

High throughput prediction of inter-protein coevolution

Vid Sustar

Master´s Thesis

Master's Degree Programme in Digital Health and Life Sciences

Department of Future Technologies

University of Turku

October 2018

Abstract

UNIVERSITY OF TURKU

Department of Future Technologies/Faculty of Science and Engineering

SUSTAR, VID: High throughput prediction of inter-protein coevolution

Master´s thesis, 43 p., 7 p. appendices

Bioinformatics

October 2018

Inter-protein co-evolution analysis can reveal in/direct functional or physical

protein interactions. Inter-protein co-evolutionary analysis compares the correlation

of evolutionary changes between residues on aligned orthologous sequences. On

the other hand, modern methods used in experimental cell biological research to

screen for protein-protein interaction, often based on mass spectrometry, often lead

to identification of large amount of possible interacting proteins. If automatized,

inter-protein co-evolution analysis can serve as a valuable step in refining the

results, typically containing hundreds of hits, for further experiments. Manual

retrieval of tens of orthologous sequences, alignment and phylogenetic tree

preparations of such amounts of data is insufficient. The aim of this thesis is to

create an assembly of scripts that automatize high-throughput inter-protein co-

evolution analysis.

Scripts were written in Python language. Scripts are using API client interface to

access online databases with sequences of input protein identifiers. Through

matched identifiers, over 85 representative orthologous sequences from vertebrate

species are retrieved from OrthoDB orthologues database. Scripts align these

sequences with PRANK MSA algorithm and create corresponding phylogenetic

tree. All protein pairs are structured for multicore computation with CAPS

programme on CSC supercomputer. Multiple CAPS outputs are abstracted into

comprehensive form for comparison of relative co-adaptive co-evolution between

proposed protein pairs.

In this work, I have developed automatization for a protein-interactome screen

done by proximity labelling of B cell receptor and plasma membrane associated

proteins under activating or non-activating conditions. Applying high-throughput

co-evolutionary analysis to this data provides a completely new approach to

identify new players in B cell activation, critical for autoimmunity, hypo-immunity

or cancer. Results showed unsatisfying performance of CAPS, explanation and

alternatives were given.

KEYWORDS: inter-protein, co-evolution, interaction, high-throughput, B cell

activation

Acknowledgements

I would like to thank my supervisors Martti Tolvanen and Pieta Mattila for introducing me to

the exciting topic of my thesis. I especially thank Martti for his time, advices and spreading his

enthusiasm and motivation in the field of evolutionary bioinformatics. I thank Pieta for her

advices in the field of Immunology and overall support of my bioinformatics studies. I am

grateful to late professor Mario A. Fares and to dr. Brian Caffrey, the creators of CAPS for

their guiding instructions for parallel usage of CAPS. I would also like to acknowledge CSC – IT

Center for Science, Finland, for generous computational resources.

Special thanks goes also to colleagues Luqman Awoniyi for provision of MS protein hits and

Petar Petrov for sharing his extensive CAPS and Linux experience. I also thank all other work

colleagues that had to endure my long explanations of the master thesis.

Last, but not least I thank my life companion Mira for patience and allowing me to sacrifice

some of our family life for my pursuit of bioinformatics.

Contents

1 Introduction .. 1

1.1 B cell activation.. 1

1.2 Identification of new protein involved in B cell activation 3

1.3 Implied functional relationship of activation proteins through co-evolution

analysis ... 5

1.4 Aim of the thesis .. 6

2 Background ... 7

2.1 Co-evolution .. 7

2.2 Protein co-evolution .. 7

2.3 Orthologous genes and multiple sequence alignment (MSA) 9

2.4 Methods for protein residue co-evolution quantification 11

2.5 Co-evolution analysis using protein sequences (CAPS) .. 14

3. Materials and methods ... 19

3.1. Materials ... 19

3.1.1. List of proteins .. 19

3.1.2. Online databases ... 19

3.1.3. Software ... 21

3.2 Methods .. 21

3.2.1. General overview .. 21

3.2.2. Step A: TimeTree TOL of 85 vertebrate species 23

3.2.3 Step 1: Uniprot ID... 24

3.2.4. Step 2: Online retrieval of protein sequence at Uniprot 24

3.2.5. Step 3: Local BLAST against OrthoDB ... 24

3.2.6. Step 4: Retrieval of orthologue sequences .. 24

3.2.7. Step 5: MUSCLE pre-MSA .. 25

3.2.8. Step 6: PRANK MSA ... 25

3.2.9. Step B: Custom pruning of TOL .. 26

3.2.10. Step 7: Distribution of files .. 26

3.2.11. Step 8: Multicore parallel run of CAPS ... 26

3.2.12. Step 9: Extracting and computing multiple CAPS output 27

3.2.13. Comparing CAPS results to Cytoscape biochemical interaction data 29

4. Results ... 30

4.1 Orthologue retrieval, PRANK MSA and phylogenetic tree pruning 30

4.2 Files distribution into folders .. 32

4.3 Detection of inter-residue inter-protein co-evolution with CAPS 32

4.3.1 Testing CAPS parameters on TLR 1, 2, 6, CD79a,b proteins 32

4.3.2 Testing CAPS on unlikely co-evolving proteins .. 33

4.3.3 CAPS on proximity labelling MS hits ... 34

5. Discussion .. 38

6. Conclusions .. 41

7. References .. 42

8. Appendices ... 47

1

1 Introduction

1.1 B cell activation

Through evolution multicellular organisms had to create protection against invading

microorganisms by developing specialised immune cells. The oldest immune system is the

innate immune system in the form of macrophages that swallow invading bacterial pathogens

and natural killer cells that destroy virally infected own cells (Janeway, 2001).

Innate immune system reacts immediately, but may be insufficient. Improved effectivity of

immune system against recurring pathogens was achieved through adaptive immune system

which works hand in hand with innate immunity. Adaptive immunity appeared at around 500

million years ago in vertebrate animals. From this point on in evolution cells of innate system

such as macrophages swallow pathogens and present antigens (hence antigen presenting

cells) to cells found in special secondary lymphoid organs (Batista, 2009, Figure 1A). These

cells are called B and T cells, some of which poses unique cognate antigen receptors (Flajnik,

2010). B cells with matching receptors are activated and undergo clonal expansion into

memory and antibody producing plasma B cells, adapted to specific antigen carrying

pathogen. Upon binding, antibodies can either activate macrophages or directly incapacitate

the pathogenic process depending on the type of the antigen and antibody (Borghesi, 2006,

Figure 1B).

2

Figure 1. Presentation of the importance of B cell activation. (A) The location of B cells in

lymph nodes (violet)1 with (B) magnification where antigen presenting cells (APC) present

the antigen to cognate few B cells that are expanded to memory B cells and antibody

releasing B cells to fight the antigen carrying bacteria. 2 (C) magnification of APC-B cell

interface; BCR relocation to lipid rafts after engagement with antigen, signalosome

formation that leads to above B cell differentiation. (C) adapted from (Slupsky, 2015).

1
https://visualsonline.cancer.gov/retrieve.cfm?imageid=3237&dpi=300&fileformat=jpg

2
https://upload.wikimedia.org/wikipedia/commons/6/60/Germinal_center.svg

B cell activation is a crucial and finely tuned process in this sequence of events. B cell

receptors (BCR, membrane bound immunoglobulin) are residing in plasma membrane (PM).

Plasma membrane is composed of subdomains of distinct compositions and characteristics.

Thicker, less fluid subdomain enriched with glycosphingolipids, saturated long fatty acid

phospholipids and cholesterol and long transmembrane region proteins are called lipid rafts.

IgM type BCR upon binding of antigen transition from non-raft into raft PM subdomains,

where they aggregate into clusters and transduce the signal into cell interior via BCR

3

intracellular α/β subunits. BCR clustering activates the Src family kinases Lyn, Syk and Btk

tyrosine kinases. ‘Signalosome’ is formed composed of the BCR, tyrosine kinases, adaptor

proteins CD19 and BLNK, and signalling enzymes PLCγ2, PI3K, and Vav. Membrane

phospholipid phosphoinositide (4,5)P2 (PIP2) serves as a docking place for cortical actin

adapter proteins. PLCγ2 cuts PIP2 into inositol 1,4,5-trisphosphate (IP3), which opens

intracellular calcium storages and diacylglycerol which activates protein kinase C (Figure 1C).

Overall, BCR signalosome activates multiple signalling cascades that involve kinases, GTPases,

and transcription factors which affect cell metabolism, gene expression, and cytoskeletal

reorganization (Dal Porto, 2004)

When B cell activation is abnormally upregulated it can lead to increased propagation of B

cells expressed in several types of cancer: non/Hodgkin, follicular, lymphocytic , Burkitt’s, or

diffuse large B-cell lymphomas. It can also lead to autoimmune diseases: multiple sclerosis,

rheumatoid arthritis and systemic lupus erythematosus. When B cells are underactivatable it

can lead to immune deficiencies, type 2 diabetes and periodontal disease (Carter, 2006).

Understanding B cell activation through identification of the involved proteins and their

interactions in pathways is therefore crucial in fighting these diseases.

1.2 Identification of new protein involved in B cell activation

One approach of identifying involved proteins is by mass spectrometry. Mass spectrometry is

a technique for measuring the relative charge and mass of charged particles, in this case

proteins. Proteins are purified from lysed cells and digested by proteases into short peptides.

Peptides are transformed into gas phase and charged through ionisation by lasers or electro

spraying. Charged peptides are accelerated through nonlinear electric or magnetic field

toward detector. Detector detects the time of flight of the peptides, where smaller peptides

are faster (Wysocki, 2005). The output is spectra specific to peptide sequence fingerprints

found in databases from which peptides can be identified. In case of tandem mass

spectrometry each peptide is further fragmented into an array of sub-peptides which are also

analysed. From the array of sub-peptide spectra it is easier to directly determine the amino

acid sequence of a peptide. Proteins are identified through statistically significant presence of

their characteristic peptides in the acquired data.

4

Human B cells contain tens of thousands of proteins in different compartments performing

their own functions. Only small subset of these proteins is involved in B cell activation. It is

desirable to narrow down the array of proteins fed to MS as closest as possible to the B cell

activation subset. Isolating - pulling down of only a narrow subset of proteins is possible via

proximity labelling of proteins. Example of proximity labelling is usage of ascorbate

peroxidase (APEX) bound to compartment of interest via lipid tails of compartment

characteristic protein. In presence of hydrogen peroxide, APEX converts biotin phenol into

reactive radicals that react and bind to proteins within a radius of 50 nm in about a minute,

which allows not only spatial, but also temporally controlled biotinylation of proteins near

APEX (Rhee, 2013). Biotinylated proteins can be selectively pulled down from cell lysate by

binding to streptavidin coated magnetic beads. The biotin-streptavidin bound proteins are

then washed of by higher ionic strength solution and further purified by gel electrophoresis.

Purified protein sample from gel electrophoresis is then processed for MS. One can target

APEX to raft or nonraft membrane compartments by adding myristoyl-palmitoyl-palmitoyl or

just myristoyl lipidation sequence (respectively) to APEX sequence. Myristoyl fatty acid chain

is shorter than palymitoyl chain which predominantly resides in thicker lipid raft regions of

plasma membrane, into which IgM BCR shift upon B cell activation. Since also temporal

control of APEX reactions is possible one can study the transition of proteins between non-

raft and raft regions in the course of B cell activation.

5

Figure 2. The pipeline of proximity based labelling and protein identification. (A) Specific cell

compartment targeting APEX in the presence of hydrogen peroxide converts biotin phenol into

biotin phenol radicals that react and label nearby proteins. (B) Biotinylated proteins are pulled

down and washed from cell lysate with streptavidin coated magnetic beads. (C) Biotinylated

proteins are processed for and analysed with protein mass spectrometry5 (D) Finally the proteins

are identified in databases based on MS peptide sequences. Adapted from (He(Heap, 2017).

1.3 Implied functional relationship of activation proteins through co-evolution

analysis

By identification of proteins close to compartments where B cell activation occurs one cannot

yet truly confirm their true involvement in the process of B cell activation or what kind of

interaction with other known B cell activation proteins they might have.

To further refine the results of MS and find more exact roles of all identified proteins one can

employ different biochemical techniques to identify more stable interactions. Other way is to

use different fluorescent microscopy techniques, including FRET where 10 nm range inter-

protein proximity is detected. However, microscopic techniques, especially FRET, are typically

6

highly laborious and cannot be applied to very many MS hits. Thus, further narrowing down of

the MS hits is required, and is currently often done subjectively based on other existing data

or literature. An unbiased refinement to objectively narrow down the list of hits to most

potential new players would be essential and would critically facilitate new interesting

findings and research lines.

With the advent of increasing computer capabilities and ever larger biological sequence

databases there is also a greater array of bioinformatics tools that can be much faster and

cheaper in comparison to conventional wet-lab methods. Among these tools is inter-protein

co-evolution analysis, which can inform us about directly physically or at least indirectly

functionally interacting proteins. The following section (2 Background) presents the

theoretical background of protein co-evolution analysis.

1.4 Aim of the thesis

The aim of this thesis is to create a script or assembly of scripts that will:

- automatize and scale up the retrieval of orthologous sequences for hundreds of proteins

identified from mass spectrometry or elsewhere

- create multiple sequence alignments and phylogenetic tree presentations for the retrieved

orthologues of each protein

- Prepare these as input files for multicore parallel run of CAPS – coevolution analysis

programme on supercomputer

- combine CAPS multiple output files into comprehensible readout of adaptive co-evolution

Together, the generated toolbox is aimed to significantly facilitate the narrowing down the

lists of potential interesting proteins in a given high-throughput approach to only those

proteins that show co-evolution and, thus, are more likely to function together in a given

cellular pathway.

