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Abstract

This thesis is comprised of four articles in multiplicative number theory, a subfield
of analytic number theory that studies questions related to prime numbers and
multiplicative functions. A central principle in multiplicative number theory is
that multiplicative structures, such as the primes or the values of a multiplicative
function, should not correlate with additive structures of various types. The results
in this thesis can be interpreted as instances of this principle.

In the first article, we consider the problem of finding almost primes in almost all
short intervals, which is a natural approximation to the problem of finding primes in
short intervals. We show that almost all intervals of nearly optimal length contain a
product of exactly three primes. For products of exactly two primes, we improve a
result of Harman. The proofs are based on careful analysis of Dirichlet polynomials
related to almost primes.

The second article is about the Goldbach problem for a sparse subset of the
primes. Vinogradov famously showed that any large odd number is the sum of
three primes, so it is natural to study the same problem with the summands coming
from a subset of the primes. Improving a result of Matomäki, we show that a special
set of primes, consisting of primes representable as one plus the sum of two squares,
satisfies the ternary Goldbach problem. We also establish a number of other additive
results for this same set of primes. The proofs use sieve methods and transference
principles for additive equations in primes.

We also study the Möbius function and its autocorrelations. A famous conjecture
of Chowla asserts that products of shifts of the Möbius function should have mean
zero. In the third article, together with T. Tao we settle a logarithmic version of
this conjecture in all the cases involving an odd number of shifts. This complements
Tao’s earlier result that the two-point Chowla conjecture holds with logarithmic
weights.

Lastly, in the fourth article, we study binary correlations of multiplicative func-
tions with logarithmic weights. We prove an asymptotic formula for these corre-
lations for a wide class of multiplicative functions, extending an earlier result of
Tao. We then derive a number of applications regarding the largest prime factors
of consecutive integers, including a logarithmic version of a conjecture of Erdős
and Turán. Moreover, we prove a new estimate for character sums over reducible
quadratic polynomials.





Tiivistelmä

Tämä väitöskirja koostuu neljästä artikkelista multiplikatiivisessa lukuteoriassa,
joka on alkulukuja ja multiplikatiivisia funktioita tutkiva analyyttisen lukuteorian
haara. Keskeinen periaate multiplikatiivisessa lukuteoriassa on, että multiplikatii-
visten objektien (kuten alkulukujen tai multiplikatiivisten funktioiden arvojen) ei
pitäisi korreloida additiivisten objektien kanssa. Tämän väitöskirjan tulokset voi-
daankin tulkita kyseisen periaatteen ilmentyminä.

Ensimmäisessä artikkelissa tarkastelemme melkein alkulukujen löytämistä mel-
kein kaikilta lyhyiltä väleiltä; tämä on luonnollinen approksimaatio alkulukujen
löytämiselle lyhyiltä väleiltä. Osoitamme, että melkein kaikki välit, joiden pituus
on lähes optimaalisen lyhyt, sisältävät tasan kolmen alkuluvun tulon. Tasan kahden
alkuluvun tulojen tapauksessa parannamme Harmanin tulosta. Todistukset perus-
tuvat melkein alkulukuihin liitettyjen Dirichlet’n polynomien tarkkaan analysoin-
tiin.

Toinen artikkeli koskee Goldbach-ongelmaa eräälle harvalle osajoukolle alkulu-
kuja. Vinogradov osoitti kuuluisassa työssään, että jokainen riittävän suuri pariton
luku on kolmen alkuluvun summa, joten on luonnollista tarkastella vastaavaa ongel-
maa alkulukujen osajoukoille. Parantaen Matomäen tulosta osoitamme, että vastaus
ternääriseen Goldbach-oneglmaan on positiivinen niiden alkulukujen joukolle, jotka
voidaan esittää ykkösen ja kahden neliöluvun summana. Osoitamme myös useita
muita additiivisia tuloksia samalle alkulukujen osajoukolle. Todistukset käyttävät
seulamenetelmiä sekä ns. traansferenssiperiaatteita additiivisille yhtälöille alkulu-
kujen joukossa.

Tutkimme myös Möbiuksen funktiota ja sen autokorrelaatioita. Chowlan kuului-
sa konjektuuri väittää, että Möbiuksen funktioiden translaatioiden tuloilla pitäisi
olla keskiarvo nolla. Kolmannessa artikkelissa yhdessä T. Taon kanssa ratkaisemme
logaritmisen version tästä konjektuurista kaikissa tapauksissa, joissa translaatioi-
den määrä on pariton. Tämä täydentää Taon aikaisempaa tulosta, jonka mukaan
kahden pisteen Chowlan konjektuuri pätee logaritmisilla painoilla.

Lopuksi neljännessä artikkelissa tutkimme multiplikatiivisten funktioiden binää-
risiä korrelaatioita logaritmisilla painoilla. Todistamme asymptoottisen kaavan näille
korrelaatioille, joka pätee laajalle luokalle multiplikatiivisia funktioita ja parantaa
Taon aikaisempaa tulosta. Johdamme sitten useita sovelluksia koskien peräkkäisten
lukujen suurimpia alkutekijöitä – mukaan lukien logaritmisen version eräästä Erdősin
ja Turánin konjektuurista. Lisäksi todistamme uuden arvion karakterisummille yli
jaollisen toisen asteen polynomin arvojen.
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1. Notations and conventions

We collect here the notations used in the summary sections 2–6. The Articles [I]–[IV]
have their own notation sections.

1.1. Sets

• N – the set of positive integers {1, 2, 3, . . .}.
• Z – the set of all integers.
• ZN – the ring of integers mod N .
• P – the set of prime numbers.
• Squarefree integers – integers n ≥ 1 such that n is not divisible by p2 for

primes p.
• Pk – the set of integers with at most k prime factors, counting multiplicities.
• Ek – the set of integers with exactly k prime factors, counting multiplicities.
• D – the unit disk {z ∈ C : |z| ≤ 1}.
• 1S(n) – the indicator function of a set S, equaling 1 if n ∈ S and 0 otherwise.

1.2. Letters

• d, k, `,m, n – positive integers.
• p, p1, p2, . . . – prime numbers.
• ε – an arbitrarily small positive constant.
• W – the product of primes in [1, w] for some large w.

1.3. Arithmetic functions

• ϕ(n) – the Euler function, giving the number of integers 1 ≤ j ≤ n coprime
to n.
• Λ(n) – the von Mangoldt function, which equals log p if n = pk for some

prime p and some k ≥ 1, and equals 0 if no such p exists.
• Ω(n) – number of prime factors of n, counted with multiplicities.
• λ(n) – the Liouville function, given by λ(n) := (−1)Ω(n).
• µ(n) – the Möbius function, given by µ(n) := λ(n)1n squarefree.
• P+(n) – the largest prime factor of n, with P+(1) := 1.
• π(x) – the number of prime numbers in [1, x].
• Multiplicative function – a function g : N→ C satisfying g(mn) = g(m)g(n)

whenever m,n ∈ N are coprime.
• λ+,LIN

d , λ−,LIN
d – the upper and lower bound linear sieve weights. Given a

level D and a sifting parameter z, they are equal to 1 for d = 1 and are equal
to the Möbius function µ(d) for d ≥ 2 belonging to the sets

D+,LIN : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−2p
3
2k−1 ≤ D ∀k ≥ 1},

D−,LIN : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−1p
3
2k ≤ D ∀k ≥ 1}.

For other values of d, they are equal to 0.
• λ+,SEM

d , λ−,SEM
d – the upper and lower bound semilinear sieve weights. Given

a level D and a sifting parameter z, they are equal to 1 for d = 1 and are
equal to the Möbius function µ(d) for d ≥ 2 belonging to the sets

16



17

D+,SEM : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−2p
2
2k−1 ≤ D ∀k ≥ 1},

D−,SEM : = {p1 · · · pr ≤ D : z > pk > pk+1, p1 · · · p2k−1p
2
2k ≤ D ∀ k ≥ 1}.

For other values of d, they are equal to 0.

1.4. Analysis

• f(x) = o(g(x)) – we have limx→∞ f(x)/g(x) = 0.
• f(x) � g(x) – we have, for some constant C, |f(x)| ≤ C|g(x)| for all large

enough x.
• f(x) � g(x) – we have f(x)� g(x) and g(x)� f(x).
• oε→0(1) – an unspecified function f(ε) tending to 0 as ε→ 0.
• Almost all – for a proposition P (n), we say that it holds for almost all n ∈ N

if |{n ≤ X : P (n) fails}| = o(X). Analogously, we say that P (n) holds for
almost all even n if |{n ≤ X : n ≡ 0 (mod 2), P (n) fails}| = o(X).
• e(α) – the additive character e2πiα.
• ‖x‖ – the distance from x ∈ R to the nearest integer.
• ∑p∈I – summation over primes in I, whenever I is an interval.

• f̂(ξ) – the discrete Fourier transform of f : ZN → C, given by

f̂(ξ) :=
1

N

∑
n∈ZN

f(n)e

(
−ξn
N

)
.

1.5. Probability theory

• P(A) – the logarithmic probability of A ⊂ [1, x], given by

P(A) :=

∑
n≤x
n∈A

1
n∑

n≤x
1
n

.

• H(X) – the entropy of a random variable X having a finite range X . This
is defined by

H(X) :=
∑
x∈X

P(X = x) log
1

P(X = x)
.

• H(X,Y) – the joint entropy of two random variables X and Y with finite
ranges X and Y , respectively. This equals the entropy of the random variable
(X,Y) that takes values in X × Y .
• H(X|Y) – the conditional entropy of X given Y;

H(X|Y) := H(X,Y)−H(Y).

• I(X,Y) – the mutual information between two random variables X and Y;

I(X,Y) = H(X) + H(Y)−H(X,Y).

17
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1.6. Miscellaneous

• (m,n) – the greatest common divisor of m and n.
• D(f, g;x) – the pretentious distance between f and g, defined in formula

(6.1).
• P(z) – the product of all the primes in [1, z).
• ‖a‖Uk(ZN ) the Uk Gowers norm of a : ZN → C, defined recursively as

‖a‖U1(ZN ) :=

∣∣∣∣ 1

N

∑
n∈ZN

f(n)

∣∣∣∣, ‖a‖Uk+1(ZN ) :=

(
1

N

∑
t∈ZN
‖a · at‖2k

Uk(ZN )

)1/2k+1

,

where at(n) := a(n+ t).
• ‖a‖Uk[N ] – the Uk Gowers norm of a : [1, N ]→ C, defined by

‖a‖Uk[N ] :=
‖1[1,N ] · a‖Uk(Z2N+1)

‖1[1,N ]‖Uk(Z2N+1)

.

18
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2. Introduction

Multiplicative number theory is an area of analytic number theory where one studies
the distributional properties of multiplicative functions, prime numbers, and other
sets possessing multiplicative structure. A fundamental principle in this area is that
multiplicative structures (such as the primes, or the values of a multiplicative func-
tion) should behave independently of additive structures (such as intervals, additive
equations, or arithmetic progressions). This gives rise to a number of conjectures,
many of which are still open.

One instance of this principle is that the primes are expected to be distributed
somewhat uniformly on very short intervals, such as [x, x+ (log x)c] with c > 1 and
x ∈ N large. Under the Riemann hypothesis, Selberg proved that for c = 2 + ε
this holds, at least for almost all such intervals. A famous conjecture of Cramér [8]
asserts that for c = 2 + ε there should be a prime on [x, x + (log x)c] for large x,
even without any exceptional intervals, but this is not known even conditional on
the Riemann hypothesis. In Article [I], we show, improving the work of Harman
[35], that almost all intervals [x, x + (log x)3.51] contain a product of exactly two
primes, and almost all intervals [x, x+ (log x)1+ε] contain a product of exactly three
primes for any ε > 0, the latter result being nearly optimal. Numbers that are the
product of exactly two or three primes can be thought of as approximations to the
primes, and they have a rigid multiplicative structure in particular. It turns out
that these almost primes (discussed in detail in Section 3) have more flexibility than
the primes, and this is what enables us to prove much stronger results about them.

Another conjecture that combines multiplicative and additive structures is the bi-
nary Goldbach conjecture, dating from 1742 and stating that every even n ≥ 4 is the
sum of two primes. This remains an important open problem. On the other hand,
the ternary version of the problem, to the effect that every odd number n ≥ 7 is
the sum of three primes, was proved by Vinogradov [108] in 1937 for all sufficiently
large integers, and by Helfgott [43] in 2013 in the remaining cases. The essence of
many problems of Goldbach-type is showing that the primes do not correlate with
“additive sets” (such as the so-called Bohr sets, defined in Section 4.2). The binary
Goldbach conjecture has been known since the 1930s to be true for almost all even
n, so a natural question to examine is whether the conjecture remains true in almost
all cases when one only uses summands coming from a specific subset of the primes.
Improving a result of Matomäki [70], we show in Article [II] that this question has
a positive answer for primes represented by the polynomial x2 + y2 + 1; this subset
of the primes has also been studied in several other contexts [49], [115], [69] and is
an example of a sparse subset of the primes (that is, it has relative density 0 within
the primes). Continuing with the theme of additive problems in the primes, we
show that the primes of the form x2 +y2 +1 also contain infinitely many three-term
arithmetic progressions, and that the numbers αp, where α is a fixed irrational and

19
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p runs through such primes, are “well-distributed” modulo 1.

