f ” t y p e =” s t a t i c t r a n s f o r m p u b l i s h e r ”

name=” b a s e l a s e r b r o a d c a s t e r ”

a r g s =” 0 . 1 0 0 . 2 0 0 1 b a s e l i n k \ l a s e r l i t e v 3 100 ” />

< / l a u n c h>

To start the hector slam system, launch file mySLAM.launch need to be run:

r o s l a u n c h h e c t o r s l a m l a u n c h mySLAM. l a u n c h

This launch file starts the hector mapping, hector trajectory server and hector geotiff

nodes, as well as the rviz visualization tool. Three launch files used are attached in Ap-

pendix B.2, B.3 and B.4.
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3.4.4 Rviz Visualization

After starting the rviz visualization tool, the trajectory and the 2D map are updated and

shown on the screen simultaneously (see Figure 3.10).

Figure 3.10: Rviz Visualization Tool

3.5 Obstacle Detection and Avoidance with Remote Con-

trol

As is mentioned in wiki of navigation stack of ROS[63], the mobile platform should be

controlled by sending velocity commands in the form of: x, y and theta velocity, but

RedBot is controlled with motor power only. Due to this hardware limitation, navigation

function provided by ROS is not used, instead, the RedBot is controlled by sending remote

control commands via Zigbee network.

As is shown in the flowchart (Figure 3.11), the RedBot starts to drive forward straightly

at the default speed, and can be stopped at anytime. The obstacle detection is realized by
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thebumpersdescribedinsubsection3.2.1. Whenthebumperscollidewithsomeobsta-

cles,asignalistriggeredtobackupandstoptheRedBotbeforetheRedBotcollideswith

theobstacle,thenthesignalofobstacledetectedatthevicinityaresenttothelaptop.

Theuserdecidestoturnrightorleftwiththecurrently2DmapgeneratedbySLAMand

sendsthecommandstotheRedBot.Afterreceivingcommandsfromthelaptop,RedBot

turnsacertaindegreetotheleftorright,andkeepsdrivingforwarduntilanewobstacle

isdetectedora“stop”signalisreceived.Thecodeofobstacledetectionandavoidance

withremotecontrolisattachedinAppendixB.5.

Figure3.11:FlowChartofObstacleDetectionandRemoteControl
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Evaluation

In this chapter, the test scenarios that are set up for evaluating the functionalities of the

prototype, including obstacle detection and avoidance, localization and 2D mapping, as

well as the test results are described. The limitations of the prototype are discussed as

well.

4.1 Setup and Requirements of Prototype

The prototype built in this thesis is able to localize and build a 2D map using data from

lidar sensor. Besides, it can detect obstacles with a mechanical device and avoid colli-

sion with remote control commands wirelessly. The prototype consists of a Redbot as a

mobile platform, three Zigbee RF modules, a servo motor, a Lidar Lite V3 sensor, and

an Arduino mega board. It employs Hector SLAM metapackage in ROS to realize the

SLAM algorithm. Table 4.1 shows the requirements of the prototype and their test results,

all three requirements are achieved.
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Table 4.1: Requirements and Test Results

Requirement Test Result

RedBot can send lidar data to laptop with ROS wirelessly. PASSED

RedBot can be controlled with remote control commands via XBee. PASSED

ROS can output a usable 2D map of the test site with the lidar data. PASSED

4.2 Obstacle Detection and Avoidance

As is described in Section 3.5, the prototype can utilize bumpers to detect the obstacles in

the vicinity, and travel according to the remote control commands (see Table 4.2). Tests

of each command are conducted.

Table 4.2: Remote Control Commands and Corresponding Operations

Remote Control Commands Corresponding Operation

0 stop the RedBot

1 start the RedBot

2 turn right a certain degree and drive straightly

3 turn left a certain degree and drive straightly

7 obstacle detected

First the prototype was put on the ground, and powered on. After pushing the reset,

the description of the commands were shown in the serial port monitor, and 1 was entered

and sent to the Redbot to start the prototype (see Figure 4.2a). Next, Redbot started to

drive forward straightly for a while and it backed up and stopped when an obstacle was

detected by the bumpers. 7 was received in the serial monitor after that, and 2 was entered

and sent to control the Redbot to turn right and keep driving forward (see Figure 4.2b).

Redbot did not stop until another obstacle was detected, and another 7 was received. 3
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wassentandlettheRedbotturnleftandkeepdrivingforward(seeFigure4.2c).Finally,

0wassenttostoptheRedbot(seeFigure4.2d).

Figure4.1:DiagramofWhiskerBumper

Thesensitivityofthebumpersandtheproximityoftheobstaclecanbeadjustedby

changingtheanglebetweenthewhiskerandthescrewofthebumper(αinFigure4.1),

andbetweenthechipandtheRedbot(βinFigure4.1).Aftermeasurement,αissetto

3°andβissetto30°mechanicallytoleaveenoughresponsetimeforcollisionavoidance

whentheRedbottravelsunder1km/h.Obstaclescanbedetectedwhen7.5cmawayfrom

theRedbotunderthissetting.Thevalueofαandβshouldbedifferentwhentestingon

surfaceswithdifferentfrictioncoefficient.

Thetestsaboveverifythefunctionalityofobstacledetectionandavoidancewithre-

motecontrolcommands.

4.3 2DMapping

The2DmapbuiltbyHectorSLAMinROSisshowninFigure4.3a.Itrecoversthetest

site.TheblacklineinFigure4.3aistheboundaryofthetestsitewhichwasmadeupof

severalboxesindifferentsizes.Mostoftheedgesoftheboxescanbeseeninthe2Dmap.

Theleftboundaryismissingbecauseofthelimitedscanrangeoftheprototype(because
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(a) Start the RedBot (b) Turn Right When Obstacle Detected

(c) Turn Left When Obstacle Detected (d) Stop the RedBot

Figure 4.2: Tests on Remote Control Commands

the servo motor can only rotate from 2°to 160°).

