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Abstract

This thesis introduces a new, algebraic method to study multidimensional
configurations, also sometimes called words, which have low pattern com-
plexity. This is the setting of several open problems, most notably Nivat’s
conjecture, which is a generalization of Morse-Hedlund theorem to two di-
mensions, and the periodic tiling problem by Lagarias and Wang.

We represent configurations as formal power series over d variables where
d is the dimension. This allows us to study the ideal of polynomial annihila-
tors of the series. In the two-dimensional case we give a detailed description
of the ideal, which can be applied to obtain partial results on the aforemen-
tioned combinatorial problems.

In particular, we show that configurations of low complexity can be de-
composed into sums of periodic configurations. In the two-dimensional case,
one such decomposition can be described in terms of the annihilator ideal.
We apply this knowledge to obtain the main result of this thesis – an asymp-
totic version of Nivat’s conjecture. We also prove Nivat’s conjecture for con-
figurations which are sums of two periodic ones, and as a corollary reprove
the main result of Cyr and Kra from [CK15].
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Tiivistelmä suomeksi
Tässä väitöskirjassa esitetään uusi, algebrallinen lähestymistapa moniulot-
teisiin, matalan kompleksisuuden konfiguraatioihin. Näistä konfiguraatiois-
ta, joita moniulotteisiksi sanoiksikin kutsutaan, on esitetty useita avoimia
ongelmia. Tärkeimpinä näistä ovat Nivat’n konjektuuri, joka on Morsen-
Hedlundin lauseen kaksiulotteinen yleistys, sekä Lagariaksen ja Wangin jak-
sollinen tiilitysongelma.

Väitöskirjan lähestymistavassa d-ulotteiset konfiguraatiot esitetään d:n
muuttujan formaaleina potenssisarjoina. Tämä mahdollistaa konfiguraation
polynomiannihilaattoreiden ihanteen tutkimisen. Väitöskirjassa selvitetään
kaksiulotteisessa tapauksessa ihanteen rakenne tarkasti. Tätä hyödyntämällä
saadaan uusia, osittaisia tuloksia koskien edellä mainittuja kombinatorisia
ongelmia.

Tarkemmin sanottuna väitöskirjassa todistetaan, että matalan komplek-
sisuuden konfiguraatiot voidaan hajottaa jaksollisten konfiguraatioiden sum-
maksi. Kaksiulotteisessa tapauksessa eräs tällainen hajotelma saadaan
annihilaattori-ihanteesta. Tämän avulla todistetaan asymptoottinen versio
Nivat’n konjektuurista. Lisäksi osoitetaan Nivat’n konjektuuri oikeaksi kon-
figuraatioille, jotka ovat kahden jaksollisen konfiguraation summia, ja tämän
seurauksena saadaan uusi todistus Cyrin ja Kran artikkelin [CK15] päätu-
lokselle.
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Chapter 1

Introduction

Nivat’s conjecture

In July 2017 it was exactly twenty years since the ICALP 1997 conference
in Italy, where Maurice Nivat formulated a problem which until today is one
of the most sought-after open problems in symbolic dynamics. Although it
occurs in literature also without specifically mentioning Nivat [BV00, ST00,
ST02], over the years it became known as Nivat’s conjecture.

The conjecture is inspired by a much older combinatorial result by Morse
and Hedlund. In their paper Symbolic Dynamics [MH38], besides giving
formal foundations to a newly emerging mathematical field, they formulated
the following theorem. Let an alphabet be any finite set A, its elements are
called symbols. A bi-infinite word w is an element of AZ, that is, a two-way
infinite sequence of symbols. A subword of w of length n is a finite sequence
of n consecutive symbols occurring in w. The number of distinct subwords
of w of length n, denoted by Pw(n), is the complexity function of w.

Theorem (Morse-Hedlund). Let w ∈ AZ be a bi-infinite word. Then w is
periodic if and only if Pw(n) ≤ n for some positive integer n.

The theorem demonstrates an interesting phenomenon – a local restric-
tion on structure, in this case a condition on complexity, implies a restriction
on the global structure, in this case periodicity. Nivat’s conjecture is a gen-
eralization of Morse-Hedlund theorem to two dimensions. To formulate it,
we must answer three questions: What is a generalization of a word, what
does it mean to be periodic, and what is the complexity function.

We start with a generalization of a word. Let d be a positive integer, the
dimension. A d-dimensional symbolic configuration c is an element of AZd ,
that is, a map assigning a symbol to every vertex of the lattice Zd. For a
vector v ∈ Zd, the symbol at position v is denoted c(v), or also cv. For
u ∈ Zd, we say that c is u-periodic if cv = cv+u holds for all v ∈ Zd, and c
is periodic if it is u-periodic for some u 6= 0.
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Figure 1.1: A piece of a periodic configuration having Pc(m,n) = 2m+n−1

for all positive integers m,n.

For a finite domain D ⊆ Zd, the elements of AD are D-patterns. For a
fixed D, we denote by cv+D the D-pattern in c in position v, that is, the
map u 7→ cv+u for all u ∈ D. The number of distinct D-patterns in c is the
D-pattern complexity Pc(D) of c. In two dimensions, for an m×n rectangle
D = {0, . . . ,m− 1} × {0, . . . , n− 1} we denote Pc(m,n) = Pc(D). In other
words, Pc(m,n) counts the number of distinctm×n block patterns occurring
in c.

Now we have all the definitions needed to state the conjecture:

Conjecture (Nivat). Let c ∈ AZ2 be a two-dimensional configuration. If
there exist positive integers m,n such that Pc(m,n) ≤ mn, then c is periodic.

Unlike Morse-Hedlund theorem, the statement is not an equivalence. The
reverse implication is indeed false: Let c ∈ {0, 1}Z2 be a two-dimensional
configuration which in the first row observes a sequence containing every
possible one-dimensional pattern (e.g. concatenation of binary expansions of
all positive integers), and which is periodic with period (1, 1). See Figure 1.1
for an illustration. Such a configuration is periodic and satisfies Pc(m,n) =
2m+n−1 > mn for all positive integers m,n.

It would be natural to analogously generalize Morse-Hedlund theorem to
any dimension, however that is also not true [ST00]. A simple counterex-
ample consisting of two non-intersecting perpendicular lines can be given for
d = 3: For an integer n ≥ 3, let c(i, 0, 0) = c(0, i, n) = 1 for all i ∈ Z,
and let c(i, j, k) = 0 otherwise, as in Figure 1.2. Then for D equal to the
n × n × n cube, Pc(D) = 2n2 + 1 since the cube can either cover zeros
only, or be pierced by exactly one of the 1-lines in n2 positions. We have
Pc(D) = 2n2 + 1 < n3 = |D|, but the configuration is not periodic.

If true, Nivat’s conjecture is tight, as there exist non-periodic configura-
tions which satisfy Pc(m,n) = mn+ 1 for each m,n. Cassaigne [Cas99] gave
a classification of all of them, the simplest example is a configuration having
c(0,0) = 1 and cv = 0 for v 6= (0, 0).

Let us summarize past progress towards resolving the conjecture. There
have been a number of results which show that Pc(m,n) ≤ αmn implies
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Figure 1.2: A non-periodic configuration of low complexity. If D is the
4× 4× 4 cube, then P (D) = 2 · 42 + 1 = 33.

periodicity for some constant α ∈ R. Epifanio, Koskas and Mignosi [EKM03]
gave a proof for α = 1/144, which was improved to α = 1/16 by Quas and
Zamboni [QZ04]. The best known constant α = 1/2 is due to Cyr and
Kra [CK15]. In another direction, there have been results proving Nivat’s
conjecture for short rectangles. Sander and Tijdeman [ST02] proved that
having Pc(2, n) ≤ 2n for some n implies periodicity. Cyr and Kra [CK16]
extended this condition to Pc(3, n) ≤ 3n.

These results were obtained mostly by combinatorial analysis. Notably,
the approach of Cyr and Kra uses symbolic dynamics, however the final
arguments are still combinatorial. This to some extent can not be avoided
as the conjecture is combinatorial in its nature. We introduce a new method
to attack the conjecture, an algebraic method involving polynomials.

Periodic tiling problem

Before presenting our results let us introduce another open problem, the pe-
riodic tiling problem by Lagarias and Wang [LW96]. With a fixed dimension
d, let a tile be an arbitrary finite set T ⊂ Zd. We say that T tiles Zd if there
exists C ⊂ Zd such that

T ⊕ C = Zd. (1.1)

Informally, a tile is a collection of not necessarily adjacent unit hypercubes
and the tilings considered are only by translations, no rotations are allowed.
A set C satisfying (1.1) is a co-tiler. A tile T tiles Zd periodically if there
exists a co-tiler C which is translation invariant with respect to a non-zero
vector.

Conjecture (Periodic tiling problem). If a tile tiles Zd, then it tiles it also
periodically.
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The conjecture is easily seen to be true for d = 1 where, in fact, any tiling
is periodic. Only recently, Bhattacharya [Bha16] has demonstrated that the
conjecture holds also for d = 2 by a remarkable proof using ergodic theory.
For other dimensions the conjecture remains open. It is known that it holds
if |T | = 4 or if the size of T is a prime number [Sze98]. Moreover, in the
latter case only periodic tilings exist. We give a short proof of this fact in
Example 3.1.1 using the polynomial method.

It is natural to interpret a co-tiler C as a configuration having cv = 1 if
v ∈ C and cv = 0 otherwise. The tiling condition (1.1) is then equivalent
to saying that every (−T )-pattern in c contains exactly one coefficient 1.
Szegedy [Sze98] showed that co-tilers of T and −T coincide, therefore also
every T -pattern contains exactly one 1. In particular, Pc(T ) = |T |. We
shall see that this condition, or more precisely Pc(T ) ≤ |T |, is the common
denominator of the periodic tiling problem and Nivat’s conjecture that is of
our interest.

The polynomial method and low complexity configurations

We study symbolic configurations that satisfy the low complexity condition

Pc(D) ≤ |D| (1.2)

for some finiteD ⊂ Zd. This is the case forD = {0, . . . ,m−1}×{0, . . . , n−1}
in the case of Nivat’s conjecture and D = T for periodic tiling problem.

When the symbols in A are chosen to be integers, a d-dimensional sym-
bolic configuration can be identified with a formal power series with integer
coefficients in d variables x1, . . . , xd:∑

v=(v1,...,vd)∈Zd
cvx

v1
1 · · ·xvdd

We call this algebraic object a configuration. More precisely, we allow the
coefficients to be complex numbers, and call a configuration finitary integral
if they come from a finite subset of integers. The definitions are given in
section 3.1.

Configurations are our main objects of study. If f is a Laurent polyno-
mial, multiplication of a configuration c by f is well defined. We say that f is
an annihilator of c if fc = 0. We further define Ann(c) to be the ideal of all
annihilators of c. For configurations satisfying the low complexity condition
(1.2), Ann(c) is always a non-trivial ideal (Lemma 3.1.2).

Having a polynomial ideal allows us to use methods of algebraic geometry.
In particular, we use Hilbert’s Nullstellensatz to obtain our first result, a
decomposition theorem:

4



Theorem (Corollary 3.4.4). Let c be a low complexity configuration. Then
c can be written as a sum of finitely many periodic configurations.

There are examples of configurations which satisfy conditions of the the-
orem but are non-periodic. Therefore, in order to attack Nivat’s conjecture,
we need to use additional conditions from its statement. In Chapter 4 we
focus on two-dimensional configurations. We prove:

Theorem (Theorem 4.1.1). Let c be a two-dimensional finitary integral con-
figuration. Then Ann(c) is a radical ideal.

This result is followed by an analysis of the structure of Ann(c), which
allows us to formulate a more explicit version of decomposition theorem for
two-dimensional configurations (Corollary 4.2.1). As a result of this analysis,
we define ord(c) as a number involved in the description of Ann(c), and which
is also the minimal number of periodic components c can be decomposed into.
In particular, non-periodic configurations have ord(c) ≥ 2.

Our main result is an asymptotic version of Nivat’s conjecture. It is best
understood when compared with Nivat’s conjecture stated in the contrapos-
itive direction:

Conjecture (Nivat). Let c be a non-periodic two-dimensional symbolic con-
figuration. Then Pc(m,n) > mn holds for all pairs of positive integers (m,n).

Theorem (Theorem 5.5.4). Let c be a non-periodic two-dimensional sym-
bolic configuration. Then Pc(m,n) > mn holds for all but finitely many pairs
of positive integers (m,n).

The proof goes by analysis of hypothetical counterexamples to Nivat’s
conjecture. In Chapter 5 we connect the algebraic structure of Ann(c) with
complexity of the configuration. We end up with a proof which works except
for one special case – a configuration with ord(c) = 2 which is a sum of
vertically and horizontally periodic configuration.

Although it can be handled by combinatorial analysis [KS16], in Chap-
ter 6 we prove a more general result which covers this case. We combine
ideas of Cyr and Kra with the polynomial method. We give a short intro-
duction to symbolic dynamics and define balanced sets, an essential tool of
their approach. We prove:

Theorem (Theorem 6.5.1). Let c be a two-dimensional finitary integral con-
figuration with ord(c) = 2. Then Pc(m,n) > mn for all pairs of positive
integers (m,n).

That concludes the proof of our main theorem. As a corollary, we obtain
the following result of Cyr and Kra:

5



Theorem (Cyr and Kra, Theorem 6.5.4). Let c be a non-periodic two-
dimensional configuration. Then Pc(m,n) > mn/2 for all pairs of positive
integers (m,n).

The thesis is concluded with a short note on the decomposition theorem.
We show an alternative proof of it which makes use of ultrafilers. Moreover,
this proof gives an explicit description of the components. In particular,
resulting components are bounded, i.e. with coefficients from a closed interval
of reals:

Theorem (Corollary 7.3.3). Let c be a low complexity configuration. Then
c can be written as a sum of finitely many bounded periodic configurations.

The final Chapter 8 gives a summary of open problems.
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Chapter 2

Preliminaries

In this chapter we establish notation and review a few algebraic topics which
are covered in bachelor’s and master’s programmes in mathematics. Topics
related to algebraic geometry can be found in [CLO92]. Readers are invited
to skip these sections if they are familiar to them. We add a section which
extends the theory to Laurent polynomials.

2.1 Basic notation

We denote by Z, Q, R and C integers, rationals, reals and complex numbers
respectively. The symbols N or Z+ stand for positive integers, to include also
zero we use N0 or Z+

0 . Further we denote C∗ = C \ {0}. The set inclusion
symbols "⊂" and "⊃" also admit set equality.

Let R be a commutative ring, we will usually consider integer or complex
numbers. Denote by R[x1, . . . , xd] the set of polynomials over R in d vari-
ables. We adopt the usual simplified notation: for a d-tuple of non-negative
integers v = (v1, . . . , vd) set Xv = xv11 . . . xvdd , then we write

R[X] = R[x1, . . . , xd]

and a general polynomial f ∈ R[X] can be expressed as f =
∑
avX

v, where
av ∈ R and the sum ranges over finitely many d-tuples of non-negative in-
tegers v. If we allow v to contain also negative integers we obtain Laurent
polynomials, which are denoted by R[X±1]. Finally, by relaxing the require-
ment to have only finitely many av 6= 0 we get formal power series:

R[[X±1]] =
{∑

avX
v
∣∣ v ∈ Zd, av ∈ R

}
.

Note that we allow infinitely many negative exponents in formal power series.

Example 2.1.1. Fix d = 2. Then f(X) = X(1,1)−3X(1,0) = x1x2−3x1 is a
polynomial and g(X) = X(0,−1)f(X) = x1−3x1x

−1
2 is a Laurent polynomial.
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Every polynomial is a Laurent polynomial, every Laurent polynomial is a
formal power series.

2.2 Commutative rings

Let us recall a few definitions from commutative algebra. Let R be a com-
mutative ring. An ideal A of R, denoted A ≤ R, is a subring of R which is
closed under multiplication by elements from R. For g1, . . . , gn ∈ R denote
by 〈g1, . . . , gn〉 the ideal generated by gi. An ideal A is principal or one-
generated if A = 〈g〉 for some g ∈ R. A ring is principal ideal domain, or
PID, if its every ideal is principal.

Let A,B be ideals of R. As usual, define A+B = { a+ b | a ∈ A, b ∈ B }
and AB = 〈 ab | a ∈ A, b ∈ B 〉, they are ideals of R as well. Ideals A and B
are said to be comaximal if A + B = R, or equivalently if 1 ∈ A + B. The
following fact is well-known:

Lemma 2.2.1. If A1, . . . , An ≤ R are pairwise comaximal ideals, then⋂
Ai =

∏
Ai.

