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Abstract 

ABSTRACT 

Antti Silvoniemi 
Novel aspects for methodology and utilization of PET/CT imaging in head 
and neck cancer 

University of Turku, Faculty of Medicine, Department of Otorhinolaryngology – 
Head and Neck Surgery, Doctoral Programme in Clinical Research (DPCR), Turku 
PET Centre – Annales Universitatis Turkuensis, Turku, Finland, 2018 

Positron emission tomography (PET), combined with computed tomography (CT), 
plays a key role in the management of head and neck cancer (HNC). In this thesis, 
novel aspects for PET/CT imaging of HNC regarding low oxygen levels, or hy-
poxia, and detection of glucose metabolism were evaluated. Hypoxia is a fre-
quently observed hallmark of cancer contributing to radiotherapy resistance and 
poor prognosis. Enhanced glucose metabolism is characteristic of a malignant tu-
mor, which is exploited in an everyday clinical application of [18F]FDG PET im-
aging. 

This study aimed to further investigate the feasibility of a novel hypoxia PET tracer 
[18F]EF5 and the potential of dynamic [18F]FDG PET/CT imaging in HNC. The 
first study indicated a favorable human biodistribution and radiation dosimetric 
profile of the hypoxia tracer [18F]EF5. The second preclinical study showed that 
the growth rate of human HNC xenografts in nude mice during the exponential 
growth period correlated with [18F]EF5 uptake in PET/CT images. In the third 
study, paired [18F]EF5 PET/CT scans performed for untreated HNC patients with 
a median time interval of seven days presented predominantly highly repeatable 
results. In the fourth study, advanced mathematical methodology for tracer uptake 
analysis was evaluated using dynamic [18F]FDG PET/CT in patients who were re-
ferred to chemoradiotherapy for oropharyngeal cancer. However, the method 
showed only a modest performance in the distinction of malignant, inflammatory 
and healthy tissues. In conclusion, further evaluation of [18F]EF5 PET/CT imaging 
and dynamic [18F]FDG PET/CT imaging seems important in the development of 
more effective strategies for the management of HNC. 

Keywords: PET, PET/CT, head and neck cancer, [18F]EF5, [18F]FDG, hypoxia, 
molecular imaging, radiotherapy planning 

 



Tiivistelmä 

TIIVISTELMÄ 

Antti Silvoniemi 
Pään ja kaulan alueen syövän PET/TT-kuvantaminen – menetelmien ja hyö-
dyntämisen uusia näkökulmia 

Turun yliopisto, Lääketieteellinen tiedekunta, Korva-, nenä- ja kurkkutautioppi, 
Turun kliininen tohtoriohjelma (TKT), Valtakunnallinen PET-keskus – Annales 
Universitatis Turkuensis, Turku, Suomi, 2018 

Positroniemissiotomografian (PET) ja tietokonetomografian (TT) yhdistävää 
PET/TT-kuvausta käytetään yleisesti pään ja kaulan alueen syövän hoidon suun-
nittelussa ja hoitovasteen seurannassa. Nykyään käytettävässä PET-kuvantamis-
tekniikassa kasvainkudoksen osoittaminen perustuu vilkastuneeseen sokeriaineen-
vaihduntaan, joka on syöpäkasvaimen yleinen ominaispiirre. PET-kuvantamiseen 
liittyy myös monia uusia sovellusmahdollisuuksia. Tässä väitöskirjatyössä tutkit-
tiin sokeriaineenvaihduntaan perustuvien menetelmien lisäksi kasvaimessa esiin-
tyvän matalan happiosapaineen eli hypoksian osoittamista. Hypoksia on syöpäkas-
vaimen aggressiivisuuteen liittyvä ominaisuus, joka huonontaa potilaan parane-
misennustetta ja erityisesti sädehoidon tehoa kasvaimeen. 

Ensimmäisessä osatyössä osoitettiin, että uusi hypoksiaa kuvaava PET-merkkiaine 
[18F]EF5 on säteilyannoksen ja muidenkin ominaisuuksiensa puolesta turvallinen 
ja se soveltuu käytettäväksi ihmiselimistön PET-kuvauksessa. Toisessa osatyössä 
kasvatettiin hiirille kokeellisia kasvaimia ihmisen pään ja kaulan alueen syöpäkas-
vaimista eristetyistä soluista. Hiirille suoritettiin PET/TT-kuvauksia, joissa todet-
tiin [18F]EF5-merkkiaineen kerääntyvän eniten niihin kasvaimiin, jotka olivat kas-
vaneet eksponentiaalisen kasvujakson aikana nopeasti. Kolmannessa osatyössä 
tutkittiin [18F]EF5-PET/TT-kuvauksen tulosten toistettavuutta kuvaamalla pään ja 
kaulan alueen syöpään sairastuneita potilaita kaksi kertaa 5-7 vuorokauden välein. 
Peräkkäisten kuvausten tulosten todettiin olevan pääosin varsin yhteneviä keske-
nään. Neljännessä osatyössä tehtiin suunielun syöpään sairastuneille potilaille so-
keriaineenvaihdunnan osoittamiseen perustuva dynaaminen [18F]FDG-PET/TT-
kuvaus. Kuvien tulkinnassa arvioitiin uutta matemaattista menetelmää syöpäkas-
vaimen, tulehduksen ja terveen kudoksen erottamiseen toisistaan. Tutkimus-
havainnot olivat mielenkiintoisia, mutta menetelmää tulee vielä kehittää käytän-
nön sovellusten aikaansaamiseksi. Tässä väitöskirjatutkimuksessa saatiin täsmen-
tävää tietoa pään ja kaulan alueen syövän PET/TT-kuvauksen menetelmiin liitty-
vistä mahdollisuuksista ja rajoituksista. Jatkossa on edelleen tärkeää tutkia sekä 
[18F]EF5-PET/TT-kuvauksen että dynaamisen [18F]FDG-PET/TT-kuvauksen hyö-
dyntämistä, kun kehitetään uusia ja tehokkaampia syövän hoitomenetelmiä. 

Avainsanat: PET, PET/TT, pään ja kaulan alueen syöpä, [18F]EF5, [18F]FDG, hy-
poksia, molekulaarinen kuvantaminen, sädehoidon suunnittelu 
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1 INTRODUCTION 

Hybrid positron emission tomography and computed tomography (PET/CT) is a 
fundamental imaging tool in clinical oncology and translational cancer research. 
Head and neck cancer (HNC) belongs to tumor types for which PET/CT imaging 
has proven to be a powerful diagnostic tool (Branstetter et al. 2005). In general, 
the main advantage of hybrid PET imaging is that it allows for combining func-
tional and molecular information about living tissues obtained with PET imaging 
into anatomical information derived from a CT or magnetic resonance (MR) im-
age. 

In clinical practice, the use of 18F-fluorodeoxyglucose ([18F]FDG) PET/CT is well 
established in staging, treatment planning and monitoring therapy response of 
squamous cell carcinoma of the head and neck. Moreover, there are many addi-
tional applications of PET imaging under evaluation, since numerous other tracers 
are available for mirroring the different phenomena in the microenvironment of 
the tumor. In recent years, several new PET tracers for imaging of HNC have been 
investigated, and innovative imaging protocols and applications have been exam-
ined (Differding et al. 2015). 

There are some special characteristics of tumor biology that are particularly inter-
esting in the study of HNC. One of these is the low oxygen level, or hypoxia, in 
tumors, which has been shown to contribute to treatment resistance and poor prog-
nosis (Brizel et al. 1997, Vaupel et al. 2004, Janssen et al. 2005). For years, re-
searchers have patiently attempted to acquire more knowledge and experience on 
hypoxia imaging with PET. The results of hypoxia PET images have also been 
evaluated in the light of treatment outcomes and overall survival (Fleming et al. 
2015). Being a complex phenomenon, tumor hypoxia has proven to be challenging 
to understand. There is still a great need for further research to better recognize the 
potential of hypoxia imaging with PET and overcome hypoxia-related challenges 
in the treatment of HNC. 

Recently, the concept of personalized medicine has gained a central position in 
modern cancer management, with a special interest in the advent of genome-based 
tailored medical therapies (Renfro et al. 2017). In HNC, there are also some inno-
vative strategies for individualized radiotherapy (e.g., personalized dose-escala-
tion and de-escalation protocols and adaptive radiotherapy) (Grégoire et al. 2015, 
Schinagl et al. 2009). All of these upcoming advancements in cancer treatment will 
require multidisciplinary expertise. PET imaging promises to be an essential part 
of these new procedures, serving as a modality for imaging of metabolism and 
tumor receptors on a whole-body level (Mena et al. 2017). 
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In this thesis, selected fields of PET/CT imaging in HNC were investigated in sep-
arate study protocols. First, the characteristics of a novel hypoxia PET tracer 
[18F]EF5 were evaluated in two clinical studies, which addressed radiation dosim-
etry and safety of the tracer and the repeatability of intratumoral uptake in repeated 
PET/CT scans, respectively. Second, tumor growth rate and uptake of [18F]EF5 in 
human HNC xenografts were evaluated in an experimental study. Finally, ad-
vanced mathematical methodology for interpretation of dynamic [18F]FDG 
PET/CT images was introduced in a pilot clinical study, the aim of which was to 
differentiate malignant, inflammatory and healthy tissues. 
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2 REVIEW OF LITERATURE 

2.1 Principles of PET/CT imaging 

Positron emission tomography (PET) is a method that utilizes short-lived isotopes 
in functional imaging of living tissues. PET imaging is based on the use of a radi-
olabeled compound that binds to specific sites in a living organism to depict phys-
iological or pathological processes in the target tissue. Hybrid imaging, where PET 
is combined with computed tomography (CT) or magnetic resonance imaging 
(MRI), provides both functional (PET) and anatomical information (CT or MRI). 

2.1.1 Production of PET tracers 

The first step in PET imaging is the production of a radioactive tracer. Several 
short-lived radioactive nuclides that are so-called beta+ emitters (e.g., 18F, 15O, 13N 
and 11C, with half-lives of 109.8 min, 2.0 min, 10.0 min and 20.4 min, respectively) 
may be used. The nuclides are usually produced with a particle accelerator called 
cyclotron. In the cyclotron, charged particles are accelerated by a rapidly varying 
electric field and static magnetic field. Target nuclides are then bombarded with 
charged particles in order to achieve a daughter nuclide. As an example, 18F is 
produced in a reaction in which enriched water [18O]H2O is bombarded with pro-
tons. 

The radiochemical synthesis of a PET tracer includes several steps from the han-
dling of the precursors to the finalization of the product (Basu et al. 2011). The 
process is performed and controlled by qualified personnel. During all periods of 
the synthesis, there are significant time constraints because of the short half-lives 
of the isotopes. An important final step of the production of the PET tracer is the 
quality control step, in which the chemical, radiochemical and microbiological pu-
rity of the product is confirmed. 

There is an uncountable number of compounds that can be labeled with a radioac-
tive isotope in radiochemical reactions. Nevertheless, development of a new PET 
tracer is an extensive process, which includes the chemical characterization of the 
molecule and a thorough evaluation of the pharmacokinetics and pharmacodynam-
ics of the compound, first in preclinical and then in clinical studies. All of the pro-
cesses in the production of a tracer have to be qualified and validated by certified 
personnel according to the principals of Good Manufacturing Practices (GMP). 
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2.1.2 Physical and technical principles of PET imaging 

Beta+ emitters are unstable nuclides that undergo radioactive beta+ decay. In this 
reaction, a proton is transformed into a neutron, and the nucleus emits a positron 
(p+) and an electron neutrino (ve). A positron is an antiparticle with a positive 
charge and ‘mass’ corresponding to that of electron. The emitted positron may 
traverse only a few millimeters before it interacts with an electron. This interaction 
leads to annihilation, in which both particles are transformed into energy in the 
form of two photons of gamma radiation. The photons are then emitted in opposite 
directions at an angle of approximately 180 degrees (Figure 1). 

In PET imaging, the gamma photons derived from annihilation are registered in a 
detector ring, which can determine a coincidence event (Figure 1). This refers to a 
simultaneous detection of photons on a horizontal axis at opposite sites of the de-
tector ring. The line between these two detector units is called the line of response 
(LOR). The number of coincidence events is directly correlated to the radioactivity 
located on the LOR. Using the LORs from all different angles makes it possible to 
produce a sinogram, which is an initial projection image from the raw data (Turk-
ington 2001). 

The attenuation of gamma radiation varies depending on the depth of the site of 
beta emission as well as the electron concentration of tissues between the imaged 
target site and PET scanner detector. Therefore, performing the attenuation correc-
tion for raw data before the image reconstruction is crucial, because the loss of true 
coincidence event detection can range between 50% and 90% due to the attenua-
tion. There are also other important factors affecting the acquisition of raw data 
that have to be corrected, such as scattering of radiation, detector dead time and 
random events (Basu et al. 2011). 

A PET scanner consists of a detector ring composed of scintillation crystals and 
photomultiplier tubes arranged in several rings. These detector units register 
gamma radiation and convert it into visible light. Thereafter, the light signal is 
converted into digital form to be further processed. During the reconstruction of 
the PET image, the raw data of gamma counts is first processed to sinograms; then, 
specific reconstruction algorithms are needed to produce the final PET images 
(Turkington 2001). 
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Figure 1 The principles of beta+ decay, annihilation and detection of gamma photons 
with PET scanner detector ring. The beta+ decay of 18-fluorine, which is con-
verted into 18-oxygen, is presented as an example. In this reaction, a positron 
(p+) and an electron neutrino (ve) are emitted. When the positron interacts 
with an electron (e-), this particle-antiparticle unit is annihilated and trans-
formed to energy. Two photons of gamma radiation (γ) are emitted to opposite 
directions. The PET scanner detector ring registers the simultaneous detec-
tion of gamma photons. 

2.1.3 Hybrid imaging modalities and coregistration of images 

Over the last decade, combination of functional PET with anatomical reference 
method such as CT or MRI has been a standard. Both of these combination mo-
dalities have advantages and disadvantages in practical use. 

Briefly, CT imaging is based on a system in which an x-ray source rotates around 
the object to be imaged while at the same time an x-ray sensor on the opposite side 

۴ૢ
૚ૡ ૡ۽ → 

૚ૡ  + positron + electron neutrino 

p+ + e- → 2 γ 
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of the circle is detecting. In modern CT scanners, there are multiple rows of detec-
tors, which acquire multiple cross-sections simultaneously. As in a PET scanner, 
the raw data is processed with numerous algorithms to perform image reconstruc-
tion. Distinction between different types of soft tissues with CT is generally chal-
lenging, but it offers a favorable contrast in the imaging of bone lesions. Further-
more, CT is also appropriate for imaging of the thoracic region. In hybrid imaging, 
attenuation correction for PET images is easily performed with the use of CT-
based information of tissue electron densities. 

MRI is an advantageous imaging method, as it does not utilize radioactivity or 
ionizing radiation. MRI is based on a phenomenon called nuclear magnetic reso-
nance. For example, nuclei of hydrogen atoms (protons) are able to absorb and 
emit radio frequency energy under the influence of a strong external magnetic 
field. Different contrasts between tissues can be generated using different proto-
cols of pulse sequences. MRI shows outstanding performance in the differentiation 
of soft tissues such as brain tissues or muscles. In the head and neck region, MRI 
is able to offer remarkably better soft tissue differentiation compared to CT. On 
the other hand, larger air-filled cavities (e.g., lungs) are challenging to image with 
MRI and therefore are not a favorable target for MRI. A specific problem in the 
use of PET/MRI is the performance of attenuation correction (Becker and Zaidi 
2014). 

In hybrid imaging, an anatomical reference image (CT or MRI) is co-registered 
with the PET image to obtain fused images. Registration can be performed based 
solely on anatomical landmarks (rigid registration) or while also paying attention 
to various other aspect, such as rotation and movements (non-rigid registration). 
Recent developments in computational resources have enabled remarkable ad-
vancements in the processes utilized in registration algorithms (Oliveira and 
Tavares 2014). 

2.1.4 Biological aspects of radiation exposure of a PET tracer 

Medical imaging is intended to directly benefit the patient. On the other hand, ion-
izing radiation, such as gamma radiation or X-ray, is harmful because it increases 
the risk of cancerous mutations in the genome and may cause teratogenic harms. 
Thus, radiation exposure is a critical issue in the field of clinical imaging and 
should be assessed to consider the justification of an individual imaging procedure. 

Absorbed dose is a physical quantity that represents the energy of ionizing radia-
tion imparted to matter per unit mass. In the SI system, the unit of absorbed dose 
is gray (Gy), which is determined as joules per kilogram. Equivalent dose is a 
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quantity that takes into account the radiation type as a factor of health risk. The 
unit of equivalent dose is sievert (Sv), and the coefficient between absorbed dose 
and equivalent dose is 1 in the case of gamma radiation. 

Effective dose (ED) is a quantity that is generally used in radiation protection. It is 
the tissue-weighted sum of the equivalent doses of all organs and tissues of the 
human body. The principle of calculation of ED is determined by the International 
Commission on Radiological Protection (ICRP 1991). ED represents the whole 
body risk of stochastic effects, such as solid cancers. There is a list of weighting 
factors for different organs and tissues that are used in the calculation of ED. A 
specific weighting factor is based on the radiation sensitivity of the organ and the 
proportion of the body mass that the organ represents. For example, red bone mar-
row and gonads are highly sensitive to radiation, whereas muscles and cortical 
bones have remarkably lower sensitivity. Previously, the term effective dose 
equivalent (EDE) was used (ICRP 1976). It is calculated in a similar way to ED, 
but the list of organ-specific weighting factors includes fewer organs, and more 
organs are referred as ‘remainder of body’ compared to the calculation protocol of 
ED. 

Every PET tracer must be evaluated in a biodistribution and dosimetry study before 
larger clinical use in order to consider the radiation exposure and safety of the 
tracer. In a dosimetry study, the absorbed doses of individual organs as well as the 
ED are determined. For these calculations, the uptake data of the tracer in specific 
organs is needed, as well as a phantom system that also takes into account the 
absorbed doses for specific organs from the surrounding adjacent organs. 

2.2 Head and neck cancer 

Head and neck cancer (HNC) comprises a group of malignant neoplasms occurring 
in the lips, oral cavity, pharynx, larynx, salivary glands and nasal and paranasal 
cavities. In the ICD-10 system, these diseases are classified with the following 
code numbers: C00-14, C30-31 and C32. Of all HNC cases, at least 90% are squa-
mous cell carcinomas (SCC). The proportion of SCCs of all malignancies is even 
higher in cancers of the lips, oral cavity, pharynx and larynx, whereas the histo-
pathologic spectrum is more diverse among the tumors involving the salivary 
glands and the nasal and paranasal cavities. HNC constitutes a 6% proportion of 
all new malignancies and more than 650,000 cases, with more than 350,000 deaths 
worldwide annually (Chaturvedi et al. 2013, Ferlay et al. 2015). There were, on 
average, 784 registered cases of HNC and 262 deaths due to the disease annually 
in Finland during the years 2010–2014 (www.cancer.fi/syoparekisteri/en). 



18 Review of literature 

There are two major groups of HNC patients with different etiologic profiles. The 
first one refers to the most important risk factors, smoking and heavy alcohol use, 
which may also act as synergistic risk factors (Blot et al. 1988). Another important 
etiologic profile for HNC refers to human papilloma virus (HPV) infection, which 
is strongly associated with oropharyngeal cancer, especially tonsillar cancer and 
cancer of the base of tongue. HPV-positive tumors have a different molecular path-
ogenesis and a better prognosis compared to their HPV-negative counterparts (Ang 
et al. 2010). In addition to these two profiles, there are also some other well-char-
acterized etiological factors for HNC. Chronic Epstain-Barr virus (EBV) infection 
is associated with nasopharyngeal cancer, and especially with its non-keratinizing 
subtypes, which are observed in higher incidence rate in some endemic regions 
(e.g., in East and South-East Asia) compared to the rest of the world (Chua et al. 
2016). Solar ultraviolet radiation is considered to be a causal factor for lip cancer 
(Kenborg et al. 2010). Chronic mucosal inflammation, such as oral lichen planus, 
has been proposed to have a role in the carcinogenesis of oral cancers (Rödström 
et al. 2004, van der Meij et al. 2007). Moreover, some other factors have been 
suggested to be associated with the risk of HNC, such as a diet low in fresh fruits 
and vegetables (McLaughlin et al. 1988). 

The typical symptoms of HNC depend on the site and size of the tumor. The most 
common symptoms are hoarseness, odynophagia, dysphagia, sore throat, stridor 
and the sensation of a mass in the oral cavity or throat. Furthermore, patients very 
often present with a painless neck mass. The diagnostic and staging procedures 
consist of a thorough physical examination (Figure 2), endoscopic procedures, his-
topathological biopsy from primary tumor and possibly also from a metastatic 
lymph node and imaging with CT, MRI and/or PET. 

The treatment protocol is diverse depending on the tumor site, histopathology, size 
and stage. In general, first-line treatment is either surgery or (chemo)radiotherapy 
(CRT) or a combination of these. The surgical treatment of the primary tumor con-
sists of a resection of the tumor with margins and reconstruction of the tissue de-
fects when necessary. Modern surgical treatment modalities allow for favorable 
functional results even in many cases of a large primary tumor. In the cases of 
locally advanced disease and also in many cases of a larger (T3-T4) primary tumor 
with no signs of metastasis in the neck, the regional lymph nodes are also removed 
in an operation called neck dissection (Green et al. 2016, Robbins et al. 2013, 
Coskun et al. 2015). 

CRT may be a definitive treatment or part of a combination treatment in cases of 
irradical resection of primary tumor and/or lymph nodes and extracapsular tumor 
spread in lymph nodes. In CRT, a platinum-based cytotoxic drug, mostly cisplatin, 
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is administered during radiotherapy (RT) for an additive effect in the therapy (Ber-
nier et al. 2004, Adelstein et al. 2003). Cetuximab, a monoclonal antibody that 
binds to epidermal growth factor receptors (EGFR), may be an alternative agent 
for use in CRT in cases of renal injury or sensorineural hearing loss (Bonner et al. 
2006). Already for several years, CRT has been the standard recommended defin-
itive treatment in, for example, stage III and IV tumors in oropharynx, hypophar-
ynx and nasopharynx. In these cases, the neck is also treated with RT. 

 

Figure 2 Cancer of the mobile tongue is usually detected in a clinical examination. A 
squamous cell carcinoma of the tongue in a young woman is presented in this 
picture. (Reproduced from Credé et al. 2012 under the terms of the Creative 
Commons Attribution License. http://www.oapublishinglondon.com/im-
ages/article/pdf/1354880418.pdf ) 

The prophylactic treatment of neck lymph nodes (N0) when necessary varies 
largely depending on the primary tumor site and size and several other factors. 
Surgical treatment, RT, CRT or clinical follow-up are alternative or combinable 
procedures in distinct situations. Sentinel lymph node biopsy may also be utilized 
in some particular types of mucosal SCC of the head and neck (de Bree et al. 2015, 
Leusink et al. 2012, Green et al. 2016). 

In residual cases after CRT and in cases of local recurrence after primary surgery, 
second-line surgical treatment is considered. In recurrent and metastatic disease, 
platinum-based treatment, with either cisplatin or carboplatin combined with 5-
fluorouracil, has traditionally been recommended. Additionally, cetuximab has 
been confirmed to be effective when using combination therapy (Vermorken et al. 
2008). Recently, evidence supporting the use of two immunotherapeutic drugs, 

http://www.oapublishinglondon.com/images/article/pdf/1354880418.pdf
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pembrolizumab and nivolumab, has been obtained, and these drugs have been ap-
proved by Food and Drug Administration (FDA) for recurrent and metastatic 
HNSCC in a 3-month period (Moreira et al. 2017). 

The treatment of HNC may have a significant impact on the performance and qual-
ity of life of the patient. Radical resection of a large tumor, even with optimal 
reconstructive surgery, may lead to disturbance of speech and/or swallowing. The 
development of intensity-modulated and image-guided RT has improved local and 
regional control of the disease, and side effects have been reduced. Nevertheless, 
RT and CRT may also cause long-standing or even lifelong side effects, such as 
dysfunction of the thyroid gland and salivary glands, dysfagia or osteoradionecro-
sis of the mandible (Boomsma et al. 2011, Hawkins et al. 2018, Lambade et al. 
2013). 

The prognosis of HNC varies largely depending on the site, size, stage, histopatho-
logical grade and HPV-status of the tumor. High survival rates have typically been 
reported in, for example, lip cancer and glottic cancer, whereas hypopharyngeal 
cancer has a markedly lower survival rate. The large size of the primary tumor as 
well as nodal involvement contribute significantly to the lower survival rate (Ar-
giris et al. 2008, Baatenburg de Jong et al. 2001, Gourin and Podolsky 2006). In 
the whole group of HNC combining all stages of disease, five-year disease-specific 
survival rates of some 50–66 % have been reported (Argiris et al. 2008, Ringash 
2015). 