The green line in Figure 4.3a is the trajectory of the prototype which proves the lo-

calization functionality of the system. Figure 4.3b indicates the moving direction of the

prototype. It started from point A to point C, and it was stopped in point C and turned

left. After it reached point B and detected the obstacle, it backed up and turned right a few

times until it adjusted to the correct direction to point C, it kept driving forward and went

back to C, turned right and was back to A. After that, it turned left and drove forward to

D, and repeated the same process as it detected obstacle in point B. Finally, it went back

to A and stopped.

Through test and the output map evaluates the localization and 2D mapping function-
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(a) 2D Map of Test Site with Trajectory (b) Trajectory Indication

Figure 4.3: 2D Map of Test Site

alities of the system, as well as the capability of obstacle detection and avoidance with

remote control commands, and all the requirements mentioned in Table 4.1 are reached.

4.4 Limitations

In the tests mentioned in the previous two sections, some limitations of the system are

found. First is the limited scan range causes many blind spots for the prototype. The

missing boundaries can only be mapped by more adjustment of the travel direction of the

prototype. Second is the unstable connection of I2C interface of Lidar Lite V3 causes

interruption of the system sometimes, and the system need to be reset manually. Third is

the low driving speed of the Redbot. As a result, it takes more time than typical SLAM

system to build a map of the same-size site. The driving speed is set to be low because of

two reasons. One is the limited storage space of XBee RF module, so only 20 points can

be sent in each scan. It decreases the mapping accuracy and can affect the correctness of

the localization. Making the Redbot to move slower can compensate for the accuracy loss

caused by the limited lidar points. Another reason is that the obstacle detection is realized
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by mechanical bumpers, if the prototype travels too fast, there will be no enough time for

it to stop before colliding with the obstacles. The third limitation is the prototype cannot

use autonomous navigation of ROS. It causes the complex adjustment process with remote

command, and the decisions of the travel direction made by users can be very arbitrary

and causes failure of localization and mapping. The last one is that the system can only

build 2D map, so the height of obstacles cannot be shown on the map.
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Conclusions

In this thesis, a low-cost prototype of an AV that is capable of building 2D map of its sur-

rounding with lidar sensor is presented. The prototype consists of Redbot, Lidar Lite V3, a

servo motor, an Arduino Mega board, three XBee RF modules and Hector SLAM pack-

age in ROS. The Redbot is the mobile platform to carry the lidar scanner. Lidar scan points

are sent back to a laptop running ROS, and hector mapping node in ROS converts the li-

dar data to a 2D map and realizes the localization functionality. hector trajectory server

node saves the trajectory of the prototype. The prototype cannot use the autonomous nav-

igation provided by ROS package due to the hardware limitation. Instead, mechanical

bumpers and remote control commands are used to control the prototype. The prototype

backs up and stops when the bumpers detect obstacles. A request is sent back to the lap-

top and a remote user sends back the appropriate commands via Zigbee network, then the

prototype acts accordingly.

In conclusion, obstacle detection and avoidance is realized by using mechanical bumpers

and remote control commands. Localization and 2D mapping functionality is verified in

the tests conducted, and boundary missing problem is caused by limited scan range of

lidar. But by adjusting the path of the prototype, usable 2D maps of the unknown envi-

ronment can be built, as a result, the requirement of building a prototype that is capable

of localization and 2D mapping simultaneously, and avoiding collision is achieved.
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5.1 Future Work

In the future, other low cost mobile platforms should be explored to work with ROS,

including the other SLAM and autonomous navigation packages. Lidar sensors like RPL-

IDAR should be employed to realize 360°high frequency scanning. BLE protocol can

be utilized to build the communication between the laptops running ROS and the mobile

platforms for its high data rate. 3D map can be built based on 2D map and lidar point

cloud. Further research on combining sensor fusion and computer vision should be done

for improving the AV’s perception of the surroundings.
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Appendix A

Code for Programming RedBot

A.1 Wheel Encoders

# i n c l u d e <RedBot . h>

RedBotMotors motors ;

RedBotEncoder e n c o d e r = RedBotEncoder ( A2 , 1 0 ) ;

i n t b u t t o n P i n = 1 2 ;

/ / 192 t i c k s p e r wheel r e v

i n t c o u n t s P e r R e v = 192 ;

/ / diam = 65mm / 2 5 . 4 mm/ i n

f l o a t wheelDiam = 2 . 5 6 ;

/ / Redbot wheel c i r c u m f e r e n c e = p i *D

f l o a t w h e e l C i r c = PI * wheelDiam ;

/ / t u r n 90 d e g r e e t o l e f t / r i g h t

i n t t u r n L e f t = 0 ;

i n t t u r n R i g h t = 1 ;

vo id s e t u p ( )
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{

pinMode ( b u t t o n P i n , INPUT PULLUP ) ;

S e r i a l . b e g i n ( 9 6 0 0 ) ;

}

vo id loop ( vo id )

{

/ / s e t t h e power f o r l e f t & r i g h t motors on b u t t o n p r e s s

i f ( d i g i t a l R e a d ( b u t t o n P i n ) == LOW)

{

d r i v e S t r a i g h t ( 1 2 , 1 5 0 ) ;

t r a v e l D i s t a n c e ( ) ;

t u r n ( t u r n R i g h t ) ;

d r i v e S t r a i g h t ( 1 2 , 1 5 0 ) ;

t r a v e l D i s t a n c e ( ) ;

t u r n ( t u r n L e f t ) ;

}

}

vo id t r a v e l D i s t a n c e ( )

{

l ong lCo u n t = 0 ;

long rCount = 0 ;

f l o a t lNumRev ;

f l o a t rNumRev ;

f l o a t d i s t a n c e ;

lC oun t = e n c o d e r . g e t T i c k s ( LEFT ) ;
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rCount = e n c o d e r . g e t T i c k s (RIGHT ) ;

lNumRev = ( f l o a t ) lCou n t / ( f l o a t ) c o u n t s P e r R e v ;

rNumRev = ( f l o a t ) rCoun t / ( f l o a t ) c o u n t s P e r R e v ;

d i s t a n c e = ( lNumRev + rNumRev ) / 2 * w h e e l C i r c ;

/ / p r i n t t h e r e s u l t

S e r i a l . p r i n t ( ” a l r e a d y drove ” ) ;