Turning our attention from primes to multiplicative functions, we also study the
Liouville function, λ(n), whose value is determined by the parity of the number of
prime factors of n. Chowla [7] posed in the 1960s the famous conjecture that the
Liouville function should behave independently along strings of consecutive integers,
taking any sequence of +1s and−1s with equal probability. More precisely, Chowla’s
conjecture can be written as the statement that

1

x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk) = o(1)

for any fixed k ≥ 1 and distinct h1, . . . , hk ∈ N. Thus, for example, the probability
that the Liouville function takes value +1 at both n and n + 1 should be 1

4
, the

product of the individual probabilities of the events λ(n) = 1 and λ(n + 1) =
1 (which have probability 1

2
). During the last few years, there has been a lot

of research activity surrounding Chowla’s conjecture, and several approximations
to the conjecture have been proved (see Section 5 for descriptions of them). In
particular, Tao [98] showed in 2015 that the two-point case of Chowla’s conjecture
holds with logarithmic weights, in the sense that

1

log x

∑
n≤x

λ(n+ h1)λ(n+ h2)

n
= o(1)

for any distinct h1, h2 ∈ N. In Article [III], jointly with Tao, we consider the higher
order cases and show that for odd values of k the k-point Chowla conjecture holds
with logarithmic weights. Our proof uses combinatorial tools, such as the theory of
Gowers norms, and is independent of and simpler than our earlier proof of the same
result in [100].

The Liouville function is an archetypal example of a multiplicative function, so it
is natural to believe that also shifts of more general multiplicative functions are
independent of each other under suitable assumptions. This was made precise by
Elliott [11] in the 1990s; he conjectured that one has the discorrelation estimate

1

x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk) = o(1),

whenever g1, . . . , gk are multiplicative functions that take values in the unit disc,
h1, . . . , hk ∈ N are distinct shifts, and one of the functions gj is non-pretentious in
a suitable sense (we elaborate on this in Section 6). In 2015, Tao [98] proved that
Elliott’s conjecture holds for k = 2 with logarithmic weights, in the sense that

1

log x

∑
n≤x

g1(n+ h1)g2(n+ h2)

n
= o(1)

20
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under the same assumptions. In Article [IV], we show that Tao’s result on the
two-point logarithmic Elliott conjecture can be extended to a wider class of real-
valued multiplicative functions (with a main term in the asymptotic). This wider
class turns out to contain many functions of interest, such as indicator functions
related to smooth numbers (see Section 6 for details). Making use of this, we prove
a logarithmic version of a conjecture of Erdős and Turán [94] on the largest prime
factors of n and n + 1 . We also show that certain other sets constructed from
multiplicative functions behave independently at n and n+ 1, as one would expect
from the heuristic discussed above.

The structure of this thesis is as follows. In Sections 3, 4, 5 and 6, we introduce
the topics of the articles [I], [II], [III] and [IV], respectively, and give a wealth of
references to the literature on these and related questions. This is followed by the
original publications in the same order. The preprint versions of these publications
can also be found on the arXiv.org preprint server.

21
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3. Almost primes in very short intervals

In article [I], we study the problem of finding almost primes in almost all short
intervals. Since almost primes (defined subsequently) are an approximation to prime
numbers, we begin with an overview of conjectures and results on primes in short
intervals.

3.1. Heuristics and conjectures for primes in short intervals

The prime number theorem, a cornerstone in classical analytic number theory, states
that the number of primes π(x) up to x satisfies the asymptotic relation

π(x) = (1 + o(1))
x

log x
.

Interpreted probabilistically, this means that an integer n ≤ x chosen uniformly
at random is prime with probability (1 + o(1))/(log x). Based on this, H. Cramér
[8] introduced in the 1930s the heuristic model that the indicator function 1P(n) of
primes should behave for n ≤ x like a random variable Xn ∈ {0, 1} that equals 1
with probability 1/ log x. Moreover, he made the strong assumption that the Xn

are jointly independent of each other; this property of course does not hold for the
primes as such (since both n and n + 1 cannot be prime for n ≥ 3), but it serves
as a good approximation in various problems1. Cramér then deduced from basic
probability theory that if the Xn are as above, then the sum

∑
x−λ log x≤k<x Xk is

Bernoulli distributed with mean λ, and further that the Bernoulli distribution is
very closely approximated by the Poisson distribution with the same mean λ (in
the regime where λ > 0 is fixed and x → ∞). Thus, if the model of the primes as
the random variables Xn is adequate, the primes follow the Poisson distribution in
short intervals, in the sense that

1

x
|{n ≤ x : π(n+ λ log x)− π(n) = k}| = (1 + o(1))e−λ

λk

k!
(3.1)

for any fixed λ > 0 and k ∈ N. There is strong evidence in support of (3.1),
as Gallagher [20] showed that it would follow from a certain uniform version of
the widely believed Hardy–Littlewood prime tuples conjecture (for the non-uniform
version, see Subsection 5.1). From (3.1) one can deduce many further (yet unproved)
properties of the primes in short intervals; in particular, letting λ grow slowly with
x and taking k = 0, (3.1) would imply that, for any function ψ(x)→∞ as x→∞,
we have

π(x+ ψ(x) log x)− π(x) ≥ 1(3.2)

for almost all x ∈ N. By a more careful analysis of the tails of the Poisson distribu-
tion, one could similarly infer the stronger statement

π(x+ ψ(x) log x)− π(x) = (1 +O(ε))ψ(x)(3.3)

1There are more elaborate versions of Cramér’s model that take into account local obstructions;
see [23].
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for almost all x ∈ N, for any for any fixed ε > 0 and any given function ψ(x)→∞
with ψ(x) ≤ x (and with the implied constant in the O(·) notation being absolute).
Moreover, under the assumption that (3.1) holds uniformly for λ ≤ C log x with
C ≥ 1, the right-hand side of (3.1) is � 1/x, so one ends up with the following
conjecture2.

3.1. Conjecture (Cramér’s conjecture). There exists a constant C > 0 such that
the interval [x, x+ C(log x)2] contains a prime for all large enough x.

It seems that Cramér’s conjecture is out of reach even under the Riemann hypothe-
sis. Nevertheless, Selberg [91] showed that the Riemann hypothesis implies a version
of Cramér’s conjecture for almost all x.

3.2. Theorem (Selberg). Assume the Riemann hypothesis. Then, for any function
ψ(x) tending to infinity as x→∞, almost all intervals [x, x+ψ(x)(log x)2] contain
a prime.

When it comes to the existence of primes in all short intervals, the best statement
known under the Riemann hypothesis is that [x, x+ x1/2 log x] contains a prime for
all large x; see [90]. This remains very far from intervals of polylogarithmic length.
Let us mention in passing that Cramér’s model also gives probabilistic evidence for
the Riemann hypothesis; namely, if one redefines the random variables Xn slightly
to take the value 1 with probability 1/ log n, then one can use basic properties of
random walks to show that for any fixed ε > 0 we have∑

n≤x
Xn −

∫ x

2

dt

log t
� x1/2+ε

with probability 1, and the corresponding statement for 1P(n) in place of Xn is
well-known to be equivalent to the Riemann hypothesis.

The above indicates that results (whether conditional or unconditional) one can
prove about primes in almost all intervals tend to be considerably stronger than
what can be proved about primes in all short intervals. One fact that complicates
the study of primes in all short intervals is that there are actually some short
intervals where the primes notably deviate from their typical behavior. Namely,
Maier [67] showed in 1985 in a seminal work that, given any C > 0, there is a
constant η(C) > 0 such that for an infinite sequence of x ∈ N we have

π(x+ (log x)C)− π(x) > (1 + η(C))(log x)C−1,

and an analogous statement holds with the inequality reversed and 1−η(C) in place
of 1 + η(C). This is however not in contradiction with the Cramér model, as that
model only predicts how the primes should behave on typical intervals, instead of

2The above heuristic in fact suggests that C = 1 in Conjecture 3.1. There is however some reason
to doubt this choice of C, since a more refined version of the Cramér heuristic due to Granville
[23], which takes into account the local distribution of primes, predicts that C ≥ 2e−γ = 1.12 . . ..
It is nevertheless generally believed that there is a constant C such that Conjecture 3.1 is true.
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all intervals (at least if λ is fixed in (3.1)). In particular, the asymptotic (3.3) is
believed to be true on almost all intervals, and in [I] we prove some analogues of
(3.2) for the counting function of almost primes, with ψ(x) a very slowly growing
function, such as ψ(x) = (log x)ε.

3.2. Primes in all short intervals

The problem of detecting primes in short intervals has attracted wide interest in
analytic number theory over several decades; see for instance [38], [116], [48, Chapter
12] for treatises on this topic. There are still many open conjectures in this topic,
including the Cramér conjecture (Conjecture 3.1) mentioned above. A much more
approachable problem than Conjecture 3.1 is that of finding a real number θ ∈ (0, 1)
as small as possible such that every interval [x, x+xθ] with x large enough contains
a prime number. It is expected that any θ > 0 is admissible, as would follow from
Conjecture 3.1. The first result in this direction is Hoheisel’s result [46] from 1930,
with θ = 1 − δ for some small δ > 0 (he had δ = 1

33000
). The exponent θ was

improved several times during the following decades by various authors, by using
results on the theory of the Riemann zeta function and in particular zero density
estimates for it. In 1972, Huxley [47] proved that any θ > 7

12
is admissible, and this

was slightly improved to θ = 7
12

by Heath-Brown [40]. All of the above mentioned
results in fact provide an asymptotic of the form

π(x+ xθ)− π(x) = (1 + o(1))
xθ

log x
,(3.4)

where π(x) is the number of primes up to x; furthermore, when it comes to asymp-
totics of the type (3.4), the result θ = 7

12
is still the best one known.

Subsequent authors have considered the problem of obtaining lower bounds of the
correct order of magnitude for the number of primes in an interval, meaning esti-
mates of the form

π(x+ xθ)− π(x)� xθ

log x
.(3.5)

To achieve such bounds, one can utilize sieve methods in addition to zero density
estimates for the Riemann zeta function to obtain stronger results than for the
problem (3.4). Such improvements were achieved for instance in [51], [42], [86], [53],
[2], and the best result to date is that of Baker, Harman and Pintz [3], who reached
θ = 0.525.

The exponent θ = 1
2

certainly appears to be the limit of all known methods; as we
mentioned, even under the Riemann hypothesis it is only known that (3.4) is true
for all θ > 1

2
. For the same conclusion θ > 1

2
, it would suffice to assume the density
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hypothesis3, which is implied by the Riemann hypothesis. In conclusion, conjectures
related to the Riemann zeta function do not seem to enable getting information on
primes in all intervals of polylogarithmic length (unlike Conjecture 3.1).

3.3. Primes in almost all short intervals

Since known results on the problem of primes in all short intervals remain far from
what is being conjectured, it is worthwhile to consider the problem of primes in
almost all short intervals. Naturally, we say that almost all intervals [x, x + y(x)]
contain a prime if

|{n ≤ X : [n, n+ y(n)] ∩ P = ∅}| = o(X).(3.6)

Several authors have obtained much better results for (3.6) than for the problem of
finding primes in all short intervals. Regarding asymptotics for primes in almost all
short intervals, the best result is Huxley’s [47] with y(x) = xθ and θ > 1

6
in (3.6).

When one gives up asymptotics, one can again obtain much better results, as was
done in [36], [112], [54], and most recently by Jia in [55] with θ > 1

20
.

The natural barrier for the known methods is θ > 0; in particular, one is still far
from reaching unconditionally intervals that are as short as in Conjecture 3.1. In
analogy with the case of all short intervals, y(x) = xθ for all θ > 0 in (3.6) would
follow from the density hypothesis (and thus also from the Riemann hypothesis),
but has not been attained without resorting to such conjectures.

Nevertheless, if one assumes the full strength of the Riemann hypothesis, then
Selberg’s result (Theorem 3.2) nearly establishes Conjecture 3.1 in almost all cases.
Since Gallagher [20] proved that the Poisson distribution property (3.1) of the primes
holds under a uniform version of the Hardy–Littlewood prime tuples conjecture, by
the discussion of Subsection 3.1 even the optimally short intervals [x, x+ψ(x) log x]
contain a prime almost always under the uniform Hardy–Littlewood conjecture.
Heath-Brown [39] showed that the same result can be obtained by assuming the
Riemann hypothesis and a suitable uniform version of the pair correlation conjec-
ture for the zeroes of the Riemann zeta function. Needless to say, proving any of
these hypotheses seems to be out of reach for all known methods.

If we seek unconditional results in almost all short intervals that are of similar length
as in Theorem 3.2, we must relax the notion of primes somewhat. This leads to the
study of almost primes in short intervals.

3This hypothesis states that if σ ∈ [ 12 , 1] and N(σ, T ) is the number of zeros of the Riemann zeta

function in the rectangle [σ, 1]× [−T, T ] of the complex plane, then N(σ, T )� T 2(1−σ)+ε for any
fixed ε > 0.
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3.4. Almost primes in almost all short intervals

We define two classes of almost primes, the Ek numbers

Ek = {n ∈ N : Ω(n) = k}
and the Pk numbers

Pk = {n ∈ N : Ω(n) ≤ k},
where Ω(n) is the number of prime factors of n, counted with multiplicities. Then
we trivially have the relations P ⊂ Pk, Ek ⊂ Pk, and P = E1 = P1 \ {1}. Many
of the questions of interest for the set P of primes have also been investigated for
these sets of almost primes, often with significantly better unconditional results. For
works that study analogues of classical questions on the primes for the Ek numbers
see [21], [35], and for Pk numbers see [5], [81].

