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ABSTRACT 

Background: Prostate cancer (PCa) is the most commonly diagnosed cancer and second leading cause 
of cancer-related deaths for men in Western countries. The advanced form of the disease is life-
threatening with few options for curative therapies. The development of novel therapeutic 
alternatives would greatly benefit from a more comprehensive and tailored mathematical and 
statistical methodology. In particular, statistical inference of treatment effects and the prediction of 
time-dependent effects in both preclinical and clinical studies remains a challenging yet interesting 
opportunity for applied mathematicians. Such methods are likely to improve the reproducibility and 
translatability of results and offer possibility for novel holistic insights into disease progression, 
diagnosis, and prognosis. 
 
Methods: Several novel statistical and mathematical techniques were developed over the course of 
this thesis work for the in vivo modeling of PCa treatment responses. A matching-based, blinded 
randomized allocation procedure for preclinical experiments was developed that provides assistance 
for the statistical design of animal intervention studies, e.g., through power analysis and accounting 
for the stratification of individuals. For the post-intervention testing of treatment effects, two novel 
mixed-effects models were developed that aim to address the characteristic challenges of preclinical 
longitudinal experiments, including the heterogeneous response profiles observed in animal studies. 
Subsequently, a Finnish clinical PCa hospital registry cohort was inspected with a strong emphasis on 
prostate-specific antigen (PSA), the most commonly used PCa marker. After exploring the PSA trends 
using penalized splines, a generalized mixed-effects prediction model was implemented with a focus 
on the ultra-sensitive range of the PSA assay. Finally, for metastatic, aggressive PCa, an ensemble Cox 
regression methodology was developed for overall survival prediction in the DREAM 9.5 mCRPC 
Challenge based on open datasets from controlled clinical trials. 
 
Results: The advantages of the improved experimental design and two proposed statistical models 
were demonstrated in terms of both increased statistical power and accuracy in simulated and real 
preclinical testing settings. Penalized regression models applied to the clinical patient datasets support 
the use of PSA in the ultra-sensitive range together with a model for relapse prediction. Furthermore, 
the novel ensemble-based Cox regression model that was developed for the overall survival prediction 
in advanced PCa outperformed the state-of-the-art benchmark and all other models submitted to the 
Challenge and provided novel predictors of disease progression and treatment responses. 
  
Conclusions: The methods and results provide preclinical researchers and clinicians with novel tools 
for comprehensive modeling and prediction of PCa. All methodology is available as open source R 
statistical software packages and/or web-based graphical user interfaces. 
 
Keywords: Prostate cancer, Castration resistance, PSA, Preclinical, Clinical, Experimental design, 
Reproducibility, Translatability, Open data, Open source, Regression modeling, Mixed-effects models, 
Feature selection, Statistical inference, Machine learning
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TIIVISTELMÄ 

Tausta: Eturauhassyöpä on yleisin diagnosoitu syöpätyyppi ja länsimaisten miesten toiseksi yleisin 
syövästä johtuva kuolinsyy. Taudin etenevä muoto on hengenvaarallinen, ja parantavia hoitoja on 
tarjolla rajatusti. Kehitettävien hoitokeinojen arviointiin tarvitaan tämän sovelluskohteen 
erityispiirteet huomioivia matemaattisia menetelmiä. Heterogeenisten hoitovasteiden mallintaminen 
ja aikariippuvaisten vaikutusten mallintaminen ovat haastavia mutta kiinnostavia soveltavan 
matematiikan kohteita sekä esikliinisessä että kliinisessä syöpätutkimuksessa. Hyvällä 
matemaattisella mallinnuksella pystytään parantamaan esikliinisten tulosten toistettavuutta ja 
tulkittavuutta sekä kattavampaan diagnosointiin ja taudin etenemisen ennustamiseen. 
 
Menetelmät Tässä väitöskirjatyössä kehitettiin useita uusia tilastollisia ja soveltavan matematiikan 
menetelmiä eturauhassyövän in vivo -vasteiden mallintamiseksi. Koesuunnittelun tueksi kehitettiin 
uusi lähtötilanteen samankaltaisuuteen perustuva sovitusmenetelmä, jolla jaettiin eläimiä tasaisesti 
tutkittaviin hoitoryhmiin säilyttäen satunnaistetun sokkohoitokokeen edut. Kehitetty menetelmä 
tukee tilastollista testivoima-analyysia ja vähentää yksilöiden välisten ei-toivottujen aliryhmien 
vaikutusta päättelyssä. Hoitovasteiden mallintamista varten kehitettiin kaksi uutta sekamallia, joissa 
otettiin huomioon esikliinisessä tutkimuksessa esiintyviä ilmiöitä kuten tuumorien 
kasvuominaisuuksien spontaania vaihtelua xenografti-kokeissa. Kolmannessa osatyössä mallinnettiin 
turkulaisen potilasaineiston eturauhaselle ominaista antigeeniä (PSA), joka on laajalti käytössä ko. 
syövän diagnoosissa ja seurannassa. PSA:ta tutkittiin penalisoitujen käyrämallien avulla, minkä jälkeen 
rakennettiin yleistetty sekamalli syövän biokemiallisen relapsin ennustamiseksi painottaen ns. 
ultrasensitiivisen mittausalueen PSA:ta diagnostisena työkaluna. Viimeisessä osatyössä ennustettiin 
potilaiden selviytymistä aggressiivisesti etäpesäkkeitä lähettävässä eturauhassyövässä. 
Ennustamiseen käytettiin Cox:n penalisoituihin regressiomalleihin pohjautuvaa ensemble-
kokoelmamallia. Menetelmä kehitettiin osana julkista DREAM 9.5 mCRPC analyysikilpailua, jossa 
jaettiin osanottajille avoimesti useita suuria kontrolloituja kliinisiä tutkimusaineistoja. 
 
Tulokset: Aiempaa paremman koesuunnittelun ja kehitettyjen tarkempien sekamallien edut näkyivät 
nousseena tilastollisena voimana sekä parantuneena päättelyn tarkkuutena simuloiduissa ja 
todellisissa esikliinisissä kokeissa. Turkulaiseen kliiniseen aineistoon sovelletut penalisoidut 
regressiomallit tukivat ultrasensitiivisen mittausalueen PSA:n hyödyllisyyttä yhdessä relapsia 
ennustavan sekamallin kanssa. Viimeisessä osatyössä kehitetty ensemble-malli ennusti pitkälle 
edenneen eturauhassyövän potilaiden elinaikoja huomattavasti tarkemmin kuin alan tämän hetken 
huippumalli sekä tarkemmin kuin muut kilpailuun lähetetyt ennustemallit. Lisäksi löydettiin uusia 
tekijöitä, joita voidaan hyödyntää potilaiden selviytymisen ennustamisessa. 
 
Johtopäätökset: Kehitetyt menetelmät ja niistä johdetut tutkimustulokset auttavat esikliinisiä 
tutkijoita sekä kliinistä työtä tekeviä lääkäreitä tarjoamalla uusia työkaluja eturauhassyövän 
moniulotteiseen ymmärtämiseen. Avoimen lähdekoodin periaatetta noudattaen kaikki kehitetyt 
mallit ovat käytettävissä R-paketteina tai verkossa toimivina graafisina käyttöliittyminä. 
 
Avainsanat: Eturauhassyöpä, Kastraatioresistenssi, PSA, Esikliininen, Kliininen, Koesuunnittelu, 
Toistettavuus, Tulkittavuus, Avoin data, Avoin lähdekoodi, Regressiomallinnus, Sekamallit, Piirteiden 
valinta, Tilastollinen päättely, Koneoppiminen 
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SYMBOLS AND NOTATION 
- d: Dimensionality of the data. 
- N: Sample size. 
- 𝛼𝛼: The L1/L2 norm control parameter in penalized/regularized regression. 
- 𝛽𝛽: Estimated (population-wide) regression coefficients. 
- 𝛿𝛿: Covariance 
- ε: Error term in regression, which is assumed to be normally and independent and identically 

distributed. 
- 𝜆𝜆: A sequence of penalization values to be tested for the objective function in penalized 

regression or the magnitude of second-order integral penalization in cubic splines. 
- 𝜇𝜇: Mean. 
- 𝜎𝜎: Standard deviation. 
- 𝜎𝜎2: Variance. 
- 𝜃𝜃: Latent variable estimated using the EM algorithm for growing or poorly growing tumors in 

the method proposed in publication II. 
- 𝛾𝛾: Normally distributed random-effects term in mixed-effects modeling. 
- Ʃ: Sum of values or the covariance-variance matrix in multivariate normal distribution. 
- ‖𝛽𝛽‖1: L1-norm (LASSO) for coefficients β 
- ‖𝛽𝛽‖₂²: L2-norm (Ridge Regression) for coefficients β 
- 𝑥𝑥 ∼  𝑦𝑦: 𝑥𝑥 is distributed as 𝑦𝑦. 
- 𝑁𝑁(𝜇𝜇, 𝜎𝜎) / 𝑀𝑀𝑀𝑀𝑀𝑀(𝝁𝝁, Ʃ): Univariate and multivariate normal distributions, respectively. 

ABBREVIATIONS 
- 4T1: A mouse-derived BCa cancer cell line in II. 
- ADT: Androgen Deprivation Therapy. 
- AIC: Akaike Information Criterion. 
- ART: Adjuvant Radiation Therapy. 
- AR: Androgen Receptor. 
- ARN-509: An anti-androgen with a similar structure to enzalutamide 
- B&B: Branch and bound, a discrete optimization solving framework utilized in publication I 
- BCa: Breast Cancer. 
- BCR: Biochemical relapse, the main end-point event in publication III. 
- BIC: Bayesian Information Criterion. 
- CRAN: Central R Archive Network, the main repository for user-contributed R packages. 
- CRPC: Castration-Resistant Prostate Cancer. 
- CV: Cross-validation. 
- DMBA: 7,12-dimethylbenz(a)anthracene, a carcinogenic compound for inducing tumors. 
- DPN: Diarylpropionitrile or 2,3-bis(4-hydroxyphenol)-propionitrile, intervention in II. 
- DREAM: Dialogue for Reverse Engineering Assessments and Methods, a research initiative 
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- EM: Expectation-Maximization algorithm, the iterative two-step framework used for model 
fitting and estimating the latent growth variable in publication II. 
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- ePCR: ensemble-based Penalized Cox Regression, the methodology developed for 
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- MEM: Mixed-effects model. 
- MDS: Multidimensional scaling. 
- MDV3100: An anti-androgen of enzalutamide. 
- MSE: Mean-Squared-Error (common in literature) or Median-Squared-Error (here). 
- Murine: Rodent related experiment in this context, typically mouse or rat. 
- OS: Overall Survival. 
- ORX: Orchiectomy, the surgical removal of testes. 
- REML: Restricted Maximum Likelihood, a method for fitting MEM. 
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1. INTRODUCTION 
Cancer research and anticancer drug discovery is a multilayered process that typically involves in vitro 
preclinical testing (i.e., cell lines) (Breslin et al. 2013), in vivo preclinical testing (i.e., rodent models) 
(Valkenburg et al. 2015), and clinical modeling - either in randomized clinical trials or using real-world 
registry data, with an increasing emphasis on open data (Bender 2016). However, in recent years, 
there has been a considerable debate regarding the low reproducibility of preclinical results and the 
high attrition when translating preclinical findings into clinical applications (Hutchinson et al. 2011).  

It has been proposed that the methodology used in preclinical research should mimic more closely 
that of clinical research to overcome challenges in translatability (Muhlhausler et al. 2013). It is also 
evident that both the preclinical and clinical stages would benefit from a more comprehensive 
mathematical and statistical modeling (Heitjan 2011; van der Worp 2010). Although novel 
methodology has been proposed for experimental design (Kasturi et al. 2011) and regression modeling 
of tumor growth profiles (Zhao et al. 2011), reports indicate that neither of these methods is enforced 
or implemented in current research (Baker et al. 2014). Thus, the preclinical motivation of this work 
was to confront yet unaddressed aspects in experimental design and post-intervention statistical 
inference in preclinical studies and promote the integrity of research work spanning the whole range 
of the drug discovery process. In this thesis, further clinical mathematical and statistical modeling 
aspects are considered in the context of PCa and particularly in its advanced forms. The presented 
thesis follows the chronological order of the drug discovery process; preclinical research with 
immunodeficient rodents represents the mainstay of early cancer research (Cunningham et al. 2015) 
(I – II). The focus then shifts into the use of PSA in clinical research with patient registry data and finally 
to a crowd-sourced clinical data analysis challenge of developing predictive models in open data (III – 
IV).  

In the presented preclinical research, emphasis was first placed on developing a robust and improved 
experimental design in preclinical cancer intervention testing to lay the foundation to the subsequent 
statistical inference of treatment effects (I). After presenting this methodology, the focus is shifted to 
post-intervention statistical testing with an emphasis on capturing the underlying latent tumor 
heterogeneity typical of such experiments (II). In the presented clinical research, emphasis was first 
placed on the diagnosis of and the modeling of the disease by utilizing a commonly used cancer 
marker, PSA, which has challenges related to overdiagnosis and reliability (III). Furthermore, while PSA 
is a key factor in the diagnosis and monitoring of early-phase PCa, its utility in later-stage PCa is limited. 
Therefore, the focus was broadened to data-driven machine learning without a bias toward any 
particular marker in lethal, castration-resistant prostate cancer (CRPC). This methodology was applied 
in the metastatic form of CRPC (mCRPC), for which life expectancy and treatment options are severely 
limited. A novel ensemble-based machine learning methodology was developed in this context with 
the aim of providing clinicians with novel insight into survival-associated biomarkers with a practical 
and accurate prediction tool. This model development was conducted in a crowd-sourced data 
analysis challenge offering several open clinical trials with a high number of potential predictors (IV).
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2. LITERATURE REVIEW 
2.1. Cancer statistics and general overview of prostate cancer 
Prostate cancer (PCa) is the most commonly diagnosed cancer type for men in Finland and the second 
leading cause of cancer-related deaths after lung cancer (Finnish Cancer Registry, 2014 Consensus; 
Torre et al. 2015). Similarly, in European countries, PCa has the highest incidence and the third highest 
mortality among all cancer types in men (Ferley et al. 2013). Concordantly, PCa is the most common 
cancer type and the second leading cause of cancer-related deaths (after lung cancer) in the USA 
(Siegel et al. 2016). In Asia, PCa has significantly lower incidence and mortality, but in many lower 
income countries, PCa has significantly higher mortality. Especially in Africa, this increased mortality 
may be partly explained by poor access to screening and underlying genetic susceptibility (Torre et al. 
2015). The majority of initial PCa diagnoses involve relatively benign disease; however, at first 
screening, some patients present with advanced disease (Figure 1a-b). Thus, the clinical significance 
of PCa remains undisputed among men, especially given the aging population in Western countries. 
PCa is counted among the four most prominent cancer subtypes that include breast cancer (BCa) in 
women and lung and colorectal cancers in both genders (Siegel et al. 2016). 

Obtaining consensus for the trends in the incidence of PCa remains challenging due to the dramatic 
changes in PCa screening and diagnosis over the past decades. This phenomenon is largely due to the 
emergence of the biomarker known as prostate-specific antigen (PSA), which was discovered 
independently by multiple scientists in 1970s (Rao et al. 2008). Applying PSA as a screening marker 
introduced a sharp increase in PCa diagnoses with a subsequent steady decline in new diagnoses since 
the early 1990s (Figure 1c). However, PCa-related survival rate has not strictly followed a similar trend. 
The measurement of serum PSA revolutionized the screening and detection of PCa and it has since 
served as the main tool both in PCa screening and monitoring by clinicians; it has also been applied in 
various forms of PCa research. PSA is secreted by the luminal epithelial cells of the prostate and 
correlates with PCa size and functions similarly in human and in murine models of PCa (Lilja 1985). 
However, it is not specific to PCa; elevated PSA levels can result from benign prostate hyperplasia, 
older age, and non-PCa related inflammation (Barry 2001; Oesterling 1991). In the event of PCa or 
related malignancies, PSA is prone to leak into normal blood circulation, thus, acting as a PCa 
biomarker. It became apparent that under standard curative interventions in early-stage PCa, elevated 
PSA concentrations should quickly decline to undetectable quantities and that subsequently re-
elevated serum PSA concentrations would indicate disease relapse (Stamey et al. 1987). Advocates of 
extensive PSA screening point to the advantages of early PCa detection, which can prevent morbidity 
from local symptoms, such as bleeding or urinary tract obstruction, and progression to the metastatic 
form of the disease (Barry 2001). The current consensus is that absolute PSA levels should not be used 
as the sole marker for PCa therapy or diagnosis but should be complemented by patho-physiological 
factors such as biopsies, age, ethnicity, and the overall evaluation of the disease and patient health 
(Lilja et al. 2008; Hernández et al. 2004).  
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Figure 1: Prostate cancer statistics as provided by NCI / NIH. (a): The percentages for stages of detected PCa 
subtypes at initial diagnosis. (b): 5-year survival for the presented PCa subtypes, with the distant (metastasized) 
subtype as a clear outlier. (c): Overall number of PCa cases in the US since 1975, with new diagnosed PCa cases 
in olive green and PCa-related deaths in dark green. Relative 5-year survival rates are shown together as a 
function of the time-axis. (Modified and collected from National Institute of Health (NIH, US), Cancer Stat Facts: 
Prostate Cancer. URL: https://seer.cancer.gov/statfacts/html/prost.html ; Accessed 4th of January, 2018) 

In the vast majority of cases (>95%), prostate adenocarcinoma presents with malignant 
transformations in the epithelial cells of the prostate gland, whereas other prostate-related 
malignancies, such as sarcomas or lymphomas, account for only a negligible portion of identified PCa 
(Epstein et al. 1994). PCa is a hormone-driven cancer and androgens play a key role in its development. 
As such, genetic alterations to the androgen receptor (AR) or perturbations altering androgen 
synthesis are known genetic factors contributing to PCa (Torre et al. 2016). Pharmacological 
interventions have been extensively developed to prevent the progression and recurrence of PCa or 
to provide curative treatment. Diet has been proposed as one of the environmental factors 
contributing to PCa, and thus, multiple dietary preventive measures have also been proposed, 
including for example, derivatives of natural food substances (Trottier et al. 2010). 

It is worth highlighting the similarity of the hormone-driven nature of breast cancer (BCa) and PCa. 
BCa mirrors PCa in the sense that estrogen plays a similar key role in BCa development as androgen 
does in PCa. In this thesis, BCa is also briefly considered, especially in the retrospective analyses 
conducted in publication II, although the clear focus is on PCa. It is not surprising that treatments for 
both cancers revolve heavily around affecting the binding of sex steroids to their receptors, blocking 
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In the vast majority of cases (>95%), prostate adenocarcinoma presents with malignant 
transformations in the epithelial cells of the prostate gland, whereas other prostate-related 
malignancies, such as sarcomas or lymphomas, account for only a negligible portion of identified PCa 
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including for example, derivatives of natural food substances (Trottier et al. 2010). 

It is worth highlighting the similarity of the hormone-driven nature of breast cancer (BCa) and PCa. 
BCa mirrors PCa in the sense that estrogen plays a similar key role in BCa development as androgen 
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the main signaling molecules or their downstream signaling pathways, or directly removing the 
corresponding organs producing the hormones. Furthermore, the quantity of estrogen and androgen 
precursors and their downstream metabolic compounds or chemical variants increase the difficulty of 
tackling these diseases. Significant overlap between the two diseases subtypes have been suggested, 
and these cancers have been researched in a mirrored manner to an increasing extent (Risbridger et 
al. 2010). 

2.2. Clinical progression and treatment of PCa 
A generalized overview of the clinical progression of PCa is presented through serum PSA 
concentration in Figure 2. The standard first-line therapy typically consists of radical prostatectomy 
(RP) and/or radiation therapy (RT), which are commonly referred to as local therapy (Figure 2a). 
Subsequently, a drastic decrease in PSA is observed. When PSA reaches undetectable levels, this is 
referred to as the PSA nadir. Depending on the initial response and patient-specific circumstances, the 
following therapies may involve a mixture of androgen deprivation therapy (ADT) as well as additional 
interventions aiming to lower the risk of recurrence such as adjuvant radiation therapy (ART). To 
further reduce the risk of biochemical recurrence (BCR), second-line hormonal therapy may be given 
even if PSA remains at low or undetectable levels (Figure 2b). Despite the initial response observed in 
PSA, many patients relapse to detectable levels of PSA. This disease is considered castration-resistant 
prostate cancer (CRPC), due to the failure of local therapy and following adjuvant therapies (Figure 2 
middle panel). Notice, however, that the disease pattern presented in Figure 2 is a highly simplified 
version of the difficult process of a tailored treatment process, which depends on multiple clinical 
factors such as the pT-class, Gleason grade, spread to lymph nodes, and surgical margins (Gillessen et 
al. 2017). Up to 20% of patients are diagnosed with CRPC at initial diagnosis and treatment, of whom 
over 80% present with metastatic CRPC already at early progression; further, approx. 1/3 of the non-
metastatic CRPC metastasize during follow-up (Figure 2a-c; Kirby et al. 2011). CRPC has become 
standard nomenclature in PCa literature describing the progressed state of the disease that does not 
respond to standard therapy. More accurate terminology, such as endocrine-resistant prostate 
cancer, has been proposed, as this phrase decreases emotional connotation for patients and 
distinguishes subtypes that may be treated with hormonal agents (e.g. abiraterone or MDV3100) from 
non-hormonal interventions such as immunotherapy or chemotherapies (Crawford et al. 2010).  

A significant portion of the CRPC patients present with metastases (mCRPC), which are typically 
detected by imaging or symptoms such as bone pain (Figure 2b-d) (Sartor et al. 2013; Albala 2017). At 
this stage, the disease typically presents with increasing severity of symptoms that may be partially 
explained by the applied interventions. The mainstay treatment of mCRPC is docetaxel (Figure 2c-d). 
Although docetaxel increases the median expected survival time (Amato et al. 2009), it is rarely 
curative, and the CRPC or mCRPC continues to progress with increased lethality (Figure 2d). More than 
90% of patients with CRPC subsequently develop bone metastases (Misra 2015), which are commonly 
considered one of the most lethal end-points for the disease. Late-stage treatment options include 
androgen synthesis inhibitors and anti-androgens (Agarwal et al. 2014), which have been also shown 
to increase median survival rates. However, the majority of patients in this late-stage disease die 
within a relatively short period of follow-up. PCa-related deaths at this point may occur not only due 
to disease symptoms but due to adverse events (AE) from aggressive treatment options such as 
docetaxel (Seyednasrollah et al. 2017a).  
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Figure 2. A highly generalized overview to PCa progression. (Top): a PSA overview to the aggressive progression 
of clinical PCa and potential treatment options as a simplified consensus based on available literature 
(Abrahamsson 2009; Kohli et al. 2010; Kirby et al. 2011; Misra 2015; Gillessen et al. 2017). (Middle): Disease 
characteristics. (Bottom): Focus of this thesis. (a) Local therapy typically includes radiation therapy and/or radical 
prostatectomy. After this, androgen deprivation therapy may take place. (b) Biochemical recurrence occurs for 
some patients, even if adjuvant chemotherapy and/or further hormonal interventions are utilized. (c) Docetaxel 
presents the current staple treatment to the aggressive mCRPC form of PCa. Additional treatment is evaluated 
on a case-basis. (d) Patients with PCa that progresses to CRPC and especially mCRPC have a low survival rate. 

Should PSA levels increase after RP and other possible supplementary interventions, the disease 
relapse is castration resistant, and this recurrence event is called biochemical relapse (BCR). Two 
distinct PSA thresholds are used clinically to detect PCa relapse. After RP and reaching a PSA nadir, 
two consecutive measurements of PSA increasing at ≥ 0.2 ng/mL are sufficient to indicate that the PCa 
is developing BCR. For patients who have also undergone primary RT, any post-intervention PSA 
detectable at ≥ 2 ng/mL is considered an indicator for BCR (Cornford et al. 2017). Although the formal 
definition of BCR may be based on rather arbitrary thresholds, this rough division into non-relapsing 
and relapsing patients has proven useful, and it has been adopted as a worldwide standard for 
establishing an early and relatively reliable diagnosis of relapse (Lilja et al. 2008). Practicing clinicians 
have varying opinions of the use of PSA for mass screening in initial diagnoses and/or active 
surveillance, and majority of the current practices vary over countries and are often left at the 
discretion of the MD (Tikkinen et al. 2018). A recent meta-review of an aggregated test for four 
kallikrein-family PSA-related proteins, 4Kscore, concluded that utilizing the said PSA-related test for 
screening for high Gleason grade aggressive PCa can have a highly consistent accuracy (Zappala et al. 
2017). Thus, regardless of the presented criticism, PSA and its derivatives still retain potential for even 
large-scale screening and follow-up, as long as the tests and scoring metrics are formulated suitably. 
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2.3. Preclinical drug development, emerging practices, and validation 
2.3.1. Preclinical experiments in drug discovery 
The typical drug discovery pipeline often starts from preclinical in vitro experiments, such as drug-
sensitivity testing in cell cultures, and is followed by in vivo experiments typically involving rodents 
(Cunningham et al. 2015). Murine species such as rats or mice are widely accepted as the first line of 
in vivo testing. One of the main advantages of this in vivo testing is the cost efficiency of xenograft 
experiments in immunodeficient nude mice, in which a well-characterized and suitable cell line is 
injected to produce subcutaneous or orthotopic tumors. The host presents a living, relatively realistic 
microenvironment for tumor growth, and the specific cell line is chosen to represent the main 
characteristics of a human cancer subtype of interest (Day et al. 2015). The animal strains in xenograft 
experiments are typically well established, genotyped, and bred under a controlled environment and 
are therefore considered a homogeneous platform for in vivo testing. Regardless of the broader aims 
of the animal study, the experimental design involves allocating animals into treatment groups (for 
different doses or treatment combinations) and observing the relative differences compared to a 
control group with no intervention or a standard treatment. The tumors are typically followed over a 
predefined time interval until the animals die, become moribund, or reach a preset date for sacrifice 
according to ethical criteria or to capture the onset of the representative human disease (Heitjan 2011; 
van der Worp 2010). PSA provides a convenient surrogate marker for measuring tumor growth in 
preclinical PCa because it only requires a relatively small blood sample.  

The principles of maximizing humane treatment of laboratory animals have been laid out in the so-
called 3R principles: Replacement, Reduction, and Refinement (Russell et al. 1959). Replacement refers 
to the desire to replace the use of sentient beings with a suitable surrogate, such as a cell or a tissue 
culture. Reduction aims to minimize the number of used animals, which is largely a factor of reliable 
estimation of, for example, the statistical power of a preclinical experiment and its corresponding 
power analysis. Finally, refinement refers to any practical methodology that aims to reduce 
unnecessary suffering to any sentient being, whether it is related to the experiment (e.g., surgical or 
sacrifice operations) or handling (e.g., placement in isolation to minimize the risk of animals scratching 
each other).  

The disadvantages of animal studies include issues in translatability to the clinic, which arise from 
differences in the species’ expected life span, their inherent physiology, the ability to capture the 
relevant window of disease onset, and the micro- and macro-environment of implanted tumors (van 
der Worp 2010). For example, cage effects have recently emerged as a concern, because cage-specific 
stratification with respect to the surrounding microbiota has been reported (Hasty et al. 2014; 
Hildebrand et al. 2013). Furthermore, male mice may express violent social behavior, and smaller male 
mice can suffer wounds caused by their larger brethren. Finally, moving animals from cage to cage 
resets their normal social surrounding or can result in severe stress if an animal is placed in isolation. 
Maintaining both the physical and social wellbeing of the animals reduces the risk of introducing 
confounding variation to the study design, but these factors are often non-intuitive and hard to 
identify (Reardon 2016). 

2.3.2. Reproducibility, transparency, and reporting of animal studies 
Given the mounting costs in the clinical phase of drug development coupled with the low translation 
rates of preclinical findings (Freedman et al. 2015; Landis 2011; Collins et al. 2014), increasing the 
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reliability of preclinical findings in the cascading design of drug discovery is of utmost importance. It 
has been suggested that some of the irreproducibility issues in rodent experiments can be attributed 
to seemingly simple environmental conditions. As an example, diet can contain hormonal precursors 
or other disrupting chemicals that severely impact intervention studies, particularly in hormonally 
sensitive cancers. The strain of mice or even the choice of vendor providing the animals or the 
nutrition has been shown to exhibit drastic differences in their microbiota, and lab conditions such as 
exposure to light affect the behavior and biology of the animals (Reardon 2016).  

The criticism of current preclinical experimentation practices involves the incomplete reporting of 
experimental design, power calculations, and effect size evaluation, or even the complete omission of 
these concepts (Day et al. 2015). A recent review identified the continued lack of power calculations, 
randomized allocation, and blinding of outcome, and to the surprise of the authors, these factors were 
not improved by the impact factor of the journal (Macleod et al. 2015). Slightly improving trends in 
these particular fields over time were noted, but the only reported factor found to correlate positively 
with the impact factor was the conflict of interest statement. Increasing concern regarding the 
attrition rate for preclinical result translation to the clinic, not only in oncology, has been reported 
prominently and has driven a change to more standardized reporting practices and better design 
(Landis et al. 2011; Hutchinson et al. 2011; Macleod et al. 2015); for example, in case examples of 
stroke treatment, only 36% of studies reported randomized allocation, and 29% reported blinding 
(Couzin-Frankel 2013). Furthermore, it was also noted that studies lacking proper reporting of 
experimental design claimed substantially higher estimates of intervention efficacy increased by 2-
fold.  

The translation of results from preclinical cancer experiments is especially challenging compared to 
other preclinical fields; 5% of promising oncological preclinical findings translate into phase III clinical 
trials, in contrast to 20% in cardiovascular research (Hutchinson et al. 2011). In published murine 
oncological experiments, 69% of publications lacked key information needed to replicate the 
experiment, and only 14% used appropriate statistical approaches (Sugar et al. 2012). To encourage 
standardization, the ARRIVE guidelines (Kilkenny et al. 2010) have been introduced to improve 
preclinical experiment reporting. These guidelines are in accord with the trend toward making 
preclinical experimentation and reporting similar to that of randomized clinical trials, for which the 
CONSORT guidelines are widely adopted (Schulz et al. 2010). Blinding, randomization, and masking 
reduce the risk of experimenter or journal-driven cognitive bias (Eisen et al. 2014), and are 
fundamental principles of experimental design together with sample size estimation (i.e., power 
analysis). Unfortunately, journals are not effectively enforcing the use of the ARRIVE guidelines (Baker 
et al. 2014). A meta-review by Henderson et al. of over one hundred research papers estimated that 
due to subpar experimental design and lack of transparency, the studies overestimated the efficacy 
of sunitinib intervention by 45%, therefore demonstrating publication bias in preclinical literature 
(Henderson et al. 2015). 

2.3.3. Aims in preclinical testing 
The aims during preclinical intervention testing can be roughly categorized into two classes of 
experiments: exploratory experimentation, in which a relatively large number of hypotheses are 
tested for potential drugs, combinations, or other interventions to narrow down a feasible set of 
downstream hypotheses; and confirmatory experimentation, in which a smaller set of drugs or even 
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a single intervention is tested against a more refined approach, for example, to narrow down efficient 
dosage, the relevance of biological pathways, biological functionality, and toxicity (Kimmelman et al. 
2014). While this rough division offers a rather good overview of the drug development process, there 
is a wide range of experiments that do not fall strictly into either of these categories. An example is 
drug repurposing, during which already approved drugs or drug-like compounds are explored 
computationally or experimentally for new disease applications (Wilkinson et al. 2015).  

Preclinical researchers face a dilemma in creating reliable results that are translatable to the clinic; 
animal models that are based on a single strain of mouse, or arguably even a single species, coupled 
with a well-characterized but rather simplified representation of a general cancer type using a single 
cell line are inevitably under-representative of the variety of both benign and malignant PCa subtypes 
encountered in the clinic (Begley et al. 2012). Naturally, sources of variation that are known and can 
be controlled present an opportunity rather than a threat to the validity of the experiments. A 
particularly interesting novel application is patient-derived xenograft (PDX) experimentation, in which 
the aim is not necessarily to generalize to a broader population of patients but to study a single 
patient’s tumor with case-specific tailoring (Valkenburg et al. 2015). Genetically engineered mouse 
(GEM) models have also emerged in the past decade as an interesting alternative to the traditional 
xenografts. The immunocompetent GEM mice offer a natural platform by presenting the tumors at 
the correct physiological location and aim to represent the clinical disease characteristics, e.g. by 
introducing known clinical genomic PCa drivers such as PTEN deletion or amplification and over-
expression of MYC (Grabowska et al. 2014). However, while the PDX and GEM models have offered 
novel powerful tools for preclinical researchers, the choice of an animal model is still highly sensitive 
to the particular research question with unique strengths and weaknesses rising from the multitude 
of potential perturbations and the inherent differences in human and mouse longevity and 
physiological differences in the prostate (Irshad & Abate-Shen 2013). Further, it is possible to refine 
the design of such sophisticated PDX and GEM experiments prior to actual in vivo experimentation by 
exploring pathway-level hypotheses generated through purely hypothetical mathematical models. As 
an example, Boolean networks have been utilized in artificial settings to represent the corresponding 
biological pathways while aiming to generate clinically substantiated simulations for cancer initiation, 
progression, or mechanisms that drive treatment resistance (Ross et al. 2018). 

2.4. Statistical testing in preclinical and clinical experiments 
Previously, oversimplified statistical methods have been applied at a single time point or using tumor 
doubling time as readout with traditional statistical approaches such as the t-test, ANOVA, or their 
respective nonparametric versions (Ribonson et al. 1987; Shusterman et al. 2001; Saarinen et al. 2002; 
Galaup et al. 2003; Saarinen et al. 2006; Terada et al. 2010; Takahara et al. 2011). It is well established 
that in vivo treatment responses are often better modeled using either repeated measures or 
regression methods because most preclinical studies do not assess differences only at the sacrifice 
end point (Heitjan 2011).  A significant number of preclinical studies may have used inappropriate 
statistical methods; the most common issues involve disregarding the time dependency in tumor 
growth experiments (Sugar et al. 2012). Furthermore, preclinical and clinical studies have suffered 
from issues that may be evident to statisticians, such as utilizing multiple testing correction, avoiding 
selection bias, or accounting for structured or random missing information (Smith et al. 2002).  
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2.4.1. Mixed-effects models 
To model potential intervention effects in longitudinal follow-up measurements of either PSA as a 
tumor size surrogate or tumor dimensions measured under the skin, mixed-effects models (MEMs) 
were chosen due to their versatility. Mixed-effects models comprise of 3 main components (Pinheiro 
et al. 2000; Gelman et al. 2007): (i) Fixed effects (𝛽𝛽) which capture population-level trends; (ii) Random 
effects (𝛾𝛾) which capture individual-level effects 𝛾𝛾 ~ 𝑁𝑁(0, 𝜎𝜎𝛾𝛾); and (iii) Error term (𝜀𝜀), which is 
assumed to be homoscedastic and independently and identically distributed (i.i.d.) with 𝜀𝜀 ~ 𝑁𝑁(0, 𝜎𝜎𝜀𝜀). 

 

Figure 3: Combinations of fixed and random effects with mixed-effects models in an artificially generated 
dataset, with 10 example tumor growth profiles shown in grey. Horizontal panels vary population-level fixed 
effects (𝛽𝛽, black line) by including only intercept, only slope, or both. Vertical panels vary the incorporation of 
individual-level random effects by including only intercept, slope, or both. The insets display model diagnostics 
for kernel density of the random effects or the residual plots as scatterplots with loess smoothed trend lines. 

Figure 3 shows a representative combination of potential fixed and random effects formulations in 
the context of longitudinal MEMs in artificial tumor growth data. The main underlying assumption for 
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2.4.1. Mixed-effects models 
To model potential intervention effects in longitudinal follow-up measurements of either PSA as a 
tumor size surrogate or tumor dimensions measured under the skin, mixed-effects models (MEMs) 
were chosen due to their versatility. Mixed-effects models comprise of 3 main components (Pinheiro 
et al. 2000; Gelman et al. 2007): (i) Fixed effects (𝛽𝛽) which capture population-level trends; (ii) Random 
effects (𝛾𝛾) which capture individual-level effects 𝛾𝛾 ~ 𝑁𝑁(0, 𝜎𝜎𝛾𝛾); and (iii) Error term (𝜀𝜀), which is 
assumed to be homoscedastic and independently and identically distributed (i.i.d.) with 𝜀𝜀 ~ 𝑁𝑁(0, 𝜎𝜎𝜀𝜀). 

 

Figure 3: Combinations of fixed and random effects with mixed-effects models in an artificially generated 
dataset, with 10 example tumor growth profiles shown in grey. Horizontal panels vary population-level fixed 
effects (𝛽𝛽, black line) by including only intercept, only slope, or both. Vertical panels vary the incorporation of 
individual-level random effects by including only intercept, slope, or both. The insets display model diagnostics 
for kernel density of the random effects or the residual plots as scatterplots with loess smoothed trend lines. 

Figure 3 shows a representative combination of potential fixed and random effects formulations in 
the context of longitudinal MEMs in artificial tumor growth data. The main underlying assumption for 
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the random effects is that they are normally distributed with zero mean, inspected by the distribution 
insets. The vertical and horizontal panels in Figure 3 portray both the flexibility related to the 
formulation of MEMs; the various random effects (shown in red) capture individual variation, whereas 
the fixed effects (shown in thick black) capture population-level trends in longitudinal tumor response 
profiles.  

The presented work focuses on linear mixed-effects models. In this application, fixed effects were 
utilized to test population level differences between an intervention and a control group. 
Furthermore, the tumor response was followed over time, and random effects were incorporated to 
model the offset (intersect point at zero time point) and the slope (the coefficient of tumor growth as 
a function of time). As such, the random effects accounted for the necessary intra-individual 
correlation of observations while allowing variation over all individuals for these parameters.  

2.4.2. Latent growth as a modeling variable 
Heterogeneity-incorporating MEMs have been proposed in the past, in which the desired variability 
in the data - in principle - follows, for example, the assumptions of normality, but a hidden variable 
underlying the phenomenon divides individuals into varying latent substrata, resulting in 
multimodality or other severe issues in model parameters and inference (Verbeke et al. 1996). In 
particular, in preclinical research, there have been multiple accounts of issues with the inoculation of 
tumor cells or the spontaneous suppression of tumor growth, even when no intervention has been 
introduced; this can be observed as tumor heterogeneity depicting normally growing, rather benign, 
or even spontaneously shrinking tumors (Bhatia et al. 2012; Fisher et al. 2013). These indirectly 
observed underlying variables can be incorporated into statistical inference by assuming the existence 
and form of such latent variables and extending the standard MEMs for such latent effects.  

For this purpose, the expectation-maximization (EM) algorithm (Dempster et al. 1977) provides a 
general framework in model fitting that can be coupled with the readily established well-suited 
characteristics of MEMs. The EM algorithm is a well-known and widely applied algorithm in various 
contexts that allows an iterative convergence of challenging modeling tasks consisting of predicting 
the expected outcome given the current state (expectation step), optimizing the likelihood of 
observing the expected outcome (maximization step), and then repeating these steps until the model 
parameters converge. Thus, coupled with MEM, the EM algorithm offers a powerful tool for tackling 
challenges in preclinical experiments that include substantial latent heterogeneity in their response 
profiles. 

2.4.3. Power calculations 
Sample size estimations, and thus power calculations, are necessary to ensure that the experiment 
has sufficient statistical power to detect true effects while utilizing minimal resources and ensuring 
the ethical aspects of experimenting on living beings (Couzin-Frankel 2013). Underpowered studies 
are unlikely to detect a true intervention effect (statistical significance) and may provide a skewed 
view of the effect size (clinical significance), thus leading to wasted animal lives. Furthermore, power 
analyses should be conducted prior to the final experiment to guide future experimental design; the 
misguided practice of interpreting statistically insignificant results using post-experiment power 
analyses is inherently flawed (Hoenig et al. 2001). 
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While conventional statistical tests, such as the t-test or one-way ANOVA, have straightforward 
methodology for evaluating sufficient sample size to achieve desired statistical power, this often 
involves a subjective evaluation of the inter-individual variance and the expected difference in means 
between the case and control. These estimates are abstract concepts that may be hard to grasp or 
estimate for a preclinical experimenter, especially if no pilot or representative studies are available or 
the estimates are not reported properly in representative literature.  

Two fundamentally different approaches are explored here for conducting power calculations in 
MEMs. Both approaches require a priori data, but they do not require the user to evaluate parameter 
estimates for the power calculations. This helps reduce experimenter bias and allow estimation in a 
data-driven manner. Preliminary data can be extracted from a pilot study or even artificially generated 
observations can be utilized. After such data are generated, one of two approaches can then be 
utilized: (i) A mixed-effects model is fit to the data. After this, the parameter distributions from the 
fitted MEM are sampled, and a large quantity of simulated datasets are generated from the model. 
The same model structure is fitted to the simulated datasets and power is calculated as the fraction 
of statistically significant fixed effects for the hypothesis of interest. (ii) Alternatively, simulated 
datasets can be generated from the a priori data through stratified bootstrapping (sampling with 
replacement), in which the observations belonging to a single individual are always sampled together. 
These bootstrapped datasets are re-fitted using MEMs with the same formulation, and statistical 
power is defined as the fraction of MEMs with statistically significant fixed effects. The power 
threshold of 0.8, which was also used in this thesis, has been generally accepted as a feasible cutoff. 

2.4.4. Bias-variance tradeoff and model complexity 

 

Figure 4: Visualization of the bias-variance tradeoff. (a): Bias-variance decomposition consists of two error 
components. The optimal model minimizes the total error. (b): A synthetic dataset was generated from a second 
order polynomial function, with a normally distributed error term. Three types of observations were extracted: 
training data that was to be used for model fitting, validation data interpolating between the observed regions 
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of training data, and validation data extrapolating outside the regions of training data. Mean-squared error was 
used as the error measure. (c): An underfitting model, with high bias but low variance. (d): Optimal model 
complexity, though estimated model parameters do not fully reproduce the original model due to observation 
error. (e): An overfitting model, with the lowest model fitting error. However, the validation data error reveals 
an elevated prediction error especially in the extrapolated region. 

Careful considerations regarding model complexity (Figure 4) are a key ingredient in building statistical 
models that explain the observed variation in the training data while generalizing to future. This 
generalization capacity is typically analyzed using a decomposition of two error terms, bias and 
variance, henceforth referred to as the bias-variance tradeoff or dilemma (Figure 4a) (Hastie et al. 
2001). Bias refers to an oversimplified formulation or a model formulated with systematic error that 
fails to incorporate a key component of the underlying true phenomenon of interest. Modeling of this 
type that suffers from lack of sufficient complexity is commonly known as underfitting (Figure 4b-c). 
Variance component occurs due to the phenomenon in which a model is overly complex and models 
the measurement error in the data. Therefore, models that also fit extensively to various sources of 
undesired noise in the data are very sensitive to the selection of measurements, and even small 
changes result in a high variance in the type of model predictions. This phenomenon is typically 
referred to as model overfitting (Figure 4e). 

The gold standard in the field of machine learning for determining model complexity typically includes 
a suitable cross-validation (CV) schema, which aims to iteratively reveal and set aside parts of data for 
model training (Figure 5). The simplest version of this process involves splitting the training data into 
𝑘𝑘 separate bins of observations where one bin is left out at a time as a test set while the remaining 
bins are combined to train the model (𝑘𝑘-fold CV). Notably, over all the folds, each observation serves 
as part of the test set only once, and the average scoring metric aims at optimal complexity over the 
tested models (i.e., Figure 4d).  Some of the other notable alternatives to this computationally 
intensive approach are based on information theory, where Bayesian Information Criterion (BIC) and 
Akaike Information Criterion (AIC) are among the most popular measures in comparing models. The 
criteria provide measures that penalize the likelihood of a model by its parameterization complexity, 
therefore favoring simpler models at the expense of the goodness-of-fit.  

2.4.5. Regression model family and feature selection 
In many applications, the specific family of regression models is of great interest. The naïve example 
presented in Figure 5 shows a parametric regression method (polynomial), which is composed of 
parameters of interest (𝛽𝛽) that are estimated typically by maximum likelihood or least squares fit. 
Splines were used in this thesis as an explorative methodology due to their ability to capture a wide 
range of trends from linear to nonlinear regression. However, because model parameters in preclinical 
and clinical research are often of great interest, e.g., in intervention testing or in identifying predictive 
markers, heavy emphasis was placed on easily interpretable parametric methods.  For this purpose, 
MEMs and penalized linear regression models offer great potential. 

A wide range of statistical regression methods exist that attempt to explain an observed (continuous) 
response as a function of predictors 𝒙𝒙 through some underlying functional form 𝑓𝑓(𝒙𝒙). However, in a 
vast amount of modeling problems, 𝒙𝒙 is multidimensional and it is not known which dimensions 
(predictors) are truly informative. Penalization and regularization have been introduced as 
sophisticated techniques for embedding feature selection within the regression model fitting, 
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whereas traditional techniques, such as the backwards-elimination or forward-selection of variables 
(Sayes et al. 2007), utilize a stepwise approach in which the regression model is iteratively either 
extended or pruned until the model can no longer be improved with further variable selection steps. 
The latter portion of this thesis, especially after shifting from PSA to more open research questions, 
therefore carefully considered this extremely important modeling challenge. 

 

Figure 5: Example of 3-fold cross-validation. Observations were generated with noise (true trend in blue). Data 
were randomly assigned to 3 subsets (bins), and each of the bins is left out one at a time over the folds while 
the rest (black) are used for training the model (red curve). The left-out bin is used for testing the error (tan) 
within the fold. (Left panel): underfitting model. (Middle panel): correct formulation, suggested to be the optimal 
model complexity based on the lowest average CV error over the 3-folds. (Right panel): overfitting model. 
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2.5. Aims of the study 
The main issues tackled over the course of this thesis were: 

 Improve the overall experimental design, reproducibility, translatability, and reporting 
practices of preclinical cancer experiments (publication I), with a focus exclusively on PCa. 

 Develop statistical modeling frameworks for accurate identification of post-intervention 
effects in preclinical experiments (I and II), with a primary focus on murine models of PCa. 

 Investigate the specific role, reliability and trends of PSA in clinical PCa (III), or utilized as a 
marker together with other available biomarkers in the later stage of mCRPC (IV). 

 Build improved predictive models for overall survival of mCRPC patients based on clinical data 
while exploring the available marker candidates, benchmarked in open data available from 
multiple controlled clinical trials (IV). 

 Implement open-source tools available as R statistical software packages (I, II, IV) and provide 
web-based graphical user interfaces (I, III, IV), with the aim to facilitate the wide use of the 
novel methodology for experimenters with limited bioinformatics expertise. 
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3. MATERIALS AND METHODS 
3.1. Datasets 
3.1.1. Publication I 
The first publication (I) made use of datasets of preclinical xenografts for prostate cancer. Of note, the 
statistical methodology was developed simultaneously as the back-to-back biological publications. 
Therefore, the methodology has the advantage of not being developed over the course of 
retrospective analysis of readily published data. Both biological publications focused on the 
mechanism of androgen dependency of castration-resistant prostate cancer.  

The study by (Knuuttila et al. 2014) explored the properties of VCaP tumors as a novel animal model 
for castration-resistant prostate cancer. VCaP cells inoculated in intact mice progress with high 
likelihood to the castration-resistant form (Cunningham et al. 2015), making it an ideal model for CRPC 
research. Our published study (Knuuttila et al. 2014) showed that after the androgen production from 
testis was halted, an intratumoral androgen biosynthesis initiated, resulting in the castration-resistant 
growth. The efficacy of two anti-androgen compounds, ARN-509 and MDV3100, were tested to hinder 
tumor growth. RNA expression was analyzed for 𝑁𝑁 = 12 tumors in post-sacrifice time point to study 
mechanisms for developing the castration resistance and this post-intervention RNA expression was 
further subjected here to testing potential correlations to baseline conditions. The processing and 
generation of the RNA expression data is described in detail in its corresponding biological publication 
(Knuuttila et al. 2014). 

In the study by Huhtaniemi et al. (submitted), we analyzed the effects of orchiectomy on VCaP 
inoculated mice coupled with a novel, undisclosed intervention. Much of the experimental design 
aspects from the previous experiment, such as the sample sizes proposed by power analyses 
conducted for (Knuuttila et al. 2014), were fully utilized in this study.  

3.1.2. Publication II  
In the second publication (II), four preclinical studies representing a wide range of varying settings 
were analyzed retrospectively. To gain deeper understanding to the underlying mechanisms as well 
as to better model the available data, novel regression modeling was developed with a focus on 
accurately determining statistical significance, effect sizes, and connections to supporting markers. 
Notably, while the presented main LNCaP study represented PCa, the other datasets consisted of BCa 
studies. The LNCaP tumors were treated with diarylpropionitrile (DPN) and enteralactone (ENL) and 
was the primary study of interest (unpublished in-house study). These four studies were: 

1. DMBA was introduced to female rats to produce spontaneous mammary gland 
carcinogenesis (Saarinen et al. 2002). 

2. MCF-7 (a human BCa cell line) was introduced to immunodeficient female mice (Saarinen et 
al. 2008). 

3. LNCaP (a human PCa cell line) was introduced to immunodeficient male mice (unpublished 
in-house pilot experiment) 

4. 4T1 (a mouse BCa cell line) was introduced to immunocompetent female mice to 
demonstrate efficacy of known antitumoral compounds (Suominen et al. 2010) 



LITERATURE REVIEW 

19 
  

 

2.5. Aims of the study 
The main issues tackled over the course of this thesis were: 

 Improve the overall experimental design, reproducibility, translatability, and reporting 
practices of preclinical cancer experiments (publication I), with a focus exclusively on PCa. 

 Develop statistical modeling frameworks for accurate identification of post-intervention 
effects in preclinical experiments (I and II), with a primary focus on murine models of PCa. 

 Investigate the specific role, reliability and trends of PSA in clinical PCa (III), or utilized as a 
marker together with other available biomarkers in the later stage of mCRPC (IV). 

 Build improved predictive models for overall survival of mCRPC patients based on clinical data 
while exploring the available marker candidates, benchmarked in open data available from 
multiple controlled clinical trials (IV). 

 Implement open-source tools available as R statistical software packages (I, II, IV) and provide 
web-based graphical user interfaces (I, III, IV), with the aim to facilitate the wide use of the 
novel methodology for experimenters with limited bioinformatics expertise. 

MATERIALS AND METHODS 

20 
  

 

3. MATERIALS AND METHODS 
3.1. Datasets 
3.1.1. Publication I 
The first publication (I) made use of datasets of preclinical xenografts for prostate cancer. Of note, the 
statistical methodology was developed simultaneously as the back-to-back biological publications. 
Therefore, the methodology has the advantage of not being developed over the course of 
retrospective analysis of readily published data. Both biological publications focused on the 
mechanism of androgen dependency of castration-resistant prostate cancer.  

The study by (Knuuttila et al. 2014) explored the properties of VCaP tumors as a novel animal model 
for castration-resistant prostate cancer. VCaP cells inoculated in intact mice progress with high 
likelihood to the castration-resistant form (Cunningham et al. 2015), making it an ideal model for CRPC 
research. Our published study (Knuuttila et al. 2014) showed that after the androgen production from 
testis was halted, an intratumoral androgen biosynthesis initiated, resulting in the castration-resistant 
growth. The efficacy of two anti-androgen compounds, ARN-509 and MDV3100, were tested to hinder 
tumor growth. RNA expression was analyzed for 𝑁𝑁 = 12 tumors in post-sacrifice time point to study 
mechanisms for developing the castration resistance and this post-intervention RNA expression was 
further subjected here to testing potential correlations to baseline conditions. The processing and 
generation of the RNA expression data is described in detail in its corresponding biological publication 
(Knuuttila et al. 2014). 

In the study by Huhtaniemi et al. (submitted), we analyzed the effects of orchiectomy on VCaP 
inoculated mice coupled with a novel, undisclosed intervention. Much of the experimental design 
aspects from the previous experiment, such as the sample sizes proposed by power analyses 
conducted for (Knuuttila et al. 2014), were fully utilized in this study.  

3.1.2. Publication II  
In the second publication (II), four preclinical studies representing a wide range of varying settings 
were analyzed retrospectively. To gain deeper understanding to the underlying mechanisms as well 
as to better model the available data, novel regression modeling was developed with a focus on 
accurately determining statistical significance, effect sizes, and connections to supporting markers. 
Notably, while the presented main LNCaP study represented PCa, the other datasets consisted of BCa 
studies. The LNCaP tumors were treated with diarylpropionitrile (DPN) and enteralactone (ENL) and 
was the primary study of interest (unpublished in-house study). These four studies were: 

1. DMBA was introduced to female rats to produce spontaneous mammary gland 
carcinogenesis (Saarinen et al. 2002). 

2. MCF-7 (a human BCa cell line) was introduced to immunodeficient female mice (Saarinen et 
al. 2008). 

3. LNCaP (a human PCa cell line) was introduced to immunodeficient male mice (unpublished 
in-house pilot experiment) 

4. 4T1 (a mouse BCa cell line) was introduced to immunocompetent female mice to 
demonstrate efficacy of known antitumoral compounds (Suominen et al. 2010) 



MATERIALS AND METHODS 

21 
  

 

All the analyzed datasets were provided by and analyzed in close collaboration with the experts from 
the Turku Center for Disease Modeling (TCDM), University of Turku, Finland. Additional details and 
study characteristics are available in Table 1 in publication II. 

3.1.3. Publication III 
The aims of study (III) included researching whether ultrasensitive PSA (u-PSA) measurements present 
with a meaningful signal that could predict later PSA behavior, especially in the traditional PSA (t-PSA) 
range. The u-PSA has been considered to contain a relatively large quantity of noise and unreliable 
signal, and thus its use in the clinic has been modest (Ferguson et al. 1996). While refining the ultimate 
aims based on preliminary results on the differences between u-PSA and t-PSA, the focus in studying 
sensitivity of low quantity PSA was shifted toward a clinically relevant question of predicting future 
biochemical recurrence (BCR). A real-word cohort of PCa patients operated with RP (𝑁𝑁 = 503) from 
the Turku University Hospital (TYKS) was collected for exploring the potential use of u-PSA assays that 
are capable of detecting much lower quantities than t-PSA assays. For modelling, two thirds of the full 
cohort was included into the model training set. 𝑁𝑁 = 52 patients presented with BCR during a multi-
year follow-up and 𝑁𝑁 = 279 remained BCR-free. A total of 522 longitudinal t-PSA measurements and 
2663 u-PSA measurements were present in the training set with a patient median follow-up time of 
68.6 months. PSA nadir was chosen to be the lowest point in PSA within a three-month window from 
the primary operation. To evaluate the generalization ability of the prediction, the remaining one third 
of the data was left out as a validation data (Publication III: Table 1). This validation set was to be later 
tested by an independent researcher utilizing the readily fitted models.  

3.1.4. Publication IV 
The DREAM Challenges (Dialogue for Reverse Engineering Assessments and Methods, URL: 
http://dreamchallenges.org) is a research initiative that started in 2005, initially presenting unique but 
simulated research questions to interested participants. It has since grown to present large scale real-
life biomedical problems to a growing community of participants. It has a strong focus on co-operation 
and promoting open science and currently collaborates with the Sage Bionetworks (URL: 
https://www.synapse.org/ProstateCancerChallenge) and the Project Data Sphere (PDS, URL: 
https://www.projectdatasphere.org/projectdatasphere/html/pcdc). DREAM Challenges aims to help 
researchers to improve in their specific expertise, share ideas, and to develop novel methodology to 
acute and relevant biomedical research questions.  

The DREAM 9.5 mCRPC Prostate Cancer Challenge was launched with two main research 
subchallenges: 1) Prediction of overall survival (OS) for mCRPC patients; 2) Prediction of adverse 
effects (AE) occurring due to docetaxel intervention in mCRPC patients. A generic overview to this 
competitive phase for OS prediction is provided in Figure 6. The various clinical parameters were made 
available from multiple high profile pharmaceutical randomized controlled trials (RCTs) in mCRPC 
(Figure 6): ASCENT2 (𝑁𝑁 =  476) (Scher et al. 2011), MAINSAIL (𝑁𝑁 =  526) (Petrylak et al. 2015), 
VENICE (𝑁𝑁 =  598) (Tannock et al. 2013), and ENTHUSE 33 (𝑁𝑁 =  470) (Fizazi et al. 2013). ENTHUSE 
M1 (𝑁𝑁 =  266) (Nelson et al., 2011) was provided as an independent 5th dataset, which was used to 
test the top methodology against the gold standard in the field (Halabi et al. 2014). This benchmarking 
Halabi model was a LASSO-based regression model for OS-prediction in mCRPC, and had been trained 
on a prior study with over 700 participants.  
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Figure 6: Overview to the DREAM 9.5 mCRPC Challenge. Project Data Sphere functioned as the data depository. 
The organizers provided the registered participants with a standardized data table and raw data tables for 
further exploration. Three of the trials were offered as training data, while ENTHUSE 33 was held out as a 
leaderboard benchmark and test set. ENTHUSE M1 (not shown) was reserved for post-Challenge testing. 
(Adopted with permission from Publication IV: Figure 1) 

The implemented methodology in publication IV for the OS-prediction was named ePCR (ensemble-
based Penalized Cox Regression), and it was later subjected to more refined examination as well as 
contributed to the “wisdom of the crowds” meta-analysis of all the participating models. This principle 
is widely applied in the DREAM Challenges to examine if constructing a consensus prediction of the 
top-performing models can improve beyond performance of just the top-performing method (Costello 
et al. 2013). 

3.2. Preclinical modeling methodology 
3.2.1. Experimental design 
To assure rigorous standards in the experimental design of preclinical studies, the following practices 
were emphasized: 

 The researchers conducting and analyzing the experiment were blinded to the intervention 
groups 

 Animals were allocated to the intervention arms in a balanced manner based on relevant 
baseline variables 

 A stochastic, random component was included in the allocation method to avoid fully 
deterministic allocation 
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deterministic allocation 



MATERIALS AND METHODS 

23 
  

 

Balancing potentially predictive variables - such as the baseline value of the main response before the 
introduction of interventions and health criteria - should be conducted in animal allocation to ensure 
that there is no systematic bias in the starting conditions of the experiment. Due to criticism directed 
toward fully deterministic allocation procedures (Pond 2011), the presented baseline animal 
allocation balancing involves a stochastic random component (Figure 7).  

 

Figure 7: An example subset from the experiment by (Knuuttila et al. 2014) for the matching-based allocation. 
(a): Two variable baseline matching problem, where both the body weight (x-axis) and the PSA at baseline (y-
axis) are considered equally important. (b): A naïve Euclidean distance matrix together with the corresponding 
matching matrix highlighting the submatches. (c): The submatches that minimize sum of the Euclidean distances. 
(d) Members of each submatch are randomly allocated to different intervention arms. (Adopted with permission 
from Publication I: Figure 2) 

A randomly selected subset of 15 animals with PCa from (Knuuttila et al. 2014) at baseline is shown in 
Figure 7a. Two predictive baseline variables are provided in this hypothetical scenario: the body 
weight of the animal (x-axis) and the PSA level at baseline (y-axis). A distance or a dissimilarity matrix 
is constructed in Figure 7b, which depicts the amount of similarity between individuals. Notice that 
the standard Euclidean distance was utilized in this naïve two-dimensional example, whereas the 
choice of a particular similarity metric and/or weighting of specific variables is a conscious choice in 
an experiment. In Figure 7c, subgroups are identified through a deterministic optimization of a target 
function that minimizes the sum of all intra-group dissimilarities. Lastly (Figure 7d), within each of 
these subgroups, treatment labels are randomly assigned, and the intervention groups can be derived 
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from the resulting labels. Notice that all intergroup differences are considered (Figure 7c); therefore, 
no group is fixed yet (e.g., control group) and can therefore be masked for the experimenter. By 
default, this procedure assumes balanced experimental design (equal number of animals in each 
group) because this is predominantly the desired experimental setup and is most likely to have optimal 
statistical modeling properties in downstream analyses. This grouping of similar individuals is 
conducted without any prior information regarding interventions, and thus the predictive similarity 
over such groups can be used to empower post-intervention statistical analyses (later referred to as 
matched analyses). 

3.2.2. Distance/dissimilarity measures 
Consider individuals i and j, which in this application denote animals with indices i and j that are to be 
matched. A distance/dissimilarity matrix 𝑫𝑫 is a measure for the degree of dissimilarity between i:th 
and j:th individual presented as 𝐷𝐷𝑖𝑖,𝑗𝑗. For this application, the following distance/dissimilarity criteria 
are required: 

{
𝐷𝐷𝑖𝑖,𝑗𝑗 = 𝐷𝐷𝑗𝑗,𝑖𝑖
𝐷𝐷𝑖𝑖,𝑖𝑖 = 0    ∀ 𝑖𝑖, 𝑗𝑗 Eq.  1 

 
These criteria indicate that there is no directionality in the distance/dissimilarity metric and that an 
individual is perfectly similar to its self. Supplementary Table 1 in Publication I lists commonly used 
distance/dissimilarity metrics, of which majority can be derived as special cases of the Minkowski or 
the Mahalanobis distance. By default, the proposed approach for depicting similarity was standardized 
Euclidean distance. The only distance metric directly applicable for mixed data reported here is the 
Gower’s dissimilarity (Gower 1971). 
 
3.2.3. Non-bipartite multigroup matching 
The novel approach to experimental design through matching is based on the well-established 
principles of non-bipartite matching (Lu et al. 2011), which has been suggested as a method for 
randomized allocation (Greevy et al. 2004). In most clinical settings, the matching of individuals 
commonly refers to bipartite matching (Figure 8a). In this setting, two predefined groups (usually cases 
and controls) are matched to form intergroup pairs, and predictive covariates are used to identify pairs 
with similar expected risk of outcome. This less known variant of a similar matching problem, non-
bipartite matching (Figure 8b), aims to identify optimal pairs of individuals within a single population. 
The non-bipartite matches were identified from a baseline population, and predictive markers for 
disease progression or treatment responsiveness were used to measure how similar individuals were 
within this single population. As a novel extension, instead of utilizing only matched non-bipartite 
pairs, the pairwise formulation was extended to submatches, which can be composed of three or more 
individuals. Within submatches, the sum of all intra-submatch dissimilarities are minimized (Figure 
7c). To solve this particular problem, no applicable algorithm was found, and therefore two different 
approaches were developed - an exact optimization algorithm based on the branch and bound (B&B) 
approach (Clausen 1999) and a heuristic optimization algorithm based on the genetic algorithm (GA) 
(De Jong 1988). Although the former could be guaranteed to provide the global optimum, its search 
space may expand to computationally unfeasible size, and thus a computationally less extensive local 
solution was provided in the latter approach. Of note, both approaches are generalized problem 
solving frameworks rather than readily applicable methodologies per se; thus, their refinement and 
fine-tuning into this particular setting was extensively required. 
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bipartite matching (Figure 8b), aims to identify optimal pairs of individuals within a single population. 
The non-bipartite matches were identified from a baseline population, and predictive markers for 
disease progression or treatment responsiveness were used to measure how similar individuals were 
within this single population. As a novel extension, instead of utilizing only matched non-bipartite 
pairs, the pairwise formulation was extended to submatches, which can be composed of three or more 
individuals. Within submatches, the sum of all intra-submatch dissimilarities are minimized (Figure 
7c). To solve this particular problem, no applicable algorithm was found, and therefore two different 
approaches were developed - an exact optimization algorithm based on the branch and bound (B&B) 
approach (Clausen 1999) and a heuristic optimization algorithm based on the genetic algorithm (GA) 
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Figure 8: Overview of pairwise matching problems and base solution methods. (a): In bipartite matching, 
matched individuals come from two separate groups (typically case and control). (b): In non-bipartite matching, 
subgroups of similar individuals are identified from a single pool of candidates. (c): The branch and bound 
algorithm is capable of identifying a global solution through implicit coverage of the solution space. Nodes (grey 
circles) indicate branching and ⨯-symbols indicate complete solutions. (d): The bounding function guarantees 
an optimistic boundary in a certain area of the solution space (i.e. a certain branch in the solution tree). (Adopted 
with permission from Publication I: Supplementary Figure S7) 

Extending the formulation by (Lu et al. 2011), the submatch-based non-bipartite matching is as 
follows. Consider a binary symmetric matching matrix 𝑿𝑿: 

𝑋𝑋𝑖𝑖,𝑗𝑗 = {
1, 𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖,  𝑉𝑉𝑗𝑗  ∈ 𝑀𝑀𝑘𝑘                       
0, 𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖 ∈ 𝑀𝑀𝑙𝑙,   𝑉𝑉𝑗𝑗 ∈ 𝑀𝑀𝑘𝑘, 𝑙𝑙 ≠ 𝑘𝑘 Eq.  2 

 
where i and j are running indices for individuals in the population, 𝑉𝑉 are vertices corresponding to the 
individuals, and 𝑀𝑀 are the submatches. The vertices correspond to the observations in Figure 7c, in 
which the submatches are the identified connecting groups by minimizing the sum of all intra-group 
dissimilarities. The objective function to be minimized is: 

MATERIALS AND METHODS 

26 
  

 

min
𝑋𝑋

∑ ∑ 𝑋𝑋𝑖𝑖,𝑗𝑗𝐷𝐷𝑖𝑖,𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
 Eq.  3 

 
That is, the sum of all dissimilarities for the connected vertices should be minimized by identifying a 
suitable binary matching matrix 𝑿𝑿 given the following constraints: 

∑ 𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝐺𝐺 − 1
𝑁𝑁

𝑖𝑖=1
 ∀ 𝑗𝑗 ∈ {1,2, … , 𝑁𝑁} Eq.  4 

∑ 𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝐺𝐺 − 1
𝑁𝑁

𝑗𝑗=1
∀ 𝑖𝑖 ∈ {1,2, … , 𝑁𝑁} Eq.  5 

𝑋𝑋𝑖𝑖,𝑗𝑗 = 𝑋𝑋𝑗𝑗,𝑖𝑖 Eq.  6 
 
That is, each individual has 𝐺𝐺 –  1 matching counterparts in the symmetric binary matching matrix, 
where 𝐺𝐺 is the number of desired intervention groups (𝐺𝐺 =  3 in Figure 7b-d). After the submatches 
have been identified by minimizing the objective function in Eq.  3, the randomized allocation assigns 
random blinded intervention labels within each submatch (Figure 7d). The subgrouping guarantees 
that similar individuals are divided evenly among the 𝐺𝐺 treatment arms. 

Because the procedure assumes by default a balanced design, so-called sinks are utilized if 𝑁𝑁 is not 
divisible by 𝐺𝐺. These sinks may be one of the following: i) averaged artificial individuals added to the 
data matrix before computing 𝑫𝑫; ii) zero rows and columns added to 𝑫𝑫. Both approaches add sinks to 
the symmetric distance matrix until the dimension is divisible by 𝐺𝐺, thus ultimately satisfying the 
balanced design condition.  

3.2.4. Branch & Bound 
The principles of the B&B algorithm can be depicted as a top-down tree (Figure 8c). There are two key 
steps in B&B: i) branching starts from the root at the top and at each node depicts possible choices 
for the discrete optimization task at hand. The branching should exhaustively cover all possible 
solutions to the optimization task. In this particular example, it can be observed that the pairwise 
matching of six individuals produces a solution space of 15 possible outcomes, as can be counted from 
the leaves at the bottom of the tree; ii) An optimistic bounding function is utilized to alleviate the vast 
solution space produced by such combinatory challenges. A bounding function is formulated to give 
an optimistic boundary on the best possible solution that can be found from a particular part of the 
solution space (Figure 8d), i.e., in this case, underneath a particular node in the top-down tree (Figure 
8c). 