In the clinical setting of HNC, one of the major challenges is that, in many cases, 
the disease is found at an advanced stage. Developing better screening strategies 
and tools for early diagnosis of HNC would definitely be a desirable goal. Never-
theless, extensive research efforts should be directed to the development of im-
proved treatment strategies of advanced HNC. Detailed knowledge on the biolog-
ical as well as the clinical features of HNC is expected to play a key role in the 
improvement of the overall survival and quality of life of these patients. 

2.3 Microenvironment of HNC as a target for PET/CT imaging 

Functional imaging, and particularly PET/CT imaging, provides countless possi-
bilities to illustrate specific processes in the cells and microenvironment of living 
tissues. In malignant solid tumors, various characteristics of cellular and microen-
vironmental processes differ greatly from those of normal healthy tissues. Based 
on this fact, it is possible to detect and even identify malignant tissue with PET/CT 
imaging. Furthermore, some PET tracers allow for the categorization of different 
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tumor phenotypes, such as dominantly hypoxic tumors. Another important ap-
proach is tumor receptor imaging, which refers to studying of molecular pathways 
and gene expression in malignant tissue. This chapter focuses on two major pro-
cesses, glucose and oxygen metabolism, which are especially important in the field 
of HNC. Also, a few additional processes in HNC that are already exploited as 
targets for PET/CT imaging are mentioned briefly. 

2.3.1 Glucose metabolism 

Glucose is the main energy source for mammalian cells. As a polar molecule, glu-
cose is transported into the cell by glucose transporter proteins (GLUT) (Figure 3). 
Energy production is initiated with glycolysis, the process of breaking down a glu-
cose molecule, which is possible in both aerobic and anaerobic conditions. The 
first reaction of glycolysis is the transformation of glucose to glucose-6-phosphate, 
and this reaction is catalyzed by hexokinase enzymes. Glucose-6-phosphate is no 
longer able to exit the cell. The end product of glycolysis is pyruvate, which can 
proceed in aerobic conditions to mitochondria, where oxidative phosphorylation 
takes place. In anaerobic conditions, glycolysis continues in the cytoplasm (anaer-
obic glycolysis) with a reaction in which pyruvate is transformed to lactate. This 
is an inefficient way to produce energy compared to oxidative phosphorylation 
(Figure 3). 

Figure 3 Glucose metabolism in mammalian cells (Gatenby and Gillies 2004). (Re-
printed by permission from Macmillan Publishers Ltd/ Springer Nature: Na-
ture Reviews Cancer 4:891-899: Why do cancers have high aerobic glycoly-
sis? Gatenby RA, Gillies RJ, 2004. The journal´s homepage: www.na-
ture.com/nrc/ ) 

www.nature.com/nrc/
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The presence of oxygen causes inhibition of glycolysis, a phenomenon called the 
Pasteur effect (Racker 1974). This is a normal way to limit the rate of glycolysis 
in a healthy mammalian cell. In cancer cells, glycolysis is highly enhanced, even 
in the presence of oxygen. This special characteristic of cancer cells is called the 
Warburg effect, having been discovered by Otto Warburg in the 1920s (Warburg 
1930). Warburg proposed that this was the cause of cancer (Warburg hypothesis). 
The Warburg hypothesis has since been disproven, but the Warburg effect has been 
confirmed in numerous studies (Potter et al. 2016). 

Glycolysis is mainly regulated with GLUT proteins and hexokinases. There is 
probably a very complex regulation system behind these processes, and at least 13 
glucose transporter proteins have been discovered. In cancer cells, there is upreg-
ulation of the expression of GLUT-1 and GLUT-3 proteins compared to healthy 
cells (Mellanen et al. 1994). GLUT-3 has been reported to have both a clearly 
higher affinity for glucose and at least a fivefold greater transport capacity com-
pared to GLUT-1 (Simpson et al. 2008). In inflammatory tissues, the glucose trans-
portation is more similar to that of normal tissues, but GLUT-3 is also present in 
inflammatory tissue, since it is expressed in platelets and all types of white cells, 
including neutrophils, lymphocytes, monocytes and macrophages (Calvo et al. 
2010, Mochizuki et al. 2001). 

2.3.1.1 [18F]FDG as an oncologic PET tracer for detection of glucose metabo-
lism 

2-deoxy-2-[18F]fluoro-D-glucose, generally called 18F-fluorodeoxyglucose 
([18F]FDG), is the most commonly used and also the most well-known PET tracer. 
The history of human use of [18F]FDG derives from the 1970s, and the first onco-
logical human PET studies with [18F]FDG were performed in the 1980s (Alavi and 
Reivich 2002). [18F]FDG imaging of cancer is based on enhanced glycolysis in 
cancer cells (the Warburg effect). Because of the different chemical structure of 
[18F]FDG compared to glucose, it does not proceed from the first reaction step of 
glycolysis, namely transformation to glucose-6-phosphate. Thus, [18F]FDG is 
trapped in the cells in a phosphorylated form. The irreversible binding of [18F]FDG 
inside the cells is a favorable feature for achieving a proper target-to-background 
tissue contrast in PET images. [18F]FDG also has additional advantageous charac-
teristics for being a clinical PET tracer. For instance, there are few metabolites of 
[18F]FDG in the blood in the first few hours after administration of [18F]FDG. An-
other important characteristic is that [18F]FDG is, unlike glucose, actively excreted 
in urine. This feature leads to more rapid blood clearance and allows for even more 
improved target-to-background contrast (Bar-Shalom et al. 2000). 
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[18F]FDG PET imaging is used in detection, staging, treatment planning and mon-
itoring of therapy response in various types of cancers. HNCs, lymphomas and 
melanoma are generally very well detectable in PET images. The group of other 
cancers favorably imaged with [18F]FDG PET includes, for example, breast, cer-
vical, colorectal, esophageal, lung, pancreatic and thyroid cancers. [18F]FDG PET 
has a high sensitivity, but a modest specificity in cancer imaging. Several condi-
tions (e.g., infections, inflammation and increase in muscular activity) can cause 
false positive uptakes and therefore also false suspicions of malignancies. Moreo-
ver, metabolic activity in the background tissue (e.g., in the heart muscle and 
brain), is a limiting factor in tumor imaging (Kellof et al. 2005). 

2.3.1.2 Static [18F]FDG PET/CT imaging 

A conventional [18F]FDG PET/CT scan for oncological purposes is performed as 
static imaging. The patient must fast for at least 4–6 hours before the imaging ses-
sion. A tracer bolus is administered intravenously, and the patient must be at rest 
before the imaging session begins. The PET image acquisition usually occurs 50–
60 minutes after the injection. With modern PET scanners, the time needed for 
image acquisition is very short (only 2–3 minutes per bed position). The activity 
data is summed over the acquisition period. In cases of HNC, the imaging area 
typically includes the head and neck region, thoracic and upper abdominal regions. 
Conventional image analysis is based on the determination of tracer uptake in the 
volume of interest (VOI) as standardized uptake value (SUV). SUV is corrected 
for the injected activity and most often for the body weight (Equation 1.). 

ܷܸܵ ൌ 	
ݍܤሺ݇	݊݋݅ݐܽݎݐ݊݁ܿ݊݋ܿ	ݕݐ݅ݒ݅ݐܿܣ ݈݉⁄ ሻ

ሻݍܤܯሺ	ݕݐ݅ݒ݅ݐܿܽ	݀݁ݐ݆ܿ݁݊ܫ ⁄ሺ݇݃ሻ	ݏݏܽ݉	ݕ݀݋ܤ
 

Equation 1. Standardized uptake value. 

Alternatively, the factor of body weight may be replaced by the lean body weight 
or the body surface area. SUV is a semiquantitative unit and has several limitations 
based on many confounding factors, such as timing of data acquisition, image re-
construction and alternations in body metabolism (Thie 2004). Nevertheless, being 
a robust and simple value to achieve and calculate, SUV is largely used in clinical 
cancer imaging. In addition to mean SUV of the whole VOI, SUVmax from the 
voxel of the highest uptake is also typically determined in the targets of interest 
(e.g., in the suspicion of a malignant lesion). 

Uptake data presented as SUV units is not directly comparable between institutions 
and between patients because of several previously described confounding factors 



24 Review of literature 

(Boellaard 2009). Some efforts have been made to standardize and harmonize 
[18F]FDG PET/CT imaging procedures and reduce the variability of PET image 
quantification between institutions and scanners. One of these is the EANM/EARL 
FDG-PET/CT Accreditation Program, which is guided by the European Associa-
tion of Nuclear Medicine (EANM) Research Ltd. (EARL). This program has led 
to promising results in harmonizing quantitative PET/CT performance (Kaalep et 
al. 2018). Nonetheless, it has not proven to be possible to define any specific ref-
erence values for SUV to be used in differential diagnosis between benign and 
malignant lesions. On the other hand, studies on the repeatability of [18F]FDG up-
take in malignant tumors have been performed. Based on these, the test-re-test 
variability of [18F]FDG uptake in tumors using SUVmean or SUVmax as a measure 
of uptake has been observed to be approximately 20–30% (de Langen et al. 2012, 
Lodge 2017). With regard to these limitations, it is possible to set criteria for clin-
ically significant intrapatient changes between tumor SUVs measured before and 
after treatment for monitoring of therapy response (see below). 

Alternative static [18F]FDG uptake parameters have also been evaluated, one of 
which is tumor-to-blood standard uptake ratio (SUR), which was introduced a few 
years ago. Initial validation studies have shown promising results reporting im-
proved correlation with the metabolic rate of [18F]FDG and higher repeatability 
when traditional SUV is replaced with SUR (van den Hoff et al. 2013, Hofheinz et 
al. 2017). 

2.3.1.3 Clinical applications of [18F]FDG PET/CT in HNC 

HNC is generally a favorable target for [18F]FDG PET/CT imaging. In fact, there 
is only one important exception, namely salivary gland tumors, which express var-
iable FDG uptakes not correlated with the rate of malignancy (Johnson and 
Branstetter 2014). As an example, a benign Warthin’s tumor may be very FDG-
avid (Horiuchi et al. 1998). However, in SCCs of the head and neck, the feasibility 
of this method is reasonably consistent and determined by two major characteris-
tics; high sensitivity and limited spatial resolution. 

In the head and neck region, [18F]FDG PET/CT is the most sensitive imaging mo-
dality of malignant tissue, excluding microscopic metastases less than 5 millime-
ters in diameter (Manca et al. 2016). On the other hand, the low spatial resolution 
of the PET image is the major reason for the fact that other modalities, especially 
MRI, are needed in the anatomical demarcation of the primary tumor. Despite lim-
itations in resolution, [18F]FDG PET/CT is highly useful in the detection of the 
primary tumor in patients with a SCC metastasis in the neck that is from an un-
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known origin. In such cases, the tumor detection rate has been reported to be ap-
proximately 40% (Kwee and Kwee 2009, Wong et al. 2012, Zhu and Wang 2013). 
When the diagnosis of HNC has been made, there are three major indications for 
[18F]FDG PET/CT: staging, treatment planning and monitoring therapy response. 

STAGING 

Staging the primary tumor (T-staging) consists of determining the tumor size and 
its invasion to adjacent structures. Although [18F]FDG PET may provide additional 
information for the delineation of tumor boundaries, the most important methods 
are anatomical imaging (principally MRI) and clinical examination (Differding et 
al. 2015). 

The nodal involvement of HNC has a significant effect on the prognosis of the 
patient. Based on higher sensitivity, [18F]FDG PET/CT is more accurate than other 
imaging modalities, such as CT and MRI, particularly in the nodal staging of HNC 
(Evangelista et al. 2014). Along with qualitative visual interpretation of images, 
several protocols and algorithms have been used to improve the specificity of 
[18F]FDG PET in nodal staging, such as utilizing quantitative SUVmax cutoff values 
(Krabbe et al. 2011, Murakami et al. 2007, Ng et al. 2006). Nevertheless, the high-
est accuracy has been achieved with the interpretation of anatomical findings in 
the CT image together with [18F]FDG uptake in the PET image. Using [18F]FDG 
PET/CT, the negative predictive value (NPV) of a lymph node involvement in 
clinically N0 (cN0) patients is ~80% when a histopathological specimen from elec-
tive neck dissection is used as a gold standard for nodal involvement. Therefore, 
the role of [18F]FDG PET/CT in the detection of lymph nodes in cN0 patients is 
still limited and it is generally not recommended to withhold a prophylactic neck 
dissection based on a negative finding from [18F]FDG PET/CT imaging (Dif-
ferding et al. 2015, Kyzas et al. 2008). However, a recent randomized controlled 
study involving a special group of HNC patients treated with CRT indicated a sim-
ilar survival rate of those who underwent a routine neck dissection after CRT com-
pared to those who underwent [18F]FDG PET/CT guided surveillance and a neck 
dissection only in the case of a positive PET finding (Mehanna et al. 2016). 

The detection of distant metastases in HNC is successfully performed with 
[18F]FDG PET/CT and seems to outperform both CT and MRI (Gao et al. 2014, 
Rohde et al. 2017). Especially patients with recurrent disease have a higher risk of 
distant metastases, but also, at the time of diagnosis, up to 10 % of patients with 
locally advanced disease will harbor distant metastases, the most common sites of 
which are the lung and liver (Haerle et al. 2011b). Less frequently, [18F]FDG 
PET/CT may also detect a simultaneous second primary tumor, which usually has 
a remarkable influence on the treatment and prognosis of the patient. For these 
reasons, [18F]FDG PET/CT has been recommended for all patients with stage III 
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or IV diseases at the time of diagnosis according to the National Comprehensive 
Cancer Network guidelines (Pfister et al. 2013). 

TREATMENT PLANNING 

Another important indication to use [18F]FDG PET/CT in the management of HNC 
is RT planning. In several studies, it has been shown that [18F]FDG PET/CT offers 
additional value in the contouring of RT target volumes compared to the use of 
traditional imaging modalities CT and MRI (Wang et al. 2006, Bird et al. 2015, 
Leclerc et al. 2015). However, there is no consensus of criteria in the detection of 
boundaries of malignant tissue in [18F]FDG PET imaging. Several procedures 
mainly based on quantitative analysis of [18F]FDG uptake have been proposed, but 
the results are controversial (Zaidi et al. 2012, Schinagl et al. 2007). An important 
factor to account for is partial volume effect (PVE), which refers to the blurring of 
uptake data of voxels of interest by adjacent background voxels because of low 
spatial resolution. In the clinical setting, this is an essential issue, such as in the 
oropharynx, where prominent mucosal growth of the tumor has to be included in 
the target volume (Daisne et al. 2004, Troost et al. 2010b). In such cases, even the 
physical examination of the patients plays a key role in avoiding marginal failures. 
The role of [18F]FDG PET/CT in RT planning is discussed further in chapter 2.5. 

The prognostic significance of pretreatment [18F]FDG PET/CT has been a subject 
of particular interest, and numerous studies and meta-analyses have been per-
formed in this field (Cacicedo et al. 2016). SUVmean, SUVmax and volumetric pa-
rameters such as metabolically active tumor volume (MATV) have been nega-
tively correlated with patient survival (Xie et al. 2011, Querellou et al. 2012). How-
ever, the clinical significance of the prognostic data acquired with pretreatment 
[18F]FDG PET/CT is so far negligible in the treatment planning of HNC patients. 

MONITORING OF THERAPY RESPONSE AND FOLLOW-UP 

The third generally used clinical indication of [18F]FDG PET/CT imaging in HNC 
is the monitoring of therapy response after CRT. [18F]FDG PET/CT is accurate in 
the detection of viable tumor cells if processes causing false positive findings such 
as inflammation can be ruled out (Isles et al. 2008). Positron Emission Tomogra-
phy Response Criteria in Solid Tumors (PERCIST) have been defined to establish 
optimal protocols for the monitoring of response to CRT (Gupta et al. 2011). The 
response PET/CT imaging is generally recommended 12 weeks after the comple-
tion of CRT in order to achieve higher diagnostic accuracy compared to earlier 
time points as well as an opportunity to recognize failure of the treatment, indicat-
ing a need for salvage surgery in time (Gupta et al. 2011). 
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Additionally, [18F]FDG PET/CT has been suggested for surveillance of asympto-
matic patients. Studies involving the follow-up period after treatment have shown 
favorable accuracy of [18F]FDG PET/CT in the assessment of recurrence (Wong 
2008). Analogically, the sensitivity and NPV of [18F]FDG PET/CT in surveillance 
have proven to be especially outstanding (Abgral et al. 2009, Wang et al. 2009). 
Nevertheless, the current evidence does not support a routine follow-up with 
[18F]FDG PET/CT imaging (Beswick et al. 2012). 

2.3.1.4 Temporal dimension and quantitative analysis of [18F]FDG PET/CT 
imaging 

The conventional static imaging procedure has been optimized based on the sub-
stantial knowledge and experience of [18F]FDG PET/CT imaging and its clinical 
applications. Nevertheless, it is well known that a considerable amount of poten-
tially useful information may be lost when performing a single-time-point static 
imaging. The most important clinical goal of protocols using longer PET acquisi-
tion and temporal evaluation of tracer uptake is improving specificity of [18F]FDG 
PET for identification of malignant tissue. 

The most commonly investigated [18F]FDG PET/CT imaging protocol that utilizes 
the temporal changes of the tracer uptake is dual-time-point imaging (DTPI). The 
idea of this protocol is to perform two static acquisitions at distinct time points 
(e.g., 60 and 100 min post injection), in order to obtain more data for differentiation 
of inflammatory and malignant tissues. DTPI has been evaluated in detail in lung 
cancer patients, but the results are controversial (Barger and Nandalur 2012, Schil-
laci 2012). On the other hand, a recent meta-analysis including studies on meta-
static lymph nodes of various types of cancers found the DTPI protocol to be more 
sensitive but less specific in detecting metastatic lymph nodes compared to con-
ventional single-time-point imaging (Shen et al. 2014). A prospective study with 
74 HNC patients who underwent DTPI presented modest specificity, sensitivity, 
PPV (positive predictive value) and NPV in the comparison of the imaging data 
with the histopathological findings of a later performed neck dissection (Carlson 
et al. 2013). 

As an alternative to a steady-state procedure, a dynamic acquisition may be used. 
In dynamic imaging protocols, tracer uptake is measured as a function of time. 
Data acquisition is typically performed with list-mode application, which makes it 
possible to divide the data into serial time frames. A time-activity curve (TAC) is 
usually constructed to evaluate the tracer uptake in specific VOIs. Information 
from dynamic images can be processed using advanced kinetic models if the blood 
activity during the time frames is also known. Traditionally, the blood activity data 
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is obtained by extracting arterial blood from the patient during the scan. Today, 
with modern PET scanners, it may be possible to determine accurately the blood 
activity from the images in the region of a great vessel (e.g. ascending aorta). 

The true quantitative analysis of [18F]FDG uptake is based on a two-tissue com-
partment model, in which there are three parameters of [18F]FDG concentrations: 
free FDG in plasma, extravascular non-metabolized FDG and intracellular metab-
olized FDG. The most accurate quantification is obtained in multiparametric (or 
full kinetic) analysis (Minn et al. 1995b). Also, the Patlak method, which is a slight 
simplification of the full kinetic model, can be used in a case of an irreversibly 
binding tracer such as [18F]FDG (Patlak et al. 1983). 

In HNC, little is known about longitudinal changes in [18F]FDG kinetics, since 
very few studies achieving real parametric images have been performed (Manca et 
al. 2016). The main reason for this is undoubtedly the challenge associated with 
obtaining dynamic data simultaneously from the blood pool and from the tumor 
area. One interesting technique, which was presented recently and which would 
probably be applicable for the head and neck region, is dynamic imaging with con-
tinuous bed movement (Karakatsanis et al. 2013, Osborne and Acuff 2016). The 
idea of this technique is to split the imaging session into shorter periods in which 
the input function (e.g., from the aorta and the region of interest elsewhere) are 
imaged in turn and the periods of lacking data are extrapolated using advanced 
mathematical methods. 

In general, dynamic PET imaging provides true quantitative tracer uptake data with 
overwhelming accuracy. However, the design of clinical imaging protocols should 
be guided by the right balance of simplicity and accuracy, as stated in a review 
article by Adriaan A. Lammertsma (Lammertsma 2017). Interestingly, it has also 
been proposed that quantitative [18F]FDG data might be useful with regard to fu-
ture personalized medicine (Manca et al. 2016). Nevertheless, so far there is a re-
markable lack of knowledge and experience on the potential utilization of quanti-
tative [18F]FDG PET/CT imaging in patients with HNC. 

2.3.2 Tumor hypoxia 

Living cells need a sufficient oxygen supply to have normal functional properties 
and energy production. In the human body, arterial blood is well oxygenated, and 
the normal partial pressure of oxygen (pO2) (normoxia) is approximately 75–105 
mmHg (10–14 kPa). Most healthy tissues tend to have sufficient oxygenation, if 
there is no disturbance of the perfusion or oxygen diffusion. However, the normal 
level of oxygen partial pressure in tissue (ptiO2) varies from 20 mmHg in the liver 
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to 70 mmHg in the kidneys (Vaupel et al. 1989, Carreau et al. 2011). Hypoxia is 
generally defined as a condition of lower tissue oxygen tension, commonly below 
8–10 mmHg, whereas the total absence of oxygen is called anoxia. In many patho-
logical conditions, such as coronary artery disease, ischemic brain disorders and 
chronic wounds, hypoxia is a characteristic feature in the pathogenesis. In a ma-
lignant tumor, hypoxia contributes to several pathophysiological processes that al-
ter tumor behavior. 

2.3.2.1 Angiogenesis and blood flow in malignant tumors 

The process of forming new blood vessels, called angiogenesis, is a crucial phe-
nomenon in the growth of malignant tumors. As the cancer cells proliferate, they 
need an appropriate supply of oxygen and nutrients (glucose), as well as some cy-
tokines (e.g., growth factors). Nevertheless, angiogenesis is not systematically reg-
ulated in the malignant tissue during the growth, which is different than in normal 
tissues, where the formation of new vessels is strictly regulated. In a malignant 
tumor, the vessels appear to grow in a disorganized network, and the structure of 
the vessels also tends to be abnormal. Several morphological abnormalities of the 
tumor blood vessels have been described, including dysfunction and leakiness of 
the endothelial cell layer, inappropriate connectivity and multiple protrusions. All 
of these features of the development of the vascular network may lead to an inap-
propriate oxygen supply in the tumor, causing oxygen gradients and hypoxia. In 
the hypoxic regions, the acid concentration is also higher than in normally oxygen-
ated tissues (Carmeliet and Jain 2000). 

The rate of the blood flow varies greatly in a malignant tumor and often is not 
sufficiently high. Based on a variety of abnormalities in the vessels, the erythro-
cytes may not reach all the parenchymal cells in the tumor. Many abnormal phe-
nomena have also been observed in malignant tumors, including markedly in-
creased interstitial pressure causing compression of microvessels in the tumor and 
even reversing blood flow (Vaupel et al. 1989). 

2.3.2.2 Hypoxia in malignant tumors 

Two main types of tumor hypoxia can be distinguished: chronic and acute. 
Chronic, or diffusion-limited, hypoxia is a consequence of impaired diffusion of 
oxygen from blood vessels. The critical limit of distance from a blood vessel to a 
cell is around 150 µm; in a case of higher distance, oxygen is not able to diffuse 
into the cell (Horsman 1998). Because of the unorganized blood vessel network, 



30 Review of literature 

subvolumes of chronic hypoxia occur frequently. Acute, or perfusion-limited, hy-
poxia is believed to be caused due to a transient block of a vessel. Acute hypoxia 
may be transient or even cyclic (Dewhirst 2009). Temporal changes in tumor hy-
poxia have been demonstrated using several methods, e.g., performing immuno-
histochemical staining of tumor sections after consecutive injections of two differ-
ent exogenous hypoxia markers (Ljungkvist et al. 2007). 

Tumor hypoxia has been the subject of research for a reasonably long time. The 
very first report of the lower radiosensitivity of hypoxic mammalian cells dates 
back to the year 1909, when Schwarz and colleagues published their observations 
(Bertout et al. 2008). In 1920’s, the fundamental findings of altered metabolism in 
hypoxic cancer cells (described in chapter 2.3.1) were reported by Otto Warburg. 
The first groundbreaking observations of abnormal vasculature in malignant lung 
tumors were reported in 1955 by Thomlinson and Gray, who also proposed that 
hypoxic cancer cells might be more resistant to RT than normoxic cancer cells 
(Thomlinson and Gray 1955). Since then, a large amount of knowledge on tumor 
hypoxia has been discovered, and hypoxic subvolumes have been observed fre-
quently in almost all solid tumors (Brown and Wilson 2004). 

