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Abstract

The main goal of this thesis work has been to develop tools to recover
hidden structures, latent variables, or latent subspaces for multivari-
ate and dependent time series data. The secondary goal has been
to write computationally efficient algorithms for the methods to an
R-package.

In Blind Source Separation (BSS) the goal is to find uncorrelated
latent sources by transforming the observed data in an appropriate
way. In Independent Component Analysis (ICA) the latent sources
are assumed to be independent. The well-known ICA methods FOBI
and JADE are generalized to work with multivariate time series,
where the latent components exhibit stochastic volatility. In such
time series the volatility cannot be regarded as a constant in time, as
often there are periods of high and periods of low volatility. The new
methods are called gFOBI and gJADE. Also SOBI, a classic method
which works well once the volatility is assumed to be constant, is
given a variant called vSOBI, that also works with time series with
stochastic volatility.

In dimension reduction the idea is to transform the data into
a new coordinate system, where the components are uncorrelated
or even independent, and then keep only some of the transformed
variables in such way that we do not lose too much of the important
information of the data. The aforementioned BSS methods can be
used in unsupervised dimension reduction; all the variables or time
series have the same role.

In supervised dimension reduction the relationship between a re-
sponse and predictor variables needs to be considered as well. Well-
known supervised dimension reduction methods for independent and
identically distributed data, SIR and SAVE, are generalized to work
for time series data. The methods TSIR and TSAVE are introduced
and shown to work well for time series, as they also use the infor-
mation on the past values of the predictor time series. Also TSSH,
a hybrid version of TSIR and TSAVE, is introduced.

All the methods that have been developed in this thesis have
also been implemented in R package tsBSS.
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Tiivistelmä

Tämän väitöskirjatyön tavoitteena on ollut kehittää teoreettisia työ-
kaluja moniulotteisten aikasarjojen piilevien rakenteiden ja kiinnos-
tavien latenttien aikasarjojen etsimiseen ja niiden määrän supis-
tamiseen. Tavoite on myös ollut kehittää tätä tarkoitusta varten
tehokkaita laskenta-algoritmeja ja koota niiden pohjalta käytännön
tarpeita varten R-ohjelmistopaketti.

Sokeassa signaalien erottelussa riippumattomien moniulotteisten
havaintojen tapauksessa tavoitteena on löytää korreloimattomia la-
tentteja muuttujia siirtämällä alkuperäiset havainnot uuteen koordi-
naatistoon. Riippumattomien komponenttien analyysissä oletetaan,
että näin saatavat uudet muuttujat ovat riippumattomia. Tässä
työssä perinteiset riippumattomien komponenttien analyysin mene-
telmät FOBI ja JADE yleistetään toimimaan myös moniulotteisten
aikasarjojen, s.o. riippuvien moniulotteisten havaintojen, tapauk-
sessa. Nämä yleistykset gFOBI ja gJADE toimivat myös silloin,
kun aikasarjoilla on stokastista volatiliteettia. Stokastisen volatili-
teetin tapauksessa esiintyy satunnaisia ajanjaksoja, jolloin havain-
tojen vaihtelu on pientä, ja ajanjaksoja, jolloin vaihtelu on suurta.
Myöskään klassinen menetelmä SOBI ei välttämättä löydä kompo-
nenttisarjoja stokastisen volatiliteetin tapauksessa ja sille kehitetään
tällaisessakin tapauksessa toimiva vaihtoehtoinen vSOBI.

Havaintoaineiston dimension supistamisessa pyritään korvaamaan
alkuperäiset muuttujat huomattavasti pienemmällä määrällä muut-
tujia, jotka pitävät sisällään kaiken tai lähes kaiken aineiston sisältä-
män informaation. Tämän voi toteuttaa esimerkiksi sokean sig-
naalien erottelun avulla hyväksymällä vain informatiivisimman muut-
tujajoukon uudessa koordinaatistossa sopivan kriteerin mielessä. Niin
sanotussa ohjatussa dimension supistamisessa käytetään ulkopuolista
muuttujaa, vastetta, ja valikoidun muuttujajoukon ajatellaan olevan
riittävä selittämään vasteen ja alkuperäisen muuttujajoukon välisen
riippuvuuden mahdollisimman tyhjentävästi. Tässä työssä perin-
teiset ohjatut menetelmät riippumattomille moniulotteisille havain-
noille, SIR ja SAVE, yleistetään aikasarjoille. Toisin kuin SIR ja
SAVE, nämä uudet aikasarjamenetelmät, TSIR ja TSAVE ja niiden
hybridimenetelmä TSSH, hyödyntävät myös havaintojen aikariip-
puvuuden luonnollisella tavalla.