Here, the notation {𝑖𝑖, 𝑗𝑗} was used to indicate that the i:th and j:th individuals 𝑖𝑖 and 𝑗𝑗 were part of the 
same submatch. Although the B&B method has a wide variety of applications in discrete optimization 
(Clausen 1999), it is important to note that the solution tree branching suffers from combinatory 
explosion as a function of the number of individuals and from complex nodes if the matching is 
extended beyond just pairs, i.e., allowing nodes with matching of triplets {𝑖𝑖, 𝑗𝑗, 𝑘𝑘} (as in Figure 7), 
quadruplets {𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙}, and beyond. Although the bounding function example in Figure 8d focuses on 
a continuous solution space, the principle is the same in discrete optimization; the bounding function 
dictates in this particular example that potential solutions found from 𝑥𝑥 ≤ 𝑋𝑋1 or 𝑥𝑥 ≥ 𝑋𝑋4 cannot 
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with permission from Publication I: Supplementary Figure S7) 
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where i and j are running indices for individuals in the population, 𝑉𝑉 are vertices corresponding to the 
individuals, and 𝑀𝑀 are the submatches. The vertices correspond to the observations in Figure 7c, in 
which the submatches are the identified connecting groups by minimizing the sum of all intra-group 
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improve the readily identified optimal solution. Therefore, these parts of the solution space do not 
need to be explored. This step is interpreted as the bounding or pruning of the tree-like solution space.  
In this example, the solution space in 𝑋𝑋1 ≤ 𝑥𝑥 ≤ 𝑋𝑋2 or 𝑋𝑋2 ≤ 𝑥𝑥 ≤ 𝑋𝑋3 may not be pruned based on the 
bounding function because a better solution may still be found in these ranges. 

Effective pruning of the tree is largely dependent on how arbitrarily closely the bounding function can 
reach the true limits in the solution space. Furthermore, heuristic adjustments can be added to the 
search algorithm, such as employing depth-first, breadth-first, or combinations of the two search 
strategies that are most suitable for the task at hand. Finally, if a well-educated initial optimum can 
be proposed, e.g., by running a computationally light greedy search for the first optimum, the 
bounding function quickly prunes large portions of the search tree, and much of the solution space 
remains only implicitly covered. Nevertheless, in this particular application, it was noticed that as 𝐺𝐺 
(the number of intervention arms) was increased together with the number of animals 𝑁𝑁, the B&B 
algorithm became overwhelmingly computationally intensive. This computational requirement posed 
practical challenges because the matching-based allocation task often needs to be runnable within 
hours or within a day during a real experiment. Therefore, further effort was given to developing an 
alternative heuristic algorithm guaranteed to run in a linear time as a function of 𝑁𝑁. 

3.2.5. Genetic Algorithm 
The GA is a generic optimization framework that takes its inspiration from the way that genotypes are 
passed on through various mechanisms in living creatures, with the underlying assumption that a 
particular genotype with better fitness will more likely survive within the given environment and resist 
potential perturbations (i.e., mutations) (De Jong K 1988). GA-based solutions have been used 
previously in similar experimental design settings, such as in (Kasturi et al. 2011), and were therefore 
chosen as the primary alternative to B&B. The GA implemented for the purpose of optimizing Eq.  3 
utilizes the following steps and iterations: 

1. Initialize the algorithm with a user-defined number of initial, completely random solutions 
that fulfill the constraints set for optimizing Eq.  3; this is the population size in the GA. 

2. Start looping through the generations; in each generation, the population size is kept 
constant. In each step, a positive event is more likely to occur to solutions that are better, 
while negative events are more likely to occur to worse solutions. The possible events at each 
generation are: 
- Death: Each individual solution has a possibility to die out, weighted by its fitness. 
- Breeding: To replace individuals in the population that have died out, two random parent 
solutions are picked with such weighting that more favorable solutions have higher chance of 
becoming a parent. The produced child is given the common rows/columns of the parents’ 
matching matrices following the constraints Eq.  4, Eq.  5, and Eq.  6.  
- Mutations: Random permutations of the matching matrix 𝑿𝑿 are introduced at a user-defined 
rate, with the likelihood of a mutation higher for non-favorable solutions in the population. A 
single mutation here is the swap of two columns and their corresponding rows in the matching 
matrix in order to retain symmetry.  

3. After iterating through a pre-set number of generations, the algorithm is stopped. The best 
found solution over all generations is suggested as the solution to the optimization problem. 
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The progress of the population fitness (here, objective function values of the sums in Eq.  3) is 
visualized in Figure 9 as a function of the simulated generations. The initial spread of solutions is wide, 
because the starting population is completely random. In this example, over the first 50 generations 
the algorithm breeds better solutions to replace dying solutions, which can be observed as a consistent 
trend in the reduction of the various quantiles in the optimization function values (i.e, fitness) (left-
half of Figure 9). Notice that in this example lower fitness is better, as the target function of the GA is 
a minimization problem. After the population has converged toward a stable state, mutations 
introduce the potential to explore the solution space further in an attempt to avoid local minima. This 
can be observed as the spiking of the solution quantiles in the right half of Figure 9. After the preset 
number of generations has been simulated, the algorithm stops and returns the best identified 
solution. 

The advantages of the GA include that it is a very versatile optimization framework with great 
opportunity for fine-tuning various parameters in the simulation of generations, and the desired 
number of generations increases the run time of the algorithm linearly.  The main drawback is that 
the algorithm is not guaranteed to identify the global optimum. At worst, the mechanisms for and 
balancing of death, breeding, and mutations may be unintuitive. Furthermore, if the population size 
(number of solutions participating in the algorithm) is too low or the population remains too stagnant 
at every new simulated generation, the algorithm may be prone to identify suboptimal local optima. 

 

Figure 9: An example run of GA, where each new generation undergoes GA-related events with a weighted 
probability. Better solutions with a lower objective function value (i.e., fitness) are more likely to breed and 
survive to the next generation, as well as have a smaller chance of undergoing mutations. (Adopted with 
permission from Publication I: Supporting R-vignette, Figure 3) 
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3.2.6. Stratified matching and allocation 
As preclinical experiments may present intrinsic groups or batches of individuals rising from e.g. 
animals arriving to the experiment at different times, interventions conducted at varying intervals or 
cage-effects due to differences in the microbiota environment (Hasty et al. 2014; Hildebrand et al. 
2013, such stratification should be accounted for in the allocation phase. In order to account for 
stratification, two different approaches were proposed. 

In the strict approach, individuals rising from separate substrata may never be matched to each other. 
Effectively, this separates the optimization task into two or more separate problems, requiring 
solutions to multiple objective functions independently for each substrata. Coupled with the random-
allocation step following this matching step (Figure 7c-d), the major advantage of this strict approach 
is that it guarantees that the number of individuals from each substrata are divided evenly among the 
desired interventions groups. However, a major disadvantage is that separating the allocation into 
smaller sub-problems considers where the inter-individual variation may not be represented well 
enough. This problem may be severe especially if the N count in each substrata is relatively small in 
comparison to the desired number of intervention groups G.  

In the relaxed approach, the stratification is incorporated into the dissimilarity metric itself, often as 
a categorical variable with expert-curated weighting, and it is subsequently treated similarly to any 
other variable depicting baseline differences between individuals. Such is easily possible in 
dissimilarity metrics such as the Gower’s dissimilarity (Gower 1971) or with expert-tailoring of 
conventional distance metrics. Effectively, this can be seen as a penalization procedure with a cost 
related to allowing individuals from different substrata to be part of the same submatch. 

3.3. Regression modeling in preclinical and clinical applications 
3.3.1. Right-censored responses, missing observations, and suitable model families 
The nonrandom nature of the missing observations in the preclinical setting arises from the fact that 
larger tumors are likely to be more lethal. In the case of death, all subsequent measurements for the 
individual will be missing. This phenomenon is referred to as right-censoring. In preclinical trials, the 
loss of animals due to death or a pre-set sacrifice threshold affects the inference of subsequent tumor 
growth curves. This right-censoring effect can have severe confounding consequences, especially if no 
individual-level observation data are provided and only averaged curves over the remaining 
individuals are provided together with the standard deviations or standard errors. This situation may 
give a false impression of a tumor growth plateau effect, whereas in reality, this occurs mainly due to 
the structured nature of missing observations. Naïve imputation methods that are sometimes utilized 
in the field, such as projecting the last observed tumor burden to the later time points, introduce 
further spurious effects into downstream statistical inferences. To minimize the effect of right-
censored preclinical experiments herein and to avoid imputation, the main emphasis on statistical 
inference of intervention effects was based on examining differences in the growth slopes of tumor 
burden curves. These longitudinal models take into account only the truly observed data, and each 
individual obtains a random effects estimate for their tumor burden growth slope. A population 
consensus in the intervention versus the control arm is then inferred as a growth coefficient after this 
individual variation is accounted for. 
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Regarding right-censoring in clinical trials or hospital registry data, a typical end-point is a binary 
outcome (event or no event, such as death or biochemical recurrence). A characteristic trait for this 
field of survival analysis is that the response consists of two components: the first component depicts 
the time 𝑡𝑡 until censoring or observed event. The second component is a binary indicator for the 
mathematical modeling, which indicates whether the patient was censored and that we only know 
that the event did not occur within the given time-period (typically denoted as 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  0) or that 
event was observed at the exact time (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  1). Examples of popular model families that aim to 
address this inherent 2-column nature of the response are Cox regression and random survival forests 
(RSFs), both of which are known to perform well in survival modeling  (Omurlu et al. 2009). The former 
was applied over the course of these publications. 

3.3.2. Linear mixed-effects models 
Linear mixed-effects models (MEMs) can be presented in the following form (Pinheiro et al. 2000): 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆 Eq.  7 
 
where the left-hand side 𝒚𝒚 is the vector of response values, which is typically a continuous variable. 𝑿𝑿 
is the model matrix of size 𝑁𝑁 ⨯ 𝑝𝑝, which depicts the model formulation in connection to the 
observations. 𝒃𝒃 = {𝛽𝛽0, 𝛽𝛽1, … , 𝛽𝛽𝑝𝑝−1} is a vector of the fixed effects, providing estimates that are 
common to all individuals and therefore effectively model population averages. 𝒁𝒁 is the random 
effects’ model matrix, which groups individual-level observations. 𝒖𝒖 = {𝜸𝜸𝟎𝟎, 𝜸𝜸𝟏𝟏, … } is a set of random 
effects that offer individual-level estimates with the underlying assumption that these are normally 
distributed with zero mean. This setup is especially useful in longitudinal mixed-effects models 
because the multiple associated observations are grouped in 𝒁𝒁. The error term 𝒆𝒆 is assumed to be 
normally distributed, zero mean, and i.i.d. The random effects may hold very complex normally 
distributed structures that attempt to capture partially overlapping variation in the data; however, 
the complexity rising from the random effects requires mixed-effects models to be estimated using 
restricted maximum likelihood (REML) rather than ordinary maximum likelihood based fitting 
(Pinheiro et al. 2000). 

The following aspects were emphasized in the presented longitudinal modeling: 

 There is typically a single main regression response variable, which is usually the PSA 
concentration or the physically measured tumor volume or area. Thus, univariate regression 
is suitable. 

 Time-dependency exists between the observations, and the measurements are conducted at 
fixed time points for all individuals. This structure is incorporated in the random effects. 

 Measurements are not censored randomly because high tumor response values are more 
likely to result in death, and thus all subsequent observations would be missing. 

 Two or more groups are to be compared using fixed effects when testing if there is a 
statistically significant effect on tumor growth due to an intervention. Furthermore, clinical 
significance, i.e., effect size estimated on such a coefficient, is of great interest. 
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Figure 10: Example of the conventional and matched models for the MDV3100 intervention. (a): Baseline 
submatches were used to group individuals with a similar prognosis. (b): Matched observations were 
constructed using pairwise differences at the equal time points. (c): The pairwise differences were used as the 
growth response for the matched inference. (Left panel): Conventional inference. (Right panel): Matched 
inference. (Adopted with permission from Publication I: Figure 3) 
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3.3.3. Matched longitudinal analysis 
Because the experimental design presented in I inherently incorporates matching that identified 
individuals with a similar prognosis, a mixed-effects model was designed that could utilize this aspect 
in the analysis of the longitudinal growth patterns. Due to the controlled trial setting of such preclinical 
experiments, each individual is measured at equidistant time points 𝑡𝑡. A model was formulated for 
paired observations (left-hand side) with a suitable model matrix (right-hand side) that utilizes 
submatches in capturing interesting longitudinal intervention effects: 

𝑦𝑦𝑖𝑖,𝑡𝑡,𝑔𝑔=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝑗𝑗,𝑡𝑡,𝑔𝑔=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 Eq.  8 
  

𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 = 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥𝑡𝑡 + 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝛾𝛾0,{𝑖𝑖,𝑗𝑗} + 𝛾𝛾1,{𝑖𝑖,𝑗𝑗}𝑥𝑥𝑡𝑡 + 𝜀𝜀{𝑖𝑖,𝑗𝑗},𝑡𝑡 Eq.  9 
 
where 𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 refers to the paired difference in observed tumor response at time point 𝑡𝑡, 𝑥𝑥𝑡𝑡 is the 
longitudinal time point, and individuals of indices {𝑖𝑖, 𝑗𝑗} were part of the same submatch at baseline 
(Figure 10a),  𝛾𝛾0,{𝑖𝑖,𝑗𝑗} is the random effects for the pairwise intercept difference, 𝛾𝛾1,{𝑖𝑖,𝑗𝑗} is the random 
effects for pairwise slope difference, and 𝜀𝜀{𝑖𝑖,𝑗𝑗},𝑡𝑡 is the normally distributed error. However, we 
proposed fixed effects in this respect to focus solely on 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 because the other fixed effects 
are redundant due to the pairing of observations. The interpretation of these observations changes 
dramatically when paired observations are modeled rather than individual growth curves. The final 
model, as shown in right panel of Figure 10c, is: 

𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 = 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝛾𝛾0,{𝑖𝑖,𝑗𝑗} + 𝛾𝛾1,{𝑖𝑖,𝑗𝑗}𝑥𝑥𝑡𝑡 + 𝜀𝜀{𝑖𝑖,𝑗𝑗},𝑡𝑡 Eq.  10 
 
To provide a benchmarking model that does not utilize the baseline matching information, the 
following analogous formulation was utilized: 

𝑦𝑦𝑖𝑖,𝑔𝑔,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝛽𝛽2𝑥𝑥𝑡𝑡𝑔𝑔𝑖𝑖 + 𝛾𝛾0,𝑖𝑖 + 𝛾𝛾1,𝑖𝑖𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑔𝑔,𝑡𝑡 Eq.  11 
 
where 𝑖𝑖 is the index for the i:th individual, 𝑦𝑦𝑖𝑖,𝑔𝑔,𝑡𝑡 is the tumor response (i.e., PSA) for the 𝑖𝑖:th individual 
belonging to the group 𝑔𝑔 at the specific time point 𝑡𝑡, 𝑥𝑥𝑡𝑡 is the 𝑡𝑡:th time point, 𝑔𝑔𝑖𝑖 is a binary indicator 
for the intervention group of individual 𝑖𝑖 (value 1 for case and 0 for control), 𝛽𝛽0 is the population-wide 
intercept, 𝛽𝛽1 is the control-specific growth slope (due to the presence of a binary group indicator), 𝛽𝛽2 
is the intervention testing growth slope that differentiates according to the binary indicator for groups, 
𝛾𝛾0,𝑖𝑖 is the random effect allowing individualized variation at the intercept, 𝛾𝛾1,𝑖𝑖 is the random effects 
slope allowing individual growth variation regardless of intervention group, and 𝜀𝜀𝑖𝑖,𝑔𝑔,𝑡𝑡 is the normally 
distributed error. Both the conventional (Eq.  11) and the matched models (Eq.  9) are shown in a full 
linear mixed-effects model fit as a sum of the 𝛽𝛽 and 𝛾𝛾 terms in Figure 10c middle panel, respectively.  

3.3.4. Heterogeneity-incorporating MEM coupled with the EM algorithm 
Multiple studies have indicated that some of the difficulties in analyzing preclinical response profiles 
can be attributed to inherent subgroups of tumors and intratumoral heterogeneity. This heterogeneity 
has gathered increasing interest due to its relationship to the development of drug resistance or its 
ability to partially explain the heterogeneous response profiles (Bhatia et al. 2012; Fisher et al. 2013). 
To this end, a mathematical framework was developed in publication II with the underlying 
assumption of growing (latent variable 𝜃𝜃𝑖𝑖  =  1) or poorly growing (latent variable 𝜃𝜃𝑖𝑖  =  0) 
spontaneous tumor growth distributed similarly over intervention arms. To estimate this latent 
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Figure 10: Example of the conventional and matched models for the MDV3100 intervention. (a): Baseline 
submatches were used to group individuals with a similar prognosis. (b): Matched observations were 
constructed using pairwise differences at the equal time points. (c): The pairwise differences were used as the 
growth response for the matched inference. (Left panel): Conventional inference. (Right panel): Matched 
inference. (Adopted with permission from Publication I: Figure 3) 
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3.3.3. Matched longitudinal analysis 
Because the experimental design presented in I inherently incorporates matching that identified 
individuals with a similar prognosis, a mixed-effects model was designed that could utilize this aspect 
in the analysis of the longitudinal growth patterns. Due to the controlled trial setting of such preclinical 
experiments, each individual is measured at equidistant time points 𝑡𝑡. A model was formulated for 
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𝑦𝑦𝑖𝑖,𝑡𝑡,𝑔𝑔=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑦𝑦𝑗𝑗,𝑡𝑡,𝑔𝑔=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 Eq.  8 
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where 𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 refers to the paired difference in observed tumor response at time point 𝑡𝑡, 𝑥𝑥𝑡𝑡 is the 
longitudinal time point, and individuals of indices {𝑖𝑖, 𝑗𝑗} were part of the same submatch at baseline 
(Figure 10a),  𝛾𝛾0,{𝑖𝑖,𝑗𝑗} is the random effects for the pairwise intercept difference, 𝛾𝛾1,{𝑖𝑖,𝑗𝑗} is the random 
effects for pairwise slope difference, and 𝜀𝜀{𝑖𝑖,𝑗𝑗},𝑡𝑡 is the normally distributed error. However, we 
proposed fixed effects in this respect to focus solely on 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 because the other fixed effects 
are redundant due to the pairing of observations. The interpretation of these observations changes 
dramatically when paired observations are modeled rather than individual growth curves. The final 
model, as shown in right panel of Figure 10c, is: 

𝑦𝑦{𝑖𝑖,𝑗𝑗},𝑡𝑡 = 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑡𝑡 + 𝛾𝛾0,{𝑖𝑖,𝑗𝑗} + 𝛾𝛾1,{𝑖𝑖,𝑗𝑗}𝑥𝑥𝑡𝑡 + 𝜀𝜀{𝑖𝑖,𝑗𝑗},𝑡𝑡 Eq.  10 
 
To provide a benchmarking model that does not utilize the baseline matching information, the 
following analogous formulation was utilized: 

𝑦𝑦𝑖𝑖,𝑔𝑔,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝛽𝛽2𝑥𝑥𝑡𝑡𝑔𝑔𝑖𝑖 + 𝛾𝛾0,𝑖𝑖 + 𝛾𝛾1,𝑖𝑖𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑔𝑔,𝑡𝑡 Eq.  11 
 
where 𝑖𝑖 is the index for the i:th individual, 𝑦𝑦𝑖𝑖,𝑔𝑔,𝑡𝑡 is the tumor response (i.e., PSA) for the 𝑖𝑖:th individual 
belonging to the group 𝑔𝑔 at the specific time point 𝑡𝑡, 𝑥𝑥𝑡𝑡 is the 𝑡𝑡:th time point, 𝑔𝑔𝑖𝑖 is a binary indicator 
for the intervention group of individual 𝑖𝑖 (value 1 for case and 0 for control), 𝛽𝛽0 is the population-wide 
intercept, 𝛽𝛽1 is the control-specific growth slope (due to the presence of a binary group indicator), 𝛽𝛽2 
is the intervention testing growth slope that differentiates according to the binary indicator for groups, 
𝛾𝛾0,𝑖𝑖 is the random effect allowing individualized variation at the intercept, 𝛾𝛾1,𝑖𝑖 is the random effects 
slope allowing individual growth variation regardless of intervention group, and 𝜀𝜀𝑖𝑖,𝑔𝑔,𝑡𝑡 is the normally 
distributed error. Both the conventional (Eq.  11) and the matched models (Eq.  9) are shown in a full 
linear mixed-effects model fit as a sum of the 𝛽𝛽 and 𝛾𝛾 terms in Figure 10c middle panel, respectively.  

3.3.4. Heterogeneity-incorporating MEM coupled with the EM algorithm 
Multiple studies have indicated that some of the difficulties in analyzing preclinical response profiles 
can be attributed to inherent subgroups of tumors and intratumoral heterogeneity. This heterogeneity 
has gathered increasing interest due to its relationship to the development of drug resistance or its 
ability to partially explain the heterogeneous response profiles (Bhatia et al. 2012; Fisher et al. 2013). 
To this end, a mathematical framework was developed in publication II with the underlying 
assumption of growing (latent variable 𝜃𝜃𝑖𝑖  =  1) or poorly growing (latent variable 𝜃𝜃𝑖𝑖  =  0) 
spontaneous tumor growth distributed similarly over intervention arms. To estimate this latent 
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variable, an adaptation of the expectation-maximization (EM) algorithm was developed in which 𝜃𝜃 is 
estimated parallel to the rest of the MEM coefficients with two varying versions having either binary 
or continuous uniform 𝜃𝜃, as shown in Figure 11. The EM algorithm framework consists of two looped 
steps, which are run until convergence for the parameter of interest (in this case 𝜃𝜃) is reached. These 
key steps for the EM algorithm are as follows (Dempster et al. 1977):  

- Initialize conditions for the EM algorithm, i.e., all tumors are assigned 𝜃𝜃0 or 𝜃𝜃1. 
(E), Expectation step: For each tumor’s latent 𝜃𝜃𝑖𝑖, evaluate the relative likelihood of 
generating its observed profile from either of the latent growth classes 𝜃𝜃𝑖𝑖  ∈ {0,1}. 
(M), Maximization step: Assign the more likely candidate 𝜃𝜃𝑖𝑖 for each tumor, and then re-
estimate the mixed-effects model parameters 𝛽𝛽 and 𝛾𝛾 using REML. Return to (E) if 𝜃𝜃𝑖𝑖 has 
changed. 

- Iterate E and M steps until convergence of the parameters, complemented by multi-start. 

 

Figure 11: Progression of the EM algorithm with two variations for the latent growth variable. (a): Initially all 
tumors are set to the growing latent category. (b): By default, the latent variable 𝜃𝜃 ∈ {0,1} was modeled with 
binary classes: growing or poorly growing tumors. (c): As a probabilistic alternative 𝜃𝜃 ∈ [0,1], the algorithm was 
allowed more flexibility in estimating the continuous growth characteristics. (Adopted with permission from 
Publication II: Supplementary Figure S2) 

These steps E and M are conducted iteratively, thus explaining the EM algorithm nomenclature; the 
ultimate aim is providing feasible estimates for the latent variables (here 𝜃𝜃𝑖𝑖 for all tumors 𝑖𝑖). Here, 
two comparable MEMs were utilized - the latent-variable categorizing model and a conventional 
model without the latent variable. The latent-variable formulation was as follows: 
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𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽1 + 𝛽𝛽2𝑔𝑔 +  𝛽𝛽3𝑥𝑥𝑡𝑡𝜃𝜃𝑖𝑖 + 𝛽𝛽4𝑥𝑥𝑡𝑡𝜃𝜃𝑖𝑖𝑔𝑔 + 𝛾𝛾1,𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 Eq.  12 
 
where 𝑦𝑦𝑖𝑖,𝑡𝑡 is the tumor response (i.e., PSA) for individual 𝑖𝑖 at time point 𝑡𝑡, 𝛽𝛽1 is the control-specific 
intercept, 𝛽𝛽2𝑔𝑔 is the intervention-specific vertical shift (which may counter-intuitively also model 
intervention effects due to the presence of 𝜃𝜃𝑖𝑖), 𝛽𝛽3 is the control growth slope given the estimated 
growth characteristics, and 𝛽𝛽4 is the potential intervention effect of interest given the growth 
characteristics. 𝛾𝛾1,𝑖𝑖 and 𝛾𝛾2,𝑖𝑖 are the individual-level random effects allowing variation for the intercept 
and growth slopes, respectively, and 𝜀𝜀𝑖𝑖,𝑡𝑡 is the normally distributed error. We refer to this particular 
MEM in Eq.  12 as the categorizing model. The conventional benchmarking model is obtained by 
assuming 𝜃𝜃𝑖𝑖  =  1 for every tumor, in which case the mixed-effects model formulation simplifies to: 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽1 + 𝛽𝛽2𝑔𝑔 +  𝛽𝛽3𝑥𝑥𝑡𝑡 + 𝛽𝛽4𝑥𝑥𝑡𝑡𝑔𝑔 + 𝛾𝛾1,𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 Eq.  13 
 
This model formulation is analogous to Eq.  12 with the exception that it lacks the individualized 𝜃𝜃 and 
the inclusion of EM algorithm, but the interpretation for the model coefficients is the same. The 
models presented in Eq.  12 and Eq.  13 are visualized in Figure 12 with respect to the fixed effects 
inference. The conventional model is obtained if one omits the growing (𝜃𝜃𝑖𝑖  =  1) or poorly growing 
(𝜃𝜃𝑖𝑖  =  1) latent variable, in which case all tumors are treated equally except with regards to the 
intervention group 𝑔𝑔. 

To expand the EM algorithm utilized in publication II, a probabilistic alternative was offered (Figure 
11c). Although the binary categorizing model offers a more easily interpreted and biologically 
motivated premise, the probabilistic latent variable allows more flexibility for the modeling task. The 
continuous approach may alleviate some of the challenges regarding the strong assumption of the 
binarization of the growth categories or practical issues in the algorithm convergence if the 
interventions present very homogeneous profiles. In the expectation step of the EM algorithm, the 
latent variable 𝜃𝜃𝑖𝑖 is inferred based on the whole range of observations belonging to the 𝑖𝑖:th tumor, 
similarly to how one might interpret a random effect for the 𝑖𝑖:th individual: 

𝑝𝑝(𝜽𝜽|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =  𝑝𝑝(𝜽𝜽 = 1) ∙ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1)
𝑝𝑝(𝜽𝜽 = 0) ∙ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 0) +  𝑝𝑝(𝜽𝜽 = 1) ∙ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1) Eq.  14 

 
with equal priors for both binary 𝜽𝜽 values resulting in: 

𝑝𝑝(𝜽𝜽|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =  𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1)
𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 0) +  𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1) Eq.  15 

  
where the likelihood for either case are computed as a proportion of the chance of observing a 
growing tumor in comparison to the sum of both likelihoods. The likelihoods for a particular tumor 
of index 𝑖𝑖 are combined over all the available longitudinal time points 𝑡𝑡: 

𝑝𝑝(𝜃𝜃𝑖𝑖 = 1|𝒚𝒚𝒊𝒊) =  𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=1|𝜃𝜃𝑖𝑖 = 1) ∙ … ∙ 𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=𝑇𝑇|𝜃𝜃𝑖𝑖 = 1)
𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=1|𝜃𝜃𝑖𝑖 = 0) ∙ … ∙ 𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=𝑇𝑇|𝜃𝜃𝑖𝑖 = 0) +  𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=1|𝜃𝜃𝑖𝑖 = 1) ∙ … ∙ 𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=𝑇𝑇|𝜃𝜃𝑖𝑖 = 1) Eq.  16 

 

The fixed effects fit of the MEM is used for predicting expected observations, thus providing the 
expectation step in the EM algorithm: 
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variable, an adaptation of the expectation-maximization (EM) algorithm was developed in which 𝜃𝜃 is 
estimated parallel to the rest of the MEM coefficients with two varying versions having either binary 
or continuous uniform 𝜃𝜃, as shown in Figure 11. The EM algorithm framework consists of two looped 
steps, which are run until convergence for the parameter of interest (in this case 𝜃𝜃) is reached. These 
key steps for the EM algorithm are as follows (Dempster et al. 1977):  

- Initialize conditions for the EM algorithm, i.e., all tumors are assigned 𝜃𝜃0 or 𝜃𝜃1. 
(E), Expectation step: For each tumor’s latent 𝜃𝜃𝑖𝑖, evaluate the relative likelihood of 
generating its observed profile from either of the latent growth classes 𝜃𝜃𝑖𝑖  ∈ {0,1}. 
(M), Maximization step: Assign the more likely candidate 𝜃𝜃𝑖𝑖 for each tumor, and then re-
estimate the mixed-effects model parameters 𝛽𝛽 and 𝛾𝛾 using REML. Return to (E) if 𝜃𝜃𝑖𝑖 has 
changed. 

- Iterate E and M steps until convergence of the parameters, complemented by multi-start. 

 

Figure 11: Progression of the EM algorithm with two variations for the latent growth variable. (a): Initially all 
tumors are set to the growing latent category. (b): By default, the latent variable 𝜃𝜃 ∈ {0,1} was modeled with 
binary classes: growing or poorly growing tumors. (c): As a probabilistic alternative 𝜃𝜃 ∈ [0,1], the algorithm was 
allowed more flexibility in estimating the continuous growth characteristics. (Adopted with permission from 
Publication II: Supplementary Figure S2) 

These steps E and M are conducted iteratively, thus explaining the EM algorithm nomenclature; the 
ultimate aim is providing feasible estimates for the latent variables (here 𝜃𝜃𝑖𝑖 for all tumors 𝑖𝑖). Here, 
two comparable MEMs were utilized - the latent-variable categorizing model and a conventional 
model without the latent variable. The latent-variable formulation was as follows: 
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𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽1 + 𝛽𝛽2𝑔𝑔 +  𝛽𝛽3𝑥𝑥𝑡𝑡𝜃𝜃𝑖𝑖 + 𝛽𝛽4𝑥𝑥𝑡𝑡𝜃𝜃𝑖𝑖𝑔𝑔 + 𝛾𝛾1,𝑖𝑖 + 𝛾𝛾2,𝑖𝑖𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 Eq.  12 
 
where 𝑦𝑦𝑖𝑖,𝑡𝑡 is the tumor response (i.e., PSA) for individual 𝑖𝑖 at time point 𝑡𝑡, 𝛽𝛽1 is the control-specific 
intercept, 𝛽𝛽2𝑔𝑔 is the intervention-specific vertical shift (which may counter-intuitively also model 
intervention effects due to the presence of 𝜃𝜃𝑖𝑖), 𝛽𝛽3 is the control growth slope given the estimated 
growth characteristics, and 𝛽𝛽4 is the potential intervention effect of interest given the growth 
characteristics. 𝛾𝛾1,𝑖𝑖 and 𝛾𝛾2,𝑖𝑖 are the individual-level random effects allowing variation for the intercept 
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This model formulation is analogous to Eq.  12 with the exception that it lacks the individualized 𝜃𝜃 and 
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To expand the EM algorithm utilized in publication II, a probabilistic alternative was offered (Figure 
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𝑝𝑝(𝜽𝜽 = 0) ∙ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 0) +  𝑝𝑝(𝜽𝜽 = 1) ∙ 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1) Eq.  14 

 
with equal priors for both binary 𝜽𝜽 values resulting in: 

𝑝𝑝(𝜽𝜽|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =  𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1)
𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 0) +  𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑|𝜽𝜽 = 1) Eq.  15 

  
where the likelihood for either case are computed as a proportion of the chance of observing a 
growing tumor in comparison to the sum of both likelihoods. The likelihoods for a particular tumor 
of index 𝑖𝑖 are combined over all the available longitudinal time points 𝑡𝑡: 

𝑝𝑝(𝜃𝜃𝑖𝑖 = 1|𝒚𝒚𝒊𝒊) =  𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=1|𝜃𝜃𝑖𝑖 = 1) ∙ … ∙ 𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=𝑇𝑇|𝜃𝜃𝑖𝑖 = 1)
𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=1|𝜃𝜃𝑖𝑖 = 0) ∙ … ∙ 𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=𝑇𝑇|𝜃𝜃𝑖𝑖 = 0) +  𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=1|𝜃𝜃𝑖𝑖 = 1) ∙ … ∙ 𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡=𝑇𝑇|𝜃𝜃𝑖𝑖 = 1) Eq.  16 

 

The fixed effects fit of the MEM is used for predicting expected observations, thus providing the 
expectation step in the EM algorithm: 
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𝑝𝑝(𝑦𝑦𝑖𝑖,𝑡𝑡|𝜃𝜃𝑖𝑖) ~ 𝑁𝑁(𝜇𝜇 = 𝐸𝐸(𝑿𝑿𝑿𝑿|𝑖𝑖, 𝑡𝑡, 𝜃𝜃𝑖𝑖), 𝜎𝜎2 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝒚𝒚))  
 

Eq.  17 

After this, the 𝜃𝜃𝑖𝑖 are assigned to the more likely binary class, and the algorithm refits the whole MEM 
in the maximization step using REML. This iterative two-step procedure continues until 𝜃𝜃𝑖𝑖 converge 
and therefore none of the model parameters change thereafter. Compared to the existing 
heterogeneity-incorporating MEMs (Verbeke et al. 1996), the previous models have focused on 
incorporating a latent variable heterogeneity component into the random effects portion of the 
model. In the context of preclinical experimentation, however, here the latent variable is introduced 
to the fixed effects growth component to accurately infer intervention effects that are population-
wide effects. 

 

Figure 12: Overview into the categorizing model. (a): Four fixed-effects coefficients were included in the model: 
𝛽𝛽1 and 𝛽𝛽2 model population-wide vertical effects without and with intervention, respectively. Similarly, 𝛽𝛽3 and 
𝛽𝛽4 are the estimated growth coefficients without and with intervention, respectively. (b): The underlying 
assumption for the latent growth variable was that it was present in both intervention arms and was estimated 
using the EM algorithm in parallel with MEM fitting. (Adopted with permission from Publication II: Figure 1)  

Figure 12 presents an overview to the categorizing MEM with the fixed effects coefficients 𝛽𝛽1 − 𝛽𝛽4 
together with the underlying latent variable (𝜃𝜃𝑖𝑖  ∈ {0,1} for the poorly growing or growing tumors, 
respectively). Because the latent variable 𝜃𝜃𝑖𝑖 in Eq.  12 affects the inference for the growth slope in 𝛽𝛽3 
(control growth slope) and 𝛽𝛽4 (slope effect), the inference for 𝛽𝛽1 and 𝛽𝛽2 is not trivial. Although 𝛽𝛽1 
(intercept) would appear to be the intercept at 𝑥𝑥𝑡𝑡 = 0, the inference for 𝛽𝛽2 (offset) is not merely a 
baseline difference in the intercept between the intervention arms. Because 𝜃𝜃𝑖𝑖 is incorporated into 
the growth coefficients (Figure 12b), should 𝜃𝜃𝑖𝑖 = 0 become the dominant latent variable for most 
tumors, the burden of explaining potential intervention effects rests on the offset term 𝛽𝛽2 (horizontal 
lines in Figure 12a). Therefore, if there is an intervention effect that prevents vast majority of tumor 
growth, 𝛽𝛽2 captures this drastic decrease in the tumor response over time. The intervention effect in 
𝛽𝛽4 tests a slope effect in comparison to the control growth captured in 𝛽𝛽3 (slopes in Figure 12a).  
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3.3.5. Power analyses 
To perform power calculations through sampling from an estimated MEM, the following approach 
was utilized in publication II. Because the random effects are considered to be normally distributed 
with zero mean and the fixed effect 𝛽𝛽 is considered to be representative means of the whole 
population, the following sampling scheme was used: 

[
𝛾𝛾1,𝑗̂𝑗
𝛾𝛾2,𝑗̂𝑗

] ~𝑀𝑀𝑀𝑀𝑀𝑀(𝝁𝝁 = [0
0] , ∑ =  [

𝜎𝜎𝛾𝛾1
2 𝛿𝛿1,2 ∙ 𝜎𝜎𝛾𝛾1 ∙ 𝜎𝜎𝛾𝛾1

𝛿𝛿1,2 ∙ 𝜎𝜎𝛾𝛾1 ∙ 𝜎𝜎𝛾𝛾1 𝜎𝜎𝛾𝛾2
2 ] ) Eq.  18 

 

To calculate the power for the categorizing MEM, the latent growth variable was assumed to be 
binomially distributed equal proportion of 𝜃𝜃𝑖𝑖 = 1: 

𝜃𝜃𝑗𝑗 ~ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛 = 1, 𝑝𝑝 =
∑ 𝜃𝜃𝑖𝑖

𝑁𝑁
𝑖𝑖=1
𝑁𝑁 ) Eq.  19 

 
where 𝜃𝜃𝑖𝑖 ∈ {0,1} were obtained using the EM algorithm coupled with the categorizing mixed-effects 
model (i.e. Figure 11b). One can produce simulated responses for power analysis with the estimates 
of fixed effects held constant at their expected mean values: 

𝑦𝑦𝑗𝑗,𝑡̂𝑡 = 𝛽𝛽1 + 𝛽𝛽2𝑔𝑔 +  𝛽𝛽3𝑥𝑥𝑡𝑡𝜃𝜃𝑗̂𝑗 + 𝛽𝛽4𝑥𝑥𝑡𝑡𝜃𝜃𝑗̂𝑗𝑔𝑔 + 𝛾𝛾1,𝑗̂𝑗 + 𝛾𝛾2,𝑗̂𝑗𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑗𝑗,𝑡𝑡 Eq.  20   
 

where the time 𝑡𝑡 should be representative of the desired experimental design. 𝜀𝜀𝑗𝑗,𝑡𝑡 is assumed to follow 
the normal and i.i.d. residual assumptions, and the variance is chosen according to the residual 
variance in the original MEM fit. This model-driven sampling was chosen as the primary power analysis 
method in publication II. 

Monte Carlo methods, which include simulation-based solutions (as described above) or 
bootstrapping (resampling with replacement), have been presented with increased utility in settings 
that are hard to capture in closed-form analytical solutions. For example, Monte Carlo methods can 
incorporate complex structures that are difficult to describe using conventional parameters in 
statistical testing (such as simple difference in means and group-wise variance as in t-testing). 
Furthermore, conventional power analyses typically do not incorporate application-specific traits, 
such as the right-censoring in preclinical studies presented here.  

In addition to propagating clinical methodology to preclinical studies (Muhlhausler et al. 2013), 
stratified bootstrap-based power analyses are convenient in addressing multiple challenges inherent 
to preclinical studies: right-censoring and its effect on subsequent statistical modeling as well as lower-
censoring are incorporated. As a resampling technique it is less sensitive to underlying assumptions 
than model-driven sample generation and it gives more freedom to the researcher to process the 
resampled datasets as they wish. As such, stratified bootstrapping is agnostic to any subsequent 
modeling choices. Such applications have been recently introduced into e.g. cluster-based randomized 
clinical trials (Kleinman et al. 2017). In publication I, stratified bootstrapping was therefore chosen as 
the primary power analysis method. MEMs were re-fitted to stratified resampled datasets, and the 
proportion of statistically significant findings in a fixed effect of interest was studied as a function of 
resampled 𝑁𝑁. 
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to the fixed effects growth component to accurately infer intervention effects that are population-
wide effects. 
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𝛽𝛽1 and 𝛽𝛽2 model population-wide vertical effects without and with intervention, respectively. Similarly, 𝛽𝛽3 and 
𝛽𝛽4 are the estimated growth coefficients without and with intervention, respectively. (b): The underlying 
assumption for the latent growth variable was that it was present in both intervention arms and was estimated 
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(control growth slope) and 𝛽𝛽4 (slope effect), the inference for 𝛽𝛽1 and 𝛽𝛽2 is not trivial. Although 𝛽𝛽1 
(intercept) would appear to be the intercept at 𝑥𝑥𝑡𝑡 = 0, the inference for 𝛽𝛽2 (offset) is not merely a 
baseline difference in the intercept between the intervention arms. Because 𝜃𝜃𝑖𝑖 is incorporated into 
the growth coefficients (Figure 12b), should 𝜃𝜃𝑖𝑖 = 0 become the dominant latent variable for most 
tumors, the burden of explaining potential intervention effects rests on the offset term 𝛽𝛽2 (horizontal 
lines in Figure 12a). Therefore, if there is an intervention effect that prevents vast majority of tumor 
growth, 𝛽𝛽2 captures this drastic decrease in the tumor response over time. The intervention effect in 
𝛽𝛽4 tests a slope effect in comparison to the control growth captured in 𝛽𝛽3 (slopes in Figure 12a).  
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3.3.5. Power analyses 
To perform power calculations through sampling from an estimated MEM, the following approach 
was utilized in publication II. Because the random effects are considered to be normally distributed 
with zero mean and the fixed effect 𝛽𝛽 is considered to be representative means of the whole 
population, the following sampling scheme was used: 

[
𝛾𝛾1,𝑗̂𝑗
𝛾𝛾2,𝑗̂𝑗
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To calculate the power for the categorizing MEM, the latent growth variable was assumed to be 
binomially distributed equal proportion of 𝜃𝜃𝑖𝑖 = 1: 
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𝑁𝑁 ) Eq.  19 

 
where 𝜃𝜃𝑖𝑖 ∈ {0,1} were obtained using the EM algorithm coupled with the categorizing mixed-effects 
model (i.e. Figure 11b). One can produce simulated responses for power analysis with the estimates 
of fixed effects held constant at their expected mean values: 
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where the time 𝑡𝑡 should be representative of the desired experimental design. 𝜀𝜀𝑗𝑗,𝑡𝑡 is assumed to follow 
the normal and i.i.d. residual assumptions, and the variance is chosen according to the residual 
variance in the original MEM fit. This model-driven sampling was chosen as the primary power analysis 
method in publication II. 

Monte Carlo methods, which include simulation-based solutions (as described above) or 
bootstrapping (resampling with replacement), have been presented with increased utility in settings 
that are hard to capture in closed-form analytical solutions. For example, Monte Carlo methods can 
incorporate complex structures that are difficult to describe using conventional parameters in 
statistical testing (such as simple difference in means and group-wise variance as in t-testing). 
Furthermore, conventional power analyses typically do not incorporate application-specific traits, 
such as the right-censoring in preclinical studies presented here.  

In addition to propagating clinical methodology to preclinical studies (Muhlhausler et al. 2013), 
stratified bootstrap-based power analyses are convenient in addressing multiple challenges inherent 
to preclinical studies: right-censoring and its effect on subsequent statistical modeling as well as lower-
censoring are incorporated. As a resampling technique it is less sensitive to underlying assumptions 
than model-driven sample generation and it gives more freedom to the researcher to process the 
resampled datasets as they wish. As such, stratified bootstrapping is agnostic to any subsequent 
modeling choices. Such applications have been recently introduced into e.g. cluster-based randomized 
clinical trials (Kleinman et al. 2017). In publication I, stratified bootstrapping was therefore chosen as 
the primary power analysis method. MEMs were re-fitted to stratified resampled datasets, and the 
proportion of statistically significant findings in a fixed effect of interest was studied as a function of 
resampled 𝑁𝑁. 
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3.4. Modeling methodology in clinical patient data 
3.4.1. Modeling clinical PSA using splines  
The transformation of the response vector values, e.g., through a logarithmic transformation or 
through the square root, are popular choices when, for example, the normality assumption of 
residuals does not hold. In the particular context of PSA kinetics, we found the log2-transformation to 
be convenient. Figure 13a displays the example PSA profile of 30 randomly selected patients from the 
hospital registry cohort in publication III; each curve is a single patient with PCa after RP and a 
subsequent PSA nadir. It is quite evident based on the visual inspection of the response profiles therein 
that the whole range of response profiles cannot be captured easily by a single model family, especially 
not any of the commonly used parametric ones such as linear, sigmoidal logistic, or exponential 
regression (Figure 13a). However, when the PSA response was log2-transformed (Figure 13b), the 
response vectors behaved in a way that was more easily captured by conventional modeling 
techniques. This modeling choice was initially motivated by the rather recently emerged interest in 
PSA kinetics, which in particular focuses on PSA doubling times (Vickers et al. 2009). The log2 
transformation therefore introduced an interesting connection to the PSA kinetics because a unit 
increase in the log2-transformed PSA response corresponds to a doubling of the original PSA within 
the given time frame.  

 

Figure 13: Penalized splines in modeling PSA response curves after nadir. Each curve represents PSA for a single 
patient. (a): Example data of 30 patients. (b): After log2 transformation of the PSA response, the response 
patterns followed linear trends based on visual inspection. (c): A wide range of nonlinear and approximately 
linear models were tested. CV median-squared error was used as a criterion for optimizing the spline 
penalization 𝜆𝜆 (log y-axis). Nonlinear models (inset D) presented with significantly higher error. The optimal 
model (arrow; inset E) was approximately linear. The linear models (inset F) were close to the optimal model. 
(d): A highly non-linear spline fit with large CV error. (e): The optimal spline penalization as suggested by CV. (f): 
Linear spline models performed almost as well as the model with minimized CV error. (Adopted with permission 
from Publication III: Figure 1) 
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Despite the more uniform form of log2-transformed PSA curves, the question of which model family 
to utilize remained. Therefore, for the explorative modeling of the log2-PSA, semiparametric penalized 
splines were chosen as the initial approach to investigate preliminary trends. The utilized natural cubic 
splines consist of the following third order polynomial form (Ripley 2013): 

𝑓𝑓(𝑥𝑥) =  {
𝐴𝐴0𝑥𝑥3 + 𝐵𝐵0𝑥𝑥2 + 𝐶𝐶0𝑥𝑥 + 𝐷𝐷0,                        𝑡𝑡0 ≤ 𝑥𝑥 ≤ 𝑡𝑡1

…
𝐴𝐴𝑛𝑛−1𝑥𝑥3 + 𝐵𝐵𝑛𝑛−1𝑥𝑥2 + 𝐶𝐶𝑛𝑛−1𝑥𝑥 + 𝐷𝐷𝑛𝑛−1, 𝑡𝑡𝑛𝑛−1 ≤ 𝑥𝑥 ≤ 𝑡𝑡𝑛𝑛

 Eq.  21 

 
Given the observed interval in time 𝑡𝑡 ∈  [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] for the predictor 𝑥𝑥, the smoothing splines are defined 
using intervals 𝑡𝑡 with 𝑎𝑎𝑖𝑖 = 𝑡𝑡0 < 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑛𝑛−1 < 𝑡𝑡𝑛𝑛 = 𝑏𝑏𝑖𝑖. The cubic smoothing spline is then fit by 
minimizing the following target function: 

∑(𝑦𝑦 − 𝑓𝑓(𝑥𝑥))2 + 𝜆𝜆 ∫ 𝑓𝑓′′(𝑥𝑥)
𝑏𝑏

𝑎𝑎
 Eq.  22 

 
The Eq.  22 consists of two main components: 1) the sum of squared errors, a common measure of 
discrepancy between the true observed values 𝑦𝑦 and the model prediction 𝑓𝑓(𝑥𝑥); 2) the penalization 
term with the smoothing coefficient 𝜆𝜆 indicating the magnitude of smoothing. The smoothed 
component is the second degree integral over the observed range of 𝑥𝑥. The smoothing parameter 𝜆𝜆 
allows cubic penalized splines flexibility (Figure 13d-f) from highly nonlinear fits to linear fits, where 
only the first-order coefficients of 𝑥𝑥 remain nonzero. As 𝜆𝜆 → ∞, the model converges toward simple 
regression because the overwhelming penalization of the second-order integral drives both 
coefficients 𝐴𝐴 and 𝐵𝐵 to zero in Eq.  21 (Ramsay et al. 1997). Between these extremes lies a sequence 
of suitable 𝜆𝜆 for modeling, under which the parameter 𝜆𝜆 is usually determined using CV. For this 
purpose, median squared error (MSE) was utilized in this application (Figure 13c) instead of the more 
popular mean squared error (identically abbreviated as MSE) due to the challenging nature of 
extrapolating higher-order polynomials outside the original range of training 𝑥𝑥. Overall, higher values 
of the smoothing parameter 𝜆𝜆 generally resulted in better generalization ability in this application, 
even with the median-based error (Figure 13c). While the log2-transformation did transform the 
responses to linear curves based on visual inspection and model evaluation, lower censoring 
presented a challenge regarding the error term assumptions for parametric models. As such, the lower 
threshold was expected to present a jagged-like effect in residual plots, but was deemed to present 
only a minor violation to assumptions, as splines highly supported the use of linear modeling trends. 

3.4.2. Modeling clinical BCR using mixed-effects models 
The spline smoothing parameter 𝜆𝜆 suggested by CV effectively relied on the linear components (Figure 
13c), coefficients 𝐶𝐶𝑥𝑥1 (slope) and 𝐷𝐷𝑥𝑥0 = 𝐷𝐷 (intercept), for use in Eq.  21. Due to the model complexity 
favoring these linear trends, we chose to use linear MEMs similar to their use in modeling preclinical 
response patterns. The following model formulation was utilized: 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛾𝛾0,𝑖𝑖 + 𝛾𝛾1,𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡 +  𝜀𝜀𝑖𝑖,𝑡𝑡 Eq.  23 
 
where 𝑦𝑦𝑖𝑖,𝑡𝑡 is log2-transformed PSA concentration at the time point 𝑡𝑡 for the individual 𝑖𝑖, 𝛽𝛽0 denotes a 
fixed effect for the population-wide average for the intercept at the PSA nadir in the log2 scale, 𝛽𝛽1 
denotes a population-wide PSA doubling time (PSADT), and 𝑥𝑥𝑖𝑖,𝑡𝑡 is the follow-up time in days for the 
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3.4. Modeling methodology in clinical patient data 
3.4.1. Modeling clinical PSA using splines  
The transformation of the response vector values, e.g., through a logarithmic transformation or 
through the square root, are popular choices when, for example, the normality assumption of 
residuals does not hold. In the particular context of PSA kinetics, we found the log2-transformation to 
be convenient. Figure 13a displays the example PSA profile of 30 randomly selected patients from the 
hospital registry cohort in publication III; each curve is a single patient with PCa after RP and a 
subsequent PSA nadir. It is quite evident based on the visual inspection of the response profiles therein 
that the whole range of response profiles cannot be captured easily by a single model family, especially 
not any of the commonly used parametric ones such as linear, sigmoidal logistic, or exponential 
regression (Figure 13a). However, when the PSA response was log2-transformed (Figure 13b), the 
response vectors behaved in a way that was more easily captured by conventional modeling 
techniques. This modeling choice was initially motivated by the rather recently emerged interest in 
PSA kinetics, which in particular focuses on PSA doubling times (Vickers et al. 2009). The log2 
transformation therefore introduced an interesting connection to the PSA kinetics because a unit 
increase in the log2-transformed PSA response corresponds to a doubling of the original PSA within 
the given time frame.  

 

Figure 13: Penalized splines in modeling PSA response curves after nadir. Each curve represents PSA for a single 
patient. (a): Example data of 30 patients. (b): After log2 transformation of the PSA response, the response 
patterns followed linear trends based on visual inspection. (c): A wide range of nonlinear and approximately 
linear models were tested. CV median-squared error was used as a criterion for optimizing the spline 
penalization 𝜆𝜆 (log y-axis). Nonlinear models (inset D) presented with significantly higher error. The optimal 
model (arrow; inset E) was approximately linear. The linear models (inset F) were close to the optimal model. 
(d): A highly non-linear spline fit with large CV error. (e): The optimal spline penalization as suggested by CV. (f): 
Linear spline models performed almost as well as the model with minimized CV error. (Adopted with permission 
from Publication III: Figure 1) 
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Despite the more uniform form of log2-transformed PSA curves, the question of which model family 
to utilize remained. Therefore, for the explorative modeling of the log2-PSA, semiparametric penalized 
splines were chosen as the initial approach to investigate preliminary trends. The utilized natural cubic 
splines consist of the following third order polynomial form (Ripley 2013): 

𝑓𝑓(𝑥𝑥) =  {
𝐴𝐴0𝑥𝑥3 + 𝐵𝐵0𝑥𝑥2 + 𝐶𝐶0𝑥𝑥 + 𝐷𝐷0,                        𝑡𝑡0 ≤ 𝑥𝑥 ≤ 𝑡𝑡1

…
𝐴𝐴𝑛𝑛−1𝑥𝑥3 + 𝐵𝐵𝑛𝑛−1𝑥𝑥2 + 𝐶𝐶𝑛𝑛−1𝑥𝑥 + 𝐷𝐷𝑛𝑛−1, 𝑡𝑡𝑛𝑛−1 ≤ 𝑥𝑥 ≤ 𝑡𝑡𝑛𝑛

 Eq.  21 

 
Given the observed interval in time 𝑡𝑡 ∈  [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖] for the predictor 𝑥𝑥, the smoothing splines are defined 
using intervals 𝑡𝑡 with 𝑎𝑎𝑖𝑖 = 𝑡𝑡0 < 𝑡𝑡1 < ⋯ < 𝑡𝑡𝑛𝑛−1 < 𝑡𝑡𝑛𝑛 = 𝑏𝑏𝑖𝑖. The cubic smoothing spline is then fit by 
minimizing the following target function: 

∑(𝑦𝑦 − 𝑓𝑓(𝑥𝑥))2 + 𝜆𝜆 ∫ 𝑓𝑓′′(𝑥𝑥)
𝑏𝑏

𝑎𝑎
 Eq.  22 

 
The Eq.  22 consists of two main components: 1) the sum of squared errors, a common measure of 
discrepancy between the true observed values 𝑦𝑦 and the model prediction 𝑓𝑓(𝑥𝑥); 2) the penalization 
term with the smoothing coefficient 𝜆𝜆 indicating the magnitude of smoothing. The smoothed 
component is the second degree integral over the observed range of 𝑥𝑥. The smoothing parameter 𝜆𝜆 
allows cubic penalized splines flexibility (Figure 13d-f) from highly nonlinear fits to linear fits, where 
only the first-order coefficients of 𝑥𝑥 remain nonzero. As 𝜆𝜆 → ∞, the model converges toward simple 
regression because the overwhelming penalization of the second-order integral drives both 
coefficients 𝐴𝐴 and 𝐵𝐵 to zero in Eq.  21 (Ramsay et al. 1997). Between these extremes lies a sequence 
of suitable 𝜆𝜆 for modeling, under which the parameter 𝜆𝜆 is usually determined using CV. For this 
purpose, median squared error (MSE) was utilized in this application (Figure 13c) instead of the more 
popular mean squared error (identically abbreviated as MSE) due to the challenging nature of 
extrapolating higher-order polynomials outside the original range of training 𝑥𝑥. Overall, higher values 
of the smoothing parameter 𝜆𝜆 generally resulted in better generalization ability in this application, 
even with the median-based error (Figure 13c). While the log2-transformation did transform the 
responses to linear curves based on visual inspection and model evaluation, lower censoring 
presented a challenge regarding the error term assumptions for parametric models. As such, the lower 
threshold was expected to present a jagged-like effect in residual plots, but was deemed to present 
only a minor violation to assumptions, as splines highly supported the use of linear modeling trends. 

3.4.2. Modeling clinical BCR using mixed-effects models 
The spline smoothing parameter 𝜆𝜆 suggested by CV effectively relied on the linear components (Figure 
13c), coefficients 𝐶𝐶𝑥𝑥1 (slope) and 𝐷𝐷𝑥𝑥0 = 𝐷𝐷 (intercept), for use in Eq.  21. Due to the model complexity 
favoring these linear trends, we chose to use linear MEMs similar to their use in modeling preclinical 
response patterns. The following model formulation was utilized: 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛾𝛾0,𝑖𝑖 + 𝛾𝛾1,𝑖𝑖𝑥𝑥𝑖𝑖,𝑡𝑡 +  𝜀𝜀𝑖𝑖,𝑡𝑡 Eq.  23 
 
where 𝑦𝑦𝑖𝑖,𝑡𝑡 is log2-transformed PSA concentration at the time point 𝑡𝑡 for the individual 𝑖𝑖, 𝛽𝛽0 denotes a 
fixed effect for the population-wide average for the intercept at the PSA nadir in the log2 scale, 𝛽𝛽1 
denotes a population-wide PSA doubling time (PSADT), and 𝑥𝑥𝑖𝑖,𝑡𝑡 is the follow-up time in days for the 
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patient 𝑖𝑖. 𝛾𝛾0,𝑖𝑖 and 𝛾𝛾1,𝑖𝑖 were the corresponding normally distributed zero mean random effects, which 
allowed lenience for the whole model fit to allow varying nadirs and PSADTs, respectively. Therefore, 
to obtain the individualized estimate for the patient with index 𝑖𝑖, one must sum the population 
average with the corresponding individual variation: 

Nadir : 𝛽𝛽0 + 𝛾𝛾0,𝑖𝑖 Eq.  24 
PSADT: 𝛽𝛽1 + 𝛾𝛾1,𝑖𝑖 Eq.  25 

 
Notice that the log2 transformation has a convenient interpretation in regard to PSADT. Because the 
linear model was fitted to the log2 scale PSA, the estimate for a linear unit increase in the new scale 
corresponded to doubling of the original PSA concentration. Therefore, the obtained individualized 
estimates in Eq.  24 and Eq.  25 provided clinically relevant insight into the PSA kinetics in the original 
scale. To utilize this convenient connection, a generalized linear mixed-effects model was then 
constructed for predicting future patients’ risk of BCR using the logistic link function: 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥)
1 − 𝑝𝑝(𝑥𝑥) = 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛽𝛽0 + 𝛾𝛾0,𝑖𝑖) + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽1 + 𝛾𝛾1,𝑖𝑖) + 𝜀𝜀𝑖𝑖 Eq.  26 

 
Here, 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 denotes the base chance of a BCR occurrence, i.e., an imbalance in the positive or negative 
cases in the binary prediction task. The 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 take plug-in estimates from the original 
linear MEM that described a patient’s log2 scale nadir and PSADT, respectively, and 𝑝𝑝(𝑥𝑥) denotes the 
probability of observing an event conditional to our input variables 𝑥𝑥, i.e., 𝑝𝑝(𝑥𝑥) =  𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥). 
Therefore, the estimated model in Eq.  26 can be utilized to also predict future patients’ risk of BCR 
given that the patient’s nadir and PSADT can be estimated. Inversely, the probability of observing a 
positive class in Eq.  26 can be derived as: 

𝑝𝑝(𝑥𝑥) = 𝑒𝑒𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥1)+𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥2)

1 + 𝑒𝑒𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥1)+𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥2) Eq.  27 

 
where 𝑥𝑥1 and 𝑥𝑥2 correspond to the individuals’ estimated log2-nadir and PSADT, respectively. As 
𝑝𝑝(𝑥𝑥) ∈ [0,1], the formula in Eq.  27 can be used to predict BCR for a new patient. By varying a 
threshold for this classifier between [0,1], one may construct receiver-operator curves (ROC) and 
choose a suitable trade-off between sensitivity and specificity of the binary prediction. As an example, 
if one desires equal emphasis for both BCR and non-BCR patients, the classifier could be: 

{ 𝑝𝑝(𝑥𝑥) ≥ 0.5 → 𝐵𝐵𝐵𝐵𝐵𝐵             
𝑝𝑝(𝑥𝑥) < 0.5 → 𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝐶𝐶𝑅𝑅     Eq.  28 

 
For this purpose, noticeable connections to simple linear regression were utilized. Since Eq.  23 
required access to multiple individuals to reevaluate the variance in the random effects γ, we 
proposed the use of simple linear regression to estimate plug-in estimates required by Eq.  26: 

𝑦𝑦𝑡𝑡 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 Eq.  29 
 
where 𝛽̂𝛽0 and 𝛽̂𝛽1 serve as substitutes for the plug-in predictors that were originally obtained while 
also modeling population-wide variance in the random effects. These 𝛽̂𝛽 estimates are quickly 
computed using a closed-form solution assuming normally distributed error. The connection to 
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piecewise simple linear regression also appears in penalized splines, and an analogous formula to Eq.  
29 is obtained when the spline penalization converges 𝜆𝜆 → ∞ in optimizing Eq.  22. 

3.4.3. Regularized regression for response modeling 
Regularized or penalized regression typically refers to least absolute shrinkage and selection operation 
(LASSO), elastic net (EN) or ridge regression (RR). However, the terminology is rather ambiguous as 
penalization may refer to any methodology where the estimated model is a compromise between 
goodness of fit and model complexity. The most common form of regularized regression aims to 
minimize the following target function (Friedman et al. 2010): 

min
𝛽𝛽0,𝛽𝛽

1
𝑁𝑁 ∑ 𝑤𝑤𝑖𝑖𝑙𝑙(𝑦𝑦𝑖𝑖, 𝛽𝛽0 + 𝛽𝛽𝑇𝑇

𝑁𝑁

𝑖𝑖=1
𝑥𝑥𝑖𝑖) + 𝜆𝜆 [1

2 (1 − 𝛼𝛼)‖𝛽𝛽‖2
2 + 𝛼𝛼‖𝛽𝛽‖1] Eq.  30 

 
where 𝑤𝑤𝑖𝑖 is a user-defined importance weighting for the 𝑖𝑖:th observation, 𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑥𝑥)) is the negative 
log-likelihood contribution for the 𝑖𝑖:th observation, 𝜆𝜆 is the magnitude of penalization for nonzero 
model coefficients in comparison to the goodness of fit, 1 ≥ 𝛼𝛼 ≥ 0 is the regularization family tuning 
parameter, ‖𝛽𝛽‖2

2 is the L2-norm (also known as the Euclidean norm) squared, ‖𝛽𝛽‖1 is the absolute L1-
norm (also known as the Manhattan norm), and 𝛽𝛽 are the model coefficients. For the purposes of this 
thesis, no weighting was utilized; thus, 𝑤𝑤𝑖𝑖 = 1 ∀ 𝑖𝑖 and is omitted from further inspection. The 
goodness of fit term 𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑥𝑥)) was utilized in multiple different forms and was specified with a 
suitable formulation dependent on the application. Finally, the 𝜆𝜆 penalization term balances different 
characteristics of the norm-penalization, although in extreme cases (𝛼𝛼 = 1, LASSO; 𝛼𝛼 = 0, RR), parts 
of it become redundant while the full L1/L2-norm combination is retained in the EN-case (1 > 𝛼𝛼 > 0). 
The estimated coefficients 𝛽𝛽 initially correspond to a full set of variables that are iteratively converging 
as a function of 𝜆𝜆 toward zero starting from a full, nonpenalized model with sparse coefficients. This 
methodology belongs to the embedded family of feature selection techniques because the model is 
estimated simultaneously while selecting the contributing features. It is common knownledge that RR 
(𝛼𝛼 = 0) retains multiple highly correlated 𝛽𝛽 variables that converge arbitrarily close to zero as 𝜆𝜆 
increases, whereas LASSO (𝛼𝛼 = 1) picks a single one of the highly correlated variables and drives the 
coefficients of the others to exactly zero. EN presents a compromise between the two, and a typical 
approach in selecting 𝛼𝛼 involves testing both extreme ends of the 𝛼𝛼 spectrum along with some suitable 
EN-variants (e.g., conventional values such as 𝛼𝛼 ∈ {0.25, 0.50, 0.75}). 

The choice of the goodness of fit measure 𝑙𝑙(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) is dependent on the application. The 𝑦𝑦 ∈ {0,1} 
binary classifier error was used for predicting biochemical response in publication III, whereas the 
DREAM Challenge included a two-column survival 𝑦𝑦-response in publication IV that is commonly 
modeled as proportional hazards (also known as Cox model) due to its time-censoring dependent 
nature. The continuous, normally distributed 𝑦𝑦 is perhaps the most dominant application, and for this 
purpose, the traditional measure for the goodness of fit is the sum of squared errors: 

min
𝛽𝛽0,𝛽𝛽

1
𝑁𝑁 ∑ 1

2 (
𝑁𝑁

𝑖𝑖=1
𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖)2 + 𝜆𝜆 [1

2 (1 − 𝛼𝛼)‖𝛽𝛽‖2
2 + 𝛼𝛼‖𝛽𝛽‖1] Eq.  31 

 
Additional parameters such as the Gleason score, T class, or histological characteristics were subjected 
to feature selection together with the PSA nadir and kinetics in publication III; for this purpose, a 
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patient 𝑖𝑖. 𝛾𝛾0,𝑖𝑖 and 𝛾𝛾1,𝑖𝑖 were the corresponding normally distributed zero mean random effects, which 
allowed lenience for the whole model fit to allow varying nadirs and PSADTs, respectively. Therefore, 
to obtain the individualized estimate for the patient with index 𝑖𝑖, one must sum the population 
average with the corresponding individual variation: 

Nadir : 𝛽𝛽0 + 𝛾𝛾0,𝑖𝑖 Eq.  24 
PSADT: 𝛽𝛽1 + 𝛾𝛾1,𝑖𝑖 Eq.  25 

 
Notice that the log2 transformation has a convenient interpretation in regard to PSADT. Because the 
linear model was fitted to the log2 scale PSA, the estimate for a linear unit increase in the new scale 
corresponded to doubling of the original PSA concentration. Therefore, the obtained individualized 
estimates in Eq.  24 and Eq.  25 provided clinically relevant insight into the PSA kinetics in the original 
scale. To utilize this convenient connection, a generalized linear mixed-effects model was then 
constructed for predicting future patients’ risk of BCR using the logistic link function: 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥)
1 − 𝑝𝑝(𝑥𝑥) = 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝛽𝛽0 + 𝛾𝛾0,𝑖𝑖) + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝛽𝛽1 + 𝛾𝛾1,𝑖𝑖) + 𝜀𝜀𝑖𝑖 Eq.  26 

 
Here, 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 denotes the base chance of a BCR occurrence, i.e., an imbalance in the positive or negative 
cases in the binary prediction task. The 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 take plug-in estimates from the original 
linear MEM that described a patient’s log2 scale nadir and PSADT, respectively, and 𝑝𝑝(𝑥𝑥) denotes the 
probability of observing an event conditional to our input variables 𝑥𝑥, i.e., 𝑝𝑝(𝑥𝑥) =  𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥). 
Therefore, the estimated model in Eq.  26 can be utilized to also predict future patients’ risk of BCR 
given that the patient’s nadir and PSADT can be estimated. Inversely, the probability of observing a 
positive class in Eq.  26 can be derived as: 

𝑝𝑝(𝑥𝑥) = 𝑒𝑒𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥1)+𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥2)

1 + 𝑒𝑒𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥1)+𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥2) Eq.  27 

 
where 𝑥𝑥1 and 𝑥𝑥2 correspond to the individuals’ estimated log2-nadir and PSADT, respectively. As 
𝑝𝑝(𝑥𝑥) ∈ [0,1], the formula in Eq.  27 can be used to predict BCR for a new patient. By varying a 
threshold for this classifier between [0,1], one may construct receiver-operator curves (ROC) and 
choose a suitable trade-off between sensitivity and specificity of the binary prediction. As an example, 
if one desires equal emphasis for both BCR and non-BCR patients, the classifier could be: 

{ 𝑝𝑝(𝑥𝑥) ≥ 0.5 → 𝐵𝐵𝐵𝐵𝐵𝐵             
𝑝𝑝(𝑥𝑥) < 0.5 → 𝑛𝑛𝑛𝑛𝑛𝑛 𝐵𝐵𝐶𝐶𝑅𝑅     Eq.  28 

 
For this purpose, noticeable connections to simple linear regression were utilized. Since Eq.  23 
required access to multiple individuals to reevaluate the variance in the random effects γ, we 
proposed the use of simple linear regression to estimate plug-in estimates required by Eq.  26: 

𝑦𝑦𝑡𝑡 = 𝛽̂𝛽0 + 𝛽̂𝛽1𝑥𝑥𝑡𝑡 + 𝜀𝜀𝑡𝑡 Eq.  29 
 
where 𝛽̂𝛽0 and 𝛽̂𝛽1 serve as substitutes for the plug-in predictors that were originally obtained while 
also modeling population-wide variance in the random effects. These 𝛽̂𝛽 estimates are quickly 
computed using a closed-form solution assuming normally distributed error. The connection to 

MATERIALS AND METHODS 

40 
  

 

piecewise simple linear regression also appears in penalized splines, and an analogous formula to Eq.  
29 is obtained when the spline penalization converges 𝜆𝜆 → ∞ in optimizing Eq.  22. 

