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Inter-protein co-evolution analysis can reveal in/direct functional or physical 

protein interactions. Inter-protein co-evolutionary analysis compares the correlation 

of evolutionary changes between residues on aligned orthologous sequences. On 

the other hand, modern methods used in experimental cell biological research to 

screen for protein-protein interaction, often based on mass spectrometry, often lead 

to identification of large amount of possible interacting proteins. If automatized, 

inter-protein co-evolution analysis can serve as a valuable step in refining the 

results, typically containing hundreds of hits, for further experiments. Manual 

retrieval of tens of orthologous sequences, alignment and phylogenetic tree 

preparations of such amounts of data is insufficient. The aim of this thesis is to 

create an assembly of scripts that automatize high-throughput inter-protein co-

evolution analysis.  

Scripts were written in Python language. Scripts are using API client interface to 

access online databases with sequences of input protein identifiers. Through 

matched identifiers, over 85 representative orthologous sequences from vertebrate 

species are retrieved from OrthoDB orthologues database. Scripts align these 

sequences with PRANK MSA algorithm and create corresponding phylogenetic 

tree. All protein pairs are structured for multicore computation with CAPS 

programme on CSC supercomputer. Multiple CAPS outputs are abstracted into 

comprehensive form for comparison of relative co-adaptive co-evolution between 

proposed protein pairs. 

In this work, I have developed automatization for a protein-interactome screen 

done by proximity labelling of B cell receptor and plasma membrane associated 

proteins under activating or non-activating conditions. Applying high-throughput 

co-evolutionary analysis to this data provides a completely new approach to 

identify new players in B cell activation, critical for autoimmunity, hypo-immunity 

or cancer. Results showed unsatisfying performance of CAPS, explanation and 

alternatives were given. 

KEYWORDS: inter-protein, co-evolution, interaction, high-throughput, B cell 

activation 
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1 Introduction 

1.1 B cell activation 

Through evolution multicellular organisms had to create protection against invading 

microorganisms  by developing specialised immune cells. The oldest immune system is the 

innate immune system in the form of macrophages that swallow invading bacterial pathogens 

and natural killer cells that destroy virally infected own cells (Janeway, 2001). 

Innate immune system reacts immediately, but may be insufficient. Improved effectivity of 

immune system against recurring pathogens was achieved through adaptive immune system 

which works hand in hand with innate immunity. Adaptive immunity appeared at around 500 

million years ago in vertebrate animals. From this point on in evolution cells of innate system 

such as macrophages swallow pathogens and present antigens (hence antigen presenting 

cells) to cells found in special secondary lymphoid organs (Batista, 2009, Figure 1A). These 

cells are called B and T cells, some of which poses unique cognate antigen receptors (Flajnik, 

2010). B cells with matching receptors are activated and undergo clonal expansion into 

memory and antibody producing plasma B cells, adapted to specific antigen carrying 

pathogen. Upon binding, antibodies can either activate macrophages or directly incapacitate 

the pathogenic process depending on the type of the antigen and antibody (Borghesi, 2006, 

Figure 1B). 
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Figure 1. Presentation of the importance of B cell activation. (A) The location of B cells in 

lymph nodes (violet)1 with (B) magnification where antigen presenting cells (APC) present 

the antigen to cognate few B cells that are expanded to memory B cells and antibody 

releasing B cells to fight the antigen carrying bacteria. 2 (C) magnification of APC-B cell 

interface; BCR relocation to lipid rafts after engagement with antigen, signalosome 

formation that leads to above B cell differentiation. (C) adapted from (Slupsky, 2015).  

1
https://visualsonline.cancer.gov/retrieve.cfm?imageid=3237&dpi=300&fileformat=jpg 

2
https://upload.wikimedia.org/wikipedia/commons/6/60/Germinal_center.svg 

 
 

B cell activation is a crucial and finely tuned process in this sequence of events. B cell 

receptors (BCR, membrane bound immunoglobulin) are residing in plasma membrane (PM). 

Plasma membrane is composed of subdomains of distinct compositions and characteristics. 

Thicker, less fluid subdomain enriched with glycosphingolipids, saturated long fatty acid 

phospholipids and cholesterol and long transmembrane region proteins are called lipid rafts. 

IgM type BCR upon binding of antigen transition from non-raft into raft PM subdomains, 

where they aggregate into clusters and transduce the signal into cell interior via BCR 
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intracellular α/β subunits. BCR clustering activates the Src family kinases Lyn, Syk and Btk 

tyrosine kinases. ‘Signalosome’ is formed composed of the BCR, tyrosine kinases, adaptor 

proteins CD19 and BLNK, and signalling enzymes PLCγ2, PI3K, and Vav. Membrane 

phospholipid phosphoinositide (4,5)P2 (PIP2) serves as a docking place for cortical actin 

adapter proteins. PLCγ2 cuts PIP2 into inositol 1,4,5-trisphosphate (IP3), which opens 

intracellular calcium storages and diacylglycerol which activates protein kinase C (Figure 1C). 

Overall, BCR signalosome activates multiple signalling cascades that involve kinases, GTPases, 

and transcription factors which affect cell metabolism, gene expression, and cytoskeletal 

reorganization (Dal Porto, 2004) 

When B cell activation is abnormally upregulated it can lead to increased propagation of B 

cells expressed in several types of cancer: non/Hodgkin, follicular, lymphocytic , Burkitt’s, or 

diffuse large B-cell lymphomas. It can also lead to autoimmune diseases:  multiple sclerosis, 

rheumatoid arthritis and systemic lupus erythematosus. When B cells are underactivatable it 

can lead to immune deficiencies, type 2 diabetes and periodontal disease (Carter, 2006).  

Understanding B cell activation through identification of the involved proteins and their 

interactions in pathways is therefore crucial in fighting these diseases. 

 

1.2 Identification of new protein involved in B cell activation  

One approach of identifying involved proteins is by mass spectrometry. Mass spectrometry is 

a technique for measuring the relative charge and mass of charged particles, in this case 

proteins. Proteins are purified from lysed cells and digested by proteases into short peptides. 

Peptides are transformed into gas phase and charged through ionisation by lasers or electro 

spraying. Charged peptides are accelerated through nonlinear electric or magnetic field 

toward detector. Detector detects the time of flight of the peptides, where smaller peptides 

are faster (Wysocki, 2005).  The output is spectra specific to peptide sequence fingerprints 

found in databases from which peptides can be identified. In case of tandem mass 

spectrometry each peptide is further fragmented into an array of sub-peptides which are also 

analysed. From the array of sub-peptide spectra it is easier to directly determine the amino 

acid sequence of a peptide. Proteins are identified through statistically significant presence of 

their characteristic peptides in the acquired data.  
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Human B cells contain tens of thousands of proteins in different compartments performing 

their own functions. Only small subset of these proteins is involved in B cell activation. It is 

desirable to narrow down the array of proteins fed to MS as closest as possible to the B cell 

activation subset. Isolating - pulling down of only a narrow subset of proteins is possible via 

proximity labelling of proteins. Example of proximity labelling is usage of ascorbate 

peroxidase (APEX) bound to compartment of interest via lipid tails of compartment 

characteristic protein. In presence of hydrogen peroxide, APEX converts biotin phenol into 

reactive radicals that react and bind to proteins within a radius of 50 nm in about a minute, 

which allows not only spatial, but also temporally controlled biotinylation of proteins near 

APEX (Rhee, 2013). Biotinylated proteins can be selectively pulled down from cell lysate by 

binding to streptavidin coated magnetic beads. The biotin-streptavidin bound proteins are 

then washed of by higher ionic strength solution and further purified by gel electrophoresis. 

Purified protein sample from gel electrophoresis is then processed for MS. One can target 

APEX to raft or nonraft membrane compartments by adding myristoyl-palmitoyl-palmitoyl or 

just myristoyl lipidation sequence (respectively) to APEX sequence. Myristoyl fatty acid chain 

is shorter than palymitoyl chain which predominantly resides in thicker lipid raft regions of 

plasma membrane, into which IgM BCR shift upon B cell activation. Since also temporal 

control of APEX reactions is possible one can study the transition of proteins between non-

raft and raft regions in the course of B cell activation.  
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Figure 2. The pipeline of proximity based labelling and protein identification. (A) Specific cell 

compartment targeting APEX in the presence of hydrogen peroxide converts biotin phenol into 

biotin phenol radicals that react and label nearby proteins. (B) Biotinylated proteins are pulled 

down and washed from cell lysate with streptavidin coated magnetic beads. (C) Biotinylated 

proteins are processed for and analysed with protein mass  spectrometry5 (D) Finally the proteins 

are identified in databases based on MS peptide sequences. Adapted from (He(Heap, 2017). 

 

1.3 Implied functional relationship of activation proteins through co-evolution 

analysis 

By identification of proteins close to compartments where B cell activation occurs one cannot 

yet truly confirm their true involvement in the process of B cell activation or what kind of 

interaction with other known B cell activation proteins they might have. 

To further refine the results of MS and find more exact roles of all identified proteins one can 

employ different biochemical techniques to identify more stable interactions. Other way is to 

use different fluorescent microscopy techniques, including FRET where 10 nm range inter-

protein proximity is detected. However, microscopic techniques, especially FRET, are typically 
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highly laborious and cannot be applied to very many MS hits. Thus, further narrowing down of 

the MS hits is required, and is currently often done subjectively based on other existing data 

or literature. An unbiased refinement to objectively narrow down the list of hits to most 

potential new players would be essential and would critically facilitate new interesting 

findings and research lines.  

With the advent of increasing computer capabilities and ever larger biological sequence 

databases there is also a greater array of bioinformatics tools that can be much faster and 

cheaper in comparison to conventional wet-lab methods. Among these tools is inter-protein 

co-evolution analysis, which can inform us about directly physically or at least indirectly 

functionally interacting proteins. The following section (2 Background) presents the 

theoretical background of protein co-evolution analysis. 

 

1.4 Aim of the thesis 

The aim of this thesis is to create a script or assembly of scripts that will: 

- automatize and scale up the retrieval of orthologous sequences for hundreds of proteins 

identified from mass spectrometry or elsewhere 

- create multiple sequence alignments and phylogenetic tree presentations for the retrieved 

orthologues of each protein 

- Prepare these as input files for multicore parallel run of CAPS – coevolution analysis 

programme on supercomputer 

- combine CAPS multiple output files into comprehensible readout of adaptive co-evolution 

Together, the generated toolbox is aimed to significantly facilitate the narrowing down the 

lists of potential interesting proteins in a given high-throughput approach to only those 

proteins that show co-evolution and, thus, are more likely to function together in a given 

cellular pathway.  
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2 Background 

2.1 Co-evolution 

Co-evolution is an inseparable phenomenon to the evolution of species through selective 

environmental pressure.  Part of environment are other species. When two or more species 

form interacting dynamic ecological relationship, a change in one species demands adaptive 

evolutionary response from interacting species. Although the term co-evolution was first used 

by Ehrlich and Raven in 1964 (Ehrlich, 1969), actually already Darwin, the father of theory of 

evolution, presented this idea of mutually influencing species in 1862 with an example of 

orchid blossoms and the corresponding lengths of the tongues of their insect pollinators 

(Darwin, 1862). Other more general examples of closely interacting pairs of species are 

predator and prey, symbionts, parasite-host etc.  

In 20th century also the biochemical basis of evolution became evident with the discovery of 

deoxyribonucleic acid (DNA) as a carrier of inheritable adaptive change through generations 

(Watson, 1953). Practically every known non-viral organism contains DNA. DNA is coding 

thousands of proteins - molecular machinery that performs a vast array of functions in each 

cell forming an organism (Crick, 1958).  

 

2.2 Protein co-evolution 

Most proteins interact with other proteins to achieve higher functions (De Las Rivas, 2010). As 

there is co-evolution of closely interacting species one can naturally expect some form of co-

evolution in closely interacting proteins, from which lastly organisms and species arise.One 

can further define co-evolution as similarity in evolutionary histories measurable by similarity 

of phylogenetic trees and introduce a term co-adaptation as a co-evolutionary influence of 

one protein on another’s evolutionary history (Pazos, 2008). Co-adaptation requires and is 

therefore informing us of a close relationship between proteins. Besides co-adaptation the 

other major source of protein co-evolution is phylogenetic coevolution. 

If one wants to reveal inter-protein interactions, the phylogenetic co-evolution of proteins 

needs to be separated from co-adaptive co-evolution (Pazos, 2013). 