S e r i a l . p r i n t ( d i s t a n c e ) ;

S e r i a l . p r i n t l n ( ” i n c h e s s t r a i g h t l y ” ) ;

}

vo id d r i v e S t r a i g h t ( f l o a t d i s t a n c e , i n t motorPower )

{

l ong lCo u n t = 0 ;

long rCount = 0 ;

long t a r g e t C o u n t ;

f l o a t numRev ;

/ / v a r i a b l e s f o r t r a c k i n g t h e l e f t and r i g h t e n c o d e r c o u n t s

long p rev lCoun t , p r e v r C o u n t ;

/ / d i f f be tween c u r r e n t e n c o d e r c o u n t and p r e v i o u s c o u n t

long l D i f f , r D i f f ;

/ / v a r i a b l e s f o r s e t t i n g l e f t and r i g h t motor power

i n t l e f t P o w e r = motorPower ;

i n t r i g h t P o w e r = motorPower ;

/ / v a r i a b l e used t o o f f s e t motor power on r i g h t vs l e f t
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/ / t o keep s t r a i g h t .

/ / o f f s e t amount t o compensa te R i g h t vs . L e f t d r i v e

i n t o f f s e t = 5 ;

/ / c a l c u l a t e t h e t a r g e t # o f r o t a t i o n s

numRev = d i s t a n c e / w h e e l C i r c ;

/ / c a l c u l a t e t h e t a r g e t c o u n t

t a r g e t C o u n t = numRev * c o u n t s P e r R e v ;

/ / debug

S e r i a l . p r i n t ( ” d r i v e S t r a i g h t ( ) ” ) ;

S e r i a l . p r i n t ( d i s t a n c e ) ;

S e r i a l . p r i n t ( ” i n c h e s a t ” ) ;

S e r i a l . p r i n t ( motorPower ) ;

S e r i a l . p r i n t l n ( ” power . ” ) ;

S e r i a l . p r i n t ( ” T a r g e t : ” ) ;

S e r i a l . p r i n t ( numRev , 3 ) ;

S e r i a l . p r i n t l n ( ” r e v o l u t i o n s . ” ) ;

S e r i a l . p r i n t l n ( ) ;

/ / p r i n t o u t h e a d e r

S e r i a l . p r i n t ( ” L e f t \ t ” ) ; / / ” L e f t ” and t a b

S e r i a l . p r i n t ( ” R i g h t \ t ” ) ; / / ” R i g h t ” and t a b

S e r i a l . p r i n t l n ( ” T a r g e t c o u n t ” ) ;

S e r i a l . p r i n t l n ( ”============================” ) ;

e n c o d e r . c l e a r E n c (BOTH ) ; / / c l e a r t h e e n c o d e r c o u n t
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d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y b e f o r e s t a r t i n g t h e motor s .

moto rs . d r i v e ( motorPower ) ; / / s t a r t moto rs

w h i l e ( rCoun t < t a r g e t C o u n t )

{

/ / w h i l e t h e r i g h t e n c o d e r i s l e s s t h a n t h e t a r g e t c o u n t

/ / −− debug p r i n t

/ / t h e e n c o d e r v a l u e s and w a i t −− t h i s i s a h o l d i n g loop .

lC oun t = e n c o d e r . g e t T i c k s ( LEFT ) ;

rCoun t = e n c o d e r . g e t T i c k s (RIGHT ) ;

S e r i a l . p r i n t ( l Cou n t ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

S e r i a l . p r i n t ( rCoun t ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

S e r i a l . p r i n t l n ( t a r g e t C o u n t ) ;

moto rs . l e f t D r i v e ( l e f t P o w e r ) ;

moto rs . r i g h t D r i v e ( r i g h t P o w e r ) ;

/ / c a l c u l a t e t h e r o t a t i o n ” speed ” as a d i f f e r e n c e

/ / i n t h e c o u n t from p r e v i o u s c y c l e .

l D i f f = ( l Cou n t − p r e v l C o u n t ) ;

r D i f f = ( rCoun t − p r e v r C o u n t ) ;

/ / s t o r e t h e c u r r e n t c o u n t a s t h e ” p r e v i o u s ” c o u n t

/ / f o r t h e n e x t c y c l e .
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p r e v l C o u n t = lC oun t ;

p r e v r C o u n t = rCount ;

/ / i f l e f t i s f a s t e r t h a n t h e r i g h t ,

/ / s low down t h e l e f t / speed up r i g h t

i f ( l D i f f > r D i f f )

{

l e f t P o w e r = l e f t P o w e r − o f f s e t ;

r i g h t P o w e r = r i g h t P o w e r + o f f s e t ;

}

/ / i f r i g h t i s f a s t e r t h a n t h e l e f t ,

/ / speed up t h e l e f t / s low down r i g h t

e l s e i f ( l D i f f < r D i f f )

{

l e f t P o w e r = l e f t P o w e r + o f f s e t ;

r i g h t P o w e r = r i g h t P o w e r − o f f s e t ;

}

/ / s h o r t d e l a y t o g i v e motors a chance t o r e s p o n d .

d e l a y ( 5 0 ) ;

}

/ / now a p p l y ” b r a k e s ” t o s t o p t h e motors .

moto rs . b r a k e ( ) ;

}

vo id t u r n ( i n t d i r e c t )

{

l ong lCo u n t = 0 ;
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long rCount = 0 ;

long Count = 0 ;

long t a r g e t C o u n t ;

f l o a t numRev = 2 . 4 ;

/ / v a r i a b l e s f o r s e t t i n g l e f t and r i g h t motor power

i n t l e f t P o w e r = 0 ;

i n t r i g h t P o w e r = 0 ;

/ / c a l c u l a t e t h e t a r g e t c o u n t

t a r g e t C o u n t = numRev * c o u n t s P e r R e v ;

/ / debug

/ / p r i n t o u t h e a d e r

S e r i a l . p r i n t ( ” L e f t \ t ” ) ;

S e r i a l . p r i n t ( ” R i g h t \ t ” ) ;

S e r i a l . p r i n t ( ” T a r g e t c o u n t \ t ” ) ;