3.4.3. Regularized regression for response modeling 
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minimize the following target function (Friedman et al. 2010): 

min
𝛽𝛽0,𝛽𝛽

1
𝑁𝑁 ∑ 𝑤𝑤𝑖𝑖𝑙𝑙(𝑦𝑦𝑖𝑖, 𝛽𝛽0 + 𝛽𝛽𝑇𝑇

𝑁𝑁

𝑖𝑖=1
𝑥𝑥𝑖𝑖) + 𝜆𝜆 [1

2 (1 − 𝛼𝛼)‖𝛽𝛽‖2
2 + 𝛼𝛼‖𝛽𝛽‖1] Eq.  30 

 
where 𝑤𝑤𝑖𝑖 is a user-defined importance weighting for the 𝑖𝑖:th observation, 𝑙𝑙(𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑥𝑥)) is the negative 
log-likelihood contribution for the 𝑖𝑖:th observation, 𝜆𝜆 is the magnitude of penalization for nonzero 
model coefficients in comparison to the goodness of fit, 1 ≥ 𝛼𝛼 ≥ 0 is the regularization family tuning 
parameter, ‖𝛽𝛽‖2

2 is the L2-norm (also known as the Euclidean norm) squared, ‖𝛽𝛽‖1 is the absolute L1-
norm (also known as the Manhattan norm), and 𝛽𝛽 are the model coefficients. For the purposes of this 
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as a function of 𝜆𝜆 toward zero starting from a full, nonpenalized model with sparse coefficients. This 
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The choice of the goodness of fit measure 𝑙𝑙(𝑦𝑦, 𝑓𝑓(𝑥𝑥)) is dependent on the application. The 𝑦𝑦 ∈ {0,1} 
binary classifier error was used for predicting biochemical response in publication III, whereas the 
DREAM Challenge included a two-column survival 𝑦𝑦-response in publication IV that is commonly 
modeled as proportional hazards (also known as Cox model) due to its time-censoring dependent 
nature. The continuous, normally distributed 𝑦𝑦 is perhaps the most dominant application, and for this 
purpose, the traditional measure for the goodness of fit is the sum of squared errors: 

min
𝛽𝛽0,𝛽𝛽

1
𝑁𝑁 ∑ 1

2 (
𝑁𝑁

𝑖𝑖=1
𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖)2 + 𝜆𝜆 [1

2 (1 − 𝛼𝛼)‖𝛽𝛽‖2
2 + 𝛼𝛼‖𝛽𝛽‖1] Eq.  31 

 
Additional parameters such as the Gleason score, T class, or histological characteristics were subjected 
to feature selection together with the PSA nadir and kinetics in publication III; for this purpose, a 
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penalized LASSO regression model was built for testing if the additional clinical parameters in III could 
complement the prediction of BCR in addition to the PSA (as derived from Eq.  30): 

min
𝛽𝛽0,𝛽𝛽

− [1
𝑁𝑁 ∑ 𝑦𝑦𝑖𝑖(𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑖𝑖

𝑇𝑇) − log (1 + 𝑒𝑒(𝛽𝛽0+𝛽𝛽𝑥𝑥𝑖𝑖
𝑇𝑇))

𝑁𝑁

𝑖𝑖=1
] + 𝜆𝜆[‖𝛽𝛽‖1] Eq.  32 

 
where the goodness of fit is measured using the negative binomial log-likelihood. For survival 
responses in IV, an ensemble structure was built in which each ensemble member optimized a single 
regularized Cox regression model with the objective function (Simon et al. 2011): 

min
𝛽𝛽
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𝑇𝑇𝛽𝛽
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)) − 𝜆𝜆(𝛼𝛼 ∑|𝛽𝛽𝑖𝑖|
𝑑𝑑

𝑖𝑖=1
+ 1

2 (1 − 𝛼𝛼) ∑ 𝛽𝛽𝑖𝑖
2

𝑑𝑑

𝑖𝑖=1
)]  Eq.  33 

where 𝑋𝑋 is the model matrix of predictors, 𝛽𝛽 are the model coefficients in Cox regression, 𝑑𝑑 is the 
number of predictors (dimension), and 𝑁𝑁 is the number of observations. Furthermore, inner loops 
exist inside the Cox regression goodness of fit; 𝑗𝑗(𝑖𝑖) is the index of observation event at time 𝑇𝑇𝑖𝑖, 𝑅𝑅𝑖𝑖 is 
the set of patient indices 𝑗𝑗 for which 𝑦𝑦𝑗𝑗 ≥  𝑇𝑇𝑖𝑖  (set of patients at risk at time 𝑇𝑇𝑖𝑖), and 𝑦𝑦𝑗𝑗  is the observed 
death or right-censoring time. The set 𝑅𝑅𝑖𝑖 is iteratively redefined as a function of 𝑗𝑗(𝑖𝑖) given the outer 
loop’s patient 𝑖𝑖 by incorporating patients at risk at time 𝑇𝑇𝑖𝑖 into the inner loop. This goodness-of-fit 
measure in the Eq.  33 is known as the Cox or the proportional hazards model. The above formulation 
of the Cox model is popular in survival response modeling because it does not require assumptions 
for the underlying base hazard function. Although the interpretation of the resulting regression model 
can be difficult, the set of assumptions results in an easily estimable model, in which the regression 
coefficient 𝛽𝛽 estimates are interpreted as hazard ratios (Tibshirani 1997). 

 

Figure 14: The novel ePCR-modeling approach in comparison to the benchmarking Halabi model. (a): The 
benchmarking Halabi model is a LASSO model with 𝛼𝛼 = 1. (b): The ePCR-methodology stratifies the most 
relevant trials as separate ensemble members. For each member, a two-dimensional grid {𝜆𝜆, 𝛼𝛼} is explored using 
multiple averaged runs of CV. (c): The ensemble prediction is obtained by averaging over the predicted ranks 
from ensemble members. (Adopted with permission from Publication IV: Supplementary Figure S1) 
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The overall novel methodology is presented in Figure 14. The implemented ePCR methodology can be 
seen as an extension of the previous state-of-the-art model (Halabi et al. 2014.); instead of utilizing 
LASSO regression as presented in the Halabi model (Figure 14a), the methodology allows a two-
dimensional parameter grid to be explored (Figure 14b). First, 𝛼𝛼 ∈ [0,1] is explored with EN models 
including the extreme ends of LASSO and RR. After this, a sequence of 𝜆𝜆 values is explored conditional 
for each given 𝛼𝛼. By default the CV procedure is run multiple times, and an averaged heatmap of the 
CV surface was plotted to examine the model performance in regards to integrated time-dependent 
AUC (iAUC) or other suitable survival performance metric. After the optimum for each ensemble 
member is identified, they are combined together into the ePCR-structure, and a consensus risk 
prediction is given as an average over all the predicted ranks from the ensemble members (Figure 
14c). Furthermore, it should be emphasized that the input data to the ePCR model in DREAM 9.5 
mCRPC Challenge - despite being linear by nature - included pairwise multiplications of the input 
variables, thus allowing for nonlinear trends to be incorporated. These pairwise interactions 
attempted to capture interesting clinical phenomena that do not occur only as a function of a single 
predictor.  

 

Figure 15: PCA plots with annotations for the clinical trials in the DREAM 9.5 mCRPC Challenge. (a): The mixture 
of continuous, ordinal and binary clinical variables resulted in a PCA plot with no visible stratification in respect 
to the trials. (b): For binary variables such as medication history, previous diseases, and metastatic lesion sites, 
the PCA plot displayed alarming systematic trends for the ASCENT2 trial. (Adopted with permission from 
Publication IV: Supplementary Figure S2) 

Out of the three training sets (ASCENT2, MAINSAIL, and VENICE), ASCENT2 was dropped from the final 
ensemble model. ASCENT2 was clearly different in its characteristics; mainly, the binary indicator 
labels differentiated it from the other primary studies based on principal component analysis and 
other standard diagnostics (Figure 15). Furthermore, the survival response vector in ASCENT2 had a 
significantly shorter mean follow-up time and markedly lower count of observed events. 

One open research question in penalized regression is how to interpret statistical significance of model 
coefficients as conventional p-values are typically reported (and required) by life science journals. 
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Out of the three training sets (ASCENT2, MAINSAIL, and VENICE), ASCENT2 was dropped from the final 
ensemble model. ASCENT2 was clearly different in its characteristics; mainly, the binary indicator 
labels differentiated it from the other primary studies based on principal component analysis and 
other standard diagnostics (Figure 15). Furthermore, the survival response vector in ASCENT2 had a 
significantly shorter mean follow-up time and markedly lower count of observed events. 

One open research question in penalized regression is how to interpret statistical significance of model 
coefficients as conventional p-values are typically reported (and required) by life science journals. 
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Because the final ePCR ensemble model members were close to being RR (Figure 14b), the number of 
nonzero coefficients in the model remained high, even if they contributed minimally to the final 
prediction. Bootstrapped p-values for regression coefficients give highly optimistic values for the 
variance, whereas the bias (𝜆𝜆 penalization) drives the coefficients toward zero (Goeman et al. 2016). 
Therefore, the null hypothesis for the penalized coefficients is ill-defined. The interpretation for the 
statistical significance of these coefficients remains an open field, and prominent figures in the 
penalized regression field have contributed research aiming toward feasible interpretations of p-
values in these penalized regression methods (Lockhart et at. 2014). 

3.4.4. Network projection and meta-analysis in the DREAM 9.5 mCRPC Challenge 
Because the input data matrix for the ePCR model also incorporated pairwise interactions 
(multiplication of columns in the data matrix), the visualization of the resulting ensemble structure 
pose challenges. For this purpose, the freely available graphopt-package was used (Gábor et al. 2006). 
The estimated model’s single variables and pairwise interactions were first filtered using a bootstrap-
based evaluation of the significance of the coefficients, and their importance was weighted by the 
absolute integrated area under/over the regularization curve of the coefficients to gain insight into 
their overall effect sizes. The graphopt algorithm takes the importance of the vertices and the 
importance of edges connecting the nodes as input. It then simulates an algorithm that is inspired by 
the behavior of electrons in molecules based on the attractiveness of atoms (vertex, single predictors) 
with the particular bond structure (edges, pairwise predictors). As such, the algorithm is data-driven, 
and the two-dimensional is not subjective to user bias; however, the algorithm does incorporate 
multiple tuning parameters that can be used to refine the produced illustration if desired. 

As is typical for the DREAM Challenges, the “wisdom of the crowd” principle is applied in the meta-
review phase of all final submitted models (Costello et al. 2013). Furthermore, in an application such 
as this, the meta-review aspect that emphasizes novel findings in single clinical predictors or groups 
of predictors offers practical utility to the clinical audience. As such, comprehensive surveys and meta-
analysis of the competing models was conducted. Naturally, extensive inspection into the particular 
findings of the top-performing ePCR model was conducted in addition to the Challenge-wide surveys. 

Due to the competitive nature of the Challenge, the statistical significance of the model performance 
in the validation dataset was evaluated relative to the benchmarking Halabi model (Halabi et al. 2014) 
using the Bayes factor (BF) (Lavine et al. 1999). Furthermore, in addition to ranking the submitted 
models in descending scoring order, the top-performing model was evaluated whether it 
outperformed the rest of the models just by chance based on the BF. The conventional threshold of 
BF ≥ 3 was used as an indicator of significant difference in the models’ prediction accuracy.
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4. RESULTS 
4.1. Experimental design 
Up to 𝑁𝑁 ≤  100 animals were allocated using the proposed methodology in both the experiments by 
Knuuttila et al. (2014) and Huhtaniemi et al. (submitted). Multidimensional Scaling (MDS) was used 
for diagnostic inspection of the submatching in both of the experiments (Figure 16b for Knuuttila et 
al.; Supplementary Figure S4 in Publication I for Huhtaniemi et al.). After randomized allocation, 
neither of the experiments presented with statistically significant univariate differences in the baseline 
variables over the randomized groups (tested using one-way ANOVA). Furthermore, castration of the 
animals in two batches over subsequent weeks (Knuuttila et al. 2014) was successfully blocked out in 
the experiment by solving two separate matching subtasks (Figure 16). Mahalanobis distance and 
weighted Euclidean distance were chosen for the two experiments, respectively. Mahalanobis 
distance adjusted for the following correlated baseline variables: pre-castration PSA, latest post-
castration PSA, relative change in PSA, and body weight. Weighted Euclidean distance was used 
because expert-curated weighting was requested by the experimenters.  

Interestingly, the dissimilarity matrix computed from global RNA expression in post-sacrifice tumors 
after anti-androgen therapy showed statistically significant correlation with the baseline dissimilarity 
matrix in the VCaP experiment (Knuuttila et al. 2014) (p=0.0389, Mantel's test for matrix correlation; 
Publication I: Supplementary Figure S8c). In addition to the real experiments, the feasibility of 
matching-based allocation was subjected to simulated conditions. A varying number of predictively 
informative or non-informative variables were included in the computation of the distance matrix, 
and the simulated results supported the a priori expectation that the matching approach performs as 
good or better than conventional randomization and showed increased performance as additional 
informative baseline variables were included. (Publication I: Supplementary Figures S9 and S10; 
Supplementary material “Simulation study for predictive baseline covariates” and “Simulation study 
for baseline-adjusted or matched regression models”). 

The bootstrap-based power calculations from Publication I are presented in Figure 17 for both the 
model that utilized matching and for the conventional model. The results were largely concordant 
over both approaches in the ARN-509 vs. vehicle (Figure 17a left panel) and ORX vs. intact tumors 
comparisons (Figure 17b left panel). However, in detecting an MDV3100 vs. vehicle intervention 
effect, the matched approach was considerably more powerful (Figure 17a right panel). The difference 
was notably greater in the ORX+Tx vs. ORX comparison (Figure 17b right panel), in which the original 
growth curves did not originally follow a linear trend (Publication I: Supplementary Figure S6b). When 
pairwise matching-based differences were utilized, these differences approximately followed a linear 
pattern, thus explaining why the inference was so different between the two approaches (Publication 
I: Supplementary Figures S5 and S6). This improved statistical power was due to modeling pairwise 
differences of equidistant observations between baseline-matched individuals (Eq.  8 and Eq.  9). 
Detection of statistically significant differences required slightly fewer than 10 tumors with both 
approaches in treatment arms with a notable effect size (left panels in Figure 17a-b). Identifying more 
subtle differences benefitted from utilizing the matching information (right panels in Figure 17a-b).  
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animals in two batches over subsequent weeks (Knuuttila et al. 2014) was successfully blocked out in 
the experiment by solving two separate matching subtasks (Figure 16). Mahalanobis distance and 
weighted Euclidean distance were chosen for the two experiments, respectively. Mahalanobis 
distance adjusted for the following correlated baseline variables: pre-castration PSA, latest post-
castration PSA, relative change in PSA, and body weight. Weighted Euclidean distance was used 
because expert-curated weighting was requested by the experimenters.  

Interestingly, the dissimilarity matrix computed from global RNA expression in post-sacrifice tumors 
after anti-androgen therapy showed statistically significant correlation with the baseline dissimilarity 
matrix in the VCaP experiment (Knuuttila et al. 2014) (p=0.0389, Mantel's test for matrix correlation; 
Publication I: Supplementary Figure S8c). In addition to the real experiments, the feasibility of 
matching-based allocation was subjected to simulated conditions. A varying number of predictively 
informative or non-informative variables were included in the computation of the distance matrix, 
and the simulated results supported the a priori expectation that the matching approach performs as 
good or better than conventional randomization and showed increased performance as additional 
informative baseline variables were included. (Publication I: Supplementary Figures S9 and S10; 
Supplementary material “Simulation study for predictive baseline covariates” and “Simulation study 
for baseline-adjusted or matched regression models”). 

The bootstrap-based power calculations from Publication I are presented in Figure 17 for both the 
model that utilized matching and for the conventional model. The results were largely concordant 
over both approaches in the ARN-509 vs. vehicle (Figure 17a left panel) and ORX vs. intact tumors 
comparisons (Figure 17b left panel). However, in detecting an MDV3100 vs. vehicle intervention 
effect, the matched approach was considerably more powerful (Figure 17a right panel). The difference 
was notably greater in the ORX+Tx vs. ORX comparison (Figure 17b right panel), in which the original 
growth curves did not originally follow a linear trend (Publication I: Supplementary Figure S6b). When 
pairwise matching-based differences were utilized, these differences approximately followed a linear 
pattern, thus explaining why the inference was so different between the two approaches (Publication 
I: Supplementary Figures S5 and S6). This improved statistical power was due to modeling pairwise 
differences of equidistant observations between baseline-matched individuals (Eq.  8 and Eq.  9). 
Detection of statistically significant differences required slightly fewer than 10 tumors with both 
approaches in treatment arms with a notable effect size (left panels in Figure 17a-b). Identifying more 
subtle differences benefitted from utilizing the matching information (right panels in Figure 17a-b).  
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Figure 16: Baseline matching of five intervention arms for the VCaP experiment using Mahalanobis distance for 
baseline characteristics. (a): Distance matrix together with the matching matrix indicated with highlighting. (b): 
Two-dimensional projection of the identified submatches using multidimensional scaling (MDS). Each submatch 
is indicated with a different color. Within submatches each individual was randomized into a different treatment 
arm. (Adopted with permission from Publication I: Supplementary Figure S3) 
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Figure 17: Bootstrap-based power simulations. (a): ARN-509 / MDV3100 experiment. (b): ORX / ORX + Tx 
experiment. (Adopted with permission from Publication I: Figure 4) 

 

Figure 18: Model-based power simulations for the LNCaP study. The proposed sample sizes were 𝑁𝑁 = 19 for the 
categorizing model (Eq.  12) and 𝑁𝑁 = 25 for the conventional model (Eq.  13). (Adopted with permission from 
Publication II: Supplementary Figure S5) 
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The power analysis in publication II (Figure 18) concluded that the categorizing MEM maintained 
higher statistical power in the dataset in which LNCaP cells were treated with the compound DPN 
(unpublished in-house study). The slope coefficient effect using the conventional power threshold of 
0.8 suggested an optimal number of animals of 𝑁𝑁 = 19 for the categorizing model and 𝑁𝑁 = 25 for 
the conventional, non-categorizing model. Although both suggestions involved a relatively high 
number of animals, the reduction of 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 6 indicates that identifying readily known 
treatment interventions in novel animal model settings could be achieved using a significantly smaller 
number of individuals. The importance of an offset term in such settings remains open because it does 
not test the baseline difference between treatment arms as one might intuitively interpret; the entire 
growth profile of tumors using 𝜃𝜃𝑖𝑖 = 0 affects the estimation of this coefficient and it did not show 
signs of identifying a treatment effect in the LNCaP study (Figure 18). 

4.2. Preclinical findings – Publication I 
Table 1. Mixed-effects model fits for the fixed effects (population inference) and random effects (individual 
effects and the random error term). Model estimates and their significance levels using the conventional 
unmatched and matching-based pairwise models are presented for each intervention comparison separately. 
The model term that explicitly tests for an intervention effect is highlighted in bold. N.S., not significant; * p < 
0.05; ** p < 0.01; *** p < 0.001. (Adopted with permission from Publication I: Table 1) 

Model 
Fixed effects estimate (p-value) Random effects SD 

β intercept β slope β intervention γ intercept γ slope ε error 

ARN-509 
vs Control 

Unmatched 14.311  
(<0.001)* * * 

10.062  
(<0.001) *** 

− 7.627  
(<0.001) *** 8.234 5.163 5.749 

Matched 0 (-) 0 (-) − 7.962 
(0.0047) ** 7.053 8.894 8.399 

MDV3100 
vs Control 

Unmatched 13.536  
(<0.001)* * * 

10.188  
(<0.001) *** 

− 4.940 
(0.0494) * 7.635 6.259 6.395 

Matched 0 (-) 0 (-) − 5.729 
(0.0160) * 7.013 7.401 11.247 

ORX 
vs Intact 

Unmatched 14.548  
(<0.001)* * * 

1.336  
(<0.001) *** 

− 1.265 
(0.0034) ** 14.578 0.997 8.518 

Matched 0 (-) 0 (-) − 1.931 
(0.0063) ** 4.251 2.157 9.522 

ORX+Tx 
vs Intact 

Unmatched 9.998  
(<0.001)* * * 

0.122 
(0.0675) N.S. 

− 0.101 
(0.2704) N.S. 10.476 0.167 9.977 

Matched 0 (-) 0 (-) − 0.112 
(0.0457) * 2.381 0.155 4.618 

 
The results presented in Table 1 were generated to provide biological insight into the intratumoral 
synthesis of androgens in (Knuuttila et al. 2014) and insight into the effect of orchiectomy (ORX) 
coupled with a novel undisclosed treatment (Tx) by Huhtaniemi et al. (submitted). The results for ARN-
509 and MDV3100 (upper half of Table 1) were concordant with the clinical observations of the 
therapeutic effect of these antiandrogens, and both are FDA-approved agents for PCa. The presented 
work in the preclinical stage supported the use of the VCaP cancer cell line as a sensitive platform for 
testing clinically translatable results in the preclinical phase. Furthermore, sacrifice-level PSA and 
supporting markers validated the inference beyond just longitudinal intervention testing presented 
above (Knuuttila et al. 2014).  
 
The results from the experiment by Huhtaniemi et al. (lower half of Table 1) validated the expected 
drastic decrease in PSA due to ORX intervention. An undisclosed supplementing intervention, denoted 
here as Tx, further facilitated the inhibition of tumor growth. The biological motivation behind this 
novel intervention in a preclinical experiment remains to be published (Huhtaniemi et al., submitted). 
It should be noted that the ORX+Tx was particularly difficult for conventional regression modeling and 
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presented highly nonlinear patterns both in the ORX and ORX+TX groups (Publication I: Supplementary 
Figure S6 right side). Utilizing the matched pairwise-difference analysis of the coupled observations, 
the problem could be transformed into the scope of linear MEMs. This effect had also been observed 
in the power analyses presented before (right panel in Figure 17b). This suggests the useful trait that 
the matched MEM approach may in special cases simplify nonlinear inference to linear inference by 
blocking out nonlinear trends. 
 
4.3. Preclinical findings – Publication II 
Table 2. Categorizing mixed-effects model versus the conventional modeling approach. In studies where the 
tumors had no target size before introducing interventions, the intercept (β1) and offset (β2) terms were set to 
zero. (Adopted with permission from Publication I: Table 2) 

Dataset Model 
Fixed effect estimates (p-value) 

β1 intercept β2 offset β3 overall 
growth 

β4 slope 
effect 

DMBA: 
ENL low dose 

Categorizing 0 (-) 0 (-) 3.12 *** -1.25 *** 
Conventional 0 (-) 0 (-) 0.989 *** -0.174 

DMBA: 
ENL high dose 

Categorizing 0 (-) 0 (-) 3.26 *** -1.60 *** 
Conventional 0 (-) 0 (-) 1.02 *** -0.681 

MCF-7: 
LAR low dose 

Categorizing 21.4 *** -2.66 8.71 *** -0.599 
Conventional 21.0 *** -4.18 8.37 *** -1.04 

MCF-7 : 
LAR high dose 

Categorizing 21.4 *** 1.05 8.71 *** -1.72 
Conventional 21.0 *** -0.945 8.37 *** -3.07 * 

LNCaP: 
DPN 

Categorizing 234 *** -22.7 101 *** -48.9 * 
Conventional 233 *** -19.5 52.8 ** -41.0 

LNCaP: 
ENL 

Categorizing 234 *** -8.31 101 *** -81.1 ** 
Conventional 233 *** -5.19 52.7 ** -45.1 

4T1: 
Doxorubicin 

Categorizing 0 (-) 0 (-) 68.4 *** -16.8 * 
Conventional 0 (-) 0 (-) 68.4 *** -16.8 * 

4T1: 
Cyclophosphamide 

Categorizing 0 (-) 0 (-) 68.4 *** -66.5 *** 
Conventional 0 (-) 0 (-) 68.4 *** -66.8 *** 

* p<0.05; ** p<0.01; ***p<0.001; Effect deemed not statistically significant otherwise. 

The retrospective analyses for the three readily published studies (DMBA, MCF-7, and 4T1) 
successfully replicated key parts of the readily published inference (Table 2; Observations are shown 
in full in Publication II: Supplementary Figure S1). The DMBA study reproduced the original conclusions 
of the antitumoral effects of high dietary concentrations of enterolactone (ENL) (Saarinen et al. 2002), 
although the conventional longitudinal model failed to detect a statistically significant difference 
between the control and a high concentration of ENL. This suggests an increased sensitivity for the 
categorizing model. Retrospective analysis of the MCF-7 BCa study (Saarinen et al. 2008) was 
replicated by identifying the antitumoral properties of dietary lariciresinol (LAR). The effect in the 
categorizing model was detected in the post hoc Fisher’s exact test for the identified latent growth 
categories in connection with the intervention arms (Table 3 MCF-7 LAR high dose left-side) together 
with novel insight into ERβ expression in BCa tumors supported by the literature (Hartman et al. 2006) 
(Table 3 MCF-7 LAR high dose right-side). The LNCaP xenograft PCa study was novel and presented no 
retrospective insight, but presented with statistically significant intervention effects for to the well-
known anti-tumoral compounds ENL and DPN. The conventional modeling approach did not identify 
an intervention effect for these known compounds. 

The numbers of tumors in the categories of the intervention arms (Table 3, LNCaP) did not show 
statistically significant differences and provided an estimate of the distribution of the inherent latent 
groups present in the PCa-related experiment. Artificial data simulations were conducted based on 
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The power analysis in publication II (Figure 18) concluded that the categorizing MEM maintained 
higher statistical power in the dataset in which LNCaP cells were treated with the compound DPN 
(unpublished in-house study). The slope coefficient effect using the conventional power threshold of 
0.8 suggested an optimal number of animals of 𝑁𝑁 = 19 for the categorizing model and 𝑁𝑁 = 25 for 
the conventional, non-categorizing model. Although both suggestions involved a relatively high 
number of animals, the reduction of 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 6 indicates that identifying readily known 
treatment interventions in novel animal model settings could be achieved using a significantly smaller 
number of individuals. The importance of an offset term in such settings remains open because it does 
not test the baseline difference between treatment arms as one might intuitively interpret; the entire 
growth profile of tumors using 𝜃𝜃𝑖𝑖 = 0 affects the estimation of this coefficient and it did not show 
signs of identifying a treatment effect in the LNCaP study (Figure 18). 

4.2. Preclinical findings – Publication I 
Table 1. Mixed-effects model fits for the fixed effects (population inference) and random effects (individual 
effects and the random error term). Model estimates and their significance levels using the conventional 
unmatched and matching-based pairwise models are presented for each intervention comparison separately. 
The model term that explicitly tests for an intervention effect is highlighted in bold. N.S., not significant; * p < 
0.05; ** p < 0.01; *** p < 0.001. (Adopted with permission from Publication I: Table 1) 

Model 
Fixed effects estimate (p-value) Random effects SD 

β intercept β slope β intervention γ intercept γ slope ε error 

ARN-509 
vs Control 

Unmatched 14.311  
(<0.001)* * * 

10.062  
(<0.001) *** 

− 7.627  
(<0.001) *** 8.234 5.163 5.749 

Matched 0 (-) 0 (-) − 7.962 
(0.0047) ** 7.053 8.894 8.399 

MDV3100 
vs Control 

Unmatched 13.536  
(<0.001)* * * 

10.188  
(<0.001) *** 

− 4.940 
(0.0494) * 7.635 6.259 6.395 

Matched 0 (-) 0 (-) − 5.729 
(0.0160) * 7.013 7.401 11.247 

ORX 
vs Intact 

Unmatched 14.548  
(<0.001)* * * 

1.336  
(<0.001) *** 

− 1.265 
(0.0034) ** 14.578 0.997 8.518 

Matched 0 (-) 0 (-) − 1.931 
(0.0063) ** 4.251 2.157 9.522 

ORX+Tx 
vs Intact 

Unmatched 9.998  
(<0.001)* * * 

0.122 
(0.0675) N.S. 

− 0.101 
(0.2704) N.S. 10.476 0.167 9.977 

Matched 0 (-) 0 (-) − 0.112 
(0.0457) * 2.381 0.155 4.618 

 
The results presented in Table 1 were generated to provide biological insight into the intratumoral 
synthesis of androgens in (Knuuttila et al. 2014) and insight into the effect of orchiectomy (ORX) 
coupled with a novel undisclosed treatment (Tx) by Huhtaniemi et al. (submitted). The results for ARN-
509 and MDV3100 (upper half of Table 1) were concordant with the clinical observations of the 
therapeutic effect of these antiandrogens, and both are FDA-approved agents for PCa. The presented 
work in the preclinical stage supported the use of the VCaP cancer cell line as a sensitive platform for 
testing clinically translatable results in the preclinical phase. Furthermore, sacrifice-level PSA and 
supporting markers validated the inference beyond just longitudinal intervention testing presented 
above (Knuuttila et al. 2014).  
 
The results from the experiment by Huhtaniemi et al. (lower half of Table 1) validated the expected 
drastic decrease in PSA due to ORX intervention. An undisclosed supplementing intervention, denoted 
here as Tx, further facilitated the inhibition of tumor growth. The biological motivation behind this 
novel intervention in a preclinical experiment remains to be published (Huhtaniemi et al., submitted). 
It should be noted that the ORX+Tx was particularly difficult for conventional regression modeling and 
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presented highly nonlinear patterns both in the ORX and ORX+TX groups (Publication I: Supplementary 
Figure S6 right side). Utilizing the matched pairwise-difference analysis of the coupled observations, 
the problem could be transformed into the scope of linear MEMs. This effect had also been observed 
in the power analyses presented before (right panel in Figure 17b). This suggests the useful trait that 
the matched MEM approach may in special cases simplify nonlinear inference to linear inference by 
blocking out nonlinear trends. 
 
4.3. Preclinical findings – Publication II 
Table 2. Categorizing mixed-effects model versus the conventional modeling approach. In studies where the 
tumors had no target size before introducing interventions, the intercept (β1) and offset (β2) terms were set to 
zero. (Adopted with permission from Publication I: Table 2) 

Dataset Model 
Fixed effect estimates (p-value) 

β1 intercept β2 offset β3 overall 
growth 

β4 slope 
effect 

DMBA: 
ENL low dose 

Categorizing 0 (-) 0 (-) 3.12 *** -1.25 *** 
Conventional 0 (-) 0 (-) 0.989 *** -0.174 

DMBA: 
ENL high dose 

Categorizing 0 (-) 0 (-) 3.26 *** -1.60 *** 
Conventional 0 (-) 0 (-) 1.02 *** -0.681 

MCF-7: 
LAR low dose 

Categorizing 21.4 *** -2.66 8.71 *** -0.599 
Conventional 21.0 *** -4.18 8.37 *** -1.04 

MCF-7 : 
LAR high dose 

Categorizing 21.4 *** 1.05 8.71 *** -1.72 
Conventional 21.0 *** -0.945 8.37 *** -3.07 * 

LNCaP: 
DPN 

Categorizing 234 *** -22.7 101 *** -48.9 * 
Conventional 233 *** -19.5 52.8 ** -41.0 

LNCaP: 
ENL 

Categorizing 234 *** -8.31 101 *** -81.1 ** 
Conventional 233 *** -5.19 52.7 ** -45.1 

4T1: 
Doxorubicin 

Categorizing 0 (-) 0 (-) 68.4 *** -16.8 * 
Conventional 0 (-) 0 (-) 68.4 *** -16.8 * 

4T1: 
Cyclophosphamide 

Categorizing 0 (-) 0 (-) 68.4 *** -66.5 *** 
Conventional 0 (-) 0 (-) 68.4 *** -66.8 *** 

* p<0.05; ** p<0.01; ***p<0.001; Effect deemed not statistically significant otherwise. 

The retrospective analyses for the three readily published studies (DMBA, MCF-7, and 4T1) 
successfully replicated key parts of the readily published inference (Table 2; Observations are shown 
in full in Publication II: Supplementary Figure S1). The DMBA study reproduced the original conclusions 
of the antitumoral effects of high dietary concentrations of enterolactone (ENL) (Saarinen et al. 2002), 
although the conventional longitudinal model failed to detect a statistically significant difference 
between the control and a high concentration of ENL. This suggests an increased sensitivity for the 
categorizing model. Retrospective analysis of the MCF-7 BCa study (Saarinen et al. 2008) was 
replicated by identifying the antitumoral properties of dietary lariciresinol (LAR). The effect in the 
categorizing model was detected in the post hoc Fisher’s exact test for the identified latent growth 
categories in connection with the intervention arms (Table 3 MCF-7 LAR high dose left-side) together 
with novel insight into ERβ expression in BCa tumors supported by the literature (Hartman et al. 2006) 
(Table 3 MCF-7 LAR high dose right-side). The LNCaP xenograft PCa study was novel and presented no 
retrospective insight, but presented with statistically significant intervention effects for to the well-
known anti-tumoral compounds ENL and DPN. The conventional modeling approach did not identify 
an intervention effect for these known compounds. 

The numbers of tumors in the categories of the intervention arms (Table 3, LNCaP) did not show 
statistically significant differences and provided an estimate of the distribution of the inherent latent 
groups present in the PCa-related experiment. Artificial data simulations were conducted based on 
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the obtained data, and we concluded that the categorizing model did not result in an elevation of type 
I error (falsely rejecting null hypothesis; Publication II: Supplementary Figure S8). In the syngeneic 4T1 
mouse BCa cell line study, the treatment profiles for doxorubicin and cyclophosphamide were clearly 
distinct from the control group. In this case, the EM-algorithm classified all 𝜃𝜃𝑖𝑖 = 1, which results in 
the categorizing model presented in Eq.  12 converging to the special case of the non-categorizing 
conventional model presented in Eq.  13. Therefore, both models resulted in identical conclusions. 

Table 3: Post hoc testing of the latent subgroups and relevant markers. The 4T1 study was redundant and was 
omitted. Study specific tumor characteristics: DMBA: Histologic subtyping; MCF-7: ERβ-receptor expression; 
LNCaP: PSA concentration at the end of study. (Adopted with permission from Publication II: Table 3) 

Tumor categories vs. intervention arms 
(% shown within latent category) 

 Tumor characteristics 
(study specific) 

DMBA  Control Treatment p  Poorly 
differentiated 

Well-
differentiated 

Atrophic p 

ENL low dose      
𝜃𝜃 =  1 4 (44%) 5 (56%)   4 (67%) 2 (33%) 0 (0%)  
𝜃𝜃 =  0 9 (53%) 8 (47%) 1.000  2 (17%) 7 (58%) 3 (25%) 0.156 

ENL high dose      
𝜃𝜃 =  1 4 (67%) 2 (33%)   3 (60%) 1 (20%) 1 (20%)  
𝜃𝜃 =  0 9 (45%) 11 (55%) 0.645  2 (13%) 10 (67%) 3 (20%) 0.069 

MCF-7      
LAR low dose  ERβ expression per 1,000 cells1  

𝜃𝜃 =  1 14 (48%) 15 (52%)   248.1 ± 238.7  
𝜃𝜃 =  0 1 (17%) 5 (83%) 0.207  82.0 ± 56.6 0.115 

LAR high dose      
𝜃𝜃 =  1 14 (56%) 11 (44%)   213.0 ± 127.0  
𝜃𝜃 =  0 1 (10%) 9 (90%) 0.022  329.7 ± 32.7 0.008 

LNCaP      
DPN     PSA concentration at sacrifice (μg/L)1  

𝜃𝜃 =  1 6 (67%) 3 (33%)   97.3 ± 48.3  
𝜃𝜃 =  0 6 (46%) 7 (54%) 0.415  29.3 ± 17.7 0.005 

ENL         
𝜃𝜃 =  1 6 (60%) 4 (40%)   99.1 ± 45.5  
𝜃𝜃 =  0 6 (60%) 4 (40%) 1.000  29.1 ± 15.4 0.001 

1: Values shown as mean ± SD; underlining indicates statistically significant difference p<0.05; 𝜃𝜃 =  1 depict 
tumors categorized as growing, 𝜃𝜃 =  0 as poorly growing. 

Although not a statistically significant finding (Fisher’s exact test, p = 0.069), we observed a trend 
known from biological literature that well-differentiated DMBA-induced tumors were overexpressed 
in the poorly growing (𝜃𝜃 =  0) latent subgroup. Inversely, slight overrepresentation of poorly 
differentiated tumors in the growing latent subgroup (𝜃𝜃 =  1) was expected (Table 3; ENL high dose, 
right side). It has been proposed that estrogen receptor β (ERβ) plays a major role in the growth of 
BCa xenografts especially in the development of blood vessels (Hartman et al. 2006). Accordingly, we 
validated this effect of ERβ elevation in growing tumors in the MCF-7 study over the latent growth 
groups regardless of the intervention arms (Table 3; LAR high dose, right side). Lastly, sacrifice PSA 
was highly correlated in PCa for the identified latent growth groups both in the DPN and ENL 
interventions for the LNCap study regardless of the intervention arms (Table 3; LNCaP right side). 
Therefore, the identified latent tumor growth characteristics were extensively supported by these 
external factors in the post hoc testing.  
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4.4. Clinical findings – Publication III 
Using the raw data and its log2-transformed formulation (Figure 13), the optimal model formulation 
with the penalized splines heavily favored linear and/or slightly nonlinear trends based on the CV 
(large values of 𝜆𝜆 penalization). The utility of these linear models is simplified compared with nonlinear 
models. The initial research aim in Publication III was to study the reliability of measurements in the 
t-PSA range (x ≥ 0.1 ng/mL) versus the u-PSA range (0.1 ng/mL >  𝑥𝑥 ≥ 0.001 ng/mL), where u-PSA 
had been suspected to be unreliable. However, in our study, the u-PSA modeled using splines 
displayed consistent trends over the threshold, suggesting utility for u-PSA (Figure 19). 

 

Figure 19: Data and spline modeling in the PSA study. (Left panel): Patients with BCR. (Right panel): Patients 
without BCR. (a): Log2 scale longitudinal trends with each curve representing a patient. (b): Optimal spline fits 
for the log2 transformed data. (c): First order derivatives for the splines. (Adopted with permission from 
Publication III: Figure 2) 
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the obtained data, and we concluded that the categorizing model did not result in an elevation of type 
I error (falsely rejecting null hypothesis; Publication II: Supplementary Figure S8). In the syngeneic 4T1 
mouse BCa cell line study, the treatment profiles for doxorubicin and cyclophosphamide were clearly 
distinct from the control group. In this case, the EM-algorithm classified all 𝜃𝜃𝑖𝑖 = 1, which results in 
the categorizing model presented in Eq.  12 converging to the special case of the non-categorizing 
conventional model presented in Eq.  13. Therefore, both models resulted in identical conclusions. 

Table 3: Post hoc testing of the latent subgroups and relevant markers. The 4T1 study was redundant and was 
omitted. Study specific tumor characteristics: DMBA: Histologic subtyping; MCF-7: ERβ-receptor expression; 
LNCaP: PSA concentration at the end of study. (Adopted with permission from Publication II: Table 3) 

Tumor categories vs. intervention arms 
(% shown within latent category) 

 Tumor characteristics 
(study specific) 

DMBA  Control Treatment p  Poorly 
differentiated 

Well-
differentiated 

Atrophic p 

ENL low dose      
𝜃𝜃 =  1 4 (44%) 5 (56%)   4 (67%) 2 (33%) 0 (0%)  
𝜃𝜃 =  0 9 (53%) 8 (47%) 1.000  2 (17%) 7 (58%) 3 (25%) 0.156 

ENL high dose      
𝜃𝜃 =  1 4 (67%) 2 (33%)   3 (60%) 1 (20%) 1 (20%)  
𝜃𝜃 =  0 9 (45%) 11 (55%) 0.645  2 (13%) 10 (67%) 3 (20%) 0.069 

MCF-7      
LAR low dose  ERβ expression per 1,000 cells1  

𝜃𝜃 =  1 14 (48%) 15 (52%)   248.1 ± 238.7  
𝜃𝜃 =  0 1 (17%) 5 (83%) 0.207  82.0 ± 56.6 0.115 

LAR high dose      
𝜃𝜃 =  1 14 (56%) 11 (44%)   213.0 ± 127.0  
𝜃𝜃 =  0 1 (10%) 9 (90%) 0.022  329.7 ± 32.7 0.008 

LNCaP      
DPN     PSA concentration at sacrifice (μg/L)1  

𝜃𝜃 =  1 6 (67%) 3 (33%)   97.3 ± 48.3  
𝜃𝜃 =  0 6 (46%) 7 (54%) 0.415  29.3 ± 17.7 0.005 

ENL         
𝜃𝜃 =  1 6 (60%) 4 (40%)   99.1 ± 45.5  
𝜃𝜃 =  0 6 (60%) 4 (40%) 1.000  29.1 ± 15.4 0.001 

1: Values shown as mean ± SD; underlining indicates statistically significant difference p<0.05; 𝜃𝜃 =  1 depict 
tumors categorized as growing, 𝜃𝜃 =  0 as poorly growing. 

Although not a statistically significant finding (Fisher’s exact test, p = 0.069), we observed a trend 
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in the poorly growing (𝜃𝜃 =  0) latent subgroup. Inversely, slight overrepresentation of poorly 
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Therefore, the identified latent tumor growth characteristics were extensively supported by these 
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4.4. Clinical findings – Publication III 
Using the raw data and its log2-transformed formulation (Figure 13), the optimal model formulation 
with the penalized splines heavily favored linear and/or slightly nonlinear trends based on the CV 
(large values of 𝜆𝜆 penalization). The utility of these linear models is simplified compared with nonlinear 
models. The initial research aim in Publication III was to study the reliability of measurements in the 
t-PSA range (x ≥ 0.1 ng/mL) versus the u-PSA range (0.1 ng/mL >  𝑥𝑥 ≥ 0.001 ng/mL), where u-PSA 
had been suspected to be unreliable. However, in our study, the u-PSA modeled using splines 
displayed consistent trends over the threshold, suggesting utility for u-PSA (Figure 19). 

 

Figure 19: Data and spline modeling in the PSA study. (Left panel): Patients with BCR. (Right panel): Patients 
without BCR. (a): Log2 scale longitudinal trends with each curve representing a patient. (b): Optimal spline fits 
for the log2 transformed data. (c): First order derivatives for the splines. (Adopted with permission from 
Publication III: Figure 2) 
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To determine whether the threshold between traditional and ultrasensitive PSA was functioning as a 
trend-setting threshold, both the spline model fits and their first order derivatives were visually 
inspected (Figure 19b-c). Annotating these ranges did not present systematic differences, except that 
patients who eventually experienced BCR had a larger portion of t-PSA measurements. Because BCR 
is detected via certain PSA thresholds, the models identified clear differences in their first-order 
derivatives (Figure 19c). For example, PSA doubling occurring more often than once per 2 years 
appeared as an indicator for heightened risk of BCR. Because the majority of u-PSA measurements 
were present mostly in patients who never had BCR and primarily presented with horizontal 
derivatives (Figure 19c; i.e., linear growth patterns), it appeared that these consistent PSA patterns 
could be connected further to BCR prediction.  

Based on the results indicating that linear models could provide sufficient modeling capacity to 
capture major trends in the log2-transformed PSA measurements, generalized linear mixed-effects 
models were utilized with a logistic link function. To compensate for potential time-dependent effects 
in detecting BCR while retaining clinical relevance in the prediction window and interpretable 
coefficients, the generalized MEMs were trained limiting the observations to either to a 1-year or 3-
year post-surgery window. These fitted models for these respective time windows are presented in 
Figure 20a-b. For single individuals arriving at the clinic, similar estimates could be generated with 
simple regression in Eq.  29 (e.g., Publication III: Supplementary Table S2). This approach made use of 
the underlying assumption that the expected value of random effects (𝛾𝛾) is zero, which is true if the 
zero mean normally distributed random effects assumption holds. Based on a logistic fit for the 1-year 
and 3-year windows (Figure 20c-d), a risk prediction surface between non-BCR and BCR was built as 
defined in Eq.  27.  

To examine potential residual term heteroscedasticity that may appear due to differences in the 
traditional and ultrasensitive assays, a representative residual plot was drawn from the 1-year 
constrained MEM (Figure 20e). Two particular outliers stand out - one from the u-PSA range and the 
other from t-PSA range. Although residuals maintain the zero mean over the whole range of fitted 
values, there is a non-alarming decrease in residual variance toward the higher fitted values, 
suggesting a slight heteroscedasticity. This challenge in modeling is further elaborated by the jagged-
like effect in the lower-left end of the residual plot (Figure 20e), where the low-censored ultrasensitive 
PSA measurements produced a slight artifact.  

The held-out external validation set (1/3 of the original data; Publication III: Table 1) was tested using 
ROC-AUC by a researcher blinded to the original conclusions. Surprisingly, the validation dataset 
presented a very high ROC-AUC for the 3-year post-surgery window (Figure 20f, green) window and 
excellent ROC-AUC even when utilizing only 1-year post-surgery measurements (Figure 20f, orange). 
For interpreting these ROC-AUC results in a broader scope, one must remember that the BCR event 
itself is defined using PSA thresholds. Therefore, it is expected that early PSA trends have potential in 
predicting the BCR event. However, the very high ROC-AUC in a held-out validation set already at the 
1-year window suggests that the data consisting predominantly of only u-PSA measurements presents 
an early prognostic signal. Given that 1-year of follow-up is a feasible time frame for practical clinical 
use in follow-up, the modeling results suggest that informative and useful signals from u-PSA can be 
extracted. 

RESULTS 

52 
  

 

 

Figure 20: Generalized logistic regression for the 1-year and 3-year post-operative window, model diagnostics, 
and model validation. (a,b): Estimated patient-wise MEM parameters in post-operative 1-year and 3-year 
windows, respectively. (c,d): Logistic regression prediction surfaces corresponding 1-year and 3-year post-
operative PSA measurements, respectively. (e): Representative residual plot of the 1-year generalized MEM fit. 
(f) ROC-AUC prediction accuracy based on the data set aside to serve as independent validation. (Adopted with 
permission from Publication III: Figure 3) 

To test PSA trend specificity in the BCR prediction, we further subjected the individualized PSA nadir 
and PSADT characteristics to LASSO modeling (Eq.  32), complemented by all the available clinical 
parameters. In the regularization curve, PSADT was clearly the best predictor, closely followed by the 
PSA nadir. CV suggested the use of only these two parameters in BCR prediction (Publication III: 
Supplementary Figure S2).  
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To test PSA trend specificity in the BCR prediction, we further subjected the individualized PSA nadir 
and PSADT characteristics to LASSO modeling (Eq.  32), complemented by all the available clinical 
parameters. In the regularization curve, PSADT was clearly the best predictor, closely followed by the 
PSA nadir. CV suggested the use of only these two parameters in BCR prediction (Publication III: 
Supplementary Figure S2).  
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4.5. Clinical findings – Publication IV 

 

Figure 21: ePCR method performancein comparison to the Halabi benchmark. iAUC is the proportional area 
under the curves. (a): ENTHUSE 33 cohort utilized for leaderboards and validation. (b): ENTHUSE M1 cohort 
utilized only once for independent validation. (Adopted with permission from Publication IV: Figures 2 and 5) 

Figure 21 displays the difference of the developed ePCR methodology with iAUC in comparison with 
the Halabi model benchmark. The novel ePCR methodology outperformed the state-of-the-art 
method for mCRPC OS prediction by a significant margin (BF > 20) and was consistently better both in 
the independent 4th (Figure 21a) and 5th validation cohorts (Figure 21b) at each time point. The 
submitted 2nd, 3rd, and 4th best performing models had the following iAUCs in the ENTHUSE 33 
dataset: 0.7789, 0.7778, and 0.7758. The final submitted iAUC of the ePCR during the Challenge was 
0.7915. In comparison with the 2nd best performing team, ePCR had an advantage of BF > 5. 

Interestingly, when the ePCR ensemble model’s most important predictors were projected to a two-
dimensional graph using the data-driven, agnostic graphopt algorithm (Figure 22), the resulting graph 
presented clinically relevant subgroupings that were expert-curated for the purposes of publication 
IV. The most prominent singular markers were largely enzymes related to antitumor activity, such as 
aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). 
Interestingly, PSA was not a top contributor, although it remained a significant single contributor, 
hinting that survival or tumor burden in the mCRPC form of the disease is perhaps no longer well 
represented by this surrogate marker. Furthermore, blood-related markers and general clinically 
relevant factors were among the top hits, although they may have been partially present as general 
predictors for survival and not necessarily specific for mCRPC. The former markers included 
hematocrit (HCT), hemoglobin (HB), red blood cell count (RBC), and albumin (ALB). The latter included 
the previous use of opioid analgesics, which was one of the central nodes and is possibly linked to the 
presence of various comorbidities. Furthermore, other general survival-related markers were present, 
such as the ECOG performance status (Oken et al. 1982), which is an ordinal-scale subjective 
evaluation of the patient’s functionality at the workplace or with self-care. 
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Figure 22: A data-driven graph of clinical predictors contributing most to the final top-performing ePCR model. 
When single predictors and their interactions were included, the two-dimensional agnostic projection algorithm 
grouped the predictors into physiologically and clinically relevant subsets that were expert-curated as follows: 
(red): Blood-related markers; (light blue): Kidney function related markers; (dark green): Electrolytes; (purple): 
Immunosystem function; (dark blue): Proteins/enzymes and lesion sites; (light green): General clinical 
parameters. (Adopted with permission from Publication IV: Figure 3) 

It should be noted that the ensemble members in the proposed ePCR closely resembled RR, although 
they were still technically EN (Figure 14b). Because 𝛼𝛼 was relatively close to zero, the RR-like behavior 
allowed multiple correlated coefficients to be included in the final model while dispersing the effect 
of the whole phenomenon among those coefficients. This result partly explains why multiple variables 
depicting the same biological phenomenon (e.g., kidney creatinine function in its various forms in 
upper-right section of Figure 22) remained in the model after embedded feature selection. While the 
CV procedure also tested LASSO, the objective criterion suggested the combined use of these 
correlated variables in EN instead of the LASSO-like behavior of picking the best among multiple 
correlated variables, which was the approach used in the Halabi model (Figure 14a). A tendency 
toward favoring RR could occur due to less technical variation contributing to the model after 
combining multiple independent technical measurements of the same biological phenomenon. 
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Alternatively, it is possible that the introduction of pairwise variable interactions captured some small 
but significant nuances in the mCRPC OS prediction. The network-level presentation, which is essential 
for visualizing such a complex Cox regression ensemble, may prove to be challenging to interpret for 
practicing clinicians (Davis 2017) even if improves the prediction accuracy. However, the presentation 
and model fitting procedures were conducted in a data-driven manner, and for this purpose, RR-like 
ensemble modeling with pairwise interactions appeared optimal. 

Table 4 reports the top 5 single predictors in the ePCR model (panel a), the top 5 pairwise predictors 
in the ePCR model (panel b), and the top 5 predictors from the meta-analysis based on a survey of the 
50 participating teams (panel c). The clinical novelty of AST was reported in Publication IV; AST was 
one of the top contributors to ePCR and was important for over half of the other models submitted to 
the challenge (Publication IV: Supplementary Figure S7). Furthermore, because the Halabi model did 
not consider marker interactions, the prominent presence of such interactions in the ePCR method 
suggested that successful models for OS prediction are not only based on single molecules or clinical 
attributes, but may instead involve their complex combinations.  

Table 4: Top 5 reported single ePCR, pairwise ePCR, and meta-review predictors over all models submitted to 
the DREAM 9.5 mCRPC Challenge. (Adopted with permission from Publication IV: Supplementary Table S7 and 
Supplementary Figure S3) 

a Top 5 single predictors in ePCR 
Single predictor LDH AST HB HCT ALB 
Novelty vs. Halabi  ✔  ✔  
  
b Top 5 pairwise predictors in ePCR 
Pairwise predictors AST & LDH ALP & LDH ALP & AST HB & SBP1 LDH & USG2 
Novelty vs. Halabi ✔  ✔ ✔ ✔ 
  
c Top 5 predictors reported as important over all submitted models 
Meta-review predictors 
(% reported as important) 

ALP3 
(70%) 

HB 
(60%) 

ECOG 
(60%) 

AST 
(50%) 

LDH 
(45%) 

Novelty vs. Halabi    ✔  
      

1: Systolic blood pressure. 2: Urine-specific gravity. 3: ALP was #6 as a single predictor for ePCR. 

4.6. Method implementation and user-interfaces 
Over the course of work leading to publications I - IV, a substantial amount of open source R code was 
created for the R Statistical Software (R Development Core Team, 2015). However, given the highly 
multidisciplinary nature of the work, it was important that the methods were also made easily 
accessible as well as the key results and the corresponding code reproducible and transparent. A 
considerable effort was therefore put into facilitating the use of the methods also by non-specialized 
experimenters, who may face limited or no access to suitable bioinformatics services. 

An R package called hamlet (Hierarchical Optimal Matching and Machine Learning Toolbox; URL: 
https://CRAN.R-project.org/package=hamlet ; Accessed: 4th October 2017) was created for 
publication I and the pre- and post-intervention VCaP data is embedded into the package to exemplify 
both the pre-intervention design approach as well as the post-intervention analysis of preclinical 
experiments (Knuuttila et al. 2014). The results from the data, as well as the pre-intervention 
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allocation, are reproducible in a supporting R vignette document. hamlet is located on CRAN 
(Comprehensive R Archive Network), which offers automated sanity checks on R-packages, manually 
curated support, download services, and readily hosts thousands of specialized R packages. A 
graphical user-interface was implemented for hamlet, where all key functionality of the R-package 
was made available for preclinical researchers in a web browser using the R Shiny platform 
(https://Rvivo.tcdm.fi ; Accessed 20th February 2018).  

The methodology in Publication II was released as an R-package called XenoCat. However, after the 
Google Code repository services were taken down on 24th of August 2015, the package has been re-
directed and its content supplemented into future extensions of the hamlet package (original Google 
Code URL: https://code.google.com/archive/p/r-xenocat/). Similar to hamlet in publication I, 
exemplifying data from Publication II was embedded into its R package XenoCat to illustrate its use. 
The package gathered interest at its release and subsequently users forked the original code and 
continued using and further developing the open-source R-package independently (e.g., fork by A. 
Borgman, URL: https://github.com/borgmaan/xeno-fix/ ; Accessed: 11th February 2016).  

Both of the clinically focused publications III and IV aimed at providing practical R implementations as 
well as easy-to-use web-based user interfaces. The PSA modeling procedure was released as a web-
application using the R Shiny platform (https://compbiomed.shinyapps.io/u-pa/), with a focus on the 
novelty aspect of predicting BCR using u-PSA. The anonymized PSA measurements are fully disclosed 
as an example dataset, but the user may also easily upload their own Excel, tab-delimited or similar 
format data to produce a template-based PDF report of predicted PSA-based trends.  

Similarly, the R-code produced during the DREAM challenge resulting in publication IV has been made 
available on the Sage Bionetworks’ website (https://www.synapse.org/ProstateCancerChallenge). 
This code requires the user to adhere to the data sharing policies of the PDS and Sage Bionetworks / 
Synapse before it can be downloaded. As per the DREAM rules, this code resulting in a top-performing 
model was manually inspected and re-run successfully by the DREAM Challenge organizers. Since its 
initial release, the ePCR methodology has been further developed and applied to new datasets. The R 
package of the method is available on CRAN (https://CRAN.R-project.org/package=ePCR ; Accessed 
21st December 2017) and its manuscript has recently been accepted for publication (Laajala et al. 
2018). 
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5. DISCUSSION 
5.1. Preclinical considerations 
The improved preclinical experimental design procedure developed in this thesis addresses the desire 
to implement clinical design practices in preclinical studies (Muhlhausler et al. 2013). This approach 
resulted in the stochastic allocation procedure that allows masked balancing and the use of multiple 
baseline covariates or strata. The developed matched methodology increased statistical power (Figure 
17), and the simulation-based testing of the benefits of matching-based design showed that 
incorporating baseline information is highly useful (Publication I: Supplementary Figures S9 and S10). 
The advantages of patient matching are largely known and acknowledged in clinical trial experimental 
design (Greevy et al. 2004), but obtaining empirical preclinical evidence supporting the use of the 
developed methodology in this specific application would require repeated experiments comparing 
conventional methods with a matching-based approach, which we consider unethical because the 
matching-based approach is likely to lead to better treatment effect estimation with fewer animals. 
Overall, the proposed modeling approaches and the resulting experimental designs were tested by 
simulating and investigating potential pitfalls in these choices, and the methodologies were 
consistently as good as better than their conventional counterparts.  

One shortcoming in the preclinical studies and methodology presented in publications I and II is that 
informative censoring was not systematically explored. Although it was acknowledged and 
incorporated into the underlying decision making, extended simulation studies coupled with true in 
vivo studies (e.g., by introducing artificial missingness) could provide further information regarding 
the potential pitfalls and relative strengths and weaknesses of each approach. Regression-based 
modeling that is based on growth coefficients should be robust in this aspect, but the upper-censoring 
due to moribund animals varied significantly over the experiments, and some of the experiments 
presented with a high quantity of lower-censoring of tumor burden or surrogate values lower than 
the detection limit. Research has been conducted through the simulation of the effects of lower-
censoring due to challenges in measuring small tumors (Pierrillas et al. 2016a) and upper-censoring 
due to sacrifice or large tumors that may be necrotic (Pierrillas et al. 2016b). However, this challenging 
aspect remains an interesting venue for further research.  

We propose a higher 𝑁𝑁 in Publication II than what is conventionally used in many preclinical 
experiments. Although this suggestion may seem to directly contradict the 3Rs principle, we 
considered sufficient statistical power to be more important than minimal 𝑁𝑁 because the latter may 
lead to a lack of generalization based on underpowered studies and thus the waste of animal lives. 
There are multiple reasons why one may consider it unethical to conduct underpowered intervention 
studies. The importance of sufficient statistical power was emphasized both in I and II and has also 
been discussed widely by preclinical experimenters who worry about underpowered studies that 
attempt to lower expenses while failing to deliver robust results. After performing the explorative 
power analysis in II, the experiments presented in I were conducted at a later date with a relatively 
high 𝑁𝑁. Subsequent to our original 𝑁𝑁 counts suggested in II, multiple preclinical experts have 
highlighted the importance of power analyses and experiments conducted with sufficient statistical 
power (Couzin-Frankel 2013; Day et al. 2015; Macleod et al. 2015).  
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The presence of latent growth subgroups has been largely reported in an ad hoc manner in preclinical 
cancer studies (Enmon et al. 2003; Bedogni et al. 2006; Gutman et al. 1999; Saarinen et al. 2006; 
Saarinen et al. 2002; Galaup et al. 2003; Ribonson et al. 1987), whereas the proposed EM algorithm 
modeling identifies the subgroups without subjective decision making. The underlying assumption of 
these latent subgroups may appear strong, but the binary growth categories could be connected to 
either verifying findings such as PSA, tumor differentiation characteristics, or novel insight into 
estrogen receptor expression (Table 3). Furthermore, these verifying findings were identified 
regardless of the intervention arms, suggesting that the latent growth groups were inherently present 
in the experiments and were not caused by interventions. In summary, the underlying MEM 
assumptions in publications I and II were inspired by the literature in the field, and the models 
performed well both under real and simulated settings. Given the emerging trends of increasingly 
diverse features at baseline (i.e. varying genetic traits) in PDX and GEM preclinical models, the 
developed framework has potential to generalize also to future applications. As a practical example, 
distance metrics are widely used in ‘omics analysis for clustering. In a similar manner, various other 
established clinical applications can therefore be back-propagated to refine the currently presented 
preclinical methodology, if such complex approaches become conventions also in preclinical research. 

5.2. Clinical considerations 
In the PSA study (III), we used an external validation dataset that was set aside prior to any modeling, 
and an independent researcher conducted the validation. Despite this approach, the ROC-AUCs were 
surprisingly high (Figure 20f; >0.9 ROC-AUC in 3-year time window, >0.8 ROC-AUC in 1-year time 
window). One might argue that these estimates are overly optimistic, but it should also be noted that 
a high ROC-AUC is to be expected from u-PSA predictions of BCR. This high ROC-AUC occurs because 
BCR is defined according to a clinically adopted threshold or subsequent rising PSA values (Cornford 
2017), and thus the predictors are connected to the primary outcome by definition. However, because 
the majority of PSA measurements were in the u-PSA range (Table 1 in III) and the definition of BCR is 
relatively high in the t-PSA range, the study suggests that u-PSA has potential for accurate predictions 
for PCa-related events after RP. Future BCR modeling would benefit from extending studies to multiple 
hospitals and from a systematic comparison of u-PSA related signals with the experiment setting 
specifically designed to address potential differences between u-PSA and t-PSA.  The results here 
suggest that u-PSA already holds prognostic value in early clinical time points, but these results are 
not conclusive. Further studies, possibly incorporating other end-points beyond BCR, are warranted. 
In meta-reviews of PSA kinetics, the most commonly used end-points in PCa relapse have been 
determined using biopsies rather than PSA alone (Vickers et al. 2009). Thus, providing an independent 
relapse indicator that is not directly tied to PSA would increase the validity of the inference presented 
in publication III.  

The accurate detection of the PSA nadir is important because the reliable estimation of nadir timing 
helps follow PSA kinetics for predicting PCa recurrence (Zhao et al. 2011). There is no general well-
defined consensus regarding the definition of PSA nadir, and for the purposes of publication III, PSA 
nadir was defined as the point of lowest measured PSA within a 3-month period after RP. Some 
statistically sophisticated methods, such as the Bayesian turn-point regression, place emphasis on the 
accurate determination of the PSA nadir and the subsequent doubling time post-nadir (Zhao et al. 
2011). Furthermore, it has been proposed that PSA kinetics such as time-to-nadir from ADT to the 
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nadir may provide an interesting predictor for disease relapse (Skove et al. 2017). Therefore, further 
research into the role and modeling of the PSA nadir still presents an important opportunity. 

The aspects of missing data and censored information were only briefly presented here for the clinical 
studies in III and IV. This aspect has such a drastic impact on downstream conclusions that it would 
warrant its own extensive research effort. In each step, however, the considerations of structured 
versus non-structured and random versus non-random missing observations or information were 
embedded into the modeling choices, and effort was made to utilize the best possible practices. 
Mixed-effects models present robust properties that are resilient against non-balanced settings in the 
random effects (i.e., some individuals missing more observations than others), and they do not force 
the user to perform a subjective imputation methodology. Especially in the applications of modeling 
time-dependent in publications I – III, the statistical inference is less sensitive to accumulating missing 
information in the latter time points because growth slopes are utilized instead of single time points. 
The low levels of PSA that exist, especially at the nadir, present censored information such that the 
true measurable quantity is below the detection limit even of ultrasensitive the assay. This was the 
case for PSA for some observations in publication III, although this issue was alleviated by the use of 
an ultrasensitive assay in this application. Linear models were proposed as a suitable model family 
candidate according to the explored parameter space with CV (Figure 13c). Although a slight jagged 
effect in the final MEM residuals could be observed due to this lower threshold (Figure 20e), this 
informative censoring was deemed to be a negligible trend due to the proposed models’ ability to 
generalize well to the set-aside validation data (Figure 20f).  

Due to the competitive nature of the DREAM Challenges, it is difficult to evaluate the effect of 
modeling choices occurring due to the competitive context and not due to the more interesting 
biomedical research question alone. The time span of a challenge typically consists of roughly half a 
year, which is divided into milestones. Thus, each challenge poses severe limitations to the possibility 
of entirely novel method development, but also effectively discourages exhaustive testing or 
overfitting the models. In practice, the leading participants will typically be scored and ranked 
according to a single ranking metric, and this obviously may lead to techniques that fine-tune the 
scoring metric to gain even a slight advantage over competitors. Although this situation may not have 
been the case for the ePCR methodology, which outperformed its competitors by a statistically highly 
significant margin, the context under which the methodology was developed may have affected the 
choices for the method itself. DREAM Challenges or similar crowd-sourced challenges may be prone 
to produce models optimized for the specific setup of the challenge. This may lead to overfitting to 
e.g., the special traits of the studies, the presentation of the data, or scoring metric, rather than the 
primary objectives of the research question per se. For example, the final resulting ePCR ensemble 
consisted of penalized/regularized Cox models in which the L1/L2-norm parameter α was heavily 
favoring RR-like EN (α close to 0). To be able to precisely produce the same exact prediction as the 
original model, all the original available variables for the coefficients should be available, even if the 
contribution of a majority of predictors is arbitrarily close to zero. Therefore, optimal prediction from 
a computational perspective may be suboptimal for clinical use because the number of measured 
assays (i.e., predictors) factors heavily into the applicability of the method. 

As an analogy, one could consider how principal component analysis is widely used in bioinformatics; 
to accurately display all of the variation, one should present all of the principal axes, but in practice, 
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the useful functionality of PCA results from being able to project the majority of the variation into a 
lower dimension representation of the data. In order to advance clinical applicability, follow-up work 
refining the ePCR methodology could be steered to favor more LASSO-like (α = 1) ensembles or even 
be complemented by additional penalization of certain hard-to-access features (i.e., weighting by the 
real-life cost of assays). This alternative approach was made possible because the method 
development has evolved independently from the initial setting of the DREAM Challenge and its 
scoring metric (iAUC), which was agnostic toward the number and nature of the proposed features 
for prediction.   

As has been demonstrated by my colleagues at the University of Turku, the practical applications of a 
model developed for a cohort of well-standardized, controlled clinical trial data may perform very 
differently in real-world cohort data (Seyednasrollah et al. 2017b). Although the model developed in 
IV outperforms the Halabi benchmark in the real-world data (Halabi et al. 2014) in their study, the 
prediction accuracy of ePCR steeply declines after one year of diagnosis. This result raises the question 
of how to translate these models to real-world cohorts, where the standardization of data, the timing 
of end points, and patient practices vary drastically. To reflect clinical reality, it is highly unlikely that 
a single prediction will be utilized after a year from the corresponding lab measurements. Instead, it 
is likely that models that can be updated based on new data, would be much more applicable to real-
world data. Due to the severity of the disease, patients are undergoing intense follow-up checks, 
providing regular new information regarding acute disease progression. In this respect, an updating 
real-time mathematical modeling approach would be more suitable. 