Protein co-evolution can be measured on several levels. Proteins are a few tens to few 

thousands long sequences of amino acids, where each site can be composed of 20 different 
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amino acids (Brocchieri, 2005). Each amino acid is coded by a codon, a sequence of 3 amino 

acids, composed of 4 possible different amino acids (Crick, 1958, Nirenberg, 1961). Each of 20 

different amino acids contains distinct side chains that give them characteristic polarity, 

hydrophobicity and size which affect the interaction between amino acids in a protein chain, 

forming a distinct folding and final shape and function of the protein. A change or a mutation 

in the composition of the amino acids can have varying effects on the shape and functionality 

of a protein depending on the similarity of the replaced amino acid and the position of the 

change (King, 2013).  

When for example positively charged amino acid is replaced by negatively charged amino 

acid, it will repel nearby negatively charged amino acids that may be in the same protein or in 

the interacting protein. Such a change can be compensated, if the interacting amino acids in 

turn also mutate to opposing charges, this is a case of co-adaptation (Gobel, 1994, Mateu, 

1999, Shim Choi, 2005).  

Co-adaptive correlated change can be detected in multiple sequence alignment (MSA) (Pazos, 

2008). MSA is as its name implies an alignment of three or more evolutionary related 

sequences, where each sequence is an orthologous sequence from separate species and 

equivalent residues are placed in the same column. This way the evolutionary changes in a 

residue can be easily tracked along the column. If there is a simultaneous change in evolution, 

possible co-adaptation of interacting proteins, it can be recognised in concurrent correlated 

changes in another residue at the same stage of evolution, across many species in the MSA 

(Pazos, 1997). One can calculate the correlation in the change of two residues in a weighed 

blossum matrix accounting for the intensity of the change (ie. negatively charged AA into 

positively charged vs hydrophobic AA into other hydrophobic AA) (Fares, 2006). In order to be 

able to recognise concurrent changes in a residue it is critical to obtain proper MSA with no 

misalignments.  
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Figure 3.  

Example of coevolving residues in two interacting proteins. (A) 3D structure of proteins with 

marked selected residues and their properties legend. (B,C) orthologous sequences 

alignments with selected residues and their correlation. (B) Residues i1 and j1 were 

subjected to phylogenetic co-evolution whereas (C) residues i2 and j2 were subjected to co-

adaptive co-evolution that shows co-evolution even if we remove random clade. Asterisks 

show the misalignments to emphasize importance of their avoidance. (Adapted from 

Madaoui, 2008) 

 

2.3 Orthologous genes and multiple sequence alignment (MSA) 

The sequences required for MSA are obtained from orthologue databases. The orthologues 

databases are built based on algorithms that compare the homologous sequences of DNA 

genes of different species. Gene duplications (paralogues) or deletions through evolution 

result in several or false orthologue candidates (Graur, 2000). In addition there is a possibility 

of different protein splice variants in different species. With the automatization and upscaling 

of genomics the complexity of algorithm based determination of orthologues in genomic data 

and the possibility for their inaccuracies has also increased (Jensen, 2001). 

The algorithms for ortholog identification identify genes in the genomic data by either de 

novo methods that use transcriptional initiation, termination and splice patterns or by trans-
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alignment methods where cDNA sequences of best annotated species (human) are used for 

comparative search of similar gene sequences (Jensen, 2001).  

Multiple Sequence alignment algorithms are used for alignment of acquired orthologous 

sequences in order to quantify the evolutionary conversion of individual AA residues – as a 

column in MSA (Figure 3, B,C). There are several MSA algorithms each with its own benefits 

and drawbacks. Clustal omega is an improved iteration of Clustal MSA algorithms and is 

suitable for medium-large alignments. It uses HHalign method, seeded guide trees and hidden 

markov models profile-profile techniques to generate alignments (Sievers, 2011). T-Coffe is 

suitable for small alignments. T-Coffe stands for Tree-Based Consistency Objective Function 

for Alignment Evaluation and attempts to overcome the problems of progressive alignment 

methods (Notredame, 2000). Muscle is used for medium sized alignments. Muscle stands for 

MUltiple Sequence Comparison by Log-Expectation (Edgar, 2004).   

PRANK optimally estimates insertions and the number of deletion events and can therefore 

be also used for more distantly related sequences. Unlike other alignment programs PRANK 

uses maximum likelihood methods used in phylogenetics and correctly estimates evolutionary 

distances between sequences (Löytynoja, 2008). The drawback of PRANK is long running time. 

PRANK uses guide phylogenetic tree to distinguish insertions from deletions and any errors in 

the tree will result in errors in alignment (Löytynoja, 2014). 
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Figure 4. Comparison of phylogeny aware PRANK MSA algorithm (left) and the classical progressive 

algorithm ClustalW (right). The framed patterns in sequences correspond to the numbered 

evolutionary events of insertions and deletions on the phylogenetic tree on the left side. In 

comparison the classical progressive alignment algorithm on the right does not resolves insertion 

and deletions correctly (Löytynoja, 2014).  

 

2.4 Methods for protein residue co-evolution quantification 

Most basic co-evolution prediction algorithms are based on interdependent amino acid 

frequencies or the detection of similar patterns of amino acid substitutions in two columns of 

the MSA - pairs of residue positions. These are inter-residue co-evolution analysis algorithms, 

which can be used beside inter-protein analysis also for intra-protein co-evolution analysis, 

that inform us of closely interacting residues within a protein 3D structure. The similarity in 

the AA substitution patterns can be calculated directly by linear correlation. Most common 

name for this approach is McLachlan-based substitution correlation (McBASC) (Göbel, 1994). 

The drawback of this approach is that is does not take into account background phylogenetic 

divergence. The co-evolution analysis using protein sequences (CAPS) uses phylogenetic 

information to check and qualify only the correlations that persist when individual clades are 

removed from original MSA. The drawback of CAPS in comparison to McBASC is high 

computational demand. 
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Mutual information is another approach, which instead of calculating substitution 

correlations, uses all amino acid frequencies within one residue position to predict the 

probability of amino acid of another residue and vice versa.  

Residue correlation usually does not happen only in pairwise fashion but forms a network. 

This is approached by Direct coupling analysis (DCA) which creates a global statistical model 

based on position-specific variability and inter-position coupling in MSA (Weigt, 2009). DCA 

model is transformed into mutual information-based formulation with Heuristic methods. 

Another set of analytical algorithms for residue co-evolution is focused on finding groups of 

residues that have a protein family-dependent conservation pattern, which also shows 

correlated mutational patterns. These residue positions are named specificity-determining 

positions (SDPs). SDPs mutate in coordinated fashion in the context of subfamily divergence. 

For example in the duplication of an enzyme the subfamily of these proteins can adapt to a 

new set of substrates by mutating just a group of residues that often form 3D clusters on the 

interfaces between enzyme-substrate or receptor-ligand. There are several methods to detect 

SPDs. Sequence Space uses principal component analysis (PCA) vector representations of the 

MSAs to detect AA (SDP) patterns of protein subfamilies and is the basis for other methods 

that detect SDPs in MSAs (Casari, 1995).  S3det, automatizes detection of protein subfamilies 

and SDPs in MSAs. Through automatization and upscaling it was possible to show the relation 

between SDPs and binding sites of interactors and substrates (Rausell, 2010). Mutational 

behaviour (MB) correlates residue substitution in MSAs to whole sequences variation (del Sol 

Mesa, 2003). Evolutionary Trace (ET) uses similarities of the sequences that split in each tree 

branch and measures the time these similarities become conserved. The distance in time 

from origin of the phylogenetic tree to the fixation of conserved sequences is used to 

determine subfamilies. Differential sequence conservation analysis informs of SDPs – protein 

binding sites. This way MSAs do not need to be perfectly partitioned into protein subfamilies 

(Lichtarge, 1996, Mihalek, 2004). Combinatorial entropy optimization (CEO) uses 

combinatorial exploration to first create optimal partitioning of subfamilies, while residue 

entropies are used to determine SDPs (Reva, 2007). 

Similar to SPD searching algorithms there are also statistical coupling analysis (SCA) 

algorithms which don´t require specificity of found residues to certain protein subfamilies 

(Lockless, 1999). 
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Co‑evolution can be also measured at protein level. It was observed that for example ligand 

and receptor pairs tend to have similar phylogenetic trees. MirrorTree calculates inter-

orthologue distance matrices from the MSA-derived phylogenetic trees or directly from the 

MSAs. Linear correlations between distance matrices serve as approximation of phylogenetic 

similarities between two proteins (Pazos, 2001). Tree of life - Tol Mirror tree is a method that 

uses evolutionary relationship between species to reduce this type of  tree similarity  

background in  inter-orthologue distance matrices (Pazos, 2005). ContextMirror on the other 

hand uses information from the whole proteome of interest to compensate for this and other 

possible types of backgrounds (Juan, 2008). Mirror tree methods depend strongly on the 

selection of species in the tree. This problem can be circumvented by automatic selection of 

species where co-evolution is the highest as by Matrix Match Maker (MMM) (Tillier, 2009). 

Phylogenetic profiles uses simple similarity of the presence or absence patterns of the two 

proteins in different species to infer inter-protein co-evolution (Pellegrini, 1999). 

It is also possible to combine both intra and inter protein residue correlations to estimate 

possible interactions between proteins, as does for example in silico two-hybrid (i2h) method 

(Pazos, 2002) 
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Figure 5. Comparison of different co-evolution analysis methods. Coloured by main categories as 

covered in the text. Adapted from (Juan, 2013).  

 

2.5 Co-evolution analysis using protein sequences (CAPS) 

In this thesis, co-evolution analysis using protein sequences (CAPS) has been chosen as the 

method to estimate inter-protein co-evolution. CAPS is a conservative algorithm for detection 

of residue coevolution that can disentangle interaction from stochastic and phylogenetic co-

evolution. As it is based on residue co-evolution it can be used for intra or inter protein co-

evolution (Fares, 2006). When used for inter protein co-evolution one can of course 

determine exactly which parts of two molecules were co-evolving or in case of physical 

interaction directly interacting. The drawback of CAPS is that computation time is 
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exponentially dependent on the length of the sequences – the number of residues in the 

alignment, since it calculates correlations for each of the possible pairs of residues.  

Residues in MSA of orthologous sequences can undergo mutational transition (as in Figure 3 

B, C). The variance of the transitions can be used to infer correlations – co-evolution between 

two residue sites. CAPS calculates the residue conversion variance correlations. It corrects the 

correlations for the time of each species (sequence) divergence.  

Following is the mathematical basis of the CAPS algorithm. More in depth explanation can be 

found in original article (Fares, 2006a). CAPS compares the conversion probabilities between 

two residues using Blocks Substitution Matrix (BLOSUM; Henikoff, 1992). BLOSUM 

substitution matrices account for divergence probabilities between each AA. However, there 

are cases like pre-speciation duplications that fixate certain residues into more conserved 

than more recent sequence divergences. To take this into account the probability of residue 

conversion from e to k amino acid from sequence i to j − (𝜃𝑒𝑘)𝑖𝑗  is based on Blosum e->k 

conversion probability (𝐵𝑒𝑘) divided by time since divergence between the sequences in 

question as in (1): 

       (𝜃𝑒𝑘)𝑖𝑗 = (𝐵𝑒𝑘𝑡−1)𝑖𝑗                                (1) 

 

From this, the average probability for all the sequences (whole column in Figure 3 B, C) is 
calculated (2) 
 

                                                          𝜃̅𝐶 =
1

𝑇
∑ (𝜃𝑒𝑘)𝑆

𝑇
𝑆=1                               (2) 

 

,where S is each pairwise comparison and T is the total number of pairwise sequence 

comparisons. 