There are several reasons why the sets Ek and Pk can be viewed as good approxi-
mations4 to the set P. An obvious reason is of course that the Ek and Pk numbers
have only a bounded number of prime factors. In addition, if we denote by πk(x)
and π∗k(x) the counting functions of Ek and Pk numbers up to x, respectively, then
it is a classical result of Landau (see [102, Section II.6.1]) that we have

πk(x) = (1 + o(1))π∗k(x) = (1 + o(1))
x

log x
· (log log x)k−1

(k − 1)!
(3.7)

for fixed k, so the sets Ek and Pk have nearly the same density 1/(log x) on [1, x]
as P has. In article [I] and in many earlier works, one actually considers numbers
p1 · · · pk ≤ x with the constraint Pi ≤ pi ≤ P c

i for i ≤ k−1 for some suitably chosen
Pi ≤ x and c > 1, and it is not difficult to show that such numbers have cardinality
�c x

log x
up to x, just like the primes.

Another reason for the abundance of results on Pk numbers in analytic number the-
ory is that they are exactly the kind of numbers detected by sieve methods. Indeed,
sieve methods typically produce numbers n ≤ x with no prime factors p ≤ xc for
some c < 1

2
, which then means that n ∈ Pd1/ce−1. Here we see however an important

contrast between the Ek and Pk numbers, namely that the Ek numbers (just like
the primes) cannot be produced using only classical combinatorial sieves. Indeed,
the notorious parity problem in sieve theory, first discovered by Selberg (and dis-
cussed for example in [19, Chapter 16]), states that classical combinatorial sieves
cannot distinguish numbers with an odd and even number of prime factors from
each other. As Ek numbers have exactly k prime factors, they cannot be distin-
guished from Ek+1 numbers in such a manner (and so in particular, primes and
P2 numbers cannot be distinguished). Due to this, many results are significantly
weaker for Ek numbers than for Pk numbers, and the Ek numbers are a much closer

4Of course, the sets P and Ek are disjoint for k > 1, but so are for instance P and {2p : p ∈ P},
yet they have essentially the same distributional properties.
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approximation to the primes, since the sets P and Ek are both subject to the parity
problem. In problems involving Ek numbers in short intervals one therefore wants
to make use of the theory of Dirichlet polynomials (and in particular, the theory
of the Riemann zeta function), and the advantage compared to primes is that Ek
numbers offer more variables to work with in these Dirichlet polynomial bounds, a
substantial benefit in proving various estimates.

Concerning Pk numbers, there are very satisfactory short interval results. Notably,
Friedlander and Iwaniec [19, Chapters 6 and 11] proved that, for any function ψ(x)
tending to infinity with x, almost all intervals [x, x+ψ(x) log x] contain a P4 number.
They also hinted how to obtain the same result for P3 numbers. Mikawa proved in
turn that almost all intervals [x, x+(log x)5+ε] contain a P2 number. As both proofs
are based on classical sieve methods, they are not applicable to the corresponding
question for Ek numbers.

It is nevertheless the case that considerably stronger short interval results have
been obtained for the Ek numbers than for the primes. Motohashi [83] proved that,
for any ε > 0, almost all intervals [x, x + xε] contain an E2 number5. Soon after
that, Wolke [114] improved this to almost all intervals [x, x+(log x)c] for some large
constant c (he had c = 5·106). This was the first result for E2 numbers that involved
intervals of merely polylogarithmic length, as in Conjecture 3.1 and Theorem 3.2.
Harman [35] then gave a reasonable value of c, namely c = 7 + ε for any ε > 0.
In Article [I], we improve the exponent 7 + ε for E2 numbers to 3.51 and obtain a
nearly optimal result for E3 numbers.

3.3. Theorem (Article [I]). (a) Almost all intervals [x, x + (log x)1+ε] contain an
E3 number, for any fixed ε > 0.
(b) Almost all intervals [x, x+ (log x)3.51] contain an E2 number.

The result for E3 numbers is close to optimal, since by (3.7) there exists a posi-
tive proportion of intervals [x, x+ (log x)(log log x)−2] with no E3 numbers in them.
When it comes to E2 numbers, significantly improving the exponent 3.51 appears
difficult, since even under the density hypothesis the method used in [I] would only
improve the exponent to 3 + ε (for this, see [I, Remark 10]).

As a matter of fact, we prove the following quantitative version of Theorem 3.3,
where the prime factors of the E3 and E2 numbers that we detect are of specific
sizes.

3.4. Theorem (Article [I]). Let ε > 0 be small but fixed. Let X ≥ 1 be large enough.

Define the parameters P1 = (log logX)6+10
√
ε, P2 = (logX)ε

−2
and P ′1 = (logX)2.51.

5In the works [83], [114], [35], the numbers under consideration are E2 numbers, although the
wording “P2 numbers” is used there for lack of better terminology.
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Then, for P1 logX ≤ h ≤ X we have

1

X

∫ 2X

X

∣∣∣∣1h ∑
x≤p1p2p3≤x+h

p1∈[P1,P
1+ε
1 ]

p2∈[P2,P
1+ε
2 ]

1− 1

X

∑
X≤p1p2p3≤2X

p1∈[P1,P
1+ε
1 ]

p2∈[P2,P
1+ε
2 ]

1

∣∣∣∣2 dx = o

(
1

(logX)2

)
,(3.8)

and for P ′1 logX ≤ h′ ≤ X

1

h′

∑
x≤p1p2≤x+h′

p1∈[P ′1,(P
′
1)1+ε]

1 ≥ δ

X

∑
X≤p1p2≤2X
p1∈[P ′1,(P

′
1)1+ε]

1(3.9)

for some small absolute constant δ > 0 and almost all x ∈ [X, 2X].

By the prime number theorem and a simple application of Chebyshev’s inequality,
one can show that Theorem 3.4 indeed implies Theorem 3.3. We remark that in
[I] we also find Ek numbers on intervals whose lengths approach log x as k grows.
More precisely, almost all intervals [x, x+(log x)(logk−1 x)Ck ] contain an Ek number
for some constant Ck > 0. Subsequently, Goudout [22] considered Ek numbers in
almost all short intervals [x, x+ hk(x)] uniformly in the k aspect. He gave optimal
results for k � log log x and nearly optimal results for 5 ≤ k ≤ log log x.

3.5. Proof ideas for products of three primes

As in many previous works on primes and almost primes in short intervals, we re-
duce proving (3.8), and hence Theorem 3.3(a), to the study of Dirichlet polynomials.

More precisely, we use Perron’s formula and a Parseval-type inequality (which uti-
lizes the mean square present in (3.8)) to essentially reduce (3.8) to the correspond-
ing bound for Dirichlet polynomials:

∫ X/h

X0.01

|F (1 + it)|2 dt = o

(
1

(logX)2

)
, where F (s) :=

∑
X≤p1p2p3≤2X

p1∈[P1,P
1+ε
1 ]

p2∈[P2,P
1+ε
2 ]

(p1p2p3)−s;

(3.10)

strictly speaking, we also need to consider the integral over other intervals than
[X0.01, X/h], but this turns out to be the most difficult regime. See [I, Lemma
1, formula (4)] for a more precise version of (3.10). Reducing a problem about
short intervals to Dirichlet polynomials is advantageous, because the sum F (s) now
runs over a long interval and we can make use of various pointwise, mean value and
large values estimates for Dirichlet polynomials to estimate the mean square of F (s).

To effectively estimate these Dirichlet polynomials, we incorporate the method that
Matomäki and Radziwi l l [74] developed in 2015 for analyzing multiplicative func-
tions in very short intervals to the setting of almost primes in almost all short
intervals. Matomäki and Radziwi l l proved, as a special case of their breakthrough
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on multiplicative functions, that the Möbius function µ(n) has mean o(1) on almost
all intervals [x, x+ψ(x)], for any ψ(x) tending to infinity with x. This result suggests
that their method in [74] might imply something about primes or almost primes in
almost all short intervals, as well. However, for the case of primes the method is not
amenable, as a vital element of the proof is a combinatorial factorization identity
available for multiplicative functions (the Ramaré identity, [74, Formula (9)]). For
the primes there certainly is no analogous identity6. The indicator function of those
Ek numbers that we will consider, on the other hand, does have a useful factoriza-
tion, owing to the constraints for their prime factors in Theorem 3.4. Using this,
(3.10) roughly speaking takes the factorized form

∫ X/h

X0.01

|P1(1 + it)P2(1 + it)P3(1 + it)|2 dt = o

(
1

(logX)2

)
, Pj(s) :=

∑
Pj≤p≤P 1+ε

j

p−s

(3.11)

and P3 := X/P1P2 and the sum P3(s) is over a dyadic interval. Above we have sep-
arated the contribution of each of the variables pi and can estimate the polynomials
corresponding to different variables in different ways.

An estimate of the shape (3.11) is our goal in the proof of Theorem 3.3(a), but a
number of aspects of the Matomäki–Radziwi l l method require modifications when
working with Ek numbers; in particular, one needs to obtain logarithmic savings in
places where o(1) savings would suffice for multiplicative functions (for instance, in
[I, Lemma 4]). This is due to the fact that the Ek numbers are a sparse set, of density
roughly 1/(log x) up to x. Additionally, there is a part of the proof ([I, Proposition
3]), where we need a product of three Dirichlet polynomials of “significant length”,
in order to apply a L2 − L∞ bound to the mean square of their product (if we had
only one or two polynomials, we could not afford to apply a pointwise bound to
one of them; this is reminiscent of the differences in difficulty between binary and
ternary problems in applications of the circle method; see [107, Chapter 3]). We
do obtain three Dirichlet polynomials when dealing with E3 numbers, but two of
them are of minuscule length7 (reflecting the fact that we want to minimize the
length of the intervals on which we detect E3 numbers). We go around this issue by
applying Heath-Brown’s identity [52, Chapter 13] to decompose one of the “long”
Dirichlet polynomials into a product of either two “zeta sums” or three “prime-
factored polynomials” (for these concepts, see [I, Section 1.2, Section 2.5]). We
then employ a result of Watt [111] (which generalizes the fourth moment bound of
the Riemann zeta function) to deal with mean squares of the resulting zeta sums,

6It is the case that the indicator function of the primes can be “factorized” into a Dirichlet convolu-
tion, by means of Vaughan’s or Heath-Brown’s identities [52, Chapter 13], but these factorizations
are not nearly flexible enough.
7The lengths of the Dirichlet polynomials involved will be roughly (log log x)6, (log x)ε

−2

and

x(log x)−ε
−2

, the first two of which are too short for pointwise bounds.
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whereas the mean square of the product of three prime-factored polynomials can
be dealt with the mentioned L2−L∞ approach. These are the main ingredients we
use for the E3 part of Theorem 3.3.

3.6. Proof ideas for products of two primes

For obtaining good results about E2 numbers, we make use of all the above-mentioned
ideas, as well as some additional ones. One could readily apply the strategy we used
for E3 numbers to obtain the exponent 5 + ε for E2 numbers (see [I, Section 4.1]; in
the case of the exponent 5 + ε, we would even get an asymptotic formula on almost
all short intervals for the number of E2 numbers with prime factors in certain ranges,
as in the E3 case). The fact that we have only two variables to work with in the case
of E2 numbers appears to make improving the exponent hard. However, we can ap-
ply the principle of Harman’s sieve to gain more flexibility. Firstly, we can increase
the number of variables by applying the Buchstab identity, a number-theoretic form
of the inclusion-exclusion identity. This identity allows us to decompose

Sh(x) : =
∑

x≤p1p2≤x+h
P ′1≤p1≤(P ′1)1+ε

1,

for any choice of 1 ≤ w <
√
x, as

Sh(x) =
∑

x≤p1n≤x+h
P ′1≤p1≤(P ′1)1+ε

(n,P(w))=1
n>1

1−
∑

x≤p1q1n≤x+h
P ′1≤p1≤(P ′1)1+ε

w≤q1<
√
x

(n,P(q1))=1
n>1

1

=
∑

x≤p1n≤x+h
P ′1≤p1≤(P ′1)1+ε

(n,P(w))=1
n>1

1−
∑

x≤p1q1n≤x+h
P ′1≤p1≤(P ′1)1+ε

w≤q1<
√
x

(n,P(w))=1
n>1

1 +
∑

x≤p1q1q2n≤x+h
P ′1≤p1≤(P ′1)1+ε

w≤q2<q1<
√
x

(n,P(q2))=1
n>1

1

:= Σ1(h)− Σ2(h) + Σ3(h).

We take here w = Xη(X) for a suitable function η(X) tending to 0. (In particular,
w is small enough for the fundamental lemma of sieve theory [19, Chapter 6] to be
applicable). As we will see later, the first two sums Σ1(h),Σ2(h) are asymptotically
equal to their dyadic counterparts h

X
Σ1(X) and h

X
Σ2(X), respectively, for almost all

x ∈ [X, 2X]. For the sum Σ3(h), however, we are not able to prove an asymptotic
unless we impose some additional conditions on the sizes of the variables qi. Let
Σ
′
3(h) be the part of Σ3(h) that we can evaluate asymptotically (to be asymptotic

to the normalized dyadic version of the same sum), and let Σ′′3(h) ≥ 0 be the rest
(the part that we can evaluate is expressed precisely in [I, Subsection 6.3] as the
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sums Σ
(1)
3 (h) and Σ

(2)
3 (h)). Then, for almost all x ∈ [X, 2X], we get

1

h
Sh(x) =

1

h
(Σ1(h)− Σ2(h) + Σ3(h))

=
1

X
Σ1(X)− 1

X
Σ2(X) +

1

h
Σ′3(h) +

1

h
Σ′′3(h) + o

(
1

logX

)
≥ 1

X
(Σ1(X)− Σ2(X) + Σ′3(X)) + o

(
1

logX

)
=

1

X
SX(X)− 1

X
Σ′′3(X) + o

(
1

logX

)
.