To better treat mCRPC patients based on their expected survival, it is important to assess the 
specificity of the resulting ensemble-based model and its predictors of mCRPC. Although the DREAM 
organizers censored factors known to affect general survivability, such as reported cigarette smoking, 
the current model may include covariates that predict survivability that is nonspecific to mCRPC, 
because the training and validation datasets consisted solely of clinical trials of mCRPC in IV. To better 
identify these specific factors, the current approach could be extended by studies in the nonmetastatic 
version of CRPC, other cancer types, and healthy control populations. For this purpose, many open-
data platforms offer a wide variety of well-standardized datasets, and many of the currently utilized 
clinical markers are available. Because the current modeling framework offers a state-of-the-art 
baseline that improves upon the benchmark of the Halabi model (Halabi et al. 2014) , a natural next 
step is to narrow down the covariates that have specific clinical impact on survivability prediction in 
mCRPC or to extend the ensemble model toward more general and clinically-orientated use. 

The focus of mathematical modeling here was heavily based on clinical features, while an important 
future expansion would be genomics. Various levels of ‘omics in cancer research, such as mRNA 
expression, copy number alterations, mutations, and epigenetics, are all highly relevant in 
characterizing cancer (Cancer Genome Atlas Research Network 2015). There are multiple challenges 
in effectively utilizing these platforms, especially when harmonizing over different ‘omics; however, 
due to the ensemble nature of the ePCR methodology, one can create tailored model formulations 
that are suitable for each platform. Further challenges are posed by the high dimensionality of ‘omics 
data. To this end, regularized regression has robust properties for modeling high dimensional sparse 
data in such applications (Dasgupta et al. 2011). An on-going collaborative effort has already been 
established to continue toward this venue, i.e. poster presentation in (Laajala et al., 2018). 
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6. CONCLUSIONS 
This multidisciplinary thesis traverses the colliding worlds of applied mathematics, statistics, machine 
learning, and systems medicine-oriented oncological research and experimentation. It addresses 
many current issues in drug discovery and experimentation, the reproducibility of preclinical findings, 
and the reporting of corresponding experimental design. The presented work seeks to aid in this the 
acute search for better treatments for challenging malignancies with a strong focus on prostate cancer 
and its aggressive forms. The work is roughly divided into two main subcategories with chronologically 
intuitive dissemination. First, publications I and II focus on preclinical experimentation, starting from 
fundamental issues in the design of preclinical experiments (publication I) and then shifting the focus 
into post-intervention statistical testing of the treatment effects (portions of publication I, and the 
whole of publication II). Second, the clinical window spans from generic PSA screening and recurrence 
prediction in PCa in a real-world cohort (publication III) to comprehensive, ensemble-driven modeling 
of the late-stage aggressive mCRPC form of PCa in a large cooperative initiative to connect open 
science and numerous sources of clinical trials (publication IV). It should also be noted that the 
presented publications follow the pattern of drug discovery that progresses from rodent in vivo 
experimentation (I and II) to clinical applications with patient data (III and IV). Although the in vitro 
phase of drug discovery was not explicitly considered here, it is still implicitly present in the 
experimental design choices for experiments in publications I and II because the cell lines were chosen 
to optimally represent the human disease, disease progression, and mechanisms under investigation. 

The recently discussed issues regarding the reporting, reproducibility, and design of preclinical 
experiments were addressed in publication I. An improved comprehensive framework for designing 
preclinical experiments was proposed, spanning from controlling inter-individual variation to power 
calculations that justify the ethical and practical undertaking of future experiments. For preclinical 
statistical inference of intervention testing, three main categories of model formulations are offered 
for linear MEMs in time-dependent tumor growth: i) a conventional longitudinal model, which is trivial 
to fine-tune (publications I and II); ii) a matching-based paired response longitudinal model that makes 
use of baseline characteristics (publication I); iii) and a latent variable longitudinal mixed-effects model 
that utilizes the EM algorithm (publication II). The conclusions drawn from using the novel statistical 
inference in these preclinical experiments were concordant with the known literature regarding 
orchiectomy in the development of castration resistance in VCaP cells and the currently FDA-approved 
clinical use of anti-androgens. The retrospective analysis of several publications verified their original 
conclusions and provided novel insight into receptor-related activity regarding the proposed latent 
growth parameter. Further biology-related insights were derived in the side-by-side published articles 
focusing on, for example, the intratumoral neo-biosynthesis of androgen and its significance in 
developing castration resistance (Knuuttila et al. 2014; Huhtaniemi et al. submitted). 

The current practices of PSA screening in Finland and the prediction of BCR were examined with an 
emphasis on the practicality of ultrasensitive assays and the possibility of earlier PCa recurrence 
detection (publication III). The ultrasensitive range of PSA measurements were found to contain 
interesting informative trends, especially in PSA kinetics, but this particular subfield of PSA research 
would benefit from further multicohort verification. After examining PCA kinetics in log2-transformed 
responses using splines, it was established that linear models could reliably capture the main trends, 
and generalized linear MEMs were constructed for predicting BCR risk. After studying BCR and the 
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development of hormone-therapy resistance, patient survival in advanced forms of PCa was modeled 
in the prominent DREAM 9.5 mCRPC Challenge (publication IV). Novel biomarkers for OS prediction in 
mCRPC were identified in the meta-analysis of the challenge, which produced interesting insights from 
the machine learning methodology conducted by the groups from over 50 universities around the 
globe. The top-performing ensemble-based Cox regression methodology was published together with 
an emphasis on the network analysis of possible interactions for clinical predictors in Publication IV.  

True to the spirit of open science, this compilation of scientific publications adheres to the pillars of 
the scientific method, including reproducibility and transparency. This aspect spans from reproducible 
code and open data embedded in R packages to the provision of extensive, accessible, and easily 
applicable novel methods intended to improve the translatability and interpretability of in vivo 
research. The published studies aim to set an example for confronting issues that have plagued the 
transition from the preclinical phase to the clinical phase. Although the targeted audience focuses on 
oncology, we have embarked on a journey to promote open science, data, and corresponding 
methods that extends beyond cancer, as discussed in the supporting editorials (Laajala et al. 2017; 
Sartor et al. 2017). While basking in the dawning light of a promising era of vast amounts of generated 
data (so-called big data challenge), international multidisciplinary collaboration, and accumulating 
scientific research (crowd-sourced research approach), one must always return to the fundamentals 
of the scientific method to verify that mankind’s accumulating knowledge converges toward truth.  To 
this idealistic end, which has been a driving motivator behind the conducted research, this thesis has 
contributed in the focused field of hormonally regulated cancer with a focus on PCa. Although the 
work is far from finished, the presented stepping stones now await the footprints of eager new seekers 
of knowledge.
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overcome, despite not even taking credit where it would be due. Such acts but may go silently 
unnoticed by the majority, but alter the course of our world. Mom (extended to Pekka Ahonen), thank 
you for being the embodiment of empathy. You are the light in the darkness for many, and have shown 
me the importance of being a human to my fellow neighbors. Had it not been for your motherly 
patience, love and wisdom, cynicism might be today my overwhelming trait. Sini (extended to Erkki), 
thank you for being the best sister in world. You are truly my kin, and I admire you and what you do. I 
want to see you grow happy and be in the life of my family ever-more. This also includes my in-laws, 
their spouses and children – you have welcomed me with a genuine warmth.  

Last but not least, I am thankful to my immediate family. Essi, you’ve been my best friend for a decade 
now ever since we met on the first day at the Aalto University, and you have since become the wife 
of my dreams as well as the mother-lioness to my two daughters – the sort of a woman I feel I am not 
deserving of. Thank you for walking hand-in-hand with me through the thick and thin. Words are 
beyond capability of expressing the magnitude of feelings I have for you three. Elea and Vilja, you two 
little adorable rascals - you are eternally part of me, as I am part of you. No matter what happens, 
you’ll always be my much desired and loved offspring, and if I can affect this stream of life, there will 
always be room for two (or more) long and warm father’s embraces and aid for you. Maybe you will 
follow in my footsteps one day, or even if you don’t I wish to be there to aid you in side-stepping some 
of the traps and sinkholes that life inevitably besets before you.  

This thesis’ dedication extends to the memory of Kati Aarniala, a dear sister-in-battle against the 
darkest pits of the human mind, who lost her battle during the course of my PhD. I firmly believe that 
mankind needs science in order to advance to a brighter future, but that science also needs humanity 
in order to function properly and to truly achieve its idealistic goals. I hope that at least for some of 
you I have gone beyond the implicit social constructions under which a colleague or a friend might be 
assumed to support you. Kati, should my musings somehow reach some conscious part of you 
somewhere, I wish that you have obtained the much deserved peace of mind that this realm ultimately 
could not offer you. I will wander yonder in search of mine.  

In Turku, 10.10.2018 

Teemu Daniel Laajala
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Optimized design and analysis of 
preclinical intervention studies  
in vivo
Teemu D. Laajala1,2,3,4, Mikael Jumppanen3,5, Riikka Huhtaniemi3,4,6,7, Vidal Fey3,6,8, 
Amanpreet Kaur5,9,10, Matias Knuuttila3,4,6, Eija Aho7, Riikka Oksala4,7, Jukka Westermarck5,9, 
Sari Mäkelä3,11, Matti Poutanen3,6,12,* & Tero Aittokallio1,2,3,*

Recent reports have called into question the reproducibility, validity and translatability of the preclinical 
animal studies due to limitations in their experimental design and statistical analysis. To this end, 
we implemented a matching-based modelling approach for optimal intervention group allocation, 
randomization and power calculations, which takes full account of the complex animal characteristics at 
baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized 
the confounding baseline variability, and resulted in animal allocations which were supported by 
RNA-seq profiling of the individual tumours. The matching information increased the statistical 
power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate 
cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling 
approach and its open-source and web-based software implementations enable the researchers 
to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to 
accelerate the discovery of new therapeutic interventions.

In vivo animal studies are an essential part of any drug development project. To further increase the reproduci-
bility and translatability of preclinical studies, there is an increasing need to improve their experimental design 
and statistical analysis1–6. Recurrent concerns are especially related to lack of power calculations for sample size 
estimation, inadequate conduction of randomized and blinded intervention group allocations, and limited con-
sideration of individual animal characteristics at baseline prior to interventions2,6–10. It has been argued that 
preclinical animal studies should more closely follow the established practices applied in the human clinical trials, 
where standardized requirements have been enforced for reporting statistical power, randomization procedures 
and stratification factors1,11. Typical sources of variation in the animal baseline characteristics include differences 
in gender, body weight and age, as well as in the genetic differences, cage conditions or the variability in gut 
microbiota7,12–14. Each of these experimental factors may contribute to confounding variability in the intervention 
responses, leading to false positive or negative findings, unless the study is carried out using adequate sample sizes 
or design that normalizes such confounding factors. Although these issues are widely acknowledged among the 
researchers, and guidelines are available for standardizing and reporting preclinical animal research15, the imple-
mentation of the best practices is often neglected2,8,16–19. Accordingly, a recent survey revealed that over 85% of 
published animal studies did not describe any randomization or blinding, and over 95% lacked the estimation of 
sufficient sample size needed for detecting true effects in the intervention studies17.

1Department of Mathematics and Statistics, University of Turku, Turku, Finland. 2Institute for Molecular Medicine 
Finland (FIMM), University of Helsinki, Helsinki, Finland. 3Turku Center for Disease Modeling (TCDM), University of 
Turku, Turku, Finland. 4Drug Research Doctoral Programme (DRDP), University of Turku, Turku, Finland. 5Cancer Cell 
Signaling Group, Turku Centre for Biotechnology, University of Turku, Turku, Finland. 6Department of Physiology, 
Institute of Biomedicine, University of Turku, Turku, Finland. 7Orion Corporation, Orion Pharma, Department of 
Oncology and Critical Care Research, Turku, Finland. 8Department of Medical Biochemistry and Genetics, Institute 
of Biomedicine, University of Turku, Turku, Finland. 9Department of Pathology, University of Turku, Turku, Finland. 
10Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland. 11Functional 
Foods Forum, University of Turku, Turku, Finland. 12Institute of Medicine, The Sahlgrenska Academy, Gothenburg 
University, Gothenburg, Sweden. ∗These authors contributed equally to this work. Correspondence and requests 
for materials should be addressed to M.P. (email: matti.poutanen@utu.fi) or T.A. (email: tero.aittokallio@fimm.fi)

Received: 14 December 2015

Accepted: 06 July 2016

Published: 02 August 2016

OPEN

www.nature.com/scientificreports/

2Scientific RepoRts | 6:30723 | DOI: 10.1038/srep30723

In the absence of established practices and procedures for power calculations tailored for preclinical studies, 
the preferred sample size is often decided through historical precedent rather than solid statistics9,20. Similarly, 
the current approaches for allocating animals to separate intervention arms are typically based on manual picking 
and balancing of the animal groups based on only one baseline variable6. However, such simple design procedures 
may easily miss the complex relationships between multiple baseline variables, and the subtle intervention effects. 
Further, it remains a challenging question how to choose among the multiple baseline markers due to inherent 
differences in animal experimentation. Preferably, the intervention groups should be balanced using all the avail-
able baseline factors, including information about the animal characteristics (e.g., gender, age and weight), litter-
mates, housing conditions, and pre-treatments, among others. Otherwise, even minor uncontrolled differences 
between the treatment arms may cause significant variation in the response profiles13. Many of the experimental 
factors lead to complex hierarchical designs, with nested animal, host-tumor, cage, batch and litter relationships 
at multiple levels, thus reaching beyond the capability of the existing randomization and allocation methods 
available for preclinical animal studies21,22. The current methods often assume the independence of the baseline 
variables and experimental units, which may lead to over-optimistic evaluation of the effective sample size, also 
known as pseudo-replication16. This takes place, for instance, when one allocates multiple animals from a single 
batch or cage to a single treatment arm, or when multiple tumours are placed in the same animal.

Results
We developed and implemented a novel methodology to improve the experimental design and statistical analysis 
of preclinical studies carried out with experimental animals. The advances are based on a mathematical optimi-
zation framework for animal matching that improves both the unbiased allocation of the intervention groups, 
as well as the sensitivity and specificity of the post-intervention efficacy evaluations by making the full use of all 
the available baseline characteristics. To support its widespread use in various experimental settings, the mod-
elling framework has been made available both as an open-source R-package (http://cran.r-project.org/pack-
age= hamlet) (Supplementary Note S1), and through a web-based graphical user interface (http://rvivo.tcdm.fi/)  
(Supplementary Note S2). To our knowledge, these implementations are the first that effectively consider the 
nested, hierarchical structures of preclinical animal studies across the different phases of the experiment, starting 
from the power analyses, to allocation of animals to the various treatment arms, and all the way to finally evaluate 
the intervention effects (Fig. 1). In the present work, we demonstrate the benefits of these tools over conven-
tional analysis in two applications of orthotopic xenografts of VCaP prostate cancer cells in immune deficient 
mice as disease models for castration-resistant prostate cancer (CRPC) (Supplementary Fig. S1). The first study 
analysed the efficacy of two androgen receptor antagonists (ARN-509 and MDV3100) to suppress the growth of 
castration-resistant VCaP tumors23, while the second study investigated the effect of surgical and pharmaceutic 
therapies on orchiectomized mice (for details; see Supplementary Methods and Supplementary Note S3).

In a given pool of animals, the matching solution provides an optimal intervention group allocation of animals 
(or tumors) based on several baseline characteristics (Fig. 2). Rather than considering only the optimal pairing 
of individual animals, the solution can be used also to identify optimal matches among a number of features, 
animals or tumors, e.g., triplets, quadruplets, or more (see Methods for the mathematical formulation of the 
matching problem). Such optimal combinations, referred here to as submatches, are constructed by minimizing 
the sum of all the pairwise distances between the members of each submatch, illustrated here by pairwise con-
necting edges (Fig. 2). Since the non-bipartite matching procedure does not require pre-defined group labels, the 
control group can be selected without any guidance from the experimenters (Supplementary Fig. S7b). Instead, 
the animal allocation is performed objectively within each submatch by distributing its members randomly to 
separate treatment arms, hence enabling fully-blinded intervention group allocation through separate matching 
and randomization phases (Figs 1 and 2c,d). In the present study, we demonstrate how the matching information 
does not only improve the pre-intervention design, such as baseline animal group balancing and allocation, but it 
also improves the post-intervention statistical power to detect true treatment effects.

Matching normalizes baseline variability in confounding variables. The first VCaP xenograft case 
study was originally conducted based on the matching procedure23, where it showed its added value in complex 

Figure 1. Benefits of the modelling framework over the course of the study period. The animal baseline 
matching improves the statistical analysis and design of preclinical animal studies in terms of power 
calculations, balanced allocations, and intervention blinding (pre-intervention period), as well as through the 
use of matching information in the statistical testing of the intervention effects (post-intervention period).
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In the absence of established practices and procedures for power calculations tailored for preclinical studies, 
the preferred sample size is often decided through historical precedent rather than solid statistics9,20. Similarly, 
the current approaches for allocating animals to separate intervention arms are typically based on manual picking 
and balancing of the animal groups based on only one baseline variable6. However, such simple design procedures 
may easily miss the complex relationships between multiple baseline variables, and the subtle intervention effects. 
Further, it remains a challenging question how to choose among the multiple baseline markers due to inherent 
differences in animal experimentation. Preferably, the intervention groups should be balanced using all the avail-
able baseline factors, including information about the animal characteristics (e.g., gender, age and weight), litter-
mates, housing conditions, and pre-treatments, among others. Otherwise, even minor uncontrolled differences 
between the treatment arms may cause significant variation in the response profiles13. Many of the experimental 
factors lead to complex hierarchical designs, with nested animal, host-tumor, cage, batch and litter relationships 
at multiple levels, thus reaching beyond the capability of the existing randomization and allocation methods 
available for preclinical animal studies21,22. The current methods often assume the independence of the baseline 
variables and experimental units, which may lead to over-optimistic evaluation of the effective sample size, also 
known as pseudo-replication16. This takes place, for instance, when one allocates multiple animals from a single 
batch or cage to a single treatment arm, or when multiple tumours are placed in the same animal.

Results
We developed and implemented a novel methodology to improve the experimental design and statistical analysis 
of preclinical studies carried out with experimental animals. The advances are based on a mathematical optimi-
zation framework for animal matching that improves both the unbiased allocation of the intervention groups, 
as well as the sensitivity and specificity of the post-intervention efficacy evaluations by making the full use of all 
the available baseline characteristics. To support its widespread use in various experimental settings, the mod-
elling framework has been made available both as an open-source R-package (http://cran.r-project.org/pack-
age= hamlet) (Supplementary Note S1), and through a web-based graphical user interface (http://rvivo.tcdm.fi/)  
(Supplementary Note S2). To our knowledge, these implementations are the first that effectively consider the 
nested, hierarchical structures of preclinical animal studies across the different phases of the experiment, starting 
from the power analyses, to allocation of animals to the various treatment arms, and all the way to finally evaluate 
the intervention effects (Fig. 1). In the present work, we demonstrate the benefits of these tools over conven-
tional analysis in two applications of orthotopic xenografts of VCaP prostate cancer cells in immune deficient 
mice as disease models for castration-resistant prostate cancer (CRPC) (Supplementary Fig. S1). The first study 
analysed the efficacy of two androgen receptor antagonists (ARN-509 and MDV3100) to suppress the growth of 
castration-resistant VCaP tumors23, while the second study investigated the effect of surgical and pharmaceutic 
therapies on orchiectomized mice (for details; see Supplementary Methods and Supplementary Note S3).

In a given pool of animals, the matching solution provides an optimal intervention group allocation of animals 
(or tumors) based on several baseline characteristics (Fig. 2). Rather than considering only the optimal pairing 
of individual animals, the solution can be used also to identify optimal matches among a number of features, 
animals or tumors, e.g., triplets, quadruplets, or more (see Methods for the mathematical formulation of the 
matching problem). Such optimal combinations, referred here to as submatches, are constructed by minimizing 
the sum of all the pairwise distances between the members of each submatch, illustrated here by pairwise con-
necting edges (Fig. 2). Since the non-bipartite matching procedure does not require pre-defined group labels, the 
control group can be selected without any guidance from the experimenters (Supplementary Fig. S7b). Instead, 
the animal allocation is performed objectively within each submatch by distributing its members randomly to 
separate treatment arms, hence enabling fully-blinded intervention group allocation through separate matching 
and randomization phases (Figs 1 and 2c,d). In the present study, we demonstrate how the matching information 
does not only improve the pre-intervention design, such as baseline animal group balancing and allocation, but it 
also improves the post-intervention statistical power to detect true treatment effects.

Matching normalizes baseline variability in confounding variables. The first VCaP xenograft case 
study was originally conducted based on the matching procedure23, where it showed its added value in complex 

Figure 1. Benefits of the modelling framework over the course of the study period. The animal baseline 
matching improves the statistical analysis and design of preclinical animal studies in terms of power 
calculations, balanced allocations, and intervention blinding (pre-intervention period), as well as through the 
use of matching information in the statistical testing of the intervention effects (post-intervention period).
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designs with batch/cage effects and multiple treatment groups (n =  15 animals per group). While the full match-
ing included four baseline variables, we illustrate the methodology first using two key animal characteristics (PSA 
and body weight at baseline; Fig. 2a–c). The optimal submatches were subsequently randomized and blinded 
for the experimenters to enable unbiased analysis across three intervention groups (ARN-509, MDV3100 and 
Vehicle) (Fig. 2d). The confounding variability from the two castration batches was normalized by treating these 
as two separate optimal matching problems (Supplementary Fig. S3a), which guaranteed that the two batches 
were allocated uniformly to the intervention groups through the use of submatches (Supplementary Fig. S3b). 
Notably, the matching distance matrices at baseline were also significantly correlated with the post-intervention 
RNA-seq profiling of a randomly chosen subset of individual tumours (p =  0.039, Mantel’s test, n =  4 animals per 
group; Supplementary Fig. S8c), suggesting that major trends in the characteristic baseline differences used in the 
animal allocation were still captured by their genome-wide transcriptional responses even after the interventions 
(Supplementary Fig. S8a,b).

To more systematically study the degree of confounding variability and its effects on the animal allocation, 
we tested the frequency of statistically significant differences in all the available baseline variables between the 
randomized treatment groups. A total of n =  100,000 animal allocations were simulated either totally at random 
(unmatched randomization) or using the matching information from the optimal submatch allocations (matched 
randomization). The baseline variables considered in the optimal matching were body weight and PSA at baseline, 
as well as PSA fold-change from previous week prior to allocation. With the unmatched randomization, 13.8% 
of the treatment groups represented significant differences with respect to at least one of the baseline variables 
(p <  0.05, one-way ANOVA). In contrast, only 0.018% of the treatment groups in the matched randomizations 
showed any baseline differences. This indicates that matching effectively eliminates baseline differences in the 

Figure 2. Optimal matching of animals in the case of orthotopic VCaP mouse xenografts. The original 
task was to randomly assign 75 animals into five balanced intervention groups (one control and four treatment 
groups, each consisting of 15 animals), but here we focus on two of the treatments only (ARN-509 and 
MDV3100), using a sub-sample of the complete data matrix (see Supporting Fig. S3). (a) Bivariate observations 
sampled from the VCaP study, illustrating the two selected baseline variables (body weight and PSA).  
(b) 15 ×  15 dimensional distance matrix D calculated based on the baseline variables was used as an input to 
the matching procedure, which solves the optimal animal matching matrix X. (c) The optimal submatches 
from the branch and bound algorithm, which guarantees a globally optimal solution (see Supporting Fig. S7). 
(d) The optimally matched animals were randomized into the intervention groups via blinded treatment label 
assignments (coloured points). The baseline matching information was used in the statistical testing of the 
treatment effects, mainly through paired comparisons between the treated and control animals (solid lines). 
Alternatively, the model also allows for direct comparisons between the two treatments (dotted lines).
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Figure 3. Statistical testing of the treatment effects using pairwise matched inference. (a) The matched 
inference makes use of the baseline matching information when testing the intervention effects by pairing the 
observed responses according to the optimal submatches at equal time points. (b) An example of the submatch-
based pairing in the MDV3100 vs vehicle comparison, where the example trajectory was previously shown as a 
single estimate value in the original study23. Complex response differences are better captured when additional 
baseline information is incorporated into the statistical inference. The paired differences from the longitudinal 
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Figure 3. Statistical testing of the treatment effects using pairwise matched inference. (a) The matched 
inference makes use of the baseline matching information when testing the intervention effects by pairing the 
observed responses according to the optimal submatches at equal time points. (b) An example of the submatch-
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single estimate value in the original study23. Complex response differences are better captured when additional 
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confounding variables, which unless carefully controlled during the allocation process, may contribute to the 
poor reproducibility of preclinical research findings24.

Matching improves the statistical inference of treatment responses. In the post-intervention 
analysis, we studied the benefits of using the matching information in the mixed-effects modelling of the treat-
ment effects (see Methods for the model formulation), focusing first on the ARN-509 and MDV3100 treat-
ments (Fig. 3a). The matched inference approach models the paired longitudinal differences in the intervention 
responses (PSA in the VCaP xenografts; Fig. 3b), based on the optimal submatches of the animals at baseline 
(Fig. 2c; Supplementary Fig. S3). The benefits gained by such matching-based paired testing became more evident 
with the MDV3100 case, where we observed that the animal body weight at baseline was inversely associated 
with the final PSA level (correlation coefficient ρ =  − 0.607, p =  0.021, Supplementary Fig. S2d). Such multivari-
ate, longitudinal relationship between the baseline variables and treatment responses cannot be captured by the 
conventional, unmatched model, leading to reduced statistical sensitivity (Fig. 3c, left). The MDV3100 treatment 
effect became clearly significant when the baseline matching information was incorporated into the mixed-effects 
modelling (Fig. 3c, right). The more apparent ARN-509 intervention effect was detected both with the matched 
and unmatched statistical models (Table 1). Of note, the non-matched approach also benefitted here from the 
matched randomization of the original study23.

As another case study, we randomly allocated 100 VCaP mice using the matching algorithm into six inter-
vention groups (Supplementary Fig. S4), out of which three are further investigated here (Control, orchiecto-
mized (ORX) and ORX+ Tx). As was expected, when compared to the intact control animals, both the matched 
and unmatched statistical models were able to detect the significant intervention effect from the ORX surgery 
(Table 1). However, the unmatched approach totally missed the additional effect from an undisclosed pharmaceu-
tic treatment (Tx), while the ORX+ Tx combination effect was found significant after using the baseline matching 
information in paired testing of the longitudinal intervention responses. In the combination case, the standard, 
non-paired analysis lacked the power to distinguish the complex response patterns between the intervention 
groups, in part due to the non-linear responses in the early time points (Supplementary Fig. S6). In contrast, the 
paired inference, enabled by the matching information, was able to capture these pairwise response differences, 
leading to subtle yet significant intervention-specific effect sizes (Table 1). These results support the improved 
statistical sensitivity gained by the baseline matching information in the detection of true treatment effects, espe-
cially when studying more complex and subtle intervention effects.

Matching increases statistical power to detect true treatment effects. Since the intervention 
effects in the preclinical studies are often relatively subtle, statistical power calculations are critical for estimating 
the sufficient number of animals needed to detect a true effect. However, preclinical experiments pose specific 
requirements for the power calculations, due to the complex nature of longitudinal responses, relatively high fre-
quency of missing values originating from animal health or other exclusion criteria, complex hierarchical designs, 
as well as multivariate baseline characteristics, which are beyond the capacity of any standard sample size estima-
tion procedures. We addressed the above mentioned challenges by implementing a model-based power analysis 
calculation. The method first samples animals with replacement from an estimated mixed-effects model, and then 
uses these bootstrap datasets to re-estimate the specified statistical model (see Methods for the modelling details).

When applied to the two VCaP xenograft studies, the model-based calculation enables one to estimate the 
study power as a function of tumors per treatment group. Although the power calculation can be done with respect 
to each of the terms in the mixed-effects model, we focused here on the intervention-specific term βintervention  
(Fig. 3c). With the more prominent intervention effects from ARN-509 and ORX, the power calculation led to 
similar sample size estimates between matched and unmatched models (n <  10; Fig. 4, left panel). However, there 
were notable differences in the number of animals needed when more complex or subtle interventions effects 
were studied; with MDV3100, the matched analysis reached the conventional power level of 0.8 at much smaller 
sample size compared to the unmatched model (n =  17 vs. n =  26; Fig. 4a, right panel), whereas for the interven-
tion effect from ORX+ Tx combination, the unmatched analysis remained below the sufficient power level with 
any practically feasible number of animals (Fig. 4b, right panel).

Although the power simulations were performed here retrospectively, these results already demonstrate that 
statistical inference of the intervention effects is highly dependent on the expected effect size and within-group 
variation, suggesting that future experimental designs should be tailored for each case individually, using e.g. data 
from a pilot experiment, so that the power calculations will meet the expected response patterns. Given the rela-
tively large difference in the number of animals needed to reach sufficient power using an unmatched or matched 
approach, especially with the less evident cases (MDV3100 and ORX+ Tx interventions), it is recommended that 

observations (left panel) construct a single treatment curve for the pairwise matched mixed-effects modelling 
(right panel). (c) Comparison of the matched and unmatched statistical inference approaches in the MDV3100 
vs vehicle comparison. Even if both inference approaches yield rather similar conclusion about the possible 
intervention effects, the matched approach improves the sensitivity of the detection (right panel). Different 
aspects of the mixed-effects modelling are visualized based on the observed data (top panel): the full model fit 
combining both the random and fixed effects (middle panel), and the population inference depicting only the 
fixed effects along with their interpretation (bottom panel). In the matched inference, the population of paired 
differences in the intervention effects (βintervention) is tested against a null hypothesis of no paired differences 
(y =  0 line). The statistical inference results of the intervention effects are summarized in Table 1, and the full 
model fits for the four treatment cases are shown in Supplementary Figs S5 and S6.
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post-intervention statistical procedures should be defined already before the initiation of the study using tools 
such as proposed here25. However, a more fair comparison point for the matched approach would require a new 
study, conducted without using the baseline matching information, but this was not carried out within our pre-
clinical studies because of ethical reasons.

Discussion
The importance of controlling for individual variation is well-acknowledged in human clinical studies, with the 
aim to increase the study validity and reproducibility26. Similarly, in preclinical studies, reproducibility of the 
findings is associated with transparent reporting and paying careful attention to the experimental issues, includ-
ing balancing, randomization and blinding2,3. Even though preclinical experimental designs differ from the truly 
randomized treatment group testing applied in clinical trials, the preclinical studies should benefit from the best 
practices of human clinical trials to improve their translatability11,15. We demonstrated here that a more detailed 
animal matching and statistical modeling offers many benefits across the different phases of the preclinical inter-
vention experiment (Fig. 1). Prior to the interventions, the baseline balancing makes the experimental and con-
trol groups as similar as possible, while the matching-based randomization ensures that all the animal groups 
are sufficiently representative of the underlying population. This should reduce confounding variability and false 
positives in the subsequent testing of the intervention effects. During interventions, blinding promotes compa-
rable handling and treatment of the animals by experimenters, while the estimated model parameters can detect 
outliers and provide insights into dynamic changes in individual animals in response to the interventions, such 
as non-linear treatment effects in the intervention groups. This makes the outcome measurements more uniform 
and reduces bias when reporting the results. After the intervention period, the paired longitudinal analysis of the 
individuals or tumours that were similar at baseline can be utilized in more sensitive detection of treatment effects 
(analogous to the paired t-testing). This may reduce false negative detections, especially when testing more subtle 
or complex treatment relationships, such as the MDV3100 and ORX+ Tx treatment responses considered in the 
present study. While demonstrated here in the context of orthotopic xenograft studies, the statistical analysis and 
design issues are widely applicable also to genetically-modified mouse models (GEMMs), and should be even 
more important with the use of patient-derived xenografts (PDX), where the tumor material is limited and unique 
to each patient case20.

Power calculations in preclinical animal studies. Power calculations are routinely demanded in human 
clinical studies, and recent reports have called for more rigorous sample size estimation also in preclinical animal 
studies9,20. Our model-based simulations enable the full use of response data from a pilot study or similar studies 
in the literature when estimating the sufficient sample size, rather than guessing or predicting the key model 
parameters and their variance. Furthermore, sampling of observations from a pre-fitted mixed-effects model 
offers a possibility to also incorporate indirect intervention effects, such as censoring due to death or animal 
exclusion, which may be difficult or even impossible to infer otherwise when determining the model parameters. 
Finally, the mixed-effects model requires the experimenter to specify the tested population hypotheses and the 
particular model structure already in the study design phase, which effectively discourages exploratory cherry 
picking and fishing for the ‘optimal’ results, a practice which severely reduces the reproducibility of the findings27. 
We note that the power simulations carried out in the present study were performed retrospectively, and hence, 
are applicable to designing future studies only28. When testing for more subtle or complex treatment effects, 
such as the + Tx effects in the ORX mice, sufficiently large sample sizes were required to provide statistically 
robust results. Even if this may lead to unexpectedly high number of test animals, it is widely acknowledged that 
underpowered or otherwise poorly designed studies are not only unethical but also contribute to both delays and 
increased costs of drug development process4,9.

Exploratory and confirmatory study design issues. Table 2 summarizes the experimental design 
issues that we feel are essential to consider while performing statistically robust preclinical intervention studies. 

Model

Fixed effects (p-value) Random effects (SD)

β intercept β slope β intervention γ intercept γ slope ε error

ARN-509 vs Control
Unmatched 14.311 (< 0.001)* * * 10.062 (< 0.001)* * * − 7.627 (< 0.001)* * * 8.234 5.163 5.749

Matched 0 (− ) 0 (− ) − 7.962 (0.0047)* * 7.053 8.894 8.399

MDV3100 vs Control
Unmatched 13.536 (< 0.001)* * * 10.188 (< 0.001)* * * − 4.940 (0.0494)* 7.635 6.259 6.395

Matched 0 (− ) 0 (− ) − 5.729 (0.0160)* 7.013 7.401 11.247

ORX vs Intact
Unmatched 14.548 (< 0.001)* * * 1.336 (< 0.001)* * * − 1.265 (0.0034)* * 14.578 0.997 8.518

Matched 0 (− ) 0 (− ) − 1.931 (0.0063)* * 4.251 2.157 9.522

ORX+ Tx vs ORX
Unmatched 9.998 (< 0.001)* * * 0.122 (0.0675)N.S. − 0.101 (0.2704)N.S. 10.476 0.167 9.977

Matched 0 (− ) 0 (− ) − 0.112 (0.0457)* 2.381 0.155 4.618

Table 1.  Mixed-effects model fits for the fixed effects (population inference) and random effects 
(individual effects and the random error term). Model estimates and their significance levels using the 
conventional unmatched and matching-based pairwise models are presented for each intervention comparison 
separately. The model term that explicitly tests for an intervention effect is highlighted in bold. N.S., not 
significant; * p <  0.05; * * p <  0.01; * * * p <  0.001.
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confounding variables, which unless carefully controlled during the allocation process, may contribute to the 
poor reproducibility of preclinical research findings24.

Matching improves the statistical inference of treatment responses. In the post-intervention 
analysis, we studied the benefits of using the matching information in the mixed-effects modelling of the treat-
ment effects (see Methods for the model formulation), focusing first on the ARN-509 and MDV3100 treat-
ments (Fig. 3a). The matched inference approach models the paired longitudinal differences in the intervention 
responses (PSA in the VCaP xenografts; Fig. 3b), based on the optimal submatches of the animals at baseline 
(Fig. 2c; Supplementary Fig. S3). The benefits gained by such matching-based paired testing became more evident 
with the MDV3100 case, where we observed that the animal body weight at baseline was inversely associated 
with the final PSA level (correlation coefficient ρ =  − 0.607, p =  0.021, Supplementary Fig. S2d). Such multivari-
ate, longitudinal relationship between the baseline variables and treatment responses cannot be captured by the 
conventional, unmatched model, leading to reduced statistical sensitivity (Fig. 3c, left). The MDV3100 treatment 
effect became clearly significant when the baseline matching information was incorporated into the mixed-effects 
modelling (Fig. 3c, right). The more apparent ARN-509 intervention effect was detected both with the matched 
and unmatched statistical models (Table 1). Of note, the non-matched approach also benefitted here from the 
matched randomization of the original study23.

As another case study, we randomly allocated 100 VCaP mice using the matching algorithm into six inter-
vention groups (Supplementary Fig. S4), out of which three are further investigated here (Control, orchiecto-
mized (ORX) and ORX+ Tx). As was expected, when compared to the intact control animals, both the matched 
and unmatched statistical models were able to detect the significant intervention effect from the ORX surgery 
(Table 1). However, the unmatched approach totally missed the additional effect from an undisclosed pharmaceu-
tic treatment (Tx), while the ORX+ Tx combination effect was found significant after using the baseline matching 
information in paired testing of the longitudinal intervention responses. In the combination case, the standard, 
non-paired analysis lacked the power to distinguish the complex response patterns between the intervention 
groups, in part due to the non-linear responses in the early time points (Supplementary Fig. S6). In contrast, the 
paired inference, enabled by the matching information, was able to capture these pairwise response differences, 
leading to subtle yet significant intervention-specific effect sizes (Table 1). These results support the improved 
statistical sensitivity gained by the baseline matching information in the detection of true treatment effects, espe-
cially when studying more complex and subtle intervention effects.

Matching increases statistical power to detect true treatment effects. Since the intervention 
effects in the preclinical studies are often relatively subtle, statistical power calculations are critical for estimating 
the sufficient number of animals needed to detect a true effect. However, preclinical experiments pose specific 
requirements for the power calculations, due to the complex nature of longitudinal responses, relatively high fre-
quency of missing values originating from animal health or other exclusion criteria, complex hierarchical designs, 
as well as multivariate baseline characteristics, which are beyond the capacity of any standard sample size estima-
tion procedures. We addressed the above mentioned challenges by implementing a model-based power analysis 
calculation. The method first samples animals with replacement from an estimated mixed-effects model, and then 
uses these bootstrap datasets to re-estimate the specified statistical model (see Methods for the modelling details).

When applied to the two VCaP xenograft studies, the model-based calculation enables one to estimate the 
study power as a function of tumors per treatment group. Although the power calculation can be done with respect 
to each of the terms in the mixed-effects model, we focused here on the intervention-specific term βintervention  
(Fig. 3c). With the more prominent intervention effects from ARN-509 and ORX, the power calculation led to 
similar sample size estimates between matched and unmatched models (n <  10; Fig. 4, left panel). However, there 
were notable differences in the number of animals needed when more complex or subtle interventions effects 
were studied; with MDV3100, the matched analysis reached the conventional power level of 0.8 at much smaller 
sample size compared to the unmatched model (n =  17 vs. n =  26; Fig. 4a, right panel), whereas for the interven-
tion effect from ORX+ Tx combination, the unmatched analysis remained below the sufficient power level with 
any practically feasible number of animals (Fig. 4b, right panel).

Although the power simulations were performed here retrospectively, these results already demonstrate that 
statistical inference of the intervention effects is highly dependent on the expected effect size and within-group 
variation, suggesting that future experimental designs should be tailored for each case individually, using e.g. data 
from a pilot experiment, so that the power calculations will meet the expected response patterns. Given the rela-
tively large difference in the number of animals needed to reach sufficient power using an unmatched or matched 
approach, especially with the less evident cases (MDV3100 and ORX+ Tx interventions), it is recommended that 

observations (left panel) construct a single treatment curve for the pairwise matched mixed-effects modelling 
(right panel). (c) Comparison of the matched and unmatched statistical inference approaches in the MDV3100 
vs vehicle comparison. Even if both inference approaches yield rather similar conclusion about the possible 
intervention effects, the matched approach improves the sensitivity of the detection (right panel). Different 
aspects of the mixed-effects modelling are visualized based on the observed data (top panel): the full model fit 
combining both the random and fixed effects (middle panel), and the population inference depicting only the 
fixed effects along with their interpretation (bottom panel). In the matched inference, the population of paired 
differences in the intervention effects (βintervention) is tested against a null hypothesis of no paired differences 
(y =  0 line). The statistical inference results of the intervention effects are summarized in Table 1, and the full 
model fits for the four treatment cases are shown in Supplementary Figs S5 and S6.
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post-intervention statistical procedures should be defined already before the initiation of the study using tools 
such as proposed here25. However, a more fair comparison point for the matched approach would require a new 
study, conducted without using the baseline matching information, but this was not carried out within our pre-
clinical studies because of ethical reasons.

Discussion
The importance of controlling for individual variation is well-acknowledged in human clinical studies, with the 
aim to increase the study validity and reproducibility26. Similarly, in preclinical studies, reproducibility of the 
findings is associated with transparent reporting and paying careful attention to the experimental issues, includ-
ing balancing, randomization and blinding2,3. Even though preclinical experimental designs differ from the truly 
randomized treatment group testing applied in clinical trials, the preclinical studies should benefit from the best 
practices of human clinical trials to improve their translatability11,15. We demonstrated here that a more detailed 
animal matching and statistical modeling offers many benefits across the different phases of the preclinical inter-
vention experiment (Fig. 1). Prior to the interventions, the baseline balancing makes the experimental and con-
trol groups as similar as possible, while the matching-based randomization ensures that all the animal groups 
are sufficiently representative of the underlying population. This should reduce confounding variability and false 
positives in the subsequent testing of the intervention effects. During interventions, blinding promotes compa-
rable handling and treatment of the animals by experimenters, while the estimated model parameters can detect 
outliers and provide insights into dynamic changes in individual animals in response to the interventions, such 
as non-linear treatment effects in the intervention groups. This makes the outcome measurements more uniform 
and reduces bias when reporting the results. After the intervention period, the paired longitudinal analysis of the 
individuals or tumours that were similar at baseline can be utilized in more sensitive detection of treatment effects 
(analogous to the paired t-testing). This may reduce false negative detections, especially when testing more subtle 
or complex treatment relationships, such as the MDV3100 and ORX+ Tx treatment responses considered in the 
present study. While demonstrated here in the context of orthotopic xenograft studies, the statistical analysis and 
design issues are widely applicable also to genetically-modified mouse models (GEMMs), and should be even 
more important with the use of patient-derived xenografts (PDX), where the tumor material is limited and unique 
to each patient case20.

Power calculations in preclinical animal studies. Power calculations are routinely demanded in human 
clinical studies, and recent reports have called for more rigorous sample size estimation also in preclinical animal 
studies9,20. Our model-based simulations enable the full use of response data from a pilot study or similar studies 
in the literature when estimating the sufficient sample size, rather than guessing or predicting the key model 
parameters and their variance. Furthermore, sampling of observations from a pre-fitted mixed-effects model 
offers a possibility to also incorporate indirect intervention effects, such as censoring due to death or animal 
exclusion, which may be difficult or even impossible to infer otherwise when determining the model parameters. 
Finally, the mixed-effects model requires the experimenter to specify the tested population hypotheses and the 
particular model structure already in the study design phase, which effectively discourages exploratory cherry 
picking and fishing for the ‘optimal’ results, a practice which severely reduces the reproducibility of the findings27. 
We note that the power simulations carried out in the present study were performed retrospectively, and hence, 
are applicable to designing future studies only28. When testing for more subtle or complex treatment effects, 
such as the + Tx effects in the ORX mice, sufficiently large sample sizes were required to provide statistically 
robust results. Even if this may lead to unexpectedly high number of test animals, it is widely acknowledged that 
underpowered or otherwise poorly designed studies are not only unethical but also contribute to both delays and 
increased costs of drug development process4,9.

Exploratory and confirmatory study design issues. Table 2 summarizes the experimental design 
issues that we feel are essential to consider while performing statistically robust preclinical intervention studies. 

Model

Fixed effects (p-value) Random effects (SD)

β intercept β slope β intervention γ intercept γ slope ε error

ARN-509 vs Control
Unmatched 14.311 (< 0.001)* * * 10.062 (< 0.001)* * * − 7.627 (< 0.001)* * * 8.234 5.163 5.749

Matched 0 (− ) 0 (− ) − 7.962 (0.0047)* * 7.053 8.894 8.399

MDV3100 vs Control
Unmatched 13.536 (< 0.001)* * * 10.188 (< 0.001)* * * − 4.940 (0.0494)* 7.635 6.259 6.395

Matched 0 (− ) 0 (− ) − 5.729 (0.0160)* 7.013 7.401 11.247

ORX vs Intact
Unmatched 14.548 (< 0.001)* * * 1.336 (< 0.001)* * * − 1.265 (0.0034)* * 14.578 0.997 8.518

Matched 0 (− ) 0 (− ) − 1.931 (0.0063)* * 4.251 2.157 9.522

ORX+ Tx vs ORX
Unmatched 9.998 (< 0.001)* * * 0.122 (0.0675)N.S. − 0.101 (0.2704)N.S. 10.476 0.167 9.977

Matched 0 (− ) 0 (− ) − 0.112 (0.0457)* 2.381 0.155 4.618

Table 1.  Mixed-effects model fits for the fixed effects (population inference) and random effects 
(individual effects and the random error term). Model estimates and their significance levels using the 
conventional unmatched and matching-based pairwise models are presented for each intervention comparison 
separately. The model term that explicitly tests for an intervention effect is highlighted in bold. N.S., not 
significant; * p <  0.05; * * p <  0.01; * * * p <  0.001.
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These issues are important both for exploratory and confirmatory preclinical studies, in order to improve their 
generalizability and translatability toward human diseases29. Exploratory studies involve preclinical screening and 
pathophysiological hypothesis testing, placing therefore more focus on detection sensitivity, whereas confirma-
tory studies are geared more toward efficacy estimation and clinical translation, where specificity of the findings 
is often more important. These two study classes serve as examples of the various inferential aims of the preclin-
ical studies, and we hope our considerations will complement the current ARRIVE guidelines15, in terms of the 
statistical design and analysis of intervention effects. However, there remain several other factors that are outside 
the scope of the statistical methods introduced here, which may have much bigger role in the generalizability and 
translatability of the preclinical findings. For instance, although the internal variation in the treatment response 
can be controlled to a large extent using the matching and randomization methodology, these cannot normalize 
the effects of external factors, such as the representativeness of the animal model of the actual human disease, its 
target population and heterogeneity3,30. Additionally, although the animal matching can be performed based on 
multiple prognostic preclinical variables, these are unlikely to directly translate into the clinical use due to dif-
ferences in the preclinical and clinical experimentation and physiology. However, the success rate of the human 
clinical trials is likely to benefit from a more accurate modelling of the heterogeneous treatment responses already 
during the preclinical phase3.

Additional simulations of the model performance. An important practical question is how many and 
what type of baseline covariates should be used for animal matching. To address this question, we performed 

Figure 4. Model-based power calculations for sufficient sample size estimation. Statistical power (the 
likelihood that a true treatment effect is detected) as a function of the sample size (animals per treatment 
arm). Power calculations were computed by bootstrap re-sampling, either without the matching information 
(unmatched) or using the information from the optimal pairs of matched samples (matched). The estimated 
sample sizes (N) are defined based on the conventional threshold of 0.8 power. (a) ARN-509 and MDV3100 
intervention effects in the VCaP mouse xenografts. (b) ORX and ORX+ Tx intervention effects in the 
orchiectomized (ORX) VCaP mouse xenografts.
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extensive simulation study (see Supplementary Methods), which confirmed and extended the results from our 
real case studies, showing that the matching information and paired analysis improves the statistical inference 
beyond the conventional approaches; this improvement was systematically observed across the number and type 
of covariates in terms of both detection sensitive and specificity (Supplementary Fig. S9). The largest benefits of 
the matching was gained with a selected panel of predictive baseline markers (e.g. 3–10 most informative covar-
iates), in relatively small-sized studies (N =  5 to 10), but even if performed using non-informative markers and 
in larger studies, matching did not lead to reduced sensitivity or specificity. We therefore recommend preclinical 
researches to use several expert-curated baseline variables to improve the animal allocation and statistical testing, 
with a focus on the most relevant markers for the particular inference task (Table 2).

We further performed simulation studies to assess the relative advantages of the matched regression modelling 
in comparison to a more standard adjusted regression modelling, where the baseline confounders are incor-
porated as covariates in the post-intervention testing phase (Supplementary Material). Such post-intervention 
adjustments in the regression modeling may suffer from confounders interacting with the intervention effect, 
which may be difficult to track down and control for retrospectively in the intervention effect testing, as well as 
from an uncertainty about which confounders should be incorporated as the regression coefficients. We noticed 
that a matched-based animal allocation systematically improved over the adjusted regression, while the use of 
the pairwise matching information in the regression modeling led to the overall best sensitivity and specificity 
(Supplementary Fig. S10). Taken together, these simulation results show that the matching-based design and sta-
tistical analysis generally outperforms the more conventional approaches that do not use the baseline matching 
information.

Current limitations and future perspectives. The presented methodology has certain limitations and 
potential caveats that should be understood. First of all, our specific focus here was on preclinical in vivo animal 
models, while the other forms of preclinical research are beyond the scope of this work. However, similar meth-
ods could be used also for in vitro experiments, where genetic and chemical perturbations and interventions are 
extensively modeled using dissimilarity-based methods analogous to the matching-procedure presented here31,32. 
Further, our methodology is implemented in the context of conventional preclinical study period, where ani-
mals are first selected for study inclusion, then baseline variables are measured based on which all the animals 
are randomly allocated into intervention groups (Fig. 1). Although the mixed-effect statistical model effectively 
captures the dynamic changes in the intervention responses, the baseline-based dissimilarity metrics do not typ-
ically consider time-dependent covariates; however, one can carry out also a longitudinal randomization proce-
dure using, for instance, dynamic allocation methods that take into account dynamic cohort additions, covariate 
structures and intervention responses33. Finally, although both of our example cases were longitudinal interven-
tion analyses of the tumor growth as a function of time modeled using linear mixed-effects models, the exper-
imental design approach is also applicable to single end-point comparisons as a special case. We demonstrated 
this through the use of multivariate extension of the standard t-test (so-called Hotelling’s T 2 test) in the VCaP 

Design issue Exploratory study Confirmatory study Aims and benefits

Study objective (focus on 
sensitivity/precision or 
specificity/generalizability)

Preclinical screening and 
pathophysiological hypothesis testing 
(sensitivity)

Estimating effect size and 
ensuring clinical translation 
(specificity)

Sensitivity allows effective search for 
intervention candidates, while specificity 
emphasizes translational aspects. Notably, 
mere statistical significance in preclinical 
testing does not yet guarantee clinical 
relevance

Example animal models19 Traditional cost-efficient models, e.g. 
subcutaneous xenografts

Translational models, e.g. 
orthotopic xenografts, PDX, 
GEMM

Seeking a balance between cost-efficiency and 
translatability 

Number of intervention groups 
(Parameter G)

High number of candidate intervention 
groups (Prefer G over N)

Carefully selected interventions to 
be validated (Prefer N over G)

High G allows effective exploration of novel 
candidates for downstream confirmatory 
studies

Number of animals in each 
intervention arm (Parameter N)

Focus on testing multiple candidate 
intervention groups at sufficient sample 
size (medium N)

High confidence required for true 
positive effects as well as for effect 
size estimate (high N)

Well-characterized animals and sufficient 
N allows better translation to the target 
population and improved generalizability

Number of covariates d in 
matching (Data dimension d)

Many possible confounding covariates, 
with suspected effect on the primary 
response (flexible d)

Ideally only few selected 
confounding covariates, 
which affect the representative 
intervention outcome (low d)

Matched animals in separate treatment arms 
allows more accurate inference both in terms 
of sensitivity and specificity

Estimation of sample size for 
the study and effect sizes for the 
interventions

Often difficult due to lack of pilot 
studies for the candidate interventions

Key ingredient in ensuring 
sufficient statistical power1,9

Sufficient statistical power to identify true 
intervention effects and reject false effects. 
Accurate effect size estimation assists in 
evaluating clinical significance

Maximization of the consistency 
in handling of the individual 
animals and/or tumours

Relevant in all study aims Relevant in all study aims Prevent undesired stratification and false 
detections due to potential batch-effects

Taking into account potential 
dependence structures (e.g. 
tumours within the same 
animal)

Highly dependent on the number of 
G in relation to N. Some degree of 
compromise is acceptable to maximize 
sensitivity

Highly relevant, e.g. cage-effects 
are attributed to high attrition 
rates of preclinical findings 6,12–14

Prevents over-estimation of the required 
sample size due to so-called pseudo-
replication15

Table 2.  Experimental design issues in exploratory and confirmatory preclinical studies. Exploratory and 
confirmatory study aims adopted from Kimmelman et al.29
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These issues are important both for exploratory and confirmatory preclinical studies, in order to improve their 
generalizability and translatability toward human diseases29. Exploratory studies involve preclinical screening and 
pathophysiological hypothesis testing, placing therefore more focus on detection sensitivity, whereas confirma-
tory studies are geared more toward efficacy estimation and clinical translation, where specificity of the findings 
is often more important. These two study classes serve as examples of the various inferential aims of the preclin-
ical studies, and we hope our considerations will complement the current ARRIVE guidelines15, in terms of the 
statistical design and analysis of intervention effects. However, there remain several other factors that are outside 
the scope of the statistical methods introduced here, which may have much bigger role in the generalizability and 
translatability of the preclinical findings. For instance, although the internal variation in the treatment response 
can be controlled to a large extent using the matching and randomization methodology, these cannot normalize 
the effects of external factors, such as the representativeness of the animal model of the actual human disease, its 
target population and heterogeneity3,30. Additionally, although the animal matching can be performed based on 
multiple prognostic preclinical variables, these are unlikely to directly translate into the clinical use due to dif-
ferences in the preclinical and clinical experimentation and physiology. However, the success rate of the human 
clinical trials is likely to benefit from a more accurate modelling of the heterogeneous treatment responses already 
during the preclinical phase3.

Additional simulations of the model performance. An important practical question is how many and 
what type of baseline covariates should be used for animal matching. To address this question, we performed 

Figure 4. Model-based power calculations for sufficient sample size estimation. Statistical power (the 
likelihood that a true treatment effect is detected) as a function of the sample size (animals per treatment 
arm). Power calculations were computed by bootstrap re-sampling, either without the matching information 
(unmatched) or using the information from the optimal pairs of matched samples (matched). The estimated 
sample sizes (N) are defined based on the conventional threshold of 0.8 power. (a) ARN-509 and MDV3100 
intervention effects in the VCaP mouse xenografts. (b) ORX and ORX+ Tx intervention effects in the 
orchiectomized (ORX) VCaP mouse xenografts.
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extensive simulation study (see Supplementary Methods), which confirmed and extended the results from our 
real case studies, showing that the matching information and paired analysis improves the statistical inference 
beyond the conventional approaches; this improvement was systematically observed across the number and type 
of covariates in terms of both detection sensitive and specificity (Supplementary Fig. S9). The largest benefits of 
the matching was gained with a selected panel of predictive baseline markers (e.g. 3–10 most informative covar-
iates), in relatively small-sized studies (N =  5 to 10), but even if performed using non-informative markers and 
in larger studies, matching did not lead to reduced sensitivity or specificity. We therefore recommend preclinical 
researches to use several expert-curated baseline variables to improve the animal allocation and statistical testing, 
with a focus on the most relevant markers for the particular inference task (Table 2).

We further performed simulation studies to assess the relative advantages of the matched regression modelling 
in comparison to a more standard adjusted regression modelling, where the baseline confounders are incor-
porated as covariates in the post-intervention testing phase (Supplementary Material). Such post-intervention 
adjustments in the regression modeling may suffer from confounders interacting with the intervention effect, 
which may be difficult to track down and control for retrospectively in the intervention effect testing, as well as 
from an uncertainty about which confounders should be incorporated as the regression coefficients. We noticed 
that a matched-based animal allocation systematically improved over the adjusted regression, while the use of 
the pairwise matching information in the regression modeling led to the overall best sensitivity and specificity 
(Supplementary Fig. S10). Taken together, these simulation results show that the matching-based design and sta-
tistical analysis generally outperforms the more conventional approaches that do not use the baseline matching 
information.

Current limitations and future perspectives. The presented methodology has certain limitations and 
potential caveats that should be understood. First of all, our specific focus here was on preclinical in vivo animal 
models, while the other forms of preclinical research are beyond the scope of this work. However, similar meth-
ods could be used also for in vitro experiments, where genetic and chemical perturbations and interventions are 
extensively modeled using dissimilarity-based methods analogous to the matching-procedure presented here31,32. 
Further, our methodology is implemented in the context of conventional preclinical study period, where ani-
mals are first selected for study inclusion, then baseline variables are measured based on which all the animals 
are randomly allocated into intervention groups (Fig. 1). Although the mixed-effect statistical model effectively 
captures the dynamic changes in the intervention responses, the baseline-based dissimilarity metrics do not typ-
ically consider time-dependent covariates; however, one can carry out also a longitudinal randomization proce-
dure using, for instance, dynamic allocation methods that take into account dynamic cohort additions, covariate 
structures and intervention responses33. Finally, although both of our example cases were longitudinal interven-
tion analyses of the tumor growth as a function of time modeled using linear mixed-effects models, the exper-
imental design approach is also applicable to single end-point comparisons as a special case. We demonstrated 
this through the use of multivariate extension of the standard t-test (so-called Hotelling’s T 2 test) in the VCaP 

Design issue Exploratory study Confirmatory study Aims and benefits

Study objective (focus on 
sensitivity/precision or 
specificity/generalizability)

Preclinical screening and 
pathophysiological hypothesis testing 
(sensitivity)

Estimating effect size and 
ensuring clinical translation 
(specificity)

Sensitivity allows effective search for 
intervention candidates, while specificity 
emphasizes translational aspects. Notably, 
mere statistical significance in preclinical 
testing does not yet guarantee clinical 
relevance

Example animal models19 Traditional cost-efficient models, e.g. 
subcutaneous xenografts

Translational models, e.g. 
orthotopic xenografts, PDX, 
GEMM

Seeking a balance between cost-efficiency and 
translatability 

Number of intervention groups 
(Parameter G)

High number of candidate intervention 
groups (Prefer G over N)

Carefully selected interventions to 
be validated (Prefer N over G)

High G allows effective exploration of novel 
candidates for downstream confirmatory 
studies

Number of animals in each 
intervention arm (Parameter N)

Focus on testing multiple candidate 
intervention groups at sufficient sample 
size (medium N)

High confidence required for true 
positive effects as well as for effect 
size estimate (high N)

Well-characterized animals and sufficient 
N allows better translation to the target 
population and improved generalizability

Number of covariates d in 
matching (Data dimension d)

Many possible confounding covariates, 
with suspected effect on the primary 
response (flexible d)

Ideally only few selected 
confounding covariates, 
which affect the representative 
intervention outcome (low d)

Matched animals in separate treatment arms 
allows more accurate inference both in terms 
of sensitivity and specificity

Estimation of sample size for 
the study and effect sizes for the 
interventions

Often difficult due to lack of pilot 
studies for the candidate interventions

Key ingredient in ensuring 
sufficient statistical power1,9

Sufficient statistical power to identify true 
intervention effects and reject false effects. 
Accurate effect size estimation assists in 
evaluating clinical significance

Maximization of the consistency 
in handling of the individual 
animals and/or tumours

Relevant in all study aims Relevant in all study aims Prevent undesired stratification and false 
detections due to potential batch-effects

Taking into account potential 
dependence structures (e.g. 
tumours within the same 
animal)

Highly dependent on the number of 
G in relation to N. Some degree of 
compromise is acceptable to maximize 
sensitivity

Highly relevant, e.g. cage-effects 
are attributed to high attrition 
rates of preclinical findings 6,12–14

Prevents over-estimation of the required 
sample size due to so-called pseudo-
replication15

Table 2.  Experimental design issues in exploratory and confirmatory preclinical studies. Exploratory and 
confirmatory study aims adopted from Kimmelman et al.29
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xenografts, where we observed that the PSA surrogate marker correlated well with the primary outcome of tumor 
volume. Importantly, it was shown that the detection sensitivity of the subtle treatment effect of MDV3100 was 
increased when the end-point markers were coupled with the matching information through paired T 2-testing 
(Supplementary Fig. S11).

As a future work, it will be important to perform a more systematic review and evaluation of the practices 
and factors that affect treatment assessment in preclinical intervention studies in vivo. These include experi-
mental factors, such as measurement frequency, structured missing information due to both lower censoring at 
response detection limit and right-censoring at death, extent of pseudo-replication and confounding variability 
due to correlated structures (e.g., multiple tumors), as well as dynamic changes in the treatment effects over time. 
In particular, non-random missing values pose challenges to any statistical testing approaches, including our 
matching-based post-intervention testing procedure, which assumes that both of the paired individuals have 
been observed in order to effectively model the pairwise treatment differences. Such procedure creates the caveat 
that highly aggressive tumor groups, which are often being censored due to ethical reasons, may fail to provide 
representative animal/tumor pairs with those individuals with fully-observed longitudinal response profiles. This 
aspect of the pairwise matching procedure may actually provide also an advantage compared to the standard 
statistical methods, which often treat all the missing data as missing-at-random (MAR), as censoring removes 
pairwise differences from both of the animals that have a matched baseline profile; therefore, right-censored 
missingness will not accumulate only to aggressively growing groups. Although it is possible that this allows for 
less-biased estimates, provided that the prognostic matching covariates can accurately predict the response, this 
potential advantage may come at the expense of decreased power to detect the longitudinal intervention differ-
ences as dominant right-censoring may result in insufficiently short pairwise longitudinal trajectories. Due to the 
complex nature of non-random missingness in the post-intervention testing, systematic evaluation of these effects 
warrants a separate future work in various preclinical models and experimental setups.

Methods
Optimal non-bipartite matching problem formulation. Matching was used to allocate individual animals 
into homogeneous subgroups according to a pre-defined dissimilarity criterion34 (Fig. 2; Supplementary Fig. S7a,b).  
Multiple baseline variables that may have either prognostic or confounding contribution to the treatment 
response were simultaneously used for balancing the treatment and control groups through the pre-selected dis-
similarity metric (Supplementary Table 1). By incorporating such baseline information, the experimental design 
allows for more sensitive and specific detection of effects that are due to the interventions alone35. In theory, 
matching should not introduce loss of statistical power even when performed on irrelevant covariates34. Since 
purely deterministic allocation methods have been criticized for the risk of introducing experimental biases due 
to, for instance, the lack of masking36, our constrained randomization procedure incorporated also a stochastic 
component, making it fully compatible with the current clinical recommendations of random allocation and bal-
ancing at baseline. The matching-based randomization approach refines all possible allocations from a single pool 
of individuals, and then randomly picks one of these most feasible allocation solutions. As such, the procedure 
greatly resembles the randomized block design, which is used in the clinical field to adjust for pre-intervention 
randomizations by stratifying for categorical factors (e.g. gender) or bins of numeric values (e.g. adolescent/adult/
elderly), especially in studies with small or moderate sample size37.

Expanding the previous formulation35 (Supplementary Fig. S7b), the optimal non-bipartite matching problem 
can be formulated as follows. Let us consider binary symmetrical matching matrices X of size N × N where:

∈X {0, 1} (1)i j,

∑ = − ∀ ∈ …X G j N1 {1, 2, , } (2)i i j,

∑ = − ∀ ∈ …X G i N1 {1, 2, , } (3)j i j,

=X X (4)i j j i, ,

=X 0 (5)i i,

The two sum constraints in equations (2 and 3) guarantee that the number of edges originating from a single 
observation equals the number of desired groups minus 1. Here, G denotes the number of desired members per 
each matching structure, and is equal to the number of desired intervention groups. This means that all the rows 
sum to G-1 and columns to G-1 in the binary matching matrix X (Fig. 2b). Dissimilarity matrix D of size N × N 
is defined as:

=D D (6)i j j i, ,

=D 0 (7)i i,

Each element Di,j is computed according to the chosen dissimilarity metric with possible alternatives summarized 
in Supplementary Table S1. The interpretation of the constraints are follows; in equation (1): For each possible 
pairs of individuals i and j, the pair is either matched (value 1, connected with an edge) or not matched (value 0);  
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(2): Each individual j is connected to other G-1 matched individuals; (3): Each individual i has G-1 other indi-
viduals that are matched to the individual i; (4): If individual i is matched to individual j, then individual j is also 
matched to individual i (no single direction relationships allowed); (5): An individual may not be matched to 
itself; (6): The similarity of individual i to individual j is as great as similarity of individual j to individual i (no 
directionality allowed). (7): An individual is always perfectly similar to itself.

The existing optimal non-bipartite matching algorithms, for example, the one presented in the R-package 
‘nbpMatching’35, consider paired non-bipartite matching, where:

∑ = ∀ ∈ …X j N1 {1, 2, , } (8)i i j,

∑ = ∀ ∈ …X i N1 {1, 2, , } (9)j i j,

We expanded upon this problem and developed a global optimization algorithm for solving this general-
ized problem. In order to introduce multigroup matches, we define fully connected structures called submatches. 
Matches are considered as graphs {V, E}, where V is vertex (node) and E is an edge between vertices. If obser-
vations i and j have not been matched, their edge is non-existing (Xi,j =  0). Each submatch Mk is a subgraph of 
V, where the number of vertices belonging to the k:th submatch Mk equals to G, that is, the number of desired 
groups. The matching matrix has to have edges between all of the elements belonging to Mk, that is:

= ∀ ∈X V V M1 , (10)i j i j k,

Furthermore, the submatches are non-overlapping, in the sense that no edges are allowed to exist between 
these substructures:

= ∀ ∈ ∈ ≠X V M V M k l0 , , (11)i j i k j l,

The total number of these substructures is N/G in the matching solution. Supplementary Fig. S3 shows the 
matching problem in the ARN-509/MDV3100-experiment with the desired number of groups G =  5, which illus-
trates the increase in computational complexity as the number of edges within a submatch increases per binomial 
coefficients. The optimal matching problem is:

∑ ∑ X Dmin (12)X i j i j i j, ,

The optimization problem in equation (12) is used to identify the matching matrix X that minimizes the sums 
of distances that fulfill the constraints in equations (1–5) for a given distance matrix D with desired submatch 
size G. These identified submatches may then be used to allocate the intervention groups (Fig. 2), with possible 
additional constraints as described in Supplementary Methods.

Mixed type baseline information in the matching. We used categorical variables alongside numerical 
variables in the matching problem. We divided this into two options: (i) relaxed, where the categorical informa-
tion increments distance at Di,j by a certain amount if the two observations i and j originated from different cate-
gorical labels, and (ii) strict, where observations with separate categorical labels may never be matched by setting 
their relative distance to infinity (Di,j =  ∞ ). Observations of relaxed type may be part of the same submatch even if 
they have different labels, provided that their similarity in the numerical dimensions dominates over the categor-
ical difference. Whether or not this happens, depends on the chosen distance metric (Supplementary Table S1);  
for example, the Gower’s dissimilarity38 is a popular choice for combining mixed type information, but also other 
metrics have been proposed39–41. In the strict approach, two observations with different categorical labels may 
never be part of the same submatch, and therefore this option eliminates a large fraction of possible solutions by 
limiting the search to a smaller solution space due to infinite values in D. This approach also forces each interven-
tion group to contain an equal number of members from each sub-strata.

Branch and bound algorithm (exact optimization). The number of possible X binary matching matrix 
solutions that fulfill the constraints set in equations (1–5) increases exponentially as a function of the number of 
individuals participating in the matching. For detection of the global optimum of equation (12) in the discrete 
optimization task, a branch and bound algorithm relies on implicit exhaustive enumeration of all possible com-
binations in a tree-like structure. Within this structure, however, massive amounts of solutions are omitted based 
on knowledge that the omitted solutions could theoretically not be better than the current best found solution. 
If a branch of solutions may include a solution better than the current best found solution, it has to be searched 
through enumeration. The algorithm itself may be depicted as traversing a tree-like structure using alternating 
steps called the branching step that expands the current search tree, and the bounding steps that omit large 
non-optimal areas of the search tree (Supplementary Fig. S7c,d). These branch and bound steps are described in 
detail in our Supplementary Material, along with an alternative heuristic Genetic Algorithm (GA) that provides a 
faster non-exact optimization alternative for large studies.