7

2 Background

2.1 Co-evolution

Co-evolution is an inseparable phenomenon to the evolution of species through selective

environmental pressure. Part of environment are other species. When two or more species

form interacting dynamic ecological relationship, a change in one species demands adaptive

evolutionary response from interacting species. Although the term co-evolution was first used

by Ehrlich and Raven in 1964 (Ehrlich, 1969), actually already Darwin, the father of theory of

evolution, presented this idea of mutually influencing species in 1862 with an example of

orchid blossoms and the corresponding lengths of the tongues of their insect pollinators

(Darwin, 1862). Other more general examples of closely interacting pairs of species are

predator and prey, symbionts, parasite-host etc.

In 20th century also the biochemical basis of evolution became evident with the discovery of

deoxyribonucleic acid (DNA) as a carrier of inheritable adaptive change through generations

(Watson, 1953). Practically every known non-viral organism contains DNA. DNA is coding

thousands of proteins - molecular machinery that performs a vast array of functions in each

cell forming an organism (Crick, 1958).

2.2 Protein co-evolution

Most proteins interact with other proteins to achieve higher functions (De Las Rivas, 2010). As

there is co-evolution of closely interacting species one can naturally expect some form of co-

evolution in closely interacting proteins, from which lastly organisms and species arise.One

can further define co-evolution as similarity in evolutionary histories measurable by similarity

of phylogenetic trees and introduce a term co-adaptation as a co-evolutionary influence of

one protein on another’s evolutionary history (Pazos, 2008). Co-adaptation requires and is

therefore informing us of a close relationship between proteins. Besides co-adaptation the

other major source of protein co-evolution is phylogenetic coevolution.

If one wants to reveal inter-protein interactions, the phylogenetic co-evolution of proteins

needs to be separated from co-adaptive co-evolution (Pazos, 2013).

Protein co-evolution can be measured on several levels. Proteins are a few tens to few

thousands long sequences of amino acids, where each site can be composed of 20 different

8

amino acids (Brocchieri, 2005). Each amino acid is coded by a codon, a sequence of 3 amino

acids, composed of 4 possible different amino acids (Crick, 1958, Nirenberg, 1961). Each of 20

different amino acids contains distinct side chains that give them characteristic polarity,

hydrophobicity and size which affect the interaction between amino acids in a protein chain,

forming a distinct folding and final shape and function of the protein. A change or a mutation

in the composition of the amino acids can have varying effects on the shape and functionality

of a protein depending on the similarity of the replaced amino acid and the position of the

change (King, 2013).

When for example positively charged amino acid is replaced by negatively charged amino

acid, it will repel nearby negatively charged amino acids that may be in the same protein or in

the interacting protein. Such a change can be compensated, if the interacting amino acids in

turn also mutate to opposing charges, this is a case of co-adaptation (Gobel, 1994, Mateu,

1999, Shim Choi, 2005).

Co-adaptive correlated change can be detected in multiple sequence alignment (MSA) (Pazos,

2008). MSA is as its name implies an alignment of three or more evolutionary related

sequences, where each sequence is an orthologous sequence from separate species and

equivalent residues are placed in the same column. This way the evolutionary changes in a

residue can be easily tracked along the column. If there is a simultaneous change in evolution,

possible co-adaptation of interacting proteins, it can be recognised in concurrent correlated

changes in another residue at the same stage of evolution, across many species in the MSA

(Pazos, 1997). One can calculate the correlation in the change of two residues in a weighed

blossum matrix accounting for the intensity of the change (ie. negatively charged AA into

positively charged vs hydrophobic AA into other hydrophobic AA) (Fares, 2006). In order to be

able to recognise concurrent changes in a residue it is critical to obtain proper MSA with no

misalignments.

9

Figure 3.

Example of coevolving residues in two interacting proteins. (A) 3D structure of proteins with

marked selected residues and their properties legend. (B,C) orthologous sequences

alignments with selected residues and their correlation. (B) Residues i1 and j1 were

subjected to phylogenetic co-evolution whereas (C) residues i2 and j2 were subjected to co-

adaptive co-evolution that shows co-evolution even if we remove random clade. Asterisks

show the misalignments to emphasize importance of their avoidance. (Adapted from

Madaoui, 2008)

2.3 Orthologous genes and multiple sequence alignment (MSA)

The sequences required for MSA are obtained from orthologue databases. The orthologues

databases are built based on algorithms that compare the homologous sequences of DNA

genes of different species. Gene duplications (paralogues) or deletions through evolution

result in several or false orthologue candidates (Graur, 2000). In addition there is a possibility

of different protein splice variants in different species. With the automatization and upscaling

of genomics the complexity of algorithm based determination of orthologues in genomic data

and the possibility for their inaccuracies has also increased (Jensen, 2001).

The algorithms for ortholog identification identify genes in the genomic data by either de

novo methods that use transcriptional initiation, termination and splice patterns or by trans-

10

alignment methods where cDNA sequences of best annotated species (human) are used for

comparative search of similar gene sequences (Jensen, 2001).

Multiple Sequence alignment algorithms are used for alignment of acquired orthologous

sequences in order to quantify the evolutionary conversion of individual AA residues – as a

column in MSA (Figure 3, B,C). There are several MSA algorithms each with its own benefits

and drawbacks. Clustal omega is an improved iteration of Clustal MSA algorithms and is

suitable for medium-large alignments. It uses HHalign method, seeded guide trees and hidden

markov models profile-profile techniques to generate alignments (Sievers, 2011). T-Coffe is

suitable for small alignments. T-Coffe stands for Tree-Based Consistency Objective Function

for Alignment Evaluation and attempts to overcome the problems of progressive alignment

methods (Notredame, 2000). Muscle is used for medium sized alignments. Muscle stands for

MUltiple Sequence Comparison by Log-Expectation (Edgar, 2004).

PRANK optimally estimates insertions and the number of deletion events and can therefore

be also used for more distantly related sequences. Unlike other alignment programs PRANK

uses maximum likelihood methods used in phylogenetics and correctly estimates evolutionary

distances between sequences (Löytynoja, 2008). The drawback of PRANK is long running time.

PRANK uses guide phylogenetic tree to distinguish insertions from deletions and any errors in

the tree will result in errors in alignment (Löytynoja, 2014).

11

Figure 4. Comparison of phylogeny aware PRANK MSA algorithm (left) and the classical progressive

algorithm ClustalW (right). The framed patterns in sequences correspond to the numbered

evolutionary events of insertions and deletions on the phylogenetic tree on the left side. In

comparison the classical progressive alignment algorithm on the right does not resolves insertion

and deletions correctly (Löytynoja, 2014).

2.4 Methods for protein residue co-evolution quantification

Most basic co-evolution prediction algorithms are based on interdependent amino acid

frequencies or the detection of similar patterns of amino acid substitutions in two columns of

the MSA - pairs of residue positions. These are inter-residue co-evolution analysis algorithms,

which can be used beside inter-protein analysis also for intra-protein co-evolution analysis,

that inform us of closely interacting residues within a protein 3D structure. The similarity in

the AA substitution patterns can be calculated directly by linear correlation. Most common

name for this approach is McLachlan-based substitution correlation (McBASC) (Göbel, 1994).

The drawback of this approach is that is does not take into account background phylogenetic

divergence. The co-evolution analysis using protein sequences (CAPS) uses phylogenetic

information to check and qualify only the correlations that persist when individual clades are

removed from original MSA. The drawback of CAPS in comparison to McBASC is high

computational demand.

12

Mutual information is another approach, which instead of calculating substitution

correlations, uses all amino acid frequencies within one residue position to predict the

probability of amino acid of another residue and vice versa.

Residue correlation usually does not happen only in pairwise fashion but forms a network.

This is approached by Direct coupling analysis (DCA) which creates a global statistical model

based on position-specific variability and inter-position coupling in MSA (Weigt, 2009). DCA

model is transformed into mutual information-based formulation with Heuristic methods.

Another set of analytical algorithms for residue co-evolution is focused on finding groups of

residues that have a protein family-dependent conservation pattern, which also shows

correlated mutational patterns. These residue positions are named specificity-determining

positions (SDPs). SDPs mutate in coordinated fashion in the context of subfamily divergence.

For example in the duplication of an enzyme the subfamily of these proteins can adapt to a

new set of substrates by mutating just a group of residues that often form 3D clusters on the

interfaces between enzyme-substrate or receptor-ligand. There are several methods to detect

SPDs. Sequence Space uses principal component analysis (PCA) vector representations of the

MSAs to detect AA (SDP) patterns of protein subfamilies and is the basis for other methods

that detect SDPs in MSAs (Casari, 1995). S3det, automatizes detection of protein subfamilies

and SDPs in MSAs. Through automatization and upscaling it was possible to show the relation

between SDPs and binding sites of interactors and substrates (Rausell, 2010). Mutational

behaviour (MB) correlates residue substitution in MSAs to whole sequences variation (del Sol

Mesa, 2003). Evolutionary Trace (ET) uses similarities of the sequences that split in each tree

branch and measures the time these similarities become conserved. The distance in time

from origin of the phylogenetic tree to the fixation of conserved sequences is used to

determine subfamilies. Differential sequence conservation analysis informs of SDPs – protein

binding sites. This way MSAs do not need to be perfectly partitioned into protein subfamilies

(Lichtarge, 1996, Mihalek, 2004). Combinatorial entropy optimization (CEO) uses

combinatorial exploration to first create optimal partitioning of subfamilies, while residue

entropies are used to determine SDPs (Reva, 2007).

Similar to SPD searching algorithms there are also statistical coupling analysis (SCA)

algorithms which don´t require specificity of found residues to certain protein subfamilies

(Lockless, 1999).

13

Co‑evolution can be also measured at protein level. It was observed that for example ligand

and receptor pairs tend to have similar phylogenetic trees. MirrorTree calculates inter-

orthologue distance matrices from the MSA-derived phylogenetic trees or directly from the

MSAs. Linear correlations between distance matrices serve as approximation of phylogenetic

similarities between two proteins (Pazos, 2001). Tree of life - Tol Mirror tree is a method that

uses evolutionary relationship between species to reduce this type of tree similarity

background in inter-orthologue distance matrices (Pazos, 2005). ContextMirror on the other

hand uses information from the whole proteome of interest to compensate for this and other

possible types of backgrounds (Juan, 2008). Mirror tree methods depend strongly on the

selection of species in the tree. This problem can be circumvented by automatic selection of

species where co-evolution is the highest as by Matrix Match Maker (MMM) (Tillier, 2009).

Phylogenetic profiles uses simple similarity of the presence or absence patterns of the two

proteins in different species to infer inter-protein co-evolution (Pellegrini, 1999).

It is also possible to combine both intra and inter protein residue correlations to estimate

possible interactions between proteins, as does for example in silico two-hybrid (i2h) method

(Pazos, 2002)

14

Figure 5. Comparison of different co-evolution analysis methods. Coloured by main categories as

covered in the text. Adapted from (Juan, 2013).

2.5 Co-evolution analysis using protein sequences (CAPS)

In this thesis, co-evolution analysis using protein sequences (CAPS) has been chosen as the

method to estimate inter-protein co-evolution. CAPS is a conservative algorithm for detection

of residue coevolution that can disentangle interaction from stochastic and phylogenetic co-

evolution. As it is based on residue co-evolution it can be used for intra or inter protein co-

evolution (Fares, 2006). When used for inter protein co-evolution one can of course

determine exactly which parts of two molecules were co-evolving or in case of physical

interaction directly interacting. The drawback of CAPS is that computation time is

15

exponentially dependent on the length of the sequences – the number of residues in the

alignment, since it calculates correlations for each of the possible pairs of residues.

Residues in MSA of orthologous sequences can undergo mutational transition (as in Figure 3

B, C). The variance of the transitions can be used to infer correlations – co-evolution between

two residue sites. CAPS calculates the residue conversion variance correlations. It corrects the

correlations for the time of each species (sequence) divergence.

Following is the mathematical basis of the CAPS algorithm. More in depth explanation can be

found in original article (Fares, 2006a). CAPS compares the conversion probabilities between

two residues using Blocks Substitution Matrix (BLOSUM; Henikoff, 1992). BLOSUM

substitution matrices account for divergence probabilities between each AA. However, there

are cases like pre-speciation duplications that fixate certain residues into more conserved

than more recent sequence divergences. To take this into account the probability of residue

conversion from e to k amino acid from sequence i to j − (𝜃𝑒𝑘)𝑖𝑗 is based on Blosum e->k

conversion probability (𝐵𝑒𝑘) divided by time since divergence between the sequences in

question as in (1):

 (𝜃𝑒𝑘)𝑖𝑗 = (𝐵𝑒𝑘𝑡−1)𝑖𝑗 (1)

From this, the average probability for all the sequences (whole column in Figure 3 B, C) is
calculated (2)

 𝜃̅𝐶 =
1

𝑇
∑ (𝜃𝑒𝑘)𝑆

𝑇
𝑆=1 (2)

,where S is each pairwise comparison and T is the total number of pairwise sequence

comparisons.