Hence, proving (3.9) has been reduced to establishing the mentioned asymptotics for
Σ1(h),Σ2(h) and Σ′3(h), and additionally to showing that Σ′′3(X) ≤ (1− 2δ)SX(X)
for some fixed δ > 0. Clearly, the part Σ′3(h) of Σ3(h) that we can evaluate must
be large enough for this upper bound to hold. It turns out that if we look for E2

numbers on intervals of length [x, x+ (log x)c], then we should take P ′1 = (log x)c−1

in the definitions of Sh(x) and Σi(h), and the smaller P ′1 is, the harder Σ3(h) is
to estimate. We can give by the prime number theorem an asymptotic for Σ′′3(X)
(since the sum is over a dyadic interval) in terms of multidimensional “Buchstab
integrals” [38, Chapter 3], [I, Section 6.3.3], and we compute that if c = 3.51 above,
the sum Σ′′3(X) is indeed smaller than the main term SX(X). We are thus left with
showing asymptotics for Σ1(h),Σ2(h),Σ′3(h)

The proofs of the asymptotics of the sums Σ1(h),Σ2(h) and Σ′3(h) follow the same
strategy as in the E3 case, but make use of some additional inputs. We reduce the
problem to the setting of Dirichlet polynomials, so that the aim is to prove that
(3.10) holds for the Dirichlet polynomials F (s) that correspond to Σ1(h),Σ2(h) and
Σ′3(h). By applying a simple sieve to Σ1(h) and Σ2(h), they become type I sums
(meaning a sum having a long, unrestricted integer variable), and therefore we can
employ Watt’s mean value theorem as in the E3 case to handle them.

The sum Σ′3(h), in turn, is a type II sum (it has several variables of substantial
length, but these variables come with weights), and is more difficult to estimate.
However, we have restricted the sizes of the variables in a suitable manner in this
sum, making asymptotic evaluation possible. We utilize the ideas from the E3 case
together with the theory of exponent pairs [I, Section 5.1] and better large values
theorems for Dirichlet polynomials [I, Lemma 7] to obtain the bound (3.10) for the
Dirichlet polynomial corresponding to Σ′3(h), and this then implies that Σ′3(h) has
the desired asymptotic.

We have now outlined the main strategy for proving Theorem 3.3; the details can
be found in [I].
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4. The Goldbach problem for primes of a special form

4.1. The Goldbach conjectures

The Goldbach conjectures, proposed by Goldbach in a letter to Euler in 1742, are
some of the most influential and well-known problems in analytic number theory.
The ternary Goldbach conjecture asserts that every odd integer n ≥ 7 is the sum
of three primes. The binary Goldbach conjecture in turn claims that every even
integer n ≥ 4 can be written as the sum of two primes; this is still unsolved.
The binary Goldbach conjecture is evidently stronger than the ternary one, since
if n = p1+p2 is a sum of two primes, then n+3 = p1+p2+3 is a sum of three primes.

The ternary conjecture was settled in all but finitely many cases by Vinogradov
[108] in 1937 in a work that redefined the Hardy–Littlewood circle method.

4.1. Theorem (Vinogradov). Every large enough odd integer n can be written as
n = p1 + p2 + p3 with p1, p2, p3 ∈ P.

For a modern proof of Theorem 4.1, see [107, Chapter 3]. It took until 2013 before
Theorem 4.1 was extended to all n ≥ 7; this was achieved by Helfgott [43], by
introducing new ideas both on the analytic and numerical sides. Although the
binary analogue of Vinogradov’s result has resisted all attempts to a full resolution,
shortly after Vinogradov’s proof it was shown independently by Chudakov, van der
Corput and Estermann that we have the following approximation (see [107, Chapter
3]).

4.2. Theorem (Almost all cases of binary Goldbach). Almost all even integers n
can be expressed as n = p1 + p2, where p1, p2 ∈ P.

Here and in what follows, by “almost all” we mean that the number of exceptional
even integers n ≤ N is o(N).

Given that one has such an approximation to the binary Goldbach conjecture, one
may contemplate a number of refinements, such as strengthening the bound for the
number of exceptions

E(X) := |{n ≤ X : n ≡ 0 (mod 2), n not a sum of two primes}|.
This question was considered most notably by Montgomery and Vaughan [82], who
obtained E(X) � X1−δ for some fixed δ > 0. The bound was improved by Chen
and Pan [6], Li [64] and Lu [66], among others, the last of whom holds the record
δ = 0.121. In a somewhat different direction, one can try to minimize θ > 0 such
that every interval [X,X + Xθ] with X large contains a sum of two primes. This
was investigated in [84], [85], [63], among others, and in Jia’s work [56], where the
best known result θ = 7

108
+ ε was obtained.

In Article [II], we had a different generalization of Theorems 4.1 and 4.2 in mind,
namely a version of the problem where only a specific subset of the primes are
allowed as summands.
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4.2. The Goldbach problem for subsets of the primes

When looking for a problem which is more challenging than the ternary Goldbach
problem, but (hopefully) more manageable than the binary Goldbach problem, the
following problem naturally arises.

4.3. Problem (Ternary Goldbach for subsets of the primes). Let P ⊂ P be a given
interesting subset of the primes. Is it the case that all large enough odd n can be
represented as n = p1 + p2 + p3 with p1, p2, p3 ∈ P?

Whether Problem 4.3 has a positive or negative answer crucially depends on the
distribution of the set P in arithmetic progressions and more general Bohr sets.
These are sets of the form ⋃

i≤m
{n ∈ N : ‖αin‖ ≤ ηi}(4.1)

with αi ∈ R, ηi ∈ (0, 1). If we take αi ∈ Q, we see that arithmetic progressions are
a special case of Bohr sets. Now, if for example P = {p ∈ P : p ≡ 1 (mod 3)}, then
only integers of the form n ≡ 0 (mod 3) can be represented as a sum of three primes
from P . Similarly, if P = {p ∈ P : ‖

√
2p‖ < 1

10
}, then every n representable as a

sum of three primes from P satisfies ‖
√

2n‖ < 3
10

, a property that fails for a positive
proportion of odd n. In light of these examples where the answer to Problem 4.3 is
negative, we would like the set P studied in Problem 4.3 to contain a fair proportion
of elements from each Bohr set of the form (4.1).

It is only in recent years that interesting subcases of Problem 4.3 have been solved.
In 2014, Shao [92] showed that Problem 4.3 has an affirmative answer for any subset
P ⊂ P of relative lower density8 greater than 5

8
. Perhaps surprisingly, this is optimal

when taking only the density into consideration: the subset

P := {p ∈ P : p ≡ 1, 2, 4, 7, 13 (mod 15)}

has density 5
8

and, by simple modular arithmetic, sums of three of its elements are
never ≡ 14 (mod 15). Matomäki and Shao [77] considered Problem 4.3 for signifi-
cantly sparser but specific subsets of the primes. Their subsets of interest are the
Chen primes and the bounded gap primes9. Chen primes are primes p such that
p + 2 has at most two prime factors; the infinitude of such primes was proved by
Chen [5] in 1973. The bounded gap primes are primes p such that the interval
[p, p + C] contains at least two primes for some large, fixed C, and their infinitude
was proved in the celebrated work of Zhang [117] in 2013 and in a more general
form by Maynard [80] and Tao (unpublished) in 2014.

8We define the relative lower density of B ⊂ A with respect to A as lim inf
N→∞

|B ∩ [1, N ]|
|A ∩ [1, N ]| .

9The latter set does not have a standardized name.
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Problem 4.3 should be compared to the problem of locating three-term arithmetic
progressions in the set P , which also involves studying a linear equation in the
primes.

4.4. Problem (Three-term arithmetic progressions in subsets of the primes). Let
P ⊂ P be a given interesting subset of the primes. Is it the case that P contains
infinitely many solutions to p1 + p3 = 2p2 with p1, p2, p3 ∈ P distinct?

As with Problem 4.3, a number of special cases of Problem 4.4 have been solved.
Concerning this, Green [25] proved Roth’s theorem for the primes10, stating that
any subset of the primes of positive relative upper density11 contains infinitely many
non-constant three-term arithmetic progressions. This was famously generalized to
k-term arithmetic progressions by Green and Tao [27]. In another work, Green and
Tao [26] showed that the Chen primes satisfy Roth’s theorem.

The approach that Green and Green–Tao developed for this type of problems is
called a transference principle, as it allows one to transfer information (such as
Roth’s theorem) from dense subsets of the integers to sparse ones (such as the
primes) under suitable conditions. Intuitively speaking, the principle says that if
A ⊂ [1, N ] is a set with |A| = δN and δ = δ(N) > 0, then A contains many three-
term arithmetic progressions, provided that the normalized indicator δ−11A(n) has
a pseudorandom majorant (that is, a majorizing function ν(n) that has mean � 1
and has small Fourier coefficients) and that δ−11A(n) is “Fourier bounded” (that is,
its Fourier transform has small Lr norm for r > 2). This version of the transference
principle is specific to the translation-invariant linear equation x+z = 2y, and does
as such not apply to the setting of Problem 4.3. Indeed, the set {p ∈ P : ‖

√
2p‖ <

1
10
} is an example of a set that contains an abundance of arithmetic progressions

(since it is a positive relative density set of the primes) but, as mentioned earlier,
has no solutions to n = p1 + p2 + p3 for many odd n. Therefore, to deal with
Problem 4.3, one needs a different version of the transference principle, which takes
into account the distribution of P in Bohr sets (an example of which is the fractional
part set above); we shall discuss this later in this section.

4.3. Statements of results

In Article [II], we study Problem 4.3 for the specific subset

P := {p ∈ P : p = x2 + y2 + 1, x, y ∈ Z},
consisting of primes representable as values of the polynomial x2 + y2 + 1. There
are a number of reasons why the set P is interesting. Firstly, it is perhaps the
simplest non-trivial example of a sparse subset of the primes consisting of the val-
ues of a multivariate polynomial. When it comes to single-variable polynomials,

10The theorem is named so, since Roth [88] proved that positive upper density subsets of the
integers contain infinitely many non-trivial three-term arithmetic progressions.

11The relative upper density of a set A ⊂ B with respect to B ⊂ N is lim sup
N→∞

|B ∩ [1, N ]|
|A ∩ [1, N ]| .
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only degree one polynomials have been proved to produce infinitely many primes
(by Dirichlet’s theorem, under a coprimality condition), so one should turn to mul-
tivariate polynomials for interesting unconditional results. Concerning irreducible
binary quadratic forms ax2 + bxy+ cy2, which are some of the simplest multivariate
polynomials, the Chebotarev density theorem can be used to characterize when such
a form represents infinitely many primes. When the form does represent infinitely
many primes, Chebotarev’s theorem implies that the relative density of such primes
is 1

2
. Therefore, binary quadratic forms do not produce sparse subsets of the primes.

We mention that there are also some interesting higher degree multivariate polyno-
mials that are known to represent infinitely many primes. Friedlander and Iwaniec
[18] showed that the polynomial x2 + y4 takes infinitely many prime values, Heath-
Brown [41] showed that x3 + 2y3 has the same property, and Maynard [79] showed
this property for an infinite class of more general polynomials called norm forms.
The sets of primes corresponding to these polynomials have cardinalities� X1−δ up
to X for some δ > 0, so they are certainly sparse subsets of the primes. Since primes
represented by these polynomials have not been studied in arithmetic progressions
to large moduli, the Goldbach problem appears formidable for them.

The set P of primes represented by x2+y2+1 is also a sparse subset of the primes; an
application of Selberg’s sieve provides the bound |P ∩ [1, N ]| � N(logN)−

3
2 (to see

this, note that if m ∈P ∩ [N
2
, N ], then (m,

∏
p≤z p) = (m−1

k2
,
∏

p≤z,p≡3 (mod 4) p) = 1

for z = N0.01 and for some k ∈ N). It is known that P is infinite, a result first
shown by Linnik [65] in 1960, using his dispersion method. Later, a sieve-theoretic
proof of this was given by Iwaniec [50], making use of the linear and semilinear
sieves. Iwaniec’s proof also established the matching lower bound |P ∩ [1, N ]| �
N(logN)−

3
2 . Subsequently, various properties of the set P have been investigated;

in particular, it has been studied over short intervals [115], [69], and variants of the
Goldbach problem have been studied for this set. In 2008, Matomäki [70] showed
that almost all even n 6≡ 2 (mod 6) can be expressed as n = p + q with p ∈ P
and q ∈ P a generic prime. Next, Tolev [104] gave an asymptotic formula for the
representations of such n as n = p + q with p ∈ P, q ∈ P, again for almost all n.
In another work [105], he considered the corresponding ternary Goldbach problem
and showed that every large enough odd n can be written as n = p + q + r with
p, q ∈P and r ∈ P. We strengthen these results by solving Problem 4.3 for the set
P.

4.5. Theorem (Article [II]). Every large enough odd n can be represented as n =
p1 + p2 + p3 with p1, p2, p3 ∈P.

We also improve Matomäki’s result [70] by settling almost all cases of the binary
Goldbach problem for P.

4.6. Theorem (Article [II]). Almost all even integers n 6≡ 5, 8 (mod 9) can be
represented as n = p1 + p2 with p1, p2 ∈P.
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Note that the condition n 6≡ 5, 8 (mod 9) is necessary, since in the complementary
case the fact that p ≡ 1, 2, 5 or 8 (mod 9) for primes p = x2 + y2 + 1 6= 3 shows
that p1 or p2 equals 3 in the representation n = p1 + p2, in which case we could only
represent � N(logN)−1 integers up to N .