Matched mixed-effects modeling of treatment effects. In order to evaluate the effect of interventions 
in a longitudinal study, we assumed that the response variable y (e.g. PSA concentration) for the i:th tumor from 
the intervention group g1 or g2 grows according to the following linear model:
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xenografts, where we observed that the PSA surrogate marker correlated well with the primary outcome of tumor 
volume. Importantly, it was shown that the detection sensitivity of the subtle treatment effect of MDV3100 was 
increased when the end-point markers were coupled with the matching information through paired T 2-testing 
(Supplementary Fig. S11).

As a future work, it will be important to perform a more systematic review and evaluation of the practices 
and factors that affect treatment assessment in preclinical intervention studies in vivo. These include experi-
mental factors, such as measurement frequency, structured missing information due to both lower censoring at 
response detection limit and right-censoring at death, extent of pseudo-replication and confounding variability 
due to correlated structures (e.g., multiple tumors), as well as dynamic changes in the treatment effects over time. 
In particular, non-random missing values pose challenges to any statistical testing approaches, including our 
matching-based post-intervention testing procedure, which assumes that both of the paired individuals have 
been observed in order to effectively model the pairwise treatment differences. Such procedure creates the caveat 
that highly aggressive tumor groups, which are often being censored due to ethical reasons, may fail to provide 
representative animal/tumor pairs with those individuals with fully-observed longitudinal response profiles. This 
aspect of the pairwise matching procedure may actually provide also an advantage compared to the standard 
statistical methods, which often treat all the missing data as missing-at-random (MAR), as censoring removes 
pairwise differences from both of the animals that have a matched baseline profile; therefore, right-censored 
missingness will not accumulate only to aggressively growing groups. Although it is possible that this allows for 
less-biased estimates, provided that the prognostic matching covariates can accurately predict the response, this 
potential advantage may come at the expense of decreased power to detect the longitudinal intervention differ-
ences as dominant right-censoring may result in insufficiently short pairwise longitudinal trajectories. Due to the 
complex nature of non-random missingness in the post-intervention testing, systematic evaluation of these effects 
warrants a separate future work in various preclinical models and experimental setups.

Methods
Optimal non-bipartite matching problem formulation. Matching was used to allocate individual animals 
into homogeneous subgroups according to a pre-defined dissimilarity criterion34 (Fig. 2; Supplementary Fig. S7a,b).  
Multiple baseline variables that may have either prognostic or confounding contribution to the treatment 
response were simultaneously used for balancing the treatment and control groups through the pre-selected dis-
similarity metric (Supplementary Table 1). By incorporating such baseline information, the experimental design 
allows for more sensitive and specific detection of effects that are due to the interventions alone35. In theory, 
matching should not introduce loss of statistical power even when performed on irrelevant covariates34. Since 
purely deterministic allocation methods have been criticized for the risk of introducing experimental biases due 
to, for instance, the lack of masking36, our constrained randomization procedure incorporated also a stochastic 
component, making it fully compatible with the current clinical recommendations of random allocation and bal-
ancing at baseline. The matching-based randomization approach refines all possible allocations from a single pool 
of individuals, and then randomly picks one of these most feasible allocation solutions. As such, the procedure 
greatly resembles the randomized block design, which is used in the clinical field to adjust for pre-intervention 
randomizations by stratifying for categorical factors (e.g. gender) or bins of numeric values (e.g. adolescent/adult/
elderly), especially in studies with small or moderate sample size37.

Expanding the previous formulation35 (Supplementary Fig. S7b), the optimal non-bipartite matching problem 
can be formulated as follows. Let us consider binary symmetrical matching matrices X of size N × N where:

∈X {0, 1} (1)i j,

∑ = − ∀ ∈ …X G j N1 {1, 2, , } (2)i i j,

∑ = − ∀ ∈ …X G i N1 {1, 2, , } (3)j i j,

=X X (4)i j j i, ,

=X 0 (5)i i,

The two sum constraints in equations (2 and 3) guarantee that the number of edges originating from a single 
observation equals the number of desired groups minus 1. Here, G denotes the number of desired members per 
each matching structure, and is equal to the number of desired intervention groups. This means that all the rows 
sum to G-1 and columns to G-1 in the binary matching matrix X (Fig. 2b). Dissimilarity matrix D of size N × N 
is defined as:

=D D (6)i j j i, ,

=D 0 (7)i i,

Each element Di,j is computed according to the chosen dissimilarity metric with possible alternatives summarized 
in Supplementary Table S1. The interpretation of the constraints are follows; in equation (1): For each possible 
pairs of individuals i and j, the pair is either matched (value 1, connected with an edge) or not matched (value 0);  
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(2): Each individual j is connected to other G-1 matched individuals; (3): Each individual i has G-1 other indi-
viduals that are matched to the individual i; (4): If individual i is matched to individual j, then individual j is also 
matched to individual i (no single direction relationships allowed); (5): An individual may not be matched to 
itself; (6): The similarity of individual i to individual j is as great as similarity of individual j to individual i (no 
directionality allowed). (7): An individual is always perfectly similar to itself.

The existing optimal non-bipartite matching algorithms, for example, the one presented in the R-package 
‘nbpMatching’35, consider paired non-bipartite matching, where:

∑ = ∀ ∈ …X j N1 {1, 2, , } (8)i i j,

∑ = ∀ ∈ …X i N1 {1, 2, , } (9)j i j,

We expanded upon this problem and developed a global optimization algorithm for solving this general-
ized problem. In order to introduce multigroup matches, we define fully connected structures called submatches. 
Matches are considered as graphs {V, E}, where V is vertex (node) and E is an edge between vertices. If obser-
vations i and j have not been matched, their edge is non-existing (Xi,j =  0). Each submatch Mk is a subgraph of 
V, where the number of vertices belonging to the k:th submatch Mk equals to G, that is, the number of desired 
groups. The matching matrix has to have edges between all of the elements belonging to Mk, that is:

= ∀ ∈X V V M1 , (10)i j i j k,

Furthermore, the submatches are non-overlapping, in the sense that no edges are allowed to exist between 
these substructures:

= ∀ ∈ ∈ ≠X V M V M k l0 , , (11)i j i k j l,

The total number of these substructures is N/G in the matching solution. Supplementary Fig. S3 shows the 
matching problem in the ARN-509/MDV3100-experiment with the desired number of groups G =  5, which illus-
trates the increase in computational complexity as the number of edges within a submatch increases per binomial 
coefficients. The optimal matching problem is:

∑ ∑ X Dmin (12)X i j i j i j, ,

The optimization problem in equation (12) is used to identify the matching matrix X that minimizes the sums 
of distances that fulfill the constraints in equations (1–5) for a given distance matrix D with desired submatch 
size G. These identified submatches may then be used to allocate the intervention groups (Fig. 2), with possible 
additional constraints as described in Supplementary Methods.

Mixed type baseline information in the matching. We used categorical variables alongside numerical 
variables in the matching problem. We divided this into two options: (i) relaxed, where the categorical informa-
tion increments distance at Di,j by a certain amount if the two observations i and j originated from different cate-
gorical labels, and (ii) strict, where observations with separate categorical labels may never be matched by setting 
their relative distance to infinity (Di,j =  ∞ ). Observations of relaxed type may be part of the same submatch even if 
they have different labels, provided that their similarity in the numerical dimensions dominates over the categor-
ical difference. Whether or not this happens, depends on the chosen distance metric (Supplementary Table S1);  
for example, the Gower’s dissimilarity38 is a popular choice for combining mixed type information, but also other 
metrics have been proposed39–41. In the strict approach, two observations with different categorical labels may 
never be part of the same submatch, and therefore this option eliminates a large fraction of possible solutions by 
limiting the search to a smaller solution space due to infinite values in D. This approach also forces each interven-
tion group to contain an equal number of members from each sub-strata.

Branch and bound algorithm (exact optimization). The number of possible X binary matching matrix 
solutions that fulfill the constraints set in equations (1–5) increases exponentially as a function of the number of 
individuals participating in the matching. For detection of the global optimum of equation (12) in the discrete 
optimization task, a branch and bound algorithm relies on implicit exhaustive enumeration of all possible com-
binations in a tree-like structure. Within this structure, however, massive amounts of solutions are omitted based 
on knowledge that the omitted solutions could theoretically not be better than the current best found solution. 
If a branch of solutions may include a solution better than the current best found solution, it has to be searched 
through enumeration. The algorithm itself may be depicted as traversing a tree-like structure using alternating 
steps called the branching step that expands the current search tree, and the bounding steps that omit large 
non-optimal areas of the search tree (Supplementary Fig. S7c,d). These branch and bound steps are described in 
detail in our Supplementary Material, along with an alternative heuristic Genetic Algorithm (GA) that provides a 
faster non-exact optimization alternative for large studies.

Matched mixed-effects modeling of treatment effects. In order to evaluate the effect of interventions 
in a longitudinal study, we assumed that the response variable y (e.g. PSA concentration) for the i:th tumor from 
the intervention group g1 or g2 grows according to the following linear model:
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β β β γ γ= + ⋅ + ⋅ ⋅ + + ⋅ +y x g x x e (13)i g t t t i i t i g t, , 0 1 2 2 ,0 ,1 , ,

Here, variable xt ∈  N0 indicates the t:th time point in the study (e.g. day or week since starting the interventions). 
Fixed effects β0 and β1 correspond to be population based effects, where b0 models the initial average response 
value at baseline (xt =  0), and b1 models the longitudinal expected linear growth pattern of the tumor, while β2 
includes a binary indicator g2 which obtains value 1 if the i:th tumor belongs to the group g2 and 0 otherwise. 
Random effects γ i,0 and γ i,1 model variation of the i:th individual in the initial response levels or in the growth rate 
patterns, respectively, and these are analogous to the fixed effects β0 and β1. We modeled random noise with the 
error term ei,t, and the error and random effects are assumed to be normally distributed:

σ σ σγ γ~ ~ ~e u uN(0, ), N(0, ), N(0, ) (14)i t e i i, ,0 ,0 ,1 ,1

The unmatched model in equation (13) does not incorporate supporting prognostic matching information 
beyond the baseline levels of the main response y, although tailored modeling approaches exist for similarly 
formulated models42,43. Therefore, we propose a matched mixed-effects model, which incorporates the matching 
information obtained from the matching of pairs {i,j} before the interventions:

=–y y y (15)i g t j g t i j t, 1, , 2, { , },

where the submatched individuals i and j have been allocated to different intervention arms g1 and g2 as described 
in (Figs 1 and 2). The resulting time point specific pairwise observations are then modeled longitudinally using 
a mixed-effects model:

β β β γ γ= + ⋅ + ⋅ + + ⋅ +y x x x e (16)i j t intercept slope t intervention t i j i j t i j t{ , }, { , },0 { , },1 { , },

where by default we propose setting βintercept =  0 and βslope =  0 due to their redundancy in the matched curves (see 
Fig. 3c bottom panel for the visual interpretation). While γ 0 effectively models the baseline (xt =  0) individual level 
random intercept for the response variable y, the model term γ 1 allows pairwise variation in the growth slopes. 
This allows prognostic inference for the population effects, especially for the inter-group growth difference in the 
fixed effect βintervention, since additional baseline experimental factors are incorporated through the matching {i,j}.

The mixed-effects model fitting was performed using the lme4-package44 in the R statistical software45. In 
Table 1, the p-values for fixed effects β were computed using Satterthwaite’s approximation for degrees of freedom 
using the lmerTest-package46, while significances of random effects u can be tested using log-likelihood ratio 
tests as proposed in literature47. The concept of matching-based mixed-effects modeling is presented in Fig. 3. 
Example Unmatched equation (13) and Matched equation (16) model fits are shown for the Control vs. MDV3100 
comparison (Single submatch visualized in Fig. 3a of the total 15 pairs). Due to incorporating prognostic 
submatch-information to the modeled curves (Fig. 3a,b), the matched inference resulted in an increase in sensi-
tivity (Table 1, Fig. 4). Complete visualizations of the model fits are given in the Supplementary Figs S5 and S6.  
Interestingly, prognostic accuracy in the intervention testing was most likely allowed by the pairing of similar 
curves in ORX+ Tx vs ORX testing (Supplementary Fig. S6b), where the matched curves retained approximately 
linear trends despite the lack of an early PSA nadir.

Power simulations from experimental datasets. Power analysis is important to ensure statistical 
validity of the experimental findings. So far, reliable resources have not been available for the preclinical studies 
in which the experiments pose a number of specific requirements, namely the complex nature of longitudinal 
responses, right-censoring occurs due to death of animals, limited number of individuals, batch-wise effects, and 
multivariate baseline characteristics. We addressed these challenges by offering a sampling based power analysis 
tool that samples individuals with replacement (bootstrapping) from a pre-fitted mixed-effects model, and then 
re-fits the specified statistical model to the sampled datasets. The method then provides a power curve as a func-
tion of N in respect to each of the tested population hypotheses. We draw inspiration for this simulation approach 
from literature48, although we propose sampling by bootstrapping the data, rather than based on the mixed-effects 
model parameters.

There are a number of advantages in evaluating the power of a study through simulations: (i) Data based 
simulations do not force the experimenter to perform an expert guess on an often non-intuitive model parameter 
and its variance to assess required sample amounts. Instead, the experimenter may provide artificial data, e.g. data 
observed in literature or in pilot studies. This approach is drastically more concrete and expert curated approach 
to the task. (ii) By sampling observations from a pre-fitted mixed-effects model, our approach offers possibility to 
incorporate also indirect effects, such as censoring due to unexpected death of animals during the study, which 
may be otherwise difficult or impossible to infer directly for the model parameters. (iii) The sampling function 
relies on a readily fitted mixed-effects model for data input, automatically identifies a suitable sampling unit, and 
then re-fits the statistical model to the sampled datasets. This feature requires the experimenter to readily specify 
tested population hypotheses and the structure of the mixed-effects model already in the design phase of the 
experiment. By requiring such pre-experiment coordination of the tested hypotheses and pre-specified structure 
of the model, our method encourages well specified á priori hypotheses.

Ethics Statement. All mice were handled in accordance with the institutional animal care policies of 
the University of Turku (Turku, Finland). The animals were specific pathogen-free, fed with complete pel-
leted chow and tap water ad libitum in a room with controlled light (12 h light, 12 h darkness) and tempera-
ture (21 ±  1 °C). The two animal experiments were approved by the Finnish Animal Ethics Committee (licenses 
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ESAVI/1993/04.10.03/2011 and ESAVI/7472/04.10.03/2012). The institutional policies on animal experimen-
tation fully meet the international requirements as defined in the NIH Guide on animal experimentation. 
Supplementary Methods provide further details of the intervention experiments and Supplementary Note the 
ARRIVE guideline checklist for the two animal studies.
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β β β γ γ= + ⋅ + ⋅ ⋅ + + ⋅ +y x g x x e (13)i g t t t i i t i g t, , 0 1 2 2 ,0 ,1 , ,

Here, variable xt ∈  N0 indicates the t:th time point in the study (e.g. day or week since starting the interventions). 
Fixed effects β0 and β1 correspond to be population based effects, where b0 models the initial average response 
value at baseline (xt =  0), and b1 models the longitudinal expected linear growth pattern of the tumor, while β2 
includes a binary indicator g2 which obtains value 1 if the i:th tumor belongs to the group g2 and 0 otherwise. 
Random effects γ i,0 and γ i,1 model variation of the i:th individual in the initial response levels or in the growth rate 
patterns, respectively, and these are analogous to the fixed effects β0 and β1. We modeled random noise with the 
error term ei,t, and the error and random effects are assumed to be normally distributed:

σ σ σγ γ~ ~ ~e u uN(0, ), N(0, ), N(0, ) (14)i t e i i, ,0 ,0 ,1 ,1

The unmatched model in equation (13) does not incorporate supporting prognostic matching information 
beyond the baseline levels of the main response y, although tailored modeling approaches exist for similarly 
formulated models42,43. Therefore, we propose a matched mixed-effects model, which incorporates the matching 
information obtained from the matching of pairs {i,j} before the interventions:

=–y y y (15)i g t j g t i j t, 1, , 2, { , },

where the submatched individuals i and j have been allocated to different intervention arms g1 and g2 as described 
in (Figs 1 and 2). The resulting time point specific pairwise observations are then modeled longitudinally using 
a mixed-effects model:

β β β γ γ= + ⋅ + ⋅ + + ⋅ +y x x x e (16)i j t intercept slope t intervention t i j i j t i j t{ , }, { , },0 { , },1 { , },

where by default we propose setting βintercept =  0 and βslope =  0 due to their redundancy in the matched curves (see 
Fig. 3c bottom panel for the visual interpretation). While γ 0 effectively models the baseline (xt =  0) individual level 
random intercept for the response variable y, the model term γ 1 allows pairwise variation in the growth slopes. 
This allows prognostic inference for the population effects, especially for the inter-group growth difference in the 
fixed effect βintervention, since additional baseline experimental factors are incorporated through the matching {i,j}.

The mixed-effects model fitting was performed using the lme4-package44 in the R statistical software45. In 
Table 1, the p-values for fixed effects β were computed using Satterthwaite’s approximation for degrees of freedom 
using the lmerTest-package46, while significances of random effects u can be tested using log-likelihood ratio 
tests as proposed in literature47. The concept of matching-based mixed-effects modeling is presented in Fig. 3. 
Example Unmatched equation (13) and Matched equation (16) model fits are shown for the Control vs. MDV3100 
comparison (Single submatch visualized in Fig. 3a of the total 15 pairs). Due to incorporating prognostic 
submatch-information to the modeled curves (Fig. 3a,b), the matched inference resulted in an increase in sensi-
tivity (Table 1, Fig. 4). Complete visualizations of the model fits are given in the Supplementary Figs S5 and S6.  
Interestingly, prognostic accuracy in the intervention testing was most likely allowed by the pairing of similar 
curves in ORX+ Tx vs ORX testing (Supplementary Fig. S6b), where the matched curves retained approximately 
linear trends despite the lack of an early PSA nadir.

Power simulations from experimental datasets. Power analysis is important to ensure statistical 
validity of the experimental findings. So far, reliable resources have not been available for the preclinical studies 
in which the experiments pose a number of specific requirements, namely the complex nature of longitudinal 
responses, right-censoring occurs due to death of animals, limited number of individuals, batch-wise effects, and 
multivariate baseline characteristics. We addressed these challenges by offering a sampling based power analysis 
tool that samples individuals with replacement (bootstrapping) from a pre-fitted mixed-effects model, and then 
re-fits the specified statistical model to the sampled datasets. The method then provides a power curve as a func-
tion of N in respect to each of the tested population hypotheses. We draw inspiration for this simulation approach 
from literature48, although we propose sampling by bootstrapping the data, rather than based on the mixed-effects 
model parameters.

There are a number of advantages in evaluating the power of a study through simulations: (i) Data based 
simulations do not force the experimenter to perform an expert guess on an often non-intuitive model parameter 
and its variance to assess required sample amounts. Instead, the experimenter may provide artificial data, e.g. data 
observed in literature or in pilot studies. This approach is drastically more concrete and expert curated approach 
to the task. (ii) By sampling observations from a pre-fitted mixed-effects model, our approach offers possibility to 
incorporate also indirect effects, such as censoring due to unexpected death of animals during the study, which 
may be otherwise difficult or impossible to infer directly for the model parameters. (iii) The sampling function 
relies on a readily fitted mixed-effects model for data input, automatically identifies a suitable sampling unit, and 
then re-fits the statistical model to the sampled datasets. This feature requires the experimenter to readily specify 
tested population hypotheses and the structure of the mixed-effects model already in the design phase of the 
experiment. By requiring such pre-experiment coordination of the tested hypotheses and pre-specified structure 
of the model, our method encourages well specified á priori hypotheses.

Ethics Statement. All mice were handled in accordance with the institutional animal care policies of 
the University of Turku (Turku, Finland). The animals were specific pathogen-free, fed with complete pel-
leted chow and tap water ad libitum in a room with controlled light (12 h light, 12 h darkness) and tempera-
ture (21 ±  1 °C). The two animal experiments were approved by the Finnish Animal Ethics Committee (licenses 
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ESAVI/1993/04.10.03/2011 and ESAVI/7472/04.10.03/2012). The institutional policies on animal experimen-
tation fully meet the international requirements as defined in the NIH Guide on animal experimentation. 
Supplementary Methods provide further details of the intervention experiments and Supplementary Note the 
ARRIVE guideline checklist for the two animal studies.
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Supplementary Figure S1: Schematic illustrations of the common hierarchical structures that
need to be taken into account in animal allocation and the experiment designs of the two case
studies. (a) Preclinical cancer studies commonly incorporate a layered hierarchical design, where
multiple nested animals may originate from a single batch or a cage, while multiple tumors may
be located in a single animal. (b) ARN-509/MDV3100 -intervention study with orthotopic VCaP
prostate cancer cells in male immunodeficient mice (HSD: Athymic Nude Foxn 1nu). According
to the experimental procedure, orthotopic tumors were generated by injecting the cancer cells into
the prostate of each animal. The growth of the tumors was followed by weekly measurements of
the serum PSA indicating the tumor burden. The animals were castrated in two separate batches
on subsequent weeks, resulting in two substrata with different tumor growth characteristics. The
mice were followed by serum PSA measurements and after the re-appearance of the tumors the
mice were allocated into several CRPC treatment arms . Hierarchical allocation procedure based
on the global matching algorithm ensures that the substrata are evenly distributed among the
intervention groups. (c) ORX/ORX+Tx -intervention study with analogous subcutaneous VCaP
xenografts. A single substrata of animals was allocated into several intervention groups (out of
which Control, ORX and ORX+Tx are presented in this paper), while some animals had to be
dropped out due to ethical reasons.
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Supplementary Figure S2: Experimental data of the VCaP study. (a) Two se-
lected treatment alternatives, ARN-509 (n = 15) and MDV3100 (n = 15), were
compared to the vehicle group (n = 15). (b) As expected, the initial PSA level at
baseline was predictive of the PSA value measured after 4 weeks of treatment. (c)
Similarly, body weights of the animals at baseline were correlated with the body
weights after 4 weeks of treatment. (d) Interestingly, the initial body weight showed
a borderline inverse correlation with the PSA level after 4 weeks of treatment in the
MDV3100 group (p=0.021), while this relationship was not seen in the other groups.
Such a multivariate association between the treatment response (final PSA) and an
initial animal characteristic (body weight at baseline) would be missed with simple
univariate animal matching procedures.
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multiple nested animals may originate from a single batch or a cage, while multiple tumors may
be located in a single animal. (b) ARN-509/MDV3100 -intervention study with orthotopic VCaP
prostate cancer cells in male immunodeficient mice (HSD: Athymic Nude Foxn 1nu). According
to the experimental procedure, orthotopic tumors were generated by injecting the cancer cells into
the prostate of each animal. The growth of the tumors was followed by weekly measurements of
the serum PSA indicating the tumor burden. The animals were castrated in two separate batches
on subsequent weeks, resulting in two substrata with different tumor growth characteristics. The
mice were followed by serum PSA measurements and after the re-appearance of the tumors the
mice were allocated into several CRPC treatment arms . Hierarchical allocation procedure based
on the global matching algorithm ensures that the substrata are evenly distributed among the
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Supplementary Figure S2: Experimental data of the VCaP study. (a) Two se-
lected treatment alternatives, ARN-509 (n = 15) and MDV3100 (n = 15), were
compared to the vehicle group (n = 15). (b) As expected, the initial PSA level at
baseline was predictive of the PSA value measured after 4 weeks of treatment. (c)
Similarly, body weights of the animals at baseline were correlated with the body
weights after 4 weeks of treatment. (d) Interestingly, the initial body weight showed
a borderline inverse correlation with the PSA level after 4 weeks of treatment in the
MDV3100 group (p=0.021), while this relationship was not seen in the other groups.
Such a multivariate association between the treatment response (final PSA) and an
initial animal characteristic (body weight at baseline) would be missed with simple
univariate animal matching procedures.
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Supplementary Figure S3: Solving the non-bipartite submatching problem in the
MDV3100/ARN-509 intervention study. (a) The animals (n = 75) were divided to two different
castration sub-strata, which were separately submatched only within a strata and subsequently
allocated evenly to the intervention arms (see Supplementary Fig. S1b). The matrix colors
indicate dissimilarities in the baseline characteristics, and the box color indicates animals being
part of same submatch. (b) Multidimensional Scaling (MDS) 2-dimensional projection of the com-
plex baseline characteristics, with each submatch indicated with connecting edges and different
coloring.
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Supplementary Figure S4: Solving the non-bipartite submatching problem in the ORX/ORX+Tx
intervention study. (a) The animals (n = 109) were matched to submatches of size 6, and subsequently
allocated to different intervention arms within each submatch. Only three of the intervention groups are
analyzed here (Control, ORX, ORX+Tx). The matrix colors indicate dissimilarities in the baseline char-
acteristics, and the box color indicates two animals being part of same submatch. (b) Multidimensional
Scaling (MDS) 2-dimensional projection of the complex baseline characteristics, with each submatch
indicated with connecting edges and different coloring.
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Supplementary Figure S5: Mixed-effects model fits in the ARN-509/MDV3100 intervention study. Top panel: response data;
middle panel: full model fit; bottom panel: fixed effects fit. (a) ARN-509 versus Vehicle. Left panel: unmatched inference; right
panel: matched inference. (b) MDV3100 versus Vehicle. Left panel: unmatched inference; right panel: matched inference. Model
coefficient estimates, standard deviations and p-values are presented in Table 1.
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preclinical cancer context, the non-bipartite matching enables detection of com-
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current best solution (indicated in red) cannot be improved in this solution range.
However, solutions in X1 ≤ x ≤ X2 and X2 ≤ x ≤ X3 have to be tested, since the
bounding function suggests a possible lower theoretical boundary in these solution
ranges.
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Supplementary Figure S8: Evaluation of the animal allocations in the ARN-509 /
MDV3100 VCaP xenograft study using Mantel’s test that compares the pre-intervention
dissimilarity matrices of the baseline animal characteristics to the post-intervention mRNA
gene expression profiles of the treated tumors. By visual inspection, two interesting dis-
similarity sub-groups were identified (pink boxes). Further, one exceptional baseline animal
remained an outlier also at the tumor mRNA-level (pink arrow). (a) Dissimilarity matrix
of the baseline characteristics for the sequenced animals (n = 12) was calculated using stan-
dardized Euclidean distance. (b) Dissimilarity matrix of the RNA-seq expression profiles
(fragments per kilobase of exon per million mapped reads, FPKM) was calculated using
Euclidean distance. (c) Distribution of the permutated correlation statistic. Statistically
significant Spearman correlation was observed between the baseline characteristics and post-
intervention mRNA expression (red line), by conducting n = 10, 000 permutations of the
dissimilarity matrices (Mantel’s test).
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dissimilarity matrices of the baseline animal characteristics to the post-intervention mRNA
gene expression profiles of the treated tumors. By visual inspection, two interesting dis-
similarity sub-groups were identified (pink boxes). Further, one exceptional baseline animal
remained an outlier also at the tumor mRNA-level (pink arrow). (a) Dissimilarity matrix
of the baseline characteristics for the sequenced animals (n = 12) was calculated using stan-
dardized Euclidean distance. (b) Dissimilarity matrix of the RNA-seq expression profiles
(fragments per kilobase of exon per million mapped reads, FPKM) was calculated using
Euclidean distance. (c) Distribution of the permutated correlation statistic. Statistically
significant Spearman correlation was observed between the baseline characteristics and post-
intervention mRNA expression (red line), by conducting n = 10, 000 permutations of the
dissimilarity matrices (Mantel’s test).
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Supplementary Figure S9: A simulation run of 1,000 matched 2-group datasets were generated for each combination in the
parameter grid, resulting in a total of 432,000 datasets for which matching was conducted and data drawn from mulvariate normal
distributions with given parameters. The matching procedure was used as in the manuscript, and conventional randomization
randomly allocated groups of equal size ignoring baseline information to both experiment groups. Paired or non-paired t-test was
used to determine whether there was a difference with α = 0.05 significance threshold. The following parameters were varied:
Magnitude of true group difference µ1 − µ2 ∈ {0, 1, 2}; Sample size per group N ∈ {5, 10, 15} ; Magnitude of informativeness
in (parameter q) predictive baseline variables s ∈ {0, 0.4, 0.7} ; Count of predictive baseline variables q ∈ {1, 3, 10, 20} ; Count
of non-predictive baseline variables p ∈ {1, 3, 10, 20}. Few interesting key results were annotated in the simulation results: (a)
Interestingly, when matched allocation was used, the specificity in testing was highly increased in the case when no true group
difference was present. This phenomenon persistent in the non-paired testing, highlighting that matching-based allocation also
serves to improve specificity and that non-paired testing can be benefit even if the matching information is not utilized in the
post-intervention testing. (b) A benefit in sensitivity was observed in the small group-wise different (µ1−µ2 = 1) in comparison to
the non-matched testing as long as the number of predictive markers was greater than non-informative baseline markers (q ≥ p).
As expected, this advantage was lost if no informative markers were present (s = 0), but no loss of accuracy was observed in
comparison to the conventional methods. (c) In small explorative studies (N = 5), a slight advantage in sensitivity was observed
especially if the baseline markers were highly predictive (s = 0.7), highlighting that predictive markers may help narrow down
candidates more effectively in such explorative studies with typically smaller sample sizes N .
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Supplementary Figure S10: Simulation results as a function of the predictive s parameter, with default R loess smoothing
applied for the visualization of the curves. Positive detection was defined using the conventional significance threshold of p < 0.05
for the multiple regression term to test differences between the two simulated groups. The overall performance of each modeling
strategy was assessed with the area under curve (AUC) over the whole range of correlation of the covariate with the outcome
(s), which summarizes the findings over the whole correlation spectrum both where there was no predictive baseline information
(low s) or where the single covariate had strong predictive power (high s), but was confounded by the three additional random
confounder-covariates. The three columns indicated the different sample sizes N ∈ {5, 10, 15}. (a-c) Simulations when no group
difference was present. (d-f) Mediocre group difference. (g-i) Strong group difference.
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Supplementary Figure S9: A simulation run of 1,000 matched 2-group datasets were generated for each combination in the
parameter grid, resulting in a total of 432,000 datasets for which matching was conducted and data drawn from mulvariate normal
distributions with given parameters. The matching procedure was used as in the manuscript, and conventional randomization
randomly allocated groups of equal size ignoring baseline information to both experiment groups. Paired or non-paired t-test was
used to determine whether there was a difference with α = 0.05 significance threshold. The following parameters were varied:
Magnitude of true group difference µ1 − µ2 ∈ {0, 1, 2}; Sample size per group N ∈ {5, 10, 15} ; Magnitude of informativeness
in (parameter q) predictive baseline variables s ∈ {0, 0.4, 0.7} ; Count of predictive baseline variables q ∈ {1, 3, 10, 20} ; Count
of non-predictive baseline variables p ∈ {1, 3, 10, 20}. Few interesting key results were annotated in the simulation results: (a)
Interestingly, when matched allocation was used, the specificity in testing was highly increased in the case when no true group
difference was present. This phenomenon persistent in the non-paired testing, highlighting that matching-based allocation also
serves to improve specificity and that non-paired testing can be benefit even if the matching information is not utilized in the
post-intervention testing. (b) A benefit in sensitivity was observed in the small group-wise different (µ1−µ2 = 1) in comparison to
the non-matched testing as long as the number of predictive markers was greater than non-informative baseline markers (q ≥ p).
As expected, this advantage was lost if no informative markers were present (s = 0), but no loss of accuracy was observed in
comparison to the conventional methods. (c) In small explorative studies (N = 5), a slight advantage in sensitivity was observed
especially if the baseline markers were highly predictive (s = 0.7), highlighting that predictive markers may help narrow down
candidates more effectively in such explorative studies with typically smaller sample sizes N .

Supplementary Figures

a b c

d e f

g h i

N = 5

No true 
difference

(μ1 - μ2 = 0)

Mediocre true 
difference

(μ1 - μ2 = 1)

Strong true 
difference

(μ1 - μ2 = 2)

N = 10 N = 15

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Matching-based randomization
No corrections
Adjusting coefficients
Matched difference

Conventional randomization
No corrections
Adjusting coefficients

P
ro

po
rti

on
 H

0 
re

je
ct

ed
P

ro
po

rti
on

 H
0 

re
je

ct
ed

P
ro

po
rti

on
 H

0 
re

je
ct

ed

s ss

AUC (0.032)
AUC (0.046)
AUC (0.050)
AUC (0.052)
AUC (0.051)

AUC (0.028)
AUC (0.045)
AUC (0.051)
AUC (0.050)
AUC (0.051)

AUC (0.028)
AUC (0.044)
AUC (0.049)
AUC (0.050)
AUC (0.050)

AUC (0.261)
AUC (0.204)
AUC (0.283)
AUC (0.288)
AUC (0.193)

AUC (0.564)
AUC (0.581)
AUC (0.641)
AUC (0.566)
AUC (0.547)

AUC (0.781)
AUC (0.794)
AUC (0.824)
AUC (0.751)
AUC (0.764)

AUC (0.799)
AUC (0.574)
AUC (0.754)
AUC (0.784)
AUC (0.517)

AUC (0.992)
AUC (0.982)
AUC (0.990)
AUC (0.987)
AUC (0.970)

AUC (1.000)
AUC (0.999)
AUC (1.000)
AUC (1.000)
AUC (0.999)

Supplementary Figure S10: Simulation results as a function of the predictive s parameter, with default R loess smoothing
applied for the visualization of the curves. Positive detection was defined using the conventional significance threshold of p < 0.05
for the multiple regression term to test differences between the two simulated groups. The overall performance of each modeling
strategy was assessed with the area under curve (AUC) over the whole range of correlation of the covariate with the outcome
(s), which summarizes the findings over the whole correlation spectrum both where there was no predictive baseline information
(low s) or where the single covariate had strong predictive power (high s), but was confounded by the three additional random
confounder-covariates. The three columns indicated the different sample sizes N ∈ {5, 10, 15}. (a-c) Simulations when no group
difference was present. (d-f) Mediocre group difference. (g-i) Strong group difference.
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Supplementary Figure S11: A single end-point testing example from the VCaP ARN-509 / MDV3100 -study.
Hotelling’s T 2 multivariate extension of the t-test was used to illustrate how two end-point markers can be tested
with or without the matching information. In this case the two end-point markers were highly correlated, illustrating
that the PSA was a feasible surrogate marker to serve as a proxy for the actual tumor size in the orthotopic VCaP
animal model. (a) In the non-paired case, MDV3100 was to some extent overlapping with the sacrifice measurements
from the Vehicle group. (b) Pairing the end-point markers and comparing to the null hypotheis that the multivariate
normal distribution µ = {0, 0}. The paired adjustment revealed difference between Vehicle and MDV3100, which was
consistent with the results observed in the longitudinal PSA analysis (Table 1).
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Supplementary Table S1. Distance/dissimilarity measures for capturing similarities between 
two d-dimensional variable vectors x and y. The symbol si denotes the standard deviation of 
the associated i:th variable; S denotes the d × d -dimensional covariance-variance matrix 
computed between the variables, thus incorporating also inter-variable correlations; R denotes 
the range of the variable. Some of the measures can be obtained as special cases of 
Minkowski or Mahalanobis (listed as footnotes). 
 
 

Distance measure Formula 

Minkowski † (∑|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑟𝑟
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|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖| 
 

Gower dissimilarity * continuous: | xi - yi | / Ri 
binary/categorical: 0 if xi = yi, 1 otherwise 

 
a obtained as a special case of Minkowski when r = 2; b obtained as a special case of 
Mahalanobis when S is a unit diagonal matrix; c obtained as a special case of Mahalanobis 
when S is a diagonal matrix; d obtained as a special case of Minkowski when r = 1; e obtained 
as a special case of Minkowski when r  → ∞; † is not scale-invariant, thus data normalization 
should be considered; * Suitable for mixed-type data. Gower’s dissimilarity coefficient is 
obtained by summarizing over all the available variables i=1,2,..., d. 
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Supplementary Figure S11: A single end-point testing example from the VCaP ARN-509 / MDV3100 -study.
Hotelling’s T 2 multivariate extension of the t-test was used to illustrate how two end-point markers can be tested
with or without the matching information. In this case the two end-point markers were highly correlated, illustrating
that the PSA was a feasible surrogate marker to serve as a proxy for the actual tumor size in the orthotopic VCaP
animal model. (a) In the non-paired case, MDV3100 was to some extent overlapping with the sacrifice measurements
from the Vehicle group. (b) Pairing the end-point markers and comparing to the null hypotheis that the multivariate
normal distribution µ = {0, 0}. The paired adjustment revealed difference between Vehicle and MDV3100, which was
consistent with the results observed in the longitudinal PSA analysis (Table 1).
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when S is a diagonal matrix; d obtained as a special case of Minkowski when r = 1; e obtained 
as a special case of Minkowski when r  → ∞; † is not scale-invariant, thus data normalization 
should be considered; * Suitable for mixed-type data. Gower’s dissimilarity coefficient is 
obtained by summarizing over all the available variables i=1,2,..., d. 
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Improved Statistical Modeling of Tumor Growth and
Treatment Effect in Preclinical Animal Studies with Highly
Heterogeneous Responses In Vivo
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Abstract
Purpose: Preclinical tumor growth experiments often result in heterogeneous datasets that include

growing, regressing, or stable growth profiles in the treatment and control groups. Such confounding

intertumor variability may mask the true treatment effects especially when less aggressive treatment

alternatives are being evaluated.

Experimental design: We developed a statistical modeling approach in which the growing and poorly

growing tumor categories were automatically detected bymeans of an expectation-maximization algorithm

coupledwithin amixed-effectsmodeling framework. The framework is implemented anddistributed as anR

package, which enables model estimation and statistical inference, as well as statistical power and precision

analyses.

Results: When applied to four tumor growth experiments, the modeling framework was shown to

(i) improve the detection of subtle treatment effects in the presence of high within-group tumor variability;

(ii) reveal hidden tumor subgroups associatedwith established or novel biomarkers, such as ERb expression
in aMCF-7 breast cancer model, which remained undetected with standard statistical analysis; (iii) provide

guidance on the selection of sufficient sample sizes and most informative treatment periods; and (iv) offer

flexibility to various cancer models, experimental designs, and treatment options. Model-based testing of

treatment effect on the tumor growth rate (or slope) was shown as particularly informative in the preclinical

assessment of treatment alternatives based on dietary interventions.

Conclusions: In general, the modeling framework enables identification of such biologically significant

differences in tumor growth profiles that would have gone undetected or had required considerably higher

numberofanimalswhenusingtraditionalstatisticalmethods.ClinCancerRes;18(16);4385–96.�2012AACR.

Introduction
Preclinical tumor growth studies using animal models

have a fundamental role in anticancer drug development.
Experimental cancer models in mice and rats include,
among others, implanting human tumor cells into immu-

nocompromised animals (xenograft models) or inducing
tumor-promoting mutations in rodents using carcinogens
such as 7,12-dimethylbenz(a)anthracene (DMBA). Regard-
less of the model type, the typical experimental design
involves dividing the animals into the treatment groups
(representing different doses or treatment combinations),
and monitoring the relative effects of the treatments on
tumor growth, in comparison with the control group (no
treatment). The tumor growth is typically measured at a
number of time intervals until the animals die, become
moribund, or reach a planned time of sacrifice (1).

Despite careful control of the experiments, the longi-
tudinal tumor growth measurements reflect multiple
sources of both biologic and experimental variation that
may severely confound the actual treatment responses.
Along with measurement noise, additional experimental
challenges include missing data points due to animal
morbidity, mortality, and quantitation limits, as well as
very aggressively growing outlying profiles. Such experi-
mental variation can be compensated to some degree by
increasing the number of animals and tumors analyzed.
However, due to economical and practical reasons, most
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experiments are still being carried out on relatively small
sample sizes including less than 10 tumors per group (1).
Moreover, even when using genetically standardized and
well-characterized animal strains, the experiments often
represent substantial between-animal variability, which
cannot be controlled simply by increasing the number of
animals. Such confounding factors often result in hidden
subgroups, which are not predefined but may associate
with divergent treatment outcomes in terms of the growth
profiles observed over the treatment period. Some tumors
may grow aggressively in a treatment group, even if the
same treatment inhibits the growth of other tumors, or
some untreated tumors do not grow well or even
completely regress in the control group (2–8).

The heterogeneous nature of the tumor growth profiles
pose severe challenges to the statisticalmodels that typically
rely on the assumption that the groups being compared are
relatively homogeneous. Many studies have used single end
points, such as tumor volume at a prespecified time point or
tumor doubling time, together with traditional statistical
tests, such as t test and ANOVA, or their nonparametric
counterparts (5–11). However, such univariate approaches
often lead to suboptimal statistical power because of their
ineffective use of the longitudinal growth patterns (1, 12).
In contrast, repeated measures and regression models use
the entire growth profiles and enable more systematic
between-group comparisons through model parameters
(1). In particular, mixed-effects models have become a
convenient approach to model various experimental fac-
tors, such as treatment effects or base levels (fixed effects)
while accounting for variation expressed by individual
animals or tumors (random effects). This model family
has successfully been used to analyze specific types of
xenograft experiments or study questions (12–17). How-
ever, further challenges remain. In particular, the conven-
tional model cannot detect subtle treatment effects in the

presence of heterogeneous responses, due to unfeasible
model estimation, resulting in skewness or multimodality
in the random effects (18).

The present work introduces a novel modeling frame-
work for in-depth statistical analysis of tumor growth
experiments in which the underlying tumor heterogeneity
ismodeled by dividing the longitudinal growthprofiles into
growing andpoorly growing categorieswithin the treatment
and control groups. The framework is based on well-estab-
lished linear mixed-effects models enabling robust estima-
tion and statistical inference of treatment effects through
parameters such as tumor growth rates (slopes) or average
tumor levels (offset). By means of such elemental para-
meters that are descriptive of both strong and more subtle
modes of tumor growth inhibition, the modeling frame-
work enables the investigator to address a rangeof questions
relevant in many practical settings, such as the degree of
dynamic treatment effect on the growth rates, the amount of
tumor heterogeneity present in the given data, and how the
experimental design should be modified to find significant
treatment effects. To promote its widespread application in
the future studies, we provide an easy-to-use R implemen-
tationwith accompanying tools formodel visualization and
diagnostics. Using 4 tumor growth experiments as applica-
tion use cases, we show here how the categorizing mixed-
effects model enables the extraction of full information
from these longitudinal profile datasets.

Materials and Methods
The model was applied to 4 tumor growth experiments,

including prostate and breast cancer mouse xenograft mod-
els, a syngeneic mammary cancer model with 4T1 mouse
mammary tumor cells, and a DMBA-induced mammary
carcinoma in the rat. These experiments represent with a
wide range of properties encountered in many treatment
settings, including various treatment options and dosages
(Table 1).Moreover, the experiments included designs with
and without a designated target size that the tumors need to
reach before treatment initiation. The designs differed also
in the number of tumors per treatment group, a parameter,
which is directly related to the power of detecting statisti-
cally significant treatment effects. Other experimental
design parameters included diverse setups for treatment
periods and sampling frequencies as well as different
response readouts such as tumor volume or area. Impor-
tantly, 3 of the 4 experiments showed different degrees of
intertumor heterogeneity in terms of evidence for within-
group growing and poorly growing categories (Supplemen-
tary Fig. S1).

DMBA-induced mammary cancer model
Anticarcinogenic activity of the diet-derived lignan

metaboline, enterolactone (ENL), was studied by apply-
ing a mammary cancer model in the rat (6) in which the
mammary tumors were induced by the use of DMBA. The
induction caused a varying number of tumors per animal
(1–5 measurable tumors) and thus the total tumor

Translational Relevance
Heterogeneous responses observed in many preclin-

ical models of cancer treatment may lead to frequent
false-negative results and therefore to ineffective trans-
lation of in vivo results to clinical trial designs. Using
various preclinical animal models, cancer cell lines, and
in silico simulations, we show here how modeling and
exploring of different categories of tumor growthprofiles
can improve statistical testing and biologic understand-
ing of treatment effects, especially when less aggressive
treatment alternatives are being evaluated. Statistical
power and precision analyses offer possibilities for fur-
ther improving the design of the experimental protocols
for preclinical assessment of cancer treatments. Taking
into account the individual characteristics already in the
preclinical stages should also help to propagate infor-
mation on the intertumor variability to the subsequent
clinical studies.
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among others, implanting human tumor cells into immu-

nocompromised animals (xenograft models) or inducing
tumor-promoting mutations in rodents using carcinogens
such as 7,12-dimethylbenz(a)anthracene (DMBA). Regard-
less of the model type, the typical experimental design
involves dividing the animals into the treatment groups
(representing different doses or treatment combinations),
and monitoring the relative effects of the treatments on
tumor growth, in comparison with the control group (no
treatment). The tumor growth is typically measured at a
number of time intervals until the animals die, become
moribund, or reach a planned time of sacrifice (1).

Despite careful control of the experiments, the longi-
tudinal tumor growth measurements reflect multiple
sources of both biologic and experimental variation that
may severely confound the actual treatment responses.
Along with measurement noise, additional experimental
challenges include missing data points due to animal
morbidity, mortality, and quantitation limits, as well as
very aggressively growing outlying profiles. Such experi-
mental variation can be compensated to some degree by
increasing the number of animals and tumors analyzed.
However, due to economical and practical reasons, most

Authors' Affiliations: 1Department of Mathematics, 2Departments of
Physiology and 3Cell Biology and Anatomy, Institute of Biomedicine,
4Functional Foods Forum, 5Turku Center for Disease Modeling, University
of Turku; 6Turku Centre for Biotechnology; 7Pharmatest Services Ltd,
Turku; 8Department of Mathematics and Statistics, 9Institute for Molecular
Medicine (FIMM), University of Helsinki, Finland; and 10Institute of Medi-
cine, The Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden

Note: Supplementary data for this article are available at Clinical Cancer
Research Online (clincancerres.aacrjournals.org).

Current address for S. Savolainen: Orion Pharma Ltd, Turku, Finland.

Corresponding Author: Tero Aittokallio, Institute for Molecular Medicine
Finland, University of Helsinki, FI-00014, Finland. Phone: 358-50-318-
2426; Fax: 358-9-191-25737; E-mail: tero.aittokallio@fimm.fi

doi: 10.1158/1078-0432.CCR-11-3215

�2012 American Association for Cancer Research.

Clinical
Cancer

Research

www.aacrjournals.org 4385

on October 15, 2017. © 2012 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst June 27, 2012; DOI: 10.1158/1078-0432.CCR-11-3215 

experiments are still being carried out on relatively small
sample sizes including less than 10 tumors per group (1).
Moreover, even when using genetically standardized and
well-characterized animal strains, the experiments often
represent substantial between-animal variability, which
cannot be controlled simply by increasing the number of
animals. Such confounding factors often result in hidden
subgroups, which are not predefined but may associate
with divergent treatment outcomes in terms of the growth
profiles observed over the treatment period. Some tumors
may grow aggressively in a treatment group, even if the
same treatment inhibits the growth of other tumors, or
some untreated tumors do not grow well or even
completely regress in the control group (2–8).

The heterogeneous nature of the tumor growth profiles
pose severe challenges to the statisticalmodels that typically
rely on the assumption that the groups being compared are
relatively homogeneous. Many studies have used single end
points, such as tumor volume at a prespecified time point or
tumor doubling time, together with traditional statistical
tests, such as t test and ANOVA, or their nonparametric
counterparts (5–11). However, such univariate approaches
often lead to suboptimal statistical power because of their
ineffective use of the longitudinal growth patterns (1, 12).
In contrast, repeated measures and regression models use
the entire growth profiles and enable more systematic
between-group comparisons through model parameters
(1). In particular, mixed-effects models have become a
convenient approach to model various experimental fac-
tors, such as treatment effects or base levels (fixed effects)
while accounting for variation expressed by individual
animals or tumors (random effects). This model family
has successfully been used to analyze specific types of
xenograft experiments or study questions (12–17). How-
ever, further challenges remain. In particular, the conven-
tional model cannot detect subtle treatment effects in the

presence of heterogeneous responses, due to unfeasible
model estimation, resulting in skewness or multimodality
in the random effects (18).

The present work introduces a novel modeling frame-
work for in-depth statistical analysis of tumor growth
experiments in which the underlying tumor heterogeneity
ismodeled by dividing the longitudinal growthprofiles into
growing andpoorly growing categorieswithin the treatment
and control groups. The framework is based on well-estab-
lished linear mixed-effects models enabling robust estima-
tion and statistical inference of treatment effects through
parameters such as tumor growth rates (slopes) or average
tumor levels (offset). By means of such elemental para-
meters that are descriptive of both strong and more subtle
modes of tumor growth inhibition, the modeling frame-
work enables the investigator to address a rangeof questions
relevant in many practical settings, such as the degree of
dynamic treatment effect on the growth rates, the amount of
tumor heterogeneity present in the given data, and how the
experimental design should be modified to find significant
treatment effects. To promote its widespread application in
the future studies, we provide an easy-to-use R implemen-
tationwith accompanying tools formodel visualization and
diagnostics. Using 4 tumor growth experiments as applica-
tion use cases, we show here how the categorizing mixed-
effects model enables the extraction of full information
from these longitudinal profile datasets.

Materials and Methods
The model was applied to 4 tumor growth experiments,

including prostate and breast cancer mouse xenograft mod-
els, a syngeneic mammary cancer model with 4T1 mouse
mammary tumor cells, and a DMBA-induced mammary
carcinoma in the rat. These experiments represent with a
wide range of properties encountered in many treatment
settings, including various treatment options and dosages
(Table 1).Moreover, the experiments included designs with
and without a designated target size that the tumors need to
reach before treatment initiation. The designs differed also
in the number of tumors per treatment group, a parameter,
which is directly related to the power of detecting statisti-
cally significant treatment effects. Other experimental
design parameters included diverse setups for treatment
periods and sampling frequencies as well as different
response readouts such as tumor volume or area. Impor-
tantly, 3 of the 4 experiments showed different degrees of
intertumor heterogeneity in terms of evidence for within-
group growing and poorly growing categories (Supplemen-
tary Fig. S1).

DMBA-induced mammary cancer model
Anticarcinogenic activity of the diet-derived lignan

metaboline, enterolactone (ENL), was studied by apply-
ing a mammary cancer model in the rat (6) in which the
mammary tumors were induced by the use of DMBA. The
induction caused a varying number of tumors per animal
(1–5 measurable tumors) and thus the total tumor
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lation of in vivo results to clinical trial designs. Using
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can improve statistical testing and biologic understand-
ing of treatment effects, especially when less aggressive
treatment alternatives are being evaluated. Statistical
power and precision analyses offer possibilities for fur-
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volume per animal was used as the response readout
(Table 1). Two different dosages of ENL (1 and 10 mg/
kg per os by gavage) were introduced 9 weeks after the
DMBA induction. Each of the treatment groups included
both growing (growth profiles with positive slope) and
poorly growing (horizontal profiles near zero volume)
tumors; the lower dosage group also contained 2 outlier
profiles (Supplementary Fig. S1A). All the profiles were
used here in the statistical modeling.
Histologic classification of the tumors was carried out as

described earlier (6). Briefly, the tumor contributingmost to
the total volume per animal was considered, as it was most
often histologically analyzed and could be considered as
most representative for the animal. Some of the tumors
could not be analyzed due to issues related to tumor
suppression, volume below detection accuracy, or quality
of the sample. The histologic types of "poorly differentiat-
ed", "well differentiated", and "atrophic" included more
than one tumor and these were used in the analyses.

MCF-7 breast cancer xenograft model
MCF-7 breast cancer xenografts were grown in ovariec-

tomized athymicmice in the presence of estradiol (19). The
antitumor activity of the dietary lignan, lariciresinol (LAR),
was studied by applying 2 different dosages (20 or 100 mg/
kg per osby gavage) of the compound, and the tumor growth
was compared with mice treated with the vehicle only
(Table 1). The tumor growth profiles were analyzed along
with biomarkers, such as estrogen receptors a (ERa, ESR1)
and b (ERb, ESR2), to identify explanatory factors for the
observed heterogeneous growth profiles (Supplementary
Fig. S1B).

LNCaP prostate cancer xenograft model
This experiment studied the effects of a synthetic

ERb-selective agonist [DPN; 2,3-bis(4-hydroxyphenol)-
propionitrile] and of a tissue-specific ER activator, diet-
derived lignan metabolite (ENL) on the growth of the
LNCaP prostate cancer xenografts in immunocompromised

Table 1. Summary of the experimental datasets used in the present work

Experiment DMBA case MCF-7 case LNCaP case 4T1 case

Strain Female Sprague-Dawley
rat

Female athymic
nude mouse

Male athymic
nude mouse

Female immunocompetent
balb/c mouse

Cell line (source) MCF-7 (human) LNCaP (human) 4T1 (mouse)
Cancer model Breast cancer, carcinogen Breast cancer,

xenograft
Prostate cancer,

xenograft
Breast cancer, syngeneic

Treatment ENL LAR DPN or ENL Doxorubicin or
cyclophosphamide

Dosage and route of
administration

Daily 1 or 10 mg/kg
per os

Daily 20 or
100 mg/kg per os

DPN 4.5 mg/60
days s.c. or
ENL 100 mg/kg
in feed

Doxorubicin: weekly
7.5 mg/kg;
cyclophosphamide:
100 mg/kg at
days 0, 2, and 4

Measurement
frequency

Once a week Once a week Twice a week Twice a week

Number of time
points

9 6 11 6

Sample sizes 13 animals per group Control (15), lower
dose (20),
higher dose (20)
tumors

Control (12), DPN (10),
ENL (8) tumors

8 tumors per group

Target size No 20 mm2,a 200 mm3,b No
Response readout Total tumor volume

per animal
Tumor area Tumor volume Tumor volume

Missing value
proportions

Control 4% All groups 0% Control 14% Control 0%
Low dose 4% DPN 10% Doxorubicin 2%
High dose 0% ENL 9% Cyclophosphamide 0%

Additional cell markers Tumor histologic
types

ERa, ERb PSA Metastases in the
lung and liver

Reference 6 19 Unpublished 21

aTreatment starting time defined by average tumor area
bTreatment starting time defined by individual tumor volume
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mice (AthymicNude-Fown1nu,Harlan). The cells (2� 106

cells/200 mL medium/Matrigel) were subcutaneously inoc-
ulated into 5- to 6-week-old male mice. DPN was admin-
istered as pellets (4.5mg for 60 days, Innovative Research of
America). The mice in both control and treatment groups
were fed purified control diet (AIN-93G; ref. 20). ENL was
provided within a special diet including 100 ppm of the
compound. The tumorswere palpated twice aweek, and the
treatment was commenced once a tumor reached the target
volume of 200 mm3. To maximize the number of tumors,
the growth period was allowed to reach the target volume
level within 4 to 6 weeks. Because the number of tumors in
the experiment remained relatively small, a maximal num-
ber of the short and outlier profiles, which often are filtered
out in standard analyses, were included in the statistical
analysis of the heterogeneous dataset (Supplementary Fig.
S1C). In addition to the tumor size, serum prostate-specific
antigen (PSA), a known prostate cancer biomarker, was
measured at sacrifice (Table 1).

4T1 syngeneic mammary cancer model
Mouse mammary adenocarcinoma 4T1-cells (American

Type Culture Collection) were inoculated into the thoracic
mammary fat-pads of 6-week-old female immunocompe-
tent Balb/c mice (Harlan Laboratories Inc.; ref. 21). Two
established drugs were used for the treatments (Table 1):
doxorubicin (22) and cyclophosphamide (23). The drug
treatments were started 6 days after the inoculation of the
cells. Doxorubicin (Doxorubicin Ebewe; Ebewe Pharma
GmbH) was administered 7.5 mg/kg once a week and
cyclophosphamide (Sendoxan, Baxter) 100 mg/kg was
administered at days 0, 2, and 4 since the beginning of
the treatment. The tumor growth profiles showed very
homogeneous patterns within each of the treatment groups
(Supplementary Fig. S1D), possibly due to the host envi-
ronment being native to the 4T1 cancer cell line (24).

The categorizing mixed-effects model
Themixed-effectsmodels have anumber of advantages in

the statistical analysis of tumor growth profiles. First, the
whole longitudinal growth profile, with possible missing
data points, can be used in the model estimation and
parametric inference thereby avoiding the need for selecting
predefined endpoints or ad hoc imputation of missing
values. Second, the random effects give flexibility for the
model to take into account individual tumor- and animal-
specific variation that originates from the given experimen-
tal setup and data. We extended the standard model and
developed a novel, hierarchical mixed-effects model, which
learns the growing andpoorly growing tumor categories in a
given set of longitudinal tumor growth profiles. The cate-
gorizingmixed-effects model is conceptually formulated as:

Tumor response ¼ b1 þ b2 � Treatmentþ b3

� Time point�Growthþ b4

� Treatment� Timepoint�Growth

þ u1;T þ u2;T � Timepoint ðModel 1Þ

Here, the binary treatment covariate indicates the con-
trol and treatment groups and time point indicates the
discrete measurement time points (Supplementary Table
S1). The binary growth covariate is used to distinguish
between the growing and poorly growing tumor catego-
ries. The terms bi represent the model’s fixed effects
accounting for factors such as the base level tumor size
(b1), treatment-induced shift in the average tumor levels
over the timepoints (offset, b2), overall growth rate of
those tumors categorized as growing (b3), and treatment-
induced difference in the growth rate of the growing
tumors (slope effect, b4). The random effects u1,T and
u2,T represent variation specific to an individual tumor T.
The full mathematical model formulation and details of
its estimation, inference, and validation are given in
Supplementary Methods.

Testing for the treatment-effects is done through the
parameter estimates from the fitted categorizing model
(Fig. 1A). The slope effect term b4 evaluates time-depen-
dent changes in the relative tumor growth rate per time

Growing
fixed effects
Poorly growing
fixed effects

Control tumors
Treatment 
tumors Slope

effect

offset
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Figure 1. Schematic illustration of the treatment effect assessment in the
LNCaP DPN experiment. A, fixed effects of the categorizing mixed-
effects model are estimated from the data (b1-b4). The slope effect
evaluates a treatment-induced and time point–dependent decrease in
thegrowth ratesof thegrowing tumors,whereas theoffset termevaluates
a treatment-induced shift in the horizontal tumor levels over all the time
points and tumors. B, once the growing and poorly growing categories
have been found by the model, the category labels are tested against the
treatment labels, hence enabling evaluation of potentially more complex
growth inhibiting treatment effects thatmay not bedirectly reflected in the
offset or slope effects (here P ¼ 0.415, Fisher exact test; Table 3).
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volume per animal was used as the response readout
(Table 1). Two different dosages of ENL (1 and 10 mg/
kg per os by gavage) were introduced 9 weeks after the
DMBA induction. Each of the treatment groups included
both growing (growth profiles with positive slope) and
poorly growing (horizontal profiles near zero volume)
tumors; the lower dosage group also contained 2 outlier
profiles (Supplementary Fig. S1A). All the profiles were
used here in the statistical modeling.
Histologic classification of the tumors was carried out as

described earlier (6). Briefly, the tumor contributingmost to
the total volume per animal was considered, as it was most
often histologically analyzed and could be considered as
most representative for the animal. Some of the tumors
could not be analyzed due to issues related to tumor
suppression, volume below detection accuracy, or quality
of the sample. The histologic types of "poorly differentiat-
ed", "well differentiated", and "atrophic" included more
than one tumor and these were used in the analyses.

MCF-7 breast cancer xenograft model
MCF-7 breast cancer xenografts were grown in ovariec-

tomized athymicmice in the presence of estradiol (19). The
antitumor activity of the dietary lignan, lariciresinol (LAR),
was studied by applying 2 different dosages (20 or 100 mg/
kg per osby gavage) of the compound, and the tumor growth
was compared with mice treated with the vehicle only
(Table 1). The tumor growth profiles were analyzed along
with biomarkers, such as estrogen receptors a (ERa, ESR1)
and b (ERb, ESR2), to identify explanatory factors for the
observed heterogeneous growth profiles (Supplementary
Fig. S1B).

LNCaP prostate cancer xenograft model
This experiment studied the effects of a synthetic

ERb-selective agonist [DPN; 2,3-bis(4-hydroxyphenol)-
propionitrile] and of a tissue-specific ER activator, diet-
derived lignan metabolite (ENL) on the growth of the
LNCaP prostate cancer xenografts in immunocompromised

Table 1. Summary of the experimental datasets used in the present work

Experiment DMBA case MCF-7 case LNCaP case 4T1 case

Strain Female Sprague-Dawley
rat

Female athymic
nude mouse

Male athymic
nude mouse

Female immunocompetent
balb/c mouse

Cell line (source) MCF-7 (human) LNCaP (human) 4T1 (mouse)
Cancer model Breast cancer, carcinogen Breast cancer,

xenograft
Prostate cancer,

xenograft
Breast cancer, syngeneic

Treatment ENL LAR DPN or ENL Doxorubicin or
cyclophosphamide

Dosage and route of
administration

Daily 1 or 10 mg/kg
per os

Daily 20 or
100 mg/kg per os

DPN 4.5 mg/60
days s.c. or
ENL 100 mg/kg
in feed

Doxorubicin: weekly
7.5 mg/kg;
cyclophosphamide:
100 mg/kg at
days 0, 2, and 4

Measurement
frequency

Once a week Once a week Twice a week Twice a week

Number of time
points

9 6 11 6

Sample sizes 13 animals per group Control (15), lower
dose (20),
higher dose (20)
tumors

Control (12), DPN (10),
ENL (8) tumors

8 tumors per group

Target size No 20 mm2,a 200 mm3,b No
Response readout Total tumor volume

per animal
Tumor area Tumor volume Tumor volume

Missing value
proportions

Control 4% All groups 0% Control 14% Control 0%
Low dose 4% DPN 10% Doxorubicin 2%
High dose 0% ENL 9% Cyclophosphamide 0%

Additional cell markers Tumor histologic
types

ERa, ERb PSA Metastases in the
lung and liver

Reference 6 19 Unpublished 21

aTreatment starting time defined by average tumor area
bTreatment starting time defined by individual tumor volume
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mice (AthymicNude-Fown1nu,Harlan). The cells (2� 106

cells/200 mL medium/Matrigel) were subcutaneously inoc-
ulated into 5- to 6-week-old male mice. DPN was admin-
istered as pellets (4.5mg for 60 days, Innovative Research of
America). The mice in both control and treatment groups
were fed purified control diet (AIN-93G; ref. 20). ENL was
provided within a special diet including 100 ppm of the
compound. The tumorswere palpated twice aweek, and the
treatment was commenced once a tumor reached the target
volume of 200 mm3. To maximize the number of tumors,
the growth period was allowed to reach the target volume
level within 4 to 6 weeks. Because the number of tumors in
the experiment remained relatively small, a maximal num-
ber of the short and outlier profiles, which often are filtered
out in standard analyses, were included in the statistical
analysis of the heterogeneous dataset (Supplementary Fig.
S1C). In addition to the tumor size, serum prostate-specific
antigen (PSA), a known prostate cancer biomarker, was
measured at sacrifice (Table 1).

4T1 syngeneic mammary cancer model
Mouse mammary adenocarcinoma 4T1-cells (American

Type Culture Collection) were inoculated into the thoracic
mammary fat-pads of 6-week-old female immunocompe-
tent Balb/c mice (Harlan Laboratories Inc.; ref. 21). Two
established drugs were used for the treatments (Table 1):
doxorubicin (22) and cyclophosphamide (23). The drug
treatments were started 6 days after the inoculation of the
cells. Doxorubicin (Doxorubicin Ebewe; Ebewe Pharma
GmbH) was administered 7.5 mg/kg once a week and
cyclophosphamide (Sendoxan, Baxter) 100 mg/kg was
administered at days 0, 2, and 4 since the beginning of
the treatment. The tumor growth profiles showed very
homogeneous patterns within each of the treatment groups
(Supplementary Fig. S1D), possibly due to the host envi-
ronment being native to the 4T1 cancer cell line (24).

The categorizing mixed-effects model
Themixed-effectsmodels have anumber of advantages in

the statistical analysis of tumor growth profiles. First, the
whole longitudinal growth profile, with possible missing
data points, can be used in the model estimation and
parametric inference thereby avoiding the need for selecting
predefined endpoints or ad hoc imputation of missing
values. Second, the random effects give flexibility for the
model to take into account individual tumor- and animal-
specific variation that originates from the given experimen-
tal setup and data. We extended the standard model and
developed a novel, hierarchical mixed-effects model, which
learns the growing andpoorly growing tumor categories in a
given set of longitudinal tumor growth profiles. The cate-
gorizingmixed-effects model is conceptually formulated as:

Tumor response ¼ b1 þ b2 � Treatmentþ b3

� Time point�Growthþ b4

� Treatment� Timepoint�Growth

þ u1;T þ u2;T � Timepoint ðModel 1Þ

Here, the binary treatment covariate indicates the con-
trol and treatment groups and time point indicates the
discrete measurement time points (Supplementary Table
S1). The binary growth covariate is used to distinguish
between the growing and poorly growing tumor catego-
ries. The terms bi represent the model’s fixed effects
accounting for factors such as the base level tumor size
(b1), treatment-induced shift in the average tumor levels
over the timepoints (offset, b2), overall growth rate of
those tumors categorized as growing (b3), and treatment-
induced difference in the growth rate of the growing
tumors (slope effect, b4). The random effects u1,T and
u2,T represent variation specific to an individual tumor T.
The full mathematical model formulation and details of
its estimation, inference, and validation are given in
Supplementary Methods.

Testing for the treatment-effects is done through the
parameter estimates from the fitted categorizing model
(Fig. 1A). The slope effect term b4 evaluates time-depen-
dent changes in the relative tumor growth rate per time

Growing
fixed effects
Poorly growing
fixed effects

Control tumors
Treatment 
tumors Slope

effect

offset

Treatment duration

T
um

or
 s

iz
e

A

Control Treatment
Growing tumors
Poorly growing tumors

B

b3 × time

(b3 + b4)

× time

b1

b1 + b2

Figure 1. Schematic illustration of the treatment effect assessment in the
LNCaP DPN experiment. A, fixed effects of the categorizing mixed-
effects model are estimated from the data (b1-b4). The slope effect
evaluates a treatment-induced and time point–dependent decrease in
thegrowth ratesof thegrowing tumors,whereas theoffset termevaluates
a treatment-induced shift in the horizontal tumor levels over all the time
points and tumors. B, once the growing and poorly growing categories
have been found by the model, the category labels are tested against the
treatment labels, hence enabling evaluation of potentially more complex
growth inhibiting treatment effects thatmay not bedirectly reflected in the
offset or slope effects (here P ¼ 0.415, Fisher exact test; Table 3).
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unit in tumors categorized as growing. The slope effect
therefore captures also a subtle suppressive treatment-
effect relative to the overall growth rate b3. An effective
growth inhibition rate was defined as jb4/b3j. The offset
term b2 in turn evaluates more dramatic changes in the
horizontal base level profiles of the tumors in those
studies with a designated target size; otherwise, the terms
b1 and b2 are set equal to zero. Because these terms do not
account for the dynamic changes in the treated or control
profiles, the offset term effectively captures the average
treatment response in the poorly growing tumors over the
entire treatment duration.
We implemented a novel clusteringmethod based on the

expectation-maximization (EM) algorithm for categorizing
the tumor profiles into the growing and poorly growing
subgroups (Supplementary Fig. S2). The model fitting was
done using the restricted maximum likelihood (REML)
estimation in the lme4 package (25) within the R statistical
software (26). The statistical significance of the treatment-
specific fixed effects was assessed through Markov-Chain
Monte Carlo (MCMC) simulation (27). The full details of
the implementationof themodeling framework are given in
SupplementaryMethods. The source code of the implemen-
ted R package, named XenoCat, is freely available (28).