R-ohjelmistopaketti tsBSS sisältää algoritmit kaikille tässä väitös-
kirjatyössä kehitetyille menetelmille.
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Abbreviations and notation

a.s. almost surely
iid independent and identically distributed
wlog without loss of generality
fx(x) density function of a random variable x
A real p× q matrix with aij as element (i, j).
A′ transpose of a matrix A
A–1 inverse of a p× p matrix A
A–1/2 symmetric inverse square root of a p× p matrix A
diag(A) diagonal matrix with same diagonal elements as A
off(A) A – diag(A)
det(A) determinant of a p× p matrix A
trace(A) trace of p× p matrix A:

∑p
i=1 aii

vec(A) operator that stacks the columns of a matrix A into
a single column

vech(A) operator that stacks column-wise the on and below dia-
gonal elements of a p× p matrix A into a single column

‖·‖ Frobenius (matrix) norm: ‖A‖=
�

∑p
i=1

∑q
j=1 a2

ij

�1/2

Ejk p× p matrix where the element (j, k) equals to 1 and
other elements equal to 0

Ip p× p identity matrix
J sign-change matrix: a diagonal matrix with diagonal

values ±1
K permutation matrix: a matrix where the rows and/or

columns of Ip are permuted

P projection matrix, for which P2 = P and P′ = P
U orthogonal matrix: invertible matrix such that U′ = U–1

Ω p× p mixing matrix
Γ unmixing (or a signal separation) matrix
x random variable or a stochastic process
µ expected value E(x)
Σ covariance Cov(x)
x(s) standardized x: Σ–1/2 �x –µ

�

O k×p set of k× p matrices with orthonormal rows
Z+ set of positive integers (excluding zero)
Rp set of real-valued vectors
Rp×q set of real-valued matrices
τ time series lag in Z+
T set of lags τ (unless specified differently)
y⊥⊥ x y is independent of x
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Introduction
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1 Background

Multivariate statistics deals with datasets with large number of vari-
ables that depend on each other. There are many different kind
of techniques to extract meaningful information from such large
datasets, such as clustering or classification of observations (see for
example Rencher and Christensen, 2012). A popular way to handle
such data is to create new uncorrelated or even independent vari-
ables based on the original ones and then possibly reduce the amount
of them, without losing too much of the important information.

Principal Component Analysis (PCA) uses some orthogonal trans-
formation to create a set of uncorrelated variables from the original
correlated variables; the new variables are ordered according to their
variances and then usually only a few first ones would be used in
further analysis. Pearson (1901) has given early ideas for PCA and
then Hotelling (1933) has developed it further independently.

In Blind Source Separation (BSS) we assume that the observed
variables are actually a linear combination (linear mixture) of some
latent unknown sources. These sources then need to be uncovered.
There are different types of BSS methods, such as Independent Com-
ponent Analysis. For the details of the early development of BSS,
see Jutten and Taleb (2000).

In Independent Component Analysis (ICA) we transform vari-
ables into a new coordinate system by forming a set of independent
variables. The idea is to maximize some measure of non-Gaussianity
of the independent variables (sources). Such measures include skew-
ness (a measure of asymmetry) and high or low kurtosis (heavy and
light tailedness) of the density distributions of the sources. Accord-
ing to the central limit theorem, these independent variables are
more non-Gaussian than their linear combinations that we observe.

For the early development of the ICA concept, see Comon (1994).
For an early overview of ICA, see for example Hyvärinen (2001) and
references therein.

Sometimes when reducing the number of variables, there might
be one or more response variable(s), i.e. one or more variable(s)
that depend on another set of variables. In this supervised di-
mension reduction the relationship between the response and the
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explaining variable needs to be considered as well. For this there
are methods such as Sliced Inverse Regression (SIR) (Li, 1991) and
Sliced Average Variance Estimation (SAVE) (Cook, 2000). Also
well-known Canonical Correlation Analysis (CCA) (Hotelling, 1936)
can be thought as a supervised dimension reduction method. CCA
first creates linear combinations of two separate sets of variables
such that the linear combinations of the sets have a maximum cor-
relation. Then the rest of the linear combinations are created in the
same way such that they are uncorrelated to all the previous linear
combinations. In the end the number of the most correlated linear
combinations are chosen in an appropriate way.

Analysing time series data is more complex compared to inde-
pendent and identically distributed data, as also temporal depen-
dence needs to be acknowledged as well. For BSS there exists Sec-
ond Order Source Separation methods such as Second Order Blind
Identification (SOBI), which aims to transform the observations to
another coordinate system in order to find latent uncorrelated sta-
tionary source time series (Belouchrani et al., 1997). The method
jointly diagonalizes a set of lagged covariance matrices to extract
the components.