An ideal A ≤ R is prime if ab ∈ A, a, b ∈ R implies a ∈ A or b ∈ A. An
ideal A ≤ R is radical if an ∈ A implies a ∈ A. Clearly, that happens if and
only if A =

√
A where

√
A =

{
a ∈ R

∣∣ ∃n : an ∈ A
}
.

An invertible element of an integral domain R is called a unit, a non-zero
element which cannot be written as a product of two non-unit elements is
irreducible. Two elements are associated if they differ by a unit factor. An
integral domain R is a unique factorization domain (UFD), if every non-zero
non-unit element can be written as a product of irreducible elements. In that
case the factorization is unique up to the order and association of factors.
In a UFD any two elements have a greatest common divisor.

A commutative ring R is noetherian, or satisfies ascending chain condi-
tion, if every strictly ascending chain of its ideals is finite. A commutative
ring R is noetherian iff every ideal of R is finitely generated. Trivially, every
principal ideal domain is noetherian.

2.3 Polynomial ideals

The following facts are well-known.

Lemma 2.3.1. Let R be a ring.

• If R is noetherian then R[X] is noetherian. (Hilbert’s basis theorem.)

8



• If R is a UFD then R[X] is a UFD.

• If R is a field then R[X] is a PID.

Corollary 2.3.2. Ideals in Z[X] and C[X] are finitely generated. Moreover
Z[x] and C[x] are PID.

Proof. Z[x] is a PID since it has division with remainder, the rest follows
directly from Lemma 2.3.1.

Hilbert’s Nullstellensatz

The relation between polynomial ideals and varieties is of central interest
in algebraic geometry. Let R be a commutative ring. Fix d ∈ N and for
I ≤ R[X] and V ⊂ Rd define:

V(I) =
{
x ∈ Rd

∣∣ ∀f ∈ I : f(x) = 0
}

I(V ) =
{
f ∈ R[X]

∣∣ ∀x ∈ V : f(x) = 0
}

V(I) is the algebraic variety defined by I. It is the set of all common roots of
all the polynomials in I. I(V ) is on the other hand the set of all polynomials,
for which every element of V is a root. It is easy to verify that I(V ) is an
ideal, in fact a radical ideal. The famous Hilbert’s Nullstellensatz relates
these two operators.

Theorem 2.3.3 (Hilbert’s Nullstellensatz). Let R be an algebraically closed
field and I an ideal of R[X]. Then

IV(I) =
√
I.

Radical ideals

It will be useful for us to describe structure of radical ideals in the special
case when R = C and d = 1, 2. The following theorem is valid for any d ∈ N:

Theorem 2.3.4 (Minimal decomposition). Let R be an algebraically closed
field. Every radical ideal A ≤ R[X] can be uniquely written as a finite inter-
section of prime ideals A = P1 ∩ · · · ∩ Pk where Pi 6⊂ Pj for i 6= j.

Proof. See e.g. [CLO92] Chapter 4, §6, Theorem 5.

To simplify notation, we use C[x] and C[x, y] in the place of C[x1] and
C[x1, x2]. The case when d = 1 is easy since C[x] is a PID.

Lemma 2.3.5.

• Non-trivial prime ideals of C[x] are of the form 〈ϕ〉 where ϕ is an
irreducible polynomial.

9



• Non-trivial radical ideals of C[x] are of the form 〈ϕ1 · · ·ϕn〉 where ϕi
are irreducible polynomials which are not associated to each other.

Note that two polynomials are associated if they differ by a constant
factor. Let us focus now on the case d = 2.

Lemma 2.3.6. For a non-trivial prime ideal P ≤ C[x, y] one of the following
holds:

• P is a principal ideal generated by an irreducible polynomial, i.e. P =
〈ϕ〉 for some irreducible ϕ,

• or P is a maximal ideal, in which case P = 〈x − α, y − β〉 for some
α, β ∈ C.

Proof. Follows by Proposition 1 in section 1.5 and Corollary 2 in section 1.6
of Fulton’s book [Ful89].

Theorem 2.3.7. Let A ≤ C[x, y] be a non-trivial radical ideal. Then there
are distinct principal ideals R1, . . . , Rs generated by irreducible polynomials
and distinct maximal ideals M1, . . . ,Mt such that Ri 6⊂Mj and

A = R1 · · ·RsM1 · · ·Mt.

Moreover the ideals are determined uniquely and the ideals R =
R1 · · ·Rs,M1, . . . ,Mt are pairwise comaximal.

Proof. Apply Lemma 2.3.6 to Theorem 2.3.4 to obtain A = R1 ∩ · · · ∩Rs ∩
M1∩· · ·∩Mt for Ri,Mj as in the statement. Observe that

∏
Ri =

⋂
Ri since

Ri are generated by irreducible polynomials. The ideals R,M1, . . . ,Mt are
pairwise comaximal since a maximal ideal is comaximal with any ideal not
contained in it. Therefore A = RM1 · · ·Mt by Lemma 2.2.1. The uniqueness
follows from uniqueness of minimal decomposition.

2.4 Laurent polynomials

In this section we restate the theorems from the previous section in terms
of Laurent polynomials. The proofs are rather technical, in all of them we
reduce to polynomial version of the claim. A few auxiliary definitions are
needed.

Definition 2.1.

• For I ≤ C[X±1] define bIc = I ∩C[X]. Note that f ∈ I iff there exists
v ∈ Zd such that Xvf ∈ bIc.

• For J ≤ C[X] define 〈J〉± to be the ideal in C[X±1] generated by J .

10



Hilbert’s Nullstellensatz for Laurent polynomials

Recall notation C∗ = C \ {0} and fix d ∈ N. For I ≤ C[X±1] and V ⊂ (C∗)d
define:

V(I) =
{
x ∈ (C∗)d

∣∣ ∀f ∈ I : f(x) = 0
}

I(V ) =
{
f ∈ C[X±1]

∣∣ ∀x ∈ V : f(x) = 0
}

Theorem 2.4.1 (Hilbert’s Nullstellensatz for Laurent polynomials). Let I
be an ideal of C[X±1]. Then

IV(I) =
√
I.

Proof. We reduce to the polynomial case. To distinguish from polynomial
operators, we temporarily use V± and I± to denote the operators on Laurent
polynomials. Define O = (C∗)d and let J = bIc. We prove three claims:

1. V±(I) = V(J) ∩O

2. ∀V ⊂ Cd : 〈I(V ∩O)〉± = 〈I(V )〉±

3.
√
I = 〈

√
J〉±

Both inclusions in Claim 1 are easy. For the second claim, "⊃" follows from
V ∩ O ⊂ V . For "⊂" assume f ∈ I(V ∩ O), then x1 · · ·xnf ∈ I(V ) and
therefore f ∈ 〈I(V )〉±. For Claim 3, "⊃" follows from I ⊃ J . For "⊂"
assume f ∈

√
I and let n be such that fn ∈ I. Choose v ∈ Nd such that

Xvf is a polynomial, then Xnvfn ∈ J ⇒ Xvf ∈
√
J ⇒ f ∈ 〈

√
J〉±.

The theorem now follows:

I±V±(I) = 〈IV±(I)〉± = 〈I(V(J) ∩O)〉± = 〈IV(J)〉± = 〈
√
J〉± =

√
I.

Radical ideals

Lemma 2.4.2. Ideals in C[X±1] are finitely generated.

Proof. For such an ideal I, I = 〈bIc〉± and bIc is finitely generated.

Lemma 2.4.3.

1. If P ≤ C[X±1] is prime, then bP c ≤ C[X] is prime.

2. If R ≤ C[X±1] is radical, then bRc ≤ C[X] is radical.

11



Proof.

1. Let a, b ∈ C[X] be such that ab ∈ bP c. Since P is prime, a ∈ P or
b ∈ P . Hence a ∈ bP c or b ∈ bP c.

2. Let f ∈ C[X], n ∈ N be such that fn ∈ bRc. Since R is radical, f ∈ R
and hence f ∈ bRc.

Theorem 2.4.4 (Minimal decomposition). Every radical ideal A ≤ C[X±1]
can be uniquely written as a finite intersection of prime ideals A = P1∩· · ·∩Pk
where Pi 6⊂ Pj for i 6= j.

Proof. By Lemma 2.4.3, bAc is a radical ideal in C[x, y], let bAc = Q1 ∩
· · ·∩Qk be its minimal decomposition as an intersection of prime ideals from
Theorem 2.3.4. Let Pi = 〈Qi〉±.

Let us show that every Pi is a prime Laurent polynomial ideal. Fix i and
assume ab ∈ Pi. There exist u,v ∈ Nd such that Xua,Xvb ∈ C[x, y]. Then
XuaXvb ∈ Qi. Since Qi is a prime ideal, we have Xua ∈ Qi or Xvb ∈ Qi.
Then a ∈ Pi or b ∈ Pi, so Pi is prime.

Next we show A = P1∩· · ·∩Pk. We have that A = 〈bAc〉± = 〈Q1∩· · ·∩
Qk〉±. One inclusion is obtained easily by 〈Q1∩· · ·∩Qk〉± ⊂ 〈P1∩· · ·∩Pk〉± =
P1∩· · ·∩Pk. For the other one choose f ∈ P1∩· · ·∩Pk. There exists v ∈ Nd
such that Xvf is a polynomial. Therefore ∀i : Xvf ∈ Qi, or in other words
Xvf ∈ Q1 ∩ · · · ∩ Qk, from which we have f ∈ 〈Q1 ∩ · · · ∩ Qk〉±. The two
inclusions give A = 〈Q1 ∩ · · · ∩Qk〉± = P1 ∩ · · · ∩ Pk.

For uniqueness assume there is another minimal decomposition A = R1∩
· · · ∩Rm. Then bAc = bR1c ∩ · · · ∩ bRmc. By Lemma 2.4.3, bRic are prime
ideals. It is easy to verify that they satisfy the conditions of Theorem 2.3.4 so
they have to be the same as Q1, . . . , Qk in some order. Since Ri are Laurent
polynomial ideals generated by bRic, they are the same as P1, . . . , Pk.

Note that invertible elements of C[X±1] are of the form aXv where a ∈ C∗
and v ∈ Zd. Therefore a non-trivial Laurent polynomial ideal can not contain
such a Laurent polynomial.

Lemma 2.4.5. For a non-trivial prime ideal P ≤ C[x±1, y±1] one of the
following holds:

• P is a principal ideal generated by an irreducible polynomial, i.e. P =
〈ϕ〉 for some irreducible ϕ,

• or P is maximal ideal, in which case P = 〈x − α, y − β〉 for some
α, β ∈ C∗.

12



Proof. By Lemma 2.4.3, bP c is a prime ideal in C[x, y]. If we had bP c =
C[x, y] then P would be trivial. By Lemma 2.3.6 there are two options for
the form of the ideal.

Assume bP c = 〈ϕ〉 for ϕ ∈ C[x, y] irreducible. Note that ϕ is not of the
form cx or cy for c ∈ C since P is a Laurent polynomial ideal. Therefore ϕ
is also irreducible in C[x±1, y±1] and P = 〈ϕ〉.

Assume bP c = 〈x− α, y − β〉 for α, β ∈ C. The case α = 0 or β = 0 is
not possible since P is a Laurent polynomial ideal. We have P = 〈x−α, y−
β〉.

Theorem 2.4.6. Let A ≤ C[x±1, y±1] be a non-trivial radical ideal. Then
there are distinct principal ideals R1, . . . , Rs generated by irreducible polyno-
mials and distinct maximal ideals M1, . . . ,Mt such that Ri 6⊂Mj and

A = R1 · · ·RsM1 · · ·Mt.

Moreover the ideals are determined uniquely and the ideals R =
R1 · · ·Rs,M1, . . . ,Mt are pairwise comaximal.

Proof. The proof goes exactly as in Theorem 2.3.7, there is no need for re-
duction to the polynomial claim. Apply Lemma 2.4.5 to Theorem 2.4.4 to
obtain A = R1 ∩ · · · ∩ Rs ∩M1 ∩ · · · ∩Mt for Ri, Mj as in the statement.
Observe that

∏
Ri =

⋂
Ri since Ri are generated by irreducible polynomi-

als. The ideals R,M1, . . . ,Mt are pairwise comaximal since a maximal ideal
is comaximal with any ideal not contained in it. Therefore A = RM1 · · ·Mt

by Lemma 2.2.1. The uniqueness follows from uniqueness of minimal decom-
position.
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Chapter 3

Decomposition theorem

We begin the exposition with definitions which are central to our approach.
We define a configuration as a formal power series with complex coefficients,
annihilator as a Laurent polynomial which annihilates a configuration by
multiplication, and Ann(c) as the ideal of all annihilators of a configuration
c.

We show that configurations satisfying the low complexity condition (1.2)
have a non-trivial annihilator. Using Hilbert’s Nullstellensatz, we prove that
such configuration have also an annihilator of the form (Xv1−1) · · · (Xvm−
1). More precisely, we first show in Lemma 3.2.3 that such a Laurent poly-
nomial is in the radical of Ann(c), and then we define line polynomials to
extend this result to Ann(c) in Theorem 3.3.3.

The main result of this chapter is what we call the Decomposition theo-
rem (Theorem 3.4.1): Every low complexity configuration can be written as
a sum of finitely many periodic configurations.

3.1 Configurations

Let d be a positive integer. Let us define a d-dimensional configuration to
be any formal power series c ∈ C[[X±1]] and denote by cv the coefficient of
Xv:

c =
∑
v∈Zd

cvX
v

A configuration is integral if all coefficients cv are integers, and it is finitary
if there are only finitely many distinct coefficients cv.

Classically in symbolic dynamics configurations are understood as ele-
ments of AZd . Because the actual names of the symbols in the alphabet A
do not matter, they can be chosen to be integers. Then a symbolic con-
figuration can be identified with a finitary integral configuration by simply
setting the coefficient cv to be the integer at position v.
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Figure 3.1: Plot of f(X), f(X2) and f(X3) for the polynomial f(X) =
f(x1, x2) = 3− x1 + 2x21 + x1x2.

Multiplication of a formal power series by a Laurent polynomial is well
defined and results again in formal power series. For example, Xvc is a
translation of c by the vector v. Another important example is that c is
periodic if and only if there is a non-zero v ∈ Zd such that (Xv − 1)c = 0.
Here the right side is understood as the constant zero configuration.

For a Laurent polynomial f(X) =
∑
avX

v and a positive integer n
define f(Xn) =

∑
avX

nv. (See Figure 3.1.) The following example, and the
proof of Lemma 3.2.2, use the well known fact that for any integral Laurent
polynomial f and prime number p, we have fp(X) ≡ f(Xp) (mod p).

Example 3.1.1. The example concerns the periodic tiling problem. We
provide a short proof of the fact – originally proved in [Sze98] – that if the size
p = |D| of tile D is a prime number then all co-tilers C are periodic. When
the tile D is represented as the Laurent polynomial f(X) =

∑
v∈DX

v and
the co-tiler C as the power series c(X) =

∑
v∈C X

v, the tiling condition (1.1)
states that f(X)c(X) =

∑
v∈Zd X

v. Multiplying both sides by fp−1(X), we
get

fp(X)c(X) =
∑
v∈Zd

pp−1Xv ≡ 0 (mod p).

On the other hand, since p is a prime, fp(X) ≡ f(Xp) (mod p) so that

f(Xp)c(X) ≡ 0 (mod p).

Let v ∈ D and w ∈ C be arbitrary. We have

0 ≡ [f(Xp)c(X)]w+pv =
∑
u∈D

c(X)w+pv−pu (mod p).

The last sum is a sum of p numbers, each 0 or 1, among which there is at least
one 1 (corresponding to u = v). The only way for the sum to be divisible
by p is by having each summand equal to 1. We have that w + p(v − u) is
in C for all u,v ∈ D and w ∈ C, which means that C is p(v − u)-periodic
for all u,v ∈ D.

The next lemma grants us that for low complexity configurations there
exists at least one Laurent polynomial that annihilates the configuration by
formal multiplication.
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Lemma 3.1.2. Let c be a configuration and D ⊂ Zd a finite domain such that
Pc(D) ≤ |D|. Then there exists a non-zero Laurent polynomial f ∈ C[X±1]
such that fc = 0.

Proof. Denote D = {u1, . . . ,un} and consider the set

{ (1, cu1+v, . . . , cun+v) | v ∈ Zd }.

It is a set of complex vectors of dimension n + 1, and because c has low
complexity there is at most n of them. Therefore there exists a common non-
zero orthogonal vector (a0, . . . , an). Let g(X) = a1X

−u1+· · ·+anX−un 6= 0,
then the coefficient of gc at position v is

(gc)v = a1cu1+v + · · ·+ ancun+v = −a0,

that is, gc is a constant configuration. Now it suffices to set f = (Xv − 1)g
for arbitrary non-zero vector v ∈ Zd.