S e r i a l . p r i n t l n ( ” D i r e c t i o n ” ) ;

S e r i a l . p r i n t l n ( ”============================” ) ;

/ / c l e a r t h e e n c o d e r c o u n t

e n c o d e r . c l e a r E n c (BOTH ) ;

/ / s h o r t d e l a y b e f o r e s t a r t i n g t h e motors .

d e l a y ( 1 0 0 ) ;

i f ( d i r e c t == t u r n R i g h t )

{

l e f t P o w e r = 200 ;



APPENDIX A. CODE FOR PROGRAMMING REDBOT A-8

r i g h t P o w e r = 8 0 ;

}

e l s e

{

l e f t P o w e r = 8 0 ;

r i g h t P o w e r = 200 ;

}

w h i l e ( Count < t a r g e t C o u n t )

{

i f ( d i r e c t == t u r n L e f t )

Count = e n c o d e r . g e t T i c k s (RIGHT ) ;

e l s e

Count = e n c o d e r . g e t T i c k s ( LEFT ) ;

lC oun t = e n c o d e r . g e t T i c k s ( LEFT ) ;

rCoun t = e n c o d e r . g e t T i c k s (RIGHT ) ;

S e r i a l . p r i n t ( l Cou n t ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

S e r i a l . p r i n t ( rCoun t ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

S e r i a l . p r i n t ( t a r g e t C o u n t ) ;

S e r i a l . p r i n t ( ”\ t ” ) ;

i f ( d i r e c t == t u r n L e f t )

S e r i a l . p r i n t l n ( ” t u r n l e f t ” ) ;

e l s e

S e r i a l . p r i n t l n ( ” t u r n r i g h t ” ) ;
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motors . l e f t D r i v e ( l e f t P o w e r ) ;

moto rs . r i g h t D r i v e ( r i g h t P o w e r ) ;

d e l a y ( 5 0 ) ;

}

motors . b r a k e ( ) ;

}

A.2 IR Sensor

# i n c l u d e <RedBot . h>

/ / i n i t i a l i z e a l e f t s e n s o r o b j e c t on A3

RedBotSensor l e f t = RedBotSensor ( A3 ) ;

/ / i n i t i a l i z e a c e n t e r s e n s o r o b j e c t on A6

RedBotSensor c e n t e r = RedBotSensor ( A6 ) ;

/ / i n i t i a l i z e a r i g h t s e n s o r o b j e c t on A7

RedBotSensor r i g h t = RedBotSensor ( A7 ) ;

/ / c o n s t a n t s t h a t a r e used i n t h e code . LINETHRESHOLD i s

/ / t h e l e v e l t o d e t e c t i f t h e s e n s o r i s on t h e l i n e o r n o t .

/ / I f t h e s e n s o r v a l u e i s g r e a t e r t h a n t h i s

/ / t h e s e n s o r i s above a DARK l i n e .

/ /

/ / SPEED s e t s t h e nomina l speed

# d e f i n e LINETHRESHOLD 800

/ / s e t s t h e nomina l speed . S e t t o any number from 0 − 2 5 5 .
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# d e f i n e SPEED 60

RedBotMotors motors ;

i n t l e f t S p e e d ;

i n t r i g h t S p e e d ;

vo id s e t u p ( )

{

S e r i a l . b e g i n ( 9 6 0 0 ) ;

d e l a y ( 2 0 0 0 ) ;

S e r i a l . p r i n t l n ( ” IR S en so r Read ings : ” ) ;

d e l a y ( 5 0 0 ) ;

}

vo id loop ( )

{

S e r i a l . p r i n t ( l e f t . r e a d ( ) ) ;

S e r i a l . p r i n t ( ”\ t ” ) ; / / t a b c h a r a c t e r

S e r i a l . p r i n t ( c e n t e r . r e a d ( ) ) ;

S e r i a l . p r i n t ( ”\ t ” ) ; / / t a b c h a r a c t e r

S e r i a l . p r i n t ( r i g h t . r e a d ( ) ) ;

S e r i a l . p r i n t l n ( ) ;

/ / i f on t h e l i n e d r i v e l e f t and r i g h t a t t h e same speed

/ / ( l e f t i s CCW / r i g h t i s CW)

i f ( c e n t e r . r e a d ( ) > LINETHRESHOLD)

{
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l e f t S p e e d = −SPEED ;

r i g h t S p e e d = SPEED ;

}

/ / i f t h e l i n e i s unde r t h e r i g h t s e n s o r ,

/ / a d j u s t r e l a t i v e s p e e d s t o t u r n t o t h e r i g h t

e l s e i f ( r i g h t . r e a d ( ) > LINETHRESHOLD)

{

l e f t S p e e d = −(SPEED + 5 0 ) ;

r i g h t S p e e d = SPEED − 5 0 ;

}

/ / i f t h e l i n e i s unde r t h e l e f t s e n s o r ,

/ / a d j u s t r e l a t i v e s p e e d s t o t u r n t o t h e l e f t

e l s e i f ( l e f t . r e a d ( ) > LINETHRESHOLD)

{

l e f t S p e e d = −(SPEED − 5 0 ) ;

r i g h t S p e e d = SPEED + 5 0 ;

}

/ / i f a l l s e n s o r s a r e on b l a c k or up i n t h e a i r , s t o p t h e

/ / moto rs . o t h e r w i s e , run motors g i v e n t h e c o n t r o l s p e e d s

/ / above .

i f ( ( l e f t . r e a d ( ) > LINETHRESHOLD) &&\

( c e n t e r . r e a d ( ) > LINETHRESHOLD)\

&& ( r i g h t . r e a d ( ) > LINETHRESHOLD) )

{
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motors . s t o p ( ) ;

}

e l s e

{

motors . l e f t M o t o r ( l e f t S p e e d ) ;

moto rs . r i g h t M o t o r ( r i g h t S p e e d ) ;

}

/ / add a d e l a y t o d e c r e a s e s e n s i t i v i t y .

d e l a y ( 2 0 ) ;

}

A.3 Bumpers

# i n c l u d e <RedBot . h>

RedBotMotors motors ;

/ / i n i t i a l z e s bumper o b j e c t on p i n 3

RedBotBumper lBumper = RedBotBumper ( 3 ) ;

/ / i n i t i a l z e s bumper o b j e c t on p i n 11

RedBotBumper rBumper = RedBotBumper ( 1 1 ) ;

/ / v a r i a b l e t o s t o r e t h e b u t t o n Pin

i n t b u t t o n P i n = 1 2 ;

/ / s t a t e v a r i a b l e t o s t o r e t h e bumper v a l u e

i n t l B u m p e r S t a t e ;

/ / s t a t e v a r i a b l e t o s t o r e t h e bumper v a l u e

i n t r B u m p e r S t a t e ;
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vo id s e t u p ( )

{

/ / n o t h i n g h e r e .