ICA methods not designed for time series have also been used
in time series context for example in financial applications, see for
example Broda and Paolella (2009) and Garćıa-Ferrer et al. (2012).
However, the methods used in these papers do not take the tempo-
ral dependence into account, so the methods do not utilize all the
information available in data.

The outline of the thesis is as follows. In Chapter 2 known
methods for independent and identically distributed (iid) methods
are reviewed. Chapter 3 first discusses existing BSS methods and
then extensions of ICA methods for time series are considered. In
the last part of the chapter popular supervised dimension reduction
methods are generalized to work with time series. In Chapter 4
the R package tsBSS is discussed with examples and finally Chap-
ter 5 summarizes what has been done and what still needs to be
investigated.
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2 Independent and
identically distributed
observations

When dealing with data with a large number of variables, the num-
ber of parameters in the models may be very large, which may cause
computational issues in their estimation. For more on this, known
as the curse of dimensionality, see for example Scott (2015).

One way to deal with this issue is to transform the data into a
new coordinate system, where the components are uncorrelated or
even independent. Then we can deal separately with each trans-
formed variable. In dimension reduction the key is to use only some
of these transformed variables in such way that we do not lose too
much of the important information of the data.

Sometimes we have datasets where one of the variables is treated
as a response, i.e. one of the variables is to be explained by other
variables. Naturally there can also be more than one response. Then
the relationship between the response(s) and the other variables
needs to be considered when reducing the dimension. Such a sce-
nario is called supervised dimension reduction. If no such variable
exists, i.e. all the variables are treated equally, then dimension re-
duction is called unsupervised.

In Sections 2.1 we first introduce notation and give some prelim-
inary results. In Section 2.2, moments and cumulants are reviewed
and in Section 2.3 we give a general multivariate model for iid data.
Then we review two widely used procedures, Principal Component
Analysis (PCA) in Section 2.4 and Independent Component Anal-
ysis (ICA) in Section 2.5. In the last part of the chapter, in Section
2.6, we discuss some supervised dimension reduction methods for
iid observations.
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2.1 Notation and preliminary results

Throughout this thesis the following notation is used. Let A be a
p× q matrix with elements aij, i = 1, . . . , p and j = 1, . . . , q, and A′

its transpose. In this thesis a p-vector x is denoted as x ∈ Rp and
p× q matrix A is denoted as A ∈ Rp×q.

A square matrix A ∈ Rp×p is symmetric if aij = aji for all i, j =
1, . . . , p. The determinant of a square matrix A is det(A), and the
trace of a square matrix A is trace(A) =

∑p
i=1 aii. In addition,

diag(A) is a diagonal matrix with the same diagonal elements than
a square matrix A and off(A) = A – diag(A). A matrix norm of

A ∈ Rp×q is ‖A‖=
�

∑p
i=1

∑q
j=1 a2

ij

�1/2
.

For a matrix A =
�

a1, . . . ,aq
�

∈ Rp×q, a vectorization operator

vec(·) from Rp×q to Rpq is defined as

vec(A)=





a1
...

aq



 .

While the vec operator stacks all the vectors to a single column, a
vech operator only stacks the elements on and below the diagonal
of a square matrix to a vector. The vech(·) operator from a matrix
A ∈ Rp×p to a vector is vech(A) ∈ Rp(p+1)/2.

Some special matrices are also used in this thesis. Ip ∈ Rp×p

is an identity matrix, J is a sign-change matrix, a diagonal matrix
with diagonal values ±1, and K is a permutation matrix, a matrix
where the rows and/or columns of Ip are permuted.

In addition, U ∈ Rp×p is an orthogonal matrix if it is invertible
and U′ = U–1. A matrix has orthonormal rows if it is the first
k≤ p rows of an orthogonal matrix. Denote O k×p for a set of k× p
matrices with orthonormal rows. P is a projection matrix if P2 = P
and P′ = P. In a matrix Ejk, j, k= 1, . . . , p, the element (j, k) equals
to 1 and other elements equal to zero.

A–1 is the inverse of a matrix A ∈ Rp×p ; AA–1 = A–1A = Ip.
A square matrix is called singular, if it does not have an inverse
matrix, i.e. if det(A)= 0. A symmetric matrix A is positive definite
if b′Ab > 0 for any non-zero vector b. B = A1/2 is the symmetric
square root of a p×p matrix A, if B is a symmetric matrix such that

B2 = A. A–1/2 is then the symmetric inverse square root of a p× p
matrix A.
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For more details on basic matrix notation and theory related to
multivariate statistics, see for example Chapter 1 in Kollo and von
Rosen (2005).