The presence of hypoxia has remarkable consequences on the behavior of a malig-
nant tumor. In parallel to normal cells, hypoxia is also a challenge for cancer cells, 
because it causes substantial changes in energy production and normal cell func-
tion. Nevertheless, the cancer cells that endure hypoxia gain a growth advantage 
and succeed in the competition for survival. Consequently, hypoxia promotes the 
progression to a more malignant tumor phenotype. 

Several cellular and molecular processes occur under hypoxic conditions to main-
tain cell function and enhance cell survival. Hypoxia inducible factors (HIFs) are 
transcription factors responsible for changes of cell function under hypoxic condi-
tions. Three HIFs (HIF1-3) have been discovered, all of which consist of a stable 
beta unit and an alpha unit that is unstable in normoxic conditions (Duan 2016). 
The role of HIF-1α has been described extensively. Recently, more knowledge of 
the important role of HIF-2α in cancer cells, especially during chronic hypoxic 
exposure, has been achieved (Zhao et al. 2015). For the present, very little is known 
about the expression, action and significance of HIF-3α (Duan 2016). 

HIF-1α is transcribed and synthesized independently of the intracellular O2-con-
centration (Masoud and Li 2015). However, in normoxic conditions, HIF-1α is 
hydroxylated by prolylhydroxylase proteins (PHDs) and degraded by proteosomal 
degradation in interaction with the von Hippel Lindau protein (pVHL). In contrast, 
under hypoxia there are several mechanisms maintaining the stability of HIF-1α, 
allowing its transcriptional actions after it has been combined with the beta unit 
and bound to hypoxia-responsive elements (HREs) of DNA. 
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HIF-1α is responsible for several transcriptionally related changes occurring in hy-
poxia which promote cancer progression. Angiogenesis is induced, for example, 
with the induction of vascular endothelial growth factor (VEGF) and transforming 
growth factor β3 (TGF-β3), and glucose metabolism is enhanced via the expres-
sion of GLUT-1 and GLUT-3 proteins and hexokinases 1 and 3 (HK1 and HK3). 
Myelocytomatosis virus oncogene cellular homologue (C-MYC) and insulin-like 
growth factor 2 (IGF-2) are representative examples of mediators involved in the 
cell proliferation induced by HIF-1α (Harris 2002). It has also been proposed that 
hypoxia promotes tumor invasion and metastasis, and these processes seem to be 
regulated, at least in part, by HIF-1α. An example of these mediators is lysyl oxi-
dase (LOX), an enzyme that catalyzes the crosslinking of collagens and elastins 
and is associated with invasion and metastasis formation (Erler et al. 2006, Sid-
dikuzzaman et al. 2011). In general, several HIF-1α-related processes occur in the 
hypoxic microenvironment, altering the extracellular matrix and modulating the 
tumor immune response (LaGory and Giaccia 2016). Additionally, there are nu-
merous other HIF-1α-induced genes expressed in hypoxia, promoting, for exam-
ple, cell survival, apoptosis, and the immortalization and migration of the cell. 

In healthy cells, hypoxia and glucose metabolism are linked to each other, as stated 
in chapter 2.3.1. When there is a low oxygen concentration in a cell, anaerobic 
glycolysis is induced to compensate for the lack of energy production of the cell. 
Nevertheless, there is growing evidence that the linkage between hypoxia and glu-
cose metabolism is more complex. In hypoxia, a cell is able to utilize intracellular 
glycogen to maintain its proliferative activity (Pescador et al. 2010). Moreover, 
there are several other processes in a hypoxic cell that are thought to help the cell 
to adapt its metabolism and energy production in hypoxic conditions (Eales et al. 
2016). However, in cancer cells, these links are even more complex considering, 
e.g., the presence of the Warburg effect (chapter 2.3.1). 

The tumor suppressor p53 is an important restrictor of malignant tumor growth. 
Generally, it prevents mutations in the genome and induces the apoptosis of tumor 
cells. Hypoxia may initiate or prevent the stabilization of p53 in an unknown man-
ner. On the other hand, it has also been shown that hypoxia promotes apoptosis of 
the p53-positive cancer cells and therefore selects those cells that have lost their 
p53 activity (Graeber et al. 1996). Nevertheless, the interplay between HIF-1α and 
p53 is still an unclear issue, although these two transcription factors have been 
studied extensively (Eales et al. 2016). 

Hypoxia in a tumor contributes to resistance against RT (Janssen et al. 2005). The 
biological effect of RT is based on the damage of DNA caused by ionizing radia-
tion. In the majority of cases, the damage is caused indirectly by the action of free 
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radicals. Photon radiation causes the ionization of water molecules and other com-
pounds in the cells, which leads to the formation of free radicals. In the presence 
of oxygen, these free radicals form peroxides, which are toxic to DNA and possibly 
to cell membrane structures as well. These peroxide compounds cause irreparable 
damage to DNA structures, leading to the death of the cell in the next mitosis. Less 
frequently, the damage of a DNA structure produced by photon radiation may also 
be direct, causing a break in the DNA strand. These breaks are commonly sublethal 
if only one strand is affected, since the DNA repair mechanism may be able to 
repair the break. In more rare cases, however, a fatal double-strand break may oc-
cur. Nonetheless, the majority of the therapeutic effect of RT is oxygen-dependent, 
and it has been estimated that hypoxic cells are three times more resistant to radi-
ation damage compared to well-oxygenated cancer cells (Brown and Wilson 
2004). 

Hypoxia might also have an effect on the outcome of chemotherapy. Several cyto-
toxic drugs are effective only in cells in the mitotic phase. Hypoxia causes decel-
eration of the cell cycle in spite of some compensatory processes it induces (Harris 
2002); consequently, hypoxia is considered to contribute to a poorer effect of the 
cycle-selective chemotherapeutic drugs. Moreover, several other mechanisms oc-
cur in hypoxic conditions which can have an effect on the chemotherapy of hy-
poxic tumors, including but not limited to extracellular acidification, resistance of 
apoptosis and suppression of DNA repair. It has also been suggested that a poorer 
vascular supply in hypoxic tumors causes difficulties in drug penetration. This 
might be an explanation for a worse treatment outcome of hypoxic tumors com-
pared to that of their non-hypoxic counterparts when treated with chemotherapy 
(Wilson and Hay 2011). 

Finally, the survival of surgically treated patients with hypoxic tumors has been 
observed to be worse compared to patients with non-hypoxic tumors (Höckel et al. 
1996). This might be associated with the higher tendency of distant spread of hy-
poxic tumors (Brizel et al. 1996); however, the explanation for this observation 
has been poorly understood (Janssen et al. 2005). 

2.3.2.3 Therapeutic interventions involving hypoxia in HNC 

Tumor hypoxia has been an interesting target for developing new therapeutic mo-
dalities and modifying the present ones because of its negative prognostic nature. 
In this section, some of the important interventions to overcome tumor hypoxia are 
presented briefly. 
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Knowledge of the impact of hypoxia on the outcome of RT has encouraged several 
efforts to improve the radiosensitivity of hypoxic tumors and reduce the impact of 
hypoxia. One important goal has been to modify the level of hemoglobin before 
the start of RT. In several observational studies, anemia has been indicated as a 
negative prognostic factor of HNC patients undergoing RT (Lee et al. 1998, Hoff 
2012). However, the correction of anemia with a transfusion has not been observed 
to correct tumor hypoxia evaluated with dynamic-contrast-enhanced MR imaging 
(DCE-MRI) (Welsh et al. 2017), and the use of erythropoietin (EPO) to manipulate 
the level of hemoglobin has not been associated with a better outcome rate (Hoff 
2012). In fact, EPO has even proven to be harmful for HNC patients undergoing 
RT (Lambin et al. 2009), which might be due to changes in the microcirculation 
of the tumor and a possible thromboembolism caused by a too-high hemoglobin 
concentration (Hoff 2012). 

Other approaches to improve tumor oxygenation during RT have included the use 
of hyperbaric oxygen to increase soluble oxygen in plasma (Haffty et al. 1999) and 
breathing of carbogen (mixture of 95% oxygen and 5% carbon dioxide) to increase 
the tumor blood flow (Mendenhall et al. 2005). Carbogen inhalation therapy with 
combination of administration of nicotinamide has also been studied, but improved 
regional tumor control was observed only in patients with hypoxic tumors and not 
in patients with well-oxygenated tumors (Janssens et al. 2012). Moreover, attempts 
have been made to reduce cellular oxygen consumption with metformin 
(Koritzinsky 2015). However, none of these interventions has yet proven to be so 
beneficial and useful as to deserve a place in clinical practice. Nevertheless, cessa-
tion of smoking seems to be an effective intervention if performed prior to the initi-
ation of RT. In a few observational studies, inferior rates of loco-regional control 
and disease-free survival have been observed among those HNC patients who con-
tinued smoking during the course of RT (Browman et al. 1993, Chen et al. 2011). 

Nitroimidazoles are compounds that have special characteristics to accumulate in-
side cells with a low oxygen tension. Some nitroimidazole compounds were al-
ready being used as radiosensitizers of head and neck tumors in the 1980s, when 
several studies were conducted using misonidazole during a curatively intended 
RT (van den Bogaert et al. 1986, Overgaard et al. 1989). Some significant side 
effects of misonidazole were observed, especially peripheral neuropathy, and since 
then other nitroimidazoles such as etanidazole and nimorazole have been evalu-
ated. A phase III study reported a significantly improved locoregional control and 
disease-specific survival of patients with pharyngeal and supraglottic laryngeal 
cancer who received nimorazole together with conventional primary RT (Over-
gaard et al. 1998). Nevertheless, a retrospective evaluation of the genetic profile 
of these tumors indicated that the treatment with nitroimidazole was effective only 
in more hypoxic tumors. HPV-positive tumors had a significantly better outcome, 
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irrespective of the hypoxic modification, compared to HPV-negative tumors 
(Toustrup et al. 2012). Currently, there is an interesting ongoing randomized study 
regarding the effect of nimorazole compared to placebo during modern RT among 
patients with HPV-negative HNC (NCT01880359, www.clinicaltrials.gov). 

 A meta-analysis published in 2011 reported level 1a evidence (Oxford Centre 
2009) for the benefit of hypoxic modification during RT of HNC. The loco-re-
gional control and disease-free survival were significantly better among patients 
who underwent any hypoxic treatment modifications (HBO, carbogen alone or 
combined with nicotinamide, radiosensitizer) compared to control groups, alt-
hough patients were not selected with regard to tumor oxygenation status for the 
randomized controlled trials included in the meta-analysis (Overgaard 2011). 
However, the number needed to treat (NNT) for these modification protocols was 
reasonably high; therefore, identification of patients with hypoxic tumors prior to 
therapy would be beneficial in order to prove the clinical impact. Nimorazole has 
been used in clinical practice in Denmark (Toustrup et al. 2016), but the rest of the 
previously described interventions are currently not included in routine clinical 
treatment protocols of HNC patients. 

An important approach of hypoxia-related treatment interventions is the modifica-
tion of RT dose delivery. This procedure is called dose painting, in which a higher 
radiation dose is targeted to hypoxic subvolume(s) of tumor. This technique may 
be utilized in two different ways: Dose painting by contours (DPBC) refers to tar-
geting a uniform dose to a hypoxic subvolume of the tumor, whereas dose painting 
by numbers (DPBN) involves modifications of dose delivery at voxel scale, calcu-
lating an individual dose prescription for principally every single voxel (Bentzen 
and Grégoire 2011). RT dose delivery modifications are further discussed in chap-
ter 2.5. 

Hypoxia-targeted medical therapy is another major approach for therapeutic inter-
vention among hypoxic cancers. Hypoxia-activated prodrugs have been of special 
interest; the first compound of this group was mitomycin C, which is now in clin-
ical use (e.g., for anal cancer, bladder cancer and HNC). However, mitomycin C 
shows only minor hypoxia-specific potential (Kennedy et al. 1980). Tirapazamine 
is the most thoroughly evaluated drug that has been developed especially for the 
purpose of hypoxia-targeted therapy. Nevertheless, discouraging results were 
found in a phase III study, which showed no improvement in the overall survival 
rate attributed to the addition of tirapazamine for HNC patients receiving CRT 
(Rischin et al. 2010). Moreover, significant toxicity of tirapazamine has been ob-
served in clinical use (von Pawel et al. 2000, Rischin et al. 2005). The next gener-
ation of hypoxia-activated prodrugs includes, among others, evofosfamide (for-
merly known as TH-302), CEN-209, PR-104 and EO-9 (Phillips 2016). 
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Evofosfamide has recently been evaluated in advanced soft tissue sarcoma and 
pancreatic cancer, but two large phase III studies did not observe any significant 
improvement in overall survival (Mistry et al. 2017). Furthermore, there are also 
other molecular targets for hypoxia-specific drugs, such as inhibition of HIF-1α 
(Semenza 2007). Several compounds of this group are currently also under evalu-
ation (Masoud and Li 2015). Nevertheless, one of the major drawbacks in the de-
velopment and evaluation of these hypoxia-targeted drugs has been the lack of a 
practical and clinically applicable method to determine and quantify the oxygena-
tion status of the malignant tumors. 

2.3.2.4 Non-PET methods for detection and quantification of tumor hypoxia 

Substantial efforts have been made over the past decades to develop and evaluate 
appropriate methods for the detection and measurement of tumor hypoxia. In this 
section, the most important techniques (excluding PET) are reviewed briefly. 

DIRECT NEEDLE ELECTRODE MEASUREMENTS 

Direct invasive hypoxia measurement using polarographic needle electrodes has 
been an important tool in the study of tumor hypoxia. This method was one of the 
first tissue hypoxia measuring modalities in use (Severinghaus and Astrup 1986). 
Especially in the 1990s and 2000s, a commercially available device (Eppendorf 
pO2-Histograph) was used in several clinical and preclinical studies. This needle 
electrode system consists of a probe with a gold cathode covered by an oxygen-
permeable Teflon membrane that is inserted into the target tissue. A silver/silver 
chloride anode is attached to the skin or underlying muscle near the site where the 
probe (cathode) is inserted. The measuring process is based on electrochemical 
reduction of oxygen at the cathode surface, which occurs when the system has a 
polarization potential of a low voltage. The computerized system allows for a step-
wise measuring with dozens of individual measurements from several tracks while 
the probe is moving in the investigated tissue. The device produces a histogram of 
partial oxygen pressure distribution (Vaupel et al. 1991). 

A polarographic needle electrode system has been suggested to be the gold stand-
ard for measuring hypoxia in cancer, since it is a truly direct measuring method. 
Furthermore, several studies have indicated a clear connection between the meas-
ured high partial oxygen pressure and a poor patient outcome (Olive et al. 2001, 
Vaupel et al. 2007). Studies with HNC patients have shown strong evidence of a 
significant correlation between low ptiO2 and a worse outcome of RT (Nordsmark 
and Overgaard 2000, Nordsmark et al. 2005). Analogous results have also been 
achieved in studies of patients with cervical cancer (Höckel et al. 1996) and soft 
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tissue sarcoma (Brizel et al. 1996, Nordsmark et al. 2001). Nevertheless, there are 
also several limitations and disadvantages associated with the use of this method. 
Measuring with a needle electrode system is technically demanding, and the results 
are not completely reproducible. The invasive nature of the procedure limits the 
use in less-accessible tumors. It has also been established that a needle electrode 
system is not able to distinguish severely hypoxic viable cells from necrotic cells 
(Vaupel et al. 2007). The Eppendorf pO2-Histograph is no longer commercially 
available. 

ENDOGENOUS MARKERS 

Endogenous molecular markers are applicable in the detection of hypoxia rela-
tively easily, since no intervention is needed and they are available from archival 
biopsy samples. Traditionally, the best-characterized endogenous hypoxia marker 
has been HIF1-α. The expression of HIF1-α has been associated with a poor out-
come of HNC patients (Hong et al. 2013, Zheng et al. 2013), although conflicting 
results have also been published (Beasley et al. 2002, Fillies et al. 2005). Never-
theless, in a meta-analysis of 28 studies involving HNC patients, overexpression 
of HIF1-α was significantly associated with an increased mortality risk, although 
the prognostic value of HIF1-α varied in different HNC subtypes (Gong et al. 
2013). In addition, corresponding results indicating an association between HIF1-
α overexpression and a poor outcome have been achieved in meta-analyses involv-
ing studies of gastric cancer (Lin et al. 2014), breast cancer (Wang et al. 2014) and 
lung cancer (Ren et al. 2013) patients. Nevertheless, the expression of HIF1-α is 
not an ideal marker of tumor hypoxia, since intratumor heterogeneity as well as 
diffuse non-hypoxia-specific changes in the expression of HIF1-α have been ob-
served (Swartz et al. 2015, Ljungkvist et al. 2007). 

There are also a few HIF1-α related markers that have been evaluated as surrogates 
of hypoxia. Two of these are carboanhydrase 9 (CAIX) and GLUT-1. CAIX is a 
transmembrane protein that helps a cell to survive in acidic conditions by catalyz-
ing the hydration reaction of carbon dioxide to carbonic acid. Expression of CAIX 
has been strongly associated with the hypoxic condition, and it is negatively cor-
related with the microvessel density in a tumor (Beasley et al. 2001). Moreover, in 
several HNC studies, higher CAIX levels have been observed to be associated with 
an inferior treatment outcome within various treatment modalities (Swartz et al. 
2015). However, the observations of cell line dependence of CAIX expression un-
der hypoxic conditions have been discussed recently (Li et al. 2015). GLUT-1 (see 
chapter 2.3.1), the expression of which is also induced by HIF1-α, has been asso-
ciated with an inferior outcome in various types of cancer, including HNC (Vaupel 
and Mayer 2007b). Nevertheless, there are a number of factors other than hypoxia 
promoting the expression of GLUT-1 (Janssen et al. 2005). 
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A modern approach to the detection of tumor hypoxia using endogenous markers 
is the transcriptomic analysis of hypoxia gene signatures. In this method the entire 
mRNA of the cell population is analyzed. In HNC, a few hypoxia gene signatures 
have been designed, and a recent study using three different panels indicated a 
significant association between these gene signatures and the overall survival of 
the patients (Tawk et al. 2016). 

TISSUE ANALYSIS USING EXOGENOUS MARKERS 

Hypoxia-avid compounds have been used as exogenous markers to detect hypoxic 
cells in tissue sections. The most common strategy is to administer the compound 
intravenously. Thereafter, a tissue sample is obtained, and an immunohistochemi-
cal staining is performed. In this method, specific fluorescent antibodies are used 
to detect the bounded marker, and the tissue section is investigated microscopi-
cally. Another approach is autoradiography, which utilizes a radioactive marker in 
the detection of hypoxic cells. Traditionally, an x-ray film or a nuclear emulsion 
plate was used in autoradiography, but modern techniques involve digital systems. 

Nitroimidazoles form the main group of exogenous hypoxia markers. In immuno-
histochemistry (IHC) studies, the most commonly used compound is pimonida-
zole, the binding of which has been well characterized as a surrogate marker of 
oxygen concentration (Arteel et al. 1998) and as a marker of the clinical outcome 
of HNC patients (Kaanders et al. 2002). Another important compound belonging 
to 2-nitroimidazoles is EF5 (2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pen-
tafluoropropyl)-acetamide), which has also been extensively studied (Koch and 
Evans 2015). An inverse correlation between EF5 binding and tissue oxygen ten-
sion has been demonstrated (Koch 2002). Moreover, an association between high 
EF5 binding and a poor clinical outcome has been observed in studies of patients 
with soft tissue sarcoma (Evans et al. 2006) and HNC (Evans et al. 2007). In addi-
tion to these two compounds, other molecules belonging to the nitroimidazole 
group have also been studied as exogenous markers of hypoxia, such as misonida-
zole and CCI-103F (Ljungkvist et al. 2007). 

The major advantage of tissue analysis using exogenous markers is the outstanding 
spatial resolution. However, a need for tissue sampling limits the clinical use of 
these methods. 

FUNCTIONAL IMAGING 

Compared to all of the previously described hypoxia measurement methods de-
manding either a tissue sample or other invasive procedures, functional imaging 
applications are different because of their noninvasive nature. MRI has been an 
interesting method in recent years, and several novel applications in this field have 
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been evaluated. Blood-oxygen-level-dependent MRI (BOLD-MRI) is a method of 
functional MRI (fMRI) that is able to distinguish deoxyhemoglobin from hemo-
globin because of its paramagnetic nature. A major drawback in the use of BOLD-
MRI as a hypoxia imaging method is the fact that the data reflect the oxygenation 
of blood instead of tissue (Sun et al. 2011). Perfusion-weighted MRI utilizes gad-
olinium as a contrast agent. Two different methods have been introduced, namely 
dynamic-contrast-enhanced MRI (DCE-MRI) and dynamic-susceptibility-contrast 
(DSC) MRI. The first is based on the evaluation of perfusion and tissue permea-
bility, whereas the latter only evaluates perfusion. Thus, both of these methods 
acquire indirect evidence of tissue hypoxia. A recent systematic review presented 
a reasonable potential of these methods but concluded that more research is needed 
before these imaging techniques can be used in clinical practice (Noij et al. 2015). 

Nuclear medicine applications have been extensively studied and used in hypoxia 
imaging because of their non-invasive nature. Single-photon emission computed 
tomography (SPECT) utilizes compounds that are labeled with radioactive single-
photon gamma emitters such as [123I]-iodoazomycin arabinoside (123IAZA) (Ur-
tasun et al. 1996). There are also some advantages available when using the SPECT 
method compared to PET, including the generally longer half-lives of used iso-
topes, allowing for easier and less expensive protocols for imaging. Nevertheless, 
PET is overwhelmingly the most commonly investigated and used hypoxia imag-
ing modality. 

2.3.2.5 PET imaging of tumor hypoxia 

PET imaging is the preferred modality to study tumor hypoxia in the clinical set-
ting (Fleming et al. 2015, Carlin and Humm 2012, Kelada and Carlson 2014). Alt-
hough the spatial resolution of PET imaging is somewhat limited, there are several 
benefits that compensate for this shortcoming. As a non-invasive procedure, PET 
imaging is feasible for targets throughout the whole body, and different, heteroge-
neous regions of hypoxia inside a tumor are assumed to be easily assessed. Fur-
thermore, PET imaging may be performed repeatedly and at distinct time points of 
the treatment protocol. As there are virtually innumerable potential compounds 
that could be used as PET tracers, massive efforts have been made to find an ideal 
compound for imaging of tumor hypoxia. There are some desirable characteristics 
for a useful PET tracer, such as a highly specific binding to target tissues and a 
rapid clearance of the unbounded tracer from the blood pool and background tis-
sues in order to get a good target-to-background contrast in PET images. However, 
an optimal hypoxia tracer has not yet been developed or identified. This has been 
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the most significant challenge for several years in the progression of clinical ap-
plications in the field of hypoxia PET imaging (Fleming et al. 2015). 

Nitroimidazoles are currently the most interesting and important hypoxia-avid 
compounds, as already mentioned in chapter 2.3.2.4. The chemical structures of 
nitroimidazoles are presented in Figure 4. Nitroimidazole molecules are able to 
diffuse through the cell membrane and are then reduced into reactive metabolites 
by intracellular reductases. This action is dependent on the level of hypoxia. The 
reactive metabolites then form covalent bonds with thiol groups of intracellular 
macromolecules. 

One of the first utilized compounds in the group of nitroimidazoles was metroni-
dazole, an antibiotic, which is still in everyday use in the treatment of anaerobic 
bacterial and protozoal infections. There have been different indications for the use 
of nitroimidazoles over the past few decades. After the introduction of metronida-
zole, some derivatives of it (e.g., misonidazole and etanidazole) were developed 
for use as a radiosensitizer of hypoxic tumors. However, misonidazole was found 
to be toxic at the therapeutic dose level (Overgaard et al. 1989). At the end of the 
1970s, the use of nitroimidazoles as radiolabeled markers for hypoxia imaging was 
proposed for the first time (Chapman 1979). 

 

Figure 4 The molecular structure of four nitroimidazole compounds used as hypoxia 
PET tracers when labeled with 18-fluorine. HX4, FAZA and FMISO are hy-
drophilic molecules with partition coefficient (P) of 0.20, 0.27 and 0.44, re-
spectively. EF5 is clearly the most lipophilic of these molecules with P=5.7 
(Rajendran and Krohn 2015). 