T is calculated as (3) where N is the total number of sequences in the alignment: 

 

                        𝑇 =
𝑁(𝑁−1)

2
        (3) 

 

Variability of each transition is calculated as the squared difference of transition probability to 

average probability as in (4): 
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                          𝐷̂𝑒𝑘 = [(𝜃𝑒𝑘)𝑖𝑗 − 𝜃̅𝐶]
2
      (4) 

 

From this the mean variability is calculated as in (5): 

 

     𝐷̅𝐶 =
1

𝑇
∑ [(𝜃𝑒𝑘)𝑆 − 𝜃̅𝐶]2𝑇

𝑆=1      (5) 

 

To assess co-evolution between residue positions A and B (as between i1 and j1 or i2 and j2 in 

Figure 3B and Figure 3C) the correlation 𝜌𝐴𝐵  in AA variability relative to mean variability is 

calculated for each residue transition (as between instances within the columns i1 and j1 

column of Figure 3 B, C). The correlation 𝜌𝐴𝐵  is calculated as in (6): 

 

        𝜌𝐴𝐵 =
1

𝑇
∑ [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐴]𝑇

𝑆=1 [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐵]

√
1

𝑇
∑ [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐴]2𝑇

𝑆=1
1

𝑇
∑ [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐵]2𝑇

𝑆=1

    (6) 

 

To estimate whether that particular  𝜌𝐴𝐵   correlation is significant, correlations for K number 

of re-sampled random pairs of sites (different columns in Figure 3 B, C) is calculated (1-6) and 

mean 𝜌̅ (7): 

      𝜌̅ =
1

𝐾
∑ 𝜌𝑙

𝐾
𝑙=1        (7) 

 

and 𝑉 (𝜌)  variance of correlation coefficients are calculated (8): 

 

                                            𝑉 (𝜌) =
1

𝐾
∑ (𝜌𝑙 − 𝜌̅)2𝐾

𝑙=1                  (8) 

 

The test of significance is made by comparing the individual correlation coefficients? to 

normalised Z distribution as in (9): 

                            𝑍 =
𝜌𝐴𝐵−𝜌̅

√𝑉(𝜌)
      (9) 

Statistical power of the test is optimised by all the sites that have: 
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                                                     𝐷̅𝐶 > Θ − 2𝜎Θ                              (10) 

 

 Θ stands for parametric value of 𝐷̅𝐶  and is calculated as:   

             

      Θ =
1

𝐿
∑ (𝐷̅𝐶)𝑠

𝐿
𝑠=1      (11) 

 

whereas 𝜎Θ is the standard deviation of Θ. 

 

There are several contributors to co-evolution:  stochastic covariation, inter-molecular 

interaction and phylogenetic convergence. The goal is to filter out all but the inter-molecular 

interaction components.  

Stochastic covariation is removed by testing for significance of the simulated data.  

Testing for phylogenetic component of co-evolution is made by running the above equations 

while removing individual clades (clusters of species – orthologous sequences with more 

recent common ancestor). For this provision of phylogenetic tree matching, the species of 

orthologous sequences is needed. If the correlation coefficient remains statistically significant 

even after iterative removal of individual clades, the inter-molecular co-evolution component 

is significant. 

Lastly three Chi-squared tests are made to validate which of the pairs are interacting and are 

involved in protein-protein interactions. 𝑂𝑖 is the observed number of AA pairs predicted as 

co-evolving, 𝐸𝑖 is the expected number of co-evolving AA pairs and n is the number of possible 

outcomes.           

           𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1                                        (12) 

 

This test is repeated 3 times with different 𝐸𝑖  which are: 

1. 𝐸𝑖  is the mean number of co-evolving pairs in a hundred pairs of alignments with same 

phylogenetic distances. 

2. 𝐸𝑖  is the the mean number of co-evolving pairs for all pairwise inter-molecular analysis 
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3. 𝐸𝑖  is the the mean number of co-evolving pairs for all pairs of one protein against all other 

proteins 
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3. Materials and methods 

 

3.1. Materials 

 

3.1.1. List of proteins 

The script used a list of Uniprot protein identifiers as input. These proteins can be a list of any 

proteins of interest.  

Examination of effect of different input parameters on CAPS output was done together with 

checking of running CAPS in two protein per folder mode. For this the MSA and TOL of the 

following proteins were used: Toll like receptor 1, 2, 6 (TLR 1,2,6) and CD79a and CD79b.  

To test the reliability of the script the MSA and TOLs of three proteins of B cell activation 

(CD79a, CD79b and Lyn) and two proteins located in mitochondrial matrix (ATP-dependent-

Clp-protease-proteolytic-subunit - Clpp, Glutaredoxin-related-protein-5 – Glrx5) were used. 

The final input data were MS hits from APEX2 biotin phenol proximity labelling. APEX2 was 

targeting B cell non/raft plasma membrane regions pre and after B cell activation. B cells were 

mouse A20 D1.3 cell line, where D1.3 stands for HEL specific IgM BCR expressed on A20 cells. 

In total there were 538 input protein Uniprot IDs used. 

 

3.1.2. Online databases 

Reference sequences of Uniprot ID MS hits were obtained from Universal Protein Resource 

(UniProt) database (Chen, 2017): http://www.uniprot.org/ 

Orthologous sequences to Uniprot reference sequences were obtained from OrthoDB 

database comprehensive catalog of orthologs, i.e. genes inherited by extant species from 

their last common ancestor (Zdobnov, 2017): http://www.orthodb.org/ 

Tree of life – phylogenetic tree of vertebrate species used in this study was obtained from 

TimeTree. Timetree is a database of the tree-of-life and its evolutionary timescale (Hedges, 

2015): http://www.timetree.org/.  

http://www.uniprot.org/
http://www.orthodb.org/
http://www.timetree.org/


20 
 

85 vertebrate species used were chosen as a balance between species with highest number of 

orthologues (top coverage in the sample of 200 chosen proteins), while maintaining 

representations of all main vertebrate clades in OrthoDB database. The list of 85 species and 

their phylogenetic tree of life is depicted in (Figure 6).  

 

Figure 6. Tree of life of 85 vertebrate species of which orthologues were used in the study 

obtained from TimeTree.org 
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3.1.3. Software 

The scripts that represented the framework of the pipeline for retrieval of sequences and 

communication with other programs were written in Python (Python Software Foundation. 

Python Language Reference, version 2.7. Available at http://www.python.org, van Rossum, 

1995) with Python libraries used Biopython (Cock, 2009), lxml (ver. 4.1.0, Behnel, Faassen, 

Bicking, available at http://lxml.de/) 

Local BLAST+ for finding corresponding OrthoDB IDs to Uniprot IDs (Altschul, 1990, Altschul, 

1997, Camacho, 2009)  

Software for co-evolution analysis was Coevolution analysis using protein sequences, CAPS 

version 2 (Fares, 2006a, Fares 2006b) 

CAPS output was compared to Cytoscape, version 3.6.1 (Shannon, 2003) 

Commands for controlling the parallel multicore execution of CAPS were written in BASH Free 

Software Foundation (2007). Bash (3.2.48) [Unix shell program]. Retrieved from 

http://ftp.gnu.org/gnu/bash/bash-3.2.48.tar.gz 

Computations were performed on local and online Taito supercomputer of CSC – IT Center for 

Science, Finland. 

 

3.2 Methods 

3.2.1. General overview 

 

The scripts aim to  

- Read the input of several hundred Uniprot protein identifiers 

- Convert Uniprot IDs into OrthoDB protein identifiers 

- Retrieve appropriate orthologue sequences from OrthoDB (with high enough identity, length 

similarity, vertebrate clade, with relatively homogenous spread of representative species, 

good quality sequences without missing AAs) 

http://www.python.org/
http://ftp.gnu.org/gnu/bash/bash-3.2.48.tar.gz
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- Align these sequences with modern aligning algorithm  

- Create individual folders containing aligned sequences for all possible protein-protein 

coevolving pairs  

- Command CAPS algorithm to run number of parallel analyses equal to the number of the 

cores the computing processor has - the computer being CSC supercomputer. 

- The final script could be used for co-evolutionary analysis of any set of hundreds of proteins 

of interest. 

In practice several sub-steps need to be created and actual flow of the script is presented in 

(Figure 8). Each step is further explained in a separate paragraph.  The codes for each section 

can be found in Appendices. 
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Figure 8. Pipeline of the script(s) for high throughput co-evolution analysis with CAPS with marked 

steps  

3.2.2. Step A: TimeTree TOL of 85 vertebrate species 

List of 85 vertebrate species with relatively highest orthologue coverage in OrthoDB database 

while maintaining representation of major vertebrate clades is used for the creation of 

phylogenetic tree of life. Tree of life shows all the divergences from common ancestor leading 

to each individual species. Each divergence and time distance from one to other divergence is 

calculated based on comparative similarities of whole genomes of the species (as in Figure 6). 

The tree of life is saved as Newick standard format file with extension “.dnd”   
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3.2.3 Step 1: Uniprot ID 

Script input is provided as a list of protein hits in the form of Uniprot identifiers. Each Uniprot 

identifier is a string readable by Python. Script loops through Steps 1-2-3-4-5-6-B for each 

Uniprot identifier with a simple for loop. 

 

3.2.4. Step 2: Online retrieval of protein sequence at Uniprot 

Representational State Transfer (REST) Application Programming Interface (API) allows access 

to Uniprot data with structured Uniform Resource Locator (URLs). 

The URL is formed and output is retrieved with Python “urllib2” extensible library for opening 

URLs, for example: “http://www.uniprot.org/uniprot/”uniprotID”/xml”. Xml output was 

parsed with lxml library commands to obtain protein main, alternative, gene names and AA 

sequence.  

 

3.2.5. Step 3: Local BLAST against OrthoDB 

Since the cross-references pointing from one database identifier to identifiers from other 

databases may not be most accurate or regularly updated, a local BLAST search with Uniprot 

sequence is made against OrthoDB sequence database with OrthoDB identifiers. Biopython 

BLAST library Bio.Blast.Applications with NCBI BLAST command line is used. 

 

3.2.6. Step 4: Retrieval of orthologue sequences  

OrthoDB database is accessed via REST API. Two structured URL inputs are sent. The URL 

input contains the OrthoDB identifier of a mouse protein sequence from previous step and a 

vertebrate clade identifier, so the retrieval is made for all the orthologues to mouse within 

vertebrates. The URL input contains also the format of the output which is either fasta – 

cointaining all the fasta sequences of orthologues with OrthoDB id tags or tab – containing 

the OrthoDB identifiers, species names and other information. Both tab and fasta files are 

parsed into individual orthologue entries. Because further operation demands tracking of 

http://www.uniprot.org/uniprot/
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species names each fasta header of each fasta sequence is modified with Python script to 

contain species name. In OrthoDB single species might contain several homologous hits to the 

original query because of gene duplication etc. In this case the Python script selects from two 

homologs the one with the highest similarity to the original mouse protein sequence. In order 

to achieve this, the script iterates through already retrieved sequences (of the same protein 

orthologues) with species in the header. In case same species name is found it compares the 

two sequences. Retrieved filtered orthologue sequences with modified fasta headers are 

saved in a fasta file to be used in next step. While retrieving input URL only contains the 

vertebrate clade identifier, and cannot contain the list of species, the output in the final file of 

this step might contain also vertebrate species that we have not chosen in the 85 vertebrate 

TOL in step A. 

3.2.7. Step 5: MUSCLE pre-MSA 

Multiple sequence alignment of the sequences retrieved from OrthoDB is first made with 

BioPython command line that controls the MUSCLE MSA program outside of Python. It aligns 

all the sequences in the fasta file, also those not in the 85 species TOL phylogenetic file from 

step A. The MUSCLE pre-alignment is done in order to speed up the next computationally 

more demanding PRANK alignment.    

3.2.8. Step 6: PRANK MSA 

PRANK MSA is made with Biopython library PrankCommandline. PRANK MSA uses 

phylogenetic information in order to create phylogenetically harmonised distribution of gaps 

in the alignment in accordance to evolutionary occurring insertions and deletions. The 

phylogenetic information needed is the TOL phylogenetic file from step A. The other input is 

the muscle pre-aligned MSA from step 5, the command line needs to contain “pre-

aligned=True”. Because TOL might contain vertebrate species that are not in that particular 

retrieved OrthoDB file and vice versa, the PRANK command line needs to contain command to 

“prunetree=True”, and “prunedata=True”. These commands were originally not in the PRANK 

command file “\Bio\Align\Applications\_Prank.py” contained in Biopython so they had to be 

added  in the latest version of PRANK (http://wasabiapp.org/software/prank/). The following 

is the code added to _Prank.py self-class: 

“self.parameters = [… _Switch(["-prunetree", "prunetree"]),…” 
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The resulting PRANK MSA file only contains orthologous sequences of species that are in both 

MUSCLE OrthoDB retrieved species and TOL phylogenetic tree file with 85 vertebrate species 

from step A.  

3.2.9. Step B: Custom pruning of TOL  

CAPS program requires individual phylogenetic tree of life files corresponding to each MSA of 

particular protein orthologues in order to perform exclusion of phylogenetic component to 

co-evolution.  The phylogenetic tree file must match exactly the number and form of species 

names in the MSA. Therefore the copy of original tree of life for 85 vertebrate species from 

step A with a matching name to the MSA file is made. This new phylogenetic file is pruned of 

any excess species that are not present in MSA output from PRANK in order to match it. 

Commands from Phylo sub library of BioPython are used for this. 

3.2.10. Step 7: Distribution of files 

CAPS in its original form uses only one CPU core and is incapable of parallel computing that 

would greatly speed up the computation. CAPS creates all the combinations of files present in 

one folder and runs each pair one after another using one core throughout until all the pairs 

are processed. To circumvent this, the files of interest can also be paired with their partners 

into individual folders, so CAPS will in each instance compute just the co-evolution between 

the two files in the folder and as many instances as there are CPU cores are called in parallel.  