A singular value decomposition of a positive-definite matrix A ∈
Rp×p is

A= UDV′,

where U and V are orthogonal matrices and D a diagonal matrix
such that the diagonal elements are all positive. The eigenvalue-
eigendecomposition of a positive-definite matrix A ∈ Rp×p is

A= UDU′,

where U ∈ Rp×p is an orthogonal matrix and D ∈ Rp×p a diagonal
matrix such that the eigenvalues as the diagonal elements are all
positive.

For a symmetric matrix A ∈ Rp×p maximizing




diag
�

UAU′
�





2

produces an orthogonal matrix U ∈ Rp×p, where the rows are the
eigenvectors of A. Also





diag
�

UAU′
�





2 +




off
�

UAU′
�





2 = ‖A‖2 . (2.1)

Thus a maximization




diag
�

UAU′
�





2
for an orthogonal matrix U is

equivalent to minimizing




off
�

UAU′
�





2
.

2.2 Moments and cumulants

Moments and cumulants are quantitative measures that have been
long used to describe characteristics of probability distributions,
such as its location, scale, skewness and kurtosis. For an early his-
tory of moments and cumulants, see for example Hald (2000). In
this section we define moments and cumulants of a random variable
and random vector. We focus here only on continuous distributions.

Consider a continuous random variable x with a density function
fx(x). Then the j:th moment of a random variable x is defined as

µj = E
�

xj�=

∫ ∞

–∞
tjft(t)dt,

for j = 1,2, . . .. The first moment µ := E(x) is called the expected
value of a random variable. The j:th central moment is

µ
(c)
j = E

�

�

x –µ
�j�=

∫ ∞

–∞

�

t –µ
�j

ft(t)dt.
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The second central moment σ2 := Var(x) = E
�

�

x –µ
�2�

is called

the variance of a random variable.
The moment generating function of a random variable is

mx(t) := E
�

exp(tx)
�

=
∞
∑

j=0

tjE
�

xj�

j!
=
∞
∑

j=0

tjµj

j!
,

for t ∈ R and with µ0 = 1. Then the j:th moment is

µj =m(j)
x (t)|t=0,

where m(j)
x (t) is the j:th derivative of mx(t) with respect to t.

The cumulant generating function is

cx(t) := log
�

mx(t)
�

=
∞
∑

j=0

tjκj

j!
. (2.2)

Then the j:th cumulant

κj = c(j)
x (t)|t=0,

where c(j)
x (t) is the j:th derivative of cx(t) with respect to t. Based

on (2.2) we can write the cumulants in terms of the moments (and
vice versa). The first few are:

κ1 = µ1, κ2 = µ2 –µ2
1, κ3 = µ3 – 3µ1µ2 + 2µ3

1 and

κ4 = µ4 – 4µ3µ1 – 3µ2
2 + 12µ2µ

2
1 – 6µ4

1.

For a standardized variable x(s) = x–µ
σ then

κ1 = 0, κ2 = 1, κ3 = µ3 and κ4 = µ4 – 3.

Skewness measures how much a distribution deviates from a sym-
metric distribution and it can be defined as the third standardized
moment of a random variable x, i.e.

γ1 :=
µ

(c)
3

�

σ2
�3/2

=
κ3

κ
3/2
2

.

The kurtosis of the random variable x can be defined as the
fourth standardized moment

µ
(c)∗
4 :=

µ
(c)
4

�

σ2
�2 .
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Excess kurtosis measures how heavy the tails of the distribution of
a random variable x are compared to a normal distribution, and it
can be defined as

γ2 =
κ4

κ2
2

= µ(c)∗
4 – 3.

For x(s) skewness is just E
�

�

x(s)�3
�

, kurtosis E
�

�

x(s)�4
�

and the

excess kurtosis E
�

�

x(s)�4
�

–3. For more on moments and cumulants,

see for example Shynk (2012).
Moments and cumulants can be used to characterize a normal

distribution as follows.

Definition 2.1 A random variable x has a normal (Gaussian) dis-
tribution, i.e. x∼ N

�

µ,σ2�, if

fx(x)=
1

p

2πσ2
exp

 

–

�

x –µ
�2

2σ2

!

.

The normal distribution is fully specified by its mean and vari-
ance, and for the cumulants it is true that κj = 0, when j≥ 3. Thus
it can be seen that the skewness γ1 for a normal distribution is zero,
since the normal distribution is symmetric around its mean. Also
the kurtosis of a normal distribution equals to 3 and excess kurto-
sis γ2 naturally 0. Any distribution is said to be heavy-tailed if its
kurtosis is above 3 and light-tailed if its kurtosis is below 3.