T is calculated as (3) where N is the total number of sequences in the alignment:

 𝑇 =
𝑁(𝑁−1)

2
 (3)

Variability of each transition is calculated as the squared difference of transition probability to

average probability as in (4):

16

 𝐷̂𝑒𝑘 = [(𝜃𝑒𝑘)𝑖𝑗 − 𝜃̅𝐶]
2
 (4)

From this the mean variability is calculated as in (5):

 𝐷̅𝐶 =
1

𝑇
∑ [(𝜃𝑒𝑘)𝑆 − 𝜃̅𝐶]2𝑇

𝑆=1 (5)

To assess co-evolution between residue positions A and B (as between i1 and j1 or i2 and j2 in

Figure 3B and Figure 3C) the correlation 𝜌𝐴𝐵 in AA variability relative to mean variability is

calculated for each residue transition (as between instances within the columns i1 and j1

column of Figure 3 B, C). The correlation 𝜌𝐴𝐵 is calculated as in (6):

 𝜌𝐴𝐵 =
1

𝑇
∑ [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐴]𝑇

𝑆=1 [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐵]

√
1

𝑇
∑ [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐴]2𝑇

𝑆=1
1

𝑇
∑ [(𝐷̂𝑒𝑘)𝑆−𝐷̅𝐵]2𝑇

𝑆=1

 (6)

To estimate whether that particular 𝜌𝐴𝐵 correlation is significant, correlations for K number

of re-sampled random pairs of sites (different columns in Figure 3 B, C) is calculated (1-6) and

mean 𝜌̅ (7):

 𝜌̅ =
1

𝐾
∑ 𝜌𝑙

𝐾
𝑙=1 (7)

and 𝑉 (𝜌) variance of correlation coefficients are calculated (8):

 𝑉 (𝜌) =
1

𝐾
∑ (𝜌𝑙 − 𝜌̅)2𝐾

𝑙=1 (8)

The test of significance is made by comparing the individual correlation coefficients? to

normalised Z distribution as in (9):

 𝑍 =
𝜌𝐴𝐵−𝜌̅

√𝑉(𝜌)
 (9)

Statistical power of the test is optimised by all the sites that have:

17

 𝐷̅𝐶 > Θ − 2𝜎Θ (10)

 Θ stands for parametric value of 𝐷̅𝐶 and is calculated as:

 Θ =
1

𝐿
∑ (𝐷̅𝐶)𝑠

𝐿
𝑠=1 (11)

whereas 𝜎Θ is the standard deviation of Θ.

There are several contributors to co-evolution: stochastic covariation, inter-molecular

interaction and phylogenetic convergence. The goal is to filter out all but the inter-molecular

interaction components.

Stochastic covariation is removed by testing for significance of the simulated data.

Testing for phylogenetic component of co-evolution is made by running the above equations

while removing individual clades (clusters of species – orthologous sequences with more

recent common ancestor). For this provision of phylogenetic tree matching, the species of

orthologous sequences is needed. If the correlation coefficient remains statistically significant

even after iterative removal of individual clades, the inter-molecular co-evolution component

is significant.

Lastly three Chi-squared tests are made to validate which of the pairs are interacting and are

involved in protein-protein interactions. 𝑂𝑖 is the observed number of AA pairs predicted as

co-evolving, 𝐸𝑖 is the expected number of co-evolving AA pairs and n is the number of possible

outcomes.

 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1 (12)

This test is repeated 3 times with different 𝐸𝑖 which are:

1. 𝐸𝑖 is the mean number of co-evolving pairs in a hundred pairs of alignments with same

phylogenetic distances.

2. 𝐸𝑖 is the the mean number of co-evolving pairs for all pairwise inter-molecular analysis

18

3. 𝐸𝑖 is the the mean number of co-evolving pairs for all pairs of one protein against all other

proteins

19

3. Materials and methods

3.1. Materials

3.1.1. List of proteins

The script used a list of Uniprot protein identifiers as input. These proteins can be a list of any

proteins of interest.

Examination of effect of different input parameters on CAPS output was done together with

checking of running CAPS in two protein per folder mode. For this the MSA and TOL of the

following proteins were used: Toll like receptor 1, 2, 6 (TLR 1,2,6) and CD79a and CD79b.

To test the reliability of the script the MSA and TOLs of three proteins of B cell activation

(CD79a, CD79b and Lyn) and two proteins located in mitochondrial matrix (ATP-dependent-

Clp-protease-proteolytic-subunit - Clpp, Glutaredoxin-related-protein-5 – Glrx5) were used.

The final input data were MS hits from APEX2 biotin phenol proximity labelling. APEX2 was

targeting B cell non/raft plasma membrane regions pre and after B cell activation. B cells were

mouse A20 D1.3 cell line, where D1.3 stands for HEL specific IgM BCR expressed on A20 cells.

In total there were 538 input protein Uniprot IDs used.

3.1.2. Online databases

Reference sequences of Uniprot ID MS hits were obtained from Universal Protein Resource

(UniProt) database (Chen, 2017): http://www.uniprot.org/

Orthologous sequences to Uniprot reference sequences were obtained from OrthoDB

database comprehensive catalog of orthologs, i.e. genes inherited by extant species from

their last common ancestor (Zdobnov, 2017): http://www.orthodb.org/

Tree of life – phylogenetic tree of vertebrate species used in this study was obtained from

TimeTree. Timetree is a database of the tree-of-life and its evolutionary timescale (Hedges,

2015): http://www.timetree.org/.

http://www.uniprot.org/
http://www.orthodb.org/
http://www.timetree.org/

20

85 vertebrate species used were chosen as a balance between species with highest number of

orthologues (top coverage in the sample of 200 chosen proteins), while maintaining

representations of all main vertebrate clades in OrthoDB database. The list of 85 species and

their phylogenetic tree of life is depicted in (Figure 6).

Figure 6. Tree of life of 85 vertebrate species of which orthologues were used in the study

obtained from TimeTree.org

21

3.1.3. Software

The scripts that represented the framework of the pipeline for retrieval of sequences and

communication with other programs were written in Python (Python Software Foundation.

Python Language Reference, version 2.7. Available at http://www.python.org, van Rossum,

1995) with Python libraries used Biopython (Cock, 2009), lxml (ver. 4.1.0, Behnel, Faassen,

Bicking, available at http://lxml.de/)

Local BLAST+ for finding corresponding OrthoDB IDs to Uniprot IDs (Altschul, 1990, Altschul,

1997, Camacho, 2009)

Software for co-evolution analysis was Coevolution analysis using protein sequences, CAPS

version 2 (Fares, 2006a, Fares 2006b)

CAPS output was compared to Cytoscape, version 3.6.1 (Shannon, 2003)

Commands for controlling the parallel multicore execution of CAPS were written in BASH Free

Software Foundation (2007). Bash (3.2.48) [Unix shell program]. Retrieved from

http://ftp.gnu.org/gnu/bash/bash-3.2.48.tar.gz

Computations were performed on local and online Taito supercomputer of CSC – IT Center for

Science, Finland.

3.2 Methods

3.2.1. General overview

The scripts aim to

- Read the input of several hundred Uniprot protein identifiers

- Convert Uniprot IDs into OrthoDB protein identifiers

- Retrieve appropriate orthologue sequences from OrthoDB (with high enough identity, length

similarity, vertebrate clade, with relatively homogenous spread of representative species,

good quality sequences without missing AAs)

http://www.python.org/
http://ftp.gnu.org/gnu/bash/bash-3.2.48.tar.gz

22

- Align these sequences with modern aligning algorithm

- Create individual folders containing aligned sequences for all possible protein-protein

coevolving pairs

- Command CAPS algorithm to run number of parallel analyses equal to the number of the

cores the computing processor has - the computer being CSC supercomputer.

- The final script could be used for co-evolutionary analysis of any set of hundreds of proteins

of interest.

In practice several sub-steps need to be created and actual flow of the script is presented in

(Figure 8). Each step is further explained in a separate paragraph. The codes for each section

can be found in Appendices.

23

Figure 8. Pipeline of the script(s) for high throughput co-evolution analysis with CAPS with marked

steps

3.2.2. Step A: TimeTree TOL of 85 vertebrate species

List of 85 vertebrate species with relatively highest orthologue coverage in OrthoDB database

while maintaining representation of major vertebrate clades is used for the creation of

phylogenetic tree of life. Tree of life shows all the divergences from common ancestor leading

to each individual species. Each divergence and time distance from one to other divergence is

calculated based on comparative similarities of whole genomes of the species (as in Figure 6).

The tree of life is saved as Newick standard format file with extension “.dnd”

24

3.2.3 Step 1: Uniprot ID

Script input is provided as a list of protein hits in the form of Uniprot identifiers. Each Uniprot

identifier is a string readable by Python. Script loops through Steps 1-2-3-4-5-6-B for each

Uniprot identifier with a simple for loop.

3.2.4. Step 2: Online retrieval of protein sequence at Uniprot

Representational State Transfer (REST) Application Programming Interface (API) allows access

to Uniprot data with structured Uniform Resource Locator (URLs).

The URL is formed and output is retrieved with Python “urllib2” extensible library for opening

URLs, for example: “http://www.uniprot.org/uniprot/”uniprotID”/xml”. Xml output was

parsed with lxml library commands to obtain protein main, alternative, gene names and AA

sequence.

3.2.5. Step 3: Local BLAST against OrthoDB

Since the cross-references pointing from one database identifier to identifiers from other

databases may not be most accurate or regularly updated, a local BLAST search with Uniprot

sequence is made against OrthoDB sequence database with OrthoDB identifiers. Biopython

BLAST library Bio.Blast.Applications with NCBI BLAST command line is used.

3.2.6. Step 4: Retrieval of orthologue sequences

OrthoDB database is accessed via REST API. Two structured URL inputs are sent. The URL

input contains the OrthoDB identifier of a mouse protein sequence from previous step and a

vertebrate clade identifier, so the retrieval is made for all the orthologues to mouse within

vertebrates. The URL input contains also the format of the output which is either fasta –

cointaining all the fasta sequences of orthologues with OrthoDB id tags or tab – containing

the OrthoDB identifiers, species names and other information. Both tab and fasta files are

parsed into individual orthologue entries. Because further operation demands tracking of

http://www.uniprot.org/uniprot/

25

species names each fasta header of each fasta sequence is modified with Python script to

contain species name. In OrthoDB single species might contain several homologous hits to the

original query because of gene duplication etc. In this case the Python script selects from two

homologs the one with the highest similarity to the original mouse protein sequence. In order

to achieve this, the script iterates through already retrieved sequences (of the same protein

orthologues) with species in the header. In case same species name is found it compares the

two sequences. Retrieved filtered orthologue sequences with modified fasta headers are

saved in a fasta file to be used in next step. While retrieving input URL only contains the

vertebrate clade identifier, and cannot contain the list of species, the output in the final file of

this step might contain also vertebrate species that we have not chosen in the 85 vertebrate

TOL in step A.

3.2.7. Step 5: MUSCLE pre-MSA

Multiple sequence alignment of the sequences retrieved from OrthoDB is first made with

BioPython command line that controls the MUSCLE MSA program outside of Python. It aligns

all the sequences in the fasta file, also those not in the 85 species TOL phylogenetic file from

step A. The MUSCLE pre-alignment is done in order to speed up the next computationally

more demanding PRANK alignment.

3.2.8. Step 6: PRANK MSA

PRANK MSA is made with Biopython library PrankCommandline. PRANK MSA uses

phylogenetic information in order to create phylogenetically harmonised distribution of gaps

in the alignment in accordance to evolutionary occurring insertions and deletions. The

phylogenetic information needed is the TOL phylogenetic file from step A. The other input is

the muscle pre-aligned MSA from step 5, the command line needs to contain “pre-

aligned=True”. Because TOL might contain vertebrate species that are not in that particular

retrieved OrthoDB file and vice versa, the PRANK command line needs to contain command to

“prunetree=True”, and “prunedata=True”. These commands were originally not in the PRANK

command file “\Bio\Align\Applications_Prank.py” contained in Biopython so they had to be

added in the latest version of PRANK (http://wasabiapp.org/software/prank/). The following

is the code added to _Prank.py self-class:

“self.parameters = [… _Switch(["-prunetree", "prunetree"]),…”

26

The resulting PRANK MSA file only contains orthologous sequences of species that are in both

MUSCLE OrthoDB retrieved species and TOL phylogenetic tree file with 85 vertebrate species

from step A.

3.2.9. Step B: Custom pruning of TOL

CAPS program requires individual phylogenetic tree of life files corresponding to each MSA of

particular protein orthologues in order to perform exclusion of phylogenetic component to

co-evolution. The phylogenetic tree file must match exactly the number and form of species

names in the MSA. Therefore the copy of original tree of life for 85 vertebrate species from

step A with a matching name to the MSA file is made. This new phylogenetic file is pruned of

any excess species that are not present in MSA output from PRANK in order to match it.

Commands from Phylo sub library of BioPython are used for this.

3.2.10. Step 7: Distribution of files

CAPS in its original form uses only one CPU core and is incapable of parallel computing that

would greatly speed up the computation. CAPS creates all the combinations of files present in

one folder and runs each pair one after another using one core throughout until all the pairs

are processed. To circumvent this, the files of interest can also be paired with their partners

into individual folders, so CAPS will in each instance compute just the co-evolution between

the two files in the folder and as many instances as there are CPU cores are called in parallel.

The orthologues PRANK MSA and corresponding TOL of each input Uniprot identifier coming

from the loops of step 2-3-4-5-6-B need to be distributed into separate folders. This is done

by the separate Python script that uses “itertools” library. For each pair of proteins separate

subfolders are created, one containing two MSA fasta “.fas” files and the other containing

phylogenetic “.tre” files.

3.2.11. Step 8: Multicore parallel run of CAPS

BASH command list for the parallel run of CAPS in each folder is created. Archive file of all the

folders is made and uploaded to Taito computer of CSC. Taito supercomputer can schedule

maximally 700 commands in one instance, therefore the BASH command list needs to be

divided accordingly.

27

Each command calls CAPS from the location of files. Several commands are specified. “-F

fasfolder/” specifies the subfolder containing FASTA MSA file. “-inter” is a command for inter-

protein co-evolutions (default is intra-protein). “-T trefolder/” specifies subfolder containing

phylogenetic tree file. One can add optional commands like “-g 0.6” which will discard any

column in FASTA MSA file with >60% gaps. Other optional command is “-H mus_musculus”

which will acknowledge the sequence with mus_musculus as the reference sequence when

giving the position of co-evolving residue pairs (of course it can be changed to any other

FASTA header). “-c” specifies converging command, here CAPS will run as many randomised

sampling simulations so that normalised distribution of co-variation correlation coefficients is

large enough that probability of alpha one error is insignificant and does not change anymore.