We also investigate Problem 4.4 in Article [II], again for the specific set P. We are
able to resolve this problem and, more generally, to prove Roth’s theorem for P.

4.7. Theorem (Article [II]). The set P contains infinitely many non-trivial three-
term arithmetic progressions. More generally, any subset of

P∗ := {p ∈ P : p = x2 + y2 + 1, x, y coprime}

having positive relative upper density contains infinitely many non-trivial three-term
arithmetic progressions.

We remark that subsequently Sun and Pan [95] generalized this result by proving
that the set P contains arbitrarily long arithmetic progressions.

One more topic considered in Article [II] is the distribution of irrational multiples
of primes belonging to the subset P. For the whole set of primes, such results take
the form:

For all α ∈ R \Q, β ∈ R we have ‖αp+ β‖ < p−θ for infinitely many p ∈ P,
(4.2)

where θ is a constant whose value we are attempting to maximize. The first result
in this direction was that of Vinogradov [109] with θ = 1

5
− ε. This was improved

several times, notably by Vaughan [106] to θ = 1
4
− ε, by Harman [37] to θ = 3

10
,

and by Jia [57] to θ = 9
28

. In the special case β = 0, the record is Matomäki’s result

[72] with θ = 1
3
− ε.

The problem (4.2) has also been studied for Chen primes in [71], [93], Piatetski-
Shapiro primes in [32], and Gaussian primes in [1]. Here we obtain the first result
concerning (4.2) for the subset P of the primes.

4.8. Theorem (Article [II]). Let ε > 0. For any α ∈ R \Q and β ∈ R, we have

‖αp+ β‖ < p−
1
80

+ε

for infinitely many p ∈P.

This establishes that the elements of P are somewhat uniformly distributed in Bohr
sets. We remark that the exponent 1

80
in Theorem 4.8 could be improved by a more

careful analysis in [II, Sections 8-9]; we however confined ourselves to showing that
one can get some positive, explicit exponent.

36



37

4.4. Method of proof

Our proofs of Theorems 4.5 and 4.6 do not apply the classical circle method, but
rather a transference principle for ternary equations. Let us first describe why the
traditional circle method approach is not applicable to the set P.

The starting point of Vinogradov’s proof of Theorem 4.1, and many subsequent
developments of the circle method, is the reduction of the problem to analyzing
exponential sums via the identity

|{(p1, p2, p3) ∈ P3 : N = p1 + p2 + p3}| =
∫ 1

0

S(α)3e(−Nα) dα, S(α) :=
∑
p≤N

e(αp).

This identity is seen to hold by expanding out S(α)3 and applying the orthogonality
identity

1n=0 =

∫ 1

0

e(nα) dα.

One then examines separately the major arc case α ∈ M, where α is close to a
rational number with small denominator, and the opposite minor arc case α ∈
m := [0, 1] \M. For α ∈ M, the sum S(α) is often “large”, and one can evaluate
it asymptotically by the Siegel–Walfisz theorem. For α ∈ m, in turn, one expects
S(α) to be “small”, and this can be proved with the help of Vaughan’s identity,
which transforms sums over primes to bilinear sums. We refer to [107, Chapter 3]
for details of the method.

If we applied the same strategy to Theorem 4.5, we would run into trouble, since
we do not have a good understanding of

SP(α) :=
∑
p≤N
p∈P

e(αp),

neither in the major arc nor in the minor arc case. In the major arcs, the problem
is that we only have upper and lower bounds for |P ∩ [1, N ]| that are off by a
constant factor, and hence we have no asymptotic even for SP(0). In the minor
arc case, the difficulty is that no analogue of Vaughan’s identity is known for the
indicator function 1P(n). For these reasons, the classical circle method is not the
right line of attack for Theorem 4.5. We mention though that if one studies the
ternary Goldbach problem with two of the three prime variables coming from the
subset P, then the circle method coupled with sieve methods is applicable; see [70],
[105].

The proofs of Theorems 4.5 and 4.6 are instead based on a transference type princi-
ple of Matomäki and Shao [77, Theorem 2.3]. Roughly speaking, the principle says
that if N is large and a set A ⊂ [1, N ] with |A| = δN obeys, for some fixed δ0 > 0
(and small enough η = η(δ0)) the properties
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(i) (well-distribution in Bohr sets) |A ∩ (B − t)| ≥ δ0|A||B|/N for t ∈ [N/4, N/2]
and all Bohr sets12 B with |B| ≥ ηN ;

(ii) (Fourier boundedness)
∑

ξ∈ZN |δ−11̂A(ξ)| 52 ≤ δ−1
0 ;

(iii) (Non-sparseness) |A ∩ [0.1N, 0.4N ]| ≥ δ0 · δN ,

then there exist a1, a2, a3 ∈ A such that N = a1 + a2 + a3. The actual formulation
of the transference-type principle is somewhat more involved; we refer to [77, The-
orem 2.3] for the details. The principle can also be generalized to work for almost
all cases of binary problems; see [II, Proposition 2.1] for this. We also note that
Matomäki, Maynard and Shao [73] developed a different transference-type principle
for Goldbach-type problems; this version allowed them to improve the exponent for
the Goldbach problem with almost equal variables [73, Theorem 1.1].

We will apply the transference principle essentially to

A := {n ≤ N : Wn+ b ∈P}(4.3)

with

δ �
(

W

ϕ(W )

) 3
2

(logN)−
3
2 ,

where (b,W ) = 1 and W =
∏

p≤w p for some large, fixed w. This “W -trick” of re-
stricting to primes in a residue class is necessary to guarantee the well-distribution
of A in arithmetic progressions (which are a special case of Bohr sets).

Intuitively, condition (i) of the transference principle guarantees that A contains a
fair proportion of each Bohr set (which, as we indicated in Subsection 4.2, is neces-
sary); condition (ii) is related to the existence of a pseudorandom majorant13; and
condition (iii) says that A is not too concentrated on certain subintervals.

The main task in the proofs of Theorems 4.5 and 4.6 is then verifying the conditions
(i)–(iii) of the transference principle for the specific set A given by (4.3). Condition
(iii) is the simplest to check and follows with minor modifications from Iwaniec’s
proof of the infinitude of P. Condition (ii), the Fourier boundedness condition,
is closely related to the restriction theory of the primes, a topic studied by Green
[25] and Green–Tao [26]. To obtain (ii), we roughly speaking want to construct a
function β : N → R≥0 that enjoys the majorization property δ−11A(n) ≤ Cβ(n),
has mean value � 1 (so that β is essentially a probability measure on [1, N ]), and
has a Fourier expansion that is of “low enough complexity”. In other words, β is a
pseudorandom majorant for 1A in a suitable sense. Then, under these conditions,

12We defined Bohr sets in formula (4.1).
13In [II, Section 4], we show that the existence of a suitable pseudorandom majorant implies (ii),
and then we construct such a majorant.
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[26, Proposition 4.2] implies a restriction estimate(∑
ξ∈ZN

∣∣∣∣∣ 1

N

∑
n≤N

anβ(n)e

(
−ξn
N

)∣∣∣∣∣
r)1/r

≤ Cr

(
1

N

∑
n≤N
|an|2β(n)

)1/2

for all complex numbers an and fixed r > 2. Taking

an =

{
δ−11A(n)
β(n)

, β(n) 6= 0

0, β(n) = 0,

(so that |an| � 1) we deduce, in particular, that

∑
ξ∈ZN
|δ−11̂A(ξ)| 52 �

(
1

N

∑
n≤N

β(n)

)5/4

� 1.

Naturally, we still need to prove that such a pseudorandom majorant β exists. It
turns out that the Selberg upper bound sieve does the job, and to see this we closely
follow a paper of Ramaré and Ruzsa [87].

The majority of the proofs of Theorems 4.5 and 4.6 is then devoted to proving
condition (i), well-distribution in Bohr sets. In other words, we wish to analyze
sums of the form ∑

n≤N
n∈P

1B(n),

where B is a Bohr set (or a smoothed version thereof). By applying a weighted
form of the linear and semilinear sieves (as developed in [II, Section 6], following
Iwaniec’s work in [49]), we reduce the problem to showing that the count of primes
in Bohr sets has a good enough level of distribution. More precisely, we want to
find levels of distribution ρ1, ρ2 ∈ (0, 1) as large as possible, such that the following
holds. For a set L ⊂ N of “bilinear type” (in the sense that it consists of integers
having a certain type of factorization), we have∑

d≤Nρ1

λ+,LIN
d

∑
`≤N0.9

`∈L

( ∑
N≤n≤2N
n=`p+1

n≡0 (mod d)

1B(n)− 1

ϕ(d)

∑
N≤n≤2N

1B(n)

` log n
`

)
� N

(logN)100
,(4.4)

and ∑
d≤Nρ2

λ−,SEM
d

( ∑
N≤p≤2N

p≡1 (mod d)

1B(p)− 1

ϕ(d)

∑
N≤p≤2N

1B(p)

)
� N

(logN)100
,(4.5)

where B is a Bohr set (or a smoothed version of it), λ+,LIN
d are the upper bound

linear sieve weights with level D1 = Nρ1 and sifting parameter z1 = N1/5 and λ−,SEM
d
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are the lower bound semilinear sieve weights with level D2 = Nρ2 and sifting pa-
rameter z2 = N1/3−ε (see Section 1 for a precise definition of sieve weights and [II,
Hypothesis 6.4] for the exact, slightly more complicated statements of interest).

By expanding 1B(p) as a finite Fourier series (and a small error), we then need
to bound the Bombieri–Vinogradov type averages (4.4) and (4.5) with an additive
character e(αp) in place of 1B(p). In the case of the linear sieve weights (which
have the well-factorability property defined in [19, Chapter 12]), we manage to
obtain the good value ρ1 = 1

2
− ε for the level of distribution by following [71].

The semilinear sieve weights, however, are not well-factorable, and the level of
distribution ρ2 = 1

3
− ε obtained for general weights in [103, Lemma 1] is not

good enough for our purposes. We therefore prove a combinatorial factorization
of semilinear sieve weights [II, Lemma 9.2] by following the principle of Harman’s

sieve [38, Chapter 3], and this enables us to show that the weights λ−,SEM
d have

“enough flexibility” in their factorizations as Dirichlet convolutions. This amount
of flexibility allows us to achieve the better level of distribution ρ2 = 3

7
− ε, which

is good enough for our needs. The details of the proof can be found in [II].
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5. On the logarithmic Chowla conjecture

5.1. Chowla’s conjecture

The Liouville function, a fundamentally important function in multiplicative number
theory, is defined as λ(n) := (−1)Ω(n), where Ω(n) is the number of prime factors
of the integer n counted with multiplicities. This function is closely related to
the more well-known Möbius function, given by µ(n) := (−1)Ω(n) · 1n squarefree; in
particular, they are both multiplicative functions having value −1 at the primes.
The distribution of the Liouville function (or equally well of the Möbius function)
appears highly random (like a series of coin flips) and in particular, consecutive
values of the Liouville function should be asymptotically independent of each other.
This was formalized by Chowla [7] in 1965 as the following assertion.

5.1. Conjecture (Chowla’s conjecture). For any k ≥ 1 and any distinct shifts
h1, . . . , hk ∈ N, we have

1

x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk) = o(1).(5.1)

The conjecture can be interpreted as stating that shifted products of the Liouville
function have mean 0. Alternatively, the conjecture can be stated in the following
equivalent form from which it is clearer that it is a statement about the independence
of simultaneous values of the Liouville function.

5.2. Conjecture (Chowla’s conjecture, sign pattern formulation). For any k ≥ 1,
any signs ε1, . . . , εk ∈ {−1,+1}, and any distinct shifts h1, . . . , hk ∈ N, we have

lim
x→∞

1

x
|{n ≤ x : λ(n+ h1) = ε1, . . . , λ(n+ hk) = εk}| = 2−k.

To see that Conjectures 5.1 and 5.2 are indeed equivalent, one can simply substitute
λ(n+ hi) = εi(2 · 1λ(n+hi)=εi − 1) into (5.1) and expand the product.

We remark that Conjecture 5.1 could be generalized to the assertion that

1

x

∑
n≤x

λ(a1n+ h1) · · ·λ(akn+ hk) = o(1),(5.2)

whenever the non-degeneracy condition aihj 6= ajhi for 1 ≤ i < j ≤ k is fulfilled.
One could also formulate Conjecture 5.1 with the Möbius function in place of the
Liouville function; one can show by elementary sieve theory that such a conjecture
would still follow from (5.2). Conjecture 5.2, however, takes a more complicated
form for the Möbius function, as for example the events µ(n) = 1, µ(n + 1) = 1,
µ(n+ 2) = 1 and µ(n+ 3) = 1 are not independent (at most three of them can hold
simultaneously, since one of the values is 0).

Conjectures 5.1 and 5.2 resemble the famous Hardy-Littlewood prime tuples con-
jecture [34], and they can be thought of as simpler analogues of it.
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5.3. Conjecture (Hardy-Littlewood prime tuples conjecture). Let h1, . . . , hk ∈ N
be distinct integers. Then the von Mangoldt function Λ(n) has the correlation
asymptotics

1

x

∑
n≤x

Λ(n+ h1) · · ·Λ(n+ hk) = S(h1, . . . , hk) + o(1),

with S(h1, . . . , hk) an effectively computable constant satisfying S(h1, . . . , hk) > 0
if and only if the polynomial (n+ h1) · · · (n+ hk) has no fixed prime divisor.