Lipophilicity and hydrophilicity are some of the central features affecting the usa-
bility of a compound as a hypoxia PET tracer. A lipophilic compound is able to 
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enter the cells easily, since it crosses the cell membranes passively, allowing for a 
uniform distribution of the tracer in the whole body. Moreover, a lipophilic com-
pound is able to penetrate through the blood-brain barrier. On the other hand, a fast 
elimination of the unbounded tracer is also an important property. Therefore, an 
ideal hypoxia PET tracer should also be sufficiently hydrophilic, although the up-
take of the tracer should not reflect blood flow instead of intracellular oxygenation. 
In addition, the rate of early metabolism of the tracer is crucial, since radioactive 
metabolites may have non-specific and unknown binding, causing disturbance in 
the images. There are several differences between the currently known nitroimid-
azole-based compounds in terms of these chemical features. However, none of the 
currently known hypoxia PET tracers have yet proven to be superior or optimal for 
clinical use (Fleming et al. 2015). In the following pages, some of the most im-
portant hypoxia PET tracers, of those that have already been investigated or are 
currently under evaluation, are reviewed briefly. 

NITROIMIDAZOLE TRACERS 

[18F]FMISO 

Misonidazole was the first nitroimidazole compound to be labeled with 18F-fluo-
rine to develop a hypoxia PET tracer. (Rasey et al. 1987). For the present, 
[18F]FMISO is still overwhelmingly the most thoroughly investigated hypoxia 
PET tracer (Rajendran and Krohn 2015). Since the time of the first clinical studies 
(Koh et al. 1992), numerous preclinical and clinical trials have been conducted 
using diverse protocols for imaging of various solid tumors with [18F]FMISO PET. 

The pharmacological features of [18F]FMISO have certain pros and cons. The lip-
ophilicity of the compound is reasonably low, with a distribution coefficient be-
tween octanol and water (partition coefficient, P) of 0.44 (Rajendran and Krohn 
2015). However, together with a moderately slow target tissue penetration, the 
slow background clearance of [18F]FMISO is a real disadvantage, leading to chal-
lenges in obtaining an appropriate image contrast (Fleming et al. 2015). The hy-
poxia cutoff levels in many studies have commonly been set at a reasonably low 
level — for example, a tumor-to-muscle uptake ratio (TMR) of 1.25 and tumor-to-
blood uptake ratio of 1.2 or 1.4 (Okamoto et al. 2013, Rajendran et al. 2003, Rasey 
et al. 1996). Furthermore, a rather fast metabolic rate has been reported for 
[18F]FMISO (Rasey et al. 1999), which may allow for unknown and non-specific 
binding of metabolites during the time frame of image acquisition. On the other 
hand, it has been stated that [18F]FMISO uptake is less dependent on the blood 
flow compared to several other hypoxia tracers (Rajendran and Krohn 2015). The 
radiation exposure in human imaging with [18F]FMISO is comparable to other 
common PET tracers, such as [18F]FDG (Graham et al. 1997). 
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The correlation between [18F]FMISO uptake and pO2 histography has been studied 
several times. The initial studies (Bentzen et al. 2002, Bentzen et al. 2003) did not 
indicate a clear correlation, but in some later studies a relevant correlation was 
observed (Gagel et al. 2004, Gagel et al. 2007). Also, [18F]FMISO uptake has been 
shown to correlate with CAIX and HIF-1α expression and pimonidazole binding 
(Dubois et al. 2004, Sato et al. 2013, Troost et al. 2006). The clinical significance 
of [18F]FMISO PET in various cancers has been evaluated in a number of studies. 
Among HNC patients, the pretreatment [18F]FMISO uptake of the tumor has been 
reported to be an independent prognostic factor (Rischin et al. 2006) and to corre-
late with the RT outcome (Eschmann et al. 2005, Thorwarth et al. 2006) and over-
all survival (Rajendran et al. 2006). Clinical [18F]FMISO PET/CT studies have 
also demonstrated radiation-induced reoxygenation (Eschmann et al. 2007) and the 
prognostic value of [18F]FMISO PET during RT (Zips et al. 2012, Löck et al. 
2017). Initial results of the [18F]FMISO PET/CT-based RT dose escalation study 
have recently been published (Welz et al. 2017). 

Although [18F]FMISO has been evaluated extensively and a real potential of the 
tracer has been indicated, it has not been fully accepted in clinical use. The rela-
tively modest imaging quality and relatively low tumor-to-background contrast 
have probably been the most important drawbacks. Therefore, new potential trac-
ers are being developed and evaluated. A common view is that every potential new 
hypoxia PET tracer should be better than [18F]FMISO, if further evaluation is con-
sidered. 

[18F]FETNIM 

Some chemical and pharmacological properties, especially a very low lipophilicity 
(P=0.17), were the key advantages achieved when [18F]fluoroerythronitroimidaz-
ole or [18F]FETNIM was developed (Yang et al. 1995). The studies regarding the 
pharmacokinetics and dosimetry of the tracer (Grönroos et al. 2001, Tolvanen et 
al. 2002) showed promising results. The tumor uptake of [18F]FETNIM was com-
pared to that of [18F]FMISO in a preclinical study, but no significant differences 
were found, although some lower background activity was observed with 
[18F]FETNIM (Grönroos et al. 2004). However, in a clinical study with HNC pa-
tients, it was observed that the tumor uptake of [18F]FETNIM was highly variable 
and associated with blood flow in the early phase of tissue accumulation (Lehtiö 
et al. 2001), although an inverse correlation between [18F]FETNIM uptake in a 
tumor and patient survival was also detected (Lehtiö et al. 2004). In more recent 
studies, analogous preliminary results of prognostic significance of [18F]FETNIM 
PET/CT have been achieved among patients with cervical cancer (Vercellino et al. 
2012) and non-small-cell lung cancer (NSCLC) (Li et al. 2010). Nonetheless, a 
recent comparative study where paired PET/CT hypoxia images were performed 
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for 42 lung cancer patients reported significantly lower tumor-to-blood uptake ra-
tios in [18F]FETNIM images compared to [18F]FMISO images (Wei et al. 2016). 

[18F]FETA 

[18F]fluoroetanidazole is a radiolabeled derivate of etanidazole, which has previ-
ously been thoroughly evaluated as a radiosensitizer of hypoxic tumors (Lee et al. 
1995). After the presentation of the radiochemical synthesis (Tewson 1997), it was 
assumed that [18F]FETA with very low lipophilicity (comparable to that of 
[18F]FETNIM) might be a better tracer than [18F]FMISO. Initial preclinical studies 
have shown suitable properties of this tracer, including a pO2-dependent retention 
of the tracer in experimental murine tumors (Barthel et al. 2004). 

[18F]EF3 

The successful synthesis of [18F]EF3 was reported in 2001 (Josse et al. 2001). Pre-
clinical studies with tumor-bearing mice showed a favorable biodistribution of 
[18F]EF3. Furthermore, a significant correlation between [18F]EF3 uptake and 
binding of the hypoxia IHC marker EF5 in the tumor tissue was observed (Mahy 
et al. 2004). A phase I clinical study with HNC cancer patients showed the admin-
istration of [18F]EF3 to be feasible and safe (Mahy et al. 2008). However, a major 
drawback in the development of this tracer was the observation of lower levels of 
tumor uptake and tumor-to-blood ratio compared to those of [18F]FMISO in a pre-
clinical study with a comparison protocol (Dubois et al. 2009). 

[18F]EF5 

The history of EF5 began in the 1990s, when the compound was developed for the 
purpose of detection of hypoxia (Lord et al. 1993). For several years, EF5 has been 
used in IHC studies, and those studies have indicated the hypoxia selectivity of 
EF5 binding (Koch and Evans 2015). EF5 is a very lipophilic compound (P=5.7), 
and its pharmacological half-life in plasma has been reported to be 11.7 ± 2.6 hours 
(±SD). In the initial studies with high-performance liquid chromatography 
(HPLC), EF5 was observed to be very stable. No nitro-containing metabolites were 
found in the plasma or urine of either humans or rodents after the administration 
of EF5 (Laughlin et al. 1996, Koch et al. 2001). 

The radiochemical synthesis of [18F]EF5 using electrophilic fluorination was de-
scribed in 2001 (Dolbier et al. 2001). The first preclinical study with tumor-bearing 
rats showed even biodistribution of the tracer and TMR from 0.82 to 1.73 at 120 
minutes post injection and from 1.47 to 2.95 at 180 minutes post injection (Ziemer 
et al. 2003). Further studies have shown that the metabolism of [18F]EF5 in the 
human body is virtually negligible during the first four hours after injection, but in 
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mice extensive formation of metabolites has been observed (Eskola et al. 2012). 
The first human study using [18F]EF5 was published in 2008 (Komar et al. 2008). 
In this study, 15 HNC patients were imaged three times with PET/CT using 
[18F]EF5, [18F]FDG and [15O]H2O. The TMR of [18F]EF5 ranged from 1.1 to 3.2 
(median 1.38). Based on the voxel-by-voxel analysis of the coregistered blood 
flow images and dynamic [18F]EF5 images, the cutoff value for clinically signifi-
cant hypoxia was set at a TMR of 1.5 at 3 hours post-injection. In a later clinical 
publication, it was reported that a shorter overall survival of HNC patients was 
associated with maximum TMR and the tumor hypoxic subvolume defined in 
[18F]EF5 PET image (Komar et al. 2014). 

An important strength of [18F]EF5 is the extensive evaluation of the pharmacolog-
ically similar, non-labeled “cold-EF5” as a marker for hypoxia. On the other hand, 
a complicated radiochemical synthesis of [18F]EF5 using high molar activity is a 
remarkable drawback, limiting a larger utilization of this tracer, although some 
simplifications in other steps of the tracer production have been reported (Chitneni 
et al. 2012). The high lipophilicity has raised some doubts regarding [18F]EF5 as a 
hypoxia PET tracer, since it has been assumed that the background clearance of 
the tracer would not be rapid enough to achieve a favorable image contrast. Nev-
ertheless, a clear advantage is the negligible metabolism of [18F]EF5 in the human 
body allowing for a higher specificity of the hypoxia-related binding of the tracer 
and the improved quality of PET images (Eskola et al. 2012). 

[18F]FAZA 

Azomycin arabinoside (AZA) has been labeled with various isotopes, such as [125I] 
and [123I], when used as a tracer for hypoxia imaging with SPECT. The labelling 
of AZA with 18-fluorine has proven to be the most promising choice when the 
compound is used as a PET tracer. [18F]FAZA has been observed to have a faster 
background clearance and a higher tumor-to-background ratio of uptake compared 
to [18F]FMISO in animal and human studies (Sorger et al. 2003, Piert et al. 2005, 
Reischl et al. 2007, Souvatzoglou et al. 2007). Several preclinical studies have 
shown favorable characteristics of this tracer, for example a high correlation of 
tumor uptake of the tracer with pimonidazole binding (Busk et al. 2013) and elec-
tron paramagnetic resonance spectroscopy (Tran et al. 2012). 

Additionally, [18F]FAZA PET has been evaluated in clinical trials. A significant 
correlation between higher [18F]FAZA uptake and a lower patient survival rate has 
been observed in studies with HNC patients (Mortensen et al. 2012, Saga et al. 
2016), whereas a study with a small number of cervical cancer patients did not 
show such a correlation (Schuetz et al. 2010). A study with eleven NSCLC patients 
suggested that [18F]FAZA PET imaging is able to detect hypoxic subvolumes in 
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homogenous regions of [18F]FDG uptake, providing additional information on hy-
poxic tumors (Bollineni et al. 2013). On the other hand, a study with patients un-
dergoing total laryngectomy due to laryngeal cancer (Bruine de Bruin et al. 2015) 
did not indicate a significant association between [18F]FAZA tumor uptake and 
either pimonidazole binding or the expression of endogenous hypoxia markers 
(HIF-1α, GLUT-1 and CAIX) in a tumor sample. A few studies regarding the fea-
sibility of [18F]FAZA PET in RT planning have also been performed (Grosu et al. 
2007, Servagi-Vernat 2015). 

[18F]HX4 

An important novel example of a nitroimidazole hypoxia tracer is 3-[18F]fluoro-2-
(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)-propan-1-ol, called 
[18F]flortanidazole or [18F]HX4, which has recently been a target of intense re-
search. [18F]HX4 has been developed using click chemistry, which utilizes struc-
ture-activity relationships in the design of desirable pharmacological properties for 
the molecule (Kolb et al. 2001). A few preclinical studies comparing [18F]HX4 to 
other hypoxia PET tracers have been performed (Peeters et al. 2015, Carlin et al. 
2014). [18F]HX4 uptake was observed to be associated with pimonidazole binding 
and CAIX expression in murine HNC xenograft tumors. In the same study (Carlin 
et al. 2014), the tumor uptake of [18F]HX4 was reported to be at an intermediate 
level, higher than [18F]FAZA but lower than [64Cu]ATSM (see below). 

In initial human studies, radiation exposure caused by [18F]HX4 PET was shown 
to be comparable to that of other 18-fluorine-based imaging agents (Doss et al. 
2010), and no toxicity attributable to [18F]HX4 was observed (van Loon et al. 
2010). The optimal acquisition time point for clinical imaging with [18F]HX4 has 
been determined to be 4 hours post-injection in a study with lung cancer patients 
(Zegers et al. 2013). A few clinical trials involving HNC have also been conducted. 
The TMRs of [18F]HX4 and [18F]FMISO have been observed to be at the same 
level, and [18F]HX4 uptake has also been observed to correlate with CAIX expres-
sion (Chen et al. 2012). In another multitracer study, also conducted with HNC 
patients, it was observed that the uptake parameters of [18F]HX4 correlated with 
those of [18F]FDG, but a partial mismatch was also observed in a majority of cases 
(Zegers et al. 2015). 

In conclusion, [18F]HX4 has shown some favorable imaging properties as a hy-
poxia PET tracer. Nevertheless, more studies regarding the association between 
[18F]HX4 uptake and results of non-PET hypoxia detection modalities are needed. 
Moreover, an important approach in the future will be the clinical evaluation of the 
association between [18F]HX4 tumor uptake and treatment outcome. 
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NON-NITROIMIDAZOLE TRACERS 

Copper-based compounds form an important group of evaluated hypoxia PET trac-
ers other than nitroimidazoles. Various radioactive copper nuclides [60,61,62,64Cu] 
have been used as a label of ATSM (diacetyl-bis(N4-methylthiosemicarbazone)), 
a compound that has been extensively investigated as a hypoxia PET tracer. The 
half-life of copper nuclides varies from 9.67 minutes of [62Cu] to 12.7 hours of 
[64Cu]. 

The hypoxia avidity and binding of CuATSM resemble those of nitroimidazoles 
in the sense that CuATSM is also a reasonably lipophilic and highly membrane-
permeable molecule that undergoes intracellular reduction under hypoxic condi-
tions and becomes trapped in the cell (Fujibayashi et al. 1997). A typical feature 
of CuATSM PET images is a high tumor-to-background ratio of uptake, which has 
been observed to be typically over 2.0 and frequently even markedly higher. An-
other favorable feature in the clinical use of CuATSM is the rapid uptake and hy-
poxia-avid binding in tumors, which has been observed to occur as soon as in 10-
15 minutes after injection (Lewis et al. 1999, Dehdashti 2003). 

In clinical studies, the oxygen-dependent uptake and prognostic significance of 
CuATSM have been evaluated with promising results in HNC (Minagawa et al. 
2011, Tsujikawa et al. 2016), lung cancer (Dehdashti 2003b) and cervical cancer 
(Dehdashti et al. 2003, Dehdashti et al. 2008). However, drawbacks have also been 
met in the evaluation of CuATSM. Lack of correlation with IHC hypoxia markers 
has been observed (Carlin et al. 2014), as well as variation of hypoxia selectivity 
between different tumor models (Yuan et al. 2006) in preclinical studies. Moreo-
ver, cell-dependent distribution and retention kinetics have been reported (Valtorta 
et al. 2013). An essential issue needing attention is the relatively high amount of 
radioactivity needed with [64Cu]ATSM compared to nitroimidazoles when used 
for purpose of clinical PET imaging (Laforest et al. 2005). 

In recent years, some compounds totally different from nitroimidazoles or copper-
based tracers have also been investigated as hypoxia PET tracers. One of these is 
cG250, a monoclonal antibody against CAIX. This compound has been labeled 
with either [89Zr] or [124I] and evaluated in preclinical studies using animal models 
for renal cell carcinoma (Lawrentschuk et al. 2011) and head and neck carcinoma 
(Hoeben et al. 2010). A recent study performing pairwise comparison suggested 
favorable properties of [89Zr]cG250 for providing higher-quality PET images com-
pared to [124I]cG250 (Cheal et al. 2014). 
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2.3.2.6 Dynamic nature of tumor hypoxia 

Despite the growing theoretical and clinical knowledge, there are still some major 
unanswered questions regarding the variability of hypoxia in a malignant tumor. 
Temporal changes in tumor oxygenation may cause remarkable challenges both 
for the evaluation of hypoxia detection methods and for the development of treat-
ment modifications. 

One of the poorly understood issues is the connection between the tumor growth 
rate and hypoxia. Hypoxic tumors are thought to grow more rapidly than their non-
hypoxic counterparts, since several processes occurring in hypoxic conditions pro-
mote tumor growth (Harris 2002). Nonetheless, little is known about the potential 
influence of dynamic variation in tumor hypoxia on the tumor growth rate. In con-
trast, the connection between tumor volume and hypoxia has been investigated in 
various studies. Both direct measurements with polarographic needles (Vaupel et 
al. 2007) and PET studies with [18F]FMISO (Tochon-Danguy et al. 2002, Bentzen 
et al. 2002, Koh et al. 1995) have indicated that these two parameters are generally 
not directly related to each other. However, it is unclear how tumor oxygenation 
varies over a larger time scale and during the tumor growth. 

Traditionally, tumor hypoxia has been divided into two forms, acute and chronic 
hypoxia. However, parallel with growing knowledge on tumor hypoxia, this sim-
plification has been questioned (Bayer et al. 2011) because of the complex nature 
of the dynamics of tumor oxygenation and the several causative mechanisms be-
hind the phenomenon. These pathophysiological processes have been observed 
only empirically, and therefore the direct consequences of many of these processes 
remain unclear. In any case, temporal changes in tumor oxygenation occur fre-
quently; while this is not an overwhelming obstacle, it remains one of the most 
important challenges in the field of tumor hypoxia research (Kelada and Carlson 
2014). 

An ideal method for hypoxia detection and quantification should provide highly 
repeatable results for therapeutic interventions to be designed based on this 
method. On the other hand, it is challenging to estimate how the methodological 
issues associated with measuring hypoxia affect temporarily variable results. The 
majority of hypoxia detection or measuring modalities suffer from a lack of feasi-
bility for repeated procedures. All modalities based on a tissue sample naturally 
provide only a snapshot of tissue hypoxia. Polarographic needle electrodes may 
cause damage to tissues, raising doubts about the validity of results of repeated 
measurements (Rudat et al. 2000). Also, the spatial accuracy of repeated needle 
electrode measurements is questionable. By contrast, functional imaging methods 
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such as fMRI and PET are repeatable in principle, and both of these methods have 
been evaluated in this context (Panek et al. 2016, Kelada and Carlson 2014). 

PET studies involving repeatability of baseline tumor hypoxia imaging before in-
itiation of the treatment have been performed in both preclinical and clinical trials. 
In a preclinical study performed with mice bearing human Siha cervical carcinoma 
xenografts, two [18F]FAZA PET scans were acquired on consecutive days (Busk 
et al. 2013). In the voxel-by-voxel analysis, a high linear correlation between the 
repeated scans (R=0.82, range 0.72–0.90) was reported. Additionally, high repro-
ducibility was observed in a preclinical [18F]FMISO PET study where mice bear-
ing HER2+ breast cancer xenografts were imaged twice six hours apart (Whisenant 
et al. 2013). However, the reproducibility of results was assessed only at the whole 
tumor level in this study. 

Only a few clinical PET studies regarding repeatability of baseline tumor hypoxia 
imaging have been conducted. These studies are of special interest because of the 
crucial information provided for the development of clinical applications. A pilot 
clinical reproducibility study was published in 2008, when 13 patients with HNC 
underwent two [18F]FMISO PET/CT scans three days apart before the initiation of 
definitive RT (Nehmeh et al. 2008). The voxel-by-voxel analysis of absolute 
[18F]FMISO uptake values showed reasonable variation between the repeated 
scans since a strong correlation (r > 0.5) was observed in only 71% of the patients. 
The proportion of patients exhibiting a strong correlation was even lower (46%), 
when only fractional hypoxic volumes (FHVs) were compared. In another study 
with 11 HNC patients (Okamoto et al. 2013), [18F]FMISO PET/CT scans were 
found to be highly repeatable when the interval between the scans was 48 hours. 
The voxelwise comparison between the paired images showed a corresponding 
strong correlation (r > 0.5) in all patients, and 9 out of 11 had a correlation of r > 
0.85. A more recent clinical study involving the repeatability of tumor hypoxia 
PET/CT imaging with both HNC patients and lung cancer patients was performed 
with a novel hypoxia tracer [18F]HX4 (Zegers et al. 2015b). High repeatability was 
observed between the paired scans acquired over an average interval of two days. 
The tumor-level parameters (SUVmean, SUVmax and TMRmax) showed a relative co-
efficient of repeatability between 15–17% and voxelwise analysis reported an av-
erage correlation of 0.65 ± 0.14. Nevertheless, comparisons between quantitative 
results of these three clinical studies are challenging due to substantial differences 
between study protocols and different kinds of statistical methods used in these 
studies. 

The repeatability of tumor hypoxia PET imaging has also been investigated in 
study protocols involving patients with cancers other than HNC. Paired [18F]FET-
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NIM PET/CT scans with esophageal cancer patients were observed to obtain var-
iable results (Yue et al. 2012), whereas corresponding [18F]HX4 PET/CT scans 
with esophageal or pancreatic cancer patients were reported to provide repeatable 
results (Klaassen et al. 2015). Nevertheless, these two studies were not based on 
voxel-by-voxel analysis, and the latter one also reported challenges in the registra-
tion of repeated images because of the lack of anatomical landmarks available near 
tumor regions. On the other hand, a recent study reported a high repeatability of 
[18F]FMISO PET/CT scans performed 1–2 days apart in NSCLC patients (Grkvo-
ski et al. 2016). Tumor-level parameters (SUVmean, SUVmax, and mean and maxi-
mum tumor-to-blood ratios) were highly correlated (r ≥ 0.87) between the repeated 
scans, and the voxelwise agreement analysis reported an average relative differ-
ence of 0.9 ± 10.8 %, as calculated from the pooled dataset, including all analyzed 
lesions. 

2.3.3 Additional cellular and molecular processes feasible for PET/CT imag-
ing in HNC 

In addition to glucose metabolism and hypoxia, several other processes in the mi-
croenvironment of HNC have been investigated as targets for PET/CT imaging. 
Many of these have been studied only in an experimental setting, but a few meth-
ods have gained more significance, although their clinical use has not yet been 
established. 

Cell proliferation is an interesting target for PET imaging in cancer tissues, since 
the proliferation rate is markedly elevated in malignant tumors. Furthermore, a 
high rate of cell repopulation during RT is also considered to be an important factor 
for radioresistance. The most commonly investigated and used tracer for this pur-
pose is 18F-labelled fluorothymidine ([18F]FLT). The advantage of [18F]FLT com-
pared to [18F]FDG in the detection of malignant cells is the fact that the tracer is 
taken up actively only by the cells that are dividing, and therefore it does not con-
centrate on inflammatory tissues as much as [18F]FDG. Therefore, [18F]FLT 
PET/CT has been evaluated as a method for monitoring RT response of HNC and 
early remarks of response even before a visible decrease in tumor volume has been 
observed (Troost et al. 2010, Hoeben et al. 2013). Nevertheless, remarkable chal-
lenges in the specificity of [18F]FLT PET in the discrimination of metastatic and 
inflammatory cervical lymph nodes have been reported (Troost et al. 2007). A re-
cent review article regarding the usability of [18F]FLT PET in various types of 
cancers stated that the uptake of the tracer shows a good clinical correlation with 
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progression-free and disease-free survival. Nonetheless, more interventional stud-
ies should be performed to determine the clinical impact of [18F]FLT PET in im-
aging of HNC (Bollineni et al. 2016). 