Now similarly, for p-variate random vector x=
�

x1, . . . , xp
�′

, the
joint moment generating function is

mx(t) := E
�

exp
�

t′x
��

,

where t =
�

t1, . . . , tp
�′

, and the joint cumulant generating function
is

cx(t) := log
�

mx(t)
�

.

For more on joint moments and cumulants, see for example Mittel-
hammer (1996) and the references therein.

For simplicity, let us assume that E(x) = 0. The second-order
cumulants of x are then

κ
�

xi, xj
�

:= E
�

xixj
�

,
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which is just the covariance Cov
�

xi, xj
�

, i, j= 1, . . . , p. Similarly, the
third-order cumulants are

κ
�

xi, xj, xk
�

:= E
�

xixjxk
�

,

and fourth-order cumulants are

κ
�

xi, xj, xk, xl
�

:= E
�

xixjxkxl
�

– E
�

xixj
�

E
�

xkxl
�

– E
�

xixk
�

E
�

xjxl
�

– E
�

xixl
�

E
�

xjxk
�

, (2.3)

i, j, k, l = 1, . . . , p. For more details, see for example Mittelhammer
(1996); Hyvärinen (2001).

The classic measures of multivariate skewness and kurtosis by
Mardia (1970) for a standardized random vector x(s) are

E
�

�

x(s)′x∗(s)
�3
�

and E
�

�

x(s)′x(s)�4
�

,

respectively, where x(s) and x∗(s) are independent copies of x(s).

2.3 Models for iid data

Let x =
�

x1, . . . , xp
�′ ∈ Rp be a random vector. Consider a general

multivariate location-scatter model

x= µ+Ωz, (2.4)

where µ ∈ Rp is a location vector, Ω ∈ Rp×p a full-rank transforma-

tion matrix and z =
�

z1, . . . , zp
�′ ∈ Rp an unknown random vector.

In this section we discuss about the assumptions for z in different
models.

For a x ∈ Rp a mean vector µ := E (x) =
�

E
�

x1
�

, . . . , E
�

xp
��′ ∈

Rp and a covariance matrix Σ = Cov(x) = Cov
�

xi, xj
�

i,j=1,...,p. The

correlation matrix is then ρ = diag(Σ)–1/2Σ diag(Σ)–1/2.

Definition 2.2 A random vector x ∈ Rp has a multivariate normal
distribution, i.e. x∼ Np

�

µ,Σ
�

, if

fx
�

x;µ,Σ
�

=
1

(2π)p/2det (Σ)
exp

�

–
1
2

�

x –µ
�′
Σ–1 �x –µ

�

�

.

In the classic multivariate normal model z ∼ Np
�

0, Ip
�

and the

covariance matrix Σ= ΩΩ′.
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The assumptions for z can also be relaxed in many ways.

Definition 2.3 A random vector x ∈ Rp has an elliptical distribution
if

fx
�

x;µ,Σ
�

=
1

det (Σ)
exp

�

–g
�

�

x –µ
�′
Σ–1 �x –µ

�

��

,

where g(·) is a function that does not depend on µ and Σ. It is
assumed that Uz ∼ z for an orthogonal matrix U, i.e. that z has a
spherical distribution around the origin.

With g(r)= r
2+

p
2 log(2π) this reduces to the multivariate normal

distribution. Also the multivariate t distribution (see e.g. Kotz and
Nadarajah, 2004) and power-exponential distribution (Gómez et al.,
1998) are among the elliptical distributions.

Elliptical distribution can be seen as an extension of the multi-
variate normal distribution. The first two moments are

E(x)= µ and Cov(x)= cΣ,

if they exist. The constant c depends on the function g. For the
multivariate normal distribution c = 1. For more on the elliptical
distributions, see for example Fang and Zhang (1990); Kollo and
von Rosen (2005).

Definition 2.4 In Independent Component (IC) model we assume
that the components of a random vector z ∈ Rp are independent and
z is standardized such that

E(z)= 0 and

Cov(z)= Ip.

In the IC model for the random variable x then E(x) = µ and
Cov(x)= Σ= ΩΩ′. The IC model is another extension of the multi-
variate normal model. In Section 2.5 we discuss about Independent
Component Analysis (ICA) that is based on the IC model.

For a more detailed overview of the location-scatter models, see
for example Chapter 2 in Oja (2010).