A connection between the Chowla and Hardy-Littlewood conjectures is hinted by
the identity

Λ(n) =
∑
d|n

µ(d) log
n

d
,

which binds together the Möbius and von Mangoldt functions. Nevertheless, one
would need a strong error term of the form O((log x)−A) on the right-hand side of
(5.2) to be able to have a rigorous implication from Conjecture 5.1 to Conjecture
5.3. None of the current progress on Chowla’s conjecture (for k ≥ 2) has produced
such good error terms.

In its original form, Chowla’s conjecture is open for all k ≥ 2. The simplest k = 1
case

1

x

∑
n≤x

λ(n) = o(1)

can be shown to be equivalent to the prime number theorem and, more generally,

1

x

∑
n≤x

λ(an+ h) = o(1)

is equivalent to the prime number theorem in arithmetic progressions.

Despite this lack of progress on the original conjecture, starting from 2015 there
has been major progress on different variants of Chowla’s conjecture. Matomäki
and Radziwi l l [74] proved, while showing cancellation in very short averages of
multiplicative functions, that, for any h ∈ N,

lim sup
x→∞

∣∣∣∣∣1x∑
n≤x

λ(n)λ(n+ h)

∣∣∣∣∣ ≤ 1− δ(h)

for some δ(h) > 0. This was the first nontrivial progress towards the two-point
Chowla conjecture (for the odd order cases, the analogous result was proved by
Elliott [11]). Soon after this result, Matomäki, Radziwi l l and Tao [75] showed that
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Chowla’s conjecture (as well as the more general Elliott’s conjecture, discussed in
Chapter 6) holds on average over the shifts, in the sense that

1

H(x)k

∑
h1,...,hk≤H(x)

∣∣∣∣∣1x∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)

∣∣∣∣∣ = o(1)(5.3)

for any H(x) ≤ x tending to infinity with x. If one could take H(x) bounded, one
would of course obtain Chowla’s conjecture. The result (5.3) was generalized by
Frantzikinakis [15] to averages where the shifts are given by independent multivari-
ate polynomials.

Another interesting approximation to Chowla’s conjecture is obtained by adding
weights to the conjecture. The logarithmic weights 1

n
are a fruitful choice, since

they have the property that ∑
x/2≤n≤x

1
n∑

n≤x
1
n

= o(1),

or in other words that the measure of the interval [x
2
, x] is small. We will see the

usefulness of this in Subsection 5.3

In this direction, Tao [98] made a breakthrough by settling the two-point case of
Chowla’s conjecture with logarithmic weights.

5.4. Theorem (Tao). For any distinct h1, h2 ∈ N, we have

1

log x

∑
n≤x

λ(n+ h1)λ(n+ h2)

n
= o(1).(5.4)

In fact, Tao proved an analogous approximation to Elliott’s conjecture (see Section
6) from which (5.4) follows as a special case.

In light of the result (5.4), it is natural to study in detail the logarithmic variant of
Chowla’s conjecture.

5.5. Conjecture (The logarithmic Chowla conjecture). For any k ≥ 1 and any
distinct shifts h1, . . . , hk ∈ N, we have

1

log x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)

n
= o(1).

Tao’s result [98] is the k = 2 case of this. In [100] and [III], Tao and the author
settled Conjecture 5.5 for all odd k. Therefore, the cases k = 1, 2, 3, 5, 7, 9 . . . of the
conjecture are now known, whereas the even cases k ≥ 4 remain open.

43



44

5.6. Theorem (Tao-T., [100], [III]). Let k ≥ 1 be odd and a1, . . . , ak, h1, . . . , hk ∈ N.
Then we have

1

log x

∑
n≤x

λ(a1n+ h1) · · ·λ(akn+ hk)

n
= o(1).(5.5)

There is no need to assume a non-degeneracy condition on ai and hi here, since such
a condition makes a difference only for even k.

Our first proof of Theorem 5.6 in [100] utilized deep results of Leibman [62] and Le
[61] from ergodic theory, as well as the theory of nilsequences. On the other hand,
the proof in [100] gave a general structural theorem for correlations of multiplicative
functions, of which Theorem 5.6 is a special case.

The second proof, which we present in [III], proceeds along rather different lines,
since after applying the so-called entropy decrement argument from [98, Section 3],
we do not employ ergodic theory machinery, but use combinatorial results instead.
The proof via this method turns out to be both shorter and simpler; in the proof
given in [100], the case of the Liouville function was not significantly easier than the
case of arbitrary multiplicative functions. Using this combinatorial proof, it would
in addition be possible to obtain quantitative error bounds for the right hand side
of (5.5); however, these error terms were not analyzed in [III], due to the fact that
the error bounds would be very weak14.

Since Chowla’s conjecture can be stated as a claim about the sign patterns of the
Liouville function, it is natural that Theorem 5.6 also implies something about sign
patterns. We showed in [100] that Theorem 5.6, together with the two-point result
and some additional considerations, gives the following.

5.7. Theorem (Tao-T., [100], [III]). Let ε1, ε2, ε3, ε4 ∈ {−1,+1}4. Then we have

lim
x→∞

1

x
|{n ≤ x : λ(n+ 1) = ε1, λ(n+ 2) = ε2, λ(n+ 3) = ε3}| =

1

8

and

lim inf
x→∞

1

x
|{n ≤ x : λ(n+ 1) = ε1, λ(n+ 2) = ε2, λ(n+ 3) = ε3, λ(n+ 4) = ε4}| > 0.

We also proved the analogous results for the Möbius function15. These improve the
result of Matomäki, Radziwi l l and Tao [76] on sign patterns of length 3, as well as
Tao’s result on sign patterns in [98, Corollary 1.7].

14For the k = 2 case of (5.5), Tao’s method [98] gives an error term of the form O((log log log x)−c)
for some c > 0. For k ≥ 3, we expect even worse error terms.
15In the case of µ(n), we of course need to exclude from the four-point result those sign patterns
(ε1, ε2, ε3, ε4) ∈ {−1, 0,+1}4 which cannot occur for trivial reasons, and in the three point result
the density of the set is some function of εi ∈ {−1, 0,+1} instead of 1

8 .
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5.2. Connections to other conjectures

Chowla’s conjecture can be viewed as one instance of the Möbius randomness law
from [52, p. 338], a heuristic stating that the Möbius function (or the Liouville
function) should behave randomly. Another manifestation of this heuristic is a con-
jecture of Sarnak [89], which states that µ(n) does not correlate with any bounded
sequence of “low complexity”. The complexity of a sequence a : N → C is mea-
sured in terms of its topological entropy, which is the infimum of all σ > 0 such
that sets of the form {a(n), a(n + 1), . . . , a(n + k − 1)} ⊂ Ck can be covered with
≤ exp((σ + o(1))k) balls of any fixed radius. With this definition, Sarnak’s conjec-
ture takes the form below.

5.8. Conjecture (Sarnak). Let a : N → C be a bounded sequence of topological
entropy 0. Then we have

1

x

∑
n≤x

µ(n)a(n) = o(1).

Sarnak’s conjecture has been extensively studied in the ergodic theory literature,
and many important special cases have been verified; see [14] for a survey. In the
ergodic theory literature, one usually assumes in Conjecture 5.8 the (equivalent)
condition for the sequence a that it can be written as a(n) = F (T nX) for (X,T ) a
topological dynamical system of zero topological entropy and F : X → C continuous.
Here we will not work with the dynamical systems definition, and instead refer to
[89] for its details.

It was already observed by Sarnak that his conjecture would follow from Chowla’s
conjecture. In [99], Tao strengthened the connection between the two conjec-
tures by showing that their logarithmic forms are equivalent (that is, Conjecture
5.5 is equivalent to Conjecture 5.8 with (1/(log x))

∑
n≤x µ(n)a(n)/n in place of

(1/x)
∑

n≤x µ(n)a(n)). He also showed that both of these conjectures are equivalent
to the yet unproved “logarithmic local Gowers uniformity of the Liouville func-
tion”, which can be thought of as a short exponential sum estimate for the Liouville
function and contains as the simplest case the Matomäki-Radziwi l l theorem [74].
Further works that lie at the intersection of the Sarnak and Chowla conjectures
include [10] and [17]. In the latter, Frantzikinakis and Host verify many new cases
of the logarithmic Sarnak conjecture, and as a byproduct obtain also a “minor arc”
Chowla-type result

1

log x

∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)
e(αn)

n
= o(1)

for any k ≥ 1 and any fixed irrational α. In Article [III], however, we do not
make progress on Sarnak’s conjecture, since it is the even order cases of Chowla’s
conjecture that are needed in the proof that Chowla’s conjecture implies Sarnak’s.
It seems therefore that the even order cases lie deeper, and indeed in [100, Remark
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1.7] we observed that the 2k-point case of the logarithmic Chowla conjecture (with
dilations as in (5.2)) implies the (k + 1)-point case.

5.3. Proof ideas

The proof of the odd order cases of the logarithmic Chowla conjecture in [III] starts
with the averaging over small primes and entropy decrement arguments devised in
[98] to deal with the two-point case of the conjecture. The averaging argument
enables us to replace a correlation average over n with a double average over n and
p for p belonging to some small scale, thus offering more flexibility. More precisely,
if we define

fx(a) :=
1

log x

∑
n≤x

λ(n+ a) · · ·λ(n+ ak)

n

(assuming for simplicity that a1 = · · · = ak = 1 and hj = j in Theorem 5.6), then
the multiplicativity property λ(pn) = −λ(n) for all primes p allows us to write

fx(1) = − 1

log x

∑
p≤n′≤px

λ(n′ + p) · · ·λ(n′ + pk)

n′
p1p|n′ + o(1)(5.6)

for any prime p and for odd k (for even k we would have a + sign). Taking averages
over p, we get the identity

fx(1) = −m
2m

∑
2m≤p<2m+1

1

log x

∑
p≤n′≤px

λ(n′ + p) · · ·λ(n′ + pk)

n′
p1p|n′ +O(ε)

for ε−1 ≤ m ≤ log log x. Since logarithmic averages are slowly varying, we can
replace the average over p ≤ n′ ≤ px with an average over n ≤ x (this is the benefit
of logarithmic averaging). Thus we have

fx(1) = −m
2m

∑
2m≤p<2m+1

1

log x

∑
n≤x

λ(n+ p) · · ·λ(n+ pk)

n
p1p|n +O(ε).(5.7)

for ε−1 ≤ m ≤ log log x.

We wish to replace the factor p1p|n′ with its average value 1 + O(ε) in order to
get a bilinear sum over n′ and p, for which there are many tools available. This is
enabled by Tao’s entropy decrement argument [98] (with refinements in [96], [100],
[III]), which draws ideas from probability and information theory to show that this
replacement can be done for “almost all” scales m in (5.7).

We elaborate on this part of the argument. Firstly, by using the approximate
translation invariance of averages, (5.7) becomes

fx(1) = − 1

log x

∑
n≤x

m

22m

∑
2m≤p<2m+1

∑
j≤2m

λ(n+ j + p) · · ·λ(n+ j + pk)

n
p1p|n+j +O(ε)

(5.8)
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which is a more convenient form to work with. The task is then to show that, for
most choices of the scale m, the sign pattern Xm(n) := (λ(n), λ(n + 1), . . . , λ(n +
2m+2 − 1)) and the divisibility conditions Ym(n) := (n mod p)2m≤p<2m+1 behave
essentially independently (with respect to the logarithmic probability on [1, x]).

In the language of information theory, we thus want to show that if Xm and Ym

are interpreted as random variables, the entropy16 H(Ym) is essentially the same as
the conditional entropy H(Ym|Xm) (the two entropies are equal if Ym and Xm are
independent, so a small difference between them amounts to near independence).
In other words, we want the mutual information

I(Xm,Ym) := H(Ym)−H(Ym|Xm)(5.9)

to be small for most m; more precisely, it should be of size ε10 · 2m/m, whereas the
trivial upper bound is ≤ H(Ym) � 2m. As mentioned above, mutual information
reflects how close two random variables are to being independent (in particular, the
information is maximal when one of the two random variables is a deterministic
function of the other).

By applying inequalities from information theory, and an insightful pigeonholing
argument, Tao showed in [98] that one can indeed bound (5.9) by ≤ ε10 · 2m/m, not
for all scales m, but for infinitely many m. In [III, Section 3], we need a refinement
of this, to the effect that ifM(x, ε) is the set of scales m ≤ log log x for which (5.9)
is > ε102m/m, then ∑

m∈M(x,ε)

1

m
� ε−20,

say. In paricular, the set of suitable scales has logarithmic density 1. We refer to
[96], [III, Proposition 4.3] for the details17.

After applying the entropy decrement argument, we know that we can replace in
(5.7) the factor p1p|n with 1 +O(ε) for all m ≤ log log x outside a set whose sum of
reciprocals over [1, log log x] is� ε−20. In particular, we can average logarithmically
over different scales m to reach

fx(1) = − 1

log2H2 − log2H1

∑
H1≤p≤H2

1

p

1

log x

∑
n≤x

λ(n+ p) · · ·λ(n+ kp)

n
+O(ε)

(5.10)

for Hj = Hj(x) tending to infinity slowly enough and H1(x) growing slowly enough
in terms of H2(x). Here log2 x is the second iterate of log x.