3.2 Annihilating Laurent polynomials

Let c be a configuration. We say that a Laurent polynomial f annihilates
(or is an annihilator of) the configuration if fc = 0. Define

Ann(c) =
{
f ∈ C[X±1]

∣∣ fc = 0
}
.

It is the set of all annihilators of c. Clearly it is an ideal of C[X±1]. The
zero polynomial annihilates every configuration; let us call the annihilator
non-trivial if it is non-zero.

An easy, but useful observation is that if f is an annihilator, then any
monomial multiple Xvf is also an annihilator. We shall use this fact without
further reference.

There are good reasons why to study this ideal. Firstly, by Lemma 3.1.2,
for low complexity configurations Ann(c) is non-trivial, which is the case of
Nivat’s conjecture and periodic tiling problem. Secondly, to prove that a
configuration is periodic is equivalent to showing that Xv − 1 annihilates c
for some non-zero v ∈ Zd.

We defined Ann(c) to consist of complex Laurent polynomials, so that we
can later use Hilbert’s Nullstellensatz directly, as it requires ideals over an
algebraically closed field. We shall however occasionally work with integer
coefficients when it is more convenient.

Convention. To simplify the exposition, from now on by polynomial we
mean Laurent polynomial; if the classical meaning is needed we use the term
proper polynomial.
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In what follows we consider configurations which have an integral annihi-
lator. Although it follows by a small modification of Lemma 3.1.2 that such
an annihilator for integral configurations exists, a stronger statement holds:

Lemma 3.2.1. Let c be an integral configuration. Then Ann(c) is generated
by finitely many integral polynomials.

Proof. We will show that Ann(c) is generated by integral polynomials, the
claim then follows from Hilbert’s Basis Theorem. Let f ∈ Ann(c) be arbi-
trary and denote

f(X) =
n∑
i=1

aiX
ui .

Let V be a vector subspace of Cn defined by

V :=
〈

(cv−u1 , . . . , cv−un) | v ∈ Zd
〉
.

Then fc = 0 if and only if (a1, . . . , an) ⊥ V . All the vectors in V have integer
coordinates, therefore the space V ⊥ has a basis consisting of rational, and
therefore also integer vectors b(1), . . . , b(m). Denote b(j) = (b

(j)
1 , . . . , b

(j)
n ).

Consider integral polynomials g(j)(X) =
∑n

i=1 b
(j)
i Xui . Because b(j) =

b(j) ⊥ V we have that g(j) is an integral annihilator of c. From construction
the polynomial f is a linear combination of g(1), . . . , g(m), which concludes
the proof.

Let us introduce additional notation: if Z = (z1, . . . , zd) ∈ (C∗)d is a
complex vector, then it can be plugged into a polynomial. In particular,
plugging into a monomial Xv results in Zv = zv11 · · · zvdd . Recall that the
notation f(Xn) for positive integers n was defined in section 3.1.

Lemma 3.2.2. Let c(X) be a finitary integral configuration and f(X) ∈
Ann(c) a non-zero integer polynomial. Then there exists an integer r such
that for every positive integer n relatively prime to r we have f(Xn) ∈
Ann(c).

Proof. Denote f(X) =
∑
avX

v and let m ∈ N be arbitrary. We prove that
if f(Xm) is an annihilator, then also f(Xpm) is an annihilator for every large
enough prime p.

Let p be a prime. Since fp(X) ≡ f(Xp) (mod p) we especially have
fp(Xm) ≡ f(Xpm) (mod p). We assume that f(Xm) annihilates c(X),
therefore multiplying both sides by c(X) results in

0 ≡ f(Xpm)c(X) (mod p).

The coefficients in f(Xpm)c(X) are bounded in absolute value by

s = cmax
∑
|av|,
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where cmax is the maximum absolute value of coefficients in c. Note that
the bound is independent of m. Therefore for any m, if p > s we have
f(Xpm)c(X) = 0, which means f(Xpm) ∈ Ann(c).

To finish the proof, set r = s!. Now every n relatively prime to r is of
the form p1 · · · pk where each pi is a prime greater than s. Because f(X) is
an annihilator now it follows easily by induction that also f(Xp1···pk) is an
annihilator.

Let us define the support of a polynomial f =
∑
avX

v as

supp(f) = {v ∈ Zd | av 6= 0 }.

Lemma 3.2.3. Let c be a finitary integral configuration and f =
∑
avX

v a
non-trivial integer polynomial annihilator. Define

g(X) =
∏

v∈supp(f)
v 6=v0

(Xr(v−v0) − 1)

where r is the integer from Lemma 3.2.2 and v0 ∈ supp(f) arbitrary. Then
g(Z) = 0 for any common root Z ∈ (C∗)d of Ann(c), i.e. g ∈ IV(Ann(c)).

Proof. Fix Z. Let us define for α ∈ C

Sα =
{
v ∈ supp(f)

∣∣ Zrv = α
}
,

fα(X) =
∑
v∈Sα

avX
v.

Because supp(f) is finite, there are only finitely many non-empty sets
Sα1 , . . . , Sαm and they form a partitioning of supp(f). In particular we
have f = fα1 + · · ·+ fαm .

Numbers of the form 1 + ir are relatively prime to r for all non-negative
integers i, therefore by Lemma 3.2.2, f(X1+ir) ∈ Ann(c). Plugging in Z we
obtain f(Z1+ir) = 0. Now compute:

fα(Z1+ir) =
∑
v∈Sα

avZ
(1+ir)v =

∑
v∈Sα

avZ
vαi = fα(Z)αi

Summing over α = α1, . . . , αm gives

0 = f(Z1+ir) = fα1(Z)αi1 + · · ·+ fαm(Z)αim

Let us rewrite the last equation as a statement about orthogonality of two
vectors in Cm: (

fα1(Z), . . . , fαm(Z)
)
⊥ (αi1, . . . , α

i
m)
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By Vandermode determinant, for i ∈ {0, . . . ,m− 1} the vectors on the right
side span the whole Cm. Therefore the left side must be the zero vector, and
especially for α such that v0 ∈ Sα we have

0 = fα(Z) =
∑
v∈Sα

avZ
v.

Because Z does not have zero coordinates, each term on the right hand side
is non-zero. But the sum is zero, therefore there are at least two vectors
v0,v ∈ Sα. From the definition of Sα we have Zrv = Zrv0 = α, so Z is a
root of Xr(v−v0) − 1.

3.3 Line polynomials

We say that a polynomial f is a line polynomial if its support contains at
least two points and all the points lie on a single line. Let us call a vector
v ∈ Zd primitive if its coordinates don’t have a common non-trivial integer
factor. Then every line polynomial can be expressed as

f(X) = Xv′(anX
nv + · · ·+ a1X

v + a0)

for some ai ∈ C, n ≥ 1, an 6= 0 6= a0, v′,v ∈ Zd, where v is primitive.
Moreover, the vector v is determined uniquely up to the sign. We define the
direction of a line polynomial to be the vector space 〈v〉 ⊂ Qd.

Recall that an ideal A ≤ C[X] is radical if an ∈ A implies a ∈ A. The
next lemma states that for one-dimensional configurations Ann(c) is radical.

Lemma 3.3.1. Let c ∈ C[[x±1]] be a finitary one-dimensional configuration
annihilated by fm for a non-trivial polynomial f and m ∈ N. Then it is also
annihilated by f .

Proof. The configuration c can be viewed as a sequence attaining only finitely
many values, and fm as a recurrence relation on it. Therefore c must be
periodic, which means there is n ∈ N such that xn − 1 ∈ Ann(c).

Then also g = gcd(xn − 1, fm) ∈ Ann(c). Because g divides xn − 1, it
has only simple roots, and from g | fm we conclude g | f . Any multiple of g
annihilates the sequence, hence also f does.

Lemma 3.3.2. Let c be a finitary configuration and f1, . . . , fk line poly-
nomials such that fm1

1 · · · fmkk annihilates c. Then also f1 · · · fk annihilates
it.

Proof. We will show that if f is a line polynomial and fm annihilates c, then
also f annihilates c. Without loss of generality assume

f(X) = anX
nv + · · ·+ a1X

v + a0
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for some ai ∈ C and v ∈ Zd. Define g(t) = ant
n + · · · + a1t + a0 ∈ C[t] so

that fm(X) = gm(Xv).
For any u ∈ Zd the sequence of coefficients (cu+iv)i∈Z can be viewed as a

one-dimensional configuration annihilated by gm. By Lemma 3.3.1 it is also
annihilated by g, therefore g(Xv) = f(X) annihilates c.

To finish the proof observe that fm2
2 . . . fmkk c is a finitary configuration

annihilated by fm1
1 . Thus it is also annihilated by f1 and f1fm2

2 . . . fmkk c = 0.
The argument can be repeated for all fi.

Theorem 3.3.3. Let c be a finitary integral configuration with a non-trivial
annihilator. Then there exist vectors v1, . . . ,vm ∈ Zd in pairwise distinct
directions such that

(Xv1 − 1) · · · (Xvm − 1) ∈ Ann(c).

Proof. By Lemma 3.2.1, c has an integral annihilator. Therefore
Lemma 3.2.3 applies, let g ∈ IV(Ann(c)) be as in its statement. By
Hilbert’s Nullstellensatz g ∈

√
Ann(c), so there exists an integer m such

that gm ∈ Ann(c). Since g has only line polynomial factors of the form
Xv − 1, by Lemma 3.3.2, g ∈ Ann(c).

To finish the proof we have to guarantee that the vectors in exponents
are in distinct pairwise directions. Observe that (Xau− 1)(Xbu− 1) divides
(Xabu − 1)2, and therefore any two factors in the same direction (Xau −
1)(Xbu−1) can be by Lemma 3.3.2 replaced by a single factor (Xabu−1).

Corollary 3.3.4. Let c be a low complexity configuration. Then there exist
vectors v1, . . . ,vm ∈ Zd in pairwise distinct directions such that

(Xv1 − 1) · · · (Xvm − 1) ∈ Ann(c).

Proof. Since c is of low complexity it is also finitary. Let {a1, . . . , an} be
the set of coefficients of c, then there exist configurations c1, . . . , cn with
coefficients in {0, 1} such that c = a1c1+ · · ·+ancn. Moreover configurations
ci are also of low complexity, and by Lemma 3.1.2 each of them has a non-
trivial annihilator.

By Theorem 3.3.3, for i ∈ {1, . . . , n} there exist mi ∈ N and non-zero
vectors vi,j ∈ Z2, j ∈ {1, . . . ,mi} such that

(Xvi,1 − 1) · · · (Xvi,mi − 1) ∈ Ann(ci).

We can choose m and v1, . . . ,vm such that {v1, . . . ,vm} = {vi,j | 1 ≤ i ≤
n, 1 ≤ j ≤ mi }, then (Xv1 − 1) · · · (Xvm − 1) ∈ Ann(c). To have vi in
distinct directions we finish the proof the same way as in Theorem 3.3.3.
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3.4 Decomposition theorem

Multiplying a configuration by (Xv−1) can be seen as a "difference operator"
on the configuration. Theorem 3.3.3 then says, that there is a sequence of
difference operators which annihilates the configuration. We can reverse
the process: let us start by a zero configuration and step by step "integrate"
until we obtain the original configuration. This idea gives the Decomposition
theorem:

Theorem 3.4.1 (Decomposition theorem). Let c be a finitary integral con-
figuration with a non-trivial annihilator. Then there exist periodic integral
configurations c1, . . . , cm such that c = c1 + · · ·+ cm.

The proof goes by a series of lemmas.

Lemma 3.4.2. Let f, g be line polynomials in distinct directions and c a
configuration annihilated by g. Then there exists a configuration c′ such that
fc′ = c and c′ is also annihilated by g.

Proof. Without loss of generality assume f, g are of the form

f(X) = anX
nu + · · ·+ a1X

u + a0

g(X) = bmX
mv + · · ·+ b1X

v + b0

for some vectors u,v ∈ Zd, n,m ∈ N and ai, bi ∈ C such that an, bm, a0, b0
are all non-zero.

The vectors u and v are linearly independent and the whole space Zd is
partitioned into two-dimensional sublattices (cosets) modulo 〈u,v〉. Fix one
such a sublattice Λ and a point z ∈ Λ, then every point in the sublattice
can be uniquely expressed as z + au + bv for some a, b ∈ Z. Denote [a, b] =
z + au + bv.

The equation fc′ = c is satisfied if and only if

anc
′
[a−n,b] + · · ·+ a1c

′
[a−1,b] + a0c

′
[a,b] = c[a,b] (3.1)

holds for every a, b ∈ Z (on every sublattice Λ). This is a linear recurrence
relation on the sequences (c′[a,b])a∈Z. Let us define c′[a,b] = 0 if 0 ≤ a < n,
the rest of c′ is then uniquely determined by the recurrence relation so that
fc′ = c holds.

It remains to show that c′ defined this way is annihilated by g. A simple
computation shows that

f(gc′) = g(fc′) = gc = 0.

Therefore the configuration gc′ satisfies a linear recurring relation defined
by f on the sequences

(
(gc′)[a,b]

)
a∈Z. Moreover we have (gc′)[a,b] = 0 for

0 ≤ a < n, from which it follows that gc′ is zero everywhere.
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Lemma 3.4.3. Let f1, . . . , fm be line polynomials in pairwise distinct direc-
tions and c a configuration annihilated by their product f1 · · · fm. Then there
exist configurations c1, . . . , cm such that fi annihilates ci and

c = c1 + · · ·+ cm.

Proof. The proof goes by induction on m. For m = 1 there is nothing to
prove, assume m ≥ 2.

Since the configuration fmc is annihilated by f1 · · · fm−1, by induction
hypothesis we have

fmc = b1 + · · ·+ bm−1

where each bi is annihilated by fi for 1 ≤ i < m. Let ci be such that
fmci = bi and ci is annihilated by fi, this is possible by Lemma 3.4.2. Then
it suffices to set cm = c− c1 − · · · − cm−1; clearly c = c1 + · · ·+ cm and

fmcm = fm(c− c1 − · · · − cm−1) = 0.

Proof of Theorem 3.4.1. By Theorem 3.3.3 there is an annihilator of the
form (Xv1−1) · · · (Xvm−1) where (Xvi−1) have distinct directions. There-
fore by Lemma 3.4.3 there are c1, . . . , cm such that c is their sum and each
ci is periodic with the vector vi.

It remains to show that ci can be integral. This follows from the fact
that configurations in the proof of Lemma 3.4.2 are constructed by satisfying
a recurrence relation (3.1), which for polynomials of the form (Xvi − 1) has
always integral solution.

Corollary 3.4.4. Let c be a low complexity configuration. Then there exist
periodic configurations c1, . . . , cm such that c = c1 + · · ·+ cm.

Proof. The proof is identical to the first part of the proof of Theorem 3.4.1,
using Corollary 3.3.4 instead of Theorem 3.3.3.

Example 3.4.5. Recall the counterexample to the analogue of Nivat’s con-
jecture in 3 dimensions from the introduction. It is the sum c1 + c2 where
c1(i, 0, 0) = 1 and c2(0, n, i) = 1 for all i ∈ Z, and all other entries are 0.
Configurations c1 and c2 are (1, 0, 0)- and (0, 0, 1)-periodic, respectively, so
that (X(1,0,0) − 1)(X(0,0,1) − 1) annihilates c = c1 + c2.

Example 3.4.6. The periodic configurations c1, . . . , cm in Theorem 3.4.1
may, for some configurations c, be necessarily non-finitary. Let α ∈ R be
irrational, and define three periodic two-dimensional configurations c1, c2 and
c3 by

c
(1)
ij = bjαc, c

(2)
ij = biαc, c

(3)
ij = b(i+ j)αc.
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Figure 3.2: The configuration c from Example 3.4.6 when α is the golden
ratio is shown on the left. On the right the configuration is skewed such that
the three directions 〈(1, 0)〉, 〈(0, 1)〉 and 〈(1,−1)〉 became symmetrical, the
bottom left corner is preserved.

Then s = c3−c1−c2 is a finitary integral configuration over alphabet {0, 1},
annihilated by the polynomial (X(1,0) − 1)(X(0,1) − 1)(X(1,−1) − 1), but it
cannot be expressed as a sum of finitary periodic configurations (for a proof
see [KS15a] or Example 4.3.4). Figure 3.2 illustrates the setup for α being
the golden ratio.

24



Chapter 4

Two-dimensional configurations

4.1 Radicality of annihilator ideal

In the rest of the thesis we focus on two-dimensional configurations. We
analyze Ann(c) using tools of algebraic geometry and provide a description
of a polynomial φ which divides every annihilator. Moreover we show a the-
oretical result that Ann(c) is a radical ideal, which allows us to formulate
a more explicit version of the decomposition theorem for two-dimensional
configurations. We end the chapter by defining an important characteris-
tic ord(c) of a configuration c as the minimal possible number of periodic
configurations which sum to c.