The orthologues PRANK MSA and corresponding TOL of each input Uniprot identifier coming 

from the loops of step 2-3-4-5-6-B need to be distributed into separate folders. This is done 

by the separate Python script that uses “itertools” library. For each pair of proteins separate 

subfolders are created, one containing two MSA fasta “.fas” files and the other containing 

phylogenetic “.tre” files. 

3.2.11. Step 8: Multicore parallel run of CAPS 

BASH command list for the parallel run of CAPS in each folder is created. Archive file of all the 

folders is made and uploaded to Taito computer of CSC. Taito supercomputer can schedule 

maximally 700 commands in one instance, therefore the BASH command list needs to be 

divided accordingly.  
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Each command calls CAPS from the location of files. Several commands are specified. “-F 

fasfolder/” specifies the subfolder containing FASTA MSA file. “-inter” is a command for inter-

protein co-evolutions (default is intra-protein). “-T trefolder/” specifies subfolder containing 

phylogenetic tree file. One can add optional commands like “-g 0.6” which will discard any 

column in FASTA MSA file with >60% gaps. Other optional command is “-H mus_musculus” 

which will acknowledge the sequence with mus_musculus as the reference sequence when 

giving the position of co-evolving residue pairs (of course it can be changed to any other 

FASTA header). “-c” specifies converging command, here CAPS will run as many randomised 

sampling simulations so that normalised distribution of co-variation correlation coefficients is 

large enough that probability of alpha one error is insignificant and does not change anymore. 

Other commands are possible, but are hidden in CAPS.cpp source file code. 

Another BASH script is made that will automatically run through each of the CAPS command 

sublists. After the run, CAPS creates an output into each folder. To extract the output files and 

separate them from input files in the folders another BASH command list is used for moving 

the output files in one common folder. Also this “moving” command list needs to be 

partitioned, however the same BASH script can be used for their automatic sequential 

execution since the number of commands matches those for running of CAPS. The folder with 

all joined output can be archived and downloaded from CSC Taito supercomputer.   

 

3.2.12. Step 9: Extracting and computing multiple CAPS output 

CAPS creates several types of output files. One file contains the sequences used, and the 

positions of all the residue pairs that have statistically significant transition variance 

correlation. Based on this file one can track interacting residue pair in the sequence and make 

additional calculations based on the biochemical properties of the AAs. Also, one can position 

the residue pairs in the crystal 3D structure of the proteins, or validate the possible pairs, if it 

is the case of physical interaction between more commonly known interacting domains. If one 

would provide ProteinDataBase (PDB) 3D crystal structure files of the proteins CAPS could 

also automatically mark the found co-evolving residue pairs on those.  

The other type of output file contains the abstract of this information, number of interacting 

residue pairs, sum of all correlation coefficients in co-evolving pairs, cut off threshold, 
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threshold simulation r, average r, average significant r, file one tree length, file two tree 

length,  gap threshold, bootcutoff, distance coefficient and finally also the conclusive 

statement whether there is a relative co-evolution between the given pair of proteins in both 

directions (“YES/NO”).  

This final “YES/NO” statement is calculated based on a Chi-squared test that takes into 

account all the files in the folder. Since in our case there are always two compared proteins, 

the co-evolution in regard to the average from this same pair is never higher and the co-

evolution statement is always negative.  

Through python script the former values are extracted from each file of all the pairs of 

proteins and printed in one file. Chi-squared test is performed to test if the number of 

observed co-evolving residue pairs is above the expected value. Expected value is calculated 

based on the average co-evolution coefficient per residue pair for all the protein-protein pairs 

involving one of the two proteins (meaning also the pairs with other proteins). There are two 

final statements, one showing the significance of protein 1 -> protein 2 co-evolution in 

regards to all the co-evolution of protein 1 toward any other calculated protein co-evolution 

and then another significance of protein 2-> protein 1 in in regards to all the co-evolution of 

protein 2 toward any other calculated protein co-evolution. 

The calculations are then made according to equation 12 in section 2.5.  

         𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1           

Where  𝐸𝑖  is the mean number of co-evolving pairs for all pairs of one protein against all other 

proteins and is calculated as follows: 

                               

𝐸𝑖 = (
∑ (

𝑛𝜌𝑠𝑖𝑔

𝜌𝑡
)𝑁

𝑗=1

𝑁
) ∙ 𝜌𝑡      (13) 

And where 𝑛𝜌𝑠𝑖𝑔
  is the number of pairs of residue positions with statistically significant 

correlation coefficient and 𝜌𝑡  is the sum of all correlation coefficients within a protein pair 

                                               

                                                           𝜌𝑡 = ∑ 𝜌𝐴𝐵
𝑋,𝑍
𝐴𝐵=1                       (14) 
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Here AB is the current pair of residue positions and X, Z is the last pair of residue positions of 

which correlation coefficients are calculated. 

 

3.2.13. Comparing CAPS results to Cytoscape biochemical interaction data 

To assess the correctness of assembled CAPS co-evoltion output, it was compared to 

Cytoscape biochemical interaction data. The data was obtained from all available online 

databases automatically determined by Cytoscape for each of the top co-evolving proteins. 

The data of all databases was merged for each individual protein. Each interaction mapping 

had one neighbour depth. CD79a or Lyn interaction map versus their top five co-evolving 

proteins interaction maps were made by merging. The newly established paired merged 

networks were further merged into one network containing CD79a or Lyn and all their top 

five co-evolving proteins and their first neighbour interactors. The interactors that did not 

interact between CD79a (or Lyn) nor any of five top co-evolving proteins (or between these) 

were erased for better visualisation.   
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4. Results 

4.1 Orthologue retrieval, PRANK MSA and phylogenetic tree pruning 

The script is able to retrieve the orthologs from OrthoDB and make PRANK MSA and 

phylogenetic trees from the provided Uniprot IDs. Figure 9 shows one representative PRANK 

MSA as visualised in Mega software. Figure 10 shows a corresponding phylogenetic tree  
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Figure 9. Example of retrieval, TOL and Prank MSA: (A) Retrieved orthologous sequences IgAlpha - 

CD79a, (B) Tree of Life for 63 vertebrate species both in retrieved CD79a orthologues and in general 

TOL of 85 chosen vertebrate species (Fig 6) and (C) Corresponding PRANK MSA alignment of 

retrieved CD79a 63 orthologous vertebrate sequences obtained with the script. Only portion of 

sequences are shown for better readability. 

The retrieval of Orthologous sequences, TOL and PRANK MSA creation for individual 

UniprotID takes on average 1-2 minutes depending on the length of the sequences and 

number of orthologues found. The retrieval may fail in about 5% of the cases, due to various 
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4.2 Files distribution into folders  

The script was able to distribute the obtained MSA fasta files and corresponding phylogenetic 

trees paired with all possible interacting protein counterparts into separate folders. This 

creates   

   
𝑛∙(𝑛−1)

2
                                                                    (15)                                           

of folders for 𝑛 number of proteins (Figure 10 A). Another alternative is to create pairs of 

series of proteins versus one particular protein of interest (Figure 10 B). This alternative, more 

focused approach results in linear increase of resulting folders (n-1). The computational 

demand is drastically lower compared to the first approach by higher numbers of proteins.  

 

Figure 10. Files distribution into folders for parallel multicore computing. (A) All possible co-evolving 

protein pairs from 5 proteins, resulting in 12 pairs. (B) Alternative, all possible pairs to one chosen 

protein of interest in this case CD79a, resulting in 6 folders. 

4.3 Detection of inter-residue inter-protein co-evolution with CAPS 

4.3.1 Testing CAPS parameters on TLR 1, 2, 6, CD79a,b proteins 

CAPS can be run with set parameters for Alpha (type one error) level, which represents the 

probability of accepting false positive co-evolution.  Default value is set to 0.001. Raising alpha 

value lowers the stringency of statistical significance of correlation coefficients compared to 
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correlation coefficients of sampled randomly generated sequences. It lowers both the 

probability of obtaining false positives as well as the probability of finding true positives. 

When comparing Toll like receptors 1, 2, 6, CD79a and CD79b, the co-evolution pairs of TLR1-

6, TLR2-CD79a, TLR2-CD79b were revealed only after increasing alpha parameter from 0.0001 

to default value of 0.001 or higher (Figure 11). Unexpectedly the detected co-evolution 

between TLR2-6 by alpha 0.0001 was lost by higher alpha. Raising the number of random 

sampling cycles from default 100 to 200 cycles or to converging number of repetitions had no 

effect, however it doubled the computational time. Gap threshold parameter changes the 

acceptance tolerance of residue columns with gaps, 0 – full tolerance, 1 – no tolerance 

(default value is 0.5).  Running CAPS with same parameters for pairs of proteins in individual 

folders for same co-evolving pairs resulted into unexpected additional detected co-evolving 

pairs of CD79a-CD79b and TLR2-6. This might be due to missing additional Chi-squared test 

that couldn´t be found from CAPS source code.  

Figure 11. CAPS analysis of inter-protein co-evolution of sample proteins with different alpha (type I 

error, a) levels, number of random cycles (r), gap threshold level (g), where 0 – full tolerance, 1 – no 

tolerance. Found co-evolution marked by grey shade. 

4.3.2 Testing CAPS on unlikely co-evolving proteins 

To test the performance of CAPS on data with clearly expected or unexpected co-evolution, 

CAPS was run with 3 proteins involved in B cell activation (CD79a, CD79b and Lyn) and 2 

proteins located in mitochondrial matrix (ATP-dependent-Clp-protease-proteolytic-subunit - 

Clpp, Glutaredoxin-related-protein-5 – Glrx5). Inter-protein co-evolution was found for 

individual folders

g 0 0 0 0 0 0 0 1 0 0 0 1

r 50 100 200 converg 100 100 200 100 converg 100 converg converg

Protein A Protein B a 0.0001 0.0001 0.0001 0.0001 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Toll-like-receptor-1_Tlr1_Q9EPQ1 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-1_Tlr1_Q9EPQ1 Toll-like-receptor-2_Tlr2_Q9QUN7 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-1_Tlr1_Q9EPQ1 Cd79b_P15530 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-1_Tlr1_Q9EPQ1 Toll-like-receptor-6_Tlr6_Q9EPW9 NO NO NO NO YES YES YES YES YES YES YES YES

Cd79a_P11911 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO NO NO NO NO NO NO NO NO

Cd79a_P11911 Toll-like-receptor-2_Tlr2_Q9QUN7 NO NO NO NO YES YES YES YES YES YES YES YES

Cd79a_P11911 Cd79b_P15530 NO NO NO NO NO NO NO NO NO YES YES YES

Cd79a_P11911 Toll-like-receptor-6_Tlr6_Q9EPW9 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-2_Tlr2_Q9QUN7 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-2_Tlr2_Q9QUN7 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-2_Tlr2_Q9QUN7 Cd79b_P15530 NO NO NO NO YES YES YES YES YES YES YES YES

Toll-like-receptor-2_Tlr2_Q9QUN7 Toll-like-receptor-6_Tlr6_Q9EPW9 YES YES YES YES NO NO NO NO NO NO NO NO

Cd79b_P15530 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO NO NO NO NO NO NO NO NO

Cd79b_P15530 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Cd79b_P15530 Toll-like-receptor-2_Tlr2_Q9QUN7 NO NO NO NO YES YES YES YES YES YES YES YES

Cd79b_P15530 Toll-like-receptor-6_Tlr6_Q9EPW9 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-6_Tlr6_Q9EPW9 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO YES YES YES YES YES YES YES YES

Toll-like-receptor-6_Tlr6_Q9EPW9 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-6_Tlr6_Q9EPW9 Toll-like-receptor-2_Tlr2_Q9QUN7 YES YES YES YES NO NO NO NO NO YES YES YES

Toll-like-receptor-6_Tlr6_Q9EPW9 Cd79b_P15530 NO NO NO NO NO NO NO NO NO NO NO NO
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CD79a-Clpp, CD79a-Glrx5, CD79b-Clpp, Lyn-CD79a, Lyn-Glrx5, Clpp-CD79b (this co-evolution is 

found in the context of Clpp, compared to all its other pairs), Glrx5-Clpp. This totals in 5 inter-

protein co-evolutions between mitochondrial matrix proteins and B cell activatory proteins 

located by cell plasma membrane compared to only one of co-evolutions within each of these 

compartments. Raising the gap parameter in range of 0.5, 0.8, 0.9 and 1 did not affect the 

outcome (Figure 12). The CAPS was run in individual-pairs-folder mode. 