Other commands are possible, but are hidden in CAPS.cpp source file code.

Another BASH script is made that will automatically run through each of the CAPS command

sublists. After the run, CAPS creates an output into each folder. To extract the output files and

separate them from input files in the folders another BASH command list is used for moving

the output files in one common folder. Also this “moving” command list needs to be

partitioned, however the same BASH script can be used for their automatic sequential

execution since the number of commands matches those for running of CAPS. The folder with

all joined output can be archived and downloaded from CSC Taito supercomputer.

3.2.12. Step 9: Extracting and computing multiple CAPS output

CAPS creates several types of output files. One file contains the sequences used, and the

positions of all the residue pairs that have statistically significant transition variance

correlation. Based on this file one can track interacting residue pair in the sequence and make

additional calculations based on the biochemical properties of the AAs. Also, one can position

the residue pairs in the crystal 3D structure of the proteins, or validate the possible pairs, if it

is the case of physical interaction between more commonly known interacting domains. If one

would provide ProteinDataBase (PDB) 3D crystal structure files of the proteins CAPS could

also automatically mark the found co-evolving residue pairs on those.

The other type of output file contains the abstract of this information, number of interacting

residue pairs, sum of all correlation coefficients in co-evolving pairs, cut off threshold,

28

threshold simulation r, average r, average significant r, file one tree length, file two tree

length, gap threshold, bootcutoff, distance coefficient and finally also the conclusive

statement whether there is a relative co-evolution between the given pair of proteins in both

directions (“YES/NO”).

This final “YES/NO” statement is calculated based on a Chi-squared test that takes into

account all the files in the folder. Since in our case there are always two compared proteins,

the co-evolution in regard to the average from this same pair is never higher and the co-

evolution statement is always negative.

Through python script the former values are extracted from each file of all the pairs of

proteins and printed in one file. Chi-squared test is performed to test if the number of

observed co-evolving residue pairs is above the expected value. Expected value is calculated

based on the average co-evolution coefficient per residue pair for all the protein-protein pairs

involving one of the two proteins (meaning also the pairs with other proteins). There are two

final statements, one showing the significance of protein 1 -> protein 2 co-evolution in

regards to all the co-evolution of protein 1 toward any other calculated protein co-evolution

and then another significance of protein 2-> protein 1 in in regards to all the co-evolution of

protein 2 toward any other calculated protein co-evolution.

The calculations are then made according to equation 12 in section 2.5.

 𝜒2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖

𝑛
𝑖=1

Where 𝐸𝑖 is the mean number of co-evolving pairs for all pairs of one protein against all other

proteins and is calculated as follows:

𝐸𝑖 = (
∑ (

𝑛𝜌𝑠𝑖𝑔

𝜌𝑡
)𝑁

𝑗=1

𝑁
) ∙ 𝜌𝑡 (13)

And where 𝑛𝜌𝑠𝑖𝑔
 is the number of pairs of residue positions with statistically significant

correlation coefficient and 𝜌𝑡 is the sum of all correlation coefficients within a protein pair

 𝜌𝑡 = ∑ 𝜌𝐴𝐵
𝑋,𝑍
𝐴𝐵=1 (14)

29

Here AB is the current pair of residue positions and X, Z is the last pair of residue positions of

which correlation coefficients are calculated.

3.2.13. Comparing CAPS results to Cytoscape biochemical interaction data

To assess the correctness of assembled CAPS co-evoltion output, it was compared to

Cytoscape biochemical interaction data. The data was obtained from all available online

databases automatically determined by Cytoscape for each of the top co-evolving proteins.

The data of all databases was merged for each individual protein. Each interaction mapping

had one neighbour depth. CD79a or Lyn interaction map versus their top five co-evolving

proteins interaction maps were made by merging. The newly established paired merged

networks were further merged into one network containing CD79a or Lyn and all their top

five co-evolving proteins and their first neighbour interactors. The interactors that did not

interact between CD79a (or Lyn) nor any of five top co-evolving proteins (or between these)

were erased for better visualisation.

30

4. Results

4.1 Orthologue retrieval, PRANK MSA and phylogenetic tree pruning

The script is able to retrieve the orthologs from OrthoDB and make PRANK MSA and

phylogenetic trees from the provided Uniprot IDs. Figure 9 shows one representative PRANK

MSA as visualised in Mega software. Figure 10 shows a corresponding phylogenetic tree

31

Figure 9. Example of retrieval, TOL and Prank MSA: (A) Retrieved orthologous sequences IgAlpha -

CD79a, (B) Tree of Life for 63 vertebrate species both in retrieved CD79a orthologues and in general

TOL of 85 chosen vertebrate species (Fig 6) and (C) Corresponding PRANK MSA alignment of

retrieved CD79a 63 orthologous vertebrate sequences obtained with the script. Only portion of

sequences are shown for better readability.

The retrieval of Orthologous sequences, TOL and PRANK MSA creation for individual

UniprotID takes on average 1-2 minutes depending on the length of the sequences and

number of orthologues found. The retrieval may fail in about 5% of the cases, due to various

32

4.2 Files distribution into folders

The script was able to distribute the obtained MSA fasta files and corresponding phylogenetic

trees paired with all possible interacting protein counterparts into separate folders. This

creates

𝑛∙(𝑛−1)

2
 (15)

of folders for 𝑛 number of proteins (Figure 10 A). Another alternative is to create pairs of

series of proteins versus one particular protein of interest (Figure 10 B). This alternative, more

focused approach results in linear increase of resulting folders (n-1). The computational

demand is drastically lower compared to the first approach by higher numbers of proteins.

Figure 10. Files distribution into folders for parallel multicore computing. (A) All possible co-evolving

protein pairs from 5 proteins, resulting in 12 pairs. (B) Alternative, all possible pairs to one chosen

protein of interest in this case CD79a, resulting in 6 folders.

4.3 Detection of inter-residue inter-protein co-evolution with CAPS

4.3.1 Testing CAPS parameters on TLR 1, 2, 6, CD79a,b proteins

CAPS can be run with set parameters for Alpha (type one error) level, which represents the

probability of accepting false positive co-evolution. Default value is set to 0.001. Raising alpha

value lowers the stringency of statistical significance of correlation coefficients compared to

33

correlation coefficients of sampled randomly generated sequences. It lowers both the

probability of obtaining false positives as well as the probability of finding true positives.

When comparing Toll like receptors 1, 2, 6, CD79a and CD79b, the co-evolution pairs of TLR1-

6, TLR2-CD79a, TLR2-CD79b were revealed only after increasing alpha parameter from 0.0001

to default value of 0.001 or higher (Figure 11). Unexpectedly the detected co-evolution

between TLR2-6 by alpha 0.0001 was lost by higher alpha. Raising the number of random

sampling cycles from default 100 to 200 cycles or to converging number of repetitions had no

effect, however it doubled the computational time. Gap threshold parameter changes the

acceptance tolerance of residue columns with gaps, 0 – full tolerance, 1 – no tolerance

(default value is 0.5). Running CAPS with same parameters for pairs of proteins in individual

folders for same co-evolving pairs resulted into unexpected additional detected co-evolving

pairs of CD79a-CD79b and TLR2-6. This might be due to missing additional Chi-squared test

that couldn´t be found from CAPS source code.

Figure 11. CAPS analysis of inter-protein co-evolution of sample proteins with different alpha (type I

error, a) levels, number of random cycles (r), gap threshold level (g), where 0 – full tolerance, 1 – no

tolerance. Found co-evolution marked by grey shade.

4.3.2 Testing CAPS on unlikely co-evolving proteins

To test the performance of CAPS on data with clearly expected or unexpected co-evolution,

CAPS was run with 3 proteins involved in B cell activation (CD79a, CD79b and Lyn) and 2

proteins located in mitochondrial matrix (ATP-dependent-Clp-protease-proteolytic-subunit -

Clpp, Glutaredoxin-related-protein-5 – Glrx5). Inter-protein co-evolution was found for

individual folders

g 0 0 0 0 0 0 0 1 0 0 0 1

r 50 100 200 converg 100 100 200 100 converg 100 converg converg

Protein A Protein B a 0.0001 0.0001 0.0001 0.0001 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.001

Toll-like-receptor-1_Tlr1_Q9EPQ1 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-1_Tlr1_Q9EPQ1 Toll-like-receptor-2_Tlr2_Q9QUN7 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-1_Tlr1_Q9EPQ1 Cd79b_P15530 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-1_Tlr1_Q9EPQ1 Toll-like-receptor-6_Tlr6_Q9EPW9 NO NO NO NO YES YES YES YES YES YES YES YES

Cd79a_P11911 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO NO NO NO NO NO NO NO NO

Cd79a_P11911 Toll-like-receptor-2_Tlr2_Q9QUN7 NO NO NO NO YES YES YES YES YES YES YES YES

Cd79a_P11911 Cd79b_P15530 NO NO NO NO NO NO NO NO NO YES YES YES

Cd79a_P11911 Toll-like-receptor-6_Tlr6_Q9EPW9 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-2_Tlr2_Q9QUN7 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-2_Tlr2_Q9QUN7 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-2_Tlr2_Q9QUN7 Cd79b_P15530 NO NO NO NO YES YES YES YES YES YES YES YES

Toll-like-receptor-2_Tlr2_Q9QUN7 Toll-like-receptor-6_Tlr6_Q9EPW9 YES YES YES YES NO NO NO NO NO NO NO NO

Cd79b_P15530 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO NO NO NO NO NO NO NO NO

Cd79b_P15530 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Cd79b_P15530 Toll-like-receptor-2_Tlr2_Q9QUN7 NO NO NO NO YES YES YES YES YES YES YES YES

Cd79b_P15530 Toll-like-receptor-6_Tlr6_Q9EPW9 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-6_Tlr6_Q9EPW9 Toll-like-receptor-1_Tlr1_Q9EPQ1 NO NO NO NO YES YES YES YES YES YES YES YES

Toll-like-receptor-6_Tlr6_Q9EPW9 Cd79a_P11911 NO NO NO NO NO NO NO NO NO NO NO NO

Toll-like-receptor-6_Tlr6_Q9EPW9 Toll-like-receptor-2_Tlr2_Q9QUN7 YES YES YES YES NO NO NO NO NO YES YES YES

Toll-like-receptor-6_Tlr6_Q9EPW9 Cd79b_P15530 NO NO NO NO NO NO NO NO NO NO NO NO

34

CD79a-Clpp, CD79a-Glrx5, CD79b-Clpp, Lyn-CD79a, Lyn-Glrx5, Clpp-CD79b (this co-evolution is

found in the context of Clpp, compared to all its other pairs), Glrx5-Clpp. This totals in 5 inter-

protein co-evolutions between mitochondrial matrix proteins and B cell activatory proteins

located by cell plasma membrane compared to only one of co-evolutions within each of these

compartments. Raising the gap parameter in range of 0.5, 0.8, 0.9 and 1 did not affect the

outcome (Figure 12). The CAPS was run in individual-pairs-folder mode.

Figure 12. CAPS analysis of inter-protein co-evolution of B cell activation and mitochondrial matrix

proteins with parameters used for calculations of significant inter-protein co-evolution from

individual pair folders. “n.pairs” – number of co-evolving residue pairs, “total corr. coef” – sum of all

correlation coefficients for whole protein pair, “n.pair/t.cor.c” – number of co-evolving residue pairs

divided by sum of all correlation coefficients for whole protein pair, “aver.(np/tcc)” – average

“n.pair/t.cor.c” within all pairs to the protein A, “av.xtcorc” is the 𝐸𝑖 mean number of co-evolving

pairs (as in equation 13) and “chi” is the chi squared value (as in equation 12). Found co-evolution

marked darker “YES”.