Sometimes some of the latent variables are not of interest and
they can be regarded as noise. Assume that the first k variables
are important and the last p – k are not. Then we can divide z into
two subvectors, to z(1) ∈ Rk and to z(2) ∈ Rp–k. Now z(1) is the
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meaningful part and z(2) is just noise. Write Ω =
�

Ω1,Ω2
�

. Now
the model (2.4) can be written as

x= µ+Ω1z(1) +Ω2z(2). (2.5)

Often we are also interested in a variable or a vector that depends
on a p-variate x. Such dependent variable is called a response and
we denote it here by y, if it is a scalar, and y, if it is a vector. In such
case we can assume that there is an unknown relationship between
the response y and the explaining variables x, i.e.

y= f(x,ε), (2.6)

where f(·) is an unspecified function and ε is an unobserved random
variable or vector independent of x.

2.4 Principal Component Analysis

The main idea in Principal Component Analysis (PCA) is to create
uncorrelated linear combinations of the original variables and then
usually keeping only some of the uncorrelated variables for further
analysis. This is done in a way that as much variability in the data
is retained as possible, while still keeping the number of chosen
linear combinations low enough. The linear combinations are called
principal components and they are required to be uncorrelated and
ordered in a descending order of their variances (Jolliffe, 2002).

Assume a model of the form (2.4). Consider the eigenvalue-
eigendecomposition of Σ, that is,

Σ= UDU′,

where the diagonal elements of the diagonal matrix D are in descend-
ing order. Generally PCA does not have any specific distributional
assumptions, other than the existence of the second moments.

The columns of U contain the eigenvectors and the diagonal ele-
ments of D are the eigenvalues. The principal components are then

z= U′
�

x –µ
�

with Cov(z)= D. The principal components z are uncorrelated, but
not necessarily independent, unless we assume multivariate normal-
ity.
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An issue with PCA is that, if the measurement unit of a compo-
nent of x is changed (e.g. from cm to mm), the resulting principal
components will be different. Also if a variable has a larger or
smaller scale than others, it might just form a principal component
only by itself. This does not really serve the purpose of dimension
reduction. In order to avoid such situations, the variables x are of-
ten transformed first. Let diag (Σ) be a diagonal matrix, where the
diagonal elements are the variances of the components of x. Then
we can use the scaled variables x(sc) = diag (Σ)–1/2 (x–E(x)) instead
of x. Thus we perform the analysis with the correlation matrix ρ
instead of the covariance matrix Σ.

Using some appropriate rules we can assess how many of these
components are enough in further analysis. This can be done e.g.
by setting a threshold value to the proportion of the original sum
of the variances of the components, trace(Cov(x)), that these prin-
cipal components need to explain at least. If we choose to take k
components, those are the first k components, as they are ordered
according to their variances. The screeplots can be used to choose
the value of k graphically and there are tests that can be used to
determine if the last p – k values are zero, see for example Jolliffe
(2002) and the references therein.

For more on PCA, including robust versions of PCA which are
not sensitive to outliers, and the differences between PCA and an-
other dimension reduction technique factor analysis, see e.g. Jolliffe
(2002). For a recent review on robust PCA methods, see Bouwmans
and Zahzah (2014).

2.5 Independent Component Analysis

Consider an IC model of the form (2.4), i.e.

x= µ+Ωz,

where µ ∈ Rp is a location vector, Ω ∈ Rp×p a full-rank matrix
and z ∈ Rp a latent random vector with independent components.
Matrix Ω can be called here a mixing matrix.

As stated earlier, we assume that the latent sources z are stan-
dardized. We also assume that at most one of the components of z
has a Gaussian distribution.

The goal in Independent Component Analysis (ICA) is to find an
unmixing matrix Γ = Ω–1 in such way that Γ

�

x –µ
�

has independent
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components. However, z can only be found up to the signs and order
of the components. This is easy to see using a sign change matrix J
and a permutation matrix K, as

x= µ+Ωz= µ+
�

ΩK′J
�

(JKz)= µ+Ω∗z∗,

where also z∗ fulfills the assumptions for z.
There exists an orthogonal matrix U0 such that

z= U0x(s), (2.7)

where x(s) = Σ–1/2 �x –µ
�

(see for example Miettinen et al., 2015b).
This can be seen as follows. Consider a singular value decomposition
Ω= UDV′, where U and V are orthogonal matrices and D a diagonal
matrix such that the diagonal elements are all positive. Then Σ =
ΩΩ′ = UD2U′ and hence Σ–1/2 = UD–1U′. From this it follows that

x(s) = Σ–1/2 �x –µ
�

= UD–1U′UDV′z= UV′z= U′0z,

where U0 := VU′ is an orthogonal matrix. It follows from this result
that we can solve this Independent Component Analysis problem
by only finding an orthogonal matrix U0.

Therefore the general procedure that is applied in this thesis is

1. Standardize x: x(s) = Σ–1/2 �x –µ
�

.