}

vo id loop ( )

{

motors . d r i v e ( 2 5 5 ) ;

/ / d e f a u l t INPUT s t a t e i s HIGH ,

/ / i t i s LOW when bumped

l B u m p e r S t a t e = lBumper . r e a d ( ) ;

r B u m p e r S t a t e = rBumper . r e a d ( ) ;

/ / l e f t s i d e i s bumped /

i f ( l B u m p e r S t a t e == LOW)

{

r e v e r s e ( ) ; / / backs up

t u r n R i g h t ( ) ; / / t u r n s

}

/ / r i g h t s i d e i s bumped /

i f ( r B u m p e r S t a t e == LOW)

{

r e v e r s e ( ) ; / / backs up

t u r n L e f t ( ) ; / / t u r n s

}

}
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/ / r e v e r s e ( ) f u n c t i o n : backs up a t f u l l power

vo id r e v e r s e ( )

{

motors . d r i v e (−255) ;

d e l a y ( 5 0 0 ) ;

moto rs . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ;

}

/ / t u r n R i g h t ( ) f u n c t i o n : t u r n s RedBot t o t h e R i g h t

vo id t u r n R i g h t ( )

{

motors . l e f t M o t o r (−150) ; / / s p i n CCW

motors . r i g h t M o t o r (−150) ; / / s p i n CCW

d e l a y ( 5 0 0 ) ;

moto rs . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ;

}

/ / t u r n R i g h t ( ) f u n c t i o n : t u r n s RedBot t o t h e L e f t

vo id t u r n L e f t ( )

{

motors . l e f t M o t o r ( + 1 5 0 ) ; / / s p i n CW

motors . r i g h t M o t o r ( + 1 5 0 ) ; / / s p i n CW

d e l a y ( 5 0 0 ) ;

moto rs . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ;
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}



Appendix B

Code and File for ROS Nodes

B.1 Code for Lidar Scanner

/ / L i d a r + ROS P u b l i s h e r + s e r v o

# i n c l u d e <r o s . h>

# i n c l u d e <s e n s o r m s g s / Lase rScan . h>

# i n c l u d e <Wire . h>

# i n c l u d e <LIDARLite . h>

# i n c l u d e <Servo . h>

LIDARLite m y L i d a r L i t e ;

Servo myservo ;

c o n s t i n t d e g r e e i n c r e m e n t = 1 6 ; / / d e g r e e

c o n s t i n t m e a s u r e T i m e i n c r e m e n t = d e g r e e i n c r e m e n t * 1 0 ; / / ms

c o n s t i n t n u m r e a d i n g s = 160 / d e g r e e i n c r e m e n t ;

c o n s t d ou b l e p i = 3 . 1 4 1 5 9 2 ;

/ / v a r i a b l e t o s t o r e t h e s e r v o p o s i t i o n
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i n t pos = d e g r e e i n c r e m e n t ;

/ / ROS node h a n d l e

r o s : : NodeHandle nh ;

/ / ROS S e r i a l L a s e r s can message d e f i n i t i o n

s e n s o r m s g s : : Lase rScan scan ;

/ / d e f i n i t i o n o f t h e ROS p u b l i s h e r f o r t h e l a s e r s can d a t a

r o s : : P u b l i s h e r s c a n p u b ( ” scan ” , &scan ) ;

/ / Frame ID used i n t h e ROS t o p i c s

c h a r f r a m e i d [ ] = ” / l a s e r l i t e v 3 ” ;

f l o a t r a n g e s [ n u m r e a d i n g s ] ;

vo id s e t u p ( )

{

S e r i a l . b e g i n ( 5 7 6 0 0 ) ;

/ / S e t c o n f i g u r a t i o n t o d e f a u l t and I2C t o 400 kHz

m y L i d a r L i t e . b e g i n ( 0 , t r u e ) ;

/ / Change t h i s number t o t r y o u t a l t e r n a t e c o n f i g u r a t i o n s

m y L i d a r L i t e . c o n f i g u r e ( 0 ) ;

myservo . a t t a c h ( 9 ) ;

/ * ROS r e l a t e d * /

nh . i n i t N o d e ( ) ;

nh . a d v e r t i s e ( s c a n p u b ) ;

s can . a n g l e m i n = d e g r e e i n c r e m e n t * p i / 1 8 0 . 0 ; / / 2 d e g r e e

scan . ang le max = 160 .0* p i / 1 8 0 . 0 ; / / 160 d e g r e e

scan . a n g l e i n c r e m e n t = d e g r e e i n c r e m e n t * p i / 1 8 0 . 0 ;
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scan . t i m e i n c r e m e n t = m e a s u r e T i m e i n c r e m e n t / 1 0 0 0 . 0 ;

s can . s c a n t i m e = n u m r e a d i n g s * m e a s u r e T i m e i n c r e m e n t / 1 0 0 0 . 0 ;

s can . r a n g e m i n = 0 . 0 1 ;

s can . range max = 4 0 . 0 ;

s can . r a n g e s l e n g t h = n u m r e a d i n g s ;

}

vo id loop ( )

{

s can . h e a d e r . s tamp = nh . now ( ) ;

s can . h e a d e r . f r a m e i d = f r a m e i d ;

/ / goes from 16 d e g r e e s t o 160 d e g r e e s

/ / i n s t e p s o f 16 d e g r e e

f o r ( pos = d e g r e e i n c r e m e n t ; pos <= 160 ; pos += d e g r e e i n c r e m e n t )