 * x105

4.3.3 CAPS on proximity labelling MS hits

Finally, the CAPS was run in parallel in individual paired folder mode as described in the

methods (3.2.11. Step 8: Multicore parallel run of CAPS). 538 proteins of non-raft targeted

APEX2 proximity labelling MS hits were paired against two known B cell activation proteins

CD79a (Figure 13) and Lyn (Figure 14). The co-evolution significance was determined as

previously described (equation 12). However, since this categorisation only gives “YES/NO”

statement further ranking was used by number of found inter-residue pairs between two

proteins, divided by the length of the MSA of the partner protein to CD79a (Figure 13 A) or

Lyn (Figure 14 A). The resulting top ranking co-evolving proteins were analysed also in

Protein A Protein B gap threshold

cell function name gene cell function gene n. pairs total corr.coef. n.pair/t.cor.c * aver.(np/tcc) * av.x tcorc chi 0.5 0.8 0.9 1

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a BActpath Cd79b 9 241296 3.7 4.1 9.9 0.07 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a BActpath Lyn 7 439177 1.6 4.1 17.9 6.67 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a MtMx Clpp 10 171375 5.8 4.1 7.0 1.29 YES YES YES YES

BActpath B-cell-antigen-receptor-complex-associated-protein-alpha-chain Cd79a MtMx Glrx5 8 154466 5.2 4.1 6.3 0.45 YES YES YES YES

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b BActpath Cd79a 9 241296 3.7 12.7 30.7 15.32 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b BActpath Lyn 0 507408 0.0 12.7 64.5 64.52 NO NO NO NO

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b MtMx Clpp 90 198000 45.5 12.7 25.2 166.88 YES YES YES YES

BActpath B-cell-antigen-receptor-complex-associated-protein-beta-chain Cd79b MtMx Glrx5 3 178464 1.7 12.7 22.7 17.09 NO NO NO NO

BActpath Tyrosine-protein-kinase-Lyn Lyn BActpath Cd79a 7 439177 1.6 0.8 3.4 3.68 YES YES YES YES

BActpath Tyrosine-protein-kinase-Lyn Lyn BActpath Cd79b 0 507408 0.0 0.8 4.0 3.97 NO NO NO NO

BActpath Tyrosine-protein-kinase-Lyn Lyn MtMx Clpp 0 360375 0.0 0.8 2.8 2.82 NO NO NO NO

BActpath Tyrosine-protein-kinase-Lyn Lyn MtMx Glrx5 5 324818 1.5 0.8 2.5 2.37 YES YES YES YES

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp BActpath Cd79a 10 171375 5.8 17.4 29.7 13.11 NO NO NO NO

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp BActpath Cd79b 90 198000 45.5 17.4 34.4 90.04 YES YES YES YES

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp BActpath Lyn 0 360375 0.0 17.4 62.6 62.56 NO NO NO NO

MtMx ATP-dependent-Clp-protease-proteolytic-subunit--mitochondrial Clpp MtMx Glrx5 23 126750 18.1 17.4 22.0 0.05 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 BActpath Cd79a 8 154466 5.2 6.6 10.3 0.49 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 BActpath Cd79b 3 178464 1.7 6.6 11.8 6.60 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 BActpath Lyn 5 324818 1.5 6.6 21.6 12.72 NO NO NO NO

MtMx Glutaredoxin-related-protein-5--mitochondrial Glrx5 MtMx Clpp 23 126750 18.1 6.6 8.4 25.30 YES YES YES YES

35

Cytoscape program. Cytoscape acquires biochemically determined interaction networks from

public databases. Of each top five CD79a or Lyn co-evolution partners first neighbour

interaction networks were merged to find the overlapping (closest known) sharing interaction

partners to CD79a or Lyn. Top four found co-evolving partners to CD79a only interacted with

CD79a via UBC - Polyubiquitin-C, which promotes protein recycling, whereas the fifth top co-

evolving protein Arhgap30 had additional three shared interacting first neighbour partners to

CD79a protein (Figure 13 B). Top co-evolving proteins to Lyn all shared at least five functional

interaction first partners with Lyn or each other. The fourth top co-evolving protein to Lyn –

Was had direct interaction with Lyn (Figure 14 B). The highest ranked co-evolving protein for

CD79a or Lyn was further analysed. Six co-evolving residue pairs between Cep55 and CD79

with highest correlation coefficient from MSA were aligned to each other (as columns in

Figure 3 B or C). With the top five of the co-evolving residue pairs the gaps were also included

in CAPS correlation coefficient calculations (Figure 13 C). Similarly for the top six co-evolving

residue pairs between Lyn and Hmmr alignment, it was observed that gaps contributed to the

calculations of CAPS correlation coefficient calculations (Figure 14 C). The analysis was done

with gap threshold set at 1, random cycles set to converge and default alpha value of 0.001.

36

Figure 13. CAPS analysis of inter-protein co-evolution of CD79a versus 538 proteins of non-raft

targeted APEX2 proximity labelling MS hits. (A) Ordered by highest score in “n.prs/lngth” - number

of found co-evolving residue pairs between two proteins divided by the length of non-CD79a

partner protein. (B) For comparison; top five ranked CD79a co-evolving proteins (yellow) in single

neighbour interaction distance as biochemically determined in Cytoscape public databases. (C) Top 6

highest correlation coefficient inter-residue co-evolving pairs between Cep55 and CD79a, the

residue columns (as in Figure 3 B,C) with co-evolving amino-acid residues.

37

Figure 14. CAPS analysis of inter-protein co-evolution of Lyn versus 538 proteins of non-raft targeted

APEX2 proximity labelling MS hits. (A) Ordered by highest score in “n.prs/lngth” - number of found

co-evolving residue pairs between two proteins divided by the length of non-Lyn partner protein. (B)

For comparison; top five ranked Lyn co-evolving proteins (yellow) in single neighbour interaction

distance as biochemicaly determined in Cytoscape public databases. (C) Top 6 highest correlation

coefficient inter-residue co-evolving pairs between Hmmr and Lyn, the residue columns (as in Figure

3 B,C) with co-evolving amino-acid residues.

38

5. Discussion

The aim of this thesis was to create a script that would automatize and scale up the retrieval

of orthologous protein sequences, creation of their MSA and TOLs, organise these for

multicore parallel run of CAPS and combine CAPS output into comprehensible readout of

adaptive co-evolution. These steps were achieved with the usage of Python programming

language and public databases.

The retrieval of orthologous sequences was obtained from OrthoDB database via Python REST

API client. The positive side of automatic retrieval is speed and avoiding human error. The

drawback is that the database server may not always be available and the script should be

tailored to other similar servers in this case. Other drawback could be that the data in the

database is not of sufficient quality. Some of the orthologous sequences contained x –

undefined amino acid residues, while others could have several homologues of which chosen

one is not necessarily optimal. This affects the overall quality of MSA which is crucial for

quality of orthologues MSA based co-evolution analysis.

The initial TOL for chosen 85 vertebrate species was obtained from Timetree server. Out of 85

species that are found in OrthoDB database there were three cases of species not found in

the Timetree database (Poecilia formosa, Astyanax mexicanus, Oreochromis niloticus). In

these cases the nearest related species of same genus that was found in Timetree was used

for building of TOL and renamed to match the OrthoDB retrieved sequences. This accounted

to negligible difference in TOL in the overall scale of evolution time distances.

The multiple sequence alignment was performed in two steps with MUSCLE and PRANK.

MUSCLE provided a template alignment for PRANK which realigned the sequences taking also

phylogenetic information into account. By visual inspection of final PRANK aligned MSAs the

alignments of the input sequences were satisfactory. Based on obtained orthologous

sequences TOLs of overlapping species to original 85 species TOL was created by pruning.

Here special care had to be taken to have exactly matching naming of each sequence in

individual protein MSA to the species in corresponding TOL.

The obtained MSAs and TOLs were sorted into individual folders each containing MSAs or

TOLs of two proteins. This was done either in all possible pairs or one protein of interest

versus potential partner’s combination. The former created exponential number of

39

combinations whereas the latter creates as many folders as there are proteins. The difference

in approaches comes into account when considering the calculation times that are far lower

with the second approach when analysing hundreds of proteins.

The CAPS was first tested with several different input parameters for a set of five proteins

involved in innate and adaptive immune response (TLR 1,2,6 and CD79a,b correspondingly)

that may interact with each other. There was an increase in the found co-evolving proteins

when lowering the stringency to avoid type one error - raising the alpha value from 0.0001 to

default 0.001 or higher where there was no further change in the output. Unexpected,

however, was the exclusion of the co-evolving pair (TLR 2 – TLR 6) by higher alpha values

previously found by alpha 0.0001. There is no obvious explanation as to why this happened.

Increasing the number of random cycles or gap threshold had no effect on the result which is

also unexpected and is may be revealing the improper working of CAPS. The comparison of

co-evolution determination from individual folders based on post-CAPS calculations showed

two more pairs than the ordinary CAPS run on the same proteins in one folder. The reason for

this may be in usage of only one chi squared test for which the input values were readily

available in the output file. Whereas there might be other additional “filtering” tests that are

performed differently by CAPS when only two proteins are in the folder than when there are

more.

Next, the accuracy of CAPS co-evolution detection was determined with the usage of likely

and unlikely interacting and therefore non/co-evolving proteins as CAPS input. CD79a, b, Lyn

found at plasma membrane, all three interacting in B cell activation were used for highly

interacting proteins with expected co-evolution, compared to two mitochondrial matrix

proteins Clpp and Glrx5. Mitochondrial matrix is separated from plasma membrane with two

membranes in a separate organelle. Direct interaction and high co-evolution with plasma

membrane residing B cell activation proteins is highly unlikely. However, the CAPS analysis

showed far greater co-evolution of B cell activation proteins paired with mitochondrial matrix

proteins than within each functional group. This was repeated with several gap thresholds

with no difference in the outcome. This unexpected outcome further undermined the

likelihood of CAPS’ ability to properly detect co-evolution.

40

Finally, two proteins CD79a and Lyn both involved in B cell activation were analysed with

CAPS versus 538 protein hits found by non-raft APEX2 targeted proximity labelling/pull-down

mass spectrometry. The top co-evolving protein partners were ranked and analysed for

comparison in Cytoscape which allows the usage of tested biochemically obtained interaction

information. By CD79a the top four CAPS found co-evolving partners had no true functional

interaction as the only common interaction neighbour was Poly – Ubiquitin-C, which

promotes protein recycling irrespective of protein functionality. By Lyn the CAPS output was

better supported by Cytoscape output. However there are clearly more closely interacting

partners to Lyn among the 538 proteins that were not even found to be co-evolving with

CAPS. For this reason the residue pairs that are the basis for final “positive” inter-protein co-

evolution of the top ranked CAPS co-evolving CD79a or Lyn were examined. It was revealed

that CAPS does not filter out the MSA columns containing gaps as set by the input parameter

of gap threshold of 1. CAPS does not filter out even the MSA columns containing more than

50% gaps as would be expected if default value was used in case the input parameter was

ignored. Furthermore the gaps in the columns are used for calculation of correlation factors.

As an example, the residue position column that contains a change in one amino acid to

another at one stage in evolution will be highly correlating with the column where at the

same time in evolution there is a gap (as seen in Figure 13 C and 14 C).

Unfortunately this issue could not be resolved because of the thesis time constraint and due

to the discontinuation of the CAPS support research team, whose members were otherwise

very helpful and cooperative.

41

6. Conclusions

The aims of this thesis were to:

- automatize and scale up the retrieval of orthologous sequences for hundreds of proteins

identified from mass spectrometry or elsewhere

- create multiple sequence alignments and phylogenetic tree presentations for the retrieved

orthologues of each protein

- prepare these as input files for multicore parallel run of CAPS – coevolution analysis

programme on supercomputer

- combine CAPS multiple output files into comprehensible readout of adaptive co-evolution

Each of these steps was achieved. Unfortunately CAPS analysis did not perform as expected,

the possible reasons discussed in section 5. The achieved automatic MSA and TOL creation

can be used for other than CAPS co-evolutionary approaches which are practically all based

on MSA input and may have higher predictive power (as shown in Figure 5). The other

approach could be (Bio) Python pre-processing of MSAs by removal of gap-containing

columns prior to CAPS analysis.

42

7. References

Altschul, Stephen F., Gish, Warren, Miller, Webb, Myers, Eugene W., and Lipman, David J

(1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

Altschul, Stephen F., Madden, Thomas L., Schaffer, Alejandro A., Zhang, Jinghui, Zhang, Zheng,

Miller, Webb, and Lipman, David J (1997). Gapped BLAST+ and PSI-BLAST: a new generation of

protein database search programs. Nucleic Acids Res. 25(17); 3389-3402.

Batista FD, Harwood NE (2009). The who, how and where of antigen presentation to B cells.

Nat Rev Immunol. 9(1):15-27.

Borghesi L, Milcarek C (2006). From B cell to plasma cell: regulation of V(D)J recombination

and antibody secretion. Immunol. Res. 36 (1–3): 27–32.

Brocchieri L, Karlin S (2005). Protein length in eukaryotic and prokaryotic proteomes. Nucleic

Acids Res. 33 (10): 3390–3400.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009).

BLAST+: architecture and applications. BMC Bioinformatics. 10:421.

Carter RH (2006). B cells in health and disease. Mayo Clin Proc. 81(3):377-84.

Casari, G., Sander, C. & Valencia, A (1995). A method to predict functional residues in

proteins. Nature Struct. Biol. 2, 171–178.

Chen C, Huang H, Wu CH (2017). Protein Bioinformatics Databases and Resources. Methods

Mol Biol. 1558:3-39.

Crick, F.H.C. (1958). "On Protein Synthesis". Symposia of the Society for Experimental Biology,

Number XII: The Biological Replication of Macromolecules. Cambridge University Press.

Cock PA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F,

Wilczynski B, de Hoon MJL (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422-1423

Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J (2004). B cell antigen

receptor signaling 101. Mol Immunol. 41(6-7):599-613.

43

Darwin, CR (1862). On the various contrivances by which British and foreign orchids are

fertilised by insects. John Murray, London

De Las Rivas J, Fontanillo C (2010). Protein-protein interactions essentials: key concepts to

building and analyzing interactome networks. PLoS Comp Biol. 6 (6): e1000807.

del Sol Mesa A, Pazos, F, Valencia, A (2003). Automatic methods for predicting functionally

important residues. J. Mol. Biol. 326, 1289–1302.

Edgar RC (2004). MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res. 32(5):1792-7.

Ehrlich PR, Raven PH (1969). Differentiation of populations. Science. 165(3899):1228-32.

Fares MA, McNally D, (2006). CAPS: coevolution analysis using protein sequences.

Bioinformatics. 22(22):2821-2.

Fares MA, Travers SA (2006). A novel method for detecting intramolecular coevolution:

adding a further dimension to selective constraints analyses. Genetics. 173(1):9-23.

Flajnik MF, Kasahara M (2010). Origin and evolution of the adaptive immune system: genetic

events and selective pressures. Nat Rev Genet. 11(1):47-59.

Göbel U, Sander C, Schneider R, Valencia A (1994). Correlated mutations and residue contacts

in proteins. Proteins. 18: 309–317.

Graur D, Li WH (2000). Fundamentals of Molecular Evolution (Second ed.). Sunderland,

Massachusetts: Sinauer Associates, Inc.

Heap RE, Gant MS, Lamoliatte F, Peltier J, Trost M (2017). Mass spectrometry techniques for

studying the ubiquitin system. Biochem Soc Trans. 45(5):1137-1148.

Hedges SB, Marin J, Suleski M, Paymer M, Kumar S (2015). Tree of Life Reveals Clock-Like

Speciation and Diversification. Mol Biol Evol. 32: 835-845.