To simplify the notation, we prefer to write C[x±1, y±1] in the place of
C[x±11 , x±12 ]. This section heavily uses algebraic structure of radical ideals in
C[x±1, y±1], see section 2.4 for a review of used claims.

Theorem 4.1.1. Let c be a two-dimensional finitary integral configuration
with a non-trivial annihilator. Then Ann(c) is a radical ideal. Moreover for
every prime ideal P from the minimal decomposition of Ann(c) we have

P = 〈xayb − ω〉 or P = 〈x− ωx, y − ωy〉
for (a, b) ∈ Z2 primitive vector and ω, ωx, ωy ∈ C roots of unity.

Proof. Denote A =
√

Ann(c). Since c has a non-trivial annihilator, A is
non-trivial. Let A = P1 ∩ · · · ∩ Pk be its minimal decomposition.

Let P be one of Pi. Assume first that P = 〈ϕ〉 for an irreducible poly-
nomial ϕ. By Theorem 3.3.3 there exist vectors vi such that

(Xv1 − 1) · · · (Xvn − 1) ∈ A.
Since ϕ is an irreducible factor of this polynomial we have ϕ | Xv − 1 for
some v. Let v = dw for a primitive vector w = (a, b) and d > 0. Observe
that

Xv − 1 = Xdw − 1 = (Xw − ω1) · · · (Xw − ωd)
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where ω1, . . . , ωd are d-th roots of unity. Therefore ϕ is, up to a multiple by
an invertible element, of the form

xayb − ω

for ω a root of unity. This classifies the case of principal ideals P .
Now assume that P = 〈x− α, y − β〉 for some α, β ∈ C∗, without loss of

generality let P = P1. Choose g ∈
∏k
i=2(Pi\P1) arbitrarily, then g(x−α) ∈ A

and g /∈ A. There exists m ∈ N such that gm(x − α)m ∈ Ann(c), but
gm /∈ Ann(c). In other words, (x − α)m annihilates the non-zero finitary
configuration c′ = gmc. By Lemma 3.3.2 also x − α annihilates c′, and
therefore for every i, j ∈ Z

c′i,j = c′0,jα
−i.

If α is not a root of unity then c′ is not finitary, which is a contradiction. A
similar argument applies to β.

To prove the radicality of Ann(c), observe that each Pi is generated
by line polynomials. By Theorem 2.4.6 we have A = P1 · · ·Pk, A has a
finite set of generators A = 〈g1, . . . , gk〉 such that each gi is a product of line
polynomials. Then for each i there exists m ∈ N such that gmi ∈ Ann(c), and
by Lemma 3.3.2 we have gi ∈ Ann(c). Ann(c) contains a set of generators
of its radical, and therefore it is a radical ideal.

The proof of the radicality of Ann(c) relies on the decomposition of two-
dimensional radical ideal into a product of primes. Although no analog of
such statement is available in higher dimensions, we conjecture that Ann(c)
is radical for higher dimensional finitary configurations as well.

To give a more explicit version of the decomposition theorem, let us study
in greater detail how addition of configurations relates to their annihilators.

Lemma 4.1.2. Let c be a configuration and A1, . . . , Ak, k ≥ 2 pairwise
comaximal ideals such that Ann(c) = A1 ∩ · · · ∩Ak. Then there are uniquely
determined configurations c1, . . . , ck such that Ann(ci) = Ai and c = c1 +
· · ·+ ck.

Proof. Let us assume that none of Ai is the whole ideal, otherwise we can
set ci = 0 and exclude Ai from the list. Note that Ann(c) = A1 · · ·Ak. We
use the following two easy to prove facts from commutative algebra. If Ai
are pairwise comaximal then:

(a) The ideals A1 and A2 · · ·Ak are comaximal.

(b) There exist f1, . . . , fk such that fi /∈ Ai, fi ∈
∏
j 6=iAj and f1+· · ·+fk =

1.
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Let fi be as in (b) and set ci = fic. Then c = c1 + · · · + ck. Let us show
A1 ⊂ Ann(c1):

g ∈ A1 ⇒ gf1 ∈ A1 · · ·Ak = Ann(c) ⇒ g ∈ Ann(f1c) = Ann(c1).

Next let us show Ann(c1) ⊂ A1. Note that (1− f1) = f2 + · · ·+ fk ∈ A1 and
compute:

g ∈ Ann(c1) ⇒ gf1 ∈ Ann(c) ⊂ A1 ⇒ g = gf1 + g(1− f1) ∈ A1.

For the uniqueness assume c = c′1 + · · ·+ c′k such that c1 6= c′1 and Ann(c′i) =
Ai. By (a) let f ∈ A1 and g ∈ A2 · · ·Ak be such that f + g = 1. Then

c1 − c′1 = f(c1 − c′1) + g(c1 − c′1)
= f(c1 − c′1) + g(−c2 − · · · − ck + c′2 + · · ·+ c′k) = 0.

The argument can be repeated for all ci.

Theorem 4.1.3 (Two-dimensional decomposition theorem). Let c be as in
Theorem 4.1.1 and P1 ∩ · · · ∩ Pk be the minimal decomposition of Ann(c).
Then there exist configurations c1, . . . , ck such that Ann(ci) = Pi and c =
c1 + · · ·+ ck.

Proof. Let R1, . . . , Rs, M1, . . . ,Mt be as in Theorem 2.4.6. By the same
theorem, the ideals R =

∏
Ri,M1, . . . ,Mt are pairwise comaximal, and by

Lemma 4.1.2 there are configurations cR, cM1 , . . . , cMt annihilated by corre-
sponding ideals such that c = cR + cM1 + · · ·+ cMt .

By Theorem 4.1.1, Ri = 〈ϕi〉 for a line polynomial ϕi. These polynomials
are in finitely many distinct directions m. Define φ1, . . . , φm such that each
φj is product of all ϕi in the same direction. Then, by Lemma 3.4.3, there
are cφ1 , . . . , cφm annihilated by corresponding polynomials such that cR =
cφ1 + · · ·+ cφm .

Moreover Ann(cφi) = 〈φi〉: if f ∈ Ann(cφ1), then fφ2 · · ·φm ∈
Ann(cR) = R. The ideal R is one-generated, so φ1 · · ·φm | fφ2 · · ·φm and
therefore f ∈ 〈φ1〉. Analogously for other φi.

For the final step define S1 ⊂ {1, . . . , s} such that φ1 =
∏
i∈S1

ϕi. Since
all ϕi for i ∈ S1 have the same direction, by Theorem 4.1.1 they are all of the
form ϕi = xayb−ωi. Then 〈ϕi〉 = Ri for i ∈ S1 are pairwise comaximal and
by Lemma 4.1.2 there exist cRi annihilated by Ri such that cφ1 =

∑
i∈S1

cRi .
Analogously we can decompose each cφi . To finish the proof observe that

c = cR1 + · · ·+ cRs + cM1 + · · ·+ cMt .
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4.2 Decomposition of two-dimensional configura-
tions

We say that a two-dimensional configuration is doubly periodic if there are
two linearly independent vectors in which it is periodic. A configuration
which is periodic but not doubly periodic is called one-periodic.

Corollary 4.2.1. Let c be as in Theorem 4.1.1.

(a) There exist a non-negative integer m, line polynomials φ1, . . . , φm in
pairwise distinct directions, a polynomial φ := φ1 · · ·φm and an ideal
H which is an intersection of maximal ideals such that 〈φ〉 and H are
comaximal and

Ann(c) = φ1 · · ·φmH = φH.

Moreover m and H are determined uniquely and φ, φ1, . . . , φm are de-
termined uniquely up to an invertible factor and the order.

(b) There exist configurations cφ, cH , c1, . . . , cm such that

c = c1 + · · ·+ cm + cH = cφ + cH

where Ann(cφ) = 〈φ〉, Ann(cH) = H and Ann(ci) = 〈φi〉. Moreover
cφ and cH are determined uniquely. Each ci is one-periodic in the
direction of φi, and cH is doubly periodic.

Proof. Let us continue with the notation from the proof of Theorem 4.1.3.
(a) Let H =

⋂t
i=1Mi. Then φ, φ1, . . . , φm, H are as desired.

(b) Let cH = cM1 + · · · + cMt , cφ = cR and ci = cφi . The fact that
Ann(cH) = H follows by Lemma 4.3.1 introduced later and the uniqueness
of cφ and cH follows by Lemma 4.1.2.

Let v be a primitive direction of the polynomial φ1. There is n ∈ N such
that each irreducible factor of φ1 divides Xnv − 1. Therefore this Laurent
polynomial annihilates cφ1 which means that cφ1 has period nv. If there was
a period u in any other direction, then φ1 | Xu − 1, which is impossible.
Therefore cφ1 is one-periodic, and so is any cφi .

Denote M1 = 〈x− ωx, y − ωy〉 and let n ∈ N be such that ωnx = 1. Then
cM1 has a horizontal period n since xn−1 ∈M1. Similarly cM1 has a vertical
period. By a similar argument each cMj is doubly periodic. A finite sum cH
of doubly periodic configurations is also doubly periodic.

Note. Theorem 4.1.3 and Corollary 4.2.1 assume that c is as in Theo-
rem 4.1.1, i.e. that c is a finitary and integral configuration with a non-trivial
annihilator. In all three propositions this assumption can be exchanged with
a single assumption that c is a low complexity configuration. The latter
condition implies that c is finitary and has a non-trivial annihilator (see
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Corollary 3.3.4). The missing condition of c being integral is used in the
proof of Theorem 4.1.1 when Theorem 3.3.3 is invoked. We can use Corol-
lary 3.3.4 in that place instead. We omit a formal proof of these altered
three proposition as we don’t use them in the sequel.

Let us denote the number m from Corollary 4.2.1 by ord(c). It is an im-
portant characteristic of the configuration which provides information about
its periodicity.

Corollary 4.2.2. Let c be as in Theorem 4.1.1. Then

• ord(c) = 0 if and only if c is doubly periodic,

• ord(c) = 1 if and only if c is one-periodic,

• ord(c) ≥ 2 if and only if c is non-periodic.

Proof. If ord(c) = 0 then c = cH , which is doubly periodic. If ord(c) = 1
then c = c1 + cH is a sum of one-periodic and doubly periodic configuration,
which is one-periodic. If ord(c) ≥ 2 then every annihilating polynomial is
divisible by φ1φ2. ThereforeXv−1 cannot be an annihilator for any non-zero
vector v and c is non-periodic.

Corollary 4.2.3. Let c be a two-dimensional configuration which can be
written a sum of periodic configurations. If c is doubly periodic then ord(c) =
0, otherwise ord(c) is the smallest possible number of periodic configurations
which sum to c.

Proof. The claim for doubly periodic c follows from Corollary 4.2.2. Oth-
erwise, by Corollary 4.2.1(b), c can be written as a sum of ord(c) periodic
components, just add the doubly periodic component cH to any other. If c
could be written as a sum of m < ord(c) periodic components, then c would
be annihilated by (Xu1 − 1) · · · (Xum − 1) for some vectors ui. Since φi for
i ∈ {1, . . . , ord(c)} are line polynomials in distinct directions, this polynomial
is not divisible by at least one of them, which is a contradiction.

Corollary 4.2.1 and Corollary 4.2.2 are powerful tools to analyze configu-
rations from the structure of their annihilator ideals. The main improvement
over the earlier decomposition theorem is that not only we know that c can
be decomposed into a sum of periodic components, but also we can exactly
describe the annihilator ideals of each component. Moreover each component
is either one- or doubly periodic and the number of one-periodic components
(in distinct directions) is unique and determines whether the original config-
uration is periodic or not.
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Figure 4.1: A T-shape with w = 5, h = 3 and d = 2. Convex hull of any
non-collinear subset of its points is a triangle.

Example 4.2.4. Let us call D ⊂ Z2 a T-shape if it is of the form

D = {0, . . . , w} × {h} ∪ {d} × {0, . . . , h}

for some h,w, d ∈ N, d ≤ h (Figure 4.1). We show that if Pc(D) ≤ |D|
for a T-shape D, then c is periodic. For a contradiction assume that the
inequality holds and c is non-periodic.

We need a fact which is later proved in the next section as Lemma 5.1.3:
The coefficients of c can be renamed such that if Pc(D) ≤ |D|, then there is
an annihilator polynomial with supp(f) ⊂ −D. Without loss of generality
assume that the coefficients of c have been renamed and we have such an
annihilator f .

By Corollary 4.2.2, ord(c) ≥ 2, and in particular there are two line poly-
nomials φ1, φ2 in distinct directions such that φ1φ2 divides any annihilator
polynomial. The convex hull of supp(φ1φ2) is a parallelogram, and therefore
the convex hull of supp(f) has two pairs of parallel sides because f is a poly-
nomial multiple of φ1φ2. This is, however, impossible since supp(f) ⊂ −D
and convex hull of any non-collinear subset of points in −D is a triangle.

Example 4.2.5. Let us prove a special case of the periodic tiling problem,
originally proved by Szegedy [Sze98]. The claim says that if D ⊂ Z2, |D| = 4
tiles a plane, then there exists a periodic tiling by D.

Let C be any cotiler of D and let c =
∑

v∈C X
v be a configuration

encoding the cotiler. Let us assume that c is non-periodic, otherwise we are
done. We have that Pc(D) ≤ 4. Again we use Lemma 5.1.3 proved later
which states that there is an annihilating polynomial f with support in −D
after renaming the coefficients of c.

Similarly as in the previous example, ord(c) ≥ 2 and there exist φ1, φ2
line polynomials in distinct directions such that φ1φ2 | f . Convex hull of
support of any polynomial multiple of φ1φ2 must have two sides parallel to
the direction of φ1 and two sides parallel to φ2. Since |supp(f)| ≤ 4, the only
option is that supp(f) consists of four points which form a parallelogram.
Therefore D = − supp(f).
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To rephrase, we proved that if there exists an aperiodic tiling by a tile of
size at most 4, the tile must consist of four points which form a parallelogram.
Clearly, such a tile tiles the plane also periodically.

4.3 Annihilators of sums of configurations

Knowing a configuration and its annihilator, Theorem 4.1.3 gives a decompo-
sition into a sum of configurations and provides their annihilators. We finish
the section by giving a complementary claim: given configurations and their
annihilators, we can describe the annihilator of their sum.

Lemma 4.3.1. Let c1, c2 be configurations such that Ann(c1) and Ann(c2)
are non-trivial radical ideals. Let P1, . . . , Pk, Q1, . . . , Q` be prime ideals such
that

Ann(c1) =
k⋂
i=1

Pi and Ann(c2) =
⋂̀
j=1

Qj

are minimal decompositions. If Pi 6= Qj for all admissible i, j, then Ann(c1+
c2) = Ann(c1) ∩Ann(c2).

Proof. Denote c = c1 + c2, clearly Ann(c) ⊃ Ann(c1) ∩ Ann(c2). To prove
the other inclusion, for the contrary suppose there exists f ∈ Ann(c) such
that f /∈ Ann(c1) ∩ Ann(c2). Then f does not belong to at least one of the
prime ideals. Without loss of generality assume f /∈ P1 and P1 is minimal
such ideal with respect to inclusion. In particular, we have Qj * P1 for every
j.

Now choose any g ∈ ∏`
j=1 (Qj \ P1), then we have g ∈ Ann(c2) \ P1.

Consider the polynomial fg. Since f annihilates c and g annihilates c2, we
have that fg annihilates c− c2 = c1. But fg /∈ P1, which is in contradiction
with Ann(c1) ⊂ P1.

Corollary 4.3.2. Let c1, c2 be two-dimensional finitary integral configura-
tions having a non-trivial annihilator and k = ord(c1), ` = ord(c2) such
that

Ann(c1) = φ1 · · ·φkH1 and Ann(c2) = ψ1 · · ·ψ`H2

where φi, ψj are line polynomials and H1, H2 intersections of maximal ideals
as in Corollary 4.2.1. If φi and ψj have pairwise distinct directions, then
ord(c1 + c2) = k + ` and there exists H an intersection of maximal ideals
such that

Ann(c1 + c2) = φ1 · · ·φkψ1 · · ·ψ`H.

Example 4.3.3. Let us show that if c1 and c2 are two-dimensional fini-
tary one-periodic configurations in distinct directions, then their sum is non-
periodic.
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By Corollary 4.2.2 we have ord(c1) = ord(c2) = 1, and therefore by
Corollary 4.2.1 there are φ, ψ line polynomials such that Ann(c1) = φH1 and
Ann(c2) = ψH2 for some H1, H2 intersections of maximal ideals. Moreover
φ and ψ have the same direction as is the unique direction of periodicity of
c1 and c2 respectively. Therefore, by the previous lemma, ord(c1 + c2) = 2
and therefore c1 + c2 is non-periodic by Corollary 4.2.2.