{

myservo . w r i t e ( pos ) ;

d e l a y ( m e a s u r e T i m e i n c r e m e n t ) ;

r a n g e s [ pos / d e g r e e i n c r e m e n t −1] = m y L i d a r L i t e . d i s t a n c e ( ) / 1 0 0 . 0 ;

nh . sp inOnce ( ) ;

}

s can . r a n g e s = r a n g e s ;

s c a n p u b . p u b l i s h (& scan ) ;

nh . sp inOnce ( ) ;

/ / goes from 160 d e g r e e s t o 16 d e g r e e s
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/ / i n s t e p s o f 16 d e g r e e

f o r ( pos = 160 ; pos > 0 ; pos −= d e g r e e i n c r e m e n t )

{

myservo . w r i t e ( pos ) ;

d e l a y ( m e a s u r e T i m e i n c r e m e n t ) ;

r a n g e s [ pos / d e g r e e i n c r e m e n t −1] = m y L i d a r L i t e . d i s t a n c e ( ) / 1 0 0 . 0 ;

nh . sp inOnce ( ) ;

}

s can . r a n g e s = r a n g e s ;

s c a n p u b . p u b l i s h (& scan ) ;

nh . sp inOnce ( ) ;

}

B.2 Launch File of Hector SLAM

<? xml v e r s i o n =” 1 . 0 ” ?>

<l a u n c h>

<a r g name=” g e o t i f f m a p f i l e p a t h ” d e f a u l t =” $ ( f i n d

h e c t o r g e o t i f f ) / maps ” />

<param name=” / u s e s i m t i m e ” v a l u e =” f a l s e ” />

<node pkg=” r v i z ” t y p e =” r v i z ” name=” r v i z ”

a r g s =”−d $( f i n d h e c t o r s l a m l a u n c h ) / r v i z c f g /
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mapping demo . r v i z ” />

< i n c l u d e f i l e =” $ ( f i n d h e c t o r m a p p i n g ) / l a u n c h /

m a p p i n g d e f a u l t . l a u n c h ” />

< i n c l u d e f i l e =” $ ( f i n d h e c t o r g e o t i f f ) / l a u n c h /

g e o t i f f m a p p e r . l a u n c h ”>

<a r g name=” t r a j e c t o r y s o u r c e f r a m e n a m e ”

v a l u e =” s c a n m a t c h e r f r a m e ” />

<a r g name=” m a p f i l e p a t h ”

v a l u e =” $ ( a r g g e o t i f f m a p f i l e p a t h ) ” />

< / i n c l u d e>

< / l a u n c h>

B.3 Launch File of Hector Mapping

<? xml v e r s i o n =” 1 . 0 ” ?>

<l a u n c h>

<a r g name=” t f m a p s c a n m a t c h t r a n s f o r m f r a m e n a m e ”

d e f a u l t =” s c a n m a t c h e r f r a m e ” />

<a r g name=” b a s e f r a m e ” d e f a u l t =” b a s e l i n k ” />

<a r g name=” odom frame ” d e f a u l t =” nav ” />

<a r g name=” pub map odom t rans fo rm ” d e f a u l t =” t r u e ” />

<a r g name=” s c a n s u b s c r i b e r q u e u e s i z e ” d e f a u l t =” 5 ” />

<a r g name=” s c a n t o p i c ” d e f a u l t =” scan ” />
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<a r g name=” m a p s i z e ” d e f a u l t =” 2048 ” />

<node pkg=” h e c t o r m a p p i n g ” t y p e =” h e c t o r m a p p i n g ”

name=” h e c t o r m a p p i n g ” o u t p u t =” s c r e e n ”>

<!−− Frame names −−>

<param name=” map frame ” v a l u e =”map” />

<param name=” b a s e f r a m e ” v a l u e =” $ ( a r g b a s e f r a m e ) ” />

<param name=” odom frame ” v a l u e =” $( a r g b a s e f r a m e ) ” />

<!−− Tf use −−>

<param name=” u s e t f s c a n t r a n s f o r m a t i o n ” v a l u e =” t r u e ” />

<param name=” u s e t f p o s e s t a r t e s t i m a t e ” v a l u e =” f a l s e ” />

<param name=” pub map odom t rans fo rm ”

v a l u e =” $ ( a r g pub map odom t rans fo rm ) ” />

<!−− Map s i z e / s t a r t p o i n t −−>

<param name=” m a p r e s o l u t i o n ” v a l u e =” 0 .050 ” />

<param name=” m a p s i z e ” v a l u e =” $ ( a r g m a p s i z e ) ” />

<param name=” m a p s t a r t x ” v a l u e =” 0 . 5 ” />

<param name=” m a p s t a r t y ” v a l u e =” 0 . 5 ” />

<param name=” m a p m u l t i r e s l e v e l s ” v a l u e =” 2 ” />

<!−− Map u p d a t e p a r a m e t e r s −−>

<param name=” u p d a t e f a c t o r f r e e ” v a l u e =” 0 . 4 ” />

<param name=” u p d a t e f a c t o r o c c u p i e d ” v a l u e =” 0 . 9 ” />

<param name=” m a p u p d a t e d i s t a n c e t h r e s h ” v a l u e =” 0 . 4 ” />
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<param name=” m a p u p d a t e a n g l e t h r e s h ” v a l u e =” 0 . 0 6 ” />

<param name=” l a s e r z m i n v a l u e ” v a l u e = ”−1.0 ” />

<param name=” l a s e r z m a x v a l u e ” v a l u e = ” 1 . 0 ” />

<!−− A d v e r t i s i n g c o n f i g −−>

<param name=” a d v e r t i s e m a p s e r v i c e ” v a l u e =” t r u e ” />

<param name=” s c a n s u b s c r i b e r q u e u e s i z e ”

v a l u e =” $ ( a r g s c a n s u b s c r i b e r q u e u e s i z e ) ” />

<param name=” s c a n t o p i c ” v a l u e =” $ ( a r g s c a n t o p i c ) ” />