Henikoff S, Henikoff JG (1992). Amino acid substitution matrices from protein blocks, Proc

Natl Acad Sci USA 89: 10915-10919.

44

Huang Y, Temperley ND, Ren L, Smith J, Li N, Burt DW (2011). Molecular evolution of the

vertebrate TLR1 gene family--a complex history of gene duplication, gene conversion, positive

selection and co-evolution. BMC Evol Biol. 11:149.

Janeway, Charles; Paul Travers; Mark Walport; Mark Shlomchik (2001). Immunobiology; Fifth

Edition. Garland Science

Jensen RA (2001). Orthologs and paralogs - we need to get it right. Genome Biol.

2(8):INTERACTIONS1002.

Juan D, Pazos F, Valencia A (2008). High-confidence prediction of global interactomes based

on genomewide coevolutionary networks. Proc Natl Acad Sci. 105: 934–939.

Juan D, Pazos F, Valencia A (2013). Emerging methods in protein co-evolution. Nat Rev Genet.

14(4): 249-61.

King RC, Mulligan P, Stansfield W (2013). A Dictionary of Genetics. Oxford University Press

Lichtarge O, Bourne HR, Cohen FE (1996). An evolutionary trace method defines binding

surfaces common to protein families. J Mol Biol. 257: 342–358.

Lockless SW, Ranganathan R (1999). Evolutionarily conserved pathways of energetic

connectivity in protein families. Science. 286: 295–299.

Löytynoja A, Goldman N (2008). Phylogenyaware gap placement prevents errors in sequence

alignment and evolutionary analysis. Science. 320: 1632–1635.

Löytynoja A (2014). Phylogeny-aware alignment with PRANK. Methods Mol Biol. 1079: 155-70.

Madaoui H, Guerois R (2008). Coevolution at protein complex interfaces can be detected by

the complementarity trace with important impact for predictive docking. Proc Natl Acad Sci.

105(22):7708-13.

Mateu MG, Fersht AR (1999). Mutually compensatory mutations during evolution of the

tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization.

Proc Natl Acad Sci. 96: 3595–3599.

45

Mihalek I, Res I, Lichtarge O (2004). A family of evolutionentropy hybrid methods for ranking

protein residues by importance. J Mol. Biol. 336: 1265–1282.

Nirenberg MW, Matthaei JH (1961). The dependence of cell-free protein synthesis in E. coli

upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci. 47 (10): 1588–

602.

Notredame C, Higgins DG, Heringa J (2000). T-Coffee: A novel method for fast and

accurate multiple sequence alignment. J Mol Biol. 302(1):205-17.

Pazos F, Helmer-Citterich M, Ausiello G, Valencia A (1997) Correlated mutations contain

information about protein–protein interaction. J Mol Biol. 271: 511–523

Pazos F, Valencia A (2001). Similarity of phylogenetic trees as indicator of protein–protein

interaction. Protein Eng. 14: 609–614.

Pazos F, Valencia A (2002). In silico two-hybrid system for the selection of physically

interacting protein pairs. Proteins 47: 219–227.

Pazos F, Ranea JAG, Juan D, Sternberg MJE (2005). Assessing protein co‑evolution in the

context of the tree of life assists in the prediction of the interactome. J Mol Biol. 352: 1002–

1015.

Pazos F, Valencia A (2008). Protein co-evolution, co-adaptation and interactions. EMBO J.

27(20):2648-55.

Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999). Assigning protein

functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci.

96: 4285–4288.

Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013). Proteomic

mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science

339(6125):1328-1331.

46

Rausell A, Juan D, Pazos F, Valencia A (2010). Protein interactions and ligand binding: from

protein subfamilies to functional specificity. Proc Natl Acad Sci. 107: 1995–2000.

Reva B, Antipin Y, Sander C (2007). Determinants of protein function revealed by

combinatorial entropy optimization. Genome Biol. 8: R232

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M,

Söding J, Thompson JD, Higgins DG (2011). Fast, scalable generation of high-quality protein

multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539.

Slupsky JR (2015). Enhancing BCR signals at the cell membrane. Blood. 125(4):586-7.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker

T (2003). Cytoscape: a software environment for integrated models of biomolecular

interaction networks. Genome Res. 13(11):2498-504.

Shim Choi S, Li W, Lahn BT (2005). Robust signals of coevolution of interacting residues in

mammalian proteomes identified by phylogeny-aided structural analysis. Nat Genet 37: 1367–

1371.

Tillier ERM, Charlebois RL (2009). The human protein coevolution network. Genome Res. 19:

1861–1871.

van Rossum G (1995). Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en

Informatica

Watson JD, Crick FHC (1953). A structure for deoxyribose nucleic acid. Nature. 171: 737–738.

Weigt M, White RA, Szurmant H, Hoch JA, Hwa T (2009). Identification of direct residue

contacts in protein–protein interaction by message passing. Proc Natl Acad Sci. 106: 67–72.

Wysocki VH, Resing KA, Zhang Q, Cheng G (2005). Mass spectrometry of peptides and

proteins. Methods. 35(3):211-22.

Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, Seppey M,

Loetscher A, Kriventseva EV (2017). OrthoDB v9.1: cataloging evolutionary and functional

annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res.

45(D1):D744-D749.

47

8. Appendices

FIRST PYTHON SCRIPT CONTAINING STEPS 1-2-3-4-5-6-B:

import csv #for writing CSV with columns of species for each protein
from itertools import islice #for working with files, geting lines of choice-to extract the second line for species fasta
import itertools
import re #for string manipulation
import ast #for work with dictionaries
import urllib2
from lxml import etree
import os
from Bio import SeqIO #biopython to change OrthoDBFAST headers
import time
start_time = time.clock()
import sys
import urllib
import urllib2
import json
import time
import re #for strings
import os#for file path
import Bio
from Bio import AlignIO
from Bio import SeqIO
from Bio.SeqIO.FastaIO import SimpleFastaParser
from Bio.Align.Applications import ClustalwCommandline
from Bio import pairwise2
from Bio.SubsMat import MatrixInfo as matlist
matrix = matlist.blosum62
import subprocess #to manage supprocess
import sys
def launchWithoutConsole(command, args):
 """Launches 'command' windowless and waits until finished"""
 startupinfo = subprocess.STARTUPINFO()
 startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
 return subprocess.Popen([command] + args, startupinfo=startupinfo).wait()
import requests
import time
def bordered(text):
 lines = text.splitlines()
 width = max(len(s) for s in lines)
 res = [unichr(0x2588) + unichr(0x2588)* width + unichr(0x2588)]
 for s in lines:
 res.append(unichr(0x2588) + (s + ' ' * width)[:width] + unichr(0x2588))
 res.append(unichr(0x2588) + unichr(0x2588) * width + unichr(0x2588))
 return '\n'.join(res)

start_time = time.clock()
seqfast=""
listofprotsspecies=[]###to make species list
singlespecieslist=[]
outype=".xml"#'.txt'#could be ".fasta" or ".tab"

STEP 1:UNIPROT IDENTIFIERS ######################

listofUPids = ["P11911","Q99KK9", "Q80V62", "P16277", "P29351"] #### IMPORTANT PUT HERE THE LIST OF UNIPROT IDENTIFIERS, PROTEINS OF INTEREST!
filelistfasta=[]###########file list from which folders are made and files moved
filelistdnd=[]
from ete3 import Tree
def diff(first, second): #function for checking if the list of species in trees changes
 second = set(second)
 return [item for item in first if item not in second]

def MusclePrank (symbol, RecName, GeneName): (function containing step 5, 6 and B is declared before step 2)

 ### STEP 5: first part making MUSCLE MSA alignement and tree

 flname=symbol
 from Bio.Align.Applications import MuscleCommandline
 muscle_exe = r"E:\Program Files\muscle\muscle3.8.31_i86win32.exe" ######IMPORTANT CHANGE APROPRIATELY
 muscle_cline = MuscleCommandline(muscle_exe, input=flname+".fs", tree1="tree.dnd")
 stdout, stderr = muscle_cline()
 from StringIO import StringIO
 from Bio import AlignIO
 startupinfo = subprocess.STARTUPINFO() ####to avoid command line window pop-up!!!
 startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
 handle=StringIO(stdout)
 align = AlignIO.read(handle, "fasta")
 AlignIO.write(align, 'aligned.fasta', "fasta")
 print"phyloDraw"
 handle.close()

 ### STEP 6:second part doing prank MSA based on prealigned muscle FASTA and muscle phylogenetic

Newick tree
 from Bio.Align.Applications import PrankCommandline
 #I had to modify to include partaligned parameter!!! \Python27\Lib\site-packages\Bio\Align\Applications_prank.py
 entryname=RecName+"_"+GeneName+"_"+symbol
 prank_cline = PrankCommandline(d="aligned.fasta",o=entryname, # prefix only!
 f=8, # FASTA output
 t="treetest.dnd",# noxml=True,
 showtree=entryname,

48

 iterate=15,partaligned=True,
 prunetree=True, prunedata=True)#prunedata
 from StringIO import StringIO
 from Bio import AlignIO
 stdout, stderr = prank_cline()
 print "stdout",stdout
 stdout, stderr = prank_cline()
 print "stdout",stdout
 from Bio import Phylo
 tree = Phylo.read(entryname+".dnd", "newick")
 print bordered("PRINTING ASCII TREE: Phylo.draw_ascii(tree)")
 print bordered("UniprotACC: "+UniprotAcc)
 Phylo.draw_ascii(tree)
 filelistfasta.append(entryname+".fas")#
 filelistdnd.append(entryname+".dnd")#

 print bordered("UniprotACC: "+UniprotAcc)

 ## STEP B: preparation of TOL pruning to match the PRANK MSA output

 treewhole = Tree("treetest.dnd", format=1) #reading the original tree file
 tree = Tree(entryname+".dnd", format=1) #reading the tree file from prank, with less species
 trwhlnames=[leaf.name for leaf in treewhole] #making a list of species from original tree file with all species
 print "len(ntrwhlnames)",len(trwhlnames)
 print trwhlnames
 trnames=[leaf.name for leaf in tree]#making a list of species from prank tree file with all species
 print "len(trnames)",len(trnames)
 import copy
 newtree = copy.deepcopy(treewhole) #copy original tree file so it can be modified
 newtree.prune(trnames) #PRUNING THE ORIGINAL TREE WITH PRANK FILE, SO ONLY THE SPECIES FROM PRANK FILE REMAIN
 newtree.write(format=1, outfile=entryname+".tre") #writing the tree file with prank species
 ntrnames=[leaf.name for leaf in newtree] #making a list of species from prank-pruned original tree file with all species
 print "len(ntrnames)",len(ntrnames)
 print "diff(trwhlnames,ntrnames)",diff(trwhlnames,ntrnames) #checking that new prank-pruned original tree file really contains less species than original
 print bordered("UniprotACC: "+UniprotAcc)
for UniprotAcc in listofUPids:########FOR LOOP TO GO THROUGH ALL UNIPROT
IDENTIFIERS##
 try:
 print bordered("UniprotACC: "+UniprotAcc)
 singlespecieslist=[]#restarting single species list
 singlespecieslist.append(UniprotAcc)

 ###STEP 2 - Online retrieval of protein sequence at Uniprot

 urlStr = 'http://www.uniprot.org/uniprot/'+UniprotAcc+outype
 response = requests.get(urlStr)
 with open('feed.xml', 'wb') as file:
 file.write(response.content)
 seqfast
 tree = etree.parse("feed.xml")
 root = tree.getroot()
 print root.tag
 print root.attrib

 for entry in root.findall('entry', root.nsmap):
 if entry.find('protein/recommendedName/fullName', root.nsmap) is None: ####in case uniprot accession xml has missing information on this:
 RecName=""
 else:
 RecName = entry.find('protein/recommendedName/fullName', root.nsmap).text
 singlespecieslist.append(RecName)#second element uniprot protein name
 print unichr(0x2588),"Recommended Name: ",RecName
 if entry.find('gene/name', root.nsmap) is None: ####in case uniprot accession xml has missing information on this:
 GeneName=""
 else:
 GeneName = entry.find('gene/name', root.nsmap).text
 print unichr(0x2588),"GeneName: ",GeneName
 singlespecieslist.append(GeneName)#third element
 for altName in entry.findall('protein/alternativeName/fullName', root.nsmap):
 print unichr(0x2588),"Alternative Name: ",altName.text
 for subcelloc in entry.findall("comment/subcellularLocation/location", root.nsmap):
 print unichr(0x2588),"Subcell Loc: ",subcelloc.text
 sequence = entry.find('sequence', root.nsmap).text
 seqfast=">"+UniprotAcc+sequence
 print "Sequence Length: ",len(sequence)
 singlespecieslist.append(str(len(sequence)))
 print seqfast
 for fulnm3 in root.iter('fullName'):
 print fulnm3.text
 with open('seqfast.fasta', 'wb') as file:
 file.write(seqfast)
 ##############part in case OrthoDB would update the matching of UniprotID to OrthoDB
identifiers##GETTING DATA FROM ODB SITE
 #OrDBid="Q9HCC0" #works also directly from uniprot!
 OrDBid="-"#UniprotAcc #testing false input
 #the output is {"status": "ok", "message": "no clusters found", "data": [], "count": 0}
 #OrDBid="1433B_MOUSE"#this should be read from uniprot TAB or BLASTED
 urlStr = "http://www.orthodb.org/fasta?query="+OrDBid+"&level=7742&species=&universal=&singlecopy="
 response = requests.get(urlStr)
 print response.content
 with open('original.fs', 'w') as file:
 file.write(response.content)
 #print file
 #add species names:
 #orthoDB species IDS D:\MASTERS\PYTHON\OrthoDB\odb9v1_species.tab
 urlStr = "http://www.orthodb.org/tab?query="+OrDBid+"&level=7742&species=&universal=&singlecopy="
 response = requests.get(urlStr)
 print response.content