Example 4.3.4. Let us return to Example 3.4.6. As previously, define
integral configurations c(1), c(2), c(3) by

c
(1)
ij = bjαc, c

(2)
ij = biαc, c

(3)
ij = b(i+ j)αc.

we prove the following:

Claim. Let α ∈ R be irrational. The two-dimensional configuration s over
the binary alphabet {0, 1} defined by

s = c(3) − c(1) − c(2)

is a sum of three periodic integral configurations, but not a sum of finitely
many finitary periodic configurations.

For a contradiction assume that s = p(1) + · · · + p(m) where each p(i) is
finitary and periodic. By summing together all horizontally periodic com-
ponents, without loss of generality we can assume p(1) to be periodic in
horizontal direction (we allow possibly a zero configuration) and other p(i)

each having a period in a non-horizontal direction. Let fi for i ≥ 2 be a line
annihilator of p(i) in a non-horizontal direction.

We have (c(1) − p(1)) + c(2) + c(3) − p(2) − · · · − p(m) = 0. Note that
c(1), c(2), c(3) are annihilated respectively by x− 1, y− 1 and x− y. Multiply
both sides by (y − 1)(x− y)f2 · · · fm to obtain

g(y − 1)(c(1) − p(1)) = 0

where g = (x− y)f2 · · · fm. Let h be a horizontal line annihilator of (c(1) −
p(1)). Since g and h don’t have a common factor, the ideal 〈g, h〉 is zero-
dimensional and in particular contains a vertical line polynomial g′. Then
also

g′(y − 1)(c(1) − p(1)) = 0,

which can be demonstrated by writing g′ = ag + bh for some polynomials
a, b.

Consider the configuration c′ = (y − 1)(c(1) − p(1)), we have

c′ij = c
(1)
i,j−1 − c

(1)
i,j + p

(1)
i,j−1 − p

(1)
i,j

= b(j − 1)αc − bjαc+ p
(1)
i,j−1 − p

(1)
i,j .
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Because bjαc− b(j− 1)αc ∈ {bαc, bαc+ 1} and p(1) is finitary, we have that
c′ is finitary as well. But g′ is a vertical line annihilator of c′, therefore c′ is
periodic with a vertical period. Denote by n the length of this period.

Let us focus on the zeroth column of c′. The sum of any n consecutive
elements in it is constant, denote it by κ. Then summing the first kn, k ∈ N
consecutive elements gives kκ:

kκ = c′0,1 + · · ·+ c′0,kn

= b0c − bαc+ p1 − p0 + · · ·+ b(kn− 1)αc − bknαc+ pkn − pkn−1
= −bknαc+ pkn − p0 (4.1)

where we denote pi = p
(1)
0,i . Since p(1) is finitary, there are integers k1 < k2

such that pk1n = pk2n. Then k2κ− k1κ = bk1nαc − bk2nαc, and therefore κ
is rational. Now divide both sides of Equation 4.1 by k and let k →∞:

κ = lim
k→∞

bknαc+ pkn − p0
k

= nα.

We get a contradiction with irrationality of α.
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Chapter 5

Approaching Nivat’s conjecture

In this chapter we apply the facts we learned previously about annihilating
polynomials and link them to the complexity of a configuration.

When going from a symbolic configuration to formal power series, we have
to choose numerical representations of the symbols. We begin by showing
that there is a particularly suitable choice, and we call such configurations
normalized. Next, in order to attack Nivat’s conjecture, we define a class
of configurations called counterexample candidates. As the name suggests,
these are potential counterexamples to the conjecture, and our goal is to
prove that such configurations have high complexity.

To handle the complexity we need a suitable tool. We introduce lines of
blocks, which are just sets of blocks m× n located on a common line in the
configuration. We prove two complementary lemmas – the first one states
that there are many disjoint lines of blocks, while the other gives a lower
bound on the number of distinct blocks on a line. These combined result in
a lower bound on the overall complexity.

Our main result is that if c is non-periodic then the condition Pc(m,n) >
mn is true for all but finitely many pairsm,n. In the proof we consider three
different ranges of m and n:

Very thin blocks. If m or n is so small that the support of no annihilating
polynomial fits in the m × n rectangle, then by a variation of Lemma 3.1.2
the configuration has complexity Pc(m,n) > mn.

Thin blocks. Consider fixed n, large enough so that the support of some
annihilator fits inside a strip of height n. We show that there exists m0 such
that for all m > m0 we have Pc(m,n) > mn. Analogously for a fixed m.

Fat blocks. We prove that there are constants m0 and n0 such that for
m > m0 and n > n0 we have Pc(m,n) > mn.

These three ranges cover all but finitely many dimensions m × n. In-
terestingly, a common approach works for all configurations except for the
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case of fat blocks when c is a sum of horizontally and vertically one-periodic
configuration. This case is handled separately in Chapter 6.

5.1 Normalized configurations

There is a particularly suitable choice when representing a symbolic config-
uration as a formal power series. For a configuration c, define Unif(c) as the
set of Laurent polynomials f such that fc is a constant configuration. We
say that c is normalized if Unif(c) = Ann(c), i.e. if the constant in the result
of fc is always zero. Let us denote by 1 the constant one configuration.

Lemma 5.1.1. Let c be a finitary configuration. Then there exists a, b ∈
C, a 6= 0 such that ac + b1 is normalized. Moreover if c is integral then
a, b ∈ Z.

Proof. For f ∈ Unif(c) denote by κ(f) the number such that fc = κ(f)1
and by σ(f) the sum of the coefficients of f . Then for f, g ∈ Unif(c):

σ(f)κ(g)1 = fgc = gfc = σ(g)κ(f)1

⇒ g
(
σ(f)c− κ(f)1

)
= σ(f)κ(g)1− κ(f)σ(g)1 = 0.

If there is f such that σ(f) 6= 0 we can choose a = σ(f), b = −κ(f).
Since Unif(c) = Unif(ac+b1), for any g from this set we have g(ac+b1) = 0
and we are done. Let us assume that for all f ∈ Unif(c) we have σ(f) = 0,
we will show that then c is already normalized and therefore we can choose
a = 1, b = 0.

For even k let Ck denote the hypercube [−k
2 ,

k
2 )d ⊂ Zd of side k centered

around the origin. Choose even n ∈ N such that supp(f) ⊂ Cn and consider
arbitrary even integer N > n. Let us count the sum of coefficients of fc
inside of CN .

Since fc is a constant configuration the sum is surely κ(f)Nd. On the
other hand, the coefficients of fc in CN depend only on the coefficients of c
in CN+n. Each such coefficient cv contributes to the sum by σ(f)cv, but we
overcount in the region CN+2n \ CN of fc, see Figure 5.1. This region is of
size proportional to Nd−1 and because c is finitary, the contribution to each
position is bounded. Therefore

κ(f)Nd =
∑

v∈CN+n

σ(f)cv +O(Nd−1) = O(Nd−1).

Taking the limit N →∞ shows that κ(f) = 0. Therefore f is an annihilator
and c is normalized.

For the "moreover" part we argue as in the proof of Lemma 3.2.1. Let
f =

∑
aiX

ui , then

fc = a01 ⇔ (−a0, a1, . . . , am) ⊥ (1, cv−u1 , . . . , cv−um)
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Figure 5.1: Proof of Lemma 5.1.1: Counting sum of coefficients of fc inside
of CN .

for all v ∈ Z. Thus all f form a vector space over C which has integral
generators if c is integral. Therefore if there is f with σ(f) 6= 0, then there is
also integral f ′ with σ(f ′) 6= 0. In that case necessarily σ(f ′), κ(f ′) ∈ Z.

Corollary 5.1.2. Either c is normalized, in which case c+κ1 is normalized
for all choices of κ ∈ C, or there is unique κ ∈ C such that c + κ1 is
normalized.

Proof. Follows from the proof of Lemma 5.1.1 by choosing κ = b/a.

Note that the case when σ(f) = 0 for all f in the proof of the previous
lemma can be handled easily for two-dimensional integral configurations. If
the sum of coefficients of f is zero and fc is a constant configuration, then
f2c = 0. We proved that the ideal of annihilators is radical, so we can
conclude fc = 0.

To link polynomials and complexity we use a variation of Lemma 3.1.2.
Recall that for a finite shape D ⊂ Zd we denote by cv+D the pattern of shape
D extracted from the position v ∈ Zd. Formally we defined it as a function

cv+D : D → C
di 7→ cv+di

,

and therefore it makes sense to talk about linear independence of patterns
(over C). If we denote D = {d1, . . . ,dn}, then this is the same as if we
considered cv+D to be the vector (cv+d1 , . . . , cv+dn) ∈ Cn.

Let us say that a Laurent polynomial f fits in S ⊂ Zd if a translate of
− supp(f) is a subset of S. Here S can also be infinite, and usually will be
a convex subset of Zd.

Lemma 5.1.3. Let c be a configuration and D ⊂ Zd a finite shape. Assume
there is no annihilating Laurent polynomial f which fits in D. Then there
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are |D| linearly independent patterns cv+D. Moreover if c is normalized then
Pc(D) > |D|.

Proof. Denote D as above and for contradiction assume the vectors
(cv+d1 , . . . , cv+dn) ∈ Cn span a space of dimension at most n − 1. Then
there exists a common orthogonal vector (a1, . . . , an) and f(X) = a1X

−d1 +
· · ·+ anX

−dn is an annihilating polynomial fitting in D.
For the second part for contradiction suppose Pc(D) ≤ n, then the vec-

tors (1, cv+d1 , . . . , cv+dn) ∈ Cn+1 span a space of dimension at most n.
Let (a0, a1, . . . , an) be their common orthogonal vector. Then f defined as
previously has the property fc = −a01. If c is normalized then f is an
annihilator.

5.2 Counterexample candidates

We approach Nivat’s conjecture by examining a potential counterexample to
it. Let us recall the conjecture, in the contrapositive direction:

Conjecture (Nivat’s conjecture). Let c be a non-periodic two-dimensional
configuration. Then for all positive integers m,n we have Pc(m,n) > mn.

If c is a counterexample, then it is surely a non-periodic two-dimensional
configuration. It is finitary, since otherwise its complexity is not bounded.
It also has to have an annihilator – otherwise by Lemma 3.1.2 for all m,n we
have Pc(m,n) > mn. Moreover, without loss of generality, we can assume
that c is integral. Let us make a formal definition:

Definition 5.1. A configuration is a counterexample candidate if it is two-
dimensional, non-periodic, finitary and integral configuration with an anni-
hilator.

Our goal is to show that any counterexample candidate c has a high
complexity. In the proofs which follow we will frequently use the annihila-
tor structure characterization from Corollary 4.2.1. Let us therefore define
polynomials φ, φ1, . . . , φord(c) and an ideal H such that

Ann(c) = φH = φ1 · · ·φord(c)H

as in the statement of Corollary 4.2.1. Note that since c is non-periodic we
have ord(c) ≥ 2.

For a non-zero Laurent polynomial f let us define the bounding box of f
to be the vector box(f) = (m,n) with m,n smallest integers such that f fits
in a block (m+ 1)× (n+ 1). Equivalently,

box(f) = (maxA−minA, maxB −minB)
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xy-1

-3x3

x2y

Figure 5.2: The bounding box of the polynomial xy−1 + x2y − 3x3 is (2, 2).

where A = { a | (a, b) ∈ supp(f) } and B = { b | (a, b) ∈ supp(f) }. Let
us furthermore extend the definition to vectors: if v = (v1, v2) then define
box(v) = (|v1|, |v2|).

Example 5.2.1. For example, box(xy−1+x2y−3x3) = (2, 2) and box(Xu−
Xv) = box(u − v). If we plot the support of a polynomial as points in
the plane, the bounding box are dimensions of the smallest rectangle which
covers all of them, see Figure 5.2. Note however that a polynomial f never
fits in box(f).

With the framework that we just defined we get almost for free that
counterexample candidates have high complexity for very thin rectangles:

Lemma 5.2.2 (Very thin blocks). Let c be a counterexample candidate and
(mφ, nφ) = box(φ). If M,N are positive integers such that M ≤ mφ or
N ≤ nφ then Pc(M,N) > MN .

Proof. By Lemma 5.1.1 there exist a, b ∈ Z, a 6= 0, such that c′ = ac + b1
is a finitary integral configuration which is normalized. Clearly Pc(M,N) =
Pc′(M,N). Let Ann(c′) = φ′H ′. Since Ann(ac) = Ann(c) and ord(b1) = 0,
by Corollary 4.3.2 we have φ′ = φ.

Thus every annihilator of c′ is a multiple of φ and therefore it cannot fit
in an M ×N rectangle. By Lemma 5.1.3 we have Pc′(M,N) > MN which
concludes the proof.

5.3 Disjoint lines of blocks

For a finite shape D ⊂ Z2 let us define a line of D-patterns in direction
v ∈ Z2, v 6= 0 to be a set of the form

L =
{
cu+kv+D

∣∣ k ∈ Z
}

for some vector u ∈ Z2. Let Linesv(D) be the set of all lines in the same
direction, i.e.

Linesv(D) =
{
{ cu+kv+D | k ∈ Z }

∣∣ u ∈ Z2
}
.
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Figure 5.3: Two lines of blocks 5 × 4 in direction (2, 1). They are elements
of Lines(2,1)(5, 4).

Note that Linesv(D) is a family of sets. In our usual setup the vector v will
be primitive and as the shape D we will consider rectangular blocks M ×N .
In that case we talk about lines of M ×N blocks in direction v and denote
more conveniently by Linesv(M,N). Figure 5.3 illustrates this definition.

Our strategy is to prove two complementary lemmas. The first one gives
a lower bound on the number of pairwise disjoint sets in Linesv(M,N) for
a suitable choice of v,M,N . The second one gives a lower bound for the
number of blocks in any L ∈ Linesv(M,N). Combined, they give a lower
bound on the complexity of the configuration.

We make use of the structure of the annihilator ideal Ann(c) = φH.
When talking about minimal polynomials, we mean minimal with respect
to polynomial division. In polynomials in one variable, all ideals have (up to
an invertible factor) unique minimal polynomial which generates the ideal.
In our case the situation can be more complicated.

Clearly, minimal polynomials of Ann(c) are of the form φh where h is
a minimal polynomial of H. Moreover, in that case Ann(hc) = 〈φ〉. Note
that we cannot take any polynomial from H in the place of h – for example,
φh ∈ H but Ann(φhc) = Ann(0) = C[x±1, y±1].

We claim that H contains a line polynomial in arbitrary non-zero direc-
tion v ∈ Z2 which is minimal. IfH = C[X±1] this is trivially true. Otherwise
let Zi ∈ C2 be the roots of H, then

∏
i(X

v − Zv
i ) ∈ H is a line polynomial

in the direction v. It suffices to choose a minimal polynomial from H which
divides it.

Lemma 5.3.1. Let f be a line Laurent polynomial and v a primitive vector
in the direction of f . Let c be a configuration such that Ann(c) = 〈f〉. Denote
(mf , nf ) = box(f), (m,n) = box(v) and let M > mf , N > nf be positive
integers. Then Linesv(M,N) contains at least (M − mf )n + m(N − nf )
pairwise disjoint sets.

Proof. Without loss of generality assume v = (m,n), otherwise a mirrored
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v

M ′ =M −mf mf = dm

N ′ = N − nf

nf = dn

D

Figure 5.4: The shape D in Lemma 5.3.1. The marked points are elements
of the M ×N block, the filled ones belong to D.

or rotated configuration can be considered. There is an integer d ∈ N such
that (mf , nf ) = (dm, dn) = dv. Denote M ′ = M −mf , N

′ = N − nf and
define

D =
{

(M ′, 0) + a(−M ′, N ′) + b(mf , nf )
∣∣ a, b ∈ [0, 1)

}
∩ Z2.

The shape D is contained in an M ×N block and |D| = M ′nf +mfN
′, see

Figure 5.4. Moreover no multiple of f fits in D, thus by Lemma 5.1.3 there
are at least M ′nf + mfN

′ = d(M ′n + mN ′) linearly independent patterns
cv+D.

Let L be a line of patterns from Linesv(D). Then f gives a linear
recurrence relation of degree d on the elements of L. Therefore the vector
space generated by the elements of L has dimension at most d. In particular,
each line contains at most d of the |D| linearly independent patterns cv+D.
It follows that there are at least M ′n+mN ′ distinct lines in Linesv(D).

We claim that if two lines are distinct then they are disjoint. Indeed,
if a line contains a particular D-pattern, then f uniquely determines the
next and the previous pattern on the line. Therefore the lines either contain
exactly the same patterns or they are disjoint.