16For the definitions of entropy and other related notions from information theory, see Section 1.
17For technical reasons, those works deal with a more general notion of information, namely
conditional mutual information.
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We can apply the same argument again to the right-hand side of (5.10), finding

fx(1) = +
1

log2H2 − log2H1

∑
H1≤p1≤H2

1

p1

1

log2H4 − log2H3

∑
H3≤p2≤H4

1

p2

1

log x

∑
n≤x

λ(n+ p1p2) · · ·λ(n+ kp1p2)

n
+O(ε),

(5.11)

where H1 < H2 < H3 < H4 and Hj(x) grows slowly enough in terms of Hj+1(x),
and H4(x) tends to infinity slowly. Crucially, we have a + sign in (5.11) and a −
sign in (5.10); this allows us to break the symmetry of the correlations.

We can easily replace the averages over primes with averages over the integers
weighted by the von Mangoldt function Λ(d), so (5.10) (with H1 and H2 replaced
with H3 and H4) and (5.11) take the forms

fx(1) = − 1

log2H4 − log2H3

∑
H3≤d≤H4

Λ(d)

d log d

1

log x

∑
n≤x

λ(n+ d) · · ·λ(n+ kd)

n
+O(ε)

(5.12)

and

fx(1) = +
1

log2H2 − log2H1

∑
H1≤d1≤H2

Λ(d1)

d1 log d1

1

log2H4 − log2H3

∑
H3≤d2≤H4

Λ(d2)

d2 log d2

1

log x

∑
n≤x

λ(n+ d1d2) · · ·λ(n+ kd1d2)

n
+O(ε),

(5.13)

respectively.

We now encounter multilinear averages of the form

1

N2

∑
d≤N

∑
n≤N

θ(d)f1(n+ d) · · · fk(n+ kd),(5.14)

where f1, . . . , fk : N → C are some functions with |fi| ≤ 1 and θ : N → C is some
other function (in this case a normalized version of Λ(d)). The expression (5.14)
thus counts patterns of the form (d, n+ d, . . . , n+ kd) with weights. Such averages
have been widely studied both in the additive combinatorics and the ergodic theory
literature (see for instance [101, Chapter 11]), and by a version of the so-called
generalized von Neumann theorem [III, Lemma 5.2], it turns out that one has the
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bound18 ∣∣∣∣∣ 1

N2

∑
d≤N

∑
n≤N

θ(d)f1(n+ d) · · · fk(n+ kd)

∣∣∣∣∣ ≤ Ck‖θ‖Uk[N ] + o(1),

where ‖θ‖Uk[N ] is the Uk Gowers norm of θ on [1, N ] (see [101, Chapter 11]). Thus,
analyzing (5.12) and (5.13) has been reduced to understanding the Gowers norm of
Λ(Wn+ b)− 1, where W =

∏
p≤w p, (b,W ) = 1, and w is a large constant.

It is known that the W -tricked von Mangoldt function has negligible Gowers norms;
this was proved by Green, Tao and Ziegler in a series of breakthroughs [28],[29],[30],
[31]. Therefore, we can remove the von Mangoldt function weight both in the
average (5.12) and the average (5.13), after splitting the sums into residue classes
(mod W ). This leads, after some considerations, to

fx(1) =
W

ϕ(W )

1

log2H4 − log2H3

∑
H3≤d≤H4
(d,W )=1

1

d log d log x

∑
n≤x

λ(n+ d) · · ·λ(n+ dk)

n
+O(ε)

= −fx(1) +O(ε).

(5.15)

Importantly, fx(1) appears with different signs in (5.15), so fx(1) = O(ε), after
which we can send ε→ 0. This concludes the sketch of the proof; for the full proof,
see [III].

18As is shown for example in [101, Chapter 11], the weighted arithmetic progression patterns
(n+ d, . . . , n+ kd) are controlled by the Uk−1 Gowers norm, but the pattern (d, n+ d, . . . , n+ kd)
in (5.14) has “complexity” one higher, and should thus be controlled by the Uk Gowers norm.
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6. Binary correlations of multiplicative functions and applications

Article [IV] is concerned with binary correlations of multiplicative functions with
logarithmic averaging. Before stating the results of that article, we review what is
known and conjectured on correlations of multiplicative functions.

6.1. Correlations of multiplicative functions

A function g : N→ C is called multiplicative if it satisfies g(mn) = g(m)g(n) when-
ever m,n ∈ N are coprime. In what follows, we will restrict attention to 1-bounded
multiplicative functions, that is, multiplicative functions taking values in the unit
disk D := {z ∈ C : |z| ≤ 1}, since much less is known about the behavior of
unbounded multiplicative functions.

A fundamental notion in multiplicative number theory is the pretentious distance
D(f, g;x) between two multiplicative functions f, g : N→ D, introduced by Granville
and Soundararajan [24]. This quantity is defined as

D(f, g;x) :=

(∑
p≤x

1− Re(f(p)g(p))

p

)1/2

,(6.1)

and it is a pseudometric19 and, heuristically, if f and g “behave similarly” (when
it comes to their mean values or correlations), then the distance between them is
“small”.

The Dirichlet characters χ(n) and the Archimedean characters nit are important
classes of 1-bounded multiplicative functions, and although their complexity is rel-
atively low in the sense that χ(n) is periodic and nit is slowly varying, one usually
wants to exclude these functions when studying mean values or correlations of mul-
tiplicative functions, as these two classes of functions exhibit different behavior from
other functions in this context. One thus classifies 1-bounded multiplicative func-
tions as either
(i) pretentious, in the sense that D(g, χ(n)nit;∞) <∞ for some Dirichlet character
χ and some t ∈ R,
or
(ii) non-pretentious, in the sense that D(g, χ(n)nit;∞) = ∞ for all Dirichlet char-
acters χ and all t ∈ R.

By the zero-free region for the Dirichlet L-functions, the Liouville function λ(n)
from Section 5 is non-pretentious, whereas any multiplicative function f : N → D
with f(p) 6= 1 for only finitely many primes p is an example of a pretentious function
(one can take χ ≡ 1, t = 0 in (i)).

19This means that it satisfies the axioms of a metric, excluding the property that d(x, y) = 0 ⇒
x = y.
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The mean values

1

x

∑
n≤x

g(n)(6.2)

of multiplicative functions are connected to many topics of interest in multiplicative
number theory, including the prime number theorem and its generalizations, sieve
methods, and probabilistic number theory. The asymptotics of these mean values
are described by a theorem of Halász [33] from the 1960s (generalizing a theorem of
Wirsing [113] from the real-valued case), and the result demonstrates the need for
distinguishing pretentious and non-pretentious functions from each other.

6.1. Theorem (Halász). Let g : N → D be a 1-bounded multiplicative function.
Then
(i) If there exists t ∈ R such that D(g, nit;∞) <∞, we have

1

x

∑
n≤x

g(n) = (1 + o(1))
xit

1 + it

∏
p

(
1− 1

p

)(
1 +

g(p)

p1+it
+

g(p2)

p2(1+it)
+ · · ·

)
.

(ii)If no such t exists, we have

1

x

∑
n≤x

g(n) = o(1).

For a proof of the theorem, see [102, Section III.4]. Among other things, Theorem
6.1 implies that if g : N → [−1, 1] is real-valued, then the mean value of g always
exists (that is, (6.2) converges as x→∞).

We wish to understand the much more general correlation averages of bounded
multiplicative functions g1, . . . , gk : N→ D, defined as

1

x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk),(6.3)

where h1, . . . , hk ∈ N are fixed, distinct integers. These correlations have a number
of applications; most notably, in the case of the Liouville function showing that
the correlations are small reduce to the celebrated Chowla conjecture, discussed in
Section 5 and in particular, gives information on the sign patterns of the Liouville
function, studied in [76], [98], [100], [17]. In a very different and surprising direction,
Tao [97] used his breakthrough on two-point correlations to settle the Erdős discrep-
ancy problem [13] in combinatorics. There are further applications to discrepancy
of multiplicative functions in [58], rigidity theorems for multiplicative functions in
[60], and to distribution laws of additive functions in [12]. In article [IV], we give
further applications, discussed in Subsection 6.2.

The central conjecture pertaining to (6.3) is that of Elliott [11], [12] from the 1990s.
His conjecture states that, in the case where at least one of g1, . . . , gk : N → D is
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non-pretentious, distinct shifts of the functions gj should behave independently of
each other.

6.2. Conjecture (Elliott). Let k ≥ 1 and let g1, . . . , gk : N → D be 1-bounded
multiplicative functions and h1, . . . , hk ∈ N distinct shifts. Then we have

1

x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk) = o(1)(6.4)

unless for all 1 ≤ j ≤ k there exists a Dirichlet character χj such that

lim inf
x→∞

inf
|t|≤x

D(gj, χj(n)nit;x) <∞.

The formulation above takes into account the observation in [75, Appendix B] that
the original conjecture in [11], [12] has to be slightly modified in the complex-valued
case. As in the case of Halász’s theorem (Theorem 6.1), the property (6.4) often
fails in the pretentious case; for example

1

x

∑
n≤x

nit(n+ 1)−it = 1 + o(1) and
1

x

∑
n≤x

χ3(n)χ3(n+ 1) = −1

3
+ o(1),

where χ3 is the real non-principal Dirichlet character modulo 3. On the other hand,
a theorem of Klurman [58, Theorem 1.3] gives a formula for (6.3) in the case where
g1, . . . , gk are fixed pretentious functions.

In the form presented above, Conjecture 6.2 is open for all k ≥ 2, whereas the
k = 1 case follows from Theorem 6.1. However, several variants of (6.4) have been
established in the last few years. In particular, Matomäki, Radziwi l l and Tao [75]
showed that Elliott’s conjecture holds on average over the shifts h1, . . . , hk. Tao [98]
made another breakthrough by proving the binary case k = 2 of Elliott’s conjecture
with logarithmic averaging.

6.3. Theorem (Tao). Let g1, g2 : N→ D be 1-bounded multiplicative functions and
h1 6= h2 natural numbers. Then we have

1

log x

∑
n≤x

g1(n+ h1)g2(n+ h2)

n
= o(1)

unless for both j ∈ {1, 2} there exists a Dirichlet character χj such that

lim inf
x→∞

inf
|t|≤x

D(gj, χj(n)nit;x) <∞.

For many purposes, this logarithmic averaging is acceptable; see [97], [58], [60] for
some applications. In [100] we generalized Theorem 6.3 to the higher order cases
k ≥ 3, under an additional non-pretentiousness assumption on the product of the
functions involved.
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6.4. Theorem (Tao-T., [100]). Let k ≥ 1 and let g1, . . . , gk : N → D be 1-bounded
multiplicative functions and h1, . . . , hk ∈ N natural numbers. Then we have

1

log x

∑
n≤x

g1(n+ h1) · · · gk(n+ hk)

n
= o(1)

unless there exists a Dirichlet character χ for which the product g1 · · · gk weakly
pretends to be χ, in the sense that D(g1 · · · gk, χ;x)2 = o(log log x).

We applied this result to settle the odd order cases of the logarithmically averaged
Chowla conjecture; see Section 5.

Let us also mention a different line of study to Elliott’s conjecture, namely two-
dimensional variants of it. The two-dimensional version of Elliott’s conjecture states
that

1

x2

∑
d≤x

∑
n≤x

g1(n+ dh1) · · · gk(n+ dhk) = o(1),

given the assumptions of Conjecture 6.2. This was proved by Frantzikinakis and
Host in [16], and further works on two-dimensional correlations include those of
Matthiesen [78] and Klurman–Mangerel [59].

6.2. The result and its applications

In Article [IV], we generalize Tao’s result on the binary logarithmic Elliott conjec-
ture, but in a different direction than in [100], where higher order correlations were
considered. Namely, we show that for a large class of real-valued multiplicative
functions g1, g2 : N → [−1, 1] we can give an asymptotic formula for their correla-
tion (and typically the asymptotic formula has a nonzero main term). The class of
functions we consider is defined as follows.

6.5. Definition (Uniformity assumption). Let x ≥ 1, 1 ≤ Q ≤ x and η > 0. For a
function g : N→ D, denote g ∈ U(x,Q, η) if we have the estimate∣∣∣∣1x ∑

x≤n≤2x
n≡a (mod q)

g(n)− 1

qx

∑
x≤n≤2x

g(n)

∣∣∣∣ ≤ η

q
for all 1 ≤ a ≤ q ≤ Q.

From Halász’s theorem we see (as was observed in [IV, Remark 1.3]) that if g : N→
D is non-pretentious in the sense that inf |t|≤xD(g, χ(n)nit;x) ≥ ε−10 for all Dirichlet
characters χ of modulus ≤ ε−10 (and with ε > 0 small), then g ∈ U(x, ε−1, ε) for
x ≥ x0(ε). This means that the class of functions in Definition 6.5 is larger than the
class of real-valued functions considered in Conjecture 6.2 or in [98]. Very impor-
tantly, Definition 6.5 allows the multiplicative function g to depend on the summa-
tion length x, as will be the case in our applications. One can for example show that
if α ∈ (0, 1) is given, then the indicator of smooth numbers20 g(n) := 1n is xα−smooth

is a multiplicative function satisfying g ∈ U(x, ε−1, ε) for x ≥ x0(ε, α), although g

20We say that n is y–smooth (also called y-friable) if n has no prime factor larger than y.
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pretends to be 1 on the interval [1, x].

The main result in [IV] then states that if g1, g2 : N→ [−1, 1] are two multiplicative
functions, possibly depending on x, and g1 is uniformly distributed at scale x in the
sense of Definition 6.5, then the shifts of g1 and g2 are independent of each other.