Another interesting molecular target for PET imaging of malignant tissue is amino 
acid transport and tumor-growth-related protein synthesis. 18F-labelled fluoro-
ethyltyrosine ([18F]FET) has been investigated as a diagnostic tool in cases of sus-
pected HNC. Despite an appropriate specificity in these studies, sensitivity has 
been quite modest compared to that of [18F]FDG (Pauleit et al. 2006, Balogova et 
al. 2008, Haerle et al. 2011). [18F]FET is currently used in the imaging of brain 
tumors (Dunet et al. 2012). Another PET tracer illustrating amino acid transport is 
11C-labelled methionine, which has been investigated as a tracer for tumor detec-
tion both for the purpose of RT planning and for evaluation of therapy response 
(Lindholm et al. 1993, Lindholm et al. 1995). Despite fairly encouraging results in 
the early studies of this tracer, there is currently not a clear role of [11C]methionine 
PET in the imaging of HNC. 

There are also some other targets in the microenvironment of HNC which have 
been utilized in PET imaging. An interesting one of them is EGFR expression, 
which has been considered as a target for imaging of treatment response (van Dijk 
et al. 2015). Some encouraging results of imaging with tracers reflecting e.g. apop-
tosis and cell membrane synthesis have also been achieved (Höglund et al. 2011, 
Khan et al. 2004) but further research is needed to develop clinically useful appli-
cations. 

2.4 Image segmentation and clustering algorithms 

In general terms, image segmentation is a process in which a digital image is di-
vided into multiple segments according to some definite characteristics. In digital 
imaging, the information of every single pixel or voxel can be utilized in this pro-
cess. During the recent years, several computational methods have been developed 
for the task of segmentation of structures in medical images (Ma et al. 2009). There 
are many applications for segmentation of medical images, such as delineation of 
certain anatomical structures or tumor volumes for RT planning (Pham et al. 2000). 

One of the important strategies to perform segmentation on PET images is the use 
of the threshold function, which detects the voxels above a selected level of radi-
oactivity. Several applications using threshold functions have been established and 
evaluated in phantom and clinical trials (Daisne et al. 2003, Geets et al. 2007, 
Moule et al. 2011). Another well-known strategy for medical image segmentation 
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is the use of pattern recognition algorithms, which are commonly classification 
algorithms or some derivatives of them (Ma et al. 2009, Pham et al. 2000). 

Classification is a method that is generally used in machine learning and statistics 
to identify to which of a set of categories a new observation belongs. The identifi-
cation process is based on training data containing observations whose correct cat-
egory membership is known (Pham et al. 2000). The corresponding unsupervised 
method, called clustering, utilizes measures of similarity or distance between the 
observations that are classified (Ma et al. 2009). One of the major tasks in the 
application of classification algorithms is the selection and extraction of features 
used in the classification. Clustering is an optimal tool to be used in the feature 
selection. There are a number of algorithms to be used in cluster analysis, and these 
can be divided into parametric or non-parametric algorithms depending on whether 
or not they assume the data points to be normally distributed. 

Two clustering algorithms are presented in this thesis. The Gaussian mixture 
model (GMM) is a parametric unsupervised clustering algorithm, which assumes 
the data points to be normally distributed. GMM uses a weighted sum of multiple 
Gaussian densities with several parameters, such as mean vector, covariance ma-
trix and mixture weight. GMM has been utilized in several imaging segmentation 
applications (Aristophanous et al. 2007, Bui et al. 2015). K-means algorithm is an 
unsupervised non-parametric clustering algorithm. The predefined number of clas-
ses (k value) is needed for the classification process, and the algorithm divides all 
the data points into the predefined number of clusters based on the distance of the 
nearest centroid of a cluster (Ma et al. 2009). The K-means algorithm has also been 
used in the field of medical image segmentation (Janssen et al. 2009, Paldino et al. 
2011). 

2.5 Advanced applications of PET/CT imaging in RT planning of 
HNC 

The clinical utilization of [18F]FDG PET/CT in staging, monitoring therapy re-
sponse and detecting recurrences of HNC has proven to be feasible with reasonable 
effort, although further investigation involving these indications is ongoing and 
will likely strengthen the clinical impact. In contrast, the applications of PET/CT 
imaging in RT planning are far more complex and are still far from ideal, indicat-
ing a need for intensive research. 

In general, the major principle in the advancement of HNC RT is the escalation of 
the target dose in tumor tissue, together with the reduction of radiation-induced 
toxicity in nearby organs at risk (OAR) (Grégoire et al. 2015). An important part 



 Review of literature 51 

of this process is the delineation of gross tumor volume (GTV) in dose planning 
images. In addition, special attention must be paid to microscopic disease around 
GTV, the volume of which, together with GTV, is called clinical target volume 
(CTV). Additional safety margins are needed for systematic and random errors, 
such as those derived from patient positioning and random shifts in internal anat-
omy. These safety margins are included in the planning target volume (PTV). In 
general, an effort is made to safely reduce this volume and sharpen the dose gradi-
ent between PTV and surrounding tissues, since PTV is typically remarkably larger 
than the GTV and CTV. Several approaches to achieve this goal have been devel-
oped utilizing a close integration between imaging and RT systems, such as image-
guided RT (IGRT), which allows for accurate positioning of patients with image 
guidance (Simpson et al. 2010). 

The traditional ‘gold standard’ for GTV delineation in HNC has been anatomical 
imaging with CT or MRI combined with physical examination (Delouya et al. 
2011). MRI provides a good resolution in the differentiation of soft tissues, which 
is important in the contouring of tumor boundaries. On the other hand, CT imaging 
is needed for dose distribution calculations, which are performed with special at-
tention to variable electron densities in tissues. An [18F]FDG PET/CT-based GTV 
is typically smaller than a corresponding GTV based on pure CT or MRI, but 
[18F]FDG PET may provide additional information of tumor location and exten-
sion that would not be visible in anatomical images (Leclerc et al. 2015, Bird et al. 
2015). However, a major challenge is a lack of consensus regarding optimal crite-
ria for GTV delineation in [18F]FDG PET images. Several threshold-based seg-
mentation methods have been evaluated, as well as some adaptive and gradient 
based algorithms. Furthermore, some applications utilizing advanced mathemati-
cal methods such as fuzzy logic have been assessed. Nevertheless, an optimal 
method for the task of GTV delineation in [18F]FDG PET image has not yet been 
identified (Differding et al. 2015). 

On the other hand, a non-uniform dose delivery to the target tissue is one of the 
novel approaches of modern RT (Ling et al. 2000). This concept derives from the 
fact that tumor tissue is heterogenous in radiosensitivity. Therefore, several ap-
proaches have been considered and, to some extent, already evaluated in an attempt 
to successfully escalate the delivered radiation dose in tumor. Typically, dose es-
calation is targeted to certain parts of the target volume, through a process called 
dose painting (Bentzen and Grégoire 2011). There are two alternative ways to per-
form dose painting, either calculating the dose for certain subvolumes of the tumor 
(i.e. DPBC) or using more accurate voxel-based calculations called dose painting 
by numbers (DPBN). [18F]FDG PET/CT has been utilized in a few clinical trials 
where PET-image voxel intensities were used as a template for DPBN (Grégoire 
et al. 2015). In a phase I clinical trial (Madani et al. 2011), median doses of 80.9 
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Gy in high-dose CTV and 85.9 Gy in GTV were reached in patients with HNC, 
but late non-healing mucosal ulcers at the site of dose escalation were considered 
dose-limiting toxicity. In that study, a median physical dose of 80.9 Gy was deter-
mined as the maximum tolerated dose (Madani et al. 2011). 

As stated previously, PET imaging of tumor hypoxia for the task of modification 
of RT dose delivery has been a subject of intense research. The traditional concept 
has been dose escalation in hypoxic subvolumes based on a pretreatment hypoxia 
PET image. Several theoretical considerations and modelling studies have been 
conducted in this field, where PET/CT imaging is considered to be the most prom-
ising imaging modality (Grosu et al. 2007, Servagi-Vernat et al. 2015, Chang et al. 
2013). One important drawback is the limited spatial resolution of PET imaging, 
which limits the disclosure of very short distances between distinct hypoxic sub-
volumes in the tumor microenvironment. Also, the dynamic nature of tumor hy-
poxia, as well as the questionable repeatability of pretreatment hypoxia imaging 
(see chapter 2.3.2.6), have raised a shadow over this concept. 

Recently, it has become more evident that the presence of residual tumor hypoxia 
after the first few weeks of RT has a higher impact on the outcome of RT and 
disease-free survival compared to pretreatment tumor hypoxia (Löck et al. 2017, 
Zips et al. 2012, Bollineni et al. 2014). Moreover, several studies have reported a 
general reduction of hypoxic subvolumes observed with [18F]FMISO, [18F]FAZA 
or [18F]HX4 PET/CT imaging during the first few weeks of RT compared to the 
baseline hypoxic subvolumes (Wiedenmann et al. 2015, Mortensen et al. 2012, 
Zegers et al. 2016, Okamoto et al. 2016). This phenomenon has been speculated 
to be caused by reoxygenation of the tumor as well as changes in perfusion and 
tracer kinetics (Eschmann et al. 2007, Zips et al. 2012). On the other hand, spatial 
changes in the location of hypoxia, as well as newborn hypoxic voxels, have been 
observed in the PET images obtained during RT (Servagi-Vernat et al. 2014). In 
addition, an important approach to be investigated is the spatial variability of hy-
poxia tracer distribution during RT and the co-localization of hypoxic subvolumes 
with later tumor recurrences. A study using [18F]FMISO PET/CT reported remark-
able variability in these parameters and concluded by suggesting an adaptation of 
treatment plans and an inclusion of sufficient margins for selective dose painting 
protocols in hypoxic HNC tumors. According to that study, an alternative strategy 
for the treatment modification might be a compromised dose-escalation targeted at 
the GTV (Zschaeck et al. 2015). 

Adaptive RT is a process through which the treatment plan may be modified based 
on anatomical and biological changes of the target tissue during the treatment 
(Brouwer et al. 2015). These modifications are performed using feedback provided 
with repeated imaging, such as CT, MRI and PET imaging. However, thus far, 
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adaptive approaches have been experimental, and there remain major issues to be 
evaluated, such as the safety of dose reduction performed with subsequent images 
as well as the frequency and timing of repeated imaging (Castadot et al. 2011). 
PET/CT imaging will probably have an important role in the performance of adap-
tive RT protocols. Frequently, an updated definition of MATV in [18F]FDG 
PET/CT imaging might be beneficial for revision plans by reducing the dose in 
OARs and thus toxicity. In fact, clinical trials combining adaptive RT and DPBN 
based on [18F]FDG PET/CT imaging have already been conducted (Duprez et al. 
2011, Berwouts et al. 2013). Analogically, hypoxia PET/CT is considered to be a 
potential imaging tool for adaptive treatment modifications (Servagi-Vernat et al. 
2015). Nonetheless, substantial efforts will still be needed in order to establish the 
role of hypoxia PET/CT imaging in adaptive dose-escalation strategies (Horsman 
et al. 2012). However, an interim analysis of the very first interventional hypoxia 
PET-guided dose painting study in HNC has been published recently, and the ini-
tial results suggest that [18F]FMISO PET/CT-based dose-escalation to hypoxic tu-
mor volume is feasible without excess toxicity (Welz et al. 2017). 

PET/CT imaging might also have a role in the implementation of de-intensified 
(C)RT protocols. Recently, a major trend has been the feasibility evaluation of de-
intensification of the treatment for patients presenting with HPV-positive oropha-
ryngeal cancer with a very good prognosis (Ang et al. 2010, Swiecicki et al. 2016). 
Initial clinical trials involving this issue have already been conducted, and several 
more are ongoing (Bhatia and Burtness 2015). While providing additional infor-
mation for GTV delineation, [18F]FDG PET/CT may be an important tool in the 
implementation of these treatment protocols. On the other hand, hypoxia PET/CT 
imaging with [18F]FMISO has been evaluated as a method for ruling out clinically 
important hypoxia when conducting de-intensified CRT in HPV-positive oropha-
ryngeal carcinoma patients (Lee et al. 2016). 

In addition, [18F]FDG PET/CT has been considered for RT dose de-escalation pro-
tocols in which a reduced elective dose for cervical lymph nodes in HNC is used. 
This strategy was initially presented in a study evaluating different methods for a 
FDG PET-based target volume definition of metastatic lymph nodes (Schinagl et 
al. 2009). Currently, an ongoing prospective study (NCT 02442375) investigates 
whether a FDG PET-guided de-escalated radiation dose prescription in elective 
neck irradiation is feasible for the treatment of laryngopharyngeal cancer and 
whether this leads to improved quality of life after treatment without a higher re-
currence rate. 
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3 AIMS OF THE STUDY 

Today, PET/CT imaging is widely used in the clinical management of HNC as 
well as in translational cancer research. However, a remarkably high and diverse 
potential has been recognized in the utilization of this imaging modality in the 
management of HNC. This study focused on the feasibility and utilization of a 
novel hypoxia tracer [18F]EF5 and further evaluation of dynamic [18F]FDG 
PET/CT imaging in HNC. 

The specific aims of this study were: 

1. To investigate biodistribution and dosimetry of the hypoxia tracer [18F]EF5 
in oncologic patients to obtain reliable data on the safety and radiation ex-
posure of the tracer in clinical imaging (Study I). 

2. To evaluate the uptake of [18F]EF5 in head and neck SCC xenograft tumors 
and study the variability of the tracer uptake in a larger time scale as well as 
the association between [18F]EF5 uptake and the tumor growth rate (Study 
II). 

3. To investigate the repeatability of intratumor uptake and spatial distribution 
of [18F]EF5 in head and neck SCC tumors of newly diagnosed patients sub-
jected to chemoradiotherapy (Study III). 

4. To evaluate advanced mathematical methods in the analysis of dynamic 
[18F]FDG PET/CT imaging to be used in discriminating different tissue 
types in patients with oropharyngeal cancer (Study IV). 
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4 PATIENTS AND EXPERIMENTAL TUMOR 
MODELS 

4.1 Patients 

Clinical studies I, III and IV were conducted at Turku University Hospital 
(TURKU) in Finland. In study I, another center, University of Pennsylvania 
(PENN), collaborated with TURKU. Both sites were responsible for their own pa-
tient enrollment. In TURKU, the patients were enrolled for all of the clinical stud-
ies through the Department of Otorhinolaryngology – head and neck surgery and 
the Department of Oncology and Radiotherapy. In PENN, the patients were en-
rolled through the Department of Radiation Oncology. 

Table 1 Patient characteristics in study I. Patients numbered 1–10 were imaged at 
University of Pennsylvania (with PET scanner), and patients numbered 11–
16 at Turku University Hospital (with PET/CT scanner). (Table modified 
from Publication I). 

Patient 
no. 

Gender Age 
(years) 

Weight 
(kg) 

Tumor Histology  

1 female 50 70 Non-small-cell lung carcinoma  
2 female 50 58 Non-small-cell lung carcinoma  
3 female 49 72 Non-small-cell lung carcinoma  
4 male 46 104 Non-small-cell lung carcinoma  
5 male 48 88 Non-small-cell lung carcinoma  
6 male 21 87 Anaplastic astrocytoma  
7 female 28 51 Cervical adenocarcinoma  
8 female 39 88 Breast; Invasive ductal carcinoma  
9 male 51 128 Brain; Glioblastoma multiforme  

10 female 34 84 Breast; Invasive ductal carcinoma  
11 male 62 108 Diffuse large B cell lymphoma  
12 male 43 107 Diffuse large B cell lymphoma  
13 female 56 91 Follicular lymphoma  
14 male 32 63 Testicular cancer (seminoma)  
15 male 37 64 Hodgkin´s lymphoma  
16 female 39 73 Hodgkin´s lymphoma  
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In study I, the enrolled patients had previously been treated for a solid malignant 
tumor (Table 1), whereas in studies III and IV the participants were newly diag-
nosed patients with SCC of the head and neck subjected to definitive CRT (Table 
2). In all three studies, the patients with serious cardiovascular, renal, liver or he-
matological disease were excluded, as were those who were pregnant or nursing. 
Eleven subjects participated in study III, but one subject with tonsillar cancer was 
excluded from analyses due to an extremely low uptake in the [18F]FDG PET/CT 
image, which was performed after a diagnostic tonsillectomy. 

The patients in studies III and IV underwent diagnostic procedures of HNC prior 
to the study enrollment. The HPV status from the primary tumor histopathological 
sample was determined using the IHC of p16 antigen (Table 2). These patients 
underwent standard dental examination, which included extraction of decayed 
teeth and management of oral chronic infections when necessary. All dental pro-
cedures performed prior to the PET scan were depicted in detail in the medical 
reports available for investigators defining volumes of interest for RT as well as 
for the protocol of study IV (please see chapter 5). 

4.2 Experimental animals, cell lines and tumor models 

In study II, four different human head and neck SCC cell lines were utilized (Table 
3). The cells were routinely cultured using Dulbecco’s modified Eagle’s medium 
(Gibco®, Thermo Scientific, Waltham, MA, USA) containing L-glutamine 
(Gibco), non-essential amino acids (Gibco), streptomycin, penicillin (Gibco), and 
10% FBS (Gibco) at 37 degrees Celsius in a humified air atmosphere containing 
5% CO2. For detaching and plating, cells were washed with PBS, trypsinized 
(Trypsin-EDTA in HBSS, Gibco), and centrifuged at 1,300 rpm for 5 minutes. 

Male nude mice (Athymic nu/nu; Harlan laboratories, Horst, The Netherlands) 
were used for the experiments. The animals first received total-body irradiation 
with 4 Gy one day before the tumor induction in order to suppress the immune 
system and facilitate tumor growth. Tumor cells (1–10 x 106) were subcutaneously 
injected into the flank or neck of each mouse. The mice were observed on a daily 
basis, and tumor sizes were closely monitored over the study period (V=6/ߨ x a x 
b x c) using Vernier Caliper measurements. The starting and end points of expo-
nential tumor growth periods were determined from the growth curves. The per-
centage of tumor growth rate per day from the exponential growth period was cal-
culated. The mice were maintained in individually ventilated cages under con-
trolled pathogen-free environmental conditions with free access to water and 
standard food. 
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Table 2 Patient characteristics in studies III and IV. All patients in these studies were 
men (Table modified from publications III and IV). 

Study Patient 
no. 

Age 
(years) 

Weight 
(kg) 

Tumor site TNM1 Grade HPV 
status 

III 1 73 77 Base of 
tongue 

T2N1M0 II + 

III 2 68 49 Base of 
tongue 

T3N0M0 III - 

III 3 56 86 Base of 
tongue 

T3N1M0 II + 

III 4 69 66 Oropha-
ryngeal wall 

T4aN1M0 II - 

III 5 58 125 Base of 
tongue 

T2N2cM0 II - 

III 6 60 84 Nasopharynx T4N3bM0 II + 
III 7 69 94 Hypopharynx T4bN2cM0 II - 
III 8 76 78 Nasopharynx T4N2bM0 NA - 
III 9 66 77 Tonsil T4aN2cM0 III + 
III 10 66 85 Hypopharynx T4aN2bM0 II - 
IV 1 63 79 Tonsil T2N2bM0 III + 
IV 2 65 74 Tonsil T3N2bM0 II + 
IV 3 59 80 Tonsil T2N2bM0 II + 
IV 4 59 88 Base of 

tongue 
T3N2bM0 II + 

IV 5 58 63 Oropha-
ryngeal wall 

T3N0M0 I - 

1 According to the Union for International Cancer Control (UICC) TNM Classification of ma-
lignant tumours (7th edition, 2010) 

4.3 Ethical considerations 

All clinical studies (I, III, IV) were performed in accordance with the Declaration 
of Helsinki. The clinical studies at TURKU were approved by the Ethics Commit-
tee of Hospital District of Southwest Finland; at PENN, the Institutional Review 
Board at the University of Pennsylvania approved the protocol of the study I. The 
study drug EF5 in unlabeled form had previously been documented to be safe for 
humans even in gram doses (Koch et al. 2001). In Finland, the National Agency 
for Medicines (the previous name for the Finnish Medicines Agency) had supplied 
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permission for human use of [18F]EF5 prior to these studies (KL nro 165/2005). 
The human subjects who participated in these trials (studies I, III and IV) were 
thoroughly informed about the study and had more than a few days’ time to con-
sider their participation before giving their final consent. 

The animal procedures were reviewed by the local Ethics Committee on Animal 
Experimentation of the University of Turku and approved by the Provincial State 
Office of Western Finland. The welfare of the animals was monitored carefully, 
and the size of the tumors was strictly limited in order to ensure the wellbeing of 
the animals. 

Table 3 Characteristics of the cell lines. (Table modified from publication II). 

Cell line Primary tumor 
site 

TNM-classification Grade  

UT-SCC 8 Supraglottic larynx T2N0M0 G1  

UT-SCC 34 Supraglottic larynx T4N0M0 G1  

UT-SCC 70 Hypopharynx T4N1M0 G3  

UT-SCC 74A Mobile tongue T3N1M0 G1 to G2  
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5 METHODS 

5.1 Synthesis of PET tracers (Studies I-IV) 

Two different PET tracers were used in these studies. [18F]FDG was synthesized 
from mannosyl triflate using a nucleophilic method. Radiochemical purity ex-
ceeded 95% in every production batch. 

The synthesis of [18F]EF5 is described in detail elsewhere (Dolbier et al. 2001, 
Eskola et al. 2012). Briefly, [18F]EF5 was prepared from an allyl precursor using 
radioactive fluorine in a one-step reaction in the presence of trifluoroacetic acid at 
low temperatures. In study I, two individual institutions performed the synthesis. 
At TURKU, high molar activity 18F-fluorine was used (Bergman and Solin 1997), 
leading to the final molar activity of about 4 GBq/µmol, whereas at PENN, 18F-
fluorine with a ~100-fold lower molar activity was used (Dolbier et al. 2001). At 
TURKU, the synthesis of [18F]EF5 in study II was similar to that in study I. In 
study III, the final molar activity was about 8 GBq/µmol due to some advance-
ments in tracer production. The radiochemical purity was higher than 98.5% in 
every production batch of [18F]EF5. 

5.2 Imaging protocols (Studies I-IV) 

Four different PET or PET/CT scanners were used in the studies of this work (Ta-
ble 4). 

5.2.1 Study I 

In study I, the patients underwent whole-body imaging from the vertex to the mid-
line of the thigh. An intravenous dose of 107–364 MBq (mean 217 MBq) of 
[18F]EF5 was administered to each subject. The image acquisition was performed 
at 15 minutes and at 1, 2 and 4 hours post-injection. One subject at TURKU (Nr 
15) was imaged five times, and the latest image was acquired at 6 hours post-in-
jection. 

At TURKU, the image session was divided into 7–8 bed positions depending on 
the length of the patient. The acquisition time for the 1st and 2nd scan was 3 minutes 
per bed position, and for the 3rd–5th scan the acquisition time was 4 minutes per 
bed position. At PENN, the imaging time was between 60 and 100 seconds per bed 
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position followed by a standard transmission scan. Otherwise, the protocol was 
similar between the two sites. 

Table 4 Information on PET and PET/CT scanners. 

Study Type of 
scanner 

Manufacturer PET scanner 
ring 

Transverse 
FOV (cm) 

Axial 
FOV (cm) 

CT 

I Philips 

Allegro PET1 

Philips Gadolinium 

oxyorthosilicate 

crystals 

57.6  18 NA 

I, III Discovery 

VCT PET/CT 

GE Healthcare Bismuth 

germinate oxide 

crystals 

70 15.7 64-slice 

II Inveon 

Multimodality 

Siemens 

Medical 

Solutions 

Lutetium 

oxyorthosilicate 

crystals 

10 12.7 maximum 

resolution 

40 

microns 

III, 

IV 

GE D690 

PET/CT 

GE Healthcare Lutetium 

yttrium orthosil-

icate crystals  

70 15.7 64-slice 

1 Philips Allegro PET was used at the University of Pennsylvania. 

At both sites, blood samples were collected from the arm contralateral to that used 
for tracer injection to determine [18F]EF5 blood activity. The time points for sam-
ple collection were 15 minutes before injection; 15 minutes and 1, 2, and 4 hours 
after the injection; and at the end of the final imaging session. Patients were asked 
to avoid voiding 45 minutes before tracer injection. After injection of [18F]EF5, 
patients were requested to void before each scan, and the time and volume of ex-
cretion were recorded. The activity concentration (kBq/ml) of blood and urine 
samples were measured using a liquid-scintillation counter. The metabolites of the 
tracer in representative samples were also assessed by HPLC. 