We proved that Linesv(D) contains at leastM ′n+mN ′ pairwise disjoint
lines, therefore also Linesv(M,N) does.

Lemma 5.3.2. Let c be a counterexample candidate, f ∈ Ann(c) be minimal
and v be a primitive vector in the direction of φ1. Denote (mf , nf ) = box(f),
(m,n) = box(v) and let M > mf , N > nf be integers. Then Linesv(M,N)
contains at least (M −mf )n+m(N − nf ) disjoint sets.

Proof. Let c′ = (f/φ1)c, then c′ is a one-periodic configuration with
Ann(c′) = 〈φ1〉. Denote (m1, n1) = box(φ1), then by Lemma 5.3.1,
Linesv(M − mf + m1, N − nf + n1) in c′ contains at least (M − mf )n +
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m(N −nf ) disjoint elements. AnM ×N block in c when multiplied by f/φ1
determines an (M −mf + m1) × (M − nf + n1) block in c′. Therefore the
lower bound applies also for Linesv(M,N) in c.

5.4 Non-periodic stripes

Define a stripe to be a set of integer points between two parallel lines, i.e. a
set of the form {

w + au + bv
∣∣ a ∈ [0, 1), b ∈ R

}
∩ Z2,

where u,v,w ∈ Z2 are arbitrary, v 6= 0. The vector w specifies the position
of the stripe, u determines its width and the stripe extends infinitely along
v. Let us call the vector space 〈v〉 ⊂ Q2 the direction of the stripe.

Lemma 5.4.1. Let c be a counterexample candidate and v ∈ Z2 a non-zero
vector. Let S be an infinite stripe in the direction of v of maximal width such
that φ does not fit in. Then c restricted to the stripe S is non-periodic in the
direction of v.

Proof. Since ord(c) ≥ 2 there are at least two line polynomial factors of φ
in different directions. Without loss of generality assume that v is distinct
from the direction of φ1.

Let h ∈ H be a minimal line polynomial in the direction of v. Then
f = φh is a minimal polynomial from Ann(c). Consider c′ = (f/φ1)c. It
is a one-periodic configuration in the direction of φ1. Let S′ be a narrower
stripe in c′ determined from S in c by the multiplication by f/φ1. S′ is of
maximal width such that φ1 does not fit in.

For a contradiction assume that c restricted to S is periodic in the direc-
tion of v, then also c′ restricted to S′ is. Moreover S′ determines the whole
configuration c′ – the annihilator φ1 gives a linear recurrence relation on the
coefficients of c′ lying on lines in the direction of φ1, and S′ is wide enough
so that every coefficient is determined. Therefore c′ is periodic also in the
direction of v, which is in contradiction with one-periodicity of c′.

Lemma 5.4.2. Let c be a counterexample candidate and v ∈ Z2 a non-
zero vector. Denote (mφ, nφ) = box(φ), (m,n) = box(v) and let M > mφ,
N > nφ be integers. Let L ∈ Linesv(M,N) be arbitrary.

(a) If v is neither horizontal nor vertical, then

|L| ≥ min

{
M −mφ + 1

m
,
N − nφ + 1

n

}
.
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(b) Assume v is not horizontal. If M ≥ (N + nφ)mn +mφ then

|L| ≥ N + 1

n
.

Proof. Without loss of generality assume v = (m,n), the other cases are
mirrored or rotated. Also assume that there is a block in L with (0, 0) as its
bottom left corner. The proof is illustrated in Figure 5.5.
(a) Consider the stripe

S1 =
{

(0, nφ) + a(mφ,−nφ) + bv
∣∣ a ∈ [0, 1), b ∈ R

}
∩ Z2.

Since (mφ, nφ) is the bounding box of φ, the stripe S from Lemma 5.4.1 fits
in S1. Therefore S1 is non-periodic in the direction of v, and in particular
there exists a "fiber" f = {u + kv | k ∈ Z } inside of the stripe on which c
spells a non-periodic sequence.

Each block from L contains the same number of consecutive points from
a fixed fiber in S1, let p(f) be this number for f . Clearly, one of the two
fibers on the boundaries of S1 lower bounds this quantity. Therefore, by
computing the number of points on the boundary fibers,

p(f) ≥ min

{⌊M −mφ

m

⌋
,
⌊N − nφ

n

⌋}
.

Now by Morse-Hedlund theorem there are at least p(f)+1 distinct blocks
in L. The proof is finished by verifying that bp/qc+1 ≥ (p+1)/q for p, q ∈ N.
(b) Consider the stripe

S2 =
{
a(mφ,−nφ) + bv

∣∣ a ∈ [0, 1), b ∈ R
}
∩ Z2.

As in the part (a), it contains a non-periodic fiber. Moreover, if the condition
on M is satisfied, then the boundary of S2 intersects every block in L on
the top edge. Therefore bN/nc lower bounds the number of points from any
fiber of S2 contained in a block in L. The rest follows as in (a).

5.5 Asymptotic Nivat’s conjecture

Let us combine the above lemmas to get a lower bound on the complexity
of a counterexample candidate.

Lemma 5.5.1 (Thin blocks). Let c be a counterexample candidate and
(mφ, nφ) = box(φ). Fix an integer N > nφ. Then there exists M0 such
that if M > M0 then Pc(M,N) > MN .
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Figure 5.5: The stripes S1 and S2 from the proof of Lemma 5.4.2.

Proof. Since ord(c) ≥ 2 we can without loss of generality assume that the
direction of φ1 is not horizontal. Let v be a primitive vector in that direction
and denote (m,n) = box(v).

Let h ∈ H be a horizontal line polynomial and let f = φh, (mf , nf ) =
box(f). Clearly nf = nφ. Assume M ≥ (N + nφ)mn + mφ. Then by
Lemma 5.3.2 and Lemma 5.4.2(b) for M > mf , N > nf we have

Pc(M,N) =
∣∣∣⋃Linesv(M,N)

∣∣∣
≥
(
(M −mf )n+m(N − nf )

)N + 1

n
≥ (M −mf )(N + 1) = MN +M −mf (N + 1).

The proof is finished by choosing M0 = max
{
mf (N + 1), (N + nφ)mn +

mφ

}
.

Lemma 5.5.2 (Fat blocks I). Let c be a counterexample candidate and let
v be the direction of φ1. If v is neither horizontal nor vertical, then there
exist positive integers M0, N0 such that for M > M0 and N > N0 holds
Pc(M,N) > MN .

Proof. Let f ∈ Ann(c) be minimal and denote (m,n) = box(v), (mφ, nφ) =
box(φ), (mf , nf ) = box(f). Assume M > mf , N > nf and let α = m

n . We
consider three ranges of M . The proof is illustrated in Figure 5.6.

(a) Assume (N + nφ)α+mφ ≤M . This condition is equivalent to the one
in Lemma 5.4.2(b), therefore by combining with Lemma 5.3.2

Pc(M,N) ≥
(
(M −mf )n+m(N − nf )

)N + 1

n

= (M −mf )(N + 1) + (N − nf )(N + 1)
m

n
= MN +M + Θ(N2).
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Figure 5.6: Three different ranges for M from the proof of Lemma 5.5.2.

Therefore there exist an integer N1 such that for N > N1 the complexity is
at least MN .

(b) Assume (N − nφ)α −mφ < M < (N + nφ)α + mφ. Then M = Θ(N).
Now combine Lemma 5.3.2 and Lemma 5.4.2(a):

Pc(M,N) >
(
(M −mf )n+m(N − nf )

)
min

{
M −mφ

m
,
N − nφ

n

}
≥
(
(M −mf )n+m(N − nf )

)
min

{
M −mf

m
,
N − nf

n

}
= (M −mf )(N − nf ) + min

{
(M −mf )2

n

m
, (N − nf )2

m

n

}
= (M −mf )(N − nf ) + Θ(N2)

= MN + Θ(N2).

Therefore there is an integerN2 such that forN > N2 the complexity exceeds
MN .

(c) Assume M ≤ (N − nφ)α − mφ. This is equivalent to the condition
in Lemma 5.4.2(b) when the roles of horizontal and vertical direction are
exchanged. Therefore, similarly as in (a), there exists M0 such that for
M > M0 the complexity is at least MN . The whole proof is finished by
choosing N0 = max{N1, N2}.

Now we are just a step away from our main theorem. Suppose we knew
that Lemma 5.5.2 holds also when there are only horizontal and vertical φi
components:

Lemma 5.5.3 (Fat blocks II). Let c be a counterexample candidate, ord(c) =
2 and the directions of φ1, φ2 are horizontal and vertical, respectively. Then
there exist positive integers M0, N0 such that for M > M0 and N > N0 holds
Pc(M,N) > MN .
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This is the case when c is a sum of horizontally one-periodic and vertically
one-periodic configurations. We postpone the proof of Lemma 5.5.3 to the
next chapter. Assuming the lemma is valid, we can finally give a proof of
our main theorem.

Theorem 5.5.4 (The main result). Let c be a two-dimensional non-periodic
configuration. Then Pc(M,N) > MN holds for all but finitely many choices
M,N ∈ N.

Proof. By the discussion preceding Definition 5.1, it is enough to consider
counterexample candidates c. Note that either at least one of φi is nei-
ther horizontal nor vertical, or ord(c) = 2 and the directions of φ1, φ2 are
horizontal and vertical in some order. In either case, by Lemma 5.5.2 or
Lemma 5.5.3, there are M0, N0 such that for M > M0, N > N0 we have
Pc(M,N) > MN .

Let (mφ, nφ) = box(φ) and assume nφ < N ≤ N0. By Lemma 5.5.1 for
each such N all but finitely many M satisfy Pc(M,N) > MN . Therefore
for the whole range nφ < N ≤ N0 the condition can be violated only finitely
many times. The situation for mφ < M ≤M0 is symmetric.

Finally, if M ≤ mφ or N ≤ nφ the complexity is greater than MN by
Lemma 5.2.2. This concludes the proof.

Corollary 5.5.5. If c is a two-dimensional configuration such that
Pc(M,N) ≤ MN holds for infinitely many pairs M,N ∈ N, then c is peri-
odic.
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Chapter 6

Sums of two periodic
configurations

To finish the proof of the asymptotic version of Nivat’s conjecture (Theo-
rem 5.5.4) it remains to handle the case when a configuration is a sum of
horizontally and vertically periodic configuration. In the paper [KS16] we
have shown how to do it in a rather technical combinatorial way. Here we
take a different approach.

We revisit the method of Van Cyr and Bryna Kra [CK15, CK16]. They
approach Nivat’s conjecture from the point of view of symbolic dynamics.
They use a refined version of the classical notion of expansiveness of a sub-
shift, a so called one-sided non-expansiveness. A key definition of theirs is
that of a balanced set – it is a shape D ⊂ Z2 which satisfies a particular
condition on the complexity Pc(D). (Note that this notion is different from
balancedness usual in combinatorics on words.) The crucial tool they devel-
oped is a combinatorial lemma which links one-sided non-expansiveness and
balanced sets to periodicity of a configuration. However, in order to obtain
the main result of the paper from the lemma it still takes a rather lengthy
technical analysis.

In this chapter we combine the algebraic method with ideas of Cyr and
Kra. We start the exposition with a very basic introduction to the topic
of symbolic dynamics. In section 6.1 we define a subshift, in section 6.2
we fix some geometric terminology, and in section 6.3 we give definitions of
non-expansiveness and one-sided non-expansiveness of a subshift.

In section 6.4 we introduce a simplified version of a balanced set and prove
Lemma 6.4.3 which connects balanced sets with periodicity using the ideas
of Cyr and Kra. We use the lemma together with decomposition theorem to
prove the following, from which our main result follows:

Theorem (Theorem 6.5.1). Let c be a counterexample candidate with
ord(c) = 2. Then Pc(m,n) > mn for all m,n ∈ N.
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As a corollary, we obtain an alternative proof of Theorem 1.2 of [CK15],
the main result of their paper:

Theorem (Cyr, Kra). Let c be a configuration satisfying Pc(m,n) ≤ mn/2
for some m,n ∈ N. Then c is periodic.

Results in this chapter have been published in [Sza18].

6.1 Symbolic dynamics and subshifts

Let us recall basic facts from symbolic dynamics, for a comprehensive refer-
ence and proofs see [Kůr03].

Let A be a finite set, we call it an alphabet. Let d ∈ N be a fixed
dimension. A symbolic configuration is a mapping c : Zd → A. The set of all
symbolic configurations is denoted AZd . To simplify notation, for v ∈ Zd we
denote cv = c(v).

For a vector u ∈ Zd we define the shift operator τu : AZd → AZd by

(τu(c))v = cv−u.

If we interpret c as assignment of “colors” from A to the grid Zd, then τu(c)
is the coloring c translated in the direction of vector u.

For purposes of symbolic dynamics it does not matter what are the actual
elements of A, let us assume they are complex numbers. Then a symbolic
configuration can be naturally identified with power series

∑
v cvX

v, which is
our notion of finitary configuration from before. Note that the shift operator
τu corresponds to multiplication by Xu. We will identify the two concepts
from now on.

Symbolic dynamics studies AZd as a topological space. Let us first make
A a topological space by endowing it with the discrete topology. Then AZd

is considered to be a topological space with the product topology.
Open sets in this topology are for example sets of the following form. Let

D ⊂ Zd be finite and p : D → A arbitrary. Then

Cyl(p) :=
{
c ∈ AZd ∣∣ ∀v ∈ D : cv = pv

}
is an open set, also called a cylinder. In fact, the collection of cylinders
Cyl(p) for all possible p forms a base of the topology on AZd . We leave this
fact without a proof.

The set AZd is called the full shift. A subset X ⊂ AZd is called a subshift
if it is a topologically closed set which is invariant under all shifts τu:

∀u ∈ Zd : c ∈ X ⇒ τu(c) ∈ X.

Subshifts are the central objects of study in symbolic dynamics.
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Figure 6.1: Four types of configurations in the orbit closure Xc from Exam-
ple 6.1.1. The gray color corresponds to value 1, white is 0.

Let c be a configuration. We denote by Xc the orbit closure of c, that
is, the smallest subshift which contains c. It can be shown that c contains
exactly those configurations c′ whose finite patterns are among the finite
patterns of c. In particular, for any c′ ∈ Xc and a finite domain D we have
Pc′(D) ≤ Pc(D).

Example 6.1.1. Let us give an example of taking orbit closure. Let c ∈
{0, 1}Z2 be such that cij = 1 if i = 0 or j = 0, and cij = 0 otherwise. When
pictured, the configuration c consists of a large cross with its center at (0, 0).
The orbit closure Xc then consist of four types of configurations: a cross, a
horizontal line, a vertical line and all zero configurations, with all possible
translations, see Figure 6.1. It is easy to see that any pattern which occurs
in them also occurs in c, and not difficult to prove that those are all such
configurations.

Example 6.1.2. One way to obtain a subshift is to specify a set of forbidden
patterns. Let D ⊂ Zd be finite and let p1, . . . , pk ∈ AD be patterns. We
define Xp1,...,pk to be the set of configurations which do not contain any of
the patterns pi. A subshift that can be defined this way is called a subshift
of finite type.

An example in one dimension would be the golden mean subshift. LetA =
{0, 1}, then the subshift X11 consists of all sequences c ∈ AZ which do not
contain “11” as a subpattern. An example sequence in this subshift would be
a bidirectional version of the Fibonacci word . . . 010010100100101001010 . . . ,
or a sequence consisting of a single one . . . 0001000 . . . .

6.2 Geometric notation and terminology

In the sequel we will be concerned with the geometry of Z2. Let us establish
some notation and terminology.

We view Z2 as a subset of the vector space Q2. A direction is an equiva-
lence class of Q2 \ {(0, 0)} modulo the equivalence relation u ∼ v iff u = λv
for some λ > 0. By a slight abuse of notation, we identify a non-zero vector
u ∈ Z2 with the direction uQ+.
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`

u

Figure 6.2: Marked points belong to the half-plane H` determined by the
directed line ` in direction u = (2, 3).

Let u ∈ Z2 be non-zero. An (undirected) line in Z2 is a set of the form

{v + qu | q ∈ Q } ∩ Z2

for some v ∈ Z2. We call both u and −u a direction of the line. We define a
directed line to be a line augmented with one of the two possible directions.
A pair of directed lines in opposite directions are called antiparallels.

Let ` be a directed line in direction u going through v ∈ Z2. The half-
plane determined by ` is defined by

H` =
{
v + w

∣∣ w ∈ Z2, w1u2 − u1w2 ≥ 0
}
.

With the usual choice of coordinates it is the half-plane “on the right” from
the line, see Figure 6.2. Let Hu denote the half-plane determined by the
directed line in direction u going through the origin.