Post hoc statistical analyses
After the growth categories were detected from the fitted

model, 2-sided Fisher exact test was used to assess whether
the found categorization into the growing and poorly
growing subcategories can be explained by the proportion
of tumors from the control and treatment groups (Fig. 1B).
Significant overrepresentation of the treated tumors in the
poorly growing category is indicative of such treatment
effect that inhibits the tumor growth butmay not be directly
reflected in the fixed effect terms of the model. Hence, the
offset and slope effect terms, together with the post hoc
analysis of the detected growth categories using the Fisher
exact test, can be used to draw conclusions on the treatment
effects and underlying mechanisms of action.
In addition to the treatment labels, other external bio-

logic and experimental explanatory factors for the growing
andpoorly growing categorieswere subsequently tested. For
discrete explanatory factors, such as the histologic tumor
classification, the Fisher exact test was used to assess the
association between the tumor growth labels and the
histologic classes. For normally distributed continuous
factors, such as the ERb positivity, the Welch 2-sample
unpaired t test was used to evaluate the difference in
the ERb expression between the 2 growth categories. In case
the Shapiro–Wilk normality test null hypothesis was
rejected, the Wilcoxon rank-sum test was used instead as
a nonparametric alternative.

Power, precision, and sample size estimation
Comparisons between different experimental designs

and modeling setups were carried out to provide further
model-guided information on their operation and sug-
gestions for future improvements. The comparisons were

based on parameters, such as the number of tumors and/
or timepoints, which were investigated in relation to the
calculated statistical study power, defined as the proba-
bility of detecting a statistically significant treatment
effect, provided that the effect is truly present and that
the model is correct. Estimation of the sample size N that
is needed to achieve a given statistical power was based on
simulated data generated according to the model fit (29).
Furthermore, a precision analysis was implemented using
the modeling framework to give guidance on the most
informative time periods. Precision here means the
reciprocal of the variance of the test statistic, given the
estimated model and the experimental design (30). A
general overview of the modeling workflow is available
in Supplementary Fig. S3.

Results
An efficient implementation of the statistical modeling

framework was developed and distributed as an open-
source R package, named XenoCat, with accompanying
user instructions (28). Here, the framework was applied to
4 case studies and the results from the categorizing mixed-
effects model were compared with those obtained using the
conventional mixed-effects model in terms of statistical
inference, power, precision, and suggested sample size. The
conventional noncategorizing mixed-effects model is a spe-
cial case of the Model 1, in which the growth covariate is
omitted (i.e., set to unity).

DMBA case
Estimation of the categorizing mixed-effects model in

the DMBA experiment illustrates how the model can
effectively describe the growing and poorly growing
tumor subcategories within the treatment and control
groups (Fig. 2). By taking into account such tumor growth
heterogeneity, the categorizing model gave highly signif-
icant treatment effect on the slope effect term consistently
both in the in low-dose and the high-dose groups (P ¼
7.4 � 10�5, jb4/b3j ¼ 40% and P ¼ 3.8 � 10�5, jb4/b3j ¼
49%; Table 2). The subtle suppressive effect of the dietary
intervention (ENL treatment) on the growth rate was
missed by the conventional mixed-effects model even in
the high dosage treatment group (P > 0.05). The increased
sensitivity of the categorizing model is due to improved
model fit, as indicated by the loss of skewness and multi-
modality in the distribution of the random slopes (Sup-
plementary Fig. S4).

Because the identified growing and poorly growing
categories could not be explained by the ENL treatment
groups (Fig. 2D; Table 3), we searched for explanatory
factors from the histologic analysis of the tumors. Accord-
ing to expectations, the tumors classified as "well differ-
entiated" or "atrophic" were decreased in proportion in
the growing tumor category consistently under both dos-
age levels, whereas the tumors classified as "poorly dif-
ferentiated" were more abundant in the growing category
(Table 3). Even if showing only a borderline statistical
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association (P¼ 0.069), the relative proportion of tumors
in the histologic classes supported the existence and
relevance of the 2 growth categories. In contrast, the
association between the treatment groups and the histo-
logic types was highly insignificant (P ¼ 0.955) indicating
that the treatment per se did not influence the differen-
tiation process.

MCF-7 case
In the MCF-7 xenograft experiment, the effects of the

dietary lignan LAR treatment were found insignificant both
on the offset and slope terms (Table 2). However, even in
the absence of statistically significant treatment effects,
the growing and poorly growing tumor categories could
be explained by the treatment groups under the high dosage
LAR treatment (Fisher exact test, P ¼ 0.022; Table 3),
suggesting that the dietary lignan treatment successfully
blocks a significant portion of tumors into the poorly
growing category. Interestingly, the tumors in the growing
and poorly growing categories were also different in
terms of their measured ERb levels in the high dosage group
(P ¼ 0.008; Table 3) indicating that ERb inhibits tumor
growth, as has been previously suggested on the basis of
results obtained from other experimental breast cancer
models (31).

LNCaP case
A xenograft study with LNCaP cells was analyzed in

terms of possible treatment effects, and to provide guid-
ance for a sufficient sample size and the most informative
time periods to be used in further studies. The categoriz-
ing model showed, already in the present data, a statis-
tically highly significant slope effect in response to the
ENL treatment (P ¼ 0.001, jb4/b3j ¼ 80%), and a slightly
significant slope effect in response to the DPN treatment
(P ¼ 0.037, jb4/b3j ¼ 48%). Both of these effects were
undetected by the conventional mixed-effects model (P >
0.05; Table 2). However, both model types captured
well the target tumor volume of 200 mm3 in their
base level terms under both treatments (P < 10�5),
whereas the categorization emphasized the overall
growth terms (P < 10�5).

The measured PSA concentrations at sacrifice were sig-
nificantly different between the tumors classified into the
growing or poorly growing categories. According to expec-
tations, the PSA levels were consistently higher in the
growing category than in the poorly growing category both
in response to the DPN (P ¼ 0.005) and ENL (P ¼ 0.001)
treatments (Table 3). Interestingly, the PSA levels at sacrifice
were similar in the control and treatment groups both on
DPN and ENL (P > 0.05) indicating that factors other than
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Figure 2. Operation of the
categorizing modeling procedure
in the DMBA ENL high-dose
experiment. A, distinct growth
patterns are evident in individual
rats within both groups where
some tumors grow aggressively,
whereas others remain completely
stabilized during the treatment
period. B, the fixed effect fit for the
population growth profiles show
treatment-induced slope
difference in the growing tumors
(P < 0.001). C, the full model fit,
where the individual variation is
modeled using random-effects.
D, The growing and poorly growing
tumor categories found by the EM
algorithm. In each panel, the
'DMBA' time scale depicts the time
as tumor induction by the
carcinogen DMBA, and the
'treatment' time scale depicts the
time since the treatment initiation
(start).

Laajala et al.

Clin Cancer Res; 18(16) August 15, 2012 Clinical Cancer Research4390

on October 15, 2017. © 2012 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst June 27, 2012; DOI: 10.1158/1078-0432.CCR-11-3215 



unit in tumors categorized as growing. The slope effect
therefore captures also a subtle suppressive treatment-
effect relative to the overall growth rate b3. An effective
growth inhibition rate was defined as jb4/b3j. The offset
term b2 in turn evaluates more dramatic changes in the
horizontal base level profiles of the tumors in those
studies with a designated target size; otherwise, the terms
b1 and b2 are set equal to zero. Because these terms do not
account for the dynamic changes in the treated or control
profiles, the offset term effectively captures the average
treatment response in the poorly growing tumors over the
entire treatment duration.
We implemented a novel clusteringmethod based on the

expectation-maximization (EM) algorithm for categorizing
the tumor profiles into the growing and poorly growing
subgroups (Supplementary Fig. S2). The model fitting was
done using the restricted maximum likelihood (REML)
estimation in the lme4 package (25) within the R statistical
software (26). The statistical significance of the treatment-
specific fixed effects was assessed through Markov-Chain
Monte Carlo (MCMC) simulation (27). The full details of
the implementationof themodeling framework are given in
SupplementaryMethods. The source code of the implemen-
ted R package, named XenoCat, is freely available (28).

Post hoc statistical analyses
After the growth categories were detected from the fitted

model, 2-sided Fisher exact test was used to assess whether
the found categorization into the growing and poorly
growing subcategories can be explained by the proportion
of tumors from the control and treatment groups (Fig. 1B).
Significant overrepresentation of the treated tumors in the
poorly growing category is indicative of such treatment
effect that inhibits the tumor growth butmay not be directly
reflected in the fixed effect terms of the model. Hence, the
offset and slope effect terms, together with the post hoc
analysis of the detected growth categories using the Fisher
exact test, can be used to draw conclusions on the treatment
effects and underlying mechanisms of action.
In addition to the treatment labels, other external bio-

logic and experimental explanatory factors for the growing
andpoorly growing categorieswere subsequently tested. For
discrete explanatory factors, such as the histologic tumor
classification, the Fisher exact test was used to assess the
association between the tumor growth labels and the
histologic classes. For normally distributed continuous
factors, such as the ERb positivity, the Welch 2-sample
unpaired t test was used to evaluate the difference in
the ERb expression between the 2 growth categories. In case
the Shapiro–Wilk normality test null hypothesis was
rejected, the Wilcoxon rank-sum test was used instead as
a nonparametric alternative.

Power, precision, and sample size estimation
Comparisons between different experimental designs

and modeling setups were carried out to provide further
model-guided information on their operation and sug-
gestions for future improvements. The comparisons were

based on parameters, such as the number of tumors and/
or timepoints, which were investigated in relation to the
calculated statistical study power, defined as the proba-
bility of detecting a statistically significant treatment
effect, provided that the effect is truly present and that
the model is correct. Estimation of the sample size N that
is needed to achieve a given statistical power was based on
simulated data generated according to the model fit (29).
Furthermore, a precision analysis was implemented using
the modeling framework to give guidance on the most
informative time periods. Precision here means the
reciprocal of the variance of the test statistic, given the
estimated model and the experimental design (30). A
general overview of the modeling workflow is available
in Supplementary Fig. S3.

Results
An efficient implementation of the statistical modeling

framework was developed and distributed as an open-
source R package, named XenoCat, with accompanying
user instructions (28). Here, the framework was applied to
4 case studies and the results from the categorizing mixed-
effects model were compared with those obtained using the
conventional mixed-effects model in terms of statistical
inference, power, precision, and suggested sample size. The
conventional noncategorizing mixed-effects model is a spe-
cial case of the Model 1, in which the growth covariate is
omitted (i.e., set to unity).

DMBA case
Estimation of the categorizing mixed-effects model in

the DMBA experiment illustrates how the model can
effectively describe the growing and poorly growing
tumor subcategories within the treatment and control
groups (Fig. 2). By taking into account such tumor growth
heterogeneity, the categorizing model gave highly signif-
icant treatment effect on the slope effect term consistently
both in the in low-dose and the high-dose groups (P ¼
7.4 � 10�5, jb4/b3j ¼ 40% and P ¼ 3.8 � 10�5, jb4/b3j ¼
49%; Table 2). The subtle suppressive effect of the dietary
intervention (ENL treatment) on the growth rate was
missed by the conventional mixed-effects model even in
the high dosage treatment group (P > 0.05). The increased
sensitivity of the categorizing model is due to improved
model fit, as indicated by the loss of skewness and multi-
modality in the distribution of the random slopes (Sup-
plementary Fig. S4).

Because the identified growing and poorly growing
categories could not be explained by the ENL treatment
groups (Fig. 2D; Table 3), we searched for explanatory
factors from the histologic analysis of the tumors. Accord-
ing to expectations, the tumors classified as "well differ-
entiated" or "atrophic" were decreased in proportion in
the growing tumor category consistently under both dos-
age levels, whereas the tumors classified as "poorly dif-
ferentiated" were more abundant in the growing category
(Table 3). Even if showing only a borderline statistical
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association (P¼ 0.069), the relative proportion of tumors
in the histologic classes supported the existence and
relevance of the 2 growth categories. In contrast, the
association between the treatment groups and the histo-
logic types was highly insignificant (P ¼ 0.955) indicating
that the treatment per se did not influence the differen-
tiation process.

MCF-7 case
In the MCF-7 xenograft experiment, the effects of the

dietary lignan LAR treatment were found insignificant both
on the offset and slope terms (Table 2). However, even in
the absence of statistically significant treatment effects,
the growing and poorly growing tumor categories could
be explained by the treatment groups under the high dosage
LAR treatment (Fisher exact test, P ¼ 0.022; Table 3),
suggesting that the dietary lignan treatment successfully
blocks a significant portion of tumors into the poorly
growing category. Interestingly, the tumors in the growing
and poorly growing categories were also different in
terms of their measured ERb levels in the high dosage group
(P ¼ 0.008; Table 3) indicating that ERb inhibits tumor
growth, as has been previously suggested on the basis of
results obtained from other experimental breast cancer
models (31).

LNCaP case
A xenograft study with LNCaP cells was analyzed in

terms of possible treatment effects, and to provide guid-
ance for a sufficient sample size and the most informative
time periods to be used in further studies. The categoriz-
ing model showed, already in the present data, a statis-
tically highly significant slope effect in response to the
ENL treatment (P ¼ 0.001, jb4/b3j ¼ 80%), and a slightly
significant slope effect in response to the DPN treatment
(P ¼ 0.037, jb4/b3j ¼ 48%). Both of these effects were
undetected by the conventional mixed-effects model (P >
0.05; Table 2). However, both model types captured
well the target tumor volume of 200 mm3 in their
base level terms under both treatments (P < 10�5),
whereas the categorization emphasized the overall
growth terms (P < 10�5).

The measured PSA concentrations at sacrifice were sig-
nificantly different between the tumors classified into the
growing or poorly growing categories. According to expec-
tations, the PSA levels were consistently higher in the
growing category than in the poorly growing category both
in response to the DPN (P ¼ 0.005) and ENL (P ¼ 0.001)
treatments (Table 3). Interestingly, the PSA levels at sacrifice
were similar in the control and treatment groups both on
DPN and ENL (P > 0.05) indicating that factors other than
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Figure 2. Operation of the
categorizing modeling procedure
in the DMBA ENL high-dose
experiment. A, distinct growth
patterns are evident in individual
rats within both groups where
some tumors grow aggressively,
whereas others remain completely
stabilized during the treatment
period. B, the fixed effect fit for the
population growth profiles show
treatment-induced slope
difference in the growing tumors
(P < 0.001). C, the full model fit,
where the individual variation is
modeled using random-effects.
D, The growing and poorly growing
tumor categories found by the EM
algorithm. In each panel, the
'DMBA' time scale depicts the time
as tumor induction by the
carcinogen DMBA, and the
'treatment' time scale depicts the
time since the treatment initiation
(start).
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the treatment contribute to the identified between-tumor
differences in terms of their growth profiles and PSA levels.
We further used themodeling framework to predict that a

significant slope effect (P < 0.05 at 0.8 power) in response to
the DPN treatment could be obtained when the number of
tumors is 19 per group (Supplementary Fig. S5A). Notably,
with the noncategorizing model, the same sample size
estimate would be 25, showing the benefits of the catego-
rizing model already in the initial power analysis. The
power analysis also predicted that significant offset effect
will not be obtained within reasonable animal numbers.
The precision analysis showed differences in the model

types and treatment periods when assessing treatment
effects (Supplementary Fig. S5B); in particular, the relative
importance of the initial time points for the statistical
precision (Supplementary Fig. S5C).

4T1 case
In cases such as 4T1, where there is no evident within-

group tumor heterogeneity, the EM algorithm classifies all
the tumors into the growing category, and therefore the
categorizing and noncategorizing models gave the same
results (Table 2). More specifically, after adjustment to
quadratic growth using residual plots (Supplementary

Table 2. Fixed effect estimates, confidence intervals and statistical significance

DMBA case Categorizing model Noncategorizing model

ENL low dose Estimate HPD interval P Estimate HPD interval P
Overall growth b3 3.12 [2.56 to 3.39] <0.001 0.989 [0.34 to 1.54] <0.01
Slope effect b4 �1.25 [�1.74 to �0.703] <0.001 �0.174 [�1.04 to 0.66] 0.659

ENL high dose
Overall growth b3 3.26 [2.78 to 3.47] <0.001 1.02 [0.50 to 1.44] <0.001
Slope effect b4 �1.60 [�2.01 to �0.871] <0.001 �0.681 [�1.28 to 0.04] 0.066

MCF-7 case
LAR low dose
Base level b1 21.4 [16.9 to 25.8] <0.001 21.0 [16.5 to 25.8] <0.001
Offset b2 �2.66 [�8.68 to 3.01] 0.359 �4.18 [�10.5 to 1.97] 0.183
Overall growth b3 8.71 [6.92 to 10.6] <0.001 8.37 [6.55 to 10.2] <0.001
Slope effect b4 �0.599 [�3.10 to 1.94] 0.619 �1.04 [�3.44 to 1.44] 0.398

LAR high dose
Base level b1 21.4 [17.0 to 25.7] <0.001 21.0 [16.5 to 25.7] <0.001
Offset b2 1.05 [�5.00 to 6.28] 0.802 �0.945 [�7.12 to 5.08] 0.761
Overall growth b3 8.71 [6.98 to 10.5] <0.001 8.37 [6.46 to 10.3] <0.001
Slope effect b4 �1.72 [�4.08 to 1.07] 0.237 �3.07 [�5.63 to �0.53] <0.05

LNCaP case
DPN
Base level b1 234 [196 to 272] <0.001 233 [192 to 273] <0.001
Offset b2 �22.7 [�78.5 to 33.9] 0.421 �19.5 [�78.5 to 40.5] 0.540
Overall growth b3 101 [75.4 to 130] <0.001 52.8 [22.8 to 81.5] <0.01
Slope effect b4 �48.9 [�95.6 to �2.91] <0.05 �41.0 [�83.2 to 2.99] 0.072

ENL
Base level b1 234 [194 to 275] <0.001 233 [191 to 276] <0.001
Offset b2 �8.31 [�72.6 to 53.3] 0.784 �5.19 [�72.1 to 60.9] 0.862
Overall growth b3 101 [74.5 to 130] <0.001 52.7 [22.6 to 81.7] <0.01
Slope effect b4 �81.1 [�125 to –36.1] <0.01 �45.1 [�92.2 to 1.02] 0.058

4T1 case
Doxorubicin
Overall growth b3 68.4 [57.6 to 79.3] <0.001 68.4 [57.6 to 79.3] <0.001
Slope effect b4 �16.8 [�32.4 to �1.40] <0.05 �16.8 [�32.0 to �1.12] <0.05

Cyclophosphamide
Overall growth b3 68.4 [60.5 to 76.5] <0.001 68.4 [60.2 to 76.4] <0.001
Slope effect b4 �66.5 [�78.3 to �54.7] <0.001 �66.8 [�78.2 to �55.3] <0.001

NOTE: The highest posterior density (HPD), 95%confidence intervals, andP valueswere estimated using 100,000MCMCsimulations.
Negativeestimates for the treatment specific terms (b2,b4) indicatepotential treatmenteffects.Model termsb1 andb2were set to zero in
studieswithout adesignated tumor target size (DMBA, 4T1). The fixedeffectspresented in this table are visualized in aparallel fashion in
Supplementary Fig. S10.
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Fig. S6), it was confirmed that doxorubicin resulted in
regressed tumor growth profiles (P < 0.05), whereas cyclo-
phosphamide completely stabilized the growth of each
treated tumor (P < 10�6).

To test the relative benefits of the categorizing model in a
setting where the underlying growth categories and true
treatment effect were predefined, we constructed a simulat-
ed dataset by combining the doxorubicin- and cyclophos-
phamide-treated tumors into a single treatment group. The
EM algorithm separated the sources of these growth profiles
with 100% accuracy within the control and treatment
groups (Fig. 3A). The categorizing model also enabled
detection of a significant treatment slope effect (P ¼
0.002), which remained undetected by the noncategorizing
model (Fig. 3B). This is due to the inability of the non-
categorizing model to adjust for the distinct sources of
intertumor variation, leading to poor model fit and multi-
modality in the slope estimates, which could be corrected
by taking into account the tumor heterogeneity with the
categorizing model (Fig. 3C).

Finally, we also conducted simulations under the null
hypothesis of no true treatment effect (Supplementary
Material). As expected, an increase in the type-I error
appeared under such situation if the categorization

approach was applied to homogeneous data or if the non-
categorizing approach was applied to heterogeneous data
(Supplementary Table S2). The model diagnostic tools
should therefore be used tomake informed decisions about
the model type and structure that is most preferred for the
dataset under analysis.

Discussion
This study showed (i) the benefits of modeling the

growing and poorly growing categories in terms of
improved statistical inference (e.g., DMBA and 4T1 cases);
(ii) how the detected categories may be associated with
interesting biologic factors, such as endogenous ERb levels
in the MCF-7 case, which provide insights into the under-
lying tumor heterogeneity; and (iii) how the framework can
provide informed suggestions on designing more effective
tumor growth experiments in terms of sufficient sample
sizes andmost informative treatment periods (LNCaP case).
The generic modeling framework can also be extended to
include additional covariates, such as quadratic growth
profiles (Supplementary Fig. S6) or probabilistic tumor
categorization (Supplementary Fig. S2). For instance, as the
heterogeneity in the growth profiles in the MCF-7 and
LNCaP studies was not so clear-cut, continuous growth

Table 3. Post hoc association analysis of the detected tumor growth categories

Treatment classes
(% within category)

Histologic classesa

(% within category)

DMBA case Control Treatment P Poorly differentiated Well differentiated Atrophic P

ENL low dose
Growing 4 (44%) 5 (56%) 4 (67%) 2 (33%) 0 (0%)
Poorly growing 9 (53%) 8 (47%) 1.000 2 (17%) 7 (58%) 3 (25%) 0.156

ENL high dose
Growing 4 (67%) 2 (33%) 3 (60%) 1 (20%) 1 (20%)
Poorly growing 9 (45%) 11 (55%) 0.645 2 (13%) 10 (67%) 3 (20%) 0.069

MCF-7 case ERb expressionb (per 1,000 cells)
LAR low dose
Growing 14 (48%) 15 (52%) 248.1 � 238.7
Poorly growing 1 (17%) 5 (83%) 0.207 82.0 � 56.6 0.115

LAR high dose
Growing 14 (56%) 11 (44%) 213.0 � 127.0
Poorly growing 1 (10%) 9 (90%) 0.022 329.7 � 32.7 0.008

LNCaP case PSA concentrationb (at sacrifice, mg/L)
DPN
Growing 6 (67%) 3 (33%) 97.3 � 48.3
Poorly growing 6 (46%) 7 (54%) 0.415 29.3 � 17.7 0.005

ENL
Growing 6 (60%) 4 (40%) 99.1 � 45.5
Poorly growing 6 (60%) 4 (40%) 1.000 29.1 � 15.4 0.001

NOTE: Underlining indicates statistical significance (P � 0.05).
aSome of the tumors could not be histologically typed
bValues expressed as mean � SD
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the treatment contribute to the identified between-tumor
differences in terms of their growth profiles and PSA levels.
We further used themodeling framework to predict that a

significant slope effect (P < 0.05 at 0.8 power) in response to
the DPN treatment could be obtained when the number of
tumors is 19 per group (Supplementary Fig. S5A). Notably,
with the noncategorizing model, the same sample size
estimate would be 25, showing the benefits of the catego-
rizing model already in the initial power analysis. The
power analysis also predicted that significant offset effect
will not be obtained within reasonable animal numbers.
The precision analysis showed differences in the model

types and treatment periods when assessing treatment
effects (Supplementary Fig. S5B); in particular, the relative
importance of the initial time points for the statistical
precision (Supplementary Fig. S5C).

4T1 case
In cases such as 4T1, where there is no evident within-

group tumor heterogeneity, the EM algorithm classifies all
the tumors into the growing category, and therefore the
categorizing and noncategorizing models gave the same
results (Table 2). More specifically, after adjustment to
quadratic growth using residual plots (Supplementary

Table 2. Fixed effect estimates, confidence intervals and statistical significance

DMBA case Categorizing model Noncategorizing model

ENL low dose Estimate HPD interval P Estimate HPD interval P
Overall growth b3 3.12 [2.56 to 3.39] <0.001 0.989 [0.34 to 1.54] <0.01
Slope effect b4 �1.25 [�1.74 to �0.703] <0.001 �0.174 [�1.04 to 0.66] 0.659

ENL high dose
Overall growth b3 3.26 [2.78 to 3.47] <0.001 1.02 [0.50 to 1.44] <0.001
Slope effect b4 �1.60 [�2.01 to �0.871] <0.001 �0.681 [�1.28 to 0.04] 0.066

MCF-7 case
LAR low dose
Base level b1 21.4 [16.9 to 25.8] <0.001 21.0 [16.5 to 25.8] <0.001
Offset b2 �2.66 [�8.68 to 3.01] 0.359 �4.18 [�10.5 to 1.97] 0.183
Overall growth b3 8.71 [6.92 to 10.6] <0.001 8.37 [6.55 to 10.2] <0.001
Slope effect b4 �0.599 [�3.10 to 1.94] 0.619 �1.04 [�3.44 to 1.44] 0.398

LAR high dose
Base level b1 21.4 [17.0 to 25.7] <0.001 21.0 [16.5 to 25.7] <0.001
Offset b2 1.05 [�5.00 to 6.28] 0.802 �0.945 [�7.12 to 5.08] 0.761
Overall growth b3 8.71 [6.98 to 10.5] <0.001 8.37 [6.46 to 10.3] <0.001
Slope effect b4 �1.72 [�4.08 to 1.07] 0.237 �3.07 [�5.63 to �0.53] <0.05

LNCaP case
DPN
Base level b1 234 [196 to 272] <0.001 233 [192 to 273] <0.001
Offset b2 �22.7 [�78.5 to 33.9] 0.421 �19.5 [�78.5 to 40.5] 0.540
Overall growth b3 101 [75.4 to 130] <0.001 52.8 [22.8 to 81.5] <0.01
Slope effect b4 �48.9 [�95.6 to �2.91] <0.05 �41.0 [�83.2 to 2.99] 0.072

ENL
Base level b1 234 [194 to 275] <0.001 233 [191 to 276] <0.001
Offset b2 �8.31 [�72.6 to 53.3] 0.784 �5.19 [�72.1 to 60.9] 0.862
Overall growth b3 101 [74.5 to 130] <0.001 52.7 [22.6 to 81.7] <0.01
Slope effect b4 �81.1 [�125 to –36.1] <0.01 �45.1 [�92.2 to 1.02] 0.058

4T1 case
Doxorubicin
Overall growth b3 68.4 [57.6 to 79.3] <0.001 68.4 [57.6 to 79.3] <0.001
Slope effect b4 �16.8 [�32.4 to �1.40] <0.05 �16.8 [�32.0 to �1.12] <0.05

Cyclophosphamide
Overall growth b3 68.4 [60.5 to 76.5] <0.001 68.4 [60.2 to 76.4] <0.001
Slope effect b4 �66.5 [�78.3 to �54.7] <0.001 �66.8 [�78.2 to �55.3] <0.001

NOTE: The highest posterior density (HPD), 95%confidence intervals, andP valueswere estimated using 100,000MCMCsimulations.
Negativeestimates for the treatment specific terms (b2,b4) indicatepotential treatmenteffects.Model termsb1 andb2were set to zero in
studieswithout adesignated tumor target size (DMBA, 4T1). The fixedeffectspresented in this table are visualized in aparallel fashion in
Supplementary Fig. S10.
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Fig. S6), it was confirmed that doxorubicin resulted in
regressed tumor growth profiles (P < 0.05), whereas cyclo-
phosphamide completely stabilized the growth of each
treated tumor (P < 10�6).

To test the relative benefits of the categorizing model in a
setting where the underlying growth categories and true
treatment effect were predefined, we constructed a simulat-
ed dataset by combining the doxorubicin- and cyclophos-
phamide-treated tumors into a single treatment group. The
EM algorithm separated the sources of these growth profiles
with 100% accuracy within the control and treatment
groups (Fig. 3A). The categorizing model also enabled
detection of a significant treatment slope effect (P ¼
0.002), which remained undetected by the noncategorizing
model (Fig. 3B). This is due to the inability of the non-
categorizing model to adjust for the distinct sources of
intertumor variation, leading to poor model fit and multi-
modality in the slope estimates, which could be corrected
by taking into account the tumor heterogeneity with the
categorizing model (Fig. 3C).

Finally, we also conducted simulations under the null
hypothesis of no true treatment effect (Supplementary
Material). As expected, an increase in the type-I error
appeared under such situation if the categorization

approach was applied to homogeneous data or if the non-
categorizing approach was applied to heterogeneous data
(Supplementary Table S2). The model diagnostic tools
should therefore be used tomake informed decisions about
the model type and structure that is most preferred for the
dataset under analysis.

Discussion
This study showed (i) the benefits of modeling the

growing and poorly growing categories in terms of
improved statistical inference (e.g., DMBA and 4T1 cases);
(ii) how the detected categories may be associated with
interesting biologic factors, such as endogenous ERb levels
in the MCF-7 case, which provide insights into the under-
lying tumor heterogeneity; and (iii) how the framework can
provide informed suggestions on designing more effective
tumor growth experiments in terms of sufficient sample
sizes andmost informative treatment periods (LNCaP case).
The generic modeling framework can also be extended to
include additional covariates, such as quadratic growth
profiles (Supplementary Fig. S6) or probabilistic tumor
categorization (Supplementary Fig. S2). For instance, as the
heterogeneity in the growth profiles in the MCF-7 and
LNCaP studies was not so clear-cut, continuous growth

Table 3. Post hoc association analysis of the detected tumor growth categories

Treatment classes
(% within category)

Histologic classesa

(% within category)

DMBA case Control Treatment P Poorly differentiated Well differentiated Atrophic P

ENL low dose
Growing 4 (44%) 5 (56%) 4 (67%) 2 (33%) 0 (0%)
Poorly growing 9 (53%) 8 (47%) 1.000 2 (17%) 7 (58%) 3 (25%) 0.156

ENL high dose
Growing 4 (67%) 2 (33%) 3 (60%) 1 (20%) 1 (20%)
Poorly growing 9 (45%) 11 (55%) 0.645 2 (13%) 10 (67%) 3 (20%) 0.069

MCF-7 case ERb expressionb (per 1,000 cells)
LAR low dose
Growing 14 (48%) 15 (52%) 248.1 � 238.7
Poorly growing 1 (17%) 5 (83%) 0.207 82.0 � 56.6 0.115

LAR high dose
Growing 14 (56%) 11 (44%) 213.0 � 127.0
Poorly growing 1 (10%) 9 (90%) 0.022 329.7 � 32.7 0.008

LNCaP case PSA concentrationb (at sacrifice, mg/L)
DPN
Growing 6 (67%) 3 (33%) 97.3 � 48.3
Poorly growing 6 (46%) 7 (54%) 0.415 29.3 � 17.7 0.005

ENL
Growing 6 (60%) 4 (40%) 99.1 � 45.5
Poorly growing 6 (60%) 4 (40%) 1.000 29.1 � 15.4 0.001

NOTE: Underlining indicates statistical significance (P � 0.05).
aSome of the tumors could not be histologically typed
bValues expressed as mean � SD
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covariates were further used to show that such probabilistic
categorization resulted in similar conclusions as obtained
from the binary categorization (Supplementary Table S3).

Existing statistical approaches and their limitations
Tumor growth profiles have traditionally been analyzed

using univariate statistical approaches that do not fully take

into account the tumor heterogeneity within the treatment
and control groups. These approaches are typically based on
the comparison of tumor sizes at a prespecified time point,
using statisticalmethods such as t tests and ANOVA, or their
rank-based alternatives such as Wilcoxon–Mann–Whitney
and Kruskal–Wallis test (1, 4–12). Another commonly used
end point is the time until tumor size doubling, which is
analyzed using statistical methods from survival analysis
such as the log-rank test (1). There are, however, some
potential pitfalls in the use of such single end point
approaches. First, an invalid choice of the evaluation time
point or the target tumor sizemay lead to substantial loss of
information, in case a large fraction of tumors have not
reached the predefined endpoint (32, 33). Second, any
single end point is unpowered to detect treatment mechan-
isms behind dynamic patterns of tumor growth (12). This
was exemplified in the DMBA case, where only 2 of the 9
time points showed a significant treatment effect in the
original ANOVA-based analysis (6), making the inference
upon the efficacy of the dietary intervention more difficult.

Longitudinal statistical modeling methods have also
been developed for tumor growth experiments, but these
are often restricted to rather specific study designs or ques-
tions, and lack effective modeling of intertumor heteroge-
neity (1). Related approaches that share similar methodol-
ogies include, for instance, a standard t test together with an
EM algorithm as well as Bayesian modeling approaches for
testing differences in treatment regimens (13–15). Other
authors have developed a nonlinearmethod for summing 2
exponential functions (16), or a nonparametric approach
for estimating tumor growth profiles using penalized spline
functions (17). However, even if these models can deal, for
instance, with missing and censored data values, other
important characteristics of the growth profiles, such as
tumor regression or growth rates, cannot be estimated using
such approaches. Finally, many of the more advanced
statistical models introduced for analyzing tumor growth
experiments are not implemented as user-friendly software
packages, which hinders their routine use in data analysis.

Recently, an interesting Bayesian hierarchical change-
point (BHC) model was proposed for analyzing long treat-
ment experiments (12). Themodel assumes that the treated
tumors will first suppress in response to the treatment, then
reach aminimum, and later, reboundwith both the decline
and the regrowth curves assumed being linear on the log
scale. The main difference between our framework and the
BHCmodels is that the latter categorizes the growth profile
of each individual tumor into these specific growth periods
(i.e., it models intratumor variability), whereas our model
categorizes the given set of tumor profiles into growing and
poorly growing classes (i.e., it models intertumor variabil-
ity). The BHC model is especially useful for estimating
regression period and nadir tumor volume for such tumors
that contain measurements below the limit of quantitation
leading to missing values and censored data (1). This is
often the case when assessing more aggressive treatment
options, which can totally regress the tumor growth and
the main focus lies on testing rebound effects and possible
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Figure 3. Modeling the simulated 4T1 dataset with and without
categorization. A, the EM algorithm and the categorizing model correctly
identified the growing and poorly growing subgroups both in the
combined control group (original controls and square root of their
response traces) and in the combined treatment group (doxorubicin- and
cyclophosphamide-treated tumors). B, the categorizing approach
detects the doxorubicin-specific treatment effect (left, P¼ 0.002), which
is missed by the noncategorizing approach (right, P ¼ 0.441). The fixed
effect estimates of the noncategorizing model are not feasible due to the
assumption of homogeneous growth profiles. C, the random-effects of
the categorizing approach show reasonable model fit (left), whereas the
random slopes of the noncategorizing approach exhibit severe
multimodality (right), suggesting that the growth profiles indeed originate
from 2 distinct distributions (i.e., tumor subcategories).
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side effects. On the other hand, when experimenting with
less aggressive treatment alternatives,more subtle treatment
effects are easilymissed in case the intertumor heterogeneity
is not properly taken into account.

Benefits of the categorizing mixed-effects model
To our knowledge, there are no existing approaches

towards modeling the growing and poorly growing tumor
categories, even if the presence of such categories in the
tumor growth experiments has been long evident (2–8).
While there are various approaches to reduce model fit
heteroscedasticity, such as the Box-Cox or logarithmic
transformations, these cannot model the intrinsic hetero-
geneity encountered within control and treatment groups.
This study showed that when the observed within- and
between-group variation is effectively modeled, it is possi-
ble to improve the sensitivity of the treatment evaluation
through relevant model parameters. In particular, the slope
parameter was shown informative when evaluating the
efficacy of dietary plant lignans. Our modeling framework
also enables comparison of different experimental designs
in terms of their associated study power, precision, and
sample size estimates, something that is rarely available
from other modeling works. However, it should be appre-
ciated that the operation of these modeling tools depends
on thedata under analysis. Therefore, data visualization and
model diagnostics should always be used to confirm that
the model assumptions are fulfilled and the model results
are valid (see Supplementary Methods for details).

To promote its widespread application in tumor growth
studies, we have made publicly available the modeling
framework in the form of an R package, named XenoCat,
with implementation, source code, user-instructions, and
step-by-step example available (28). In contrast to most
existing models, our framework can be robustly applied to
various tumor growth experiments without making strong
assumptions about the type or amount of data under
analysis. For instance, the 4 case studies analyzed here were
conducted using different tumor models, representing a
wide range of experimental setups, such as different number
of tumors and various response readouts and their distri-
butional characteristics, which can drastically affect the
performance of the traditional statistical methods. The
model can deal with short or even outlier profiles, which
may be present in the data due to various filtering criteria or
very aggressively growing tumors, respectively, and which
are frequently excluded from the standard statistical anal-
ysis. Therefore, the model can use the full information
captured in the entire longitudinal profiles to maximize
the output of the tumor growth studies.

The novel tumor categorizing algorithm does not only
enable calculating interesting growth parameters, but it also
allows for detection of hidden subgroups of differentially
growing tumors within treatment and control groups that
may associate with the underlying tumor biology. In par-
ticular, differences observed in the ERb expression between
the growing and poorly growing categories in the MCF-7
breast cancer model are highly intriguing. Previous studies

on genetically modified breast cancer cell lines with high
constitutive or inducible expression of ERb show that tumor
growth is significantly reducedwhen the transgene is turned
on (31).Our study is the first, to our knowledge, to show the
inverse association between tumor growth and endogenous
ERb expression and suggests that endogenous ERb levels
may be regulated by interventions (here, dietary lignans).
This phenomenon may be linked to underlying differences
in tumor progression mechanisms (34) and can even give
insights into treatment resistance (35). Besides providing
additional explanations for the detected tumor growth
categories, biologic correlates behind the model-captured
tumor heterogeneity could thus open up new possibilities
for identifying novel targets and treatment opportunities for
cancer.

Limitations of the model and its future extensions
A number of simplifying assumptions were made here to

make the implemented model as robust and flexible as
possible. Themethodology proposedhere is basedon linear
mixed-effectsmodels with dichotomous categorization and
assumption that the poorly growing profiles are approxi-
mately horizontal. However, in cases where deemed appro-
priate, the generic model can be extended to more complex
settings, including nonlinear growth patterns or several
growth categories with non-zero slope parameters or prob-
abilistic tumor categorization, allowing, for instance, par-
tially overlapping groups such as growing, regressing, and
stabilizing profiles (6). Another interesting future question
we intend to tackle is that whether combining multiple
phenotypic readouts for treatment response, such as tumor
sizes and PSA levels, would improve statistical power in the
case of the prostate cancer model. The current implemen-
tationof the power analysis also assumes complete data, but
missing values, either informatively censored ormissing-at-
random (36), could be incorporated in the future work.
Finally, the computationally, rather intensive, power calcu-
lations could easily be split into parallel processes for
maximal computational efficiency (Supplementary Fig. S7).
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covariates were further used to show that such probabilistic
categorization resulted in similar conclusions as obtained
from the binary categorization (Supplementary Table S3).

Existing statistical approaches and their limitations
Tumor growth profiles have traditionally been analyzed

using univariate statistical approaches that do not fully take

into account the tumor heterogeneity within the treatment
and control groups. These approaches are typically based on
the comparison of tumor sizes at a prespecified time point,
using statisticalmethods such as t tests and ANOVA, or their
rank-based alternatives such as Wilcoxon–Mann–Whitney
and Kruskal–Wallis test (1, 4–12). Another commonly used
end point is the time until tumor size doubling, which is
analyzed using statistical methods from survival analysis
such as the log-rank test (1). There are, however, some
potential pitfalls in the use of such single end point
approaches. First, an invalid choice of the evaluation time
point or the target tumor sizemay lead to substantial loss of
information, in case a large fraction of tumors have not
reached the predefined endpoint (32, 33). Second, any
single end point is unpowered to detect treatment mechan-
isms behind dynamic patterns of tumor growth (12). This
was exemplified in the DMBA case, where only 2 of the 9
time points showed a significant treatment effect in the
original ANOVA-based analysis (6), making the inference
upon the efficacy of the dietary intervention more difficult.

Longitudinal statistical modeling methods have also
been developed for tumor growth experiments, but these
are often restricted to rather specific study designs or ques-
tions, and lack effective modeling of intertumor heteroge-
neity (1). Related approaches that share similar methodol-
ogies include, for instance, a standard t test together with an
EM algorithm as well as Bayesian modeling approaches for
testing differences in treatment regimens (13–15). Other
authors have developed a nonlinearmethod for summing 2
exponential functions (16), or a nonparametric approach
for estimating tumor growth profiles using penalized spline
functions (17). However, even if these models can deal, for
instance, with missing and censored data values, other
important characteristics of the growth profiles, such as
tumor regression or growth rates, cannot be estimated using
such approaches. Finally, many of the more advanced
statistical models introduced for analyzing tumor growth
experiments are not implemented as user-friendly software
packages, which hinders their routine use in data analysis.

Recently, an interesting Bayesian hierarchical change-
point (BHC) model was proposed for analyzing long treat-
ment experiments (12). Themodel assumes that the treated
tumors will first suppress in response to the treatment, then
reach aminimum, and later, reboundwith both the decline
and the regrowth curves assumed being linear on the log
scale. The main difference between our framework and the
BHCmodels is that the latter categorizes the growth profile
of each individual tumor into these specific growth periods
(i.e., it models intratumor variability), whereas our model
categorizes the given set of tumor profiles into growing and
poorly growing classes (i.e., it models intertumor variabil-
ity). The BHC model is especially useful for estimating
regression period and nadir tumor volume for such tumors
that contain measurements below the limit of quantitation
leading to missing values and censored data (1). This is
often the case when assessing more aggressive treatment
options, which can totally regress the tumor growth and
the main focus lies on testing rebound effects and possible
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Figure 3. Modeling the simulated 4T1 dataset with and without
categorization. A, the EM algorithm and the categorizing model correctly
identified the growing and poorly growing subgroups both in the
combined control group (original controls and square root of their
response traces) and in the combined treatment group (doxorubicin- and
cyclophosphamide-treated tumors). B, the categorizing approach
detects the doxorubicin-specific treatment effect (left, P¼ 0.002), which
is missed by the noncategorizing approach (right, P ¼ 0.441). The fixed
effect estimates of the noncategorizing model are not feasible due to the
assumption of homogeneous growth profiles. C, the random-effects of
the categorizing approach show reasonable model fit (left), whereas the
random slopes of the noncategorizing approach exhibit severe
multimodality (right), suggesting that the growth profiles indeed originate
from 2 distinct distributions (i.e., tumor subcategories).
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side effects. On the other hand, when experimenting with
less aggressive treatment alternatives,more subtle treatment
effects are easilymissed in case the intertumor heterogeneity
is not properly taken into account.

Benefits of the categorizing mixed-effects model
To our knowledge, there are no existing approaches

towards modeling the growing and poorly growing tumor
categories, even if the presence of such categories in the
tumor growth experiments has been long evident (2–8).
While there are various approaches to reduce model fit
heteroscedasticity, such as the Box-Cox or logarithmic
transformations, these cannot model the intrinsic hetero-
geneity encountered within control and treatment groups.
This study showed that when the observed within- and
between-group variation is effectively modeled, it is possi-
ble to improve the sensitivity of the treatment evaluation
through relevant model parameters. In particular, the slope
parameter was shown informative when evaluating the
efficacy of dietary plant lignans. Our modeling framework
also enables comparison of different experimental designs
in terms of their associated study power, precision, and
sample size estimates, something that is rarely available
from other modeling works. However, it should be appre-
ciated that the operation of these modeling tools depends
on thedata under analysis. Therefore, data visualization and
model diagnostics should always be used to confirm that
the model assumptions are fulfilled and the model results
are valid (see Supplementary Methods for details).

To promote its widespread application in tumor growth
studies, we have made publicly available the modeling
framework in the form of an R package, named XenoCat,
with implementation, source code, user-instructions, and
step-by-step example available (28). In contrast to most
existing models, our framework can be robustly applied to
various tumor growth experiments without making strong
assumptions about the type or amount of data under
analysis. For instance, the 4 case studies analyzed here were
conducted using different tumor models, representing a
wide range of experimental setups, such as different number
of tumors and various response readouts and their distri-
butional characteristics, which can drastically affect the
performance of the traditional statistical methods. The
model can deal with short or even outlier profiles, which
may be present in the data due to various filtering criteria or
very aggressively growing tumors, respectively, and which
are frequently excluded from the standard statistical anal-
ysis. Therefore, the model can use the full information
captured in the entire longitudinal profiles to maximize
the output of the tumor growth studies.

The novel tumor categorizing algorithm does not only
enable calculating interesting growth parameters, but it also
allows for detection of hidden subgroups of differentially
growing tumors within treatment and control groups that
may associate with the underlying tumor biology. In par-
ticular, differences observed in the ERb expression between
the growing and poorly growing categories in the MCF-7
breast cancer model are highly intriguing. Previous studies

on genetically modified breast cancer cell lines with high
constitutive or inducible expression of ERb show that tumor
growth is significantly reducedwhen the transgene is turned
on (31).Our study is the first, to our knowledge, to show the
inverse association between tumor growth and endogenous
ERb expression and suggests that endogenous ERb levels
may be regulated by interventions (here, dietary lignans).
This phenomenon may be linked to underlying differences
in tumor progression mechanisms (34) and can even give
insights into treatment resistance (35). Besides providing
additional explanations for the detected tumor growth
categories, biologic correlates behind the model-captured
tumor heterogeneity could thus open up new possibilities
for identifying novel targets and treatment opportunities for
cancer.

Limitations of the model and its future extensions
A number of simplifying assumptions were made here to

make the implemented model as robust and flexible as
possible. Themethodology proposedhere is basedon linear
mixed-effectsmodels with dichotomous categorization and
assumption that the poorly growing profiles are approxi-
mately horizontal. However, in cases where deemed appro-
priate, the generic model can be extended to more complex
settings, including nonlinear growth patterns or several
growth categories with non-zero slope parameters or prob-
abilistic tumor categorization, allowing, for instance, par-
tially overlapping groups such as growing, regressing, and
stabilizing profiles (6). Another interesting future question
we intend to tackle is that whether combining multiple
phenotypic readouts for treatment response, such as tumor
sizes and PSA levels, would improve statistical power in the
case of the prostate cancer model. The current implemen-
tationof the power analysis also assumes complete data, but
missing values, either informatively censored ormissing-at-
random (36), could be incorporated in the future work.
Finally, the computationally, rather intensive, power calcu-
lations could easily be split into parallel processes for
maximal computational efficiency (Supplementary Fig. S7).
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Figure S1: Individual tumor profiles within the control and treatment groups. (A) DMBA 
dataset, (B) MCF-7 dataset, (C) LNCaP dataset, (D) 4T1 dataset.  
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Supplementary Figure S1: Individual tumor profiles within the control and treatment groups. (A)
DMBA dataset, (B) MCF-7 dataset, (C) LNCaP dataset, (D) 4T1 dataset.
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Supplementary Figure S1: Individual tumor profiles within the control and treatment groups. (A)
DMBA dataset, (B) MCF-7 dataset, (C) LNCaP dataset, (D) 4T1 dataset.
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Figure S2: Convergence of the EM-algorithm categories in the LNCaP DPN experiment. 
Likelihoods for the observations within a single tumor are combined, thus they share the 
same category at each step. (A) When the initial starting point is fixed, the process is 
deterministic and the same stable solution is found over different runs. (B) In the default 
approach, the identified categories are discriminated at each EM-iteration to yield a binary 
discrimination into the growing and poorly growing categories. (C) The probabilistic 
approach utilizes the probability of a tumor to belong to the growing category yielded by 
the likelihood ratio test. This provides a continuous version for the latent growth covariate 
for model fitting. (1) First EM-iteration, (2) Final EM-iteration. 
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Supplementary Figure S2: Convergence of the EM-algorithm categories in the LNCaP DPN experi-
ment. Likelihoods for the observations within a single tumor are combined, thus they share the same
category at each step. (A) When the initial starting point is fixed, the process is deterministic and
the same stable solution is found over different runs. (B) In the default approach, the identified cat-
egories are discriminated at each EM-iteration to yield a binary discrimination into the growing and
poorly growing categories. (C) The probabilistic approach utilizes the probability of a tumor to be-
long to the growing category yielded by the likelihood ratio test. This provides a continuous version
for the latent growth covariate for model fitting. (1) First EM-iteration, (2) Final EM-iteration.
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Figure S3: Workflow of the tumor growth analysis using the presented methodology in R. 
The workflow is split into two phases: the first phase includes the model fitting and testing 
of the model. The second phase includes a kit of various tools for practical tasks in tumor 
growth studies, such as power and precision analysis, validation of the model and further 
exploration of the model in terms of testing additional biomarkers related to the study 
question.  
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Supplementary Figure S3: Workflow of the tumor growth analysis using the presented methodology
in R. The workflow is split into two phases: the first phase includes the model fitting and testing
of the model. The second phase includes a kit of various tools for practical tasks in tumor growth
studies, such as power and precision analysis, validation of the model and further exploration of the
model in terms of testing additional biomarkers related to the study question.



 2

 
Figure S2: Convergence of the EM-algorithm categories in the LNCaP DPN experiment. 
Likelihoods for the observations within a single tumor are combined, thus they share the 
same category at each step. (A) When the initial starting point is fixed, the process is 
deterministic and the same stable solution is found over different runs. (B) In the default 
approach, the identified categories are discriminated at each EM-iteration to yield a binary 
discrimination into the growing and poorly growing categories. (C) The probabilistic 
approach utilizes the probability of a tumor to belong to the growing category yielded by 
the likelihood ratio test. This provides a continuous version for the latent growth covariate 
for model fitting. (1) First EM-iteration, (2) Final EM-iteration. 

Tu
m

or
 re

sp
on

se

Treatment duration

Probabilistic approach

Binary approach

Initial step First EM-iteration Solution

A

B1 B2

C1 C2

Initial
θ = 1

Growing
θ = 1

Poorly
growing
θ = 0

θ = 1

θ = 0

...

...

...

Supplementary Figure S2: Convergence of the EM-algorithm categories in the LNCaP DPN experi-
ment. Likelihoods for the observations within a single tumor are combined, thus they share the same
category at each step. (A) When the initial starting point is fixed, the process is deterministic and
the same stable solution is found over different runs. (B) In the default approach, the identified cat-
egories are discriminated at each EM-iteration to yield a binary discrimination into the growing and
poorly growing categories. (C) The probabilistic approach utilizes the probability of a tumor to be-
long to the growing category yielded by the likelihood ratio test. This provides a continuous version
for the latent growth covariate for model fitting. (1) First EM-iteration, (2) Final EM-iteration.

 3

 

 
Figure S3: Workflow of the tumor growth analysis using the presented methodology in R. 
The workflow is split into two phases: the first phase includes the model fitting and testing 
of the model. The second phase includes a kit of various tools for practical tasks in tumor 
growth studies, such as power and precision analysis, validation of the model and further 
exploration of the model in terms of testing additional biomarkers related to the study 
question.  

XenoCat-package
workflow

Data input
Covariates according

to Supplementary Table 1

Preliminary visualization and exploration of data
Minor adjustments to better model specific experimental design: e.g.

accounting for quadratic growth (Sup. Fig. 6), and 
whether or not a tumor target size was used

EM-algorithm
Quick convergence

with binary classes and
fixed starting

values
(Sup. Fig. 2)

Analysis procedure
Using mixed-effects models

with lme4-package in R

Toolkit
Additional implemented
functions and methods

Categorization
Distinct classes of tumor profiles

within each treatment group

No categorization
All tumors treated as having 

similar growth profiles

Fisher’s Exact Test
Found categories vs treatment groups (Figure 1b)

Testing treatment effects
Slope and offset fixed effects (Figure 1a)

Statistical assessment of the fitted model(s)
Evaluation of possible treatment effects

Power analysis
Tumor number

suggestion according to
simulated data, testing of

different time periods
(Sup. Fig. 5, 7)

Precision analysis
Most informative time 
periods for fixed effect

hypothesis testing
(Sup. Fig. 5)

Model validation
Model residual plots,

proportional residuals,
autocorrelation

Visualization and exploring
Various methods for

visualization and testing
additional biomarkers in the

fitted model

Comparison of experimental designs Novel discoveries and information about tumor
experiments

Original data
Control
Treatment

Supplementary Figure S3: Workflow of the tumor growth analysis using the presented methodology
in R. The workflow is split into two phases: the first phase includes the model fitting and testing
of the model. The second phase includes a kit of various tools for practical tasks in tumor growth
studies, such as power and precision analysis, validation of the model and further exploration of the
model in terms of testing additional biomarkers related to the study question.



 4 

Figure S4: Random slopes in the DMBA lower and higher dosage datasets.  Since the 
components for each individual were equivalent in the random effects’ model matrices
histogram plots of the estimated values were used to assess if heterogeneity was 
observed also in the fitted random effects (9).  Upper panels A,B: DMBA lower dose, 
Lower panels C,D: DMBA higher dose. (A),(C): With the categorizing model, the 
distributions for random slopes do not exhibit multimodality or skewness. (B),(D): The  
random slopes fitted without categorization are highly skewed and multimodal, with the
mode of the distribution residing below zero random slope. 
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Supplementary Figure S4: Random slopes in the DMBA lower and higher dosage datasets. Since
the components for each individual were equivalent in the random effects’ model matrices histogram
plots of the estimated values were used to assess if heterogeneity was observed also in the fitted
random effects (9). Upper panels A,B: DMBA lower dose, Lower panels C,D: DMBA higher dose.
(A),(C): With the categorizing model, the distributions for random slopes do not exhibit multi-
modality or skewness. (B),(D): The random slopes fitted without categorization are highly skewed
and multimodal, with the mode of the distribution residing below zero random slope.
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Figure S5: Power and precision analysis in the LNCaP DPN experiment. (A) Statistical 
power with and without categorization. Using the 0.8 power (black dashed line), the 
suggestion for tumor number per group is 19 with and 25 without categorization to achieve 
a significant slope treatment effect. The offset effect did not reach the set threshold. (B) 
Statistical precision for the slope and offset effects when exploring the model accuracy for 
shorter treatment durations by including varying number of time points from the beginning. 
(C) Time point -specific statistical precision for the treatment-effect. 
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Supplementary Figure S5: Power and precision analysis in the LNCaP DPN experiment. (A) Statis-
tical power with and without categorization. Using the 0.8 power (black dashed line), the suggestion
for tumor number per group is 19 with and 25 without categorization to achieve a significant slope
treatment effect. The offset effect did not reach the set threshold. (B) Statistical precision for the
slope and offset effects when exploring the model accuracy for shorter treatment durations by includ-
ing varying number of time points from the beginning. (C) Time point -specific statistical precision
for the treatment-effect.
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plots of the estimated values were used to assess if heterogeneity was observed also in the fitted
random effects (9). Upper panels A,B: DMBA lower dose, Lower panels C,D: DMBA higher dose.
(A),(C): With the categorizing model, the distributions for random slopes do not exhibit multi-
modality or skewness. (B),(D): The random slopes fitted without categorization are highly skewed
and multimodal, with the mode of the distribution residing below zero random slope.
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Supplementary Figure S5: Power and precision analysis in the LNCaP DPN experiment. (A) Statis-
tical power with and without categorization. Using the 0.8 power (black dashed line), the suggestion
for tumor number per group is 19 with and 25 without categorization to achieve a significant slope
treatment effect. The offset effect did not reach the set threshold. (B) Statistical precision for the
slope and offset effects when exploring the model accuracy for shorter treatment durations by includ-
ing varying number of time points from the beginning. (C) Time point -specific statistical precision
for the treatment-effect.
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Figure S6: Adjusting the model fit according to the validation tools in the 4T1 Doxorubicin 
experiment. (A) Model fit with the default model covariates does not account for the 
quadratic growth in the data, which is evident from the visual inspection of the residuals. 
(B) The adjusted model provides an adequate fit for the quadratic growth profiles. 
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Supplementary Figure S6: Adjusting the model fit according to the validation tools in the 4T1
Doxorubicin experiment. (A) Model fit with the default model covariates does not account for the
quadratic growth in the data, which is evident from the visual inspection of the residuals. (B) The
adjusted model provides an adequate fit for the quadratic growth profiles.

 7 

 
Figure S7: Workflow of the power analysis. The fitted model is used as a base for 
simulation of artificial datasets for sample size estimation. The computational tasks are 
independent and can be run as separate processes in a more efficient parallel 
implementation. 
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and can be run as separate processes in a more efficient parallel implementation.
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Supplementary Figure S6: Adjusting the model fit according to the validation tools in the 4T1
Doxorubicin experiment. (A) Model fit with the default model covariates does not account for the
quadratic growth in the data, which is evident from the visual inspection of the residuals. (B) The
adjusted model provides an adequate fit for the quadratic growth profiles.
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Supplementary Figure S7: Workflow of the power analysis. The fitted model is used as a base for
simulation of artificial datasets for sample size estimation. The computational tasks are independent
and can be run as separate processes in a more efficient parallel implementation.
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Supplementary Figure S8: Visualization of the null simulation study for heterogeneous (left panel)
and homogeneous (right panel) cases. (A) An example of the simulated datasets, (B) Identified
categorization in the categorizing approach, (C) Fixed effects inference in the categorizing approach
(here p > 0.05 for treatment effects), (D) Fixed effects inference in the conventional non-categorizing
approach (here p > 0.05 for treatment effects).
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Supplementary Figure S9: Examples of such null model simulations, where use of model diagnostics would avoid
spurious findings. (A) Heterogeneous and homogeneous cases of simulated datasets, (B) Identified tumor sub-categories
in the categorizing approach, (C) Fixed effects inference in the categorizing approach, (D) Fixed effects inference in the
conventional non-categorizing approach. Here, the conventional model detects a statistically significant slope effect in
the example heterogeneous dataset (p < 0.05, panel D, left column). However, the fixed effects fit does not capture well
the distinct populations of the tumor growth profiles, which resulted in severe bimodality in the random slopes (terms
u2,i). This indicates that the non-categorizing model fit was not feasible, and that the categorizing approach should
have been used instead (panel C, left column). Similarly, the categorizing model detects a statistically significant slope
effect in the example homogeneous case (p < 0.05, panel C, right column). However, the model fit has resulted here in
false convergence and the random base levels (terms u1,i) were all estimated as zero. Additionally, this solution led to
a significant autocorrelation between the first and last observation of the growth profiles (p < 0.001). This indicates
that the categorizing model formulation is possibly too complex for this particular dataset, and that an alternative
formulation should be considered, such as the conventional model (panel D, right column).
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Supplementary Figure S8: Visualization of the null simulation study for heterogeneous (left panel)
and homogeneous (right panel) cases. (A) An example of the simulated datasets, (B) Identified
categorization in the categorizing approach, (C) Fixed effects inference in the categorizing approach
(here p > 0.05 for treatment effects), (D) Fixed effects inference in the conventional non-categorizing
approach (here p > 0.05 for treatment effects).
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Supplementary Figure S9: Examples of such null model simulations, where use of model diagnostics would avoid
spurious findings. (A) Heterogeneous and homogeneous cases of simulated datasets, (B) Identified tumor sub-categories
in the categorizing approach, (C) Fixed effects inference in the categorizing approach, (D) Fixed effects inference in the
conventional non-categorizing approach. Here, the conventional model detects a statistically significant slope effect in
the example heterogeneous dataset (p < 0.05, panel D, left column). However, the fixed effects fit does not capture well
the distinct populations of the tumor growth profiles, which resulted in severe bimodality in the random slopes (terms
u2,i). This indicates that the non-categorizing model fit was not feasible, and that the categorizing approach should
have been used instead (panel C, left column). Similarly, the categorizing model detects a statistically significant slope
effect in the example homogeneous case (p < 0.05, panel C, right column). However, the model fit has resulted here in
false convergence and the random base levels (terms u1,i) were all estimated as zero. Additionally, this solution led to
a significant autocorrelation between the first and last observation of the growth profiles (p < 0.001). This indicates
that the categorizing model formulation is possibly too complex for this particular dataset, and that an alternative
formulation should be considered, such as the conventional model (panel D, right column).
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Supplementary Figure S10: Fixed effect fits from the categorizing (left column) and non-categorizing (right
column) models, shown in a parallel fashion to Table 2. (A) DMBA case, (B) MCF-7 case, (C) LNCaP
case, (D) 4T1 case. In those studies without a designated tumor target size (panels A, D), the poorly
growing category is depicted using the horizontal population profile at zero response, to visualize the poorly
growing fixed effect fit even in the absence of the base level and offset terms in the corresponding models
(i.e. b1 = b2 = 0)
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Supplementary Figure S10: Fixed effect fits from the categorizing (left column) and non-categorizing (right
column) models, shown in a parallel fashion to Table 2. (A) DMBA case, (B) MCF-7 case, (C) LNCaP
case, (D) 4T1 case. In those studies without a designated tumor target size (panels A, D), the poorly
growing category is depicted using the horizontal population profile at zero response, to visualize the poorly
growing fixed effect fit even in the absence of the base level and offset terms in the corresponding models
(i.e. b1 = b2 = 0)
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Longitudinal modeling of 
ultrasensitive and traditional 
prostate-specific antigen and 
prediction of biochemical 
recurrence after radical 
prostatectomy
Teemu D. Laajala1,2,*, Heikki Seikkula3,4,*, Fatemeh Seyednasrollah sadat1,2, Tuomas Mirtti5,6, 
Peter J. Boström4 & Laura L. Elo1

Ultrasensitive prostate-specific antigen (u-PSA) remains controversial for follow-up after radical 
prostatectomy (RP). The aim of this study was to model PSA doubling times (PSADT) for predicting 
biochemical recurrence (BCR) and to capture possible discrepancies between u-PSA and traditional 
PSA (t-PSA) by utilizing advanced statistical modeling. 555 RP patients without neoadjuvant/adjuvant 
androgen deprivation from the Turku University Hospital were included in the study. BCR was defined 
as two consecutive PSA values >0.2 ng/mL and the PSA measurements were log2-transformed. One 
third of the data was reserved for independent validation. Models were first fitted to the post-surgery 
PSA measurements using cross-validation. Major trends were then captured using linear mixed-effect 
models and a predictive generalized linear model effectively identified early trends connected to BCR. 
The model generalized for BCR prediction to the validation set with ROC-AUC of 83.6% and 95.1% for 
the 1 and 3 year follow-up censoring, respectively. A web-based tool was developed to facilitate its 
use. Longitudinal trends of u-PSA did not display major discrepancies from those of t-PSA. The results 
support that u-PSA provides useful information for predicting BCR after RP. This can be beneficial to 
avoid unnecessary adjuvant treatments or to start them earlier for selected patients.

Prostate-specific antigen (PSA) is the most widely used tool to detect and monitor prostate cancer (PCa)1. PSA 
detection methods with detection levels under 0.1 ng/mL are considered ultrasensitive and some assays are capa-
ble of detecting levels approaching 0.001 ng/mL2. The use of ultrasensitive PSA assays (u-PSA) remains contro-
versial due to questions regarding reliability and usefulness of u-PSA3. However, u-PSA could potentially detect 
biochemical recurrence (BCR) after radical prostatectomy (RP) significantly earlier than traditional PSA (t-PSA) 
assays4.

Early detection of BCR is important because salvage radiation therapy (RT) is most efficient when given 
shortly after BCR5. BCR is defined here as two or more consecutive PSA values over 0.2 ng/mL concordant to 
the EAU consensus6. Currently, there is no evidence that salvage RT prompted by elevated u-PSA values after RP 
would improve patient survival. Nevertheless, it could save high-risk patients from unnecessary adjuvant RT and 
favor more selective salvage RT7.
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2Department of Mathematics and Statistics, University of Turku, Turku, Finland. 3Department of Surgery, Central 
Hospital of Central Ostrobothnia, Kokkola, Finland. 4Department of Urology, Turku University Hospital, Turku, 
Finland. 5Department of Pathology (HUSLAB), Helsinki University Hospital, Helsinki, Finland. 6Institute for Molecular 
Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. *These authors contributed equally to this work. 
Correspondence and requests for materials should be addressed to L.L.E. (email: laliel@utu.fi)

received: 26 May 2016

Accepted: 03 October 2016

Published: 02 November 2016

OPEN

www.nature.com/scientificreports/

2Scientific RepoRts | 6:36161 | DOI: 10.1038/srep36161

PSA doubling time (PSADT) has been used to estimate the risk of disease progression after radical surgery; 
PSADT of nine months or less is an independent risk factor for prostate cancer specific mortality8. Detectable 
u-PSA levels after RP can predict PCa recurrence9. Patients with undetectable u-PSA two years after surgery are 
unlikely to develop rapid clinical progression of PCa (PSADT < 9 months if experiencing BCR later)10. Based on 
current literature, the correlation between general PSADT and ultrasensitive doubling times (u-DT) is poor11. 
False positive findings from u-PSA may also originate from laboratory measurement errors12,13.

The aim of this study was to develop novel tools that reduce the unreliability related to u-PSA. Furthermore, 
we assessed the potential prognostic significance of u-DT for predicting BCR after RP and applied comprehen-
sive mathematical modeling of u-PSA and t-PSA, in order to establish an accurate predictive link between early 
measurements of PSA and the risk of BCR.

Methods
Patient material. Patients undergoing open RP and limited pelvic lymphadenectomy at Turku University 
Hospital during 2004–2008 were included (n =  604). The follow-up period was a minimum of 6 years. Open RP 
was performed as initially described by Walsh et al.14. Patients who received neoadjuvant or adjuvant andro-
gen deprivations (ADT) were excluded; this also meant the exclusion of node positive patients, resulting in 555 
patients. For practical reasons all ADTs during the follow-up period were called as adjuvant ADT, resulting pop-
ulation including no patients with hormonal treatment. From the 555 patients, full follow-up information was 
unavailable for 33 patients and 19 patients died of causes unrelated to PCa, resulting in a final set of 503 patients. 
Patients who died from other causes than PCa were excluded to avoid bias, as also very early follow-up informa-
tion from some of these patients was lacking. Patients with adjuvant RT (ART) were not excluded based on our 
earlier findings demonstrating no differences between DTs in RT patients with or without adjuvant15. This study 
from Seikkula et al. composed of almost identical study population, and assessed optimal u-PSA threshold for 
upcoming BCR. In the conducted multivariate analysis there were no significant differences between patients 
with or without ART. According to the Finnish national rules and regulations for medical registry studies with 
retrospective nature no patient consents are required. Study protocol was approved by the IRB of the hospital 
district of South West Finland and the study was carried out taking into account all the study guidelines and 
national laws in Finland.

The patients were followed every 3 months for the first year after the surgery and semiannually thereafter. 
The follow-up included a physical examination and u-PSA measurements. Data was collected retrospectively 
from Turku University Hospital’s medical records and PSA data was obtained from Turku University Hospital 
laboratory data sources. All the PSA-analyses were done with electrochemiluminescence-immunoassay (ECLIA, 
Roche Diagnostics GmbH), which has a lowest limit of detection (LLD) 0.003 ng/mL. The collected data included 
essential clinicopathological variables, neoadjuvant and adjuvant therapies, and follow-up information, which 
were later used also in multivariate analysis of a potentially more accurate LASSO penalized prediction model by 
expanding beyond just PSA-derived information.