5.2.2 Study II 

The mice were subjected to PET/CT imaging under general anesthesia induced 
with 2.5% isoflurane. The body temperature of the mice was maintained using a 
heating pad. The tumors were clearly visible when the first scan with [18F]EF5 was 
performed. Following a transmission scan for attenuation correction using the CT 
modality, a dynamic 80-minute emission scan was acquired. A second [18F]EF5 
scan and an [18F]FDG scan were performed on consecutive days after the clear 
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exponential growth period of tumors. The injected doses (mean ± SD) of [18F]EF5 
and [18F]FDG were 11.1 ± 1.9 MBq and 10.9 ± 2.8 MBq, respectively. The mice 
were sacrificed after the last PET/CT scan and the direct tissue oxygen measure-
ments (see chapter 5.4) had been performed. 

5.2.3 Study III 

The patients underwent static [18F]EF5 PET/CT scans twice, with a median inter-
val of 7 days (range 5–7 days). The first (EF51st) and second (EF52nd) scans were 
performed with the same scanner and similar protocol. An intravenous bolus of 
[18F]EF5 was administered to the patients with a mean (± SD) dose of 303 ± 23 
MBq (range 246–345 MBq). A CT scan was performed for anatomical reference 
and attenuation correction purposes prior to PET imaging. Immediately after the 
CT scan, the PET data acquisition was begun at 178 ± 9 minutes postinjection 
(mean ± SD, range 160–190 minutes). The mean (± SD) intrapatient difference 
between PET acquisition start times of repeated scans was 7 ± 6 min (range 0–19 
min). The PET acquisition time was 6 minutes for one bed position covering the 
axial field of view (FOV) of 15 cm. The patients were immobilized on the scanner 
table using a thermoplastic RT mask, and the positioning was performed utilizing 
the predefined fiducial markers in the mask and the scanner lasers. Venous blood 
samples for blood activity measurements were taken before and after the imaging 
session. The blood activity at the mid-time point of image acquisition was defined 
using linear interpolation with decay-corrected blood activity values. 

On a separate day, the patients in study III underwent a whole-body [18F]FDG 
PET/CT imaging for the purpose of RT planning. The immobilization was per-
formed using the same mask and positioning parameters as in the [18F]EF5 
PET/CT scans. The [18F]FDG PET/CT scan was acquired either between the 
[18F]EF5 PET/CT scans or within one week after these scans using the same scan-
ner, except in the cases of patients 1, 2, 5 and 7, whose [18F]FDG PET/CT was 
obtained with Discovery VCT PET/CT (Table 4). 

5.2.4 Study IV 

The PET/CT imaging protocol was designed for both the planning of RT and the 
purposes of the study. The patients were required to fast for at least 4 hours before 
the PET scan. The immobilizing and positioning of the patients were performed 
similarly as in Study III (see Chapter 5.2.3). 



62  Methods 

The scanning protocol is presented in Figure 5. First, a CT scan from the neck 
region was acquired. Next, the injection of [18F]FDG was administered, and, sim-
ultaneously, the dynamic PET scan was started. During the first 30 minutes, dy-
namic PET data from the neck region were acquired (0–30 minutes divided into 
20 frames). The patients were then allowed to rest outside the scanner room before 
the second imaging session. 

The second imaging session started with a whole-body CT scan followed at 70 
minutes post-injection by the standard diagnostic whole-body PET scan for the 
staging and RT planning purposes. The PET acquisition started with the imaging 
of two bed positions from the neck region (4 minutes per bed position); next, two 
bed positions were imaged from the lower part of the body (2 minutes per bed 
position). Finally, the very last frame of the PET data from the neck region (one 
bed position, four minutes frame) was acquired. In total, the PET data contained 
22 time frames. The imaging data of the 21st frame was used to calculate the uptake 
value in the form of static parameter SUV. 

 

Figure 5 Time sequence of acquisition of CT images and [18F]FDG PET images in 
study IV (Figure adopted from Publication IV). 

5.3 Clinical and biological safety monitoring of exposure of [18F]EF5 
(Study I) 

In addition to dosimetry calculations, the biological and clinical safety of [18F]EF5 
was monitored in Study I. Each subject underwent a complete physical examina-
tion prior to the study, including assessment of medical history. A complete blood-
count, complete serum biochemical analysis and urine analysis were performed at 
baseline and repeated after the scans. An electrocardiogram (ECG) registration 
was obtained 15 minutes before and 15 minutes after the [18F]EF5 injection. Vital 
signs (heart rate, systolic and diastolic blood pressure, respiratory rate and body 
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temperature) were monitored at the following time-points: 1–2 hours preinjection; 
15 minutes preinjection; and 15 minutes and 1, 2 and 4 hours post-injection. 

Patients were questioned about any discomfort or adverse experiences during the 
study and during a follow-up phone call 24 hours after the imaging study. Common 
Terminology Criteria for Adverse Events version 3.0 (CTCAE) was used for the 
scoring of adverse events. 

5.4 Direct oxygen measurements (Study II) 

In study II, two of the tumors were measured with the Licox (GMS, Kiel-Mielken-
dorf, Germany) system in order to determine directly the oxygen partial pressure 
inside the tumor. The Licox CC1.P1 probe with temperature sensor was used in 
this study. It was 0.65 mm in diameter and had an 18-mm2 oxygen sensitive area, 
which produced an estimate of nearby oxygen tension (Integra Neuroscience). The 
mice were first anesthetized in a similar manner to when they were subjected to 
imaging. Then the probe was inserted inside the tumor, and the recording was con-
tinued until the ptiO2 level remained stable for at least 20 min. 

5.5 Image analysis (Study I-IV) 

5.5.1 Image reconstruction 

In study I, the reconstruction of static PET images was performed using a filtered 
back projection or iterative ordered-subset expectation maximization (OSEM) 
method with 2 iterations and 28 subsets. In study II, a 3D list mode data acquisition 
was used for the dynamic images, and the sinograms were framed into 25 frames. 
For the reconstruction, an OSEM 2D iterative algorithm with ramp filter, 4 itera-
tions and 16 subsets was used. In study III, the images obtained with GE D690 
PET/CT were reconstructed using a 192x192 matrix with transverse FOV of 70 
cm. In order to achieve a uniform voxel size for all PET images in study III, a 
corresponding 128x128 reconstruction matrix with transaxial FOV of 46.7 cm was 
selected for the GE Discovery VCT PET/CT. In study IV, the image reconstruction 
was performed using an iterative VUE Point FX method (GE Healthcare, 2011) 
with 2 iterations and 24 subsets. A reconstruction matrix of 192 x 192 and trans-
verse FOV 70 cm was used. 
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In all PET studies, at least attenuation, random, decay and detector deadtime cor-
rections were performed for the raw data. Additionally, in all clinical PET studies, 
scatter correction was performed. 

5.5.2 Analysis of tracer uptakes 

In Study I, activity data in the following source-organs were determined: urinary 
bladder, kidney, liver, gall bladder, heart, brain, lungs, muscle and red marrow 
(from femur). For PENN patients, the activity values were recorded from attenua-
tion-corrected PET images by delineating the VOIs of the target organs and mul-
tiplying the achieved pixel values by an acquisition-specific calibration factor. For 
TURKU patients, the organ VOIs were delineated on the CT images using iPlan 
RT Image version 4.1 (BrainLab AG, Munich, Germany), and the average activity 
concentration of the VOI was measured. It was also possible to determine the ac-
tivity concentration for the spleen, pancreas and blood (aorta) for TURKU patients 
due to the advanced capability of the CT to define organ positions. 

In Study II, the Inveon Research Workplace Image Analysis software (Siemens 
Medical Solutions, Knoxville, TN, USA) was used to analyze the PET/CT images. 
The images were summed from 60 to 80 minutes post injection. The VOIs were 
drawn over the whole tumors on CT images and then transformed to the corre-
sponding PET images. Radioactivity uptake was calculated as the percentage of 
injected dose per gram tissue (%ID/g) in the whole tumor. In addition, the hottest 
cluster of the tumor (HC) containing voxels with the highest 10% of the VOI was 
determined using the same uptake unit (%ID/g). 

In Study III, the tracer uptake in primary tumors and reference tissues was determined 
using Varian Eclipse software version 13.6 (Varian Medical Systems, Palo Alto, CA, 
USA). The MATV in the [18F]FDG image was used for delineation of primary tumor 
VOI. In the definition of MATV, either the threshold of 40% of SUVmax or a fixed 
SUV 5.0 threshold was used, depending on which more closely matched with the 
anatomical GTV in the CT image. Posterior neck muscles were used as a reference 
tissue for tracer uptake (Komar et al. 2008). The [18F]EF5 and [18F]FDG images were 
rigidly registered using anatomical information of CT images. 

Voxel-by-voxel analysis between repeated [18F]EF5 images was performed using 
Carimas 2.9 software (www.turkupetcentre.fi/carimas). The transformation matri-
ces were applied to the [18F]EF5 images in order to define the MATV-based pri-
mary tumor VOIs in [18F]EF5 images. The VOI structure transformations were 
controlled by visual inspection of PET images and cross tabulation of uptake val-
ues within tumor VOI. The tracer uptake was measured as kBq/ml and then decay 
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corrected and converted to SUV under the assumption of water density. The mean 
and maximum intratumor uptake and the mean uptake in posterior neck muscle 
reference (SUVmuscle) were determined. The tumor-to-muscle uptake ratio 
(TMR) of 1.5 was used as a threshold for hypoxic tissue. Both absolute hypoxic 
volume (HV) and fractional hypoxic volume (FHV) were calculated, with the latter 
based on the ratio of hypoxic voxels and all voxels in tumor VOI. 

In Study IV, volumes of interest were determined on the co-registered PET/CT 
images by a qualified radiation oncologist. The primary tumors and all metastatic 
lymph nodes were drawn manually on the images from the 21st frame. The identi-
fication of the primary tumor was based on the detection of an FDG positive lesion 
in an area with a history of positive biopsy and, in the case of metastases, detection 
of an FDG positive lesion in the neck where the overlying lymph node could be 
seen on the anatomical CT. The largest metastatic lymph node when available (in 
four out of five cases) was chosen for the analysis. 

Healthy tissue surrounding a primary tumor VOI was determined using a voxel 
threshold function. First, a 3D box-shaped VOI was defined around the irregularly 
shaped tumor VOI, and the tumor voxels (according to the manually contoured 
tumor VOI) were subtracted from this box-shaped VOI, leaving behind the healthy 
tissue voxels. VOIs representing inflammatory lesions in the mandible or other 
parts of the oral cavity were also drawn, with attention paid to the written infor-
mation of all dental procedures. All the patients had at least one inflammatory le-
sion due to extraction of decayed teeth, which was feasible for further analysis of 
PET data. Finally, all the VOIs that were contoured on the PET/CT images from 
the 21st frame were rigidly registered with the corresponding PET/CT images from 
the first part of the imaging session (frames 1–20). 

5.6 Radiation absorbed dose calculations (Study I) 

The total activity in each organ was determined by multiplying the previously de-
scribed VOI concentration (kBq/ml) by that organ´s volume according to the 
OLINDA/EXM software (Vanderbilt University, Nashville, TN, USA) adult male 
phantom (Stabin et al. 2005). The percentage of activity in each source organ was 
defined. For this dataset, a monoexponential function was iteratively fit to each 
source organ TAC using a nonlinear least-squares regression algorithm (SAAM II 
v1.2 software; The SAAM Institute, Inc.). The cumulative activity of each source 
organ was determined by analytically integrating the curve-fit function from time 
equals zero to infinity after correcting the terms of activity by the isotope decay. 
The area under the curve (AUC) represented the residence time of the organ. 
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When defining the excretory clearance of the tracer, it was assumed that only neg-
ligible amounts of activity reached the small bowel. This was considered a reason-
able assumption because of the short half-life of 18F (109.8 minutes) and the im-
aging data supporting the elimination of the tracer almost solely by urinary excre-
tion. Urinary excretion was measured directly from urine samples and was as-
sumed to represent the total biological loss of 18F from the body. Then, the total 
body retention was determined as 100% minus the urinary-excreted activity. This 
total body retention curve was used to determine the total body residence time in 
the same manner as for individual source organs. 

OLINDA/EXM software was used to calculate the estimated absorbed doses for 
the individual source organs and for the whole body using the previously described 
residence time data. Since the phantom is hermaphroditic, it generates radiation 
dose estimates for testes, breasts, ovaries and uterus. 

5.7 Evaluation of the performance of dynamic features in the distinc-
tion of different tissue types (Study IV) 

Time-activity curves (TACs) were generated for every voxel of the predefined 
VOIs. A total of seven dynamic features were developed for the purpose of voxel 
classification (Table 5). The features were based on tissue-specific characteristics in 
the glucose metabolism, as well as transport due to differences in the expression of 
GLUT proteins (see chapter 2.3.1). Those differences were expected to be discerni-
ble in the analysis of dynamic uptake data from distinct tissue types. In addition, 
some features were constructed with information based on the visual inspection of 
TACs. The detailed information of dynamic features is described in the master’s 
thesis of Mueez U. Din (Din 2014). SUV and all dynamic features were calculated 
for each of the voxels from the predefined VOIs. These predefined VOIs provided 
the best available ground-truth for labelling voxels according to tissue type. 

Two classification algorithms, GMM and K-means, were utilized to evaluate per-
formance of the dynamic features and SUV in discriminating different tissue types. 
The classification and performance evaluation were carried out with the program-
ming software Matlab (Version: R2006b). There were four tissue types in the eval-
uation: primary tumor, inflammation, metastatic lymph node and healthy tissue 
surrounding the primary tumor. Of these tissue types, four binary classification 
experiments were performed discriminating 1) tumor vs. inflammatory tissue, 2) 
tumor vs. healthy tissue, 3) tumor vs. metastatic lymph node and 4) inflammatory 
tissue vs. metastatic lymph node. 
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Table 5 List of dynamic features utilized in the analyses of [18F]FDG uptake in study 
IV (Table adopted from Publication IV). 

Dyna-
mic fea-
ture 

Description Equation  

D1 Retention index Retention index = (Alate-Aearly)/Aearly 

 
D2 Early slope Early slope = [mean(A15,A16…A20)-

mean(A1,A2…A10)]/[mean(T15,T16...T20)-
mean(T1,T2…T10)] 
 

D3 Area under the TAC20-

21 
Area under the TAC20-21 = [(T21-T20)x 
(A21-A20)/2]+(T21-T20)xA20 

 
D4 Sum fluctuation 1-22 Sum fluctuation1-22 = |A2-A1|+|A3-A2|+ 

|A4-A3|….+|A22-A21| 
 

D5 Variance of local 
change 

Variance of local change = Var[(A2-A1), 
(A3-A2)…(A22-A21)] 
 

D6 Temporal variance Temporal variance = Var[A1,A2,A3…A22] 
 

D7 Sum of three slopes Sum of three slopes = Slope 1 + Slope 2 + Slope 3 
where, 
Slope 1= [mean(A15,A16…A20)-
max(A1,A2…A5)]/[mean(T15,T16…T20)-max(TA)] 
Slope 2 =(A21-A20)/(T21-T20) 
Slope 3 =(A22-A21)/(T22-T21) 
 

“A” refers to the activity concentration and “T” to the time of the PET frame. The correspond-
ing PET frame is presented with the number in the subscript. The subscript “early” refers to the 
first ten PET frames and the subscript “late” refers to the 21st PET frame 

In each binary classification, a mixture of unlabeled data from two different tissue 
types was input to a classification algorithm, which was set up to divide the data 
into two classes based on the evaluated dynamic feature or SUV. The algorithm 
produced a label for the voxel according to whether the voxel belonged to the pos-
itive class (e.g., primary tumor) or negative class (e.g., healthy tissue). These labels 
were compared to the ground-truth labels in order to determine the specificity and 
sensitivity of the dynamic features and SUV. For the GMM algorithm, receiver 
operating characteristics (ROC) analysis was performed to present the perfor-
mance of the algorithm with a combined measure of sensitivity and specificity. For 
the K-means, the specificity and sensitivity values were presented separately. As 
a final point, sensitivity and specificity of the dynamic features were compared 
with those of the static parameter SUV. 
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5.8 Statistical analysis (Study I-IV) 

In study I, the arithmetic mean of the absorbed radiation doses of individual organs 
were calculated for two institutions (TURKU and PENN). In addition, a weighted 
arithmetic mean of the results was calculated using the number of subjects at the 
institutions as weighting factors. The variability of the individual parameters is 
presented with a standard deviation (SD) and coefficient of variation (COV). A 
two-tailed T-test was used to define whether there were any statistically significant 
changes in blood chemistry values (liver and renal function tests). 

In study II, the number of experimental tumors was moderately low, and therefore 
the variables are reported as medians and interquartiles, unless otherwise stated. 
Pearson correlation coefficients were used to correlate PET tracer uptake parame-
ters with the percentage of tumor growth rate per day, as well as in the correlation 
of the tumor volume and the uptake of [18F]EF5. 

In Study III, a two-tailed paired T-test was used for comparison of intrapatient 
differences in injected doses, injected doses per weight and acquisition starting 
times between the first and second [18F]EF5 PET/CT scans. Intraclass correlation 
coefficients (ICC) were calculated for normally distributed tumor level parameters. 
For HV and FHV, which were not normally distributed, a non-parametric Spear-
man rank correlation test was used. Pearson correlation coefficients were calcu-
lated for repeated voxel-level uptake parameters. Agreement between the repeated 
scans was assessed by constructing a Bland-Altman plot for both the tumor-level 
and voxel-level parameters. In addition, upper and lower limits of agreement 
(LoA) and coefficient of repeatability (CoR) were calculated. 

In Study IV, a Wilcoxon rank sum test was used to investigate the statistical sig-
nificance of differences between the performance of dynamic features and SUV. 
The non-parametric test was chosen because of the low number of subjects. 

In all studies, P-values of less than 0.05 were considered statistically significant 
(two-tailed). For the test of normality, the Shapiro-Wilk test was used in cases of 
observations less than 50, and visual assessment was used in cases of observations 
more than 150 (voxel-level parameters in study III). The statistical analyses were 
generated using SAS software, version 9.3 or 9.4 for Windows (SAS institute, 
Cary, NC, USA). 
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6 RESULTS 

6.1 Biodistribution and radiation dosimetry of [18F]EF5 (Study I) 

The radiation absorbed dose estimates calculated by OLINDA/EXM male phan-
tom are presented in Table 6. The dose estimates were based on an assumed void-
ing interval of 4.8 hours. The critical organ was the urinary bladder (with the high-
est average dose of 0.12 ± 0.034 mSv/MBq, range 0.069–0.20 mSV/MBq), fol-
lowed by the gall bladder, liver, kidney, brain, lungs and heart wall. The mean 
organ radiation dose was not higher than 0.026 mSv/MBq in any of the organs 
except urinary bladder and gall bladder (Table 6). The highest individual organ 
radiation dose (excluding the bladder wall) in all of the patients was 0.051 
mSv/MBq. For the whole study population, the EDE was estimated to be 0.021 ± 
0.003, and the ED 0.018 ± 0.002 mSv/MBq. The comparison of the mean radiation 
dose values between the two study sites is also presented in Table 6. The only 
larger variations (1.5x) were observed among the radiation doses of urinary blad-
der and gall bladder. The apparent drug half-lives for TURKU and PENN patients 
were approximately 7.5 and 10.5 hours, respectively. These half-lives were deter-
mined using the activity in the heart as a surrogate for the blood activity, since by 
HPLC it was known that blood contained almost entirely non-metabolized drug. 

 

Figure 6 Blood SUV values calculated from gamma counts after the administration of 
[18F]EF5 (Figure adopted from Publication I). 

The mean urinary excretion of [18F]EF5 was 25% (range 12.4–50%) of injected 
activity over 320 minutes (range 233–364) post-injection. In Figure 6, the blood 
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SUV data of individual subjects reflects the rapid equilibration of [18F]EF5 over 
the whole body. The first mean blood SUV (at times < 15 minutes) was 1.63 ± 
0.31, and the overall mean of blood SUV values was 1.24 ± 0.33. 

Table 6  [18F]EF5 mean radiation-absorbed dose estimates for the adult male phan-
tom using assumption of 4.8-hour bladder voiding interval. (Table modified 
from Publication I). 

Target organ TURKU 
mean 
(mSv/MBq) 

PENN mean 
(mSv/MBq) 

Ratio 
TURKU: 
PENN 

Weighted 
mean 
(mSv/MBq) 

COV  

Urinary bladder wall 1.5E-01 1.0E-01 1.50 1.2E-01 28%  
Gall bladder wall 3.3E-02 2.2E-02 1.50 2.6E-02 36%  
Liver 2.2E-02 2.5E-02 0.88 2.4E-02 20%  
Kidneys 2.4E-02 2.3E-02 1.03 2.3E-02 17%  
Uterus 2.0E-02 1.8E-02 1.11 1.9E-02 8%  
Osteogenic cells 1.6E-02 1.7E-02 0.99 1.7E-02 3%  
Ovaries 1.6E-02 1.5E-02 1.03 1.5E-02 3%  
Lower large intestine wall 1.5E-02 1.5E-02 1.04 1.5E-02 3%  
Small intestine 1.4E-02 1.4E-02 0.99 1.4E-02 2%  
Heart wall 1.3E-02 1.6E-02 0.86 1.5E-02 14%  
Upper large intestine wall 1.3E-02 1.4E-02 0.98 1.3E-02 2%  
Pancreas 1.3E-02 1.4E-02 0.95 1.3E-02 4%  
Adrenals 1.3E-02 1.3E-02 0.95 1.3E-02 4%  
Testes 1.2E-02 1.2E-02 1.02 1.2E-02 2%  
Stomach wall 1.2E-02 1.2E-02 0.95 1.2E-02 4%  
Red marrow 1.2E-02 1.1E-02 1.07 1.1E-02 4%  
Spleen 1.1E-02 1.2E-02 0.95 1.2E-02 4%  
Muscle 1.1E-02 1.1E-02 0.96 1.1E-02 2%  
Thymus 1.1E-02 1.0E-02 0.94 1.1E-02 5%  
Thyroid 1.0E-02 1.1E-02 0.95 1.0E-02 5%  
Brain 8.9E-03 7.8E-03 1.13 8.2E-03 16%  
Breasts 8.3E-03 8.8E-03 0.94 8.6E-03 5%  
Skin 8.1E-03 8.4E-03 0.96 8.3E-03 4%  
Lungs 8.0E-03 8.7E-03 0.91 8.3E-03 8%  
Total body 1.1E-02 1.2E-02 0.98 1.1E-02 2%  
Effective dose equivalent 2.3E-02 2.0E-02 1.17 2.1E-02 12%  
Effective dose 1.9E-02 1.7E-02 1.12 1.8E-02 10%  

The data of individual sites and the pooled data are presented separately. 

6.2 Clinical safety of [18F]EF5 (Study I) 

The administration of [18F]EF5 was well tolerated in all study subjects. No clini-
cally significant adverse events were noticed during the study. The monitoring of 
vital signs (i.e., heart rate, systolic and diastolic blood pressure, respiratory rate 
and temperature) and ECG did not reveal any significant changes between the re-
sults before and after the study drug injection. The results of the biochemical tests 
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(serum creatinine, BUN, AST, ALT or total bilirubin) were not affected by the 
administration of [18F]EF5. 

6.3 Uptake of PET tracers in experimental tumors and tumor 
growth rate (Study II) 

Table 7 presents the growth rates and volumes of experimental tumors and uptake 
values of [18F]EF5 and [18F]FDG in individual scans. The median whole tumor 
uptake was higher (1.75% ID/g) for [18F]FDG than for [18F]EF5 (first and second 
scans: 1.40% ID/g and 1.50% ID/g, respectively). The intratumor [18F]EF5 uptake 
varied considerably between the first and second scans, as the uptake in the tumors 
could either increase or decrease during the tumor growth (Table 7). An example 
of PET/CT images is presented in Figure 7. 

The percentage of tumor growth rate per day and [18F]FDG uptake showed a trend 
toward a relationship (r = 0.348, p = 0.32), as did [18F]EF5 uptake in the first scan 
(r = 0.398, p = 0.25) although these relationships were not statistically significant. 
Instead, the uptake of [18F]EF5 in the latter scan showed a stronger correlation with 
the tumor growth rate (r = 0.766), and this correlation was statistically significant 
(p = 0.01) (Figure 8). In addition, the corresponding relationships between the tu-
mor growth rate and the HC 10% uptakes in tumors in these three scans were stud-
ied separately (Figure 9). The strongest, although non-significant, correlation was 
seen between the HC 10% uptake of the second [18F]EF5 scan and tumor growth 
rate per day (r = 0.503, p = 0.14). 