<!−− Debug p a r a m e t e r s −−>

<!−−

<param name=” o u t p u t t i m i n g ” v a l u e =” f a l s e ” />

<param name=” p u b d r a w i n g s ” v a l u e =” t r u e ” />

<param name=” p u b d e b u g o u t p u t ” v a l u e =” t r u e ” />

−−>

<param name=” t f m a p s c a n m a t c h t r a n s f o r m f r a m e n a m e ”

v a l u e =” $ ( a r g t f m a p s c a n m a t c h t r a n s f o r m f r a m e n a m e ) ” />

< / node>

<node pkg=” t f ” t y p e =” s t a t i c t r a n s f o r m p u b l i s h e r ”

name=” b a s e l a s e r b r o a d c a s t e r ”

a r g s =” 0 . 1 0 0 . 2 0 0 0 b a s e l i n k / l a s e r l i t e v 3 100 ” />

< / l a u n c h>
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B.4 Launch File of Hector Geotiff

<? xml v e r s i o n =” 1 . 0 ” ?>

<l a u n c h>

<a r g name=” t r a j e c t o r y s o u r c e f r a m e n a m e ”

d e f a u l t =” / b a s e l i n k ” />

<a r g name=” t r a j e c t o r y u p d a t e r a t e ”

d e f a u l t =” 4 ” />

<a r g name=” t r a j e c t o r y p u b l i s h r a t e ”

d e f a u l t =” 0 . 2 5 ” />

<a r g name=” m a p f i l e p a t h ”

d e f a u l t =” $ ( f i n d h e c t o r g e o t i f f ) / maps ” />

<a r g name=” m a p f i l e b a s e n a m e ”

d e f a u l t =” h e c t o r s l a m m a p ” />

<node pkg=” h e c t o r t r a j e c t o r y s e r v e r ”

t y p e =” h e c t o r t r a j e c t o r y s e r v e r ”

name=” h e c t o r t r a j e c t o r y s e r v e r ” o u t p u t =” s c r e e n ”>

<param name=” t a r g e t f r a m e n a m e ”

t y p e =” s t r i n g ” v a l u e =” / map” />

<param name=” s o u r c e f r a m e n a m e ” t y p e =” s t r i n g ”

v a l u e =” $ ( a r g t r a j e c t o r y s o u r c e f r a m e n a m e ) ” />

<param name=” t r a j e c t o r y u p d a t e r a t e ” t y p e =” d oub l e ”

v a l u e =” $ ( a r g t r a j e c t o r y u p d a t e r a t e ) ” />

<param name=” t r a j e c t o r y p u b l i s h r a t e ” t y p e =” d oub l e ”

v a l u e =” $ ( a r g t r a j e c t o r y p u b l i s h r a t e ) ” />

< / node>
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<node pkg=” h e c t o r g e o t i f f ” t y p e =” g e o t i f f n o d e ”

name=” h e c t o r g e o t i f f n o d e ” o u t p u t =” s c r e e n ”

launch−p r e f i x =” n i c e −n 15 ”>

<remap from=”map” t o =” / dynamic map ” />

<param name=” m a p f i l e p a t h ” t y p e =” s t r i n g ”

v a l u e =” $ ( a r g m a p f i l e p a t h ) ” />

<param name=” m a p f i l e b a s e n a m e ” t y p e =” s t r i n g ”

v a l u e =” $ ( a r g m a p f i l e b a s e n a m e ) ” />

<param name=” g e o t i f f s a v e p e r i o d ” t y p e =” do ub l e ”

v a l u e =” 0 ” />

<param name=” d r a w b a c k g r o u n d c h e c k e r b o a r d ”

t y p e =” boo l ” v a l u e =” t r u e ” />

<param name=” d r a w f r e e s p a c e g r i d ”

t y p e =” boo l ” v a l u e =” t r u e ” />

<param name=” p l u g i n s ” t y p e =” s t r i n g ”

v a l u e =” h e c t o r g e o t i f f p l u g i n s / T r a j e c t o r y M a p W r i t e r ” />

< / node>

< / l a u n c h>

B.5 Code for Obstacle Detection and Avoidance with Re-

mote Control

/ / code f o r c o l l i s i o n d e t e c t i o n and a v o i d a n c e wi th remote c o n t r o l

# i n c l u d e <RedBot . h>
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RedBotMotors motors ;

/ / v a r i a b l e f o r s e t t i n g t h e d r i v e power

i n t l e f t P o w e r ;

i n t r i g h t P o w e r ;

RedBotEncoder e n c o d e r = RedBotEncoder ( A2 , 1 0 ) ;

/ / i n i t i a l z e s bumper o b j e c t on p i n 3

RedBotBumper lBumper = RedBotBumper ( 3 ) ;

/ / i n i t i a l z e s bumper o b j e c t on p i n 11

RedBotBumper rBumper = RedBotBumper ( 1 1 ) ;

/ / s t a t e v a r i a b l e t o s t o r e t h e bumper v a l u e

i n t l B u m p e r S t a t e ;

/ / s t a t e v a r i a b l e t o s t o r e t h e bumper v a l u e

i n t r B u m p e r S t a t e ;

vo id s e t u p ( vo id )

{

S e r i a l . b e g i n ( 5 7 6 0 0 ) ;

S e r i a l . p r i n t l n ( ” E n t e r i n 1 t o s t a r t o r 0 t o s t o p \

and c l i c k [ Send ] . ” ) ;

S e r i a l . p r i n t ( ” I f 7 i s r e c e i v e d , t h e n e n t e r i n 2\

t o t u r n r i g h t and 3 t o t u r n l e f t ” ) ;

S e r i a l . p r i n t l n ( ) ;

}

vo id loop ( vo id )

{
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i f ( S e r i a l . a v a i l a b l e ( ) > 0)

{

s w i t c h ( S e r i a l . p a r s e I n t ( ) )

{

/ / s t a r t t h e RedBot

c a s e 1 :

{

d r i v e S t r a i g h t ( 6 0 ) ;

}

/ / t u r n r i g h t

c a s e 2 :

{

t u r n R i g h t ( ) ;

d r i v e S t r a i g h t ( 6 0 ) ;

b r e a k ;