49

 with open('original.tab', 'w') as file:
 file.write(response.content)
 #print file ####IF RESPONSE FROM ODB EMPTY THEN I SEARCH WITH BLAST FOR CLOSEST OTHER UNIPROT OR ODB PROTEIN
 print response.content
 print
 if ast.literal_eval(response.content)["count"]==0: #### with ast.literal_eval turning string that looks like dictionary into dictionary
 print "EMPTY"

 ############BLASTING UNIPROT DATABASE, because sometimes Uniprot can't find its own identifiers!!!
 from Bio.Blast.Applications import NcbiblastpCommandline #for BLAST

 db1 = "uniprot-ODB.fasta" #Uniprot mouse PROTEIN FASTA DATABASE, that has also ODB identifiers
 ########IMPORTANT CHANGE THE PATH TO THE UNIPROT SEQUENCE BELLOW!
 blast_cline = NcbiblastpCommandline(query="D:\MASTERS\PYTHON\OrthoDB\seqfast.fasta", db=db1, evalue=0.001, outfmt=5,
out="D:\MASTERS\PYTHON\OrthoDB\LocUniprot_BLASToutput.xml")
 stdout, stderr = blast_cline()
 print(stdout,stderr)
 print "\n"
 print bordered("UNIPROT BLAST")
 print bordered("%.2f" %(time.clock() - start_time)+" seconds") #time it needs for the whole script!
 from Bio.Blast import NCBIXML #using Biopython library
 result_handle = open("LocUniprot_BLASToutput.xml")
 blast_record = NCBIXML.read(result_handle) #using Biopython library

 first = True ####geting just the first top alignement
 for alignment in blast_record.alignments: #using Biopython library
 for hsp in alignment.hsps: #using Biopython library
 if first:
 #if hsp.expect < E_VALUE_THRESH:
 print('****Alignment****')
 print('sequence altitle:', alignment.title)
 #print alignment.title #string containing ensembl IDs
 print('length:', alignment.length)
 print('e value:', hsp.expect)
 print(hsp.query[0:75] + '...')
 print(hsp.match[0:75] + '...')
 print(hsp.sbjct[0:75] + '...')
 ALTTL=alignment.title
 UNIPRidx=ALTTL.find("|", 17, 23)+1#len(ALTTL))+3
 UNIPRidx2=ALTTL.find("|", 23, 35)#UNIPRidx, len(ALTTL))
 UNIPRacc=ALTTL[UNIPRidx:UNIPRidx2]
 print bordered("BLASTED UNIPROTACCESSION"+UNIPRacc)

 print "orig UNIPR sq",(len(sequence)) #comparing uniprot input seq length and ensembl hit sequence length
 print "alt UNIPR sq",int(alignment.length)
 uniprlnght=int(alignment.length)
 print unichr(0x2588),"% length difference of orig/alt sq:","%.2f" % ((len(sequence)/float(alignment.length)-len(sequence)/(alignment.length))*100), "%"
 Uniprotsq=hsp.sbjct
 Sqnobrks=sequence.replace('\n', '').replace('\r', '')
 print "Sqnobrks",Sqnobrks
 first = False #ending to make sure only first - most similar hit is taken

 ##STEP 3: LOCAL BLASTING for ORTHODB IDs

 from Bio.Blast.Applications import NcbiblastpCommandline #for BLAST

 db2 = "MusMusculusODB.fs" #Uniprot mouse PROTEIN FASTA DATABASE, that has also ODB identifiers
 ##change the path as needed below!
 blast_cline = NcbiblastpCommandline(query="D:\MASTERS\PYTHON\OrthoDB\seqfast.fasta", db=db2, evalue=0.001, outfmt=5,
out="D:\MASTERS\PYTHON\OrthoDB\LocODB_BLASToutput.xml")
 stdout, stderr = blast_cline()
 print(stdout,stderr)

 ###parse the LocENSMBL_BLASToutput.xml

 print bordered("UniprotACC: "+UniprotAcc)
 print "\n"

 print bordered("ODB BLAST")
 print bordered("%.2f" %(time.clock() - start_time)+" seconds") #time it needs for the whole script!
 from Bio.Blast import NCBIXML #using Biopython library
 result_handle = open("LocODB_BLASToutput.xml")
 blast_record = NCBIXML.read(result_handle) #using Biopython library

 first = True ####geting just the first top alignement
 for alignment in blast_record.alignments: #using Biopython library
 for hsp in alignment.hsps: #using Biopython library
 if first:
 #if hsp.expect < E_VALUE_THRESH:
 print('****Alignment****')
 print('sequence:', alignment.title)
 print alignment.title #string containing ensembl IDs
 print('length:', alignment.length)
 print('e value:', hsp.expect)
 print(hsp.query[0:75] + '...')
 print(hsp.match[0:75] + '...')
 print(hsp.sbjct[0:75] + '...')

 hsp.sbjct

 ALTTL=alignment.title
 ODBidx=ALTTL.find("10090:", 0, len(ALTTL)) ##we are looking through mouse proteins with IDs that start with Mus musculus TAXid 10090

50

 ODBacc=ALTTL[ODBidx:len(ALTTL)]
 print ODBacc
 print bordered("BLASTED ODBACCESSION"+ODBacc)
 print "orig UNIPR sq",(len(sequence)) #comparing uniprot input seq length and ensembl hit sequence length
 print "ODB sq",int(alignment.length)
 print unichr(0x2588),"% length difference of origUnipr/ODB sq:","%.2f" % ((len(sequence)/float(alignment.length)-len(sequence)/(alignment.length))*100), "%"
 ODBsq=hsp.sbjct
 #ODBscore=pairwise2.align.globaldx(Sqnobrks, ODBsq, matrix, score_only=1)####PAIRWISE SCORING OF SIMILARITY, NO GAP PENALTY CURRENTLY
 #print "Pairwise alignement score is: ",ODBscore
 print bordered("comparing uniprt ODB BLAST:")
 print unichr(0x2588),"% length difference of blast Unipr/ODB sq:","%.2f" % ((uniprlnght/float(alignment.length)- uniprlnght/(alignment.length))*100), "%"

 #ODBUniprtscore=pairwise2.align.globaldx(Uniprotsq, ODBsq, matrix, score_only=1)####PAIRWISE SCORING OF SIMILARITY, NO GAP PENALTY CURRENTLY
 #print "Pairwise alignement score is: ",ODBUniprtscore

 #COULD SET SOME THRESHOLD HOW HIGH SHOULD THE SCORE OR LENGHT SIMILARITY BE IN ORDER TO PROCEED
 first = False #ending to make sure only first - most similar hit is taken

 ###STEP 4: RETRIEVAL OF OrthoDB Orthologous sequences, parsing and filtering them

for homologs
 #OrDBid="Q9HCC0" #works also directly from uniprot!
 OrDBid=ODBacc#OR ODBacc #EITHER FROM UNIPROT OR FROM ODB BLAST? #THINK ABOUT IT, WHICH COULD BE BETTER, ARE THERE SOME EXCLUSIVE CASES ETC...
 #the output is {"status": "ok", "message": "no clusters found", "data": [], "count": 0}

 #OrDBid="1433B_MOUSE"#this should be read from uniprot TAB or BLASTED
 urlStrfasta = "http://www.orthodb.org/fasta?query="+OrDBid+"&level=7742&species=&universal=&singlecopy="

 responsefasta = requests.get(urlStrfasta)
 print responsefasta.content
 urlStrtab = "http://www.orthodb.org/tab?query="+OrDBid+"&level=7742&species=&universal=&singlecopy="

 responsetab = requests.get(urlStrtab)
 print responsetab.content
 with open('original.fs', 'w') as original, open('original.tab', 'w') as originaltab:#, open('corrected.fs', 'w') as corrected:
 original.write(responsefasta.content)
 original.close
 originaltab.write(responsetab.content)
 originaltab.close
 print bordered("UniprotACC: "+UniprotAcc)

 oldinstance=""#for comparison of homologs
 maxspecscore=0#for pairwise scoring of sequences
 maxrecord=0
 previousrecord=0

 #SOME SPECIES HAVE SEVERAL HOMOLOGS, SO WE NEED TO FIND WHICH THOSE ARE AND COMPARE THEM TO FIND THE HOMOLOG, THAT IS CLOSEST TO THE MOUSE ORIGINAL
SEQUENCE
 with open('original.tab', 'r') as originaltab: ####just to get first instance of species
 for firstline in islice(originaltab, 1, 2): #taking second line, because the first one is the header
 oldinstance=(re.split(r'\t+', firstline)[4].replace(" ", "_")).lower()
 print "#######SLICENOW",oldinstance
 originaltab.close
 first = 1
 with open('original.fs', 'r') as original: ####just to get first instance of species
 records = SeqIO.parse(original, 'fasta')
 for record in records:#, 0, 1): #taking first line record
 if first:
 print "RECORD: ",record
 print "RECORDid: ",record.id
 print "RECORDseq: ",record.seq
 print "RECORDname: ",record.name
 print "RECORDdesc: ",record.description
 record.description=""
 record.id=oldinstance#+" "+record.id
 previousrecord=record
 maxrecord=record
 first = False
 original.close
 print bordered("UniprotACC: "+UniprotAcc)
 print "#########CHECKING after file closing########: ",maxrecord

 print bordered("HEAVY COMPUTING OF PAIRWISE ALIGNEMENTS, BE PATIENT!")
 with open('original.fs', 'r') as original, open('original.tab', 'r') as originaltab, open(UniprotAcc+'.fs', 'w') as corrected:

 records = SeqIO.parse(original, 'fasta')
 next(originaltab)#skipping header row by tab file
 next(originaltab)
 next(records)
 i=0
 for record, line in zip(records, originaltab):
 i=i+1
 newinstance=(re.split(r'\t+', line)[4].replace(" ", "_")).lower()
 #print record.id, "\n", i,". "
 #print re.split(r'\t+', line)[4].replace(" ", "_")#splits original line by tabs, takes 4th element -species name and replaces space with underscore
 if newinstance!=oldinstance:#checking if the current species isnt the same as species in the previous instance
 record.id=newinstance#+" "+record.id
 record.description=""
 SeqIO.write(previousrecord, corrected, 'fasta')#if it is not the same, now it will save the previous species (max record) into fasta
 singlespecieslist.append(oldinstance)

 #oldinstance=newinstance #updating species instance
 maxrecord=record #since this is new species maxrecord is restarted
 previousrecord=record #as well as previous record is updated

51

 maxspecscore=((len(Sqnobrks)/float(len(record.seq))- len(Sqnobrks)/len(record.seq))*100)#len#pairwise2.align.globaldx(Sqnobrks, record.seq, matrix, score_only=1)
 #because the pairwise alignment is way to slow I simply used the best length match

 #since this is new species maxscore needs to be restarted
 ###at this point I could make a special list for a file with just species names in columns

 else: #in case current species is the same as previous
 newspecscore=((len(Sqnobrks)/float(len(record.seq))- len(Sqnobrks)/len(record.seq))*100)#pairwise2.align.globaldx(Sqnobrks, record.seq, matrix, score_only=1) #comparing
the pairwise score of current sequence with uniprot
 if newspecscore<maxspecscore:#if the new pairwise score is lower than max score
 previousrecord=maxrecord#then "previous record" will be the record with so far max score (maxrecord), and the current record will be skipped
 else: #if the new pairwis score is not lower (but higher) than the previous max score
 maxspecscore=newspecscore #then new score becomes maxspecscore
 record.id=newinstance#+" "+record.id
 record.description=""
 maxrecord=record #the current record becomes maxrecord
 previousrecord=record #and also "previousrecord" is updated
 oldinstance=newinstance #so next round in for loop, next line will have the previous line to compare to...
 original.close
 originaltab.close
 corrected.close
 MusclePrank(UniprotAcc, RecName, GeneName)
 listofprotsspecies.append(singlespecieslist)#adding individual proteins specieslist
 except Exception as e: ####PRINTOUT OF ALL THE ERRORS FOR EACH UNIPROT IDENTIFIER THAT COULDNT BE PROCESSED
 try:
 with open('errors.txt', 'a') as errorsf:
 errorsf.write("UniprotACC: "+UniprotAcc+"\n")
 errorsf.write("RecName: "+RecName+"\n")
 errorsf.write("GeneName: "+GeneName+"\n")
 print str(e)
 errorsf.write(str(e)+"\n")
 errorsf.write("\n")
 errorsf.close
 except:
 pass
 pass
export_data = itertools.izip_longest(*listofprotsspecies, fillvalue='-')

print export_data
with open('allprotsspecieslist.txt', 'w') as myfile:
 wr = csv.writer(myfile)
 wr.writerows(export_data)
myfile.close()

print bordered("THE END: "+ "%.2f" %(time.clock() - start_time)+ " seconds") #time it needs for the whole script!

print 5*unichr(9989)

SECOND PYTHON SCRIPT CONTAINING STEP 7

##STEP 7: COMBINING THE FILES FOR ALL POSSIBLE PAIRS OF PROTEINS

mypathfas=r"D:\MASTERS\TEST2\FAS" #IMPORTANT copy here the path to your tre files
mypathtre=r"D:\MASTERS\TEST2\TRE" #IMPORTANT copy here the path to your fas files
#make sure names and number of files in each folder match

size=2 #IMPORTANT put in the number of files you want per folder
#if set to 2 it will make all possible pairs so each protein has a pair with another one from the source folder
#if you want all the files to be combined just with one repeating protein set to 1, but specify the file to be added bellow (un/comment the command)

import os.path
import itertools
import os
dir_path = os.path.dirname(os.path.realpath(__file__))#current path where this .py is could be changed
#put all the files into this dir
from os import listdir
from os.path import isfile, join
import shutil
def srtngfls(mypath, size):
 onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
 parentfolder=os.path.abspath(os.path.join(mypath, os.pardir))
 dirsorting=1

 filename, file_extension = os.path.splitext(onlyfiles[0])
 file_extension = file_extension.translate(None, '.')
 if dirsorting==1:
 print onlyfiles
 print file_extension
 #### REDISTRIBUTING THE FILES INTO PAIRED
FOLDERS###
 ###first creating folders and copying FASTA files
 iterator=0
 for pair in itertools.combinations(onlyfiles, size):
 print pair
 iterator=iterator+1