There was no relationship in the latter scan between the [18F]EF5 uptake and the 
tumor volume (r = -0.217, p = 0.55). However, the tumor volume seemed to be in 
relation to the [18F]EF5 uptake in the first scan, when the tumors were smaller (r = 
0.510, p = 0.13), although this correlation was not statistically significant. 
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6.4 Direct oxygen measurements of experimental tumors (Study II) 

Tumors 4 and 5 in study II were measured with the Licox system to determine the 
tissue oxygen tension (ptiO2). Both of these tumors were hypoxic, and ptiO2 values 
were 3.6 and 0.9 mmHg, respectively. An example of the ptiO2 measurement curve 
is presented in Figure 7. 

 

Figure 7 Growth curve, PET data and ptiO2 measurements from tumor no. 5 in Study 
II. (A) Growth curve of the tumor with the starting point and end point of the 
exponential growth period. (B) Axial PET/CT images of the tumor. (C) Time-
activity curves of the tracer uptake into the tumor in the [18F]FDG scan and 
in the first and second [18F]EF5 scans. (D) Measurements of the partial pres-
sure of oxygen in the tumor (Figure adopted from Publication II). 
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Figure 8 Whole tumor uptake values compared to the tumor growth rate. The black 
line indicates the linear relationship between tumor growth rate and the 
tracer uptake in the [18F]FDG-scans (A) and in the first (B) and second (C) 
[18F]EF5 scans. UT-SCC8 (filled triangle), UT-SCC34 (filled diamond), UT-
SCC74A (filled circle), and UT-SCC70 (filled square) (Figure adopted from 
Publication II). 

r  = 0.348 
p = 0.32

r  = 0.398 
p = 0.25

r  = 0.766 
p = 0.01
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Figure 9 HC 10% uptake values compared to the tumor growth rate. The black line 
indicates the linear relationship between tumor growth rate and the tracer 
uptake in the [18F]FDG-scans (A) and in the first (B) and second (C) 
[18F]EF5 scans. UT-SCC8 (filled triangle), UT-SCC34 (filled diamond), UT-
SCC74A (filled circle), and UT-SCC70 (filled square) (Figure adopted from 
Publication II). 

r  = 0.022
p = 0.95

r  = 0.053 
p = 0.89 

r  = 0.503
p = 0.14 
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6.5 Repeatability of intratumor uptake in paired [18F]EF5 PET/CT 
scans (Study III) 

Patients with locally advanced pharyngeal cancer participated in study III. The av-
erage (±SD) tumor volume in the CT image was 41.4 ± 26.9 cm3 (range 8.9 – 94 
cm3), and the corresponding MATV in [18F]FDG PET image was 39.0 ± 26.7 cm3 
(range 7.2 – 100 cm3). The mean (±SD) whole tumor uptake (SUVmean) of 
[18F]EF5 among all patients was at the same level in the first scan (1.49 ± 0.16) 
and in the second scan (1.54 ± 0.21). Correspondingly, the SUVmax values in the 
first and second scans were 2.12 ± 0.34 and 2.09 ± 0.35, respectively (Table 8). 
There was high correlation and high agreement between these parameters within 
individual patients. The ICCs for SUVmean and SUVmax were 0.81 (p < 0.001) 
and 0.85 (p < 0.001), respectively. The Bland-Altman plots of these parameters are 
presented in Figure 10. The mean (±SD) difference and relative CoR for SUVmean 
were 0.05 ± 0.11 and 15%, and the corresponding parameters for SUVmax were
-0.02 ± 0.20 and 17%, respectively. Examples of paired [ F]EF5 PET/CT images 18

are presented in Figure 11. 
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The radioactivity measurements of background tissues, which were performed for 
reference, provided highly stable results. The activity in venous blood samples 
measured as SUV was observed to have a high correlation and agreement between 
the paired scans, since the ICC was 0.94 (p < 0.001) and relative CoR was 10%. 
Similarly, the SUVmuscle values were highly repeatable, as the ICC was 0.84 (p 
< 0.001) and the mean (±SD) difference was 0.15 ± 0.06 with the upper and lower 
LoA of 0.26 and 0.04, respectively, and the relative CoR was 10%. 

 

Figure 10 Bland-Altman plots of SUVmean (a), SUVmax (b) and TMR (c) of repeated 
[18F]EF5 PET/CT scans. From top to bottom, the three solid line represent 
the upper LoA, mean difference and the lower LoA, respectively (Figure 
adopted from Publication III). 

The highest repeatability for tumor level uptake parameters was observed within 
TMR. The ICC for TMR was 0.87 (p < 0.0001), and the mean difference was 0.02 
± 0.07, with an upper and lower LoA of 0.17 and -0.12, respectively (Figure 10). 
The relative Cor for TMR was 10%. Both HV and FHV seemed to have a high 
correlation between the paired scans. The Spearman correlation coefficients for 
these parameters were r= 0.93 (p < 0.0001) and r= 0.94 (p < 0.0001), respectively. 

The voxelwise scatterplots of TMR of repeated scans for individual patients are 
presented in Figure 12. The mean of the Pearson correlation coefficients of indi-
vidual patients was 0.65 (range 0.48–0.87). The agreement parameters of voxel-
by-voxel analysis between paired scans are presented in Table 9. The mean calcu-
lated from mean differences of voxel-level TMR of individual patients was 0.02 ± 
0.07. For the pooled dataset, the mean difference of voxelwise TMR was 0.03 ± 
0.20 (Figure 13), and the absolute CoR and relative CoR were 0.39 and 28%, re-
spectively. 
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Figure 11 PET/CT and MR images of patients presenting with nasopharyngeal cancer 
(No. 6; upper row) and hypopharyngeal cancer (No. 7; lower row). From left 
to right, corresponding axial slices from diagnostic [18F]FDG, the first and 
the second [18F]EF5 PET/CT; and fat-suppressed T2-weighted MR images 
are shown. The red line denotes the metabolically active tumor volume delin-
eation using SUV 5.0 as a threshold in the [18F]FDG PET image. The black 
line indicates hypoxic subvolume delineation using a tumor-to-muscle uptake 
ratio of 1.5 as a threshold in the [18F]EF5 PET image. The intrapatient voxel-
by-voxel analysis showed a high correlation and agreement between the 
paired [18F]EF5 PET/CT images for patient No. 6, while those for patient No. 
7 were among the lowest of 10 patients (Figure adopted from Publication III). 

There were no statistically significant differences between injected doses, injected 
doses per weight and scanning start times of individual patients within repeated 
[18F]EF5 PET/CT scans (for all comparisons p > 0.36). 
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Figure 12 Scatterplots of voxelwise tumor-to-muscle uptake ratios (TMR). The X-axis 
represents the first [18F]EF5 PET/CT scan and the Y-axis represents the sec-
ond. Solid lines indicate the cutoff level for hypoxia (TMR 1.5) (Figure 
adopted from Publication III). 
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Table 9 Results of voxel-level agreement analysis between tumor-to-muscle uptake 
ratios of repeated [18F]EF5 PET/CT scans (Table adopted from Publication 
III). 

Patient 
no. 

Number of 
voxels 

Mean ± SD difference 
 (95 % CI) 

Upper 
LoA 

Lower 
LoA 

1 165  0.05 ± 0.16 ( 0.02 —  0.07) 0.36 -0.26 
2 757  0.00 ± 0.12 (-0.01 —  0.01) 0.23 -0.23 
3 1159 -0.02 ± 0.13 (-0.02 — -0.01) 0.23 -0.26 
4 470 -0.03 ± 0.12 (-0.04  — -0.02) 0.21 -0.27 
5 476 -0.07 ± 0.21 (-0.09 — -0.05) 0.34 -0.48 
6 2306  0.02 ± 0.20 ( 0.01 —  0.02) 0.40 -0.37 
7 1233  0.03 ± 0.28 ( 0.02 —  0.05) 0.59 -0.52 
8 1155  0.18 ± 0.16 ( 0.17 —  0.19) 0.48 -0.13 
9 860  0.03 ± 0.18 ( 0.02 —  0.04) 0.39 -0.33 
10 394 -0.02 ± 0.12 (-0.03 —  0.00) 0.22 -0.26 

Pooled 
dataset 

8975 0.03 ± 0.20 ( 0.02 —  0.03) 0.41 -0.36 

 

 

Figure 13 A Bland-Altman plot of voxelwise tumor-to-muscle uptake ratios (TMRs) from 
the pooled data of all patients. From top to bottom, the three solid lines rep-
resent the upper limit of agreement (LoA), the mean difference, and the lower 
LoA, respectively (Figure adopted from Publication III). 

6.6 Analysis of dynamic [18F]FDG images (Study IV) 

An example of PET/CT images of Study IV is presented in Figure 14. The patients 
(nos. 1–3) with tonsillar carcinoma had lower [18F]FDG uptake in their primary 
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tumors compared to the two patients (nos. 4–5) with non-tonsillar carcinoma. 
Moreover, the tracer uptake was higher in the inflammatory regions compared to 
that in the primary tumor among tonsillar carcinoma patients. In Figure 15 and 
Figure 16, a different shape of TACs of primary tumors among tonsillar carcinoma 
patients can be recognized compared to those of non-tonsillar carcinoma patients. 
When comparing the uptake values of all VOIs, it was observed that median SUV 
of the metastatic lymph nodes was lower than that of the inflammatory regions in 
the whole study population. The mean SUVs from all VOIs are presented in Table 
10. 

 

Figure 14 [18F]FDG PET/CT images of patient no. 3 in Study IV. The primary tumor is 
located in the right palatine tonsil, and the metastatic lymph node is located 
on the right side of the neck (a). The dental inflammatory lesions on both sides 
of the mandible are visible (b) (Figure adopted from Publication IV). 
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Figure 15 [18F]FDG time-activity curves of volumes of interests of patients 1–3 with 
HPV-positive tonsillar carcinoma. (black=primary tumor, orange=healthy 
tissue, blue=metastatic lymph node, red=inflammatory region left side, 
green=inflammatory region right side) (Figure adopted from Publication IV). 
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Figure 16 [18F]FDG time-activity curves of volumes of interests of patients with HPV-
positive (No 4) and HPV-negative (No 5) non-tonsillar carcinoma. 
(black=primary tumor, orange=healthy tissue, blue=metastatic lymph node, 
red=inflammatory region left side, green=inflammatory region right side) 
(Figure adopted from Publication IV). 

When discriminating the primary tumor from inflammation using the GMM algo-
rithm, dynamic feature D3 showed a slightly better accuracy compared to SUV, 
although the difference was not statistically significant (p = 0.82). Among non-
tonsillar carcinoma patients, D1 and D6 showed a better accuracy compared to 
SUV, but these differences were not significant (p = 0.33 for both two features). 
Using the K-means algorithm in the same tissue distinction procedure, D3 was not 
superior to the SUV in the whole patient population nor was D6 among the non-
tonsillar carcinoma patients (Table 11). 
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Table 10 [18F]FDG mean standardized uptake values (SUV) of volumes of interest (Ta-
ble adopted from publication IV). 

Patient 
no. 

Primary tumor Metastatic 
lymph 
node 

Inflammatory 
lesion left 

Inflammatory 
lesion right 

Healthy 
tissue 

 

1 2.08 2.95 4.33 4.29 1.51  
2 2.56 3.07 3.94 2.88 1.73  
3 2.62 2.11 3.76 4.41 1.28  
4 7.32 4.73 NA 3.82 1.98  
5 5.61 NA 2.35 NA 1.36  

Median 2.62 3.01 3.85 4.06 1.51  
 

The dynamic features were also used in discriminating the voxels of the primary 
tumors from the healthy tissue surrounding the tumor. Nevertheless, none of the 
features showed a better discriminative ability compared to SUV. In addition, the 
same result was observed in the distinction between the metastatic lymph node and 
inflammation. On the other hand, when discriminating metastatic lymph node 
voxels from those of the primary tumor, D5 with K-means showed a slightly better 
sensitivity and specificity compared to the static parameter SUV (Table 11). All of 
the results from tissue distinction calculations are presented in Table 11.
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7 DISCUSSION 

7.1 Biodistribution, dosimetry and clinical safety of [18F]EF5 (Study 
I) 

The hypoxia tracer [18F]EF5 is more lipophilic than the other nitroimidazole com-
pounds that have been used as hypoxia PET tracers (Fleming et al. 2015). It is well 
known that a lipophilic compound enters easily into background tissues and gen-
erally has a slower elimination rate in the body causing a decrease in the target-to-
background contrast in PET images. On the other hand, lipophilicity is not only a 
drawback for a hypoxia PET tracer, since uniform biodistribution is a real ad-
vantage. This is especially true in cases of poorly perfused areas of tumor tissues, 
since the uptake of an ideal hypoxia PET tracer should not be limited by perfusion. 
A lipophilic tracer, such as [18F]EF5, is also feasible for brain imaging (see chapter 
2.3.2.5). Furthermore, the high degree of biological stability is a clearly favorable 
characteristic of [18F]EF5, which compensates for the possible decrease in image 
contrast caused by lipophilicity. 

Study I was conducted at two individual centers (TURKU and PENN) where the 
radiochemical synthesis of [18F]EF5 was performed according to the local proce-
dures. In this study, oncologic patients with few or no signs of active cancer disease 
were enrolled. The major exclusion criteria were cardiac, renal, liver and hemato-
logic dysfunction. These criteria prior to enrollment were based on the aim of ob-
taining data on pharmacokinetics of the tracer comparable to those of healthy sub-
jects. At TURKU, a PET/CT scanner was used to provide anatomical reference 
with co-registered CT images. Consequently, more individual organs (pancreas, 
spleen and cortical bone) could be contoured and analyzed for the dosimetry at 
TURKU compared to PENN performing the similar protocol with a dedicated PET 
scanner. 

The individual absorbed radiation doses were consistent between the groups of 
TURKU and PENN subjects. Only the COVs of absorbed doses of the urinary 
bladder wall and gall bladder exceeded 20%. The average COV for the whole 
pooled dataset was only 8%, and the corresponding COVs separately for TURKU 
and PENN datasets were 8% and 6%, respectively. Therefore we decided to use 
pooled data for absorbed radiation dose estimates of [18F]EF5. 

The radiation dose calculations showed the EDE and ED for [18F]EF5 to be 0.021 
± 0.003 mSv/MBq and 0.018 ± 0.002 mSv/MBq, respectively. The highest mean 
absorbed radiation dose for an individual organ was that of the urinary bladder 
wall, 0.12 ± 0.034 mSv/MBq (mean±SD), with a range of 0.069–0.20 mSv/MBq. 
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This was an expected observation, since [18F]EF5 is primarily eliminated in the 
urine. No individual subject had any other organ radiation dose exceeding 0.051 
mSv/MBq, which is an important observation regarding the clinical use of 
[18F]EF5. According to the time-activity data of individual organs and blood, the 
biodistribution of [18F]EF5 seems to occur uniformly and rapidly within minutes 
of injection and remains relatively constant. 

The highest variation between the data from the two independent study sites was 
observed in the two excretory organs (urinary bladder and gall bladder), in which 
the calculated doses in TURKU patients were 50% higher than those in PENN 
patients. After a thorough evaluation of all raw data, we concluded that this might 
be due to a faster tracer clearance rate in the TURKU patients, which is most likely 
caused by the lower drug concentration in patients of the TURKU group as a con-
sequence of the high molar activity procedure for making labeled fluorine gas. The 
pharmacological half-lives of [18F]EF5 for TURKU and PENN patients were esti-
mated using data from the heart as a surrogate of blood activity; these values were 
7.5 and 10.5 hours, respectively. Clearly, these values have to be considered as 
rough estimates, since activity data were obtained from a shorter period than the 
half-life time, and therefore the pharmacological half-lives were calculated using 
extrapolation. On the other hand, there was a 100-fold difference between corre-
sponding drug concentrations of TURKU and PENN patients (~ 0.5 vs. 50 nM, 
respectively). Moreover, with non-labeled EF5, much higher drug concentrations 
(e.g. 50 µM) have been used, where a half-life of 11.7 hours has been observed 
(Koch et al. 2001). Thus, it might be tempting to conclude that the decrease in drug 
concentration causes a consistent trend of decrease in the biological half-life of 
[18F]EF5. Nevertheless, a specific study focusing on the impact of concentration 
differences would be needed to obtain more evidence of this kind of trend in the 
biodistribution and elimination of the tracer. 

Another study regarding the biodistribution and dosimetry of [18F]EF5 was con-
ducted prior to Study I at the University of Pennsylvania (Koch et al. 2010). This 
pilot study enrolled a smaller number of patients (n=10) compared to Study I 
(n=16) and utilized only a dedicated PET scanner, allowing for a smaller number 
of individual organs contoured for the dosimetry calculations. Furthermore, Study 
I was conducted in collaboration with two institutions with their own tracer pro-
ductions and different PET scanners, which can be considered advantageous re-
garding the validity and reliability of radiation absorbed dose estimates. Neverthe-
less, the pilot study reported the ED for [18F]EF5 to be 0.023±0.005 mSv/MBq, 
which can be considered comparable to the results of Study I. 

The radiation absorbed dose of [18F]EF5 in imaging use can be considered to be at 
an acceptable level compared to several other fluorine-18 labeled PET tracers. The 
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EDE for [18F]FDG has been reported to be 0.027 mSv/MBq (ICRP 1988). For 
[18F]FMISO, the EDE has been estimated to be 0.013 mSv/MBq (Graham et al. 
1997). The EDs for [18F]FETNIM and [18F]FAZA with a 4-hour voiding interval 
have been estimated to be 0.019 mSv/MBq and 0.014 mSv/MBq, respectively 
(Tolvanen et al. 2002, Savi et al. 2017), and for [18F]HX4 with a 4.8-hour voiding 
interval to be 0.042 mSv/MBq (Doss et al. 2010). All of these dosimetry trials with 
nitroimidazole-based hypoxia tracers have reported the urinary bladder wall as the 
critical organ. 

In study I, the safety of the administration of [18F]EF5 was demonstrated by mon-
itoring vital signs, ECG, biochemical tests and clinical adverse events during the 
study. Neither significant changes in these parameters nor any clinical adverse 
events were observed. Considering the extremely low drug concentration of radi-
oactive EF5 used in the study, these results are in accordance with previous 
knowledge regarding the safety of non-labeled EF5, which has been used even in 
gram doses without any observed clinically significant toxicity (Koch et al. 2001). 

7.2 Association between PET tracer uptake and experimental tumor 
growth (Study II) 

Hypoxia is thought to be associated with rapidly growing tumors, since hypoxia 
promotes tumor invasiveness, angiogenesis and cell proliferation. Nevertheless, 
this association is far from simple, since tumor volume and hypoxia do not show 
a linear relationship. Clearly, tumor growth rate and tumor volume are separate 
parameters, but the association between tumor growth rate and hypoxia is poorly 
understood and can be studied only in an experimental setting. In a previous study, 
a correlation between the tumor growth rate of pancreatic cancer xenografts and 
hypoxia detected with IHC using anti-EF5 antibodies was reported (Chang et al. 
2011). To our knowledge, there are no previously published studies evaluating the 
association between tumor growth rate and intratumoral hypoxia PET tracer uptake 
during the exponential growth period. 

In study II, we performed two [18F]EF5 PET/CT scans at different stages of the 
exponential tumor growth. This timing for imaging was designed in order to study 
the feasibility of [18F]EF5 PET/CT imaging in the detection of the progression of 
tumor hypoxia in a preclinical setting. Practical issues (e.g., unpredictable tumor 
growth rates) limited the design of the study protocol; consequently, we could not 
obtain a constant time frame between the [18F]EF5 scans. Instead, the [18F]FDG 
scan and the latter [18F]EF5 scan were performed on consecutive days. The Licox 
system was used in partial tissue oxygen pressure measurements for two tumors, 
which both were found to be hypoxic. The [18F]EF5 uptake values of the latter scan 
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of these two tumors were at a higher level than the corresponding median [18F]EF5 
uptake value in the study population (Table 7). 

The tumor growth rate and [18F]FDG uptake in the late period of exponential tumor 
growth had a weak positive correlation (r=0.348). This correlation would have 
been expected to be somewhat stronger based on our previous experience in studies 
with comparable cell lines (Minn et al. 1995). The variation between the uptake 
values of [18F]EF5 of the two scans was reasonably large, as expected. Several 
explanations for this observation may be presented. As the scans were performed 
at different stages of tumor growth, it is clearly understandable that both the per-
fusion and oxygen diffusion may be altered during the tumor growth. On the other 
hand, acute changes in hypoxia are evident, and their impact cannot be ruled out. 
Previous studies, both clinical and experimental, have been conducted to evaluate 
the repeatability of hypoxia PET tracer uptake over a shorter time period, as stated 
in chapter 2.3.2.6. So far, very little is known about changes in hypoxia tracer up-
take in a malignant tumor over a larger time scale, and even less is known about 
the potential significance of these changes in the behavior of the tumor. 

The tumor uptake in the first [18F]EF5 scan had only a weak positive correlation 
(r=0.398) with the tumor growth rate. Instead, the correlation was clear (r=0.766) 
between the tumor growth rate and the uptake of [18F]EF5 in the tumor in the latter 
scan performed during the late phase of exponential tumor growth. Also, the HC 
10% was determined for all tracer uptake parameters. The HC 10% uptake of the 
second [18F]EF5 scan was the only one pointing toward a relationship (r=0.503) 
with the tumor growth rate. Therefore, we concluded that uptakes of [18F]FDG and 
[18F]EF5 in the first scan are not dependent on the tumor growth rate. 

An interesting question is why more rapidly growing tumors showed a higher 
[18F]EF5 uptake at the late period of the exponential growth phase. Hypoxia itself 
might increase the tumor growth rate by promoting cell proliferation. On the other 
hand, rapid cell proliferation together with impaired angiogenesis may also lead to 
the development of hypoxia (Harris et al. 2002). A recent study reported an ob-
served reduction in the growth rate of oral SCC xenografts after the tumors had 
been manipulated to become less hypoxic using transcutaneous carbon dioxide 
(Takeda et al. 2014). In that study, a decrease in expression was observed among 
HIF1-α, VEGF and two matrix metalloproteinases, MMP-2 and MMP-9, as well 
as several factors representing mitochondrial apoptosis. However, the factors af-
fecting the growth of hypoxic tumors are still poorly understood. Therefore, further 
research is essential in order to be able to explain the observations of our study 
more thoroughly. 

In our study, tumor volume and [18F]EF5 uptake in the latter scan did not correlate 
with each other (r= -0.217). This is in accordance with previous reports, which 
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have found no correlation between tumor size and presence of hypoxia (Vaupel et 
al. 2007, Tochon-Danguy et al. 2002, Bentzen et al. 2002). On the other hand, we 
found a trend toward a relation between the tumor volume and [18F]EF5 uptake in 
the first scan (r=0.510, p=0.13). Nevertheless, this weak association might be a 
consequence of blurred uptake values due to PVE in the smallest tumors. Alto-
gether, when considering the results of Study II, the small and variable tumor vol-
ume in relation to scanner resolution has to be taken into account, especially when 
evaluating the findings of the first [18F]EF5 scans. PVE may cause underestimation 
of the observed tracer uptake when the tumor is of a size less than three times the 
full width at half maximum of the reconstructed image resolution (Soret et al. 
2007). Conversely, tumors were remarkably larger at the time of [18F]FDG scans 
and the latter [18F]EF5 scans, and therefore PVE was not considered to be a signif-
icant source of misleading conclusions among these observations. 

The observed relationship between [18F]EF5 uptake of the experimental tumor and 
tumor growth rate is interesting, although the number of observations in this study 
was relatively small. At the time of the latter [18F]EF5 scan, the relationship was 
even stronger for hypoxic tracer than for the metabolic tracer ([18F]FDG) which 
may be due to the timing of the latter scan when the hypoxic fraction is large. 
Nevertheless, a thorough evaluation of this association is needed using a larger 
study population to better recognize the background and significance of this ob-
servation. 

7.3 Repeatability of hypoxia imaging using [18F]EF5 PET/CT scans 
(Study III) 

Test-retest reliability is a crucial characteristic to be assessed in the evaluation of 
oncologic PET imaging with a novel tracer. Considering the clinical feasibility of 
[18F]EF5 PET/CT for guiding RT dose-escalation protocols, this is particularly im-
portant. On the other hand, cycling hypoxia may cause notable and sometimes 
rapid changes in tumor oxygenation (Dewhirst et al. 2008). Consequently, the re-
peatability of hypoxia PET imaging has been considered as a combination of the 
reproducibility of technical measurements and true changes in the measured phe-
nomenon. 