Figure 12. CAPS analysis of inter-protein co-evolution of B cell activation and mitochondrial matrix 

proteins with parameters used for calculations of significant inter-protein co-evolution from 

individual pair folders. “n.pairs” – number of co-evolving residue pairs, “total corr. coef” – sum of all 

correlation coefficients for whole protein pair, “n.pair/t.cor.c” – number of co-evolving residue pairs 

divided by sum of all correlation coefficients for whole protein pair, “aver.(np/tcc)” – average 

“n.pair/t.cor.c” within all pairs to the protein A, “av.xtcorc” is the   𝐸𝑖  mean number of co-evolving 

pairs (as in equation 13) and “chi” is the chi squared value (as in equation 12). Found co-evolution 

marked darker “YES”. 

 * x105 

4.3.3 CAPS on proximity labelling MS hits 

Finally, the CAPS was run in parallel in individual paired folder mode as described in the 

methods (3.2.11. Step 8: Multicore parallel run of CAPS). 538 proteins of non-raft targeted 

APEX2 proximity labelling MS hits were paired against two known B cell activation proteins 

CD79a (Figure 13) and Lyn (Figure 14). The co-evolution significance was determined as 

previously described (equation 12). However, since this categorisation only gives “YES/NO” 

statement further ranking was used by number of found inter-residue pairs between two 

proteins, divided by the length of the MSA of the partner protein to CD79a (Figure 13 A) or 

Lyn (Figure 14 A). The resulting top ranking co-evolving proteins were analysed also in 

Protein A Protein B gap threshold

cell function name gene cell function gene n. pairs total corr.coef. n.pair/t.cor.c * aver.(np/tcc) * av.x tcorc chi 0.5 0.8 0.9 1

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a BActpath Cd79b 9 241296 3.7 4.1 9.9 0.07 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a BActpath Lyn 7 439177 1.6 4.1 17.9 6.67 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a MtMx Clpp 10 171375 5.8 4.1 7.0 1.29 YES YES YES YES

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a MtMx Glrx5 8 154466 5.2 4.1 6.3 0.45 YES YES YES YES

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b BActpath Cd79a 9 241296 3.7 12.7 30.7 15.32 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b BActpath Lyn 0 507408 0.0 12.7 64.5 64.52 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b MtMx Clpp 90 198000 45.5 12.7 25.2 166.88 YES YES YES YES

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b MtMx Glrx5 3 178464 1.7 12.7 22.7 17.09 NO NO NO NO

BActpath Tyrosine-protein-kinase-Lyn Lyn BActpath Cd79a 7 439177 1.6 0.8 3.4 3.68 YES YES YES YES

BActpath Tyrosine-protein-kinase-Lyn Lyn BActpath Cd79b 0 507408 0.0 0.8 4.0 3.97 NO NO NO NO

BActpath Tyrosine-protein-kinase-Lyn Lyn MtMx Clpp 0 360375 0.0 0.8 2.8 2.82 NO NO NO NO

BActpath Tyrosine-protein-kinase-Lyn Lyn MtMx Glrx5 5 324818 1.5 0.8 2.5 2.37 YES YES YES YES

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp BActpath Cd79a 10 171375 5.8 17.4 29.7 13.11 NO NO NO NO

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp BActpath Cd79b 90 198000 45.5 17.4 34.4 90.04 YES YES YES YES

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp BActpath Lyn 0 360375 0.0 17.4 62.6 62.56 NO NO NO NO

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp MtMx Glrx5 23 126750 18.1 17.4 22.0 0.05 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 BActpath Cd79a 8 154466 5.2 6.6 10.3 0.49 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 BActpath Cd79b 3 178464 1.7 6.6 11.8 6.60 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 BActpath Lyn 5 324818 1.5 6.6 21.6 12.72 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 MtMx Clpp 23 126750 18.1 6.6 8.4 25.30 YES YES YES YES
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Cytoscape program. Cytoscape acquires biochemically determined interaction networks from 

public databases. Of each top five CD79a or Lyn co-evolution partners first neighbour 

interaction networks were merged to find the overlapping (closest known) sharing interaction 

partners to CD79a or Lyn. Top four found co-evolving partners to CD79a only interacted with 

CD79a via UBC - Polyubiquitin-C, which promotes protein recycling, whereas the fifth top co-

evolving protein Arhgap30 had additional three shared interacting first neighbour partners to 

CD79a protein (Figure 13 B). Top co-evolving proteins to Lyn all shared at least five functional 

interaction first partners with Lyn or each other.  The fourth top co-evolving protein to Lyn – 

Was had direct interaction with Lyn (Figure 14 B). The highest ranked co-evolving protein for 

CD79a or Lyn was further analysed. Six co-evolving residue pairs between Cep55 and CD79 

with highest correlation coefficient from MSA were aligned to each other (as columns in 

Figure 3 B or C). With the top five of the co-evolving residue pairs the gaps were also included 

in CAPS correlation coefficient calculations (Figure 13 C). Similarly for the top six co-evolving 

residue pairs between Lyn and Hmmr alignment, it was observed that gaps contributed to the 

calculations of CAPS correlation coefficient calculations (Figure 14 C). The analysis was done 

with gap threshold set at 1, random cycles set to converge and default alpha value of 0.001. 
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Figure 13. CAPS analysis of inter-protein co-evolution of CD79a versus 538 proteins of non-raft 

targeted APEX2 proximity labelling MS hits. (A) Ordered by highest score in “n.prs/lngth” - number 

of found co-evolving residue pairs between two proteins divided by the length of non-CD79a 

partner protein. (B) For comparison; top five ranked CD79a co-evolving proteins (yellow) in single 

neighbour interaction distance as biochemically determined in Cytoscape public databases. (C) Top 6 

highest correlation coefficient inter-residue co-evolving pairs between Cep55 and CD79a, the 

residue columns (as in Figure 3 B,C) with co-evolving amino-acid residues. 
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Figure 14. CAPS analysis of inter-protein co-evolution of Lyn versus 538 proteins of non-raft targeted 

APEX2 proximity labelling MS hits. (A) Ordered by highest score in “n.prs/lngth” - number of found 

co-evolving residue pairs between two proteins divided by the length of non-Lyn partner protein. (B) 

For comparison; top five ranked Lyn co-evolving proteins (yellow) in single neighbour interaction 

distance as biochemicaly determined in Cytoscape public databases. (C) Top 6 highest correlation 

coefficient inter-residue co-evolving pairs between Hmmr and Lyn, the residue columns (as in Figure 

3 B,C) with co-evolving amino-acid residues. 
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5. Discussion 

The aim of this thesis was to create a script that would automatize and scale up the retrieval 

of orthologous protein sequences, creation of their MSA and TOLs, organise these for 

multicore parallel run of CAPS and combine CAPS output into comprehensible readout of 

adaptive co-evolution. These steps were achieved with the usage of Python programming 

language and public databases.  

The retrieval of orthologous sequences was obtained from OrthoDB database via Python REST 

API client. The positive side of automatic retrieval is speed and avoiding human error. The 

drawback is that the database server may not always be available and the script should be 

tailored to other similar servers in this case. Other drawback could be that the data in the 

database is not of sufficient quality. Some of the orthologous sequences contained x – 

undefined amino acid residues, while others could have several homologues of which chosen 

one is not necessarily optimal. This affects the overall quality of MSA which is crucial for 

quality of orthologues MSA based co-evolution analysis.  

The initial TOL for chosen 85 vertebrate species was obtained from Timetree server. Out of 85 

species that are found in OrthoDB database there were three cases of species not found in 

the Timetree database (Poecilia formosa, Astyanax mexicanus, Oreochromis niloticus). In 

these cases the nearest related species of same genus that was found in Timetree was used 

for building of TOL and renamed to match the OrthoDB retrieved sequences. This accounted 

to negligible difference in TOL in the overall scale of evolution time distances.  

The multiple sequence alignment was performed in two steps with MUSCLE and PRANK. 

MUSCLE provided a template alignment for PRANK which realigned the sequences taking also 

phylogenetic information into account. By visual inspection of final PRANK aligned MSAs the 

alignments of the input sequences were satisfactory. Based on obtained orthologous 

sequences TOLs of overlapping species to original 85 species TOL was created by pruning. 

Here special care had to be taken to have exactly matching naming of each sequence in 

individual protein MSA to the species in corresponding TOL. 

The obtained MSAs and TOLs were sorted into individual folders each containing MSAs or 

TOLs of two proteins. This was done either in all possible pairs or one protein of interest 

versus potential partner’s combination. The former created exponential number of 
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combinations whereas the latter creates as many folders as there are proteins. The difference 

in approaches comes into account when considering the calculation times that are far lower 

with the second approach when analysing hundreds of proteins.  

The CAPS was first tested with several different input parameters for a set of five proteins 

involved in innate and adaptive immune response (TLR 1,2,6 and CD79a,b correspondingly) 

that may interact with each other. There was an increase in the found co-evolving proteins 

when lowering the stringency to avoid type one error - raising the alpha value from 0.0001 to 

default 0.001 or higher where there was no further change in the output. Unexpected, 

however, was the exclusion of the co-evolving pair (TLR 2 – TLR 6) by higher alpha values 

previously found by alpha 0.0001. There is no obvious explanation as to why this happened. 

Increasing the number of random cycles or gap threshold had no effect on the result which is 

also unexpected and is may be revealing the improper working of CAPS. The comparison of 

co-evolution determination from individual folders based on post-CAPS calculations showed 

two more pairs than the ordinary CAPS run on the same proteins in one folder. The reason for 

this may be in usage of only one chi squared test for which the input values were readily 

available in the output file. Whereas there might be other additional “filtering” tests that are 

performed differently by CAPS when only two proteins are in the folder than when there are 

more. 

Next, the accuracy of CAPS co-evolution detection was determined with the usage of likely 

and unlikely interacting and therefore non/co-evolving proteins as CAPS input. CD79a, b, Lyn 

found at plasma membrane, all three interacting in B cell activation were used for highly 

interacting proteins with expected co-evolution, compared to two mitochondrial matrix 

proteins Clpp and Glrx5. Mitochondrial matrix is separated from plasma membrane with two 

membranes in a separate organelle. Direct interaction and high co-evolution with plasma 

membrane residing B cell activation proteins is highly unlikely. However, the CAPS analysis 

showed far greater co-evolution of B cell activation proteins paired with mitochondrial matrix 

proteins than within each functional group. This was repeated with several gap thresholds 

with no difference in the outcome. This unexpected outcome further undermined the 

likelihood of CAPS’ ability to properly detect co-evolution. 
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Finally, two proteins CD79a and Lyn both involved in B cell activation were analysed with 

CAPS versus 538 protein hits found by non-raft APEX2 targeted proximity labelling/pull-down 

mass spectrometry. The top co-evolving protein partners were ranked and analysed for 

comparison in Cytoscape which allows the usage of tested biochemically obtained interaction 

information. By CD79a the top four CAPS found co-evolving partners had no true functional 

interaction as the only common interaction neighbour was Poly – Ubiquitin-C, which 

promotes protein recycling irrespective of protein functionality. By Lyn the CAPS output was 

better supported by Cytoscape output. However there are clearly more closely interacting 

partners to Lyn among the 538 proteins that were not even found to be co-evolving with 

CAPS.  For this reason the residue pairs that are the basis for final “positive” inter-protein co-

evolution of the top ranked CAPS co-evolving CD79a or Lyn were examined. It was revealed 

that CAPS does not filter out the MSA columns containing gaps as set by the input parameter 

of gap threshold of 1. CAPS does not filter out even the MSA columns containing more than 

50% gaps as would be expected if default value was used in case the input parameter was 

ignored. Furthermore the gaps in the columns are used for calculation of correlation factors. 

As an example, the residue position column that contains a change in one amino acid to 

another at one stage in evolution will be highly correlating with the column where at the 

same time in evolution there is a gap (as seen in Figure 13 C and 14 C).  