2. Find an orthogonal matrix U that maximizes a criterion func-
tion G

�

U,x(s)�. Two main approaches here for finding the
latent components are deflation-based (one by one) and sym-
metric (simultaneously).

3. Calculate an unmixing matrix functional: Γ := UΣ–1/2.

Remark 2.1 Note that while Σ–1/2 only depends on the distribution
of x, the orthogonal matrix U, and thus also Γ , depends also on the
criterion function used. In practice also the used algorithm affects
the properties of U.

For observed iid data x1, . . . ,xn the procedure goes a follows. Let
x̄ be the sample mean vector and S the sample covariance matrix.

First calculate the standardized observations x̂(s)
i = S–1/2 �xi – x̄

�

,
i= 1, . . . , n. Then for calculating a criterion function the theoretical
quantities are replaced by their sample counterparts. The estimate
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Û is obtained by maximizing G
�

Û, x̂(s)�. The unmixing matrix es-

timate Γ̂ = ÛS–1/2. This procedure applies to all the methods pre-
sented in this thesis.

An important requirement for an unmixing matrix functional
Γ = Ω–1 is that it should be affine equivariant. This means the
following. Let x∗ = Ax+ b, where A ∈ Rp×p is a non-singular trans-
formation matrix and b ∈ Rp a location shift vector. If Γ is affine
equivariant, then Γ ∗ = ΓA–1 and thus Γ ∗x∗ = Γx, up to the location
shifts, signs and order of the components. This property ensures
that transforming the observed data does not change the indepen-
dent components in any fundamental way.

Denote by Ejk a matrix, where the element (j, k) equals to 1 and
all others equal to 0. Then for a p-variate random vector x all the
possible fourth moments are included in the matrices

Bjk(x)= E
�

xx′Ejkxx′
�

, j, k= 1, . . . , p. (2.8)

Also all the possible fourth order cumulants (2.3) for a standard-

ized random vector x(s) are obtained from the matrices

Cjk �x(s)�= Bjk �x(s)� – Ejk – Ekj – trace
�

Ejk
�

Ip, j, k= 1, . . . , p. (2.9)

Note that the only non-zero elements of Cjk (z), j, k = 1, . . . , p, are
�

Cjj (z)
�

jj (see e.g. Miettinen et al., 2015b).

Fourth Order Blind Identification (FOBI) Cardoso (1989) intro-
duces FOBI, which uses a matrix of fourth moments,

B
�

x(s)�=
p
∑

j=1

Bjj �x(s)�= E
�

x(s)x(s)′x(s)x(s)′� , (2.10)

which is a measure of multivariate kurtosis. Note that B (z) =
∑p

j=1

�

κ4,j + p+ 2
�

Ejj, where κ4,j = E
�

z4
j

�

– 3 (see e.g. Miettinen

et al., 2015b).
Then FOBI uses (2.10) and searches for an orthogonal matrix

U=
�

u1, . . . ,up
�′ ∈ Rp×p that maximizes the criterion function








diag
�

UB
�

x(s)�U′
�










2
=

p
∑

i=1

�

u′iB
�

x(s)�ui
�2

, (2.11)
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and then finds an unmixing matrix Γ = UΣ–1/2. This maximization
produces an orthogonal matrix U, where the rows are the eigenvec-
tors of B

�

x(s)� and also B(z) is diagonal. (Miettinen et al., 2015b)
The independent components are ordered according to the di-

agonal values of B(z). If the diagonal values are the same, then
the corresponding rows of Γ are not uniquely defined. The diagonal
values are the kurtosis values κ4,j, j = 1, . . . , p of the independent
components.

In order to make some inference on the efficiency of the estimate
Γ̂ in large samples and compare it to others, we need to assess its
asymptotic behaviour. As the estimate Γ̂ is affine equivariant, it is
not a restriction to use Ω = Ip for asymptotic considerations, and
thus Γ = Ip. If the fourth moments of the components of z are dis-

tinct and the eight moments bounded, then Γ̂ →P Ip (i.e. the unmix-
ing matrix estimate is consistent, since it converges in probability to
the identity matrix). The limiting distribution of

p
n vec

�

Γ̂ – Ip
�

is a
multivariate normal distribution with a zero mean vector. For more
details, see Ilmonen et al. (2010b) and Miettinen et al. (2015b).