We say that a non-empty D ⊂ Z2 is convex if D can be written as
an intersection of half-planes. Convex hull of D, denoted Conv(D), is the
smallest convex set containing D. Assume ` is a directed line in direction
u such that D ⊂ H` and ` ∩ D is non-empty. If |` ∩ D| > 1 we call it the
edge of D in direction u, otherwise we call it the vertex of D in direction
u. Note that a vertex is a vertex for many directions, but an edge has a
unique direction (as long as D is not contained in a line). See Figure 6.3 for
an example.

Stripes

Let us amend the definition of a stripe from section 5.4 by augmenting it
with one of the two possible directions. Let u be a direction and `, `′ two
directed lines in direction u. If

S = H` \H`′
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u1

u2

u3

v

e

Figure 6.3: A convex set. The point v is a vertex of the set for both directions
u1 and u2. The set of three marked points e is the edge in direction u3.

is non-empty, then S is called a stripe in direction u. Let S◦ = S \ ` be the
interior of S.

Suppose D ⊂ Z2 is finite. Then a stripe S envelopes D if D fits in S,
but does not fit in S◦. We say that S envelopes a vector v or a polynomial
f if S envelopes {0,v} or supp(f) respectively.

6.3 Non-expansiveness and one-sided non-
expansiveness

It can be verified that the topology on AZd is compact, and also metrizable
for example with the metric

d(c, e) =

{
0 if c = e,

2−min{|v| : cv 6=ev} otherwise.

Note that shift operators τu are continuous maps on AZd . Expansiveness
can be defined in general for a continuous action on a compact metric space,
the definition is however too general for our purposes. We give a definition
specific to the case of AZ2 .

Let X ⊂ AZ2 be a subshift and u a direction. Then u is an expansive
direction for X if there exists a stripe S in direction u such that

∀c, e ∈ X : c�S= e�S ⇒ c = e.

Informally speaking, u is an expansive direction for X if a configuration in X
is uniquely determined by its coefficients in a wide enough stripe in direction
u.

The following theorem links double periodicity of a configuration with
expansiveness. It is a corollary of a theorem by Boyle and Lind [BL97].

Theorem 6.3.1. Let c be a symbolic configuration. Then c is doubly periodic
iff all directions are expansive for Xc.
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` `

Figure 6.4: The figure on the left illustrates expansiveness – values of the
configuration inside the stripe determine the whole configuration. On the
right we see one-sided expansiveness in direction (1, 2) – values in the half-
plane H`, or equivalently in a wide enough stripe, determine the values in
the half-plane Z2 \H`.

Let X ⊂ AZ2 be a subshift and u a direction. Then u is a one-sided
expansive direction for X if

∀c, e ∈ X : c�Hu= e�Hu ⇒ c = e.

Equivalently, u is a one-sided expansive direction for X if there exists a wide
enough stripe S in direction u such that ∀c, e ∈ X : c�S= e�S⇒ c�H−u=
e�H−u . See Figure 6.4 for a comparison of the notion of expansiveness and
one-sided expansiveness.

Example 6.3.2 (Ledrappier’s subshift). It is possible for a subshift to
be one-sided expansive but non-expansive in the same direction. Con-
sider a subshift X ⊂ {0, 1}Z2 consisting of configurations c which satisfy
cij ≡ ci,j+1 + ci+1,j+1 (mod 2). Upper half-plane of a configuration deter-
mines the whole, since any single row determines the one below it. Therefore
(−1, 0) is a one-sided expansive direction for X. However, no stripe in direc-
tion (−1, 0) determines a configuration from the subshift; for any row, there
are always two possibilities for the row above it (they are complements of
each other). Therefore any horizontal stripe can be extended to the upper
half-plane in infinitely many ways.

We are primarily interested in non-expansive directions. In our setup,
there are at most finitely many of them. This follows from existence of
generating sets introduced by Cyr and Kra [CK15], here we show a proof
using polynomials:

Lemma 6.3.3. Let c be a finitary integral configuration with a non-trivial
annihilator. Let Ann(c) = φ1 · · ·φmH as in Corollary 4.2.1. Then non-
expansive directions of Xc are among directions of φi.
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Figure 6.5: A stripe of height 4 (full dots) and its two adjacent lines (crosses).
The convex hull of supp(f) is positioned such that one vertex lies on one of
the lines, the rest lies in the stripe.

Proof. Let h ∈ H be in the same direction as φ1 and let f = φ1 · · ·φmh.
Denote F = supp(f). Note that Conv(F ) has edges only in directions of φi.

Let c′ ∈ Xc be arbitrary. Since c′ contains only patterns contained in c,
f annihilates c′. Let u be any direction distinct from the directions of φi
and S a wide enough stripe in direction u such that F fits in. We show that
values in the stripe determine the values in the two nearest lines in direction
u not contained in S. Then, by repeating the argument for a shifted stripe,
all values can be determined, and therefore Xc is expansive in direction u.

Since Conv(F ) has a vertex both in direction u and −u, the set F can
be translated such that one point lies on one of the closest lines in direction
u not contained in S, and the rest is contained in S. The polynomial f gives
a linear combination on the values in any translation of F . Therefore the
values inside of S determine the value in the neighbouring line. By shifting
F along the stripe the whole line is determined. See Figure 6.5.

We conjecture also the converse:

Conjecture 6.1. Let c be a finitary integral configuration with a non-trivial
annihilator. Let Ann(c) = φ1 · · ·φmH as in Corollary 4.2.1. Then non-
expansive directions of Xc are exactly the directions of φi.

For later use it will be practical to define non-expansiveness explicitly.
Let X ⊂ AZ2 be a subshift and S a stripe in direction u. We say that S is
an ambiguous stripe in direction u if there exist c, e ∈ X such that

c�S◦= e�S◦ , but c�S 6= e�S . (6.1)

We say that c ∈ X contains an ambiguous stripe S if there exists e ∈ X
satisfying (6.1). Informally, a stripe is ambiguous if its interior does not
determine the inner boundary.

Definition 6.1. Let u be a direction and X ⊂ AZ2 a subshift. Then u
is one-sided non-expansive direction if there exists an ambiguous stripe in
direction u of arbitrary width.

We leave the proof that this is the converse of the earlier definition of
one-sided expansiveness to the reader.
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6.4 Balanced sets

Let c be a fixed symbolic configuration.

Definition 6.2. Let B ⊂ Z2 be a finite and convex set, u a direction and E
an edge or a vertex of B in direction u. Then B is u-balanced if:

(i) Pc(B) ≤ |B|

(ii) Pc(B) < Pc(B \ E) + |E|

(iii) Intersection of B with all lines in direction u is either empty or of size
at least |E| − 1.

The three conditions of the definition can be interpreted as follows. The
first one states that B is a low complexity shape, and therefore in particular
there exists an annihilator such that its support fits in −B (if c is normal-
ized). The second condition limits the number of (B \E)-patterns which do
not extend uniquely to a B-pattern, there is strictly less than |E| of them.
The third condition is implied if the length of the edge in direction u is
smaller or equal to the length of the edge in the opposite direction, as can
be seen in the next proof.

Lemma 6.4.1. Let c be such that Pc(m,n) ≤ mn holds for some m,n ∈ N
and u a direction. Then there exists a u-balanced or (−u)-balanced set.
Moreover, if u is horizontal or vertical, then there exists a u-balanced set.

Proof. Let D be an m× n rectangle, we have Pc(D) ≤ |D|. Let us define a
sequence of convex shapes D = D0 ⊃ D1 ⊃ · · · ⊃ Dk = ∅ such that Di\Di+1

is the edge of Di in direction (−1)iu. Informally, the sequence represents
shaving off an edge (or a vertex) of the shape alternately in directions u and
−u. See Figure 6.6 for an illustration.

Consider the expression Pc(Di) − |Di| as a function of i. For i = 0 its
value is non-positive and for i = k its value is 1. Let i ∈ [0, k−1] be smallest
such that 0 < Pc(Di+1)− |Di+1|, then we have

Pc(Di)− |Di| ≤ 0 < Pc(Di+1)− |Di+1|.

Denote E = Di \ Di+1, it is an edge or a vertex of Di in direction u or
−u. Adding |Di| to the inequality and rewriting gives Pc(Di) ≤ |Di| <
Pc(Di \ E) + |E|.

We show that B = Di is a balanced set by showing that (iii) of Definition
6.2 holds. Without loss of generality let the direction of E be u. Then, by
construction, the length of E is smaller or equal to the edge in direction −u.
In fact, if we consider the convex hull of B in Q2, any line in direction u
intersects it in a line segment longer or equal to d, the length of the edge.
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1

2

3
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5

Figure 6.6: Shaving off edges or vertices of a 5 × 5 rectangle alternately in
directions (2, 1) and (−2,−1). Small numbers indicate the order in which
the edges or vertices were removed.

Any line segment of length at least d in direction u intersects either none or
at least |E| − 1 integer points, and we are done.

If u is either horizontal or vertical, instead of alternating the direction
of shaved off edges, we can always shave off the edge in direction u. It will
be always the shortest edge in direction u, therefore verification of part (iii)
goes through.

Next we present Lemma 6.4.3 which connects non-expansiveness and bal-
anced sets with periodicity, based on the method of Cyr and Kra. Period-
icity in the proof first arises in a stripe from the use of the Morse–Hedlund
theorem. This part of the proof follows Lemma 2.24 from [CK15]. The peri-
odicity is then extended to the whole configuration by the following variant
of Lemma 5.4.1:

Lemma 6.4.2. Let c be a finitary integral two-dimensional configuration
and S a stripe in direction u such that there exists a non-trivial annihilator
which fits in S. If S◦ is periodic with a period in direction u then also c is
periodic with a period in direction u.

Proof. Let Ann(c) = φ1 · · ·φmH = φH as in Corollary 4.2.1. Further let
h ∈ H be a line polynomial in direction u (for its existence see discussion
before Lemma 5.3.1). Since φ divides the annihilator which fits in S, also
φh is an annihilator which fits in S. If there is i such that φi is in direction
u, let g = φi, otherwise let g = 1. Then the support of φ/g does not have
an edge in direction u or −u.

Let v be a period of S. Now consider c′ = (Xv − 1)ghc and let S′ be a
stripe in c′ determined by multiplication by the line polynomial (Xv − 1)gh
from the values in S. S′ has the same width as S and in particular φ/g fits
in. Note that c′ contains only zeros in (S′)◦ and φ/g annihilates c′. Since
φ/g does not have an edge in direction u or −u we have that c′ = 0. In
particular, c is annihilated by the line polynomial (Xv− 1)gh, and therefore
it is periodic in direction u.
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Lemma 6.4.3. Let c be a two-dimensional configuration and B a u-balanced
set. Assume that c contains an ambiguous stripe for Xc in direction u such
that B fits in the stripe. Then c is periodic in direction u.

Proof. Let E be the edge or vertex of B in direction u, denote S the stripe
and let ` be the inner boundary of S in direction u. Without loss of generality
assume B ⊂ S and E ⊂ `. Further assume that u is a primitive vector. Let
e ∈ Xc be such that Equation (6.1) holds.

Denote points in E consecutively by e1, . . . , en (see Figure 6.7). Define
a sequence B = Dn ⊃ · · · ⊃ D1 ⊃ D0 = B \ E by setting Di−1 = Di \ {ei}.
Consider the values P (Di)− |Di|. Since B is a balanced set, by (ii) we have
Pc(Dn)− |Dn| < Pc(D0)− |D0|, let k ∈ [0, n− 1] be such that

Pc(Dk+1)− |Dk+1| < Pc(Dk)− |Dk|.
Adding |Dk+1| to both sides yields Pc(Dk+1) < Pc(Dk) + 1. On the other
hand, Pc(Dk) ≤ Pc(Dk+1) sinceDk ⊂ Dk+1, and therefore we have Pc(Dk) =
P (Dk+1). In other words, a Dk-pattern uniquely determines the value at
position ek+1.

We will show that ∀i : c�B+iu 6= e�B+iu. For the contrary, assume that
there is j such that c�B+ju= e�B+ju, then also c�Dk+ju= e�Dk+ju. Using
the property of Dk, we have c�ek+1+ju= e�ek+1+ju. Therefore c�Dk+(j+1)u=
e�Dk+(j+1)u and we can proceed by induction to show c�Dk+j′u= e�Dk+j′u
for all j′ > j. Consequently, c�B+j′u= e�B+j′u for all j′ > j. Analogously,
by constructing sets Di by removing edge points from the other end, it can
be shown that also c�B+j′u= e�B+j′u for all j′ < j. We proved c�S= e�S ,
which is a contradiction with ambiguity of S.

We have that all (B \ E)-patterns c�(B\E)+iu have at least two possible
extensions into a B-pattern. Part (ii) of Definition 6.2 implies that there
are at most |E| − 1 such patterns. Let T be a thinner stripe in direction u
defined by T =

⋃
i∈Z(B \E) + iu. Using part (iii), values of c on every line

λ ⊂ T in direction u contain at most |E| − 1 distinct subsegments of length
at least |E| − 1. By Morse–Hedlund theorem, the values on the line repeat
periodically. Therefore c�T is periodic in direction u.

Since B is a balanced set, c is of low complexity and therefore finitary.
To finish the proof, without loss of generality assume that c is integral and
also normalized. Then by (i) of Definition 6.2 and Lemma 5.1.3 there is an
annihilator which fits in −B. In particular, it fits in T ∪`. Since T is periodic
in direction u, by Lemma 6.4.2 also c is periodic in direction u.

6.5 Nivat’s conjecture for ord(c) = 2

Theorem 6.5.1. Let c be a counterexample candidate such that ord(c) = 2.
Then ∀m,n ∈ N : Pc(m,n) > mn.
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Figure 6.7: Illustration of the proof of Lemma 6.4.3.

Proof. For contradiction assume there exist m,n ∈ N such that Pc(m,n) ≤
mn. By Theorem 3.4.1 there exist periodic configurations c1, c2 such that
c = c1 + c2. Denote by u1,u2 their respective vectors of periodicity and
define a parallelogram

D =
{
au1 + bu2

∣∣ a, b ∈ [0, 1)
}
∩ Z2.

We can choose u1,u2 large enough so that an m × n rectangle fits in. We
can also assume that u2 ∈ Hu1 . Denote Dj = D+ju2 and define a sequence
of stripes Sj =

⋃
i∈ZDj + iu1. The setup is illustrated in Figure 6.8.

Assume that there are j 6= j′ such that c�Dj= c�Dj′ . We claim that then
c�Sj= c�Sj′ . Note that c′ = (X(j−j′)u2 − 1)c is annihilated by Xu1 − 1 and
c′�Dj consists of zeros. Therefore c′ is u1-periodic and c′�Sj is zero, from
which we have c�Sj= c�Sj′ .

Since c is finitary there are only finitely many possible D-patterns, let
N be an upper bound on their number. There are also finitely many stripe
patterns c�Sj since the pattern in Sj is determined by the pattern in Dj .
Because c is not periodic, there exists k ∈ Z such that c�Sk 6= c�Sk−N !

.
By Lemma 6.4.1, there is either a u1-balanced or (−u1)-balanced set

B, without loss of generality assume the former. Since c is non-periodic, by
Lemma 6.4.3 there is no ambiguous stripe in c in direction u1 in which B
fits. B fits in any stripe Sj , therefore values in any stripe Sj determine the
values in the whole half-plane of the side on the inner boundary of Sj .

By pigeonhole principle, there are j < j′ ∈ [0, N ] such that c �Sk+j=
c�Sk+j′ . The two stripes extend uniquely to the half-planes on the side of
their inner boundary. Therefore the half-plane H =

⋃
i≤j′ Sk+i has period

(j′−j)u2. Since j′−j dividesN ! and Sk, Sk−N ! ⊂ H, we have a contradiction
with c�Sk 6= c�Sk−N !

.

Corollary 6.5.2. Let c be a two-dimensional configuration satisfying
Pc(m,n) ≤ mn for some m,n ∈ N. If c is a sum of two periodic config-
urations then it is periodic.
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Figure 6.8: Proof of Theorem 6.5.1.

Corollary 6.5.3. If a non-periodic two-dimensional configuration c is a sum
of two periodic ones, then Pc(m,n) ≥ mn+ 1 for all m,n ∈ N.

Theorem 6.5.1 is a special case of Lemma 5.5.3, and therefore this finishes
the proof of asymptotic Nivat’s conjecture Theorem 5.5.4. As a corollary,
we also obtain the result of Cyr and Kra from [CK15]:

Theorem 6.5.4. Let c be a configuration such that Pc(m,n) ≤ mn/2 for
some m,n ∈ N. Then c is periodic.

Proof. For a contradiction assume that c is a counterexample candidate.
Let f be an annihilator of c which fits in an m× n rectangle. Using Corol-
lary 4.2.1, we can write f = φ1 · · ·φmh. If ord(c) ≤ 2, c is periodic by
Theorem 6.5.1. Assume ord(c) ≥ 3, we will show that it leads to a contra-
diction.