Unfortunately this issue could not be resolved because of the thesis time constraint and due 

to the discontinuation of the CAPS support research team, whose members were otherwise 

very helpful and cooperative.  
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6. Conclusions 

The aims of this thesis were to: 

- automatize and scale up the retrieval of orthologous sequences for hundreds of proteins 

identified from mass spectrometry or elsewhere 

- create multiple sequence alignments and phylogenetic tree presentations for the retrieved 

orthologues of each protein 

- prepare these as input files for multicore parallel run of CAPS – coevolution analysis 

programme on supercomputer 

- combine CAPS multiple output files into comprehensible readout of adaptive co-evolution 

Each of these steps was achieved. Unfortunately CAPS analysis did not perform as expected, 

the possible reasons discussed in section 5. The achieved automatic MSA and TOL creation 

can be used for other than CAPS co-evolutionary approaches which are practically all based 

on MSA input and may have higher predictive power (as shown in Figure 5). The other 

approach could be (Bio) Python pre-processing of MSAs by removal of gap-containing  

columns prior to CAPS analysis. 
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8. Appendices 

FIRST PYTHON SCRIPT CONTAINING STEPS 1-2-3-4-5-6-B: 

import csv #for writing CSV with columns of species for each protein 
from itertools import islice #for working with files, geting lines of choice-to extract the second line for species fasta 
import itertools 
import re #for string manipulation 
import ast #for work with dictionaries 
import urllib2 
from lxml import etree 
import os 
from Bio import SeqIO #biopython to change OrthoDBFAST headers 
import time 
start_time = time.clock() 
import sys 
import urllib 
import urllib2 
import json 
import time 
import re #for strings 
import os#for file path 
import Bio 
from Bio import AlignIO  
from Bio import SeqIO 
from Bio.SeqIO.FastaIO import SimpleFastaParser 
from Bio.Align.Applications import ClustalwCommandline 
from Bio import pairwise2 
from Bio.SubsMat import MatrixInfo as matlist 
matrix = matlist.blosum62 
import subprocess #to manage supprocess 
import sys 
def launchWithoutConsole(command, args): 
    """Launches 'command' windowless and waits until finished""" 
    startupinfo = subprocess.STARTUPINFO() 
    startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW 
    return subprocess.Popen([command] + args, startupinfo=startupinfo).wait() 
import requests 
import time 
def bordered(text): 
    lines = text.splitlines() 
    width = max(len(s) for s in lines) 
    res = [unichr(0x2588) + unichr(0x2588)* width + unichr(0x2588)] 
    for s in lines: 
        res.append(unichr(0x2588) + (s + ' ' * width)[:width] + unichr(0x2588)) 
    res.append(unichr(0x2588) + unichr(0x2588) * width + unichr(0x2588)) 
    return '\n'.join(res) 
 
start_time = time.clock() 
seqfast="" 
listofprotsspecies=[]###to make species list 
singlespecieslist=[] 
outype=".xml"#'.txt'#could be ".fasta" or ".tab" 

###################################################################### STEP 1:UNIPROT IDENTIFIERS  ###################### 

listofUPids = ["P11911","Q99KK9", "Q80V62", "P16277", "P29351"] #### IMPORTANT PUT HERE THE LIST OF UNIPROT IDENTIFIERS, PROTEINS OF INTEREST! 
filelistfasta=[]###########file list from which folders are made and files moved 
filelistdnd=[] 
from ete3 import Tree 
def diff(first, second): #function for checking if the list of species in trees changes 
        second = set(second) 
        return [item for item in first if item not in second] 
################################################# 

def MusclePrank (symbol, RecName, GeneName): (function containing step 5, 6 and B is declared before step 2)  

    ############################################################### STEP 5: first part making MUSCLE MSA alignement and tree 

    flname=symbol   
    from Bio.Align.Applications import MuscleCommandline 
    muscle_exe = r"E:\Program Files\muscle\muscle3.8.31_i86win32.exe" ######IMPORTANT CHANGE APROPRIATELY 
    muscle_cline = MuscleCommandline(muscle_exe, input=flname+".fs",  tree1="tree.dnd")  
    stdout, stderr = muscle_cline() 
    from StringIO import StringIO 
    from Bio import AlignIO 
    startupinfo = subprocess.STARTUPINFO() ####to avoid command line window pop-up!!! 
    startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW 
    handle=StringIO(stdout) 
    align = AlignIO.read(handle, "fasta") 
    AlignIO.write(align, 'aligned.fasta', "fasta") 
    print"phyloDraw" 
    handle.close() 
     

    ############################################################### STEP 6:second part doing prank MSA based on prealigned muscle FASTA and muscle phylogenetic 

Newick tree 
    from Bio.Align.Applications import PrankCommandline 
    #I had to modify to include partaligned parameter!!! \Python27\Lib\site-packages\Bio\Align\Applications\_prank.py 
    entryname=RecName+"_"+GeneName+"_"+symbol 
    prank_cline = PrankCommandline(d="aligned.fasta",o=entryname, # prefix only! 
                                   f=8, # FASTA output 
                                   t="treetest.dnd",# noxml=True, 
                                   showtree=entryname, 
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                                   iterate=15,partaligned=True, 
                                   prunetree=True, prunedata=True)#prunedata 
    from StringIO import StringIO 
    from Bio import AlignIO 
    stdout, stderr = prank_cline() 
    print "stdout",stdout 
    stdout, stderr = prank_cline() 
    print "stdout",stdout 
    from Bio import Phylo 
    tree = Phylo.read(entryname+".dnd", "newick") 
    print bordered("PRINTING ASCII TREE: Phylo.draw_ascii(tree)") 
    print bordered("UniprotACC: "+UniprotAcc) 
    Phylo.draw_ascii(tree) 
    filelistfasta.append(entryname+".fas")# 
    filelistdnd.append(entryname+".dnd")# 
 
    print bordered("UniprotACC: "+UniprotAcc) 

    ###################################################### STEP B: preparation of TOL pruning to match the PRANK MSA output 

    treewhole = Tree("treetest.dnd", format=1) #reading the original tree file 
    tree = Tree(entryname+".dnd", format=1) #reading the tree file from prank, with less species 
    trwhlnames=[leaf.name for leaf in treewhole] #making a list of species from original tree file with all species 
    print "len(ntrwhlnames)",len(trwhlnames) 
    print trwhlnames 
    trnames=[leaf.name for leaf in tree]#making a list of species from prank tree file with all species 
    print "len(trnames)",len(trnames) 
    import copy 
    newtree = copy.deepcopy(treewhole) #copy original tree file so it can be modified 
    newtree.prune(trnames) #PRUNING THE ORIGINAL TREE WITH PRANK FILE, SO ONLY THE SPECIES FROM PRANK FILE REMAIN 
    newtree.write(format=1, outfile=entryname+".tre") #writing the tree file with prank species 
    ntrnames=[leaf.name for leaf in newtree] #making a list of species from prank-pruned original tree file with all species 
    print "len(ntrnames)",len(ntrnames) 
    print "diff(trwhlnames,ntrnames)",diff(trwhlnames,ntrnames) #checking that new prank-pruned original tree file really contains less species than original 
    print bordered("UniprotACC: "+UniprotAcc) 
for UniprotAcc in listofUPids:########FOR LOOP TO GO THROUGH ALL UNIPROT 
IDENTIFIERS########################################################################################## 
    try: 
        print bordered("UniprotACC: "+UniprotAcc) 
        singlespecieslist=[]#restarting single species list 
        singlespecieslist.append(UniprotAcc) 

        #########################################################################STEP 2 - Online retrieval of protein sequence at Uniprot 

        urlStr = 'http://www.uniprot.org/uniprot/'+UniprotAcc+outype 
        response = requests.get(urlStr) 
        with open('feed.xml', 'wb') as file: 
            file.write(response.content) 
        seqfast 
        tree = etree.parse("feed.xml") 
        root = tree.getroot() 
        print root.tag  
        print root.attrib 
 
        for entry in root.findall('entry', root.nsmap): 
            if entry.find('protein/recommendedName/fullName', root.nsmap) is None:  ####in case uniprot accession xml has missing information on this: 
                RecName="" 
            else: 
                RecName = entry.find('protein/recommendedName/fullName', root.nsmap).text 
            singlespecieslist.append(RecName)#second element uniprot protein name 
            print unichr(0x2588),"Recommended Name: ",RecName 
            if entry.find('gene/name', root.nsmap) is None:  ####in case uniprot accession xml has missing information on this: 
                GeneName="" 
            else: 
                GeneName = entry.find('gene/name', root.nsmap).text 
            print unichr(0x2588),"GeneName: ",GeneName 
            singlespecieslist.append(GeneName)#third element  
            for altName in entry.findall('protein/alternativeName/fullName', root.nsmap):  
                print unichr(0x2588),"Alternative Name: ",altName.text     
            for subcelloc in entry.findall("comment/subcellularLocation/location", root.nsmap):  
                print unichr(0x2588),"Subcell Loc: ",subcelloc.text 
            sequence = entry.find('sequence', root.nsmap).text 
            seqfast=">"+UniprotAcc+sequence 
            print "Sequence Length: ",len(sequence) 
            singlespecieslist.append(str(len(sequence))) 
            print seqfast 
            for fulnm3 in root.iter('fullName'): 
                print fulnm3.text 
        with open('seqfast.fasta', 'wb') as file: 
            file.write(seqfast) 
        ##############part in case OrthoDB would update the matching of UniprotID to OrthoDB 
identifiers##################################################################GETTING DATA FROM ODB SITE 
        #OrDBid="Q9HCC0" #works also directly from uniprot! 
        OrDBid="-"#UniprotAcc #testing false input 
        #the output is {"status": "ok", "message": "no clusters found", "data": [], "count": 0} 
        #OrDBid="1433B_MOUSE"#this should be read from uniprot TAB or BLASTED 
        urlStr = "http://www.orthodb.org/fasta?query="+OrDBid+"&level=7742&species=&universal=&singlecopy=" 
        response = requests.get(urlStr) 
        print response.content 
        with open('original.fs', 'w') as file: 
            file.write(response.content) 
        #print file 
        #add species names: 
        #orthoDB species IDS D:\MASTERS\PYTHON\OrthoDB\odb9v1_species.tab 
        urlStr = "http://www.orthodb.org/tab?query="+OrDBid+"&level=7742&species=&universal=&singlecopy=" 
        response = requests.get(urlStr) 
        print response.content 
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        with open('original.tab', 'w') as file: 
            file.write(response.content)           
        #print file    ####IF RESPONSE FROM ODB EMPTY THEN I SEARCH WITH BLAST FOR CLOSEST OTHER UNIPROT OR ODB PROTEIN 
        print response.content 
        print  
        if ast.literal_eval(response.content)["count"]==0: #### with ast.literal_eval turning string that looks like dictionary into dictionary 
            print "EMPTY" 
         
        ############BLASTING UNIPROT DATABASE, because sometimes Uniprot can't find its own identifiers!!! 
             from Bio.Blast.Applications import NcbiblastpCommandline  #for BLAST 
 
            db1 = "uniprot-ODB.fasta"  #Uniprot mouse PROTEIN FASTA DATABASE, that has also ODB identifiers 
            ########IMPORTANT CHANGE THE PATH TO THE UNIPROT SEQUENCE BELLOW! 
            blast_cline = NcbiblastpCommandline(query="D:\MASTERS\PYTHON\OrthoDB\seqfast.fasta", db=db1, evalue=0.001, outfmt=5, 
out="D:\MASTERS\PYTHON\OrthoDB\LocUniprot_BLASToutput.xml") 
            stdout, stderr = blast_cline() 
            print(stdout,stderr) 
            print "\n" 
            print bordered("UNIPROT BLAST") 
            print bordered("%.2f" %(time.clock() - start_time)+" seconds") #time it needs for the whole script! 
            from Bio.Blast import NCBIXML  #using Biopython library 
            result_handle = open("LocUniprot_BLASToutput.xml")  
            blast_record = NCBIXML.read(result_handle)  #using Biopython library 
             
            first = True ####geting just the first top alignement 
            for alignment in blast_record.alignments: #using Biopython library 
                for hsp in alignment.hsps: #using Biopython library 
                    if first: 
                        #if hsp.expect < E_VALUE_THRESH: 
                        print('****Alignment****') 
                        print('sequence altitle:', alignment.title) 
                        #print alignment.title  #string containing ensembl IDs 
                        print('length:', alignment.length) 
                        print('e value:', hsp.expect) 
                        print(hsp.query[0:75] + '...') 
                        print(hsp.match[0:75] + '...') 
                        print(hsp.sbjct[0:75] + '...') 
                        ALTTL=alignment.title 
                        UNIPRidx=ALTTL.find("|", 17, 23)+1#len(ALTTL))+3 
                        UNIPRidx2=ALTTL.find("|",  23, 35)#UNIPRidx, len(ALTTL)) 
                        UNIPRacc=ALTTL[UNIPRidx:UNIPRidx2] 
                        print bordered("BLASTED UNIPROTACCESSION"+UNIPRacc) 
                         
                        print "orig UNIPR sq",(len(sequence))  #comparing uniprot input seq length and ensembl hit sequence length 
                        print "alt UNIPR sq",int(alignment.length) 
                        uniprlnght=int(alignment.length) 
                        print unichr(0x2588),"% length difference of orig/alt sq:","%.2f" % ((len(sequence)/float(alignment.length)-len(sequence)/(alignment.length))*100), "%" 
                        Uniprotsq=hsp.sbjct 
                        Sqnobrks=sequence.replace('\n', '').replace('\r', '') 
                        print "Sqnobrks",Sqnobrks 
                        first = False #ending to make sure only first - most similar hit is taken 
 