}

/ / t u r n l e f t

c a s e 3 :

{

t u r n L e f t ( ) ;

d r i v e S t r a i g h t ( 6 0 ) ;

b r e a k ;

}

/ / s t o p t h e RedBot

d e f a u l t :



APPENDIX B. CODE AND FILE FOR ROS NODES B-12

{

motors . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y t o l e t r o b o t f u l l y s t o p

b r e a k ;

}

}

}

}

vo id d r i v e S t r a i g h t ( i n t motorPower )

{

l ong lCo un t = 0 ;

long rCount = 0 ;

f l o a t numRev ;

/ / v a r i a b l e s f o r t r a c k i n g t h e l e f t and r i g h t e n c o d e r c o u n t s

long p rev lCoun t , p r e v r C o u n t ;

/ / d i f f be tween c u r r e n t e n c o d e r c o u n t and p r e v i o u s c o u n t

long l D i f f , r D i f f ;

/ / v a r i a b l e s f o r s e t t i n g l e f t and r i g h t motor power

i n t l e f t P o w e r = motorPower ;

i n t r i g h t P o w e r = motorPower ;

/ / v a r i a b l e used t o o f f s e t motor power on r i g h t vs l e f t

/ / t o keep s t r a i g h t .

/ / o f f s e t amount t o compensa te R i g h t vs . L e f t d r i v e
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i n t o f f s e t = 5 ;

e n c o d e r . c l e a r E n c (BOTH ) ; / / c l e a r t h e e n c o d e r c o u n t

d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y b e f o r e s t a r t i n g t h e motor s .

moto rs . d r i v e ( motorPower ) ; / / s t a r t moto rs

/ / d e f a u l t INPUT s t a t e i s HIGH , i t i s LOW when bumped

l B u m p e r S t a t e = lBumper . r e a d ( ) ;

/ / d e f a u l t INPUT s t a t e i s HIGH , i t i s LOW when bumped

r B u m p e r S t a t e = rBumper . r e a d ( ) ;

/ / c o l l i s i o n d e t e c t e d

w h i l e ( ( l B u m p e r S t a t e == HIGH) && ( r B u m p e r S t a t e == HIGH ) )

{

/ / check i f ” s t o p ” command i s r e c e i v e d

i f ( S e r i a l . a v a i l a b l e ( ) > 0)

{

/ / i f ” s t o p ” i s r e c e i v e d , s t o p t h e RedBot

i f ( S e r i a l . p a r s e I n t ( ) == 0)

{

motors . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y t o l e t r o b o t f u l l y s t o p

b r e a k ;

}

}

lC oun t = e n c o d e r . g e t T i c k s ( LEFT ) ;

rCoun t = e n c o d e r . g e t T i c k s (RIGHT ) ;



APPENDIX B. CODE AND FILE FOR ROS NODES B-14

motors . l e f t D r i v e ( l e f t P o w e r ) ;

moto rs . r i g h t D r i v e ( r i g h t P o w e r ) ;

/ / c a l c u l a t e t h e r o t a t i o n ” speed ” as a d i f f e r e n c e

/ / i n t h e c o u n t from p r e v i o u s c y c l e .

l D i f f = ( l Cou n t − p r e v l C o u n t ) ;

r D i f f = ( rCoun t − p r e v r C o u n t ) ;

/ / s t o r e t h e c u r r e n t c o u n t a s t h e ” p r e v i o u s ” c o u n t

/ / f o r t h e n e x t c y c l e .

p r e v l C o u n t = lC oun t ;

p r e v r C o u n t = rCount ;

/ / i f l e f t i s f a s t e r t h a n t h e r i g h t , s low down t h e l e f t

/ / and speed up r i g h t

i f ( l D i f f > r D i f f )

{

l e f t P o w e r = l e f t P o w e r − o f f s e t ;

r i g h t P o w e r = r i g h t P o w e r + o f f s e t ;

}

/ / i f r i g h t i s f a s t e r t h a n t h e l e f t , speed up t h e l e f t

/ / and slow down r i g h t

e l s e i f ( l D i f f < r D i f f )

{

l e f t P o w e r = l e f t P o w e r + o f f s e t ;

r i g h t P o w e r = r i g h t P o w e r − o f f s e t ;
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}

/ / s h o r t d e l a y t o g i v e motors a chance t o r e s p o n d .

d e l a y ( 5 0 ) ;

/ / u p d a t e t h e bumper s t a t e

l B u m p e r S t a t e = lBumper . r e a d ( ) ;

r B u m p e r S t a t e = rBumper . r e a d ( ) ;

d e l a y ( 5 0 ) ;

}

/ / c o l l i s i o n d e t e c t e d

/ / back up and s t o p

r e v e r s e ( ) ;

/ / send r e q u s e t back

S e r i a l . p r i n t ( 7 ) ;

}

/ / r e v e r s e ( ) f u n c t i o n −− backs up a t f u l l power

vo id r e v e r s e ( )

{

motors . d r i v e (−60) ;

d e l a y ( 5 0 0 ) ;

moto rs . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y t o l e t r o b o t f u l l y s t o p

}

/ / t u r n R i g h t ( ) f u n c t i o n −− t u r n s RedBot t o t h e R i g h t

vo id t u r n R i g h t ( )

{
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motors . l e f t M o t o r (−100) ; / / s p i n CCW

motors . r i g h t M o t o r (−100) ; / / s p i n CCW

d e l a y ( 5 0 0 ) ;

moto rs . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y t o l e t r o b o t f u l l y s t o p

}

/ / t u r n R i g h t ( ) f u n c t i o n −− t u r n s RedBot t o t h e L e f t

vo id t u r n L e f t ( )

{

motors . l e f t M o t o r ( + 1 0 0 ) ; / / s p i n CW

motors . r i g h t M o t o r ( + 1 0 0 ) ; / / s p i n CW

d e l a y ( 5 0 0 ) ;

moto rs . b r a k e ( ) ;

d e l a y ( 1 0 0 ) ; / / s h o r t d e l a y t o l e t r o b o t f u l l y s t o p

}