Let g = φ3 · · ·φm, denote (mg, ng) = box(g) and let c′ = gc, see
Figure 6.9. Note that an (m − mg) × (n − ng) block in c′ is deter-
mined by multiplication by g from an m × n block in c. Therefore
Pc(m,n) ≥ Pc′(m −mg, n − ng). Furthermore c′ is a finitary configuration
with ord(c′) = 2. We can apply Theorem 6.5.1 to get

Pc(m,n) ≥ Pc′(m−mg, n− ng) > (m−mg)(n− ng).

Let v be an arbitrary vertex of the convex hull of − supp(g). Consider
all translations of − supp(g) which are a subset of the rectangle [m] × [n],
denote R the locus of v under these translations. There are (m−mg)(n−ng)
such translations, therefore the size of R is the same number.

Now let us define a shape U = [m]× [n] \ R. It is a shape such that no
polynomial multiple of g fits in −U . In particular no annihilator of c fits in
−U , and thus by Lemma 5.1.3,

Pc(m,n) ≥ Pc(U) > |U |.

Since either (m − mg)(n − ng) = |R| ≥ mn/2 or |U | ≥ mn/2, we have
Pc(m,n) > mn/2, a contradiction.
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m−mg

n− ng
ng
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v

Figure 6.9: Proof of Theorem 6.5.4. The quadrilateral depicts the convex
hull of − supp(g) for a polynomial g, positioned in the bottom left corner
of an m× n block. The white points form the set R and the shaded points
form the set U . We have |U | ≥ mn/2 or |R| ≥ mn/2.
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Chapter 7

Bounded decomposition using
ultrafilters

In section 3.4 we proved that any finitary configuration with a non-trivial an-
nihilator can be written as a sum of periodic integral configurations. These
configurations, however, could be unbounded, as demonstrated by Exam-
ple 4.3.4. Moreover, the individual components could not be easily obtained
from the original configuration.

In this short chapter we show an alternative way how to obtain the
decomposition theorem. We are concerned with bounded configurations –
configurations with coefficients from a real interval [a, b]. Unlike in Theo-
rem 3.4.1, we give a recipe how to construct the periodic components. The
method is, vaguely speaking, by averaging values along lines in the config-
uration. The resulting components however will not be integral anymore,
their values will be reals from the interval [a, b]. To simplify notation, for
vectors u1, . . . ,um let us write ∂u1···um = (Xu1 − 1) · · · (Xum − 1).

Theorem. Let c ∈ [a, b]Z
d be a d-dimensional configuration with an anni-

hilator of the form ∂u1···um for some non-zero vectors ui. Then there exist
periodic configurations c1, . . . , cn ∈ [a, b]Z

d such that c = c1 + · · ·+ cn.

Explicit description of the components is given in the statement of The-
orem 7.3.2 later in this chapter. For the two-dimensional case the decompo-
sition is particularly simple, as described in Corollary 7.3.4.

It was first indicated in the paper of Bhattacharya [Bha16] that such
a bounded decomposition is possible. The paper was however concerned
with two-dimensional configurations only and the set-up there was more
involved – configurations were represented by a measurable function on a
suitable subshift which was endowed with an ergodic measure, and the result
was obtained by an application of ergodic theorem and spectral theorem for
unitary operators.
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Our proof makes use of ultrafilters. We use them as a tool to define a
shift-invariant mean (average) of a sequence of numbers, section 7.1 intro-
duces the theory needed. Equipped with this powerful tool, the proof of the
theorem is quite straightforward. We present it in section 7.3.

7.1 Ultrafilters and ultralimit

Let us give a brief overview of the theory of ultrafilters, for proofs see e.g.
[Kru]. Let X be an infinite set, for us usually N. An (ultra)filter is a
consistent choice of “large” subsets of X:

Definition 7.1. A filter on X is F ⊂ P(X) such that

1. X ∈ F, ∅ /∈ F (X is large, ∅ is not)

2. A ∈ F, A ⊂ B ⇒ B ∈ F (supersets of large sets are large)

3. A,B ∈ F⇒ A ∩B ∈ F (finite intersections of large sets are large)

Definition 7.2. An ultrafilter is a filter that for any A ⊂ X satisfies

4. A ∈ F or (X \A) ∈ F (either a set or its complement is large)

Ultrafilters are filters which are maximal with respect to the order by
inclusions. The following is a consequence of (but not equivalent to) Zorn’s
lemma:

Theorem 7.1.1 (Ultrafilter lemma). Every filter is contained in an ultrafil-
ter.

An ultrafilter is principal if it is generated by one point, i.e. if it is of
the form Ux = {A ⊂ X | x ∈ A } for some x ∈ X. Let us define the cofinite
filter Fcof to consist of all cofinite subsets of X, it is easy to check that it is
a filter. By ultrafilter lemma, Fcof is contained in some ultrafilter U. Such
an ultrafilter is then necessarily non-principal. In fact, Fcof is contained in
any non-principal ultrafilter.

Definition 7.3. Let T be a topological space, f : X → T a map and F a
filter on X. Let us define the limit of f with respect to F to be such a point
y ∈ T which satisfies

∀U ∈ B(y) : f−1(U) ∈ F,

where B(y) denotes the set of all open neighbourhoods of y. If such a point
y exists we denote limx→F f(x) = y. If F is an ultrafilter, we call it an
ultralimit.

Lemma 7.1.2. Let T be a compact Hausdorff space, f : X → T a map and
U an ultrafilter on X. Then limx→U f(x) exists and is unique.
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We apply the theory for X = N and T = [a, b] a non-empty real interval.
Let us fix a non-principal ultrafilter U on N and let s : N → [a, b] be a
sequence, we denote more conveniently sn = s(n). Then limn→U sn is such a
number y ∈ [a, b] that satisfies

∀U ∈ B(y) : {n | sn ∈ U } ∈ U.

It can be shown that this is equivalent to

∀ε > 0: {n : |sn − y| < ε} ∈ U.

Note that limn→U sn always exists since [a, b] is compact and Hausdorff.
Further note that if we exchange U with the cofinite filter Fcof in the previous
equation, we get the definition of the ordinary limit. Fcof is contained in
every non-principal ultrafilter, therefore if the ordinary limit exists, it agrees
with the ultralimit.

Example 7.1.3. Let (sn)n∈N = 1, 0, 1, 0, . . . be the sequence of alternating
ones and zeros. Clearly it does not converge in the usual sense. However,
for an ultrafilter U, either limn→U sn = 0 or limn→U sn = 1, depending on
whether the set of even numbers, or its complement belongs to U.

7.2 Shift invariant means

Let U be a fixed non-principal ultrafilter on N and s ∈ [a, b]N a sequence.
Let us define the mean of s to be

µ(s) = lim
n→U

1

n

n∑
i=1

si.

Lemma 7.2.1. Mean is a linear shift invariant operator on bounded real
sequences, i.e. for s ∈ [a, b]N, t ∈ [a′, b′]N:

1. If α, β ∈ R then µ(αs+ βt) = αµ(s) + βµ(t).

2. If ∃k ∈ N such that tn = sn+k, then µ(s) = µ(t).

Proof.

1. Ultralimit is a linear operator on bounded real sequences. The proof
follows in a straightforward fashion from the definition of mean.

2. Compute:

µ(s)− µ(t) = µ(s− t) = lim
n→U

1

n

(
k∑
i=1

si −
n∑

i=n−k+1

ti

)
.
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Since s and t are bounded, the limit

lim
n→∞

1

n

(
k∑
i=1

si −
n∑

i=n−k+1

ti

)

exists and is zero. Therefore also the ultralimit exists and is zero.

Let a, b ∈ R and c ∈ [a, b]Z
d be a configuration, we call such a con-

figuration bounded. Let u ∈ Zd be a non-zero vector. Let us define the
configuration cu by

(cu)v = µ((cv+nu)n∈N) = lim
n→U

1

n

n∑
i=1

cv+iu.

Informally, the coefficient of cu at position v is the mean of values of c lying
on a discrete line starting at v and extending in direction u with jumps of
length u. Let us adopt a notational convention cu1u2 = (cu1)u2 .

Lemma 7.2.2. Let c be a bounded d-dimensional configuration and u ∈ Zd
non-zero. Then:

1. cu is u-periodic.

2. If c is u-periodic then c = cu.

3. cuu = cu.

Proof. Part 1 is a direct consequence of shift invariance of mean. If c is
u-periodic, then (cu)v is a mean of a constant sequence of which every term
equals cv, which shows part 2. Part 3 follows from 1 and 2.

Lemma 7.2.3. Let c be a bounded d-dimensional configuration and
u1, . . . ,uk ∈ Zd non-zero vectors. Then u1, . . . ,uk are periods of the con-
figuration cu1...uk .

Proof. The proof goes by induction, the case k = 1 is covered in Lemma 7.2.2.
Let us assume k > 1 and that c′ = cu1...uk−1 has periods u1, . . . ,uk−1. Since
the operator e 7→ euk from definition commutes with translations, also (c′)uk

has periods u1, . . . ,uk−1. It has also period uk by Lemma 7.2.2.

Note that in general cuv 6= cvu. Let u = (1, 0), v = (0, 1) and c be a
configuration defined by c(i,j) = 0 if i ≥ j and c(i,j) = 1 otherwise. Then
cu = cuv is a constant 0 configuration, whereas cv = cvu is a constant 1
configuration. See Figure 7.1.
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Figure 7.1: A configuration c for which c(1,0)(0,1) 6= c(1,0)(0,1). White color
denotes the coefficient 1 and dark the coefficient 0.

7.3 Bounded decomposition

Lemma 7.3.1. Let c be a bounded d-dimensional configuration, u ∈ Zd a
non-zero vector and g ∈ R[X±1] a Laurent polynomial. If ∂ug annihilates c,
then g annihilates c− cu.

Proof. We repeatedly use linearity of mean and Lemma 7.2.2. The configu-
ration g(c − cu) is u-periodic since both gc and gcu are. Then g(c − cu) =
(g(c− cu))u = g(c− cu)u = g(cu − cuu) = 0.

Theorem 7.3.2. Let c be a bounded d-dimensional configuration and
u1, . . . ,um ∈ Zd non-zero vectors such that ∂u1···umc = 0. Then

c =
∑

1≤i≤m
cui −

∑
1≤i<j≤m

cuiuj +
∑

1≤i<j<k≤m
cuiujuk − · · · ± cu1...um . (7.1)

Proof. For u ∈ Zd let us define an operator on bounded configurations by

(1− ·u) : e 7→ e− eu.

Since ∂um···u1c = 0, inductive application of Lemma 7.3.1 yields

(1− ·um) · · · (1− ·u1)c = 0.

It is straightforward to verify that this expression evaluates to (7.1).

Corollary 7.3.3. Let c be a low complexity configuration. Then c can be
written as a sum of finitely many bounded periodic configurations.

Proof. Since c is of low complexity, it is finitary and therefore bounded. By
Corollary 3.3.4 there are vectors u1, . . . ,um such that ∂u1···umc = 0. By
Theorem 7.3.2, Equation (7.1) holds. Since the right-hand side of it consists
of bounded periodic configurations we are done.
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Corollary 7.3.4. Let c be a two-dimensional finitary integral configuration
with a non-zero annihilator. Then there exist u1, . . . ,um ∈ Zd in distinct
directions and a doubly periodic configuration c0 such that

c = c0 + cu1 + · · ·+ cum .

Proof. By Theorem 3.3.3 there exist u1, . . . ,um ∈ Z2 in distinct directions
such that ∂u1···umc = 0. Define

c0 = −
∑

1≤i<j≤m
cuiuj +

∑
1≤i<j<k≤m

cuiujuk − · · · ± cu1...um .

Then, by Theorem 7.3.2, c = c0 + cu1 + · · · + cum . It remains to show
that c0 is doubly periodic. Since vectors ui are in distinct directions, by
Lemma 7.2.3 every summand of c0 is doubly periodic, and we are done.

Example 7.3.5. Recall the configuration from Example 3.4.6 defined by

sij = b(i+ j)αc − bjαc − biαc,

it is a binary configuration annihilated by ∂u1u2u3 with u1 = (1, 0), u2 =
(0, 1) and u3 = (−1, 1). We can apply Corollary 7.3.4 to get s = s0 + su1 +
su2 + su3 where

s0ij = −1

su1
ij = jα− bjαc
su2
ij = iα− biαc
su3
ij = 1− (i+ j)α+ b(i+ j)αc.

Note that all the components are bounded, and moreover coefficients of
su1 , su2 , su3 are from the interval [0, 1]. Also note that none of them is
finitary. Indeed, in Example 4.3.4 we proved that s can not be written as a
sum of finitely many finitary periodic components.

Let us demonstrate the derivation for su1 . Note that

lim
n→U

b(n+ k)αc
n

= lim
n→∞

b(n+ k)αc
n

= α
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holds for any k ∈ Z. The result now follows by a computation:

su1
ij = lim

n→U

1

n

n∑
k=1

si+k,j = lim
n→U

1

n

n∑
k=1

(
b(k + i+ j)αc − bjαc − b(k + i)αc

)
= −bjαc+ lim

n→U

1

n

n∑
k=1

(
b(k + i+ j)αc − b(k + i)αc

)
= −bjαc+ lim

n→U

1

n

 n∑
k=n−j+1

b(k + i+ j)αc −
j∑

k=1

b(k + i)αc


= −bjαc+ lim

n→U

1

n

j∑
`=1

b(n+ i+ `)αc

= −bjαc+

j∑
`=1

lim
n→U

b(n+ i+ `)αc
n

= jα− bjαc,

where if j ≤ 0, we define
∑j

`=1 = −∑−1`=j .
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Chapter 8

Summary of open problems

Let us recall Nivat’s conjecture, the main motivation for contents of this
thesis:

Conjecture (Nivat). Let c ∈ AZ2 be a two-dimensional symbolic configura-
tion such that Pc(m,n) ≤ mn for some m,n ∈ N. Then c is periodic.

Despite our efforts, it still remains open. We propose two weaker versions
of its statement that we believe would shed more light onto the topic:

Conjecture 8.1. There exists a real number 1
2 < α ≤ 1 such that if c ∈ AZ2

is a two-dimensional symbolic configuration satisfying Pc(m,n) ≤ αmn for
some m,n ∈ N, then c is periodic.

Conjecture 8.2. Let c ∈ AZ2 be a two-dimensional symbolic configuration
such that Pc(m,n) ≤ mn for some m,n ∈ N. Then there exists a periodic
configuration in Xc.

Interestingly enough, for configurations satisfying cH = 0 with notation
from Corollary 4.2.1, Conjecture 8.1 holds with α = 2/3. Indeed, the unique
doubly periodic component cH in the decomposition of c provides an obstacle
when extending our proof to arbitrary c. We omit the proof, note however
that the technique is identical to the proof of Theorem 6.5.4, with the use of
Corollary 2(c) of [KS15b].

In Chapter 4 we proved that Ann(c) is a radical ideal for two-dimensional
configurations. We conjecture that the same is the case for higher dimen-
sions:

Conjecture 8.3. Let c be a configuration. Then Ann(c) is a radical ideal.

In the same chapter we define ord(c), which is the smallest possible num-
ber of periodic configurations which sum to c. Another direction of weak-
ening Nivat’s conjecture is to prove it for configurations with given ord. In
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Chapter 6 we prove it for ord(c) = 2. For ord(c) = 3 we can prove Con-
jecture 8.2, i.e. that there is a periodic point in ord(c). We also think that
proving Nivat’s conjecture in this case is possible, however, the technique
we used closely follows Cyr and Kra’s proof from [CK15]. Since it is very
technical and does not bring any major new ideas, we decided to omit it.
Nevertheless, it would be interesting to see a nice proof of the fact.

Related to the subshift Xc and the decomposition of c from Chapter 4,
we formulated Conjecture 6.1. Let us rephrase it in simpler terms:

Conjecture 8.4. Let c be a two-dimensional configuration which can be
written as a sum of periodic configurations and which is not doubly periodic.
Let c = c1+· · ·+cm where m is smallest possible and ci is a configuration with
period ui. Then non-expansive directions of Xc are exactly the directions ui.

Providing a proof of this conjecture would be interesting by itself since
its statement does not involve any concepts defined in this thesis.

Let us finish by mentioning the periodic tiling problem, which is another
long-term open problem to which the polynomial method can be applied:

Conjecture (Lagarias, Wang). If T ⊂ Zd is a tile which tiles Zd by trans-
lations, there exists also periodic tiling of Zd by T .

After a recent remarkable proof for d = 2 [Bha16], the conjecture remains
open for d ≥ 3.
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