 ############################################STEP 3: LOCAL BLASTING for ORTHODB IDs  

################################################################################################################## 
             
            from Bio.Blast.Applications import NcbiblastpCommandline  #for BLAST 
 
            db2 = "MusMusculusODB.fs"  #Uniprot mouse PROTEIN FASTA DATABASE, that has also ODB identifiers 
            ##change the path as needed below! 
            blast_cline = NcbiblastpCommandline(query="D:\MASTERS\PYTHON\OrthoDB\seqfast.fasta", db=db2, evalue=0.001, outfmt=5, 
out="D:\MASTERS\PYTHON\OrthoDB\LocODB_BLASToutput.xml") 
            stdout, stderr = blast_cline() 
            print(stdout,stderr) 
             
            ###parse the LocENSMBL_BLASToutput.xml 
 
            print bordered("UniprotACC: "+UniprotAcc) 
            print "\n" 
 
            print bordered("ODB BLAST") 
            print bordered("%.2f" %(time.clock() - start_time)+" seconds")  #time it needs for the whole script! 
            from Bio.Blast import NCBIXML  #using Biopython library 
            result_handle = open("LocODB_BLASToutput.xml")  
            blast_record = NCBIXML.read(result_handle)  #using Biopython library 
             
            first = True ####geting just the first top alignement 
            for alignment in blast_record.alignments: #using Biopython library 
                for hsp in alignment.hsps: #using Biopython library 
                    if first: 
                        #if hsp.expect < E_VALUE_THRESH: 
                        print('****Alignment****') 
                        print('sequence:', alignment.title) 
                        print alignment.title  #string containing ensembl IDs 
                        print('length:', alignment.length) 
                        print('e value:', hsp.expect) 
                        print(hsp.query[0:75] + '...') 
                        print(hsp.match[0:75] + '...') 
                        print(hsp.sbjct[0:75] + '...') 
                         
                        hsp.sbjct 
 
                         
                        ALTTL=alignment.title 
                        ODBidx=ALTTL.find("10090:", 0, len(ALTTL)) ##we are looking through mouse proteins with IDs that start with Mus musculus TAXid 10090 
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                        ODBacc=ALTTL[ODBidx:len(ALTTL)] 
                        print ODBacc 
                        print bordered("BLASTED ODBACCESSION"+ODBacc) 
                        print "orig UNIPR sq",(len(sequence))  #comparing uniprot input seq length and ensembl hit sequence length 
                        print "ODB sq",int(alignment.length) 
                        print unichr(0x2588),"% length difference of origUnipr/ODB sq:","%.2f" % ((len(sequence)/float(alignment.length)-len(sequence)/(alignment.length))*100), "%" 
                        ODBsq=hsp.sbjct 
                        #ODBscore=pairwise2.align.globaldx(Sqnobrks, ODBsq, matrix, score_only=1)####PAIRWISE SCORING OF SIMILARITY, NO GAP PENALTY CURRENTLY 
                        #print "Pairwise alignement score is: ",ODBscore 
                        print bordered("comparing uniprt ODB BLAST:") 
                        print unichr(0x2588),"% length difference of blast Unipr/ODB sq:","%.2f" % (( uniprlnght/float(alignment.length)- uniprlnght/(alignment.length))*100), "%" 
 
                        #ODBUniprtscore=pairwise2.align.globaldx(Uniprotsq, ODBsq, matrix, score_only=1)####PAIRWISE SCORING OF SIMILARITY, NO GAP PENALTY CURRENTLY 
                        #print "Pairwise alignement score is: ",ODBUniprtscore 
 
                        #COULD SET SOME THRESHOLD HOW HIGH SHOULD THE SCORE OR LENGHT SIMILARITY BE IN ORDER TO PROCEED 
                        first = False #ending to make sure only first - most similar hit is taken 
 

            ###########################################################################STEP 4: RETRIEVAL OF OrthoDB Orthologous sequences, parsing and filtering them 

for homologs 
            #OrDBid="Q9HCC0" #works also directly from uniprot! 
            OrDBid=ODBacc#OR ODBacc #EITHER FROM UNIPROT OR FROM ODB BLAST? #THINK ABOUT IT, WHICH COULD BE BETTER, ARE THERE SOME EXCLUSIVE CASES ETC... 
            #the output is {"status": "ok", "message": "no clusters found", "data": [], "count": 0} 
 
            #OrDBid="1433B_MOUSE"#this should be read from uniprot TAB or BLASTED 
            urlStrfasta = "http://www.orthodb.org/fasta?query="+OrDBid+"&level=7742&species=&universal=&singlecopy=" 
 
            responsefasta = requests.get(urlStrfasta) 
            print responsefasta.content 
            urlStrtab = "http://www.orthodb.org/tab?query="+OrDBid+"&level=7742&species=&universal=&singlecopy=" 
 
            responsetab = requests.get(urlStrtab) 
            print responsetab.content 
            with open('original.fs', 'w') as original, open('original.tab', 'w') as originaltab:#, open('corrected.fs', 'w') as corrected: 
                original.write(responsefasta.content) 
                original.close 
                originaltab.write(responsetab.content) 
                originaltab.close 
            print bordered("UniprotACC: "+UniprotAcc) 
 
        oldinstance=""#for comparison of homologs 
        maxspecscore=0#for pairwise scoring of sequences 
        maxrecord=0 
        previousrecord=0 
 
            #SOME SPECIES HAVE SEVERAL HOMOLOGS, SO WE NEED TO FIND WHICH THOSE ARE AND COMPARE THEM TO FIND THE HOMOLOG, THAT IS CLOSEST TO THE MOUSE ORIGINAL 
SEQUENCE 
        with open('original.tab', 'r') as originaltab:  ####just to get first instance of species 
            for firstline in islice(originaltab, 1, 2): #taking second line, because the first one is the header 
                oldinstance=(re.split(r'\t+', firstline)[4].replace(" ", "_")).lower() 
                print "#######SLICENOW",oldinstance             
            originaltab.close 
        first = 1 
        with open('original.fs', 'r') as original:  ####just to get first instance of species 
            records = SeqIO.parse(original, 'fasta') 
            for record in records:#, 0, 1): #taking first line record 
                if first: 
                    print "RECORD: ",record 
                    print "RECORDid: ",record.id 
                    print "RECORDseq: ",record.seq 
                    print "RECORDname: ",record.name 
                    print "RECORDdesc: ",record.description 
                    record.description="" 
                    record.id=oldinstance#+" "+record.id 
                    previousrecord=record 
                    maxrecord=record 
                    first = False  
            original.close  
        print bordered("UniprotACC: "+UniprotAcc) 
        print "#########CHECKING after file closing########: ",maxrecord 
 
        print bordered("HEAVY COMPUTING OF PAIRWISE ALIGNEMENTS, BE PATIENT!")             
        with open('original.fs', 'r') as original, open('original.tab', 'r') as originaltab, open(UniprotAcc+'.fs', 'w') as corrected: 
             
            records = SeqIO.parse(original, 'fasta') 
            next(originaltab)#skipping header row by tab file 
            next(originaltab) 
            next(records) 
            i=0 
            for record, line in zip(records, originaltab): 
                i=i+1 
                newinstance=(re.split(r'\t+', line)[4].replace(" ", "_")).lower() 
                #print record.id, "\n", i,". " 
                #print re.split(r'\t+', line)[4].replace(" ", "_")#splits original line by tabs, takes 4th element -species name and replaces space with underscore 
                if newinstance!=oldinstance:#checking if the current species isnt the same as species in the previous instance 
                    record.id=newinstance#+" "+record.id  
                    record.description="" 
                    SeqIO.write(previousrecord, corrected, 'fasta')#if it is not the same, now it will save the previous species (max record) into fasta 
                    singlespecieslist.append(oldinstance) 
 
                    #oldinstance=newinstance #updating species instance 
                    maxrecord=record #since this is new species maxrecord is restarted 
                    previousrecord=record #as well as previous record is updated 
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                    maxspecscore=(( len(Sqnobrks)/float(len(record.seq))- len(Sqnobrks)/len(record.seq))*100)#len#pairwise2.align.globaldx(Sqnobrks, record.seq, matrix, score_only=1) 
                    #because the pairwise alignment is way to slow I simply used the best length match 
 
                    #since this is new species maxscore needs to be restarted 
                        ###at this point I could make a special list for a file with just species names in columns 
 
                else: #in case current species is the same as previous 
                    newspecscore=(( len(Sqnobrks)/float(len(record.seq))- len(Sqnobrks)/len(record.seq))*100)#pairwise2.align.globaldx(Sqnobrks, record.seq, matrix, score_only=1) #comparing 
the pairwise score of current sequence with uniprot 
                    if newspecscore<maxspecscore:#if the new pairwise score is lower than max score 
                        previousrecord=maxrecord#then "previous record" will be the record with so far max score (maxrecord), and the current record will be skipped 
                    else: #if the new pairwis score is not lower (but higher) than the previous max score 
                        maxspecscore=newspecscore #then new score becomes maxspecscore 
                        record.id=newinstance#+" "+record.id 
                        record.description="" 
                        maxrecord=record #the current record becomes maxrecord  
                        previousrecord=record #and also "previousrecord" is updated              
                oldinstance=newinstance #so next round in for loop, next line will have the previous line to compare to...  
            original.close 
            originaltab.close 
            corrected.close 
        MusclePrank(UniprotAcc, RecName, GeneName) 
        listofprotsspecies.append(singlespecieslist)#adding individual proteins specieslist 
    except Exception as e: ####PRINTOUT OF ALL THE ERRORS FOR EACH UNIPROT IDENTIFIER THAT COULDNT BE PROCESSED 
        try: 
            with open('errors.txt', 'a') as errorsf: 
                errorsf.write("UniprotACC: "+UniprotAcc+"\n") 
                errorsf.write("RecName: "+RecName+"\n") 
                errorsf.write("GeneName: "+GeneName+"\n") 
                print str(e) 
                errorsf.write(str(e)+"\n") 
                errorsf.write("\n") 
                errorsf.close 
        except: 
            pass 
        pass 
export_data = itertools.izip_longest(*listofprotsspecies, fillvalue='-') 
 
print export_data 
with open('allprotsspecieslist.txt', 'w') as myfile: 
      wr = csv.writer(myfile) 
      wr.writerows(export_data) 
myfile.close() 
 
print bordered("THE END: "+ "%.2f" %(time.clock() - start_time)+ " seconds") #time it needs for the whole script! 
 
print 5*unichr(9989) 
 

 

SECOND PYTHON SCRIPT CONTAINING STEP 7 

######################################################################################STEP 7: COMBINING THE FILES FOR ALL POSSIBLE PAIRS OF PROTEINS 

mypathfas=r"D:\MASTERS\TEST2\FAS" #IMPORTANT copy here the path to your tre files 
mypathtre=r"D:\MASTERS\TEST2\TRE" #IMPORTANT copy here the path to your fas files 
#make sure names and number of files in each folder match 
 
size=2  #IMPORTANT  put in the number of files you want per folder 
#if set to 2 it will make all possible pairs so each protein has a pair with another one from the source folder 
#if you want all the files to be combined just with one repeating protein set to 1, but specify the file to be added bellow (un/comment the command)  
 
import os.path 
import itertools 
import os 
dir_path = os.path.dirname(os.path.realpath(__file__))#current path where this .py is could be changed 
#put all the files into this dir 
from os import listdir 
from os.path import isfile, join 
import shutil 
def srtngfls(mypath, size): 
    onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] 
    parentfolder=os.path.abspath(os.path.join(mypath, os.pardir)) 
    dirsorting=1 
 
    filename, file_extension = os.path.splitext(onlyfiles[0]) 
    file_extension = file_extension.translate(None, '.') 
    if dirsorting==1:   
        print onlyfiles 
        print file_extension 
        #### REDISTRIBUTING THE FILES INTO PAIRED 
FOLDERS######################################################################################################### 
        ###first creating folders and copying FASTA files 
        iterator=0 
        for pair in itertools.combinations(onlyfiles, size): 
            print pair 
            iterator=iterator+1 
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            if not os.path.exists(parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)): 
                os.makedirs(parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)) 
            #shutil.copy2('/src/file.ext', '/dst/dir') 
            x=0 
            for x in range(0,size): 
                shutil.copy2(mypath+"\\"+pair[x], parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)) 
                #shutil.copy2(mypath+"\\"+pair[1], parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)) 
                #shutil.copy2(mypath+"\\"+pair[2], parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)) 
 
            #fas and tre files need to be set into parent directory 
            #UNCOMMENT AND SPECIFY THE FILENAME AND PATH TO THE FILE YOU WANT TO BE ADDED TO EACH FOLDER 
            #shutil.copy2(parentfolder+"\\"+"IidIgAIntrct_B-cell antigen receptor complex-associated protein alpha chain_Cd79a_P11911."+file_extension, 
parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)) 
            #shutil.copy2(parentfolder+"\\"+"Sarcolipin_Sln_Q9CQD6."+file_extension, parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)) 
 
srtngfls(mypathtre, size) #calling of function for tre 
srtngfls(mypathfas, size) #and fas files 
 

 

COMMAND LIST FOR STEP 8 CAPS PARALLEL MULTICORE RUNNING IN LINUX ENVIRONMENT ON TAITO CSC SUPERCOMPUTER  

time (cd /wrk/sustarvi/TEST/folder128759 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128759/ --inter -T tre128759/ -g 0.6 -H mus_musculus -c) 
time (cd /wrk/sustarvi/TEST/folder128760 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128760/ --inter -T tre128760/ -g 0.6 -H mus_musculus -c) 
time (cd /wrk/sustarvi/TEST/folder128761 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128761/ --inter -T tre128761/ -g 0.6 -H mus_musculus -c) 
time (cd /wrk/sustarvi/TEST/folder128762 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128762/ --inter -T tre128762/ -g 0.6 -H mus_musculus -c) 
time (cd /wrk/sustarvi/TEST/folder128763 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128763/ --inter -T tre128763/ -g 0.6 -H mus_musculus -c) 
time (cd /wrk/sustarvi/TEST/folder128764 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128764/ --inter -T tre128764/ -g 0.6 -H mus_musculus -c) 
…….. 