6.6. Theorem (Article [IV]). Let a small real number ε > 0, a fixed integer shift

h 6= 0, and a function ω : R≥1 → R≥1 with 1 ≤ ω(X) ≤ log(3X) and ω(X)
X→∞−−−→∞

be given. Let x ≥ x0(ε, h, ω). Then, for any multiplicative functions g1, g2 : N →
[−1, 1] with g1 ∈ U(x, ε−1, ε), we have

1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ h)

n
=

(
1

x

∑
x≤n≤2x

g1(n)

)(
1

x

∑
x≤n≤2x

g2(n)

)
+ oε→0(1).

(6.5)

Here oε→0(1) denotes some function that tends uniformly to 0 as ε→ 0. Note also
that even if h < 0 in Theorem 6.6, g2(n + h) is still well-defined, as the function
x0(·) above can be chosen to be large enough, so that x

ω(x)
> h for x ≥ x0(ε, h, ω).

As mentioned, Theorem 6.6 contains the real-valued case of Tao’s result [98] and
shows that g1 and g2 are discorrelated in the sense that the correlation of g1 and g2

is the product of their mean values. In the complex-valued case, Theorem 6.6 does
not hold as such, as is seen by taking g1 and g2 to be suitable Archimedean charac-
ters (such as g1(n) = g2(n) = nit with t 6= 0). It would nevertheless be possible to
generalize it to the case where g1 and g2 take values in roots of unity of a fixed order.

Theorem 6.6 could also be generalized to the case of functions that are uniformly dis-
tributed only in coprime residue classes, instead of all residue classes as in Definition
6.5. However, this would significantly complicate the main term on the right-hand
side of (6.5) and make it dependent on the shift h (as is seen by considering the
simple example g1(n) = g2(n) = 1n≡1 (mod 2)). Therefore, we do not pursue this
generalization.

The utility of Theorem 6.6 lies in its uniformity over the choice of the functions
g1, g2. For example, the theorem can be applied to the interesting cases
(i) g(n) = 1n is xα−smooth

and
(ii) g(n) = χQ(n) where χQ is a real non-principal character (mod Q) with Q =
Q(x) ≤ x4−ε cube-free21 (so Q can be very large in terms of x).
In the case of (i), the result of [98] is clearly not applicable, and also in case (ii), for

21We say that n is cube-free if p3 - n for all primes p.
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all we know, it could be that22 D(χQ, 1;x) � 1, in which case [98] does not apply.
The range Q ≤ x4−ε in (ii) is the same as in a celebrated estimate of Burgess [4], a
special case of which implies that∑

n≤x
χQ(n) = o(x),(6.6)

uniformly for Q ≤ x4−ε cube-free. We note that (6.6) is not enough to exclude the
(unlikely) scenario that χQ(p) = 1 for all p ≤ xε.

We mentioned earlier the result of Klurman [58, Theorem 1.3] that gives an asymp-
totic formula for the correlations (6.3) in the case where all the functions g1, . . . , gk
are fixed and pretentious. Nevertheless, this asymptotic cannot be applied to (i) or
(ii), since both of these two functions depend on x in a very essential way, whereas
in [58] it is necessary that the functions are (almost) independent of x (in fact, the
asymptotic formula in [58, Theorem 1.3] does not predict the correct asymptotic for
the autocorrelations of the functions in (i) or (ii)).

As the examples (i) and (ii) indicate, Theorem 6.6 should yield new results on
consecutive smooth (friable) numbers and quadratic residues. We confirm this in
[IV]. Define the function P+(n) that outputs the largest prime factor of n ∈ N, with
the convention that P+(1) = 1. Then n is y–smooth if and only if P+(n) ≤ y. The
distribution of smooth numbers is well-understood (see [45] for a survey), but much
more elusive is the simultaneous distribution of two or more consecutive smooth
numbers. Related to this, Erdős and Turán [94] posed the following problem.

6.7. Conjecture. The asymptotic density23 of the set

{n ∈ N : P+(n) < P+(n+ 1)}
exists and equals 1

2
.

By applying Theorem 6.6 to the indicator function of xα–smooth numbers for various
α, and doing some additional deductions, we were able to prove a logarithmic variant
of this conjecture.

6.8. Theorem (Article [IV]). The logarithmic density24 of the set

{n ∈ N : P+(n) < P+(n+ 1)}
exists and equals 1

2
.

22It is a well-known conjecture, due to Vinogradov, that, for any ε > 0 and any Q ≥ Q0(ε), there
is a quadratic nonresidue modulo Q on [1, Qε]. But this is open, and if it fails, then χQ pretends
to be 1 on [1, Q].
23We define the asymptotic density of A ⊂ N as limx→∞ 1

x

∑
n≤x,n∈A 1, whenever the limit exists.

The upper and lower asymptotic densities are defined analogously with lim sup and lim inf.
24We define the logarithmic density of A ⊂ N as limx→∞ 1

log x

∑
n≤x,n∈A

1
n , whenever the limit

exists. The upper and lower logarithmic densities are defined analogously with lim sup and lim inf.
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We mention in passing that we also proved in [IV] some generalizations of Theorem
6.8, including a logarithmic version of a conjecture of Erdős and Pomerance ([IV,
Theorem 1.12]).

We can also say something about asymptotic densities of sets related to two consec-
utive smooth numbers. In this case, we are not able to determine the precise value
of the density, but we can at least show that the lower density is positive.

6.9. Theorem (Article [IV]). Let a, b, c, d ∈ (0, 1) be real numbers with a < b and
c < d. Then the set

{n ∈ N : na < P+(n) < nb, nc < P+(n+ 1) < nd}
has positive asymptotic lower density.

This theorem implies a result of Hildebrand [44], which is the special case (a, b) =
(c, d) (Hildebrand also considers more general “stable sets”, in addition to sets
of smooth numbers). Our theorem also reproves a recent result of Wang [110,
Théorème 2] on the truncated largest prime factor P+

y (n) := max{p ≤ y : p | n}
at two consecutive integers. This result states that, if a ∈ (0, 1) is fixed, then
P+
xa(n) < P+

xa(n+ 1) for a positive lower density of integers n ≤ x.

Another source for applications of Theorem 6.6 is the collection of real non-principal
Dirichlet characters whose modulus Q(x) grows moderately fast in terms of x. A
fundamental result of Burgess [4] from 1963 says, among other things, that if χQ is
a non-principal Dirichlet character of cube-free25 modulus Q = Q(x), and ε > 0 is
fixed, then ∑

n≤x
χQ(n) = o(x),(6.7)

uniformly for Q ≤ x4−ε. The range of Q here is still the best one known up to the
ε in the exponent.

By employing the Burgess bound (6.7), we can show that if χQ is as above with
Q ≤ x4−ε cube-free, then the uniformity assumption χQ ∈ U(x, η−1, η) holds for
x ≥ x0(η, ε); see [IV, Section 4]. Therefore, Theorem 6.6 implies a result on the
sums of χQ along reducible quadratics n(n+ h).

6.10. Theorem (Article [IV]). Let a small number ε > 0, a fixed integer h 6= 0, and
a function 1 ≤ ω(X) ≤ log(3X) tending to infinity be given. For x ≥ x0(ε, h, ω),

let Q = Q(x) ≤ x4−ε be a cube-free natural number with Q(x)
x→∞−−−→ ∞. Then, the

real primitive Dirichlet character χQ modulo Q satisfies

1

logω(x)

∑
x

ω(x)
≤n≤x

χQ(n(n+ h))

n
= o(1).(6.8)

25We say that Q is cube-free if it is not divisible by the cube of any prime.
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Moreover, if Q is as before and QNR denotes quadratic nonresidue26, we have

1

log x

∑
n≤x

n, n+1 QNR (mod Q)

1

n
=

1

4

∏
p|Q

(
1− 2

p

)
+ o(1)(6.9)

and

1

x
|{n ≤ x : n and n+ 1 QNR (mod Q)}| �

∏
p|Q

(
1− 2

p

)
.(6.10)

We remark that the well-known Weil bound [52, Theorem 11.23] for character sums
would give, for prime values of Q, the estimate (6.8) only in the smaller range

Q = o( x2

log x
).

Lastly, we employ Theorem 6.6 to study the number of large prime factors of
consecutive integers. For y ≥ 1, define the truncated count of prime factors as
ω>y(n) := |{p > y : p | n}|. It is natural to conjecture that the numbers of large
prime factors (say > nε) of n and n+ 1 are independent. Choosing in Theorem 6.6
multiplicative functions of the form zω>xa (n) with z ∈ [−1, 1], and using a generating
function argument, we show that this independence property indeed holds, at least
in the logarithmic sense.

6.11. Theorem (Article [IV]). Let a, b ∈ (0, 1) be real numbers and 0 ≤ k < 1
a
,

0 ≤ ` < 1
b

integers. Then, if δ(·) stands for logarithmic density, we have

δ({n ∈ N : ω>na(n) = k, ω>nb(n+ 1) = `})
= δ({n ∈ N : ω>na(n) = k}) · δ({n ∈ N : ω>nb(n) = `}).

Moreover, the set {n ∈ N : ω>na(n) = k, ω>nb(n+ 1) = `} has positive asymptotic
lower density.

Theorem 6.11 in a sense complements the result of Daboussi–Sárközy [9] and Man-
gerel [68], which states that if ω<y(n) = |{p < y : p | n}| is the count of the small
prime factors of n, then we have the independence of small primes property

1

x

∑
n≤x

(−1)ω<xε (n)(−1)ω<xε (n+1) = oε→0(1).(6.11)

In comparison, Theorem 6.11 implies among other things the independence of large
primes property

1

log x

∑
n≤x

(−1)ω>xε (n)(−1)ω>xε (n+1)

n
= oε→0(1).(6.12)

The methods used to prove (6.11) and (6.12) are however completely different, the
proof of (6.11) being based on sieve theory.

26We say that n is a quadratic nonresidue (mod Q) if χQ(n) = −1.
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6.3. Proof sketch for the main result

The proof of Theorem 6.6 makes use of the ideas Tao [98] developed for his proof of
Theorem 6.3; these are an averaging over small primes argument and the entropy
decrement argument, also discussed in Section 5.

The averaging over small primes works as follows. Suppose for simplicity that
g1, g2 are completely multiplicative and take only values ±1. Then, for any prime
p ≤ logω(x), we have

1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ h)

n
=

g1g2(p)

logω(x)

∑
x

ω(x)
≤n≤x

g1(pn)g2(pn+ ph)

n

=
g1g2(p)

logω(x)

∑
x

ω(x)
≤n′≤x

g1(n′)g2(n′ + ph)

n′
p1p|n′ +O(ε)

(6.13)

where we wrote n′ = pn and used the fact that the average is a logarithmic one.
We can then sum (6.13) over p to conclude that

1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ h)

n

=
m

2m

∑
2m≤p<2m+1

g1(p)g2(p)
1

logω(x)

∑
x

ω(x)
≤n′≤x

g1(n′)g2(n′ + ph)

n′
p1p|n′ +O(ε),

(6.14)

where ε−1 ≤ m ≤ log logω(x). By the entropy decrement argument, developed by
Tao in [98] and based on inequalities from information theory, we can replace p1p|n′
with its average value 1 + O(ε) for some suitable, large m = m(ε). The advantage
gained is that now (6.14) becomes a bilinear average

m

2m

∑
2m≤p<2m+1

g1(p)g2(p)
1

logω(x)

∑
x

ω(x)
≤n≤x

g1(n)g2(n+ ph)

n
+ o(1),

where n and p have been decoupled. This enables us to apply the circle method.
In the same spirit as in [98], the circle method gives the anticipated asymptotic for
this sum, provided that we prove the short exponential sum bound27

sup
α∈R

1

x

∫ 2x

x

∣∣∣∣∣ 1

H

∑
y≤n≤y+H

(g1(n)− δ1)e(nα)

∣∣∣∣∣ dy = oε→0(1),(6.15)

where δ1 is the mean value of g1 on [x, 2x] and H � 2(1+O(ε))m with m = m(ε) large.
This estimate deviates from what was used in [98], since there (6.15) was used in
the non-pretentious case covered by a result of Matomäki, Radziwi l l and Tao [75,

27In reality, we need to consider the integral of the exponential sum over more general intervals
[y, 2y] with x

ω(x) ≤ y ≤ x.
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Theorem 1.7]. The case where g1 is uniformly distributed in the sense of Definition
6.5 is not addressed in [75], but can be dealt with using the tools employed there.

The proof of (6.15) naturally splits into the major arc case, where α is close to
a rational number with small denominator, and the opposite minor arc case. In
the minor arc case, we can ignore the constant term δ1 in (6.15) and then follow
the argument in [75, Section 3], as that is based solely on the multiplicativity and
boundedness of g1.

In the major arc case, in contrast, we plainly need to use the uniform distribution
property of g1, as the result fails for example for Dirichlet characters, which are not
equidistributed. If α is on a major arc, then e(nα) is essentially periodic, so we
may make it essentially constant by splitting n into residue classes. Then we end
up with the need to prove that

1

x

∫ 2x

x

∣∣∣∣ 1

H

∑
y≤n≤y+H

n≡b (mod q)

g1(n)− 1

qH

∑
y≤n≤y+H

g1(n)

∣∣∣∣ dy =
oε→0(1)

q
(6.16)

uniformly for 1 ≤ b ≤ q ≤ ε−1. Here we used the fact that δ1 is the mean of g1 also
in arithmetic progressions of modulus ≤ ε−1.

The estimate (6.16) follows for q = 1 from the Matomäki–Radziwi l l theorem [74]
(since g1 is real-valued), and it turns out that for q > 1, by expanding 1n≡b (mod q) in
terms of characters, we can use the complex-valued case of that theorem from [75,
Appendix A] together with some pretentious distance estimates. This then leads to
the desired conclusion (6.16). For the proof in its entirety, we refer to [IV].
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