Processing of PSA measurements. PSA measurements with non-detected quantities were imputed using 
the smallest non-zero measurement. Of all the eligible post-surgery measurements, 4502 (79.6%) were u-PSA 
(≤ 0.1 ng/mL) and 1151 (20.4%) t-PSA (> 0.1 ng/mL). Post-surgery PSA nadir was defined as the lowest PSA 
measurement within a 3 month window after surgery. The 3 month period was chosen because 8 weeks is ample 
time to allow PSA levels to clear after RP and detectable u-PSA values in 1–3 months after RP are suggested as a 
marker for BCR progression9,16. The mathematical modeling was based only on post-nadir measurements prior 
to possible salvage treatments.

To evaluate the generalization ability of the modeling, the data was randomized into 3 subgroups of subjects 
prior to model development, where factors such as age, BCR status, and Gleason score (GS) were balanced. 2 of 
the subgroups were randomly chosen as the exploratory data and fully utilized in model development. Within this 
exploratory data, generalization ability was maintained through cross-validation. The remaining third of the data 
was utilized as a validation set, to retain an objective view to the robustness of the final model (Table 1).

Mathematical modeling. Cubic penalized splines were used in the exploratory set with a wide range of 
values for the spline smoothing parameter λ . The optimal smoothing parameter was identified by minimizing the 
cross-validation Median Squared Error (MSE) of the spline fits. Penalized splines provided a flexible approach to 
explore whether the log2-transformed PSA would display complex non-linear patterns (low λ ) or linear patterns 
(high λ ).

Based on the observed highly linear patterns of the log2-transformed PSA, a linear mixed-effects model was 
built. The parameter estimates of the model for the log2-PSA nadir and PSADT were used for detecting differences 
between the BCR and non-BCR patients. A clinical risk assessment tool was further derived using generalized 
linear mixed-effects models as a binary classifier for BCR using parameter derivatives from the patient-wise nadir 
and PSADT. Furthermore, we then subjected the binary classification task of nadir and PSADT along with clinical 
parameters from Table 1 to penalized LASSO regression, where the multivariate regression model is optimized to 
maximal generalizability by penalizing the inclusion of non-zero coefficients, i.e. non-informative, overlapping 
or correlated variables are eliminated.

The mathematical modeling was conducted using the R statistical software (version 3.2)17, along with the 
R-packages psplines18, lme419 and glmnet20 for the penalized cubic splines, linear mixed-effects models and penal-
ized LASSO regression, respectively. See the Supplementary Methods for a more detailed description of the math-
ematical modeling process, including splines, linear mixed-effects models and the LASSO multivariate regression.
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Ultrasensitive prostate-specific antigen (u-PSA) remains controversial for follow-up after radical 
prostatectomy (RP). The aim of this study was to model PSA doubling times (PSADT) for predicting 
biochemical recurrence (BCR) and to capture possible discrepancies between u-PSA and traditional 
PSA (t-PSA) by utilizing advanced statistical modeling. 555 RP patients without neoadjuvant/adjuvant 
androgen deprivation from the Turku University Hospital were included in the study. BCR was defined 
as two consecutive PSA values >0.2 ng/mL and the PSA measurements were log2-transformed. One 
third of the data was reserved for independent validation. Models were first fitted to the post-surgery 
PSA measurements using cross-validation. Major trends were then captured using linear mixed-effect 
models and a predictive generalized linear model effectively identified early trends connected to BCR. 
The model generalized for BCR prediction to the validation set with ROC-AUC of 83.6% and 95.1% for 
the 1 and 3 year follow-up censoring, respectively. A web-based tool was developed to facilitate its 
use. Longitudinal trends of u-PSA did not display major discrepancies from those of t-PSA. The results 
support that u-PSA provides useful information for predicting BCR after RP. This can be beneficial to 
avoid unnecessary adjuvant treatments or to start them earlier for selected patients.

Prostate-specific antigen (PSA) is the most widely used tool to detect and monitor prostate cancer (PCa)1. PSA 
detection methods with detection levels under 0.1 ng/mL are considered ultrasensitive and some assays are capa-
ble of detecting levels approaching 0.001 ng/mL2. The use of ultrasensitive PSA assays (u-PSA) remains contro-
versial due to questions regarding reliability and usefulness of u-PSA3. However, u-PSA could potentially detect 
biochemical recurrence (BCR) after radical prostatectomy (RP) significantly earlier than traditional PSA (t-PSA) 
assays4.

Early detection of BCR is important because salvage radiation therapy (RT) is most efficient when given 
shortly after BCR5. BCR is defined here as two or more consecutive PSA values over 0.2 ng/mL concordant to 
the EAU consensus6. Currently, there is no evidence that salvage RT prompted by elevated u-PSA values after RP 
would improve patient survival. Nevertheless, it could save high-risk patients from unnecessary adjuvant RT and 
favor more selective salvage RT7.
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PSA doubling time (PSADT) has been used to estimate the risk of disease progression after radical surgery; 
PSADT of nine months or less is an independent risk factor for prostate cancer specific mortality8. Detectable 
u-PSA levels after RP can predict PCa recurrence9. Patients with undetectable u-PSA two years after surgery are 
unlikely to develop rapid clinical progression of PCa (PSADT < 9 months if experiencing BCR later)10. Based on 
current literature, the correlation between general PSADT and ultrasensitive doubling times (u-DT) is poor11. 
False positive findings from u-PSA may also originate from laboratory measurement errors12,13.

The aim of this study was to develop novel tools that reduce the unreliability related to u-PSA. Furthermore, 
we assessed the potential prognostic significance of u-DT for predicting BCR after RP and applied comprehen-
sive mathematical modeling of u-PSA and t-PSA, in order to establish an accurate predictive link between early 
measurements of PSA and the risk of BCR.

Methods
Patient material. Patients undergoing open RP and limited pelvic lymphadenectomy at Turku University 
Hospital during 2004–2008 were included (n =  604). The follow-up period was a minimum of 6 years. Open RP 
was performed as initially described by Walsh et al.14. Patients who received neoadjuvant or adjuvant andro-
gen deprivations (ADT) were excluded; this also meant the exclusion of node positive patients, resulting in 555 
patients. For practical reasons all ADTs during the follow-up period were called as adjuvant ADT, resulting pop-
ulation including no patients with hormonal treatment. From the 555 patients, full follow-up information was 
unavailable for 33 patients and 19 patients died of causes unrelated to PCa, resulting in a final set of 503 patients. 
Patients who died from other causes than PCa were excluded to avoid bias, as also very early follow-up informa-
tion from some of these patients was lacking. Patients with adjuvant RT (ART) were not excluded based on our 
earlier findings demonstrating no differences between DTs in RT patients with or without adjuvant15. This study 
from Seikkula et al. composed of almost identical study population, and assessed optimal u-PSA threshold for 
upcoming BCR. In the conducted multivariate analysis there were no significant differences between patients 
with or without ART. According to the Finnish national rules and regulations for medical registry studies with 
retrospective nature no patient consents are required. Study protocol was approved by the IRB of the hospital 
district of South West Finland and the study was carried out taking into account all the study guidelines and 
national laws in Finland.

The patients were followed every 3 months for the first year after the surgery and semiannually thereafter. 
The follow-up included a physical examination and u-PSA measurements. Data was collected retrospectively 
from Turku University Hospital’s medical records and PSA data was obtained from Turku University Hospital 
laboratory data sources. All the PSA-analyses were done with electrochemiluminescence-immunoassay (ECLIA, 
Roche Diagnostics GmbH), which has a lowest limit of detection (LLD) 0.003 ng/mL. The collected data included 
essential clinicopathological variables, neoadjuvant and adjuvant therapies, and follow-up information, which 
were later used also in multivariate analysis of a potentially more accurate LASSO penalized prediction model by 
expanding beyond just PSA-derived information.

Processing of PSA measurements. PSA measurements with non-detected quantities were imputed using 
the smallest non-zero measurement. Of all the eligible post-surgery measurements, 4502 (79.6%) were u-PSA 
(≤ 0.1 ng/mL) and 1151 (20.4%) t-PSA (> 0.1 ng/mL). Post-surgery PSA nadir was defined as the lowest PSA 
measurement within a 3 month window after surgery. The 3 month period was chosen because 8 weeks is ample 
time to allow PSA levels to clear after RP and detectable u-PSA values in 1–3 months after RP are suggested as a 
marker for BCR progression9,16. The mathematical modeling was based only on post-nadir measurements prior 
to possible salvage treatments.

To evaluate the generalization ability of the modeling, the data was randomized into 3 subgroups of subjects 
prior to model development, where factors such as age, BCR status, and Gleason score (GS) were balanced. 2 of 
the subgroups were randomly chosen as the exploratory data and fully utilized in model development. Within this 
exploratory data, generalization ability was maintained through cross-validation. The remaining third of the data 
was utilized as a validation set, to retain an objective view to the robustness of the final model (Table 1).

Mathematical modeling. Cubic penalized splines were used in the exploratory set with a wide range of 
values for the spline smoothing parameter λ . The optimal smoothing parameter was identified by minimizing the 
cross-validation Median Squared Error (MSE) of the spline fits. Penalized splines provided a flexible approach to 
explore whether the log2-transformed PSA would display complex non-linear patterns (low λ ) or linear patterns 
(high λ ).

Based on the observed highly linear patterns of the log2-transformed PSA, a linear mixed-effects model was 
built. The parameter estimates of the model for the log2-PSA nadir and PSADT were used for detecting differences 
between the BCR and non-BCR patients. A clinical risk assessment tool was further derived using generalized 
linear mixed-effects models as a binary classifier for BCR using parameter derivatives from the patient-wise nadir 
and PSADT. Furthermore, we then subjected the binary classification task of nadir and PSADT along with clinical 
parameters from Table 1 to penalized LASSO regression, where the multivariate regression model is optimized to 
maximal generalizability by penalizing the inclusion of non-zero coefficients, i.e. non-informative, overlapping 
or correlated variables are eliminated.

The mathematical modeling was conducted using the R statistical software (version 3.2)17, along with the 
R-packages psplines18, lme419 and glmnet20 for the penalized cubic splines, linear mixed-effects models and penal-
ized LASSO regression, respectively. See the Supplementary Methods for a more detailed description of the math-
ematical modeling process, including splines, linear mixed-effects models and the LASSO multivariate regression.
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Results
Detailed patient characteristics are reported in Table 1. Majority of the post-surgery PSA measurements were 
detectable only in the u-PSA range: 83.6% and 79.1% in the exploratory and validation sets, respectively. 
There were 156 (46.2%) and 73 (44.2%) patients with pT3, and nearly half of the patients had Gleason ≤  6. 
Rate of positive margins was approximately 40%. Only 15.4% and 13.3% of the patients reached BCR during 
follow-up. Representative longitudinal curves of 30 randomly chosen patients are shown prior and post to the 
log2-transformation in Fig. 1a,b, respectively. Due to the log2-transformation a unit change corresponded to 
PSA doubling in the original PSA scale. For detailed modeling results, see the Supplementary Results within the 
Supplementary Material.

Splines and linear parametric models. The major PSA trends were effectively captured readily by linear 
components in the model based on the optimality of high values of the smoothing parameter λ  (Fig. 1c) as well 
as upon visual inspection (Fig. 1d–f; Fig. 2a,b). Interestingly, the first order derivatives that capture longitudinal 
changes in PSADT clearly distinguished between the BCR and non-BCR, suggesting that longitudinal follow-up 
of PSADT could provide an accurate predictor of BCR (Fig. 2c). The u-PSA and t-PSA did not exhibit markedly 
different patterns in the splines (Fig. 2b,c).

Since splines suggested that linear model families were suitable for modeling the log2-PSA patterns, we fit-
ted linear regression models to perform parametric inference for the population effects. The focus was on the 
log2-PSA nadir and PSADT. Patient-wise estimates for these coefficients are shown in Fig. 3a,b with 1 or 3 year 
follow-up, respectively.

Finally, generalized linear models were used as binary classifiers to connect the patient-wise characteristics 
from Fig. 3a,b to the known BCR statuses. The prediction accuracy using 1 year or 3 year post-nadir follow-up 
was 85.3% or 88.8%, respectively, using the prediction surfaces provided in Fig. 3c,d. Overall, only minor var-
iation was detected between the u-PSA and t-PSA in model diagnostics, exemplified by the slight decrease of 

Variable Instance

Dataset

Exploratory 2/3 Validation 1/3

pT

2 180 (53.3%) 92 (55.8%)

3 156 (46.2%) 73 (44.2%)

4 1 (0.3%)

Missing 1 (0.3%)

Gleason score (GS)

≤6 157 (46.4%) 80 (49.1%)

7 (3 + 4) 101 (29.9%) 49 (30.1%)

7 (4 +  3) 50 (14.8%) 18 (11.0%)

≥8 28 (8.3%) 16 (9.8%)

Missing 2 (0.6%)

Margins

Negative 200 (59.2%) 100 (60.6%)

Positive 137 (40.5%) 65 (39.4%)

Missing 1 (0.3%)

Adjuvant RT

No 295 (87.3%) 147 (89.1%)

Yes 42 (12.4%) 18 (10.9%)

Missing 1 (0.3%)

Salvage RT
No 275 (81.4%) 136 (82.4%)

Yes 63 (18.6%) 29 (17.6%)

PSA at surgery

<10 251 (74.3%) 121 (73.3%)

10–20 67 (19.8%) 36 (21.8%)

≥20 19 (5.6%) 8 (4.8%)

Missing 1 (0.3%)

Age

<60 123 (36.4%) 61 (37.0%)

60–70 193 (57.1%) 96 (58.2%)

>70 21 (6.2%) 8 (4.8%)

Missing 1 (0.3%)

Total counts of PSA 
measurements in different 
time windows

Time post-surgery t-PSA u-PSA t-PSA u-PSA

<1y 166 875 161 466

1y–3y 120 788 78 413

>3y 236 1000 164 649

Patient status

No recurrence 279 (82.5%) 140 (84.8%)

Recurrence (BCR) 52 (15.4%) 22 (13.3%)

Metastasis/other 7 (2.1%) 3 (1.8%)

Table 1.  Patient characteristics, PSA measurement counts, and patient counts in the exploratory and 
validation datasets (proportions in parentheses).
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heteroscedasticity over the threshold for model residuals (Fig. 3e). A computational example for predicting future 
patient risks with our given model estimates is provided for the mathematically inclined readers through the 
conventional theoretical connection to simple linear regression in the Supplementary Table S1, which generalizes 
to any standard spreadsheet software.

Clinical parameters, such as pT-classification or GS, in connection to the patient-wise estimates of PSA nadir 
and DT are reported in Supplementary Table S2. GS classes (≤ 6, 7 or ≥ 8), positive subsequent salvage treatment 
status, and a pre-surgery PSA > 10 ng/mL were associated to differences in post-nadir PSADT estimated by the 
model. For the log2-PSA nadir model parameter, multiple associations were identified, excluding GS, indicating 
that multiple clinical parameters may be associated with the sensitive detections possible only in the u-PSA range 
(Supplementary Table S2). Their interpretation remains to be further studied, thus the prediction model was 
based solely on PSA trends.

When LASSO regression was cross-validated (CV) and the optimal model was fitted using penalization 
parameter within a single standard error of minimal CV error (Supplementary Fig. S2a), the multivariate regres-
sion model proposed utilizing only the estimated PSA nadir and PSADT as variables for BCR prediction. While 
multiple clinical variables were informative and almost included (Supplementary Fig. 2b), the generalized multi-
variate model highlights usefulness of the nadir and PSADT over conventional clinical parameters.

Validation. One representative third of the data was left for objective validation of the modeling procedure 
in a wider context (Table 1 right panel). The validation predictions resulted in high sensitivity and specificity 
both for the 1 and 3 year models (Fig. 3f) with the Area Under the ROC-curve (ROC-AUC) of 0.836 (95% CI 
0.72–0.96) and 0.951 (95% CI 0.91–0.99), respectively.

Graphical user-interface pipeline for future predictions. In order to provide the analysis pipeline 
widely accessible to clinicians, a graphical user interface (GUI) was implemented using the R Shiny (RStudio Inc)  
platform with the underlying mathematical methodology outlined in the Supplementary Methods. The GUI is 
freely available at the Shinyapps.io (RStudio Inc) service-platform (http://compbiomed.shinyapps.io/u-pa/). The 
tool allows automated analysis of novel measurements with the existing methodology, and is provided with the 
exploratory dataset for illustrative purposes. Its design allows clinicians to conveniently run the pipeline and gen-
erate PDF-based risk reports for new patients. A typical workflow of the GUI is presented in Fig. 4.

Discussion
In the current study we applied mathematical modeling to investigate the role of u-PSA as means of follow-up 
after RP. Based on our results, u-PSA provides useful information for predicting BCR after RP and we developed 
an easily applicable prediction platform (Fig. 4), which to our knowledge is the first clinically relevant predictive 
tool focused on u-PSA. Our results show highly linear trends in PSADT (Fig. 1). This offers a clinically convenient 

Figure 1. Longitudinal PSA profiles for 30 randomly chosen patients using penalized cubic splines. 
(a) The raw PSA-profiles exhibited varying patterns as a function of time since post-surgery nadir. (b) After 
log2-transformation, unit increase in the response corresponds to doubling in the original scale. (c) Model 
complexity was chosen according to Cross-Validation (CV) Median Squared Error (MSE). Optimal model 
(λ  =  109) is indicated with the arrow. (d–f) Example model fits for varying λ  are shown for the log2-scale data 
from panel b.
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Results
Detailed patient characteristics are reported in Table 1. Majority of the post-surgery PSA measurements were 
detectable only in the u-PSA range: 83.6% and 79.1% in the exploratory and validation sets, respectively. 
There were 156 (46.2%) and 73 (44.2%) patients with pT3, and nearly half of the patients had Gleason ≤  6. 
Rate of positive margins was approximately 40%. Only 15.4% and 13.3% of the patients reached BCR during 
follow-up. Representative longitudinal curves of 30 randomly chosen patients are shown prior and post to the 
log2-transformation in Fig. 1a,b, respectively. Due to the log2-transformation a unit change corresponded to 
PSA doubling in the original PSA scale. For detailed modeling results, see the Supplementary Results within the 
Supplementary Material.

Splines and linear parametric models. The major PSA trends were effectively captured readily by linear 
components in the model based on the optimality of high values of the smoothing parameter λ  (Fig. 1c) as well 
as upon visual inspection (Fig. 1d–f; Fig. 2a,b). Interestingly, the first order derivatives that capture longitudinal 
changes in PSADT clearly distinguished between the BCR and non-BCR, suggesting that longitudinal follow-up 
of PSADT could provide an accurate predictor of BCR (Fig. 2c). The u-PSA and t-PSA did not exhibit markedly 
different patterns in the splines (Fig. 2b,c).

Since splines suggested that linear model families were suitable for modeling the log2-PSA patterns, we fit-
ted linear regression models to perform parametric inference for the population effects. The focus was on the 
log2-PSA nadir and PSADT. Patient-wise estimates for these coefficients are shown in Fig. 3a,b with 1 or 3 year 
follow-up, respectively.

Finally, generalized linear models were used as binary classifiers to connect the patient-wise characteristics 
from Fig. 3a,b to the known BCR statuses. The prediction accuracy using 1 year or 3 year post-nadir follow-up 
was 85.3% or 88.8%, respectively, using the prediction surfaces provided in Fig. 3c,d. Overall, only minor var-
iation was detected between the u-PSA and t-PSA in model diagnostics, exemplified by the slight decrease of 
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Dataset

Exploratory 2/3 Validation 1/3

pT

2 180 (53.3%) 92 (55.8%)

3 156 (46.2%) 73 (44.2%)

4 1 (0.3%)

Missing 1 (0.3%)

Gleason score (GS)

≤6 157 (46.4%) 80 (49.1%)

7 (3 + 4) 101 (29.9%) 49 (30.1%)

7 (4 +  3) 50 (14.8%) 18 (11.0%)

≥8 28 (8.3%) 16 (9.8%)

Missing 2 (0.6%)

Margins

Negative 200 (59.2%) 100 (60.6%)

Positive 137 (40.5%) 65 (39.4%)

Missing 1 (0.3%)

Adjuvant RT

No 295 (87.3%) 147 (89.1%)

Yes 42 (12.4%) 18 (10.9%)

Missing 1 (0.3%)

Salvage RT
No 275 (81.4%) 136 (82.4%)

Yes 63 (18.6%) 29 (17.6%)

PSA at surgery

<10 251 (74.3%) 121 (73.3%)

10–20 67 (19.8%) 36 (21.8%)

≥20 19 (5.6%) 8 (4.8%)

Missing 1 (0.3%)

Age

<60 123 (36.4%) 61 (37.0%)

60–70 193 (57.1%) 96 (58.2%)

>70 21 (6.2%) 8 (4.8%)

Missing 1 (0.3%)
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time windows
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Table 1.  Patient characteristics, PSA measurement counts, and patient counts in the exploratory and 
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heteroscedasticity over the threshold for model residuals (Fig. 3e). A computational example for predicting future 
patient risks with our given model estimates is provided for the mathematically inclined readers through the 
conventional theoretical connection to simple linear regression in the Supplementary Table S1, which generalizes 
to any standard spreadsheet software.

Clinical parameters, such as pT-classification or GS, in connection to the patient-wise estimates of PSA nadir 
and DT are reported in Supplementary Table S2. GS classes (≤ 6, 7 or ≥ 8), positive subsequent salvage treatment 
status, and a pre-surgery PSA > 10 ng/mL were associated to differences in post-nadir PSADT estimated by the 
model. For the log2-PSA nadir model parameter, multiple associations were identified, excluding GS, indicating 
that multiple clinical parameters may be associated with the sensitive detections possible only in the u-PSA range 
(Supplementary Table S2). Their interpretation remains to be further studied, thus the prediction model was 
based solely on PSA trends.

When LASSO regression was cross-validated (CV) and the optimal model was fitted using penalization 
parameter within a single standard error of minimal CV error (Supplementary Fig. S2a), the multivariate regres-
sion model proposed utilizing only the estimated PSA nadir and PSADT as variables for BCR prediction. While 
multiple clinical variables were informative and almost included (Supplementary Fig. 2b), the generalized multi-
variate model highlights usefulness of the nadir and PSADT over conventional clinical parameters.

Validation. One representative third of the data was left for objective validation of the modeling procedure 
in a wider context (Table 1 right panel). The validation predictions resulted in high sensitivity and specificity 
both for the 1 and 3 year models (Fig. 3f) with the Area Under the ROC-curve (ROC-AUC) of 0.836 (95% CI 
0.72–0.96) and 0.951 (95% CI 0.91–0.99), respectively.

Graphical user-interface pipeline for future predictions. In order to provide the analysis pipeline 
widely accessible to clinicians, a graphical user interface (GUI) was implemented using the R Shiny (RStudio Inc)  
platform with the underlying mathematical methodology outlined in the Supplementary Methods. The GUI is 
freely available at the Shinyapps.io (RStudio Inc) service-platform (http://compbiomed.shinyapps.io/u-pa/). The 
tool allows automated analysis of novel measurements with the existing methodology, and is provided with the 
exploratory dataset for illustrative purposes. Its design allows clinicians to conveniently run the pipeline and gen-
erate PDF-based risk reports for new patients. A typical workflow of the GUI is presented in Fig. 4.

Discussion
In the current study we applied mathematical modeling to investigate the role of u-PSA as means of follow-up 
after RP. Based on our results, u-PSA provides useful information for predicting BCR after RP and we developed 
an easily applicable prediction platform (Fig. 4), which to our knowledge is the first clinically relevant predictive 
tool focused on u-PSA. Our results show highly linear trends in PSADT (Fig. 1). This offers a clinically convenient 

Figure 1. Longitudinal PSA profiles for 30 randomly chosen patients using penalized cubic splines. 
(a) The raw PSA-profiles exhibited varying patterns as a function of time since post-surgery nadir. (b) After 
log2-transformation, unit increase in the response corresponds to doubling in the original scale. (c) Model 
complexity was chosen according to Cross-Validation (CV) Median Squared Error (MSE). Optimal model 
(λ  =  109) is indicated with the arrow. (d–f) Example model fits for varying λ  are shown for the log2-scale data 
from panel b.
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Figure 2. All the modeled exploratory data, model fits and the first order derivatives of the penalized 
splines for the relapsing (left column; N = 52) and non-relapsing patients (right column; N = 279).  
(a) Modeled log2-transformed data. (b) Corresponding penalized cubic spline fits. (c) The first order derivatives. 
With few exceptions, derivatives maintained relatively constant levels over the follow-up period. Once per 
year or once per two years PSA doubling criteria were good indicators of relapse or non-relapse of patients. 
Noticeable differences between u-PSA (black) and t-PSA (blue) were not present.
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analysis approach, as raw PSA measurements may be transformed to PSADT through the log2-transformation, 
after which the linear trends may be captured using conventional tools widely available in any statistical or 
spreadsheet software. According to previous studies the specificity of u-PSA is poor7, but in our study we show 
that by using sophisticated computational techniques the sensitivity and specificity are high.

Based on our analysis of the second order spline derivatives, major trends in u-PSA curvature were estab-
lished by the end of the first year and only slight individual variation occurred thereafter (Supplementary Fig. 1). 
Stabilization in the curvature of the splines suggested consistent changes in log2-PSA after the first follow-up year. 
Motivated by the spline analysis supporting linear trends (high optimal smoothing parameter λ ), we tested para-
metric linear inference using both a 1 year and a 3 year post-nadir window. A 3 year time window was also utilized by 
Malik et al., in a study where they assessed non-detectable vs. detectable u-PSA with the threshold of 0.05 ng/mL21.  
Detectable u-PSA 2–2.5 years after RP was independent prognostic factor for PSA progression also according 
to Chang et al., but in their study the presence of a detectable u-PSA level earlier than 2 years from surgery did 
not reliably predict the subsequent clinical course of BCR11. Although our model can predict BCR accurately 
already within an early follow-up window after surgery, it may still suffer from over-diagnosis related issues and 

Figure 3. (a,b) Linear mixed-effects models yielded estimates for patient-specific nadir intercept and doubling 
coefficient using a 1 year (panel a) or a 3 year post-nadir censoring window (panel b). (c,d) Using generalized 
regression, we identified prediction surfaces for the risk of BCR using the 1 year (panel c) or 3 year post-nadir 
time window (panel d). Logistic regression predictions for the generalized linear models for the generalized 
linear models were annotated using the color key on the right. (e) Regression residuals for the 1 year post-nadir 
window using linear-mixed effects models display slight decrease in residual variance as a function of u-PSA 
versus t-PSA, though no systematic increasing or decreasing trends were detected. (f) The validation dataset 
suggested high predictive accuracy for BCR using the fitted models from the exploratory portion of data.
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Figure 2. All the modeled exploratory data, model fits and the first order derivatives of the penalized 
splines for the relapsing (left column; N = 52) and non-relapsing patients (right column; N = 279).  
(a) Modeled log2-transformed data. (b) Corresponding penalized cubic spline fits. (c) The first order derivatives. 
With few exceptions, derivatives maintained relatively constant levels over the follow-up period. Once per 
year or once per two years PSA doubling criteria were good indicators of relapse or non-relapse of patients. 
Noticeable differences between u-PSA (black) and t-PSA (blue) were not present.
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analysis approach, as raw PSA measurements may be transformed to PSADT through the log2-transformation, 
after which the linear trends may be captured using conventional tools widely available in any statistical or 
spreadsheet software. According to previous studies the specificity of u-PSA is poor7, but in our study we show 
that by using sophisticated computational techniques the sensitivity and specificity are high.

Based on our analysis of the second order spline derivatives, major trends in u-PSA curvature were estab-
lished by the end of the first year and only slight individual variation occurred thereafter (Supplementary Fig. 1). 
Stabilization in the curvature of the splines suggested consistent changes in log2-PSA after the first follow-up year. 
Motivated by the spline analysis supporting linear trends (high optimal smoothing parameter λ ), we tested para-
metric linear inference using both a 1 year and a 3 year post-nadir window. A 3 year time window was also utilized by 
Malik et al., in a study where they assessed non-detectable vs. detectable u-PSA with the threshold of 0.05 ng/mL21.  
Detectable u-PSA 2–2.5 years after RP was independent prognostic factor for PSA progression also according 
to Chang et al., but in their study the presence of a detectable u-PSA level earlier than 2 years from surgery did 
not reliably predict the subsequent clinical course of BCR11. Although our model can predict BCR accurately 
already within an early follow-up window after surgery, it may still suffer from over-diagnosis related issues and 

Figure 3. (a,b) Linear mixed-effects models yielded estimates for patient-specific nadir intercept and doubling 
coefficient using a 1 year (panel a) or a 3 year post-nadir censoring window (panel b). (c,d) Using generalized 
regression, we identified prediction surfaces for the risk of BCR using the 1 year (panel c) or 3 year post-nadir 
time window (panel d). Logistic regression predictions for the generalized linear models for the generalized 
linear models were annotated using the color key on the right. (e) Regression residuals for the 1 year post-nadir 
window using linear-mixed effects models display slight decrease in residual variance as a function of u-PSA 
versus t-PSA, though no systematic increasing or decreasing trends were detected. (f) The validation dataset 
suggested high predictive accuracy for BCR using the fitted models from the exploratory portion of data.
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Figure 4. Graphical user interface workflow for predicting future patients or for analyzing the provided 
exploratory dataset of the current study. 
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patient-specific risk evaluation is recommended12,22. Earlier studies assessing the risk of PCa-progression from 
u-PSA have detected one year average lead time from detectable u-PSA threshold to BCR7. According to our 
analyses, the 2 year follow-up period utilized by Chang et al. and 3 year utilized by Malik et al. may already be 
well established by the end of the first year post-nadir10,21. In our analyses the ability to distinguish between the 
non-BCR (> 80%) and BCR (< 20%) patients was only marginally improved if 3 years of post-nadir follow-up 
was allowed instead of 1 year (Fig. 3f).

Generalized linear regression model can be used as a binary classifier to evaluate BCR risks for future patients, 
for example by mapping the potential patients to the prediction surfaces provided by the current modeling pro-
cess (Fig. 3c,d). The validation dataset in this study highly supported the hypothesis that predictive accuracy could 
be obtained readily by the end of the first follow-up year (Fig. 3f). We provide a practical computational example 
for the validated generalized linear models for predicting the BCR risk of a patient (Supplementary Table S1)  
and an easy-to-use graphical user interface that is freely available at http://compbiomed.shinyapps.io/u-pa/ 
(Fig. 4).

When t-PSA levels are used, nadir after surgery is usually undetectable (< 0.1 ng/mL)23. In u-PSA range the 
undetectable level has a wider spectrum24. Currently the significant threshold level of u-PSA relapse is unknown. 
Recently we suggested a threshold between 0.03–0.05 ng/mL15. Malik et al. showed a clear association for delayed 
BCR with u-PSA values of < 0.05 to > 0.05 ng/mL 3 years after RP21. Previously, clear survival benefit was shown 
among men with low u-PSA nadir after RP9. In this study, the nadir intercept and PSADT estimates were found 
to be highly statistically significantly associated with BCR. Our definition of PSA nadir was the lowest PSA meas-
urement within a 3 month window from RP. More sophisticated parametric methods to determine nadir include 
piece-wise change-point models, which can incorporate knots that are inter-connected with linear curves25. In 
order to assess the true cutoff-point for reliable u-PSAs LLD, modeling the exact time to nadir would be an inter-
esting future research question.

In our exploratory dataset, the median time between two subsequent post-surgery PSA measurements was 
152 days. Therefore, the first year of follow-up mostly consisted of 3 measurements. This amount is the minimal 
number of observations required to fit a linear regression model. The 3 year follow-up period was less sensitive 
to the nadir point and more likely holds a more realistic amount of observations for reliable PSADT estimation. 
However, it remains to be validated to what extent the doubling trends are established by the end of the first year, 
and for this purpose more intensive coverage of PSA trends would be already required for the early follow-up.

Accurate methods to determine the clinical risk represented by a rising PSA value are critical to develop 
rational treatment strategies. So far no studies have demonstrated that u-PSA triggered therapy will improve out-
come. On the other hand, u-PSA kinetics may provide predictive information. Only few studies have compared 
DTs in traditional and ultrasensitive ranges10,11,15,26. It is possible that past negative findings for u-PSA have been 
susceptible to utilizing single measurements as predictors10,11,26. When multiple measurements are not considered, 
variation in single measurements may dominate instead of averaging more coherent trends through regression 
curves. This highlights the need for feasibly chosen mathematical models that capture all patient-specific varia-
tion in a more effective manner. Some authors claim that u-PSA measurements are helpful to determinate early 
BCR after RP4,27,28. Others claim that it will offer no benefit and mainly cause unnecessary anxiety for patients29. 
Previously Reese et al. demonstrated a poor correlation between PSADTs, possibly due to inconsistency of u-PSA 
measurements11. Some authors have reported unreliability of u-PSA measurements13,30. Also according to litera-
ture, specificity of the u-PSA is relatively poor7. In our study, when utilizing sophisticated mathematical modeling 
over time we identified no major discrepancies between the u-PSA and t-PSA. In contrast, large portion of our 
data at 1 year window post-nadir consisted of u-PSA (Table 1; median 3 measurements by the end of the first 
follow-up year), while retaining a good prediction and generalization ability. Most importantly, because u-PSA 
may improve the time to detection as a supplement to t-PSA of BCR by months or years, this advantage of earlier 
prediction for relapse has potential to improve the patients’ chance of durable progression-free survival with 
salvage therapy given at a lower cancer burden and a wider time window for cure4,31. Furthermore, by presenting 
mathematically extensive approach with both univariate and multivariate modeling of BCR, we highlight the 
need of accurate prediction tools that outperform and raise awareness that arbitrary chosen simple thresholds 
(e.g. in t-PSA range) are likely to be subpar.

Major strength of this study is the extensive mathematical modeling of both the u-PSA and t-PSA measure-
ments, all of which is offered as an easy to use web-based graphical user interface (GUI) platform. All the PSA 
measurements were done with the same PSA assay, reducing error caused by varying assays. A limitation of 
the study is that all the patients were from the same hospital district, and thus a larger sample size and longer 
follow-up is needed for more accurate validation of these findings in order to guarantee generalizability.

Conclusions
Our results indicate that u-PSA provides useful information for predicting BCR after RP. The utilized approach 
of considering PSADT was easily achieved using log2-transformation of the data, and makes our conclusions 
and estimates comparable to any study utilizing the well-established PSADT as an end-point32,33. Using this con-
venient approach, we developed a novel mathematical modeling a mathematical modeling pipeline and imple-
mentation utilizing only PSADT and PSA nadir for predicting BCR mainly based on u-PSA measurements in 
early follow-up of PSA response. To our knowledge this is the first clinically relevant predictive tool focused on 
systematically complementing t-PSA with u-PSA and displaying the coherence between the two; however, for 
future studies to be clinically widely applicable, albeit thresholds have been suggested15, a more extensive explo-
ration of u-PSA key thresholds is imperative. We believe that such threshold most likely would be a combination 
of the estimated nadir (in u-PSA range), the readily established PSADT potentially expanding both u-PSA and 
t-PSA ranges, and would most likely also include other clinically relevant variables (Supplementary Table S2). 
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patient-specific risk evaluation is recommended12,22. Earlier studies assessing the risk of PCa-progression from 
u-PSA have detected one year average lead time from detectable u-PSA threshold to BCR7. According to our 
analyses, the 2 year follow-up period utilized by Chang et al. and 3 year utilized by Malik et al. may already be 
well established by the end of the first year post-nadir10,21. In our analyses the ability to distinguish between the 
non-BCR (> 80%) and BCR (< 20%) patients was only marginally improved if 3 years of post-nadir follow-up 
was allowed instead of 1 year (Fig. 3f).

Generalized linear regression model can be used as a binary classifier to evaluate BCR risks for future patients, 
for example by mapping the potential patients to the prediction surfaces provided by the current modeling pro-
cess (Fig. 3c,d). The validation dataset in this study highly supported the hypothesis that predictive accuracy could 
be obtained readily by the end of the first follow-up year (Fig. 3f). We provide a practical computational example 
for the validated generalized linear models for predicting the BCR risk of a patient (Supplementary Table S1)  
and an easy-to-use graphical user interface that is freely available at http://compbiomed.shinyapps.io/u-pa/ 
(Fig. 4).

When t-PSA levels are used, nadir after surgery is usually undetectable (< 0.1 ng/mL)23. In u-PSA range the 
undetectable level has a wider spectrum24. Currently the significant threshold level of u-PSA relapse is unknown. 
Recently we suggested a threshold between 0.03–0.05 ng/mL15. Malik et al. showed a clear association for delayed 
BCR with u-PSA values of < 0.05 to > 0.05 ng/mL 3 years after RP21. Previously, clear survival benefit was shown 
among men with low u-PSA nadir after RP9. In this study, the nadir intercept and PSADT estimates were found 
to be highly statistically significantly associated with BCR. Our definition of PSA nadir was the lowest PSA meas-
urement within a 3 month window from RP. More sophisticated parametric methods to determine nadir include 
piece-wise change-point models, which can incorporate knots that are inter-connected with linear curves25. In 
order to assess the true cutoff-point for reliable u-PSAs LLD, modeling the exact time to nadir would be an inter-
esting future research question.

In our exploratory dataset, the median time between two subsequent post-surgery PSA measurements was 
152 days. Therefore, the first year of follow-up mostly consisted of 3 measurements. This amount is the minimal 
number of observations required to fit a linear regression model. The 3 year follow-up period was less sensitive 
to the nadir point and more likely holds a more realistic amount of observations for reliable PSADT estimation. 
However, it remains to be validated to what extent the doubling trends are established by the end of the first year, 
and for this purpose more intensive coverage of PSA trends would be already required for the early follow-up.

Accurate methods to determine the clinical risk represented by a rising PSA value are critical to develop 
rational treatment strategies. So far no studies have demonstrated that u-PSA triggered therapy will improve out-
come. On the other hand, u-PSA kinetics may provide predictive information. Only few studies have compared 
DTs in traditional and ultrasensitive ranges10,11,15,26. It is possible that past negative findings for u-PSA have been 
susceptible to utilizing single measurements as predictors10,11,26. When multiple measurements are not considered, 
variation in single measurements may dominate instead of averaging more coherent trends through regression 
curves. This highlights the need for feasibly chosen mathematical models that capture all patient-specific varia-
tion in a more effective manner. Some authors claim that u-PSA measurements are helpful to determinate early 
BCR after RP4,27,28. Others claim that it will offer no benefit and mainly cause unnecessary anxiety for patients29. 
Previously Reese et al. demonstrated a poor correlation between PSADTs, possibly due to inconsistency of u-PSA 
measurements11. Some authors have reported unreliability of u-PSA measurements13,30. Also according to litera-
ture, specificity of the u-PSA is relatively poor7. In our study, when utilizing sophisticated mathematical modeling 
over time we identified no major discrepancies between the u-PSA and t-PSA. In contrast, large portion of our 
data at 1 year window post-nadir consisted of u-PSA (Table 1; median 3 measurements by the end of the first 
follow-up year), while retaining a good prediction and generalization ability. Most importantly, because u-PSA 
may improve the time to detection as a supplement to t-PSA of BCR by months or years, this advantage of earlier 
prediction for relapse has potential to improve the patients’ chance of durable progression-free survival with 
salvage therapy given at a lower cancer burden and a wider time window for cure4,31. Furthermore, by presenting 
mathematically extensive approach with both univariate and multivariate modeling of BCR, we highlight the 
need of accurate prediction tools that outperform and raise awareness that arbitrary chosen simple thresholds 
(e.g. in t-PSA range) are likely to be subpar.

Major strength of this study is the extensive mathematical modeling of both the u-PSA and t-PSA measure-
ments, all of which is offered as an easy to use web-based graphical user interface (GUI) platform. All the PSA 
measurements were done with the same PSA assay, reducing error caused by varying assays. A limitation of 
the study is that all the patients were from the same hospital district, and thus a larger sample size and longer 
follow-up is needed for more accurate validation of these findings in order to guarantee generalizability.

Conclusions
Our results indicate that u-PSA provides useful information for predicting BCR after RP. The utilized approach 
of considering PSADT was easily achieved using log2-transformation of the data, and makes our conclusions 
and estimates comparable to any study utilizing the well-established PSADT as an end-point32,33. Using this con-
venient approach, we developed a novel mathematical modeling a mathematical modeling pipeline and imple-
mentation utilizing only PSADT and PSA nadir for predicting BCR mainly based on u-PSA measurements in 
early follow-up of PSA response. To our knowledge this is the first clinically relevant predictive tool focused on 
systematically complementing t-PSA with u-PSA and displaying the coherence between the two; however, for 
future studies to be clinically widely applicable, albeit thresholds have been suggested15, a more extensive explo-
ration of u-PSA key thresholds is imperative. We believe that such threshold most likely would be a combination 
of the estimated nadir (in u-PSA range), the readily established PSADT potentially expanding both u-PSA and 
t-PSA ranges, and would most likely also include other clinically relevant variables (Supplementary Table S2). 
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We believe that in salvage RT policy early risk evaluation is beneficial and we are optimistic about the predictive 
use of u-PSA in supplement to the more established t-PSA measurements. Our easily accessible mathematical 
pipeline established a novel baseline for future validation studies of u-PSA importance and method development.
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Supplementary Figure S1: Second order derivatives of the spline fits. (a) Biochemically relapsing
patients (BCR, N = 52), (b) non-BCR patients (N = 279). The vertical light and dark grey lines
indicate one year and three year time points, respectively. Corresponding fitted measurements for
the u-PSA and t-PSA are annotated using black and red colors, respectively.
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Supplementary Figure S2: LASSO model cross-validation and penalization curve. (a) 10-fold cross-
validation (CV), based on which optimal penalization was chosen to be first penalization parameter
within a standard error of the CV minimum. (b) Penalization curves, which display that the log2

nadir and PSADT were selected by the final model, albeit some traditional clinical parameters were
almost included.
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Supplementary Table S1: A computational spreadsheet example of simple linear regression
in predicting BCR risk from the proposed generalized linear model

Col → A B C D E F
Row ↓ PSA log2-PSA (= y) DaysSinceSurgery DaysSinceNadir (= x) x2 x·y

1 10 3.321928 -139 -184
2 7.6 2.925999 -1 -46
3 0.091 -3.45799 21 -24

4 0.006 -7.381 45 0 0 0
5 0.022 -5.506 78 33 1089 -181.7
6 0.033 -4.921 100 55 3025 -270.7
7 0.006 -7.381 225 180 32400 -1329
8 0.004 -7.966 335 290 84100 -2310

9 0.003 -8.381 710 665
10 0.003 -8.381 1092 1047
11 0.003 -8.381 1289 1244
12 0.008 -6.966 1429 1384
13 0.006 -7.381 1584 1539

Each row corresponds to a single PSA measurement. In our current study, we defined nadir to
be the lowest point in PSA within a 3-month window post-surgery, thus limiting observations
for our model to observations Row ≥ 4 in this example. Similarly, in order to evaluate model
parameters in a 1-year window post-nadir, the lower limit for utilized observations is set at
Row ≤ 8. These constraints were obtained by observing the days since nadir column at D. The
simple regression coefficients can be computed in closed form:

x2 = AVERAGE(E4:E8) = 24123
xy = AVERAGE(F4:F8) = -818.2
x̄ = AVERAGE(D4:D8) = 111.6
ȳ = AVERAGE(B4:B8) = -6.63103
x̄2 = POWER(AVERAGE(D4:D8), 2) = 111.62 = 12454.56

Thus, for this particular individual, the simple regression estimates are:

β̂2 =
xy − x̄ȳ

x2 − x̄2
=

−818.2− (111.6 · −6.63103)

24123− 12454.56
= −0.00669987 (PSADT)

β̂1 = ȳ − β̂1x̄ = −6.63103− (−0.00669987 · 111.6) = −5.883325 (log2-PSA nadir)

where β̂2 corresponds to the PSADT and β̂1 to the log2-PSA nadir. Above estimates may be
inspected in Figure 3 D to evaluate the individual’s risk for BCR. In this particular case, the
risk for BCR is very low, which is expected when the PSADT coefficient is negative (no doubling

occurs). 1 year follow-up was used as a criterion for including observations in estimating β̂1 and

β̂1. The coefficients {βbase, βnadir and βdoubling} reported in our study for 1-year follow up were
{2.736, 0.640, 218.488}. Thus, the risk for BCR for this individual may be computed as provided
in the Supplementary Methods:

1

1 + e−(βbase+βnadir×x1+βdoubling×x2)
=

1

1 + e−(2.736+0.640·−5.883325+218.488·−0.00669987)

= 0.07633843...

which would indicate a very low risk of BCR, as was later observed in follow-up. Similarly, a
BCR risk for a hypothetical patient undergoing PSADT every 150 days (1/150 ≈ 0.00667) and
an estimated log2-PSA nadir of −5 (or 2−5 = 0.03125 in the original PSA scale) would yield
≥ 0.5 risk:

1

1 + e−(2.736+0.640·−5+218.488·0.00667) = 0.7297422...

 

Supplementary Table S2: Estimated 3 year follow-up patient-wise log2-PSA nadir levels (intercepts) and PSADT (doubling slopes) in the exploratory 
dataset in connection to the patients’ clinical parameters 
 

 
  

log2-PSA nadir (intercepts β0 +γ0,i) PSADT (slopes β1+γ1,i) 

  
Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max. N 

pT 
2 -10.448 -8.542 -8.266 -7.877 -7.729 -2.557 -0.007475 -0.000039 0.000322 0.000804 0.000797 0.006146 179 
3 -9.603 -8.374 -7.815 -7.131 -6.045 -1.432 -0.001640 -0.000058 0.000474 0.001190 0.002202 0.006671 154 

Gleason 
score 

<=6 -9.115 -8.588 -8.065 -7.904 -7.699 -5.418 -0.000488 -0.000064 0.000195 0.000558 0.000569 0.005971 59 
7 -9.100 -8.620 -7.990 -7.488 -7.031 -2.568 -0.000371 -0.000044 0.000297 0.001097 0.002097 0.006633 58 

>=8 -10.448 -8.903 -7.864 -7.791 -7.216 -3.815 -0.000565 0.000384 0.002190 0.002002 0.003372 0.005052 12 

Margins 
Neg. -10.448 -8.526 -8.226 -7.772 -7.633 -1.432 -0.001640 -0.000062 0.000322 0.000858 0.000853 0.006671 199 
Pos. -9.115 -8.405 -7.815 -7.176 -6.045 -1.651 -0.000551 -0.000049 0.000483 0.001169 0.002148 0.006633 134 

Adjuvant 
RT 

No -10.448 -8.494 -8.161 -7.656 -7.408 -1.432 -0.001640 -0.000044 0.000345 0.000947 0.001137 0.006671 293 
Yes -9.112 -8.386 -7.010 -6.627 -5.352 -1.651 -0.000551 -0.000056 0.000356 0.001246 0.002266 0.005044 40 

Salvage 
RT 

No -9.282 -8.537 -8.236 -7.885 -7.650 -2.852 -0.001640 -0.000118 0.000194 0.000425 0.000586 0.005677 273 
Yes -10.448 -7.901 -5.916 -5.929 -4.246 -1.432 0.000072 0.002534 0.003813 0.003519 0.004555 0.006671 60 

PSA at 
surgery 

<10 -10.448 -8.531 -8.177 -7.738 -7.506 -2.557 -0.000748 -0.000096 0.000276 0.000829 0.000929 0.006671 248 
10-20 -9.282 -8.409 -8.065 -7.104 -6.128 -1.432 -0.000342 0.000201 0.000704 0.001412 0.002175 0.005971 67 
>20 -9.603 -8.304 -7.273 -6.288 -4.362 -1.651 -0.001640 -0.000015 0.000506 0.001503 0.003216 0.004756 18 

 
Holm-method multiple testing corrected p-values according to one-way ANOVA: white N.S.; orange p<0.05. 
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Articles

Prediction of overall survival for patients with metastatic 
castration-resistant prostate cancer: development of a 
prognostic model through a crowdsourced challenge with 
open clinical trial data
Justin Guinney*, Tao Wang*, Teemu D Laajala*, Kimberly Kanigel Winner, J Christopher Bare, Elias Chaibub Neto, Suleiman A Khan, 
Gopal Peddinti, Antti Airola, Tapio Pahikkala, Tuomas Mirtti, Thomas Yu, Brian M Bot, Liji Shen, Kald Abdallah, Thea Norman, Stephen Friend, 
Gustavo Stolovitzky, Howard Soule, Christopher J Sweeney, Charles J Ryan, Howard I Scher, Oliver Sartor, Yang Xie†, Tero Aittokallio†, 
Fang Liz Zhou†, James C Costello†, and the Prostate Cancer Challenge DREAM Community‡

Summary
Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential 
to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-
profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-
data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only 
identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate 
cancer but also engage a community of international data scientists to study this disease.

Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant 
prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and 
prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the 
MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE 
trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more 
than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, 
lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to 
be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also 
released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from 
the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated 
using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical 
variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further 
validation was done using data from a fifth trial—ENTHUSE M1—in which 266 patients with metastatic 
castration-resistant prostate cancer were treated with placebo alone.

Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM 
challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely 
identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, 
ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; 
Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-
risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, 
p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 
cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously 
identified predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously 
under-reported, prognostic biomarker.

Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent 
international teams establishes a benchmark for development of methods in the future. The results of this effort 
show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to 
develop new prognostic models in advanced prostate cancer.
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Introduction
Prostate cancer is the most common cancer among men 
in high-income countries and ranks third in terms of 

mortality after lung cancer and colorectal cancer.1 
Of more than two million men diagnosed with prostate 
cancer in the USA over the past 10 years, roughly 10% 
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presented with metastatic disease. For these men, the 
mainstay of treatment is androgen deprivation therapy, 
with a high proportion of response. However, responses 
are not durable, and nearly all tumours eventually prog-
ress to the lethal metastatic castration-resistant state. 
Although substantial improvements in outcome for men 
with metastatic castration-resistant prostate cancer have 
been achieved after approval of next-generation hormonal 
agents, an immunotherapeutic drug, a radiopharma-
ceutical agent, and a cytotoxic drug,2–10 how best to deploy 
these treatments has not been ascertained. Elucidation of 
variables associated with patients’ outcomes independent 
of treatment will facilitate the design of future trials by 
homogenising risk, thus enabling clinical trial questions 
to be answered more rapidly because smaller sample 
sizes will be needed.

Prognostic models in metastatic castration-resistant 
prostate cancer have been described11–13 using baseline 
variables from independent cohort studies. A 2014 
prognostic model for metastatic castration-resistant 
prostate cancer 14 included eight clinical factors predictive 
of overall survival: Eastern Cooperative Oncology 
Group (ECOG) performance status; disease site; use of 
opioid analgesics; lactate dehydrogenase; albumin; 
haemoglobin; prostate-specific antigen; and alkaline 
phosphatase. Can innovative models with improved 
performance be developed through a systematic search 
using data-driven approaches while providing insights 

into biological aspects of the disease that affect patients’ 
outcomes? An example of a novel clinical factor that is 
underexplored in contemporary prognostic model 
development is interaction effects between clinical 
variables, even though interactions between genetic 
variants are used widely and known to improve genetic-
based risk prediction and patients’ stratification.15,16

Here, we present results from the prostate cancer 
DREAM (Dialogue for Reverse Engineering Assessments 
and Methods) challenge—an open-data, crowdsourced 
challenge in metastatic castration-resistant prostate 
cancer. A major contribution to this effort was removal of 
privacy and legal barriers associated with open access to 
phase 3 clinical trial data17 by Project Data Sphere—a 
not-for-profit initiative of the CEO Roundtable on 
Cancer’s Life Sciences Consortium that broadly shares 
oncology clinical trial data with researchers. The challenge 
was designed to accomplish two goals. First, we aimed to 
leverage open clinical trial data, enabling a community-
based approach to identify the best-performing prognostic 
model in a rigorous and unbiased manner. Second, 
participating teams aimed to develop predictive models 
to both validate previously characterised predictive 
clinical variables and discover new prognostic features. 
Consistent with the mission of DREAM, all challenge 
data, results, and method descriptions from participating 
teams are available publicly through the open-access 
Synapse platform.

Research in context

Evidence before this study
We searched PubMed between January, 2012, and July, 2015, 
with the terms “prognosis”, “overall survival”, “mCRPC”, and 
“docetaxel”. Our search yielded a 2014 study in which an 
updated prognostic model was described for metastatic 
castration-resistant prostate cancer that had been developed 
from the CALGB-90401 study (a randomised, double-blind, 
phase 3 clinical trial) and validated with data from the phase 3 
ENTHUSE 33 trial. The study focused on a subset of clinical 
variables using datasets that were not in the public domain. 
Leveraging the wealth of data already generated from clinical 
trials is challenging on several fronts, but is complicated in 
particular by data access.

Added value of this study
Project Data Sphere is an independent not-for-profit initiative 
that aims to provide open access to historical patient-level data. 
The prostate cancer DREAM (Dialogue for Reverse Engineering 
Assessments and Methods) challenge is an open-data, 
crowdsourced competition to develop and assess prognostic 
models in metastatic castration-resistant prostate cancer. Using 
data from the comparator arms of four phase 3 clinical trials of 
chemotherapy-naive patients with metastatic 
castration-resistant prostate cancer, 50 independent teams— 
a diverse group of experts including biostatisticians, computer 

scientists, and clinical experts—developed prognostic models for 
the DREAM challenge, representing, to the best of our 
knowledge, the most comprehensive set of benchmarked 
models to date. The best-performing model was based on an 
ensemble of penalised Cox regression models that judged the 
prognostic value of interactions between predictor covariates 
and substantially outperformed the 2014 model. Strong support 
was provided for previously identified prognostic variables in the 
50 models, and additional important variables were identified 
along with novel interactions between covariates. Data are 
available publicly through the Project Data Sphere initiative, and 
all method predictions and code are available for download 
through the Sage Bionetworks Synapse platform.

Implications of all the available evidence
Clinical trial data-sharing is both feasible and useful, and the 
DREAM challenge is an appropriate vehicle on which to build 
and rigorously assess prognostic or predictive models quickly, 
openly, and robustly. We established a new prognostic 
benchmark in metastatic castration-resistant prostate cancer, 
with applications in trial design and guidance for clinicians and 
patients. Robust and accurate prognostic predictors can be used 
to homogenise risk in clinical trials of metastatic 
castration-resistant prostate cancer and enable smaller trials for 
assessment of treatment effects.

For more on DREAM challenges 
see http://dreamchallenges.org

For more on Project Data 
Sphere see 

http://www.projectdatasphere.
org

For more on the CEO 
Roundtable on Cancer’s Life 

Sciences Consortium see 
http://ceo-lsc.org

To access data via the Synapse 
platform see 

https://www.synapse.org/
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Gustavo Stolovitzky, Howard Soule, Christopher J Sweeney, Charles J Ryan, Howard I Scher, Oliver Sartor, Yang Xie†, Tero Aittokallio†, 
Fang Liz Zhou†, James C Costello†, and the Prostate Cancer Challenge DREAM Community‡

Summary
Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential 
to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-
profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-
data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only 
identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate 
cancer but also engage a community of international data scientists to study this disease.

Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant 
prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and 
prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the 
MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE 
trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more 
than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, 
lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to 
be used as training data to predict the outcome of interest—namely, overall survival. Clinical data were also 
released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from 
the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated 
using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical 
variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further 
validation was done using data from a fifth trial—ENTHUSE M1—in which 266 patients with metastatic 
castration-resistant prostate cancer were treated with placebo alone.

Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM 
challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely 
identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, 
ePCR outperformed all other methods (iAUC 0·791; Bayes factor >5) and surpassed the reference model (iAUC 0·743; 
Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-
risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3·32, 95% CI 2·39–4·62, 
p<0·0001; reference model: 2·56, 1·85–3·53, p<0·0001). The new model was validated further on the ENTHUSE M1 
cohort with similarly high performance (iAUC 0·768). Meta-analysis across all methods confirmed previously 
identified predictive clinical variables and revealed aspartate aminotransferase as an important, albeit previously 
under-reported, prognostic biomarker.

Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent 
international teams establishes a benchmark for development of methods in the future. The results of this effort 
show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to 
develop new prognostic models in advanced prostate cancer.
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Introduction
Prostate cancer is the most common cancer among men 
in high-income countries and ranks third in terms of 

mortality after lung cancer and colorectal cancer.1 
Of more than two million men diagnosed with prostate 
cancer in the USA over the past 10 years, roughly 10% 
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presented with metastatic disease. For these men, the 
mainstay of treatment is androgen deprivation therapy, 
with a high proportion of response. However, responses 
are not durable, and nearly all tumours eventually prog-
ress to the lethal metastatic castration-resistant state. 
Although substantial improvements in outcome for men 
with metastatic castration-resistant prostate cancer have 
been achieved after approval of next-generation hormonal 
agents, an immunotherapeutic drug, a radiopharma-
ceutical agent, and a cytotoxic drug,2–10 how best to deploy 
these treatments has not been ascertained. Elucidation of 
variables associated with patients’ outcomes independent 
of treatment will facilitate the design of future trials by 
homogenising risk, thus enabling clinical trial questions 
to be answered more rapidly because smaller sample 
sizes will be needed.

Prognostic models in metastatic castration-resistant 
prostate cancer have been described11–13 using baseline 
variables from independent cohort studies. A 2014 
prognostic model for metastatic castration-resistant 
prostate cancer 14 included eight clinical factors predictive 
of overall survival: Eastern Cooperative Oncology 
Group (ECOG) performance status; disease site; use of 
opioid analgesics; lactate dehydrogenase; albumin; 
haemoglobin; prostate-specific antigen; and alkaline 
phosphatase. Can innovative models with improved 
performance be developed through a systematic search 
using data-driven approaches while providing insights 

into biological aspects of the disease that affect patients’ 
outcomes? An example of a novel clinical factor that is 
underexplored in contemporary prognostic model 
development is interaction effects between clinical 
variables, even though interactions between genetic 
variants are used widely and known to improve genetic-
based risk prediction and patients’ stratification.15,16

Here, we present results from the prostate cancer 
DREAM (Dialogue for Reverse Engineering Assessments 
and Methods) challenge—an open-data, crowdsourced 
challenge in metastatic castration-resistant prostate 
cancer. A major contribution to this effort was removal of 
privacy and legal barriers associated with open access to 
phase 3 clinical trial data17 by Project Data Sphere—a 
not-for-profit initiative of the CEO Roundtable on 
Cancer’s Life Sciences Consortium that broadly shares 
oncology clinical trial data with researchers. The challenge 
was designed to accomplish two goals. First, we aimed to 
leverage open clinical trial data, enabling a community-
based approach to identify the best-performing prognostic 
model in a rigorous and unbiased manner. Second, 
participating teams aimed to develop predictive models 
to both validate previously characterised predictive 
clinical variables and discover new prognostic features. 
Consistent with the mission of DREAM, all challenge 
data, results, and method descriptions from participating 
teams are available publicly through the open-access 
Synapse platform.

Research in context

Evidence before this study
We searched PubMed between January, 2012, and July, 2015, 
with the terms “prognosis”, “overall survival”, “mCRPC”, and 
“docetaxel”. Our search yielded a 2014 study in which an 
updated prognostic model was described for metastatic 
castration-resistant prostate cancer that had been developed 
from the CALGB-90401 study (a randomised, double-blind, 
phase 3 clinical trial) and validated with data from the phase 3 
ENTHUSE 33 trial. The study focused on a subset of clinical 
variables using datasets that were not in the public domain. 
Leveraging the wealth of data already generated from clinical 
trials is challenging on several fronts, but is complicated in 
particular by data access.

Added value of this study
Project Data Sphere is an independent not-for-profit initiative 
that aims to provide open access to historical patient-level data. 
The prostate cancer DREAM (Dialogue for Reverse Engineering 
Assessments and Methods) challenge is an open-data, 
crowdsourced competition to develop and assess prognostic 
models in metastatic castration-resistant prostate cancer. Using 
data from the comparator arms of four phase 3 clinical trials of 
chemotherapy-naive patients with metastatic 
castration-resistant prostate cancer, 50 independent teams— 
a diverse group of experts including biostatisticians, computer 

scientists, and clinical experts—developed prognostic models for 
the DREAM challenge, representing, to the best of our 
knowledge, the most comprehensive set of benchmarked 
models to date. The best-performing model was based on an 
ensemble of penalised Cox regression models that judged the 
prognostic value of interactions between predictor covariates 
and substantially outperformed the 2014 model. Strong support 
was provided for previously identified prognostic variables in the 
50 models, and additional important variables were identified 
along with novel interactions between covariates. Data are 
available publicly through the Project Data Sphere initiative, and 
all method predictions and code are available for download 
through the Sage Bionetworks Synapse platform.

Implications of all the available evidence
Clinical trial data-sharing is both feasible and useful, and the 
DREAM challenge is an appropriate vehicle on which to build 
and rigorously assess prognostic or predictive models quickly, 
openly, and robustly. We established a new prognostic 
benchmark in metastatic castration-resistant prostate cancer, 
with applications in trial design and guidance for clinicians and 
patients. Robust and accurate prognostic predictors can be used 
to homogenise risk in clinical trials of metastatic 
castration-resistant prostate cancer and enable smaller trials for 
assessment of treatment effects.

For more on DREAM challenges 
see http://dreamchallenges.org

For more on Project Data 
Sphere see 

http://www.projectdatasphere.
org

For more on the CEO 
Roundtable on Cancer’s Life 

Sciences Consortium see 
http://ceo-lsc.org

To access data via the Synapse 
platform see 

https://www.synapse.org/
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Methods
Trial selection
In April 2014, the DREAM challenge organising team 
reviewed all existing and incoming prostate cancer trial 
datasets (comparator arm only) in Project Data Sphere 
and selected four trials, which were the source of 
training and validation datasets for the DREAM 
challenge—ASCENT2,18 MAINSAIL,19 VENICE,20 and 
ENTHUSE 33.21 All four trials were randomised phase 3 
clinical trials in which the comparator arm consisted of a 
docetaxel regimen and overall survival was the primary 
endpoint. These four trials also had similar inclusion 
and exclusion criteria: eligible patients were aged 
18 years and older, had progressive metastatic castration-
resistant prostate cancer, were chemotherapy-naive, and 
had an ECOG performance status of 0–2. Further details 
of inclusion and exclusion criteria for each trial are 
provided in the appendix (p 3). The patient-level trial 
datasets were deidentified by data providers and made 
available for the DREAM challenge through Project Data 
Sphere. No institutional review board approval was 
needed to access data.

Patient populations
We compiled training datasets from the comparator 
arms of ASCENT2, MAINSAIL, and VENICE. ASCENT218 
is a randomised open-label study assessing DN-101 in 
combination with docetaxel. Patients with metastatic 
castration-resistant prostate cancer were randomly 
assigned either docetaxel and prednisone (comparator 
arm) or docetaxel and DN-101, stratified by geographical 
region and ECOG performance status. MAINSAIL19 is a 
randomised double-blind study to assess efficacy and 
safety of docetaxel and prednisone with or without 
lenalidomide in patients with metastatic castration-
resistant prostate cancer. Participants were randomly 
assigned to either docetaxel, prednisone, and placebo 
(comparator arm) or lenalidomide, docetaxel, and 
prednisone. Stratification of patients in MAINSAIL was 
done based on ECOG performance status (0–1 vs 2), 
geographical region (USA and Canada vs Europe and 
Australia vs rest of world), and type of disease progression 
after hormonal treatment (rising prostate-specific 
antigen only vs tumour progression). VENICE20 is a 
randomised double-blind study comparing the efficacy 
and safety of aflibercept versus placebo, in which patients 
with metastatic castration-resistant prostate cancer were 
randomly assigned either docetaxel, prednisone or 
prednisolone, and placebo (comparator arm) or docetaxel, 
prednisone or prednisolone, and aflibercept. Participants 
were stratified by baseline ECOG performance status 
(0–1 vs 2). The validation dataset was from the 
ENTHUSE 33 trial,21 a double-blind study in which 
patients with metastatic castration-resistant prostate 
cancer were randomly allocated (1:1) either docetaxel and 
placebo (comparator arm) or docetaxel with zibotentan, 
stratified by centre.

Data curation
The original datasets from Project Data Sphere contained 
patient-level raw tables that conformed to either Study 
Data Tabulation Model (SDTM) standards or company-
specific clinical database standards. To optimise use of 
these data for the DREAM challenge, we compiled the 
four sets of trial data into a set of five standardised raw 
event-level tables, meaning all four clinical trials were 
combined into the same tables based on laboratory 
values, medical history, lesion sites, previous treatments, 
and vital signs. Including patients’ demographic inform-
ation, these tables presented most measurements made 
for the patient in that category. To summarise these data 
on a per-patient level, we created a core table, distilling 
the raw event-level tables and patients’ demographics 
into 129 clinically defined baseline and outcome 
variables. Full details of the data curation process are 
provided in the appendix (pp 3, 4).

We supplied participating teams with the full set of 
baseline and raw variables from the core and raw event-
level tables. We encouraged challenge participants to 
derive additional baseline clinical variables from the 
five standardised raw event-level tables for modeling. 
We also provided teams with outcome variables for the 
ASCENT2, MAINSAIL, and VENICE trials, but we did 
not release the outcome variables for the ENTHUSE 33 
trial because they would serve to independently evaluate 
the performance of models. The primary endpoint used 
for model development was overall survival, defined as 
the time from date of randomisation to the date of death 
from any cause.

We did principal component analysis to investigate 
systematic similarities or differences between the 
four clinical trials, using either all available variables or 
binary variables only. We visualised the principal com-
ponent analysis by plotting the first principal component 
against the second principal component for all patients.

Further validation
After the DREAM challenge was completed using data 
from ENTHUSE 33 for method evaluation, we further 
validated the top-performing and reference models with 
data from a fifth trial, ENTHUSE M1,22 to assess whether 
the top-performing model could be used to stratify risk 
for patients with metastatic castration-resistant prostate 
cancer who received placebo alone and no docetaxel. 
ENTHUSE M1 is a randomised double-blind study to 
assess the efficacy and safety of 10 mg zibotentan in 
patients with metastatic castration-resistant prostate 
cancer (specifically, bone metastasis). By contrast with 
ENTHUSE 33, the ENTHUSE M1 trial included a 
comparator arm of placebo alone. Patients were randomly 
allocated (1:1) either zibotentan or placebo and were 
stratified by centre. The inclusion and exclusion criteria 
were similar to those used for ENTHUSE 33 except that 
patients in ENTHUSE M1 were pain free or mildly 
symptomatic. To be consistent for validation, curation of 
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ENTHUSE M1 data followed the same process as was 
done for ASCENT2, MAINSAIL, VENICE, and 
ENTHUSE 33, resulting in a core table and five raw 
event-level tables.