In Study III, we decided to use MATV for primary tumor delineation to facilitate 
comparison to two previous clinical hypoxia PET repeatability studies (Nehmeh et 
al. 2008, Grkovksi et al. 2016). We prefer this method compared to CT-based de-
lineation, which generally leads to a larger primary tumor volume. CT-based anal-
ysis might be more challenging, since tissues in the periphery of the tumor with 
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low [18F]FDG uptake would be expected to show less dynamic hypoxia tracer up-
take than those in the core of the tumor. Thus, the CT-based tumor delineation in 
the repeatability study might lead to a conclusion of erroneously high repeatability 
of intratumor tracer uptake (Hoeben et al. 2013b, Chirla and Marcu 2016). In this 
study, the average uptake of [18F]EF5 in primary tumors was at a level comparable 
to those reported in previous studies of patients with HNC (Komar et al. 2008, 
Komar et al. 2014). Additionally, the uptake of [18F]EF5 in the posterior neck mus-
cles and activity measurements in venous blood samples showed highly repeatable 
results in support of highly stable uptake in reference tissue and steady activity 
concentration in the blood pool. 

HV was defined using a TMR of 1.5 as a threshold representing hypoxic tissue. 
This level was derived from a previous study in which a voxelwise analysis of 
perfusion and uptake of [18F]EF5 had been performed (Komar et al. 2008). A meta-
analysis quantifying the statistical properties of hypoxic tumor subvolumes in 
HNC patients (Chirla and Marcu 2016) reported slightly larger median FHV in 
studies using [18F]FMISO and [18F]FETNIM PET/CT with MATV-based GTV de-
lineation compared to our study with a median FHV of 20.2%. Nevertheless, any 
threshold for hypoxia is an estimation affected by several factors in methodology 
and image acquisition, and therefore it is important to analyze the whole scale of 
uptake rates in a repeatability study. 

In Study III, the tumor level uptake of [18F]EF5 was observed to be highly repeat-
able in the paired scans. The intrapatient correlation and agreement of SUVmean, 
SUVmax and TMR were high and comparable to those reported in HNC and lung 
cancer using [18F]FMISO (Okamoto et al. 2013, Grkovksi et al. 2016) and 
[18F]HX4 (Zegers et al. 2015b), while a single study (Nehmeh et al. 2008) reported 
a lower linear correlation between the paired scans. In previous discussions, this 
controversy has been speculated to be due to an inconsistent uptake time within 
the repeated scans, use of 2D or 3D acquisition modes and variability in perfor-
mance of image co-registration algorithms (Grkovksi et al. 2016). Given the poorly 
known factors affecting the dynamicity of tumor hypoxia, it is evident that tech-
nical aspects and consistency of the acquisition protocol are critical to obtain 
highly reliable results. It is also notable that the uptake time, even when consistent 
within and between the subjects, might have an effect on the repeatability of the 
tracer uptake. Owing to the findings in our previous validation study (Komar et al. 
2008), we performed acquisitions only at 3 hours from injection in Study III. 

The repeatability of spatial distribution of [18F]EF5 uptake was also assessed in the 
voxel-by-voxel analysis between the paired scans. We observed a strong correla-
tion (r > 0.5) in 9 out of 10 patients when using a threshold for strong correlation 
adopted from two of the previous studies (Nehmeh et al. 2008, Zegers et al. 2015b). 
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The agreement analysis showed a slightly higher relative mean difference and rel-
ative CoR in this study compared to the studies of Zegers et al. (Zegers et al. 
2015b), and Grkovski et al. (Grkovski et al. 2016). However, the comparison of 
voxel-level results with the previous studies is more challenging than that of tu-
mor-level results due to several heterogeneities in acquisition parameters and sta-
tistical evaluation. The voxel size used is crucial for repeatability assessment, but 
this parameter was not reported by Okamoto et al. (Okamoto et al. 2013) and Ze-
gers et al. (Zegers et al. 2015b). The image resolution in our study (voxel size 3.65 
x 3.65 x 3.27 mm) was higher than those in the two studies that reported their voxel 
size (Nehmeh et al. 2008, Grkovksi et al. 2016). Furthermore, the statistical meth-
ods used in these studies differ substantially from each other. Following the prin-
ciples of repeatability assessment, we calculated both correlation and agreement 
values for all uptake parameters (Vaz et al. 2013). 

The interval between repeated scans is essential with respect to dynamic changes 
in tumor oxygenation. Based on existing knowledge on temporal variation in tu-
mor hypoxia, it is evident that a longer interval is generally associated with lower 
repeatability of hypoxia imaging. However, we did not observe any consistent 
trend for lower repeatability of our intratumor tracer uptake measurements with a 
median interval of 7 days compared to studies with an average interval of 1–3 days 
(Nehmeh et al. 2008, Okamoto et al. 2013, Zegers et al. 2015b, Grkovski et al. 
2016, Yue et al. 2012). Therefore, the differences in intervals between these trials 
seem to play only a minor role in the repeatability assessment. 

When comparing the primary tumor sites in our study to those in the previous three 
studies, the highest proportion of patients with oropharyngeal cancer is reported in 
the study of Nehmeh et al. (Nehmeh et al. 2008), followed by the present study, 
Zegers et al. (Zegers et al. 2015b) and Okamoto et al. (Okamoto et al. 2013), re-
spectively. However, a descriptive evaluation of results (correlation and agreement 
when available) in all of the above-mentioned studies does not uncover any clear 
trend of differences in repeatability attributed to tumor site. Clearly, the number of 
subjects with individual tumor sites is too small to assess statistical significance of 
differences in repeatability. Another important parameter to be considered is tumor 
size, which was not reported in the study of Okamoto et al (Okamoto et al. 2013). 
However, the mean and the range of tumor volumes in our study was comparable 
to those in the studies of Nehmeh et al. (Nehmeh et al. 2008) and Zegers et al. 
(Zegers et al. 2015b). 

A comparison between the repeatability of [18F]EF5 PET/CT imaging and that of 
[18F]FDG PET/CT imaging has to be made very cautiously. A recent meta-analysis 
involving [18F]FDG PET/CT paid special attention to the statistical analysis of re-
sults derived from original studies regarding the repeatability of [18F]FDG uptake 
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in several types of cancer (Lodge 2017). In this meta-analysis, asymmetric borders 
were defined for significant changes in repeated [18F]FDG uptake values (SU-
Vmean, SUVmax) equal to relative CoRs determined in our study for correspond-
ing values for [18F]EF5 uptake. In general, intratumor [18F]FDG uptake varies at a 
remarkably larger scale than corresponding [18F]EF5 uptake. On the other hand, 
the repeatability of [18F]FDG seem to be dependent on the level of uptake, since a 
low level of absolute uptake is associated with lower repeatability (de Langen et 
al. 2012). In Study III, with a reasonably narrow scale of intratumor [18F]EF5 up-
take rates, this kind of trend was not observed (Figure 12). Nevertheless, the test-
retest variability of tumor level [18F]EF5 uptake was observed to be lower than that 
reported for [18F]FDG uptake (de Langen et al. 2012, Lodge 2017). 

Some limitations in our study can be identified. Similar to the previous studies, the 
number of subjects was small. We found the workflow of this study to be particu-
larly challenging in practice, and we definitely understand the complexity of con-
ducting a large enrollment and multiple sequential imaging procedures in this kind 
of study protocol. Also, all of the study subjects were men. In addition, we can 
identify technical limitations in the repeatability assessment, such as the possibility 
of inaccuracies in the patient setup and co-registration of images, although optimal 
methods for immobilization and RT mask and neck support were used (Park and 
Park 2016). However, these challenges in image acquisition and processing are 
analogous to those in clinical practice. 

This study indicates that the repeatability of [18F]EF5 PET/CT in HNC is favorable 
for guiding RT dose escalation and adaptation procedures. The correlation and 
agreement among all tumor-level parameters were high between the paired 
[18F]EF5 scans, and voxelwise comparison of uptakes showed predominantly good 
correlation and agreement. Consequently, the results are comparable to those re-
ported in studies using [18F]FMISO and [18F]HX4 PET/CT. 

7.4 Performance of dynamic features of [18F]FDG uptake in the dis-
tinction of different tissue types (Study IV) 

Along with the increasing use of [18F]FDG PET/CT imaging in the management 
of HNC, it has become more evident that advanced procedures for data acquisition 
and analysis may improve the specificity of [18F]FDG uptake in the detection of 
malignant tissue. The reliable detection of different tissue types would be crucial 
both in the staging procedure of the neck lymph nodes and in the distinction be-
tween the primary tumor, peritumoral inflammation and surrounding healthy tis-
sue. In an attempt to reach this goal, a natural direction is the evaluation of the 
temporal dimension in PET imaging. DTPI (see chapter 2.3.1.4) is one of the most 
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straightforward of the protocols that have been evaluated, especially for staging 
purposes, but the currently available evidence does not support the clinical use of 
this approach (Shen et al. 2014, Carlson et al. 2013). A recent review article called 
for more quantitative approaches in the applications for [18F]FDG PET/CT imag-
ing in HNC (Manca 2016). In fact, very few studies have been performed in this 
field. Furthermore, robust imaging methods for tumor delineation are urgently 
needed, especially in the management of HPV-positive oropharyngeal cancer, 
given the possible consideration of de-intensification protocols. These facts were 
the main reasons for the implementation of Study IV. 

After the dynamic [18F]FDG PET/CT scans of the five patients with oropharyngeal 
carcinoma were performed, we constructed seven model-derived dynamic features 
(D1–D7) to be evaluated in the distinction of different tissue types. Some of these 
features were developed with the knowledge of glucose metabolism and GLUT 
protein expressions in different tissue types. Another basis for construction of 
some of the features was the visual inspection of voxel-derived TACs while paying 
attention to possible characteristics of different tissues. 

The visual inspection of TACs provided the first interesting observation in Study 
IV. The shape of the primary tumor TACs in HPV-positive tonsillar carcinoma 
patients (nos. 1–3) resembled those of inflammatory tissues. Conversely, the non-
tonsillar carcinoma patients (nos. 4–5) had steep rising TAC in primary tumor 
VOIs, which has been a frequently observed finding in several previous dynamic 
[18F]FDG PET studies in different types of cancers (Sakamoto et al. 1997, Gupta 
et al. 1998, Janssen et al. 2009). To our knowledge, there are no previous reports 
of atypical dynamic accumulation of [18F]FDG in tonsillar cancer compared to 
other malignancies, let alone explanations for this observation. Clearly, the small 
number of patients in this study limits any further considerations, but this observa-
tion does indicate the need for future investigation of similar patients. On the other 
hand, the lower level of [18F]FDG uptake in HPV-positive tumors in comparison 
to HPV-negative tumors is in line with several previous reports (Schouten et al. 
2015, Rasmussen et al. 2015), although this association is not consistent in the 
current literature (Huang et al. 2015). 

D1 (retention index) was observed to be feasible for the distinction between tumor 
and healthy tissue in this study population. The idea of D1 resembles that in DTPI 
protocols, although in our study the first 10 time frames (0–10 min post injection) 
were used for the first time point compared to a much later time period (45–60 
minutes post injection) used for the same purpose in several previous studies 
(Schillaci 2012, Abgral et al. 2013). Considering the entire VOIs of tumor and 
healthy tissue, there was no overlap of D1 values. On the other hand, the specificity 
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of D1 in the distinction of tumor and healthy tissue was lower in voxel-wise anal-
yses using clustering algorithms. The probable explanation for this observation is 
the fact that manual contouring of the tumor volume is usually performed by over-
segmenting the GTV in order to avoid a geographic miss in the RT plan. 

D3 (area under the TAC between the 20th and 21st PET frames or 30–70 min) 
showed a slightly better accuracy compared to SUV in the discrimination of the 
primary tumor and inflammation. D6 (temporal variance) represents the total 
change in the tracer concentration over the entire acquisition time, and this feature 
reflects how quickly the signal becomes stable. When comparing again the primary 
tumor and inflammation, the features D1 and D6 also showed slightly higher spec-
ificity and sensitivity compared to those of SUV among non-tonsillar carcinoma 
patients. D1, D3 and D6 can be considered indicators of differences in the glucose 
metabolism and transport between different tissue types, but the biological back-
ground behind these results is so far poorly understood. 

D5 (variance of local change) is a unique feature, since it is independent of the 
absolute tracer uptake rate. Instead, D5 is analogous to the ratio of rate constants 
K1 and k2 of the original Sokoloff equation describing the in-flux and out-flux of 
[18F]FDG through the cell membranes in dynamic PET studies (Minn et al. 1995b). 
In the patient population of Study IV, we observed slightly superior accuracy of 
D5 compared to SUV in the discrimination of primary tumor and metastatic lymph 
node. Nevertheless, we did not find a reasonable explanation for this result based 
on the theoretical background of the feature D5. 

The two classification algorithms GMM and K-means provided different results 
with some dynamic features when determining specificity and sensitivity in the 
distinction of tissue types. As already presented in the Master thesis of Mueez U. 
Din, the higher performance obtained with K-means might be explained by the fact 
that K-means can better classify into separate groups data that do not show normal 
distribution (Din 2014). On the other hand, the GMM algorithm was also better 
than K-means in some calculations, which indicates that neither of the algorithms 
is superior in every situation. The better performance of GMM might be explained 
by the fact that GMM utilizes the expectation maximization algorithm, which es-
timates the maximum likelihood of the data point belonging to either of the classes 
(Din 2014). 

The performance of dynamic features could be further analyzed by combining sev-
eral features for the distinction of different tissue types. When combining more 
than one of the seven features, there are up to 120 different combinations available. 
Intuitively, the theoretical background of glucose transport and metabolism in dif-
ferent tissue types might be beneficial to take into account when choosing some of 
the possible combinations of these features for further evaluation. Nevertheless, 
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we estimated that this would have been beneficial only with a larger study popu-
lation. 

Several methods have been proposed for the task of tumor delineation as well as 
distinction of inflammatory and malignant uptakes in [18F]FDG PET images 
(Shepherd et al. 2012). In a review article by Zaidi and El Naqa (2010), these 
methods have been divided into four groups: thresholding methods, variational ap-
proaches, stochastic modelling-based techniques and learning methods. The bio-
logical target volume (BTV) derived from the histopathological specimen of the 
tumor has been considered as a gold standard for the reference of these methods. 
One of the few studies using BTV reference compared different segmentation 
methods from all of the previously mentioned four groups among seven laryngeal 
cancer patients (Zaidi et al. 2012). A variant of fuzzy clustering-based segmenta-
tion, the spatial wavelet-based algorithm was observed to be the most accurate 
method compared to BTV. However, a recent study utilizing a GMM-based auto-
matic segmentation tool with pure static threshold-based signal intensity assess-
ment reported promising results in GTV delineation compared to BTV (Ligtenberg 
et al. 2017). At present, it can only be speculated, whether the accuracy of this 
method could be further improved using some kind of dynamic image acquisition 
protocol. 

We did not conduct a routine blood glucose level monitoring in Study IV, which 
could be considered a weakness of the study. The patients were instructed to fast 
for four hours before the imaging session. A retrospective review of the medical 
records of our patients did not reveal any suspicion of abnormal glucose metabo-
lism during the cancer treatment and follow-up period, let alone a history of diag-
nosed diabetes. The imaging protocol of Study IV was considerably uncomfortable 
for the patients in practice, because the patients had to be under a head and neck 
immobilization mask for a prolonged period of time. Our patients had a good per-
formance status (WHO 0–1), and we recognize that for most of the standard pa-
tients our protocol would have been too difficult, if not unbearable. For the design 
of future dynamic studies, we therefore recommend taking into account the dura-
tion of the scan and patient comfort as essential factors for practical reasons. 

The voxel-wise evaluation of a very high number of TACs provided an interesting 
platform for observation of differences in dynamic features of [18F]FDG uptake in 
different tissue types. It is important to highlight that study IV was a pilot study 
with only a small number of study subjects, and therefore the findings need to be 
considered preliminary. Nevertheless, future research activities with a focus on the 
modeling of tracer uptake may benefit from our results. 
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7.5 Future perspectives  

In recent years, the unique feasibility of hybrid PET imaging in HNC has been 
demonstrated in both the clinical setting and translational cancer research. On the 
other hand, the evolving challenges in the diagnosis and management of HNC will 
keep researchers busy developing and evaluating novel approaches in PET imag-
ing. 

Considerable efforts in hypoxia PET imaging by several groups with several trac-
ers continue and hopefully will lead to a clinical application. For the past few years, 
the evaluation of the hypoxia tracer [18F]EF5 has been in focus of our research 
group in Turku PET Centre and Turku University Hospital. The favorable imaging 
characteristics of [18F]EF5 encourage us to continue further evaluation of this 
tracer, while the other most important hypoxia PET tracers, [18F]FMISO, 
[18F]FAZA and [18F]HX4, complete the current view of advancements in clinical 
use of hypoxia PET imaging. The comparison of the uptake characteristics be-
tween these tracers will be essential for the planning of future hypoxia-related re-
search activities, and perhaps novel hypoxia PET tracers will be introduced, alt-
hough it may be challenging to prove their superiority over the existing ones. 

Recently, it has been stated that the residual hypoxic subvolume in a tumor after a 
few fractions of RT is considered to be more applicable in the targeting of dose-
escalation compared to the pretreatment hypoxic subvolume (Löck et al. 2017, 
Bollineni et al. 2014). In general, this approach could be implemented in clinical 
practice as a part of adaptive RT. Thus, a logical continuation for the clinical eval-
uation of [18F]EF5 PET/CT imaging would be a study designed to investigate the 
stability and prognostic significance of the residual hypoxia of HNC tumors during 
RT. This kind of evaluation would be essential considering the results of the cor-
responding previous study using [18F]FMISO PET/CT (Zschaeck et al. 2015), in 
which remarkable variability in the spatial distribution of the tracer was observed, 
as well as a reasonably low geographic overlap between stable hypoxic volumes 
and location of recurrences. The initial experience of the stability of [18F]EF5 up-
take is promising, and the uptake of a lipophilic tracer is assumed to be less de-
pendent on perfusion. However, detailed knowledge of spatial variations in 
[18F]EF5 tumor uptake during the course of RT is needed prior to the clinical im-
plementation of adaptive or non-adaptive DPBN. Clearly, the role of [18F]EF5 PET 
imaging should be thoroughly defined in the near future, since the era of the first 
interventional hypoxia PET-guided dose-escalation studies has already begun 
(Welz et al. 2017, Vera et al. 2017). 

In addition to RT planning, hypoxia PET imaging is thought to be feasible for the 
selection of patients for other hypoxia-targeted treatment interventions. However, 
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there will probably not be only one optimal hypoxia PET tracer that could be used 
in all clinical scenarios (Carlin and Humm 2012). Consequently, it will be im-
portant to perform studies, in which the ability of hypoxia PET imaging with a 
particular tracer would be used to select patients for a specific hypoxia-related 
treatment intervention (Fleming et al. 2015). Until now, [18F]EF5 PET imaging has 
been evaluated only in one preclinical study for this approach (Chitneni et al. 
2013). 

Tumor hypoxia is undeniably a central part of the biology of HNC. The evidence 
of the significance of hypoxia for radioresistance and for the development of more 
aggressive tumor phenotype leading also to a lower survival rate is solid and ex-
ceedingly homogenous (Vaupel and Mayer 2007b, Stadler et al. 1999, Nordsmark 
et al. 2005). Nonetheless, the nature and diversity of tumor hypoxia remain chal-
lenging to understand. In particular, the results of attempts to overcome hypoxia 
in oncologic treatment have been modest (Baumann et al. 2016). This has been 
explained by the lack of feasible methods with potential for selection of patients 
with significant tumor hypoxia in clinical trials (Walsh et al. 2014). However, it is 
evident that hypoxia is not equally important in all patients even when present to 
the same extent. As an example, in HPV-positive oropharyngeal cancer, hypoxia 
does not seem to play as crucial role in treatment resistance compared to an HPV-
negative tumor. Consequently, the concept of a “hypoxic driver phenotype” has 
been proposed, making it possible to specify the characteristics that are typical for 
those tumors in which hypoxia is a primary biological driver of tumor behavior 
(Dhani et al 2015). 

Recent advances in genomics and bioinformatics have been considered to be the 
next revolution in personalized medicine. These advancements can also be ex-
pected to open several new doors for the study of tumor hypoxia (Curtis et al. 2016, 
Tawk et al. 2016). The digitalization of healthcare is another megatrend in clinical 
medicine that is expected to be revolutionary. One example of this is the utilization 
of big data, which provides the possibility to govern a huge amount of structured 
medical records combining biologic and epidemiologic information. This makes it 
possible to perform large-scale analyses and achieve complementary knowledge 
and experience in addition to those derived from randomized controlled trials 
(McNutt et al. 2016). Targeting tumor hypoxia in cancer treatment is a representa-
tive example of a procedure that would be expected to benefit greatly from big 
data, since etiologic, genomic and host-tumor interactions are thought to play an 
important role in the behavior of hypoxic tumors (Dhani et al. 2015). In the era of 
genomics, the role of PET imaging in the detection of tumor hypoxia needs to be 
clarified in the upcoming clinical trials involving the selection of patients for novel 
hypoxia-targeted therapies. For the present, PET imaging seems to remain a pre-
dominant method in this field due to its obvious benefits, such as easy repeatability 
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and the feasibility of whole tumor and whole body imaging (Hammond et al. 2014, 
Fleming et al. 2015, Peeters et al. 2015b). 

The use of [18F]FDG PET/CT has been established in the management of HNC, 
although there are still challenges to overcome, especially in the RT application. 
Dynamic [18F]FDG PET may offer novel potential for target delineation, while 
more than a few attempts to use static imaging data have led only to modest results 
in studies using BTV as reference (Manca et al. 2016). On the other hand, several 
other approaches might be advantageous, such as the use of modern learning algo-
rithms that might also show favorable performance in static images in the absence 
of true quantitative tracer uptake data. In recent years, the rapid development of 
automatic segmentation tools for [18F]FDG PET images has led to several novel 
applications (Berthon et al. 2017), but very few of these have been evaluated with 
BTV reference. An ideal and consistent protocol for tumor segmentation would be 
beneficial not only for RT dose planning but also for several additional applica-
tions in the field of radiomics (Beichel et al. 2017). 

This thesis has focused especially on PET/CT imaging of HNC in patients enrolled 
for RT. Meanwhile, the advent of PET/MR imaging has been proposed as partic-
ularly attractive in HNC. Indeed, MRI offers a number of benefits, such as several 
functional techniques and better motion correction compared to CT (Queiroz and 
Huellner 2015). The challenges in attenuation correction currently remain a subject 
of intense research in the utilization of PET/MRI, especially in the head and neck 
and brain regions. These problems in measurements of MRI-based attenuation 
maps render precise quantitation of PET tracer uptake less reliable than was ini-
tially expected. Hopefully, an appropriate solution for translating MRI acquisition 
to PET attenuation without loss of true quantitative PET data will be available in 
the near future (Mehranian et al. 2016). 

In summary, there is an immense potential of PET imaging in the research and 
management of HNC for both curative and palliative approaches. Virtually an un-
limited number of functional processes in HNC are potentially feasible for imag-
ing. On the other hand, the limitations are mainly governed by the low spatial res-
olution, a fact that belongs to the nature of PET imaging. Overall, the current trends 
of clinical medicine and translational cancer research are highly promising for ac-
tive utilization of hybrid PET imaging technology in HNC in the future. 
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8 CONCLUSIONS 

This work focused on selected fields of methodology of PET/CT imaging in HNC. 
The evaluation of a novel hypoxia tracer [18F]EF5 was the major effort. Moreover, 
advanced analyzing methods for dynamic [18F]FDG images were assessed. 

The specific conclusions of this work are: 

1 Hypoxia PET tracer [18F]EF5 is safe for human use, and its biodistribution and 
dosimetric profile in the human body are clinically acceptable. No unacceptable 
single organ radiation exposures or clinically significant adverse events were ob-
served in our study. 

2 The [18F]EF5 uptake in the late phase of the exponential growth period was ob-
served to be in association with the tumor growth rate in mice bearing HNC xen-
ografts. However, the biological background of this observation remains obscure, 
since hypoxia may drive tumor progression but rapid cell proliferation may be the 
reason for the development of tumor hypoxia. 

3 The intratumor uptake of [18F]EF5 shows high repeatability between the paired 
scans performed for HNC patients within a median time interval of seven days. 
This observation encourages to continue the further evaluation of [18F]EF5 
PET/CT as a tool for hypoxia-related treatment interventions. 

4 Some dynamic features of tracer uptake in the [18F]FDG PET/CT image might 
provide additional information for the discrimination of tumor, inflammatory and 
healthy tissues in oropharyngeal cancer patients. Although the conducted small 
pilot study did not indicate any statistically significant improvement in the perfor-
mance of dynamic features over SUV, we encourage future researchers to further 
evaluate the idea of advanced quantitative analysis and acquisition of dynamic data 
in [18F]FDG PET/CT imaging of HNC patients. 
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