 

BASH SCRIPT FOR STEP 8 IF ABOVE COMMAND LIST CONTAINS >700 COMMANS (LINES) IT NEEDS TO BE SPLIT AND EACH SUB-

COMMAND LIST NEEDS TO BE RUN SUBSEQUENTLY, THIS BASH SCRIPT AUTOMATIZES THE AUTOMATIC RUN THROUGH ALL SUB-COMMAND 

LISTS  

#!/bin/bash          
sbatch_commandlist -commands xaa 
sbatch_commandlist -commands xab 
sbatch_commandlist -commands xac 
sbatch_commandlist -commands xad 
sbatch_commandlist -commands xae 
sbatch_commandlist -commands xaf 
sbatch_commandlist -commands xag 
sbatch_commandlist -commands xah 
sbatch_commandlist -commands xai 
sbatch_commandlist -commands xaj 
sbatch_commandlist -commands xak 
… 
 
 

COMMAND LIST FOR STEP 8 MOVEMENT AND SIMULTANEOUS RENAMING OF CAPS OUTPUT FROM EACH INDIVIDUAL 

SUBFOLDER INTO ONE COMMON FOLDER FOR ARCHIVING AND DOWNLOAD FROM SUPERCOMPUTER  

mv /wrk/sustarvi/TEST/folder128759/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128759.csv 
mv /wrk/sustarvi/TEST/folder128760/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128760.csv 
mv /wrk/sustarvi/TEST/folder128761/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128761.csv 
mv /wrk/sustarvi/TEST/folder128762/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128762.csv 
mv /wrk/sustarvi/TEST/folder128763/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128763.csv 
mv /wrk/sustarvi/TEST/folder128764/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128764.csv 
mv /wrk/sustarvi/TEST/folder128765/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128765.csv 
… 

 

THIRD PYTHON SCRIPT CONTAINING STEP 9 

######################################################################################STEP 9: EXTRACTION OF TOP ROWS IN CAPS OUTPUT COEV_INTER FILES 

mypath=r"D:\MASTERS\TEST2\IgA12720_AllFiles\foldercoev" #put here the path to the folder with CAPS output files 
 
import re 
import csv 
import itertools 
import os 
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import os.path 
from os import listdir 
from os.path import isfile, join 
import shutil 
onlyfiles = [f for f in listdir(mypath) if (isfile(join(mypath, f)) & f.endswith('.csv'))] 
for file in onlyfiles: 
    print file 
    with open(mypath+"\\"+file, 'rb') as csvfile: 
        spamreader = csv.reader(csvfile, delimiter='\t')#, quotechar='|') 
        templist=[] 
        indtemplist=[str(csvfile)]       
        for grow in spamreader: 
            templist.append(grow) 
        if len(templist)>2: 
            for element in templist[1]:#[row]: 
                print "ELEMENT", element," type: ",type(element) 
                element = re.sub("[']", "", element) 
                tempsbel=element.split("_") 
                for sbelement in tempsbel: 
                    print sbelement 
                    indtemplist.append(sbelement) 
                    savestr='\t'.join(indtemplist) 
                    print "savestr", savestr 
            with open(mypath+"\\"+'extractedCAPSoutput.txt', 'a') as pfile: 
                pfile.write(savestr+'\n') 
                pfile.close 
 
 

LIST OF MS HIT PROTEINS: 
Cep55,Pacsin2,Hmmr,Rnf219,Arhgap30,Psmd5,Sugt1,Rfc1,Prrc2a,Crocc,Blnk,Scamp3,Galk1,Eef1d,Rbm3,Dlgap5,
Mta2,Dnmt1,Fam83b,Caskin2,Psme2,Aldh16a1,Fgd6,Anxa11,Dhx30,Slc39a6,Pdlim2,Atxn2l,Eif3f,Anxa7,Scrib,Slc3
9a10,Snap29,Prdx5,Pag1,Eif4g1,Utp3,Nsdhl,Ybx1,Lyar,Nfkb1,Tax1bp1,Stx7,Kars,Il16,Abcf1,Ubap2,Msh6,Nup214,
Tufm,Lasp1,Atp5o,Acsl4,Lonp1,Pfas,U2surp,Eif4h,Hcfc1,Swap70,Was,Lrrc40,Smc4,Eif2a,Ranbp2,Pdcd6,Ncstn,Khs
rp,Edc4,Afdn,Nvl,Lrrc59,Stip1,Sri,Slamf6,Sec24a,Nup155,Mtmr14,Ikzf1,Pdcd6ip,Eif4g3,Nsun2,Slc38a2,Abcb7,Thu
mpd3,Elp1,Purb,Pdlim5,Ppp1r12a,Uba1,Eif3g,Snx27,Ap3b1,Prmt5,Gart,Nedd4,Ptk2b,Chd4,Nampt,Lig1,Asns,Igh
m,Csde1,G3bp2,Carm1,Fam98a,Usp6nl,Csrp1,Eps15,Arfgap2,Rangap1,Eif3b,Hadha,Cap1,Plaa,Parp1,Ints7,Dnaja1
,Eif3c,Adgrl2,Eif3h,Pacsin1,Mars,Erap1,Kif23,Trip13,Ablim1,Hsd17b12,Apbb1ip,Kif11,Dhx36,Sh3gl2,Rrp12,Cdv3,S
mc1a,Ehd4,Map2k1,Sars,Dag1,Zdhhc5,Ptpra,Ddx1,Gtpbp1,Sqstm1,Psma5,Hnrnpd,Rars,Ruvbl2,Snap23,Frs2,Nap1
l1,Wars,Gnas,Lcp1,Clic4,Inpp5d,Npepps,Cdc42,Smc2,Ddx19a,Pfkl,Itch,Kif5b,Bzw1,Rock1,Rbbp7,Slc4a7,Dock8,Pip
4k2b,Msh2,Mtss1,Rrm2,Tardbp,Zc3h15,Mtrex,Snrnp200,Sec31a,Erbin,Ipo9,Psmd11,Gnaz,Rab14,Myh9,Sf3b1,Cn
n2,Prkaca,Llgl1,Xpnpep1,Cdc37,Hspd1,Limd1,Top2a,Flna,Ptprc,Dhx15,Dnajc5,Pafah1b1,Dlg1,Rplp0,Rnpep,Hnrnp
f,Clasp2,Vav1,Elmo1,Rtcb,Abi1,Ddx17,Fcgr2,Pi4ka,Dbnl,Snd1,Slc16a1,Mcm4,Fyn,Polr2b,Kif15,Aldh18a1,Gspt1,M
ap3k7,Rab1b,Rala,Nxf1,Nedd9,Ywhaq,Myo1g,Plcg2,Wasf2,Usp9x,Picalm,Flnb,Lars,Timm50,H2D1,Ipo5,Ddx27,Can
d1,Mcm6,Lbr,Psmc2,Psd4,Supt16h,Slc3a2,Slc7a1,Tpp2,Dpysl2,Sec23b,Sptbn1,Osbp,Cd22,Akap12,Prpf6,Igsf3,Hdl
bp,Tln1,Dhx9,Ptpn23,Smarca4,Dock11,Eftud2,Ywhae,Ywhag,Psmd12,Psmd2,Psmd6,Psmc6,Psmc1,Psmc3,Psmc4,
Psmc5,Mpst,Pdpk1,Rps12,Rps13,Rps17,Rps19,Prkaa1,Mpp1,Rpl10a,Rpl30,Rpl35a,Rpl38,Rpl9,Abi3,Aacs,Acta1,Ac
tr3,Ahsa1,Adsl,Adss,Arf4,Arf6,Nudt5,Aars,Akr1b1,Actn4,Aimp1,Aimp2,Ano6,Ap1g1,Ap2b1,Bax,Nars,Atl3,Pfkp,Ata
d3,Aurkaip1,Btla,Cd79b,Cd72,Cd19,Grk2,Blvra,Tmco1,Cacybp,Prkar1a,Csnk1a1,Cavin1,Cnot1,Cd2ap,Cd82,Cnbp,C
lic1,Cpsf3,Copa,Copb1,Arcn1,Cc2d1b,Ccdc6,Ncaph,FAM120A,Cpne3,Coro1a,Coro1b,Coro1c,Ctps1,Chordc1,Dync
1h1,Cyfip2,Acot7,Dock2,Drg2,Dip2b,Dcbld1,Prim1,Polr1c,Dnaja2,Stt3a,Cbl,Ehd1,Ehd3,Eef1b,Elp3,Emb,Sh3glb1,E
ps15l1,Eif4a3,Etf1,Eif2s2,Eif2s3x,Eif3a,Eif4b,Eif5a,Eif5,Dis3,Xpo1,Cse1l,Capza1,Capza2,Capzb,Fcrl1,Aldoa,Gphn,G
csam,Gfpt1,Glrx3,Gstp2,Gstt3,Pygb,Gmps,Grb2,Rheb,Gnai2,Gnai3,Gna13,Hspa4,Hsph1,Hcls1,Hgs,Hnrnpl,Hip1r,H
prt1,Igbp1,Kpna3,Kpnb1,Impdh2,Isyna1,Iars,Klc1,Kifc1,Larp1,Lmnb1,Lrch1,Lrch4,Cd37,Lpxn,Hells,Lsp1,Mif,Mpp6,
Immt,Map1s,Mink1,Tomm40,Mapk1,Map4k1,Bub3,Mad2l1,Msn,Mthfd1l,Abcb1a,Trmt112,Naa15,Notch2,Nmral
1,Nsfl1c,Nup107,Nup160,Nup93,Nop58,Npm1,Fkbp4,Pes1,Farsa,Pebp1,Pip5k1a,Pgk1,Plscr3,Prpsap2,Atp2b1,Pls3
,Plekha2,Prpf8,Ddx20,Ddx6,Phb,Adrm1,Psme1,Prmt1,Pdia3,Fam49b,Mgea5,Sec61a1,Rp2,Rel,Glyr1,Racgap1,Rasa
2,Rasa3,G3bp1,Rasgrp2,Rac1,Rras2,Rab11a,Rab35,Rab5c,Rab7a,Rab8a,Rap1b,Upf1,Rfc5,Rpa1,Arhgdia,Rock2,Rr
m1,Rps6ka3,Nob1,Ruvbl1,Ahcyl1,Mat2a,Mat2a,Scfd1,Strap,Shcbp1,Spcs2,Stat1,Stat3,Scimp,Slc12a2,Slc12a6,Spt
an1,Srm,Ddx39b,Smc3,Fmr1,Stxbp5,Sdcbp,Ly9,Tbc1d15,Txnl1,Rela,Trim28,Rhoa,Tagln2,Tkt,Tpt1,Tm9sf3,Tnpo1,T
pi1,Tpm3,Tuba4a,Tubb5,Cdkn2a,Tsg101,Btk,Csk,Lyn,Ptpn1,Ptpn6,Usp10,Usp14,Otub1,Uba6,Cmpk1,Myo1c,Myo
1e,Vta1,Vapa,Nsf,Vdac3,Wdr91,Wbp2,Ythdf2,Zc3hav1,Znf622. 