Challenge procedures
The DREAM challenge was hosted and fully managed on 
Synapse, a cloud-based platform for collaborative 
scientific data analysis, through which all model 
predictions were submitted. The challenge was run in 
two phases (appendix pp 4, 17). First, teams were allowed 
to train and test their models in an open testing 
leaderboard phase. Second, teams were permitted one 
last submission to the final scoring phase, after which 
teams were scored and ranked. Accordingly, we split data 
from ENTHUSE 33 into two separate sets, consisting of 
157 patients and 313 patients. The smaller dataset was 
used for the open testing phase and the larger dataset 
was used for the final scoring phase. Moreover, all 
reported performance values for the evaluated methods  
and all comparisons between the top-performing model 
and reference model used the larger set of data from the 
ENTHUSE 33 trial. The reference prognostic model for 
prediction of overall survival was a penalised Cox 
proportional-hazards model using the adaptive least 
absolute shrinkage and selection operator (LASSO) 
penalty.14

For method evaluation, we used the integrated 
AUC (iAUC)23 calculated from 6–30 months as our 
primary scoring metric. For robust determination of 

the best performing team or teams, we used Bayes 
factor analysis and randomisation test based on iAUC 
(appendix pp 4, 5). For each team, we calculated the 
Bayes factor to directly compare the performance of a 
model with the reference model; coefficients for the 
reference model were obtained from reported hazard 
ratios (HRs).14 Furthermore, we evaluated model 
predictions by plotting Kaplan-Meier curves, after 
dichotomising patients for each team separately by 
median risk score. We used the log-rank test to 
compare the two groups using the coxph function in 
the survival R package. We calculated CIs by inverting 
the Wald test statistic. The risk scores generated by 
each model have their own dynamic range; thus, we 
used the rankings of patients for scoring by iAUC or 
Kaplan-Meier analysis. Accordingly, we selected the 
median risk score as a means to compare different 
methods in a fair manner. A major goal of the challenge 
was to encourage teams to develop and test novel 
methods outside of standard survival analysis 
approaches; thus, risk score predictions across all 
teams varied in their range and distribution. A standard 
threshold could not be established fairly for all teams; 
therefore, we relied on rank-based scoring methods, 
including the iAUC, and stratifying risk scores based 
on the median. We also calculated other statistics, 
including median survival and 1-year and 2-year 
survival for the dichotomised high-risk and low-risk 
groups. We did hierarchical clustering on rank-
normalised risk score predictions from all models in 
the challenge, using Euclidean distance and average 
linkage.

We used the ENTHUSE 33 dataset to assess the 
calibration of the top-performing model. We plotted the 
predicted survival probability based on the top-
performing model against the observed survival 
proportions at 18, 24, 30, and 36 months. For each time 
cutoff, we divided the population into seven equally 
spaced categories based on the ranked predicted risk by 
the top-performing model. We then calculated the true 
survival proportion within each category and plotted it as 
a point estimate and 95% CI. A 45° line on the plots 
indicated perfect calibration.

The organisers of the DREAM challenge used SAS 
version 9.3 for data curation and R version 3.2.4 
for statistical analyses. R packages used for 
challenge evaluation included survival version 2.38-3, 
ROCR version 1.0-7, timeROC version 0.3, and 
Bolstad2 version 1.0-28. The top-performing model also 
used glmnet version 2.0-5 and hamlet version 0.9.4-2.

Clinical trial data used in the prostate cancer DREAM 
challenge can be accessed online.24 Write-ups, model 
code, and predictions for all teams are reported in the 
appendix (pp 7, 8). Challenge documentation, including 
a detailed description of its design, overall results, 
scoring scripts, and the clinical trials data dictionary can 
be accessed via the Synapse platform.

Figure 1: Study design
Data were acquired from Project Data Sphere and curated centrally by the organising team to provide a 
harmonised dataset across the four studies. Three studies were provided as training data (ASCENT2, MAINSAIL, 
and VENICE) and the fourth (ENTHUSE 33) was the validation dataset. Teams submitted risk scores for 
ENTHUSE 33, then their predictions were scored and ranked using an integrated time-dependent area under the 
curve (AUC) metric.
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Methods
Trial selection
In April 2014, the DREAM challenge organising team 
reviewed all existing and incoming prostate cancer trial 
datasets (comparator arm only) in Project Data Sphere 
and selected four trials, which were the source of 
training and validation datasets for the DREAM 
challenge—ASCENT2,18 MAINSAIL,19 VENICE,20 and 
ENTHUSE 33.21 All four trials were randomised phase 3 
clinical trials in which the comparator arm consisted of a 
docetaxel regimen and overall survival was the primary 
endpoint. These four trials also had similar inclusion 
and exclusion criteria: eligible patients were aged 
18 years and older, had progressive metastatic castration-
resistant prostate cancer, were chemotherapy-naive, and 
had an ECOG performance status of 0–2. Further details 
of inclusion and exclusion criteria for each trial are 
provided in the appendix (p 3). The patient-level trial 
datasets were deidentified by data providers and made 
available for the DREAM challenge through Project Data 
Sphere. No institutional review board approval was 
needed to access data.

Patient populations
We compiled training datasets from the comparator 
arms of ASCENT2, MAINSAIL, and VENICE. ASCENT218 
is a randomised open-label study assessing DN-101 in 
combination with docetaxel. Patients with metastatic 
castration-resistant prostate cancer were randomly 
assigned either docetaxel and prednisone (comparator 
arm) or docetaxel and DN-101, stratified by geographical 
region and ECOG performance status. MAINSAIL19 is a 
randomised double-blind study to assess efficacy and 
safety of docetaxel and prednisone with or without 
lenalidomide in patients with metastatic castration-
resistant prostate cancer. Participants were randomly 
assigned to either docetaxel, prednisone, and placebo 
(comparator arm) or lenalidomide, docetaxel, and 
prednisone. Stratification of patients in MAINSAIL was 
done based on ECOG performance status (0–1 vs 2), 
geographical region (USA and Canada vs Europe and 
Australia vs rest of world), and type of disease progression 
after hormonal treatment (rising prostate-specific 
antigen only vs tumour progression). VENICE20 is a 
randomised double-blind study comparing the efficacy 
and safety of aflibercept versus placebo, in which patients 
with metastatic castration-resistant prostate cancer were 
randomly assigned either docetaxel, prednisone or 
prednisolone, and placebo (comparator arm) or docetaxel, 
prednisone or prednisolone, and aflibercept. Participants 
were stratified by baseline ECOG performance status 
(0–1 vs 2). The validation dataset was from the 
ENTHUSE 33 trial,21 a double-blind study in which 
patients with metastatic castration-resistant prostate 
cancer were randomly allocated (1:1) either docetaxel and 
placebo (comparator arm) or docetaxel with zibotentan, 
stratified by centre.

Data curation
The original datasets from Project Data Sphere contained 
patient-level raw tables that conformed to either Study 
Data Tabulation Model (SDTM) standards or company-
specific clinical database standards. To optimise use of 
these data for the DREAM challenge, we compiled the 
four sets of trial data into a set of five standardised raw 
event-level tables, meaning all four clinical trials were 
combined into the same tables based on laboratory 
values, medical history, lesion sites, previous treatments, 
and vital signs. Including patients’ demographic inform-
ation, these tables presented most measurements made 
for the patient in that category. To summarise these data 
on a per-patient level, we created a core table, distilling 
the raw event-level tables and patients’ demographics 
into 129 clinically defined baseline and outcome 
variables. Full details of the data curation process are 
provided in the appendix (pp 3, 4).

We supplied participating teams with the full set of 
baseline and raw variables from the core and raw event-
level tables. We encouraged challenge participants to 
derive additional baseline clinical variables from the 
five standardised raw event-level tables for modeling. 
We also provided teams with outcome variables for the 
ASCENT2, MAINSAIL, and VENICE trials, but we did 
not release the outcome variables for the ENTHUSE 33 
trial because they would serve to independently evaluate 
the performance of models. The primary endpoint used 
for model development was overall survival, defined as 
the time from date of randomisation to the date of death 
from any cause.

We did principal component analysis to investigate 
systematic similarities or differences between the 
four clinical trials, using either all available variables or 
binary variables only. We visualised the principal com-
ponent analysis by plotting the first principal component 
against the second principal component for all patients.

Further validation
After the DREAM challenge was completed using data 
from ENTHUSE 33 for method evaluation, we further 
validated the top-performing and reference models with 
data from a fifth trial, ENTHUSE M1,22 to assess whether 
the top-performing model could be used to stratify risk 
for patients with metastatic castration-resistant prostate 
cancer who received placebo alone and no docetaxel. 
ENTHUSE M1 is a randomised double-blind study to 
assess the efficacy and safety of 10 mg zibotentan in 
patients with metastatic castration-resistant prostate 
cancer (specifically, bone metastasis). By contrast with 
ENTHUSE 33, the ENTHUSE M1 trial included a 
comparator arm of placebo alone. Patients were randomly 
allocated (1:1) either zibotentan or placebo and were 
stratified by centre. The inclusion and exclusion criteria 
were similar to those used for ENTHUSE 33 except that 
patients in ENTHUSE M1 were pain free or mildly 
symptomatic. To be consistent for validation, curation of 
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ENTHUSE M1 data followed the same process as was 
done for ASCENT2, MAINSAIL, VENICE, and 
ENTHUSE 33, resulting in a core table and five raw 
event-level tables.

Challenge procedures
The DREAM challenge was hosted and fully managed on 
Synapse, a cloud-based platform for collaborative 
scientific data analysis, through which all model 
predictions were submitted. The challenge was run in 
two phases (appendix pp 4, 17). First, teams were allowed 
to train and test their models in an open testing 
leaderboard phase. Second, teams were permitted one 
last submission to the final scoring phase, after which 
teams were scored and ranked. Accordingly, we split data 
from ENTHUSE 33 into two separate sets, consisting of 
157 patients and 313 patients. The smaller dataset was 
used for the open testing phase and the larger dataset 
was used for the final scoring phase. Moreover, all 
reported performance values for the evaluated methods  
and all comparisons between the top-performing model 
and reference model used the larger set of data from the 
ENTHUSE 33 trial. The reference prognostic model for 
prediction of overall survival was a penalised Cox 
proportional-hazards model using the adaptive least 
absolute shrinkage and selection operator (LASSO) 
penalty.14

For method evaluation, we used the integrated 
AUC (iAUC)23 calculated from 6–30 months as our 
primary scoring metric. For robust determination of 

the best performing team or teams, we used Bayes 
factor analysis and randomisation test based on iAUC 
(appendix pp 4, 5). For each team, we calculated the 
Bayes factor to directly compare the performance of a 
model with the reference model; coefficients for the 
reference model were obtained from reported hazard 
ratios (HRs).14 Furthermore, we evaluated model 
predictions by plotting Kaplan-Meier curves, after 
dichotomising patients for each team separately by 
median risk score. We used the log-rank test to 
compare the two groups using the coxph function in 
the survival R package. We calculated CIs by inverting 
the Wald test statistic. The risk scores generated by 
each model have their own dynamic range; thus, we 
used the rankings of patients for scoring by iAUC or 
Kaplan-Meier analysis. Accordingly, we selected the 
median risk score as a means to compare different 
methods in a fair manner. A major goal of the challenge 
was to encourage teams to develop and test novel 
methods outside of standard survival analysis 
approaches; thus, risk score predictions across all 
teams varied in their range and distribution. A standard 
threshold could not be established fairly for all teams; 
therefore, we relied on rank-based scoring methods, 
including the iAUC, and stratifying risk scores based 
on the median. We also calculated other statistics, 
including median survival and 1-year and 2-year 
survival for the dichotomised high-risk and low-risk 
groups. We did hierarchical clustering on rank-
normalised risk score predictions from all models in 
the challenge, using Euclidean distance and average 
linkage.

We used the ENTHUSE 33 dataset to assess the 
calibration of the top-performing model. We plotted the 
predicted survival probability based on the top-
performing model against the observed survival 
proportions at 18, 24, 30, and 36 months. For each time 
cutoff, we divided the population into seven equally 
spaced categories based on the ranked predicted risk by 
the top-performing model. We then calculated the true 
survival proportion within each category and plotted it as 
a point estimate and 95% CI. A 45° line on the plots 
indicated perfect calibration.

The organisers of the DREAM challenge used SAS 
version 9.3 for data curation and R version 3.2.4 
for statistical analyses. R packages used for 
challenge evaluation included survival version 2.38-3, 
ROCR version 1.0-7, timeROC version 0.3, and 
Bolstad2 version 1.0-28. The top-performing model also 
used glmnet version 2.0-5 and hamlet version 0.9.4-2.

Clinical trial data used in the prostate cancer DREAM 
challenge can be accessed online.24 Write-ups, model 
code, and predictions for all teams are reported in the 
appendix (pp 7, 8). Challenge documentation, including 
a detailed description of its design, overall results, 
scoring scripts, and the clinical trials data dictionary can 
be accessed via the Synapse platform.

Figure 1: Study design
Data were acquired from Project Data Sphere and curated centrally by the organising team to provide a 
harmonised dataset across the four studies. Three studies were provided as training data (ASCENT2, MAINSAIL, 
and VENICE) and the fourth (ENTHUSE 33) was the validation dataset. Teams submitted risk scores for 
ENTHUSE 33, then their predictions were scored and ranked using an integrated time-dependent area under the 
curve (AUC) metric.
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Role of the funding source
Project Data Sphere had a collaborative role in design 
and logistics of the DREAM challenge but played no part 
in data collection, data analysis, and data interpretation 
or in the writing of this report. Sanofi US Services 
provided an in-kind contribution of human resources 
for curation of the raw datasets for the DREAM challenge 
and for clinical and scientific support of the challenge 
organisation, at the request of Project Data Sphere. 
Sanofi personnel participated in design of the DREAM 
challenge, in data analysis and data interpretation, and 
in writing of the report, but had no role in data collection. 
Raw clinical trial datasets for ASCENT2, MAINSAIL, 
and VENICE were available on the Project Data Sphere 
platform and were accessible by all registered users of 
Project Data Sphere, including all DREAM challenge 
participants and organisers, throughout the challenge. 
JG, TW, KKW, BMB, LS, KA, YX, FLZ, and JCC had 
access to raw data for ENTHUSE 33. JG, TW, KKW, 
LS, KA, FLZ, and JCC had access to raw data for 
ENTHUSE M1, during the post-challenge analysis. Data 

for ENTHUSE 33 and ENTHUSE M1 have been made 
freely accessible through the Project Data Sphere 
platform with publication of this report. The 
corresponding author had full access to all data in the 
study and had final responsibility for the decision to 
submit for publication.

Results
The overall DREAM challenge design is shown in 
figure 1, with full details in the appendix (p 4). The table 
presents baseline characteristics of patients in the 
five clinical trials included in this analysis. The training 
dataset included: 476 individuals from ASCENT2; 
526 participants in MAINSAIL; and 598 men from 
VENICE. The validation dataset consisted of 470 patients 
from the ENTHUSE 33 trial; 528 men were initially 
enrolled to that trial but, because of regulatory restrictions 
in one country, data for 58 individuals were not made 
public through the challenge. The second validation 
dataset comprised 266 patients from ENTHUSE M1. 
Because of the same regulation restriction mentioned for 

ASCENT2 (n=476) MAINSAIL (n=526) VENICE (n=598) ENTHUSE 33 (n=470) ENTHUSE M1 (n=266)

Age (years)

18–64 111 (23%) 171 (33%) 219 (37%) 160 (34%) 58 (22%)

65–74 211 (44%) 246 (47%) 254 (42%) 217 (46%) 111 (42%)

≥75 154 (32%) 109 (21%) 125 (21%) 93 (20%) 97 (36%)

ECOG performance score

0 220 (46%) 257 (49%) 280 (47%) 247 (53%) 196 (74%)

1 234 (49%) 247 (47%) 291 (49%) 223 (47%) 70 (26%)

2 22 (5%) 20 (4%) 27 (5%) 0 (0%) 0 (0%)

3 0 (0%) 1 (<1%) 0 (0%) 0 (0%) 0 (0%)

Missing 0 (0%) 1 (<1%) 0 (0%) 0 (0%) 0 (0%)

Metastasis

Liver 5 (1%) 58 (11%) 60 (10%) 64 (14%) 12 (5%)

Bone 345 (72%) 439 (83%) 529 (88%) 470 (100%) 266 (100%)

Lungs 8 (2%) 74 (14%) 88 (15%) 56 (12%) 13 (5%)

Lymph nodes 163 (34%) 298 (57%) 323 (54%) 208 (44%) 80 (30%)

Analgesic use

No 338 (71%) 347 (66%) 419 (70%) 339 (72%) 256 (96%)

Yes 138 (29%) 179 (34%) 179 (30%) 131 (28%) 10 (4%)

Lactate dehydrogenase (U/L) 202 (176–250) 210 (174–267) NA 213 (181–287) 188 (170–219)

Missing 13 (3%) 1 (<1%) 596 (100%) 5 (1%) 7 (3%)

Prostate-specific antigen (ng/mL) 68·8 (24·2–188·4) 84·9 (32·2–271·2) 90·8 (30·8–260·6) 99·6 (33·6–236·8) 52·3 (17·3–153·0)

Missing 1 (<1%) 4 (1%) 6 (1%) 12 (3%) 4 (2%)

Haemoglobin (g/dL) 12·6 (11·6–13·6) 12·7 (11·5–13·7) 12·7 (11·7–13·5) 12·5 (11·3–13·5) 12·9 (12·2–13·7)

Missing 3 (1%) 10 (2%) 0 (0%) 4 (1%) 2 (1%)

Albumin (g/L) NA 43 (41–45) 42 (38–45) 43 (40–46) 43 (41–45)

Missing 476 (100%) 1 (<1%) 16 (3%) 2 (<1%) 1 (<1%)

Alkaline phosphatase (U/L) 113 (80–213) 124 (81–265) 135 (85–270) 155 (98–328) 130 (83–222)

Aspartate aminotransferase (U/L) 24 (20–31) 24 (19–31) 25 (20–33) 25 (20–33) 24 (19–29)

Missing 4 (1%) 1 (<1%) 8 (1%) 3 (1%) 3 (1%)

Data are median (IQR) or number of patients (%). NA=not available. ECOG=Eastern Cooperative Oncology Group.

Table: Patients’ baseline characteristics
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ENTHUSE 33, some data were not provided to Project 
Data Sphere.

129 clinical baseline variables were measured for 
laboratory values, lesion site, previous medicines, 
medical history, and vital signs. When combined and 
assessed, the clinical variables for each trial were similar 
(appendix p 13), although when binary variables—mainly 
representing lesion sites—were judged separately, 
differences in clinical trials were recorded (appendix p 13). 
ASCENT2 had a lower frequency of patients with visceral 
metastases (1·1% liver and 1·7% lung) compared with 
individuals in the other three trials (10–14% liver, 11–15% 
lung). By contrast, the proportion of patients with bone 
metastases was high across the four trials (72–100%). 

Median follow-up differed among the four studies: 
11·7 months (IQR 8·6–15·8) in ASCENT2; 9·2 months 
(6·4–13·1) in MAINSAIL; 21·1 months (12·9–29·6) in 
VENICE; and 15·3 months (10·9–20·8) in ENTHUSE 33. 
Risk profiles for each of the trials—specifically, 
mortality—were similar among the four trials (propor-
tionality of hazards, p>0·5; appendix p 14). The 
proportion of patients who died in each trial was 
138 (29%) of 476 in ASCENT2, 92 (17%) of 526 in 
MAINSAIL, 433 (72%) of 598 in VENICE, and 255 (54%) 
of 470 in ENTHUSE 33.

50 international teams—comprising 163 individuals—
submitted predictions from their models to the 
challenge; with the reference model, the total number of 
models is 51. The distribution of all team scores by iAUC 
is shown in the appendix (p 15). The top-performing 
model was developed by a collaborative team from the 
Institute for Molecular Medicine Finland and the 
University of Turku. The method was based on an 
ensemble of penalised Cox regression (ePCR) models. 
The ePCR model extended beyond the LASSO-based 
reference model by using an elastic net to select 
additional correlated groups of clinical variables and 
their interactions, modelled as interaction terms (panel). 
The risk predictions from the trial-specific ensemble 
components were rank-averaged to produce the final 
ensemble risk score predictions and to avoid trial-
specific variation.

The top-scoring ePCR model reported an iAUC 
of 0·791 and outscored all other teams, with a Bayes 
factor greater than 5, surpassing the threshold that 
defines significantly different performances (Bayes 
factor >3). The reference model achieved an iAUC 
of 0·743, with a significant difference in scores between 
the ePCR model and the reference model (Bayes 
factor >20). With a time-dependent AUC metric, the 
ePCR model outperformed the reference model at every 
timepoint, with the biggest difference in performance at 
later timepoints between 18 and 30 months (figure 2A). 
A median split of patients into low-risk and high-risk 
groups for the ePCR model resulted in a low-risk group 
comprising 156 patients and 56 deaths (median 
follow-up 27·6 months [IQR 18·2–31·9]) and a high-
risk group containing 157 patients and 107 deaths 
(15·1 [8·5–20·1]). Similarly for the reference group, a 
low-risk group including 156 patients and 59 deaths 
(median follow-up 26·5 months [IQR 17·2–31·9]) and a 
high-risk group with 157 patients and 104 deaths 
(15·6 [8·6–21·8]) were generated. Kaplan-Meier analysis 
showed that low-risk and high-risk groups had 
significantly different overall survival in each model 
(ePCR, HR 3·32, 95% CI 2·39–4·62, p<0·0001; 
reference, 2·56, 1·85–3·53, p<0·0001; figure 2B, 2C). 
A full comparison is provided in the appendix (p 9). 
We assessed the calibration of the ePCR model by 
comparing predicted probabilities versus actual 
probabilities at multiple timepoints (appendix p 16).

Panel: Top-performing model construction in training datasets

The top-performing model was based on an ensemble of penalised Cox regression 
models (ePCR), as shown in the equation. For each trial-specific ensemble component, 
the model estimation procedure identified an optimum penalisation parameter (λ), 
which controls for the number of non-zero coefficients in the prediction model, and 
simultaneously the regularisation parameter (α) with respect to the objective function:

Here, x are the predictors (clinical variables or their pairwise interactions), β are the model 
coefficients subjected to the absolute error and squared error penalisations (|β| and β ², 
respectively), p is the number of predictors, n is the number of observations, j(i) is the 
index of the observation event at time Ti, and Ri is the set of indices j for which 
yj≥Ti (patients at risk at time Ti), where yj is the observed death or right-censoring time. 
The set of indices Ri is redefined for each patient i using the above risk criterion 
incorporating y and T. With suitable regularisation, the penalised regression identifies an 
optimum balance between the model fit and top predictors, effectively generalising the 
Cox model for future predictions. To reduce the risk of overfitting and to avoid 
randomness bias in the binning, the final ensemble models were optimised using ten-fold 
cross-validation of the iAUC, averaged over multiple cross-validation runs. By modelling 
each trial individually as a separate ensemble component with different optima in the 
equation, we are able to account effectively for trial-specific variation (appendix p 12). The 
optimum parameters (penalisation λ and norm α) for each trial were first identified using 
cross-validation, after which the model coefficients (β) are estimated by optimising the 
above objective function. 

Data processing entailed missing value imputation with a penalised Gaussian regression 
variant of the equation, with cross-validation when variables with non-missing values 
were used as predictors. Variables with missing values were inferred by training an 
optimum model with the non-missing variables and then imputing the missing values. 
Laboratory values were modelled as continuous variables. Data curation entailed 
unsupervised explorative analyses (appendix pp 5, 6, 12). ASCENT2 trial data were used in 
the imputation and unsupervised learning phases but were omitted from construction of 
the final supervised ensemble predictor, which was based on three components: 
MAINSAIL alone, VENICE alone, and their combination (appendix p 12). The final 
ensemble prediction was done by averaging over the ranks of the component-predicted 
risks for the ENTHUSE 33 dataset (appendix p 12). Averaging of risk score ranks was 
selected to be more robust to trial-specific variation and potential outliers. Full details of 
the model and its network visualisation are in the appendix (pp 5, 6, 12) with a list of 
chosen predictors (appendix pp 10, 11).
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Role of the funding source
Project Data Sphere had a collaborative role in design 
and logistics of the DREAM challenge but played no part 
in data collection, data analysis, and data interpretation 
or in the writing of this report. Sanofi US Services 
provided an in-kind contribution of human resources 
for curation of the raw datasets for the DREAM challenge 
and for clinical and scientific support of the challenge 
organisation, at the request of Project Data Sphere. 
Sanofi personnel participated in design of the DREAM 
challenge, in data analysis and data interpretation, and 
in writing of the report, but had no role in data collection. 
Raw clinical trial datasets for ASCENT2, MAINSAIL, 
and VENICE were available on the Project Data Sphere 
platform and were accessible by all registered users of 
Project Data Sphere, including all DREAM challenge 
participants and organisers, throughout the challenge. 
JG, TW, KKW, BMB, LS, KA, YX, FLZ, and JCC had 
access to raw data for ENTHUSE 33. JG, TW, KKW, 
LS, KA, FLZ, and JCC had access to raw data for 
ENTHUSE M1, during the post-challenge analysis. Data 

for ENTHUSE 33 and ENTHUSE M1 have been made 
freely accessible through the Project Data Sphere 
platform with publication of this report. The 
corresponding author had full access to all data in the 
study and had final responsibility for the decision to 
submit for publication.

Results
The overall DREAM challenge design is shown in 
figure 1, with full details in the appendix (p 4). The table 
presents baseline characteristics of patients in the 
five clinical trials included in this analysis. The training 
dataset included: 476 individuals from ASCENT2; 
526 participants in MAINSAIL; and 598 men from 
VENICE. The validation dataset consisted of 470 patients 
from the ENTHUSE 33 trial; 528 men were initially 
enrolled to that trial but, because of regulatory restrictions 
in one country, data for 58 individuals were not made 
public through the challenge. The second validation 
dataset comprised 266 patients from ENTHUSE M1. 
Because of the same regulation restriction mentioned for 

ASCENT2 (n=476) MAINSAIL (n=526) VENICE (n=598) ENTHUSE 33 (n=470) ENTHUSE M1 (n=266)

Age (years)

18–64 111 (23%) 171 (33%) 219 (37%) 160 (34%) 58 (22%)

65–74 211 (44%) 246 (47%) 254 (42%) 217 (46%) 111 (42%)

≥75 154 (32%) 109 (21%) 125 (21%) 93 (20%) 97 (36%)

ECOG performance score

0 220 (46%) 257 (49%) 280 (47%) 247 (53%) 196 (74%)

1 234 (49%) 247 (47%) 291 (49%) 223 (47%) 70 (26%)

2 22 (5%) 20 (4%) 27 (5%) 0 (0%) 0 (0%)

3 0 (0%) 1 (<1%) 0 (0%) 0 (0%) 0 (0%)

Missing 0 (0%) 1 (<1%) 0 (0%) 0 (0%) 0 (0%)

Metastasis

Liver 5 (1%) 58 (11%) 60 (10%) 64 (14%) 12 (5%)

Bone 345 (72%) 439 (83%) 529 (88%) 470 (100%) 266 (100%)

Lungs 8 (2%) 74 (14%) 88 (15%) 56 (12%) 13 (5%)

Lymph nodes 163 (34%) 298 (57%) 323 (54%) 208 (44%) 80 (30%)

Analgesic use

No 338 (71%) 347 (66%) 419 (70%) 339 (72%) 256 (96%)

Yes 138 (29%) 179 (34%) 179 (30%) 131 (28%) 10 (4%)

Lactate dehydrogenase (U/L) 202 (176–250) 210 (174–267) NA 213 (181–287) 188 (170–219)

Missing 13 (3%) 1 (<1%) 596 (100%) 5 (1%) 7 (3%)

Prostate-specific antigen (ng/mL) 68·8 (24·2–188·4) 84·9 (32·2–271·2) 90·8 (30·8–260·6) 99·6 (33·6–236·8) 52·3 (17·3–153·0)

Missing 1 (<1%) 4 (1%) 6 (1%) 12 (3%) 4 (2%)

Haemoglobin (g/dL) 12·6 (11·6–13·6) 12·7 (11·5–13·7) 12·7 (11·7–13·5) 12·5 (11·3–13·5) 12·9 (12·2–13·7)

Missing 3 (1%) 10 (2%) 0 (0%) 4 (1%) 2 (1%)

Albumin (g/L) NA 43 (41–45) 42 (38–45) 43 (40–46) 43 (41–45)

Missing 476 (100%) 1 (<1%) 16 (3%) 2 (<1%) 1 (<1%)

Alkaline phosphatase (U/L) 113 (80–213) 124 (81–265) 135 (85–270) 155 (98–328) 130 (83–222)

Aspartate aminotransferase (U/L) 24 (20–31) 24 (19–31) 25 (20–33) 25 (20–33) 24 (19–29)

Missing 4 (1%) 1 (<1%) 8 (1%) 3 (1%) 3 (1%)

Data are median (IQR) or number of patients (%). NA=not available. ECOG=Eastern Cooperative Oncology Group.

Table: Patients’ baseline characteristics
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ENTHUSE 33, some data were not provided to Project 
Data Sphere.

129 clinical baseline variables were measured for 
laboratory values, lesion site, previous medicines, 
medical history, and vital signs. When combined and 
assessed, the clinical variables for each trial were similar 
(appendix p 13), although when binary variables—mainly 
representing lesion sites—were judged separately, 
differences in clinical trials were recorded (appendix p 13). 
ASCENT2 had a lower frequency of patients with visceral 
metastases (1·1% liver and 1·7% lung) compared with 
individuals in the other three trials (10–14% liver, 11–15% 
lung). By contrast, the proportion of patients with bone 
metastases was high across the four trials (72–100%). 

Median follow-up differed among the four studies: 
11·7 months (IQR 8·6–15·8) in ASCENT2; 9·2 months 
(6·4–13·1) in MAINSAIL; 21·1 months (12·9–29·6) in 
VENICE; and 15·3 months (10·9–20·8) in ENTHUSE 33. 
Risk profiles for each of the trials—specifically, 
mortality—were similar among the four trials (propor-
tionality of hazards, p>0·5; appendix p 14). The 
proportion of patients who died in each trial was 
138 (29%) of 476 in ASCENT2, 92 (17%) of 526 in 
MAINSAIL, 433 (72%) of 598 in VENICE, and 255 (54%) 
of 470 in ENTHUSE 33.

50 international teams—comprising 163 individuals—
submitted predictions from their models to the 
challenge; with the reference model, the total number of 
models is 51. The distribution of all team scores by iAUC 
is shown in the appendix (p 15). The top-performing 
model was developed by a collaborative team from the 
Institute for Molecular Medicine Finland and the 
University of Turku. The method was based on an 
ensemble of penalised Cox regression (ePCR) models. 
The ePCR model extended beyond the LASSO-based 
reference model by using an elastic net to select 
additional correlated groups of clinical variables and 
their interactions, modelled as interaction terms (panel). 
The risk predictions from the trial-specific ensemble 
components were rank-averaged to produce the final 
ensemble risk score predictions and to avoid trial-
specific variation.

The top-scoring ePCR model reported an iAUC 
of 0·791 and outscored all other teams, with a Bayes 
factor greater than 5, surpassing the threshold that 
defines significantly different performances (Bayes 
factor >3). The reference model achieved an iAUC 
of 0·743, with a significant difference in scores between 
the ePCR model and the reference model (Bayes 
factor >20). With a time-dependent AUC metric, the 
ePCR model outperformed the reference model at every 
timepoint, with the biggest difference in performance at 
later timepoints between 18 and 30 months (figure 2A). 
A median split of patients into low-risk and high-risk 
groups for the ePCR model resulted in a low-risk group 
comprising 156 patients and 56 deaths (median 
follow-up 27·6 months [IQR 18·2–31·9]) and a high-
risk group containing 157 patients and 107 deaths 
(15·1 [8·5–20·1]). Similarly for the reference group, a 
low-risk group including 156 patients and 59 deaths 
(median follow-up 26·5 months [IQR 17·2–31·9]) and a 
high-risk group with 157 patients and 104 deaths 
(15·6 [8·6–21·8]) were generated. Kaplan-Meier analysis 
showed that low-risk and high-risk groups had 
significantly different overall survival in each model 
(ePCR, HR 3·32, 95% CI 2·39–4·62, p<0·0001; 
reference, 2·56, 1·85–3·53, p<0·0001; figure 2B, 2C). 
A full comparison is provided in the appendix (p 9). 
We assessed the calibration of the ePCR model by 
comparing predicted probabilities versus actual 
probabilities at multiple timepoints (appendix p 16).

Panel: Top-performing model construction in training datasets

The top-performing model was based on an ensemble of penalised Cox regression 
models (ePCR), as shown in the equation. For each trial-specific ensemble component, 
the model estimation procedure identified an optimum penalisation parameter (λ), 
which controls for the number of non-zero coefficients in the prediction model, and 
simultaneously the regularisation parameter (α) with respect to the objective function:

Here, x are the predictors (clinical variables or their pairwise interactions), β are the model 
coefficients subjected to the absolute error and squared error penalisations (|β| and β ², 
respectively), p is the number of predictors, n is the number of observations, j(i) is the 
index of the observation event at time Ti, and Ri is the set of indices j for which 
yj≥Ti (patients at risk at time Ti), where yj is the observed death or right-censoring time. 
The set of indices Ri is redefined for each patient i using the above risk criterion 
incorporating y and T. With suitable regularisation, the penalised regression identifies an 
optimum balance between the model fit and top predictors, effectively generalising the 
Cox model for future predictions. To reduce the risk of overfitting and to avoid 
randomness bias in the binning, the final ensemble models were optimised using ten-fold 
cross-validation of the iAUC, averaged over multiple cross-validation runs. By modelling 
each trial individually as a separate ensemble component with different optima in the 
equation, we are able to account effectively for trial-specific variation (appendix p 12). The 
optimum parameters (penalisation λ and norm α) for each trial were first identified using 
cross-validation, after which the model coefficients (β) are estimated by optimising the 
above objective function. 

Data processing entailed missing value imputation with a penalised Gaussian regression 
variant of the equation, with cross-validation when variables with non-missing values 
were used as predictors. Variables with missing values were inferred by training an 
optimum model with the non-missing variables and then imputing the missing values. 
Laboratory values were modelled as continuous variables. Data curation entailed 
unsupervised explorative analyses (appendix pp 5, 6, 12). ASCENT2 trial data were used in 
the imputation and unsupervised learning phases but were omitted from construction of 
the final supervised ensemble predictor, which was based on three components: 
MAINSAIL alone, VENICE alone, and their combination (appendix p 12). The final 
ensemble prediction was done by averaging over the ranks of the component-predicted 
risks for the ENTHUSE 33 dataset (appendix p 12). Averaging of risk score ranks was 
selected to be more robust to trial-specific variation and potential outliers. Full details of 
the model and its network visualisation are in the appendix (pp 5, 6, 12) with a list of 
chosen predictors (appendix pp 10, 11).
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Figure 3 shows a network visualisation of the significant 
groups of variables identified in the ePCR model and 
their predictive relations, based on the importance of the 
model covariates and their interactions. Although many 
of the variables used in the reference model were also 
included in the ePCR model, aspartate aminotransferase 
was identified as a new important predictor. We also 
recorded a number of factors that were included as 
interaction terms, and of particular note were those 
reflecting the immunological or renal function of the 
patient. Prostate-specific antigen was an independent but 
weak prognostic factor that interacted strongly with 
lactate dehydrogenase and aspartate aminotransferase.

In addition to identifying the top-performing model, 
the challenge also tested the other independent models, 
with 30 of 50 outperforming the reference model (Bayes 
factor >3; appendix p 15). We performed hierarchical 
clustering of risk scores from the 51 models to identify 
three distinct risk groups (figure 4A), with 98 patients 
(77 deaths) in group A (high risk), 131 patients (61 deaths) 
in group B (moderate risk), and 84 patients (25 deaths) in 
group C (low risk). Differences in overall survival among 
these three groups were significant (log-rank p<0·0001), 
with median overall survival of 12·9 months (95% CI 
10·7–15·3) for group A, 20·8 months (18·3–25·6) for 
group B, and 27·7 months (26·6–not available) for 
group C (figure 4B).

40 of 50 teams provided a list of common clinical 
factors that were incorporated into their final models; 
the frequencies with which a feature was reported as 
being important or significant in a team’s model are 
summarised in the appendix (p 18). The results not only 
confirmed the variables identified previously in the 
reference model but also highlighted several factors that 
were not. Of note, aspartate aminotransferase was 
included in more than half the team models. Other 
novel variables that were included in at least 15% of the 
models are total white blood cell count, absolute 
neutrophil count, red blood cell count, region of the 
world, body-mass index, and creatinine.

Application of the ePCR and reference models to the 
ENTHUSE M1 dataset showed model performances 
comparable with the primary challenge, with an 
iAUC of 0·768 for the ePCR model and 0·727 for the 
reference model (figure 5A). A median split of risk 
scores in the ePCR model led to a high-risk group of 
133 patients, of which 45 were right-censored, and a 
low-risk group of 133 patients, of which 88 were right-
censored. Kaplan-Meier analysis of the ENTHUSE M1 

Figure 2: Performance of ePCR model, using data from ENTHUSE 33
(A) Time-dependent AUC was measured from 6 months to 30 months at 

1-month intervals, reflecting the performance of predicting overall survival at 
different timepoints. (B, C) Overall survival was assessed by the Kaplan-Meier 

method, stratified by the median in the top-performing ePCR model (B) and the 
reference model (C). The log-rank test was used to compare risk groups. 

ePCR=ensemble of penalised Cox regression models. iAUC=integrated 
time-dependent area under the curve. HR=hazard ratio.
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data showed significant separation of the high-risk and 
low-risk predicted patients (p<0·0001), with median 
survival of 15·8 months (95% CI 12·8–18·7) for high-
risk patients and 27·1 months (23·2–not available) for 
low-risk patients (figure 5B).

Discussion
The prostate cancer DREAM challenge resulted in 
one prognostic model to predict overall survival 
significantly outperforming all other methods, including 
a reference model reported by Halabi and colleagues,14 
and led to a network perspective of predictive biological 

variables and their interactions. The results from the top-
performing team’s model pointed to important 
interaction effects with immune biomarkers and markers 
of hepatic function (potentially reflected in the increased 
amounts of aspartate aminotransferase) and renal 
function. The network visualisation of the prediction 
model suggests a complex relation and dependency 
structure among many of the predictive clinical variables. 
Many of these noted interactions, although not significant 
as independent variables, might be important modu-
lators of key clinical traits—eg, haematology-related 
measurements such as haemoglobin and haematocrit. 

Figure 3: Projection of the most important variables and interactions in the ePCR model
Automated data-driven network layout of the most significant model variables, according to their interconnections with other model variables. Node size and colour 
indicate the importance of the variable alone for prediction of overall survival and its coefficient sign, respectively. This importance was calculated as the area under 
the curve (AUC) of the penalised model predictors, as a function of penalisation parameter λ. Edge colour indicates the importance of an interaction between 
two model variables, with a darker colour corresponding to a stronger interaction effect. Coloured subnetwork modules annotate the variables based on expert 
curated categories. Variable and interaction statistics can be found in the appendix (pp 10, 11). ALB=albumin. ALP=alkaline phosphatase. AST=aspartate 
aminotransferase. BMI=body-mass index. ECOG=Eastern Cooperative Oncology Group. ePCR=ensemble of penalised Cox regression models. HB=haemoglobin. 
HCT=haematocrit. LDH=lactate dehydrogenase. PSA=prostate-specific antigen. RBC=red blood cell count.
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Figure 3 shows a network visualisation of the significant 
groups of variables identified in the ePCR model and 
their predictive relations, based on the importance of the 
model covariates and their interactions. Although many 
of the variables used in the reference model were also 
included in the ePCR model, aspartate aminotransferase 
was identified as a new important predictor. We also 
recorded a number of factors that were included as 
interaction terms, and of particular note were those 
reflecting the immunological or renal function of the 
patient. Prostate-specific antigen was an independent but 
weak prognostic factor that interacted strongly with 
lactate dehydrogenase and aspartate aminotransferase.

In addition to identifying the top-performing model, 
the challenge also tested the other independent models, 
with 30 of 50 outperforming the reference model (Bayes 
factor >3; appendix p 15). We performed hierarchical 
clustering of risk scores from the 51 models to identify 
three distinct risk groups (figure 4A), with 98 patients 
(77 deaths) in group A (high risk), 131 patients (61 deaths) 
in group B (moderate risk), and 84 patients (25 deaths) in 
group C (low risk). Differences in overall survival among 
these three groups were significant (log-rank p<0·0001), 
with median overall survival of 12·9 months (95% CI 
10·7–15·3) for group A, 20·8 months (18·3–25·6) for 
group B, and 27·7 months (26·6–not available) for 
group C (figure 4B).

40 of 50 teams provided a list of common clinical 
factors that were incorporated into their final models; 
the frequencies with which a feature was reported as 
being important or significant in a team’s model are 
summarised in the appendix (p 18). The results not only 
confirmed the variables identified previously in the 
reference model but also highlighted several factors that 
were not. Of note, aspartate aminotransferase was 
included in more than half the team models. Other 
novel variables that were included in at least 15% of the 
models are total white blood cell count, absolute 
neutrophil count, red blood cell count, region of the 
world, body-mass index, and creatinine.

Application of the ePCR and reference models to the 
ENTHUSE M1 dataset showed model performances 
comparable with the primary challenge, with an 
iAUC of 0·768 for the ePCR model and 0·727 for the 
reference model (figure 5A). A median split of risk 
scores in the ePCR model led to a high-risk group of 
133 patients, of which 45 were right-censored, and a 
low-risk group of 133 patients, of which 88 were right-
censored. Kaplan-Meier analysis of the ENTHUSE M1 

Figure 2: Performance of ePCR model, using data from ENTHUSE 33
(A) Time-dependent AUC was measured from 6 months to 30 months at 

1-month intervals, reflecting the performance of predicting overall survival at 
different timepoints. (B, C) Overall survival was assessed by the Kaplan-Meier 

method, stratified by the median in the top-performing ePCR model (B) and the 
reference model (C). The log-rank test was used to compare risk groups. 

ePCR=ensemble of penalised Cox regression models. iAUC=integrated 
time-dependent area under the curve. HR=hazard ratio.
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data showed significant separation of the high-risk and 
low-risk predicted patients (p<0·0001), with median 
survival of 15·8 months (95% CI 12·8–18·7) for high-
risk patients and 27·1 months (23·2–not available) for 
low-risk patients (figure 5B).

Discussion
The prostate cancer DREAM challenge resulted in 
one prognostic model to predict overall survival 
significantly outperforming all other methods, including 
a reference model reported by Halabi and colleagues,14 
and led to a network perspective of predictive biological 

variables and their interactions. The results from the top-
performing team’s model pointed to important 
interaction effects with immune biomarkers and markers 
of hepatic function (potentially reflected in the increased 
amounts of aspartate aminotransferase) and renal 
function. The network visualisation of the prediction 
model suggests a complex relation and dependency 
structure among many of the predictive clinical variables. 
Many of these noted interactions, although not significant 
as independent variables, might be important modu-
lators of key clinical traits—eg, haematology-related 
measurements such as haemoglobin and haematocrit. 

Figure 3: Projection of the most important variables and interactions in the ePCR model
Automated data-driven network layout of the most significant model variables, according to their interconnections with other model variables. Node size and colour 
indicate the importance of the variable alone for prediction of overall survival and its coefficient sign, respectively. This importance was calculated as the area under 
the curve (AUC) of the penalised model predictors, as a function of penalisation parameter λ. Edge colour indicates the importance of an interaction between 
two model variables, with a darker colour corresponding to a stronger interaction effect. Coloured subnetwork modules annotate the variables based on expert 
curated categories. Variable and interaction statistics can be found in the appendix (pp 10, 11). ALB=albumin. ALP=alkaline phosphatase. AST=aspartate 
aminotransferase. BMI=body-mass index. ECOG=Eastern Cooperative Oncology Group. ePCR=ensemble of penalised Cox regression models. HB=haemoglobin. 
HCT=haematocrit. LDH=lactate dehydrogenase. PSA=prostate-specific antigen. RBC=red blood cell count.
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Although further investigation is necessary to determine 
the clinical implication of these associations and provide 
new insights into tumour–host interaction, these 
findings shed light on the complex and interwoven 
nature of prognostic factors on patients’ survival.

Open-data, crowdsourced, scientific challenges have 
been highly effective at drawing together large cross-
disciplinary teams of experts to solve complex 
problems.25–30 To our knowledge, this DREAM challenge 
represented the first public collaborative competition31 to 
use open-access registration trial datasets in cancer with 
the intention of improving outcome predictions. In total, 
163 individuals comprising 50 teams participated in the 
challenge, applying state-of-the-art machine learning 
and statistical modelling methods. The contribution of 
five clinical trial datasets from industry and academic 
institutions to Project Data Sphere, and their subsequent 
use in an open challenge, enabled the advancement 
of prognostic models in metastatic castration-resistant 
prostate cancer that up to now was not possible. Modellers 
had access to several independent clinical trial cohorts 
with subtle differences in eligibility that increased the 
diversity (heterogeneity) of the total patient population 
considered for model development. Access was also 
provided to data for 150 independent and standardised 
variables over the trials; by contrast, only 22 variables 
were considered by the reference model.14 The challenge 
resulted in creative data-mining approaches that used 
standardised raw event-level tables, which are rarely 
leveraged for prognostic model development, and enabled 
innovative clinical features to be derived for modelling. 
Several teams—including the top-performing team—
made use of these event-level tables. Finally, evaluation of 
the 50 methods (validated by an independent and neutral 
party) provided the most comprehensive assessment of 
prognostic models in metastatic castration-resistant 
prostate cancer. These results are both a benchmark for 
future prognostic model development and a rich source 
of information that can be mined for additional insights 
into both patients’ stratification and the robustness of 
clinical predictive factors.

This study has shown the benefits of open data access at 
a time when clinicians, researchers, and the public are 
advocating for improved platforms and policies that 
encourage sharing of clinical trial data.32,33 Project Data 
Sphere has overcome major barriers to data sharing with 
support of data providers, to allow broad access to cancer 
clinical trial data. To researchers who are interested in 
leveraging open-access cancer trial data, this study 
represents a novel research approach that encompassed 
scientific rigor and a deep understanding of clinical data 
through effective collaboration of multidisciplinary teams 
of experts. The top-performing ePCR model was free of 
any a-priori clinical assumptions, with the exception of 
exclusion of non-relevant variables in early data curation. 
The data-driven modelling process identified automatically 
the best combination of predictors through cross-validation. 

Furthermore, the ePCR modelling process was fully 
agnostic to the variables used in the previous reference 
model; however, many of the same predictors were 
identified, in addition to novel ones. Such data-driven, 
unbiased modelling approaches can mine effectively 
the predictive variables and their combinations from 
large-scale and open clinical trial data.

The trials used here represent the standard of care at 
the time when the trials were done, which is a limitation 
of this study. Since 2010, several treatments have become 
available, for use both before and after first-line 
chemotherapy, and new trials have changed the way 
clinicians approach this disease.34 Abiraterone and 
enzalutamide—both approved for first-line treatment of 
metastatic castration-resistant prostate cancer—are not 
included within the scope of this challenge because of a 
limitation of control arm data; both COU-AA-3025 and 
PREVAIL10 have placebo or prednisone controls, and 
comparative trials using these agents as control have not 
been done. Accordingly, trial sponsors should be 
encouraged to contribute data from the experimental 

Figure 4: Challenge meta-analysis
(A) Hierarchical clustering of patients (Euclidean distance, average linkage) by rank-normalised prediction scores 
from all 51 models using the ENTHUSE 33 data. (B) Kaplan-Meier plot of survival probability for the three patient 
clusters from (A). Group A=high risk. Group B=moderate risk. Group C=low risk.
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arm (particularly for approved drugs) to an active and 
engaged research community. Although sponsors are 
concerned that virtual comparisons might be made 

between treatments in experimental arms of different 
trials, there is far more benefit in leveraging these data to 
validate prognostic factors and models and to investigate 
intermediate clinical endpoints predictive of survival.

The DREAM challenge described here has shown that 
there is opportunity to further optimise prognostic 
models in metastatic castration-resistant prostate cancer 
using baseline clinical variables. For substantial advances 
beyond the work presented here, clinical trial data must 
be made available that reflects current advancements 
in treatment paradigms, including new data-capture 
techniques such as genomics, immunogenomics, and 
metabolomics that might more accurately describe the 
malignant state of the tumour and its microenvironment. 
Vital to either of these will be the need to share 
patient-level oncology data with the research community 
for the development of the next generation of prognostic 
and predictive models in cancer.
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Although further investigation is necessary to determine 
the clinical implication of these associations and provide 
new insights into tumour–host interaction, these 
findings shed light on the complex and interwoven 
nature of prognostic factors on patients’ survival.

Open-data, crowdsourced, scientific challenges have 
been highly effective at drawing together large cross-
disciplinary teams of experts to solve complex 
problems.25–30 To our knowledge, this DREAM challenge 
represented the first public collaborative competition31 to 
use open-access registration trial datasets in cancer with 
the intention of improving outcome predictions. In total, 
163 individuals comprising 50 teams participated in the 
challenge, applying state-of-the-art machine learning 
and statistical modelling methods. The contribution of 
five clinical trial datasets from industry and academic 
institutions to Project Data Sphere, and their subsequent 
use in an open challenge, enabled the advancement 
of prognostic models in metastatic castration-resistant 
prostate cancer that up to now was not possible. Modellers 
had access to several independent clinical trial cohorts 
with subtle differences in eligibility that increased the 
diversity (heterogeneity) of the total patient population 
considered for model development. Access was also 
provided to data for 150 independent and standardised 
variables over the trials; by contrast, only 22 variables 
were considered by the reference model.14 The challenge 
resulted in creative data-mining approaches that used 
standardised raw event-level tables, which are rarely 
leveraged for prognostic model development, and enabled 
innovative clinical features to be derived for modelling. 
Several teams—including the top-performing team—
made use of these event-level tables. Finally, evaluation of 
the 50 methods (validated by an independent and neutral 
party) provided the most comprehensive assessment of 
prognostic models in metastatic castration-resistant 
prostate cancer. These results are both a benchmark for 
future prognostic model development and a rich source 
of information that can be mined for additional insights 
into both patients’ stratification and the robustness of 
clinical predictive factors.

This study has shown the benefits of open data access at 
a time when clinicians, researchers, and the public are 
advocating for improved platforms and policies that 
encourage sharing of clinical trial data.32,33 Project Data 
Sphere has overcome major barriers to data sharing with 
support of data providers, to allow broad access to cancer 
clinical trial data. To researchers who are interested in 
leveraging open-access cancer trial data, this study 
represents a novel research approach that encompassed 
scientific rigor and a deep understanding of clinical data 
through effective collaboration of multidisciplinary teams 
of experts. The top-performing ePCR model was free of 
any a-priori clinical assumptions, with the exception of 
exclusion of non-relevant variables in early data curation. 
The data-driven modelling process identified automatically 
the best combination of predictors through cross-validation. 

Furthermore, the ePCR modelling process was fully 
agnostic to the variables used in the previous reference 
model; however, many of the same predictors were 
identified, in addition to novel ones. Such data-driven, 
unbiased modelling approaches can mine effectively 
the predictive variables and their combinations from 
large-scale and open clinical trial data.

The trials used here represent the standard of care at 
the time when the trials were done, which is a limitation 
of this study. Since 2010, several treatments have become 
available, for use both before and after first-line 
chemotherapy, and new trials have changed the way 
clinicians approach this disease.34 Abiraterone and 
enzalutamide—both approved for first-line treatment of 
metastatic castration-resistant prostate cancer—are not 
included within the scope of this challenge because of a 
limitation of control arm data; both COU-AA-3025 and 
PREVAIL10 have placebo or prednisone controls, and 
comparative trials using these agents as control have not 
been done. Accordingly, trial sponsors should be 
encouraged to contribute data from the experimental 

Figure 4: Challenge meta-analysis
(A) Hierarchical clustering of patients (Euclidean distance, average linkage) by rank-normalised prediction scores 
from all 51 models using the ENTHUSE 33 data. (B) Kaplan-Meier plot of survival probability for the three patient 
clusters from (A). Group A=high risk. Group B=moderate risk. Group C=low risk.
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arm (particularly for approved drugs) to an active and 
engaged research community. Although sponsors are 
concerned that virtual comparisons might be made 

between treatments in experimental arms of different 
trials, there is far more benefit in leveraging these data to 
validate prognostic factors and models and to investigate 
intermediate clinical endpoints predictive of survival.

The DREAM challenge described here has shown that 
there is opportunity to further optimise prognostic 
models in metastatic castration-resistant prostate cancer 
using baseline clinical variables. For substantial advances 
beyond the work presented here, clinical trial data must 
be made available that reflects current advancements 
in treatment paradigms, including new data-capture 
techniques such as genomics, immunogenomics, and 
metabolomics that might more accurately describe the 
malignant state of the tumour and its microenvironment. 
Vital to either of these will be the need to share 
patient-level oncology data with the research community 
for the development of the next generation of prognostic 
and predictive models in cancer.
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Figure 5: Performance of ePCR model, using data from ENTHUSE M1
(A) Time-dependent AUC was measured from 6 months to 24 months at 1-month intervals, reflecting the 
performance of predicting overall survival at different timepoints. The top-performing model (ePCR) is shown 
compared with the reference model. (B) Overall survival was assessed by the Kaplan-Meier method, stratified by 
median risk score. The log rank test was used to compare risk groups. ePCR=ensemble of penalised Cox regression 
models. iAUC=integrated time-dependent area under the curve. HR=hazard ratio.
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Supplementary Figures 
 

 
Supplementary Figure 1. Overview of the top-performing ePCR method in comparison to the Reference model 
(Halabi model). (A) The benchmarking Reference model explored the LASSO model (α = 1) in a training data 
cohort with respect to the regularization parameter (λ) using cross-validation (CV). (B) The top-performing ePCR 
approach is based on an ensemble of Penalized Cox Regression models (ePCR), which are optimized separately for 
each cohort or a combination of cohorts in terms of the regularization parameter (λ) as well as the full range of the 
L1/L2 regularization parameter (0 <= α <= 1). The optimal model was identified with low values of α, indicating 
that the Ridge Regression (α = 0)-like models performed better for modeling the complex interactions than the 
benchmarking Reference LASSO-model (α = 0). (C) Ensemble predictions were generated by averaging over the 
predicted risk ranks from each ensemble component. 
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Supplementary Figure 2. (A) All data across ASCENT2, MAINSAIL, VENICE, and ENTHUSE 33– both binary 
and continuous data – were used in a PCA. (B) All data across the 4 studies – only binary variables – were used in 
PCA. 
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Supplementary Figure 3. (A) Density plot of follow-up times per study for the ASCENT2, MAINSAIL, VENICE, 
and ENTHUSE 33 trials. (B) Survival profile for each of the trials. 
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Supplementary Figure 4. Summary of Challenge results across all 50 teams plus the Reference model evaluated 
using the ENTHUSE 33 dataset. (A) Performance of submissions. Each submission underwent 1,000 paired 
bootstrap of final scoring patient set to calculate a Bayes factor against the top-performer a Bayes factor against the 
Reference model. A p value was calculated from randomization test of 1000 permutations. X-axis is iAUC and y-
axis is submissions ranked by iAUC from high to low. Each team’s bootstrapped iAUC scores are shown as 
horizontal boxplot with the black diamonds representing the point estimate of a team’s performance. The colored 
boxes show the inter-quartile ranges and the whiskers extend to 1.5 times the corresponding interquartile ranges. 
Top-performer is colored in orange, other teams within Bayes factor of 20 were labeled in blue, and the rest of the 
teams were labeled in green. The Reference model is labeled in purple. (B) Bayes factors of all submissions against 
the top-performer are shown. Bayes factors greater than 20 were truncated to 20. (C) Bayes factors of all 
submissions against the Reference model. Bayes factors greater than 20 were truncated to 20. 
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Supplementary Figure 5. Calibration plots for the ePCR model of predicted survival probability versus true 
survival proportion for the ENTHUSE 33 dataset at 18, 24, 30, and 36 months.  
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Supplementary Figure 6. Timeline for the Challenge. Five submissions were allowed per round, and only a single 
submission for the final validation round. 
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Supplementary Figure 7. Most frequently utilized variables by teams to build their final models using the 
ASCENT2, MAINSAIL, and VENICE trials. Results are self-reported from a post-Challenge survey over 40 teams. 
* variables are not used in the Reference model.  
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Supplementary Tables 
Supplementary Table 1. Full results from all 50 teams plus the Reference model across several scoring metrics 
from the Challenge. Performance measures were evaluated using the ENTHUSE 33 trial. Teams are listed with the 
links to their predictions, methods write-up, and code. 
 

Team Risk score 
predictions 

Method write-up 
& code iAUC c-index AUC12 AUC18 AUC24 

FIMM-UTU (ePCR) syn4732198 syn4227610 0.7915 0.7307 0.7918 0.7674 0.8388 
Team Cornfield syn4732339 syn4732274 0.7789 0.7263 0.7708 0.7663 0.8147 
TeamX syn4732955 syn4732218 0.7778 0.7157 0.7492 0.7645 0.8369 
jls syn4732934 syn4732827 0.7758 0.7212 0.7713 0.7553 0.8085 
PC LEARN syn4733119 syn3822697 0.7743 0.7205 0.7577 0.762 0.8258 
KUstat syn4741808 syn4260742 0.7732 0.7126 0.7436 0.7533 0.8376 
A Bavarian dream syn4732177 syn5592405 0.7725 0.7237 0.7721 0.7664 0.8019 
qiuyulian1994 syn4732213 syn4732205 0.7716 0.711 0.7423 0.7506 0.8297 
JayHawks syn4731663 syn4214500 0.7711 0.7193 0.7717 0.7607 0.8124 
Wind syn4731647 syn4731645 0.771 0.7181 0.7625 0.7688 0.8124 
Alvin syn4732814 syn4229406 0.7707 0.7136 0.7586 0.7568 0.7927 
brainstorm syn4730818 syn3821841 0.7706 0.718 0.7617 0.7614 0.8175 
uci-cbcl syn4731657 syn4227279 0.7704 0.717 0.76 0.7716 0.8206 
DreamOn syn4731710 syn4731708 0.7704 0.712 0.7559 0.7582 0.8245 
Clinical Persona syn4681602 syn4681529 0.7704 0.7149 0.7533 0.7545 0.8328 
Murat Dundar syn4595033 syn4595029 0.7701 0.7305 0.7763 0.7773 0.773 
Mistral syn4622079 syn4622016 0.7689 0.7073 0.7382 0.7624 0.8268 
UNC-BIAS syn4731768 syn4731674 0.7685 0.717 0.7559 0.7568 0.8293 
Team Marie syn4731882 syn4485029 0.7682 0.7142 0.7519 0.7705 0.8151 
A Elangovan syn4643159 syn4212102 0.7677 0.7135 0.7655 0.7461 0.7977 
M S syn4730601 syn4229266 0.7671 0.707 0.7372 0.7652 0.8256 
Jeevomics syn4733845 syn4074987 0.7651 0.719 0.7733 0.7526 0.7917 
CAMP syn4731373 syn3647478 0.7646 0.7077 0.7331 0.758 0.8143 
DAL_LAB syn4731755 syn4731746 0.7642 0.7103 0.7521 0.7486 0.8305 
Yuanfang Guan syn7152471 syn7152438 0.7618 0.7143 0.7545 0.7631 0.8005 
Bmore Dream Team syn4733165 syn3616830 0.761 0.7121 0.7464 0.766 0.7948 
Brigham Young University syn4733391 syn4382527 0.7578 0.7048 0.7381 0.7685 0.7599 
Team Simon syn4733651 syn4732901 0.7573 0.7033 0.7278 0.7611 0.827 
alan.saul syn4731492 syn4587469 0.7568 0.7078 0.7464 0.7606 0.7961 
BiSBII-UM syn4733056 syn4229636 0.7561 0.6992 0.7394 0.7397 0.8007 
RUBME6 syn4733262 syn4590933 0.7547 0.6994 0.7419 0.7198 0.7866 
Jing Zhou syn4646618 syn3685423 0.7507 0.6994 0.7361 0.7491 0.803 
TYTDreamChallenge syn4733257 syn4228911 0.748 0.7002 0.7343 0.7402 0.7657 
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UoB_Prostate syn4733441 syn4591879 0.7478 0.7057 0.7468 0.7367 0.7699 
Junmei Wang syn4732891 syn4225820 0.7475 0.694 0.7319 0.7332 0.7955 
Halabi Model syn4770841 syn3324780 0.7429 0.6985 0.7418 0.7375 0.7634 
Trishna syn4730580 syn4730570 0.742 0.6922 0.7285 0.7383 0.774 
CQB syn4732202 syn3566822 0.7412 0.6914 0.7185 0.7293 0.7686 
Ye Li syn4731357 syn4731355 0.74 0.6907 0.7258 0.7249 0.806 
Zhang Chihao syn4748861 syn4259433 0.7376 0.7063 0.7561 0.7426 0.745 
Guoping Feng syn4730823 syn4730561 0.7261 0.6781 0.7073 0.707 0.7504 
Y P syn4732913 syn4732909 0.7241 0.6799 0.732 0.7057 0.7594 
RainLab syn4730829 syn4238316 0.7232 0.6708 0.7141 0.7394 0.7821 
forPro syn4707761 syn4707464 0.7219 0.6839 0.7267 0.7249 0.739 
Marat Kazanov syn4731369 syn4730567 0.7215 0.6675 0.7089 0.7112 0.7524 
Jing Lu syn4732498 syn4556277 0.7035 0.6689 0.6931 0.7073 0.7154 
orion syn4733693 syn4732963 0.6837 0.6457 0.717 0.7359 0.7952 
limax syn4732094 syn4721051 0.6756 0.6484 0.7033 0.6685 0.689 
ECOP syn4647266 syn4647259 0.6746 0.6554 0.6774 0.6881 0.6949 
Massimiliano Zanin syn4732241 syn4732239 0.6171 0.6081 0.6206 0.432 0.3852 
The Data Wizard syn4229053 syn4228992 0.5945 0.5815 0.6039 0.5824 0.6085 
Compiled set of all predictions  syn7071669 
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Supplementary Table 2. Comparison of risk stratification of patients in the ENTHUSE 33 trial by the ePCR and 
Reference models. Patients were dichotomized at median risk scores. All intervals reported are 95% confidence 
intervals. PPV = positive predictive value, NPV = negative predictive value. Values for Cases, Survivors, and 
Censored are cumulative. 

 
ePCR model Patient count Event count Median survival 

time, month (CI) 
1 year survival 

rate (CI) 
2 year survival 

rate (CI) 

 

Low risk group 156 56 
27.6  

(23.4-NA) 
90.20%  

(85.5%-95.00%) 
58.60%  

(49.7%- 69.00%) 

High risk group 157 107 
15.1  

(13.0-17.2) 
59.90%  

(52.55%-68.20%) 
15.70%  

(9.28%- 26.70%) 

Reference model Patient count Event count Median survival 
time, month (CI) 

1 year survival 
rate (CI) 

2 year survival 
rate (CI) 

Low risk group 156 59 26.5 (22.5-NA) 
87.40% 

(82.30%-92.90%) 
52.80% 

(43.90%-63.50%) 

High risk group 157 104 15.6 (14.0-18.4) 
62.70% 

(55.50%-70.80%) 
22.20% 

(15.00%-32.90%) 

  

Time (months) t=6 t=12 t=18 t=24 t=30 
Cases 28 75 121 153 160 

Survivors 279 214 118 41 9 
Censored 6 24 74 119 144 

Sensitivity (%) 
ePCR 92.89 81.32 72.63 65.86 60.67 

Reference  85.73 75.94 67.43 61.19 61.21 

Specificity (%) 
ePCR 54.48 60.28 68.64 82.93 66.67 

Reference 53.76 57.94 64.41 73.17 44.44 

PPV (%) 
ePCR 16.96 40.15 64.2 86.31 82.41 

Reference 15.65 37.17 59.46 78.85 73.93 

NPV (%) 
ePCR 98.71 90.78 76.41 59.78 39.7 

Reference 97.41 88.02 71.86 53.57 30.8 
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27.6  

(23.4-NA) 
90.20%  

(85.5%-95.00%) 
58.60%  

(49.7%- 69.00%) 

High risk group 157 107 
15.1  

(13.0-17.2) 
59.90%  

(52.55%-68.20%) 
15.70%  

(9.28%- 26.70%) 

Reference model Patient count Event count Median survival 
time, month (CI) 

1 year survival 
rate (CI) 

2 year survival 
rate (CI) 

Low risk group 156 59 26.5 (22.5-NA) 
87.40% 

(82.30%-92.90%) 
52.80% 

(43.90%-63.50%) 

High risk group 157 104 15.6 (14.0-18.4) 
62.70% 

(55.50%-70.80%) 
22.20% 

(15.00%-32.90%) 

  

Time (months) t=6 t=12 t=18 t=24 t=30 
Cases 28 75 121 153 160 

Survivors 279 214 118 41 9 
Censored 6 24 74 119 144 

Sensitivity (%) 
ePCR 92.89 81.32 72.63 65.86 60.67 

Reference  85.73 75.94 67.43 61.19 61.21 

Specificity (%) 
ePCR 54.48 60.28 68.64 82.93 66.67 

Reference 53.76 57.94 64.41 73.17 44.44 

PPV (%) 
ePCR 16.96 40.15 64.2 86.31 82.41 

Reference 15.65 37.17 59.46 78.85 73.93 

NPV (%) 
ePCR 98.71 90.78 76.41 59.78 39.7 

Reference 97.41 88.02 71.86 53.57 30.8 
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Supplementary Table 3. Top 15 single and interacting variables from the final ePCR model built from the 
MAINSAIL and VENICE trials. Comprehensive list of evaluated variables is available at: 
https://www.synapse.org/#!Synapse:syn7113819 

Top 15 single variables in the ePCR model Ensemble p value Ensemble effect size 

Lactate dehydrogenase (LDH) < 0.0001 3405.667 

Aspartate aminotransferase (AST) < 0.0001 3376.667 

Hemoglobin (HB) < 0.0001 3369.667 

Hematocrit (HCT) < 0.0001 3354.333 

Albumin (ALB) 0.0004 3316.667 

Alkaline phosphatase (ALP) < 0.0001 3291.333 

Red blood cell count (RBC) < 0.0001 3237.333 

Systolic blood pressure (SYSTOLICBP) 0.0012 3192.000 

Lesions at liver (LIVER) < 0.0001 3184.000 

Sodium (NA) 0.0205 3032.000 

Lesions at target site (TARGET) 0.0118 3001.000 

ECOG performance status (ECOG_C) 0.0003 2923.000 

Medical history: cardiac disorders (MHCARD) 0.1100 2827.667 

Lymphocyte/Leukocyte ratio (LYMperLEU) 0.0143 2684.333 

Body mass index (BMI) 0.0214 2679.333 

Top 15 interactions in the ePCR model Ensemble p value Ensemble effect size 

AST LDH < 0.0001 3408.333 

ALP LDH < 0.0001 3406.667 

ALP AST < 0.0001 3404.333 

HB SYSTOLICBP < 0.0001 3402.333 

LDH Urine Specific Gravity < 0.0001 3400.667 

SYSTOLICBP HCT < 0.0001 3400.333 

Creatinine LDH < 0.0001 3397.333 

LDH LDH < 0.0001 3392.000 

HB ALB < 0.0001 3387.333 
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AST AST < 0.0001 3384.333 

HB NA < 0.0001 3382.667 

Height LDH < 0.0001 3381.667 

ALB SYSTOLICBP < 0.0001 3379.333 

HB Creatinine clearance < 0.0001 3378.000 

ALB HCT < 0.0001 3377.333 
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