52

 if not os.path.exists(parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator)):
 os.makedirs(parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator))
 #shutil.copy2('/src/file.ext', '/dst/dir')
 x=0
 for x in range(0,size):
 shutil.copy2(mypath+"\\"+pair[x], parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator))
 #shutil.copy2(mypath+"\\"+pair[1], parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator))
 #shutil.copy2(mypath+"\\"+pair[2], parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator))

 #fas and tre files need to be set into parent directory
 #UNCOMMENT AND SPECIFY THE FILENAME AND PATH TO THE FILE YOU WANT TO BE ADDED TO EACH FOLDER
 #shutil.copy2(parentfolder+"\\"+"IidIgAIntrct_B-cell antigen receptor complex-associated protein alpha chain_Cd79a_P11911."+file_extension,
parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator))
 #shutil.copy2(parentfolder+"\\"+"Sarcolipin_Sln_Q9CQD6."+file_extension, parentfolder+"\\folder"+str(iterator)+"\\"+file_extension+str(iterator))

srtngfls(mypathtre, size) #calling of function for tre
srtngfls(mypathfas, size) #and fas files

COMMAND LIST FOR STEP 8 CAPS PARALLEL MULTICORE RUNNING IN LINUX ENVIRONMENT ON TAITO CSC SUPERCOMPUTER

time (cd /wrk/sustarvi/TEST/folder128759 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128759/ --inter -T tre128759/ -g 0.6 -H mus_musculus -c)
time (cd /wrk/sustarvi/TEST/folder128760 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128760/ --inter -T tre128760/ -g 0.6 -H mus_musculus -c)
time (cd /wrk/sustarvi/TEST/folder128761 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128761/ --inter -T tre128761/ -g 0.6 -H mus_musculus -c)
time (cd /wrk/sustarvi/TEST/folder128762 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128762/ --inter -T tre128762/ -g 0.6 -H mus_musculus -c)
time (cd /wrk/sustarvi/TEST/folder128763 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128763/ --inter -T tre128763/ -g 0.6 -H mus_musculus -c)
time (cd /wrk/sustarvi/TEST/folder128764 && /homeappl/home/sustarvi/appl_taito/caps2/caps -F fas128764/ --inter -T tre128764/ -g 0.6 -H mus_musculus -c)
……..

BASH SCRIPT FOR STEP 8 IF ABOVE COMMAND LIST CONTAINS >700 COMMANS (LINES) IT NEEDS TO BE SPLIT AND EACH SUB-

COMMAND LIST NEEDS TO BE RUN SUBSEQUENTLY, THIS BASH SCRIPT AUTOMATIZES THE AUTOMATIC RUN THROUGH ALL SUB-COMMAND

LISTS

#!/bin/bash
sbatch_commandlist -commands xaa
sbatch_commandlist -commands xab
sbatch_commandlist -commands xac
sbatch_commandlist -commands xad
sbatch_commandlist -commands xae
sbatch_commandlist -commands xaf
sbatch_commandlist -commands xag
sbatch_commandlist -commands xah
sbatch_commandlist -commands xai
sbatch_commandlist -commands xaj
sbatch_commandlist -commands xak
…

COMMAND LIST FOR STEP 8 MOVEMENT AND SIMULTANEOUS RENAMING OF CAPS OUTPUT FROM EACH INDIVIDUAL

SUBFOLDER INTO ONE COMMON FOLDER FOR ARCHIVING AND DOWNLOAD FROM SUPERCOMPUTER

mv /wrk/sustarvi/TEST/folder128759/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128759.csv
mv /wrk/sustarvi/TEST/folder128760/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128760.csv
mv /wrk/sustarvi/TEST/folder128761/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128761.csv
mv /wrk/sustarvi/TEST/folder128762/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128762.csv
mv /wrk/sustarvi/TEST/folder128763/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128763.csv
mv /wrk/sustarvi/TEST/folder128764/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128764.csv
mv /wrk/sustarvi/TEST/folder128765/coev_inter.csv /wrk/sustarvi/TEST/OUTPUT/foldercoev_inter128765.csv
…

THIRD PYTHON SCRIPT CONTAINING STEP 9

##STEP 9: EXTRACTION OF TOP ROWS IN CAPS OUTPUT COEV_INTER FILES

mypath=r"D:\MASTERS\TEST2\IgA12720_AllFiles\foldercoev" #put here the path to the folder with CAPS output files

import re
import csv
import itertools
import os

53

import os.path
from os import listdir
from os.path import isfile, join
import shutil
onlyfiles = [f for f in listdir(mypath) if (isfile(join(mypath, f)) & f.endswith('.csv'))]
for file in onlyfiles:
 print file
 with open(mypath+"\\"+file, 'rb') as csvfile:
 spamreader = csv.reader(csvfile, delimiter='\t')#, quotechar='|')
 templist=[]
 indtemplist=[str(csvfile)]
 for grow in spamreader:
 templist.append(grow)
 if len(templist)>2:
 for element in templist[1]:#[row]:
 print "ELEMENT", element," type: ",type(element)
 element = re.sub("[']", "", element)
 tempsbel=element.split("_")
 for sbelement in tempsbel:
 print sbelement
 indtemplist.append(sbelement)
 savestr='\t'.join(indtemplist)
 print "savestr", savestr
 with open(mypath+"\\"+'extractedCAPSoutput.txt', 'a') as pfile:
 pfile.write(savestr+'\n')
 pfile.close

LIST OF MS HIT PROTEINS:
Cep55,Pacsin2,Hmmr,Rnf219,Arhgap30,Psmd5,Sugt1,Rfc1,Prrc2a,Crocc,Blnk,Scamp3,Galk1,Eef1d,Rbm3,Dlgap5,
Mta2,Dnmt1,Fam83b,Caskin2,Psme2,Aldh16a1,Fgd6,Anxa11,Dhx30,Slc39a6,Pdlim2,Atxn2l,Eif3f,Anxa7,Scrib,Slc3
9a10,Snap29,Prdx5,Pag1,Eif4g1,Utp3,Nsdhl,Ybx1,Lyar,Nfkb1,Tax1bp1,Stx7,Kars,Il16,Abcf1,Ubap2,Msh6,Nup214,
Tufm,Lasp1,Atp5o,Acsl4,Lonp1,Pfas,U2surp,Eif4h,Hcfc1,Swap70,Was,Lrrc40,Smc4,Eif2a,Ranbp2,Pdcd6,Ncstn,Khs
rp,Edc4,Afdn,Nvl,Lrrc59,Stip1,Sri,Slamf6,Sec24a,Nup155,Mtmr14,Ikzf1,Pdcd6ip,Eif4g3,Nsun2,Slc38a2,Abcb7,Thu
mpd3,Elp1,Purb,Pdlim5,Ppp1r12a,Uba1,Eif3g,Snx27,Ap3b1,Prmt5,Gart,Nedd4,Ptk2b,Chd4,Nampt,Lig1,Asns,Igh
m,Csde1,G3bp2,Carm1,Fam98a,Usp6nl,Csrp1,Eps15,Arfgap2,Rangap1,Eif3b,Hadha,Cap1,Plaa,Parp1,Ints7,Dnaja1
,Eif3c,Adgrl2,Eif3h,Pacsin1,Mars,Erap1,Kif23,Trip13,Ablim1,Hsd17b12,Apbb1ip,Kif11,Dhx36,Sh3gl2,Rrp12,Cdv3,S
mc1a,Ehd4,Map2k1,Sars,Dag1,Zdhhc5,Ptpra,Ddx1,Gtpbp1,Sqstm1,Psma5,Hnrnpd,Rars,Ruvbl2,Snap23,Frs2,Nap1
l1,Wars,Gnas,Lcp1,Clic4,Inpp5d,Npepps,Cdc42,Smc2,Ddx19a,Pfkl,Itch,Kif5b,Bzw1,Rock1,Rbbp7,Slc4a7,Dock8,Pip
4k2b,Msh2,Mtss1,Rrm2,Tardbp,Zc3h15,Mtrex,Snrnp200,Sec31a,Erbin,Ipo9,Psmd11,Gnaz,Rab14,Myh9,Sf3b1,Cn
n2,Prkaca,Llgl1,Xpnpep1,Cdc37,Hspd1,Limd1,Top2a,Flna,Ptprc,Dhx15,Dnajc5,Pafah1b1,Dlg1,Rplp0,Rnpep,Hnrnp
f,Clasp2,Vav1,Elmo1,Rtcb,Abi1,Ddx17,Fcgr2,Pi4ka,Dbnl,Snd1,Slc16a1,Mcm4,Fyn,Polr2b,Kif15,Aldh18a1,Gspt1,M
ap3k7,Rab1b,Rala,Nxf1,Nedd9,Ywhaq,Myo1g,Plcg2,Wasf2,Usp9x,Picalm,Flnb,Lars,Timm50,H2D1,Ipo5,Ddx27,Can
d1,Mcm6,Lbr,Psmc2,Psd4,Supt16h,Slc3a2,Slc7a1,Tpp2,Dpysl2,Sec23b,Sptbn1,Osbp,Cd22,Akap12,Prpf6,Igsf3,Hdl
bp,Tln1,Dhx9,Ptpn23,Smarca4,Dock11,Eftud2,Ywhae,Ywhag,Psmd12,Psmd2,Psmd6,Psmc6,Psmc1,Psmc3,Psmc4,
Psmc5,Mpst,Pdpk1,Rps12,Rps13,Rps17,Rps19,Prkaa1,Mpp1,Rpl10a,Rpl30,Rpl35a,Rpl38,Rpl9,Abi3,Aacs,Acta1,Ac
tr3,Ahsa1,Adsl,Adss,Arf4,Arf6,Nudt5,Aars,Akr1b1,Actn4,Aimp1,Aimp2,Ano6,Ap1g1,Ap2b1,Bax,Nars,Atl3,Pfkp,Ata
d3,Aurkaip1,Btla,Cd79b,Cd72,Cd19,Grk2,Blvra,Tmco1,Cacybp,Prkar1a,Csnk1a1,Cavin1,Cnot1,Cd2ap,Cd82,Cnbp,C
lic1,Cpsf3,Copa,Copb1,Arcn1,Cc2d1b,Ccdc6,Ncaph,FAM120A,Cpne3,Coro1a,Coro1b,Coro1c,Ctps1,Chordc1,Dync
1h1,Cyfip2,Acot7,Dock2,Drg2,Dip2b,Dcbld1,Prim1,Polr1c,Dnaja2,Stt3a,Cbl,Ehd1,Ehd3,Eef1b,Elp3,Emb,Sh3glb1,E
ps15l1,Eif4a3,Etf1,Eif2s2,Eif2s3x,Eif3a,Eif4b,Eif5a,Eif5,Dis3,Xpo1,Cse1l,Capza1,Capza2,Capzb,Fcrl1,Aldoa,Gphn,G
csam,Gfpt1,Glrx3,Gstp2,Gstt3,Pygb,Gmps,Grb2,Rheb,Gnai2,Gnai3,Gna13,Hspa4,Hsph1,Hcls1,Hgs,Hnrnpl,Hip1r,H
prt1,Igbp1,Kpna3,Kpnb1,Impdh2,Isyna1,Iars,Klc1,Kifc1,Larp1,Lmnb1,Lrch1,Lrch4,Cd37,Lpxn,Hells,Lsp1,Mif,Mpp6,
Immt,Map1s,Mink1,Tomm40,Mapk1,Map4k1,Bub3,Mad2l1,Msn,Mthfd1l,Abcb1a,Trmt112,Naa15,Notch2,Nmral
1,Nsfl1c,Nup107,Nup160,Nup93,Nop58,Npm1,Fkbp4,Pes1,Farsa,Pebp1,Pip5k1a,Pgk1,Plscr3,Prpsap2,Atp2b1,Pls3
,Plekha2,Prpf8,Ddx20,Ddx6,Phb,Adrm1,Psme1,Prmt1,Pdia3,Fam49b,Mgea5,Sec61a1,Rp2,Rel,Glyr1,Racgap1,Rasa
2,Rasa3,G3bp1,Rasgrp2,Rac1,Rras2,Rab11a,Rab35,Rab5c,Rab7a,Rab8a,Rap1b,Upf1,Rfc5,Rpa1,Arhgdia,Rock2,Rr
m1,Rps6ka3,Nob1,Ruvbl1,Ahcyl1,Mat2a,Mat2a,Scfd1,Strap,Shcbp1,Spcs2,Stat1,Stat3,Scimp,Slc12a2,Slc12a6,Spt
an1,Srm,Ddx39b,Smc3,Fmr1,Stxbp5,Sdcbp,Ly9,Tbc1d15,Txnl1,Rela,Trim28,Rhoa,Tagln2,Tkt,Tpt1,Tm9sf3,Tnpo1,T
pi1,Tpm3,Tuba4a,Tubb5,Cdkn2a,Tsg101,Btk,Csk,Lyn,Ptpn1,Ptpn6,Usp10,Usp14,Otub1,Uba6,Cmpk1,Myo1c,Myo
1e,Vta1,Vapa,Nsf,Vdac3,Wdr91,Wbp2,Ythdf2,Zc3hav1,Znf622.