Joint Approximate Diagonalization of Eigen-matrices (JADE) As
having distinct diagonal elements in B(z) is a restrictive assumption,
Cardoso and Souloumiac (1993) have proposed JADE, where such
an assumption is not needed. JADE uses the fourth cumulant matri-
ces (2.9) for the standardized observations. The criterion function

to be maximized here for an orthogonal matrix U=
�

u1, . . . ,up
�′

is

p
∑

j=1

p
∑

k=1








diag
�

UCjk �x(s)�U′
�










2
=

p
∑

i=1

p
∑

j=1

p
∑

k=1

�

u′iC
jk �x(s)�ui

�2
.

(2.12)

Remark 2.2 According to (2.1), the maximization of (2.11) and
(2.12) can be written as a minimization of

�

�

�

�

�

�off
�

UB
�

x(s)�U′
�

�

�

�

�

�

�

2

and

p
∑

j=1

p
∑

k=1

�

�

�

�

�

�off
�

UCjk �x(s)�U′
�

�

�

�

�

�

�

2

for an orthogonal matrix U, respectively. Then Γ = UΣ–1/2.
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JADE aims to maximize the sum of the squared diagonal ele-
ments of the matrices UCjk �x(s)�U′ to make the matrices ‘as diag-
onal as possible’. There are several methods available for the ap-
proximate joint diagonalization of symmetric matrices. Miettinen
et al. (2015b) use a fixed-point algorithm for JADE that is based
on Lagrangian multiplier technique and in their simulations a pop-
ular JADE algorithm based on Jacobi rotations by Clarkson (1988)
seems to provide the same solution.

The unmixing matrix estimate is uniquely defined (up to the

order and signs of the rows) if and only if at most one Cjj (z) = 0
(see e.g. Miettinen et al., 2015b). In other words, if at most one of

the values
�

Cjj (z)
�

jj = κ4,j = 0, j= 1, . . . , p, then JADE works. This

means that two or more components may have same kurtosis values
as long as they are not zero.

As the estimate Γ̂ is affine equivariant, we can consider the case
where Ω = Ip and thus Γ = Ip. If the eight moments of the compo-

nents of z are bounded and at most one Cjj (z) = 0, then Γ̂ →P Ip.

The limiting distribution of
p

n vec
�

Γ̂ – Ip
�

is also a multivariate
normal distribution with a zero mean vector. For more details, see
Bonhomme and Robin (2009) and Miettinen et al. (2015b).

Projection pursuit In projection pursuit we search for directions
that maximize a criterion function (see for example Huber, 1985).
FastICA, proposed by Hyvärinen (1999), is a method that uses the
projection pursuit approach for ICA and maximizes, for an orthog-
onal matrix U= (u1, . . . ,up)′, a criterion function

p
∑

i=1

�

�

�E
�

G
�

u′ix
(s)��

�

�

� , (2.13)

where the function G is chosen to be nonlinear, nonquadratic and
twice continuously differentiable, such that for a normally distributed
variable z it is required that E(G(z)) = 0. FastICA has a deflation-
based version, where the components are found one by one, and a
symmetric version, where the components are found simultaneously.

An estimate is consistent, if it converges in probability to the true
value of the parameter when the number of observations grows in-
finitely large. To ensure the consistency of the estimation procedure,
for the function G there are some conditions. Assume that wlog that
the components are ordered in such way that

�

�E
�

G
�

z1
���

� ≥ . . . ≥
�

�E
�

G
�

zp
���

�. We require that
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•
�

�

�E
�

G
�

u′iz
��

�

�

� ≤
�

�E
�

G
�

zi
���

� for all i = 1, . . . , p, when u′iej = 0

for all j= 1, . . . , i – 1 (deflation-based).

•
∑p

i=1

�

�

�E
�

G
�

u′iz
��

�

�

�≤
∑p

i=1

�

�E
�

G
�

zi
���

� (symmetric).

Note that, as x(s) = U0z, for an orthogonal matrix U0, then
E
�

G
�

u′iz
��

:= E
�

G
��

u∗i
′U0

�

z
��

= E
�

G
�

u∗i
′x(s)��, which is in the

same format than the G function in (2.13).
The function g(z) = G′(z), i.e. the derivative of G(z), is the

so-called nonlinearity function. The term ‘nonlinearity’ comes from
the fact that G is nonquadratic and therefore its derivative g is
nonlinear.

Nonlinearity functions that are used in the literature include the
following:

• With g(z) = z2 and z3 we are searching for directions, where
the skewness and kurtosis deviates from the skewness and
kurtosis of the normal distribution, respectively. These have
been proven to satisfy the consistency conditions, see Comon
(1994); Miettinen et al. (2015b); Virta et al. (2016).

• g(z) = tanh(az) (hyperbolic tangent), where a ∈ (0,∞) is a
constant. This is good in general and is preferred with heavy-
tailed sources. For the densities of the distributions, for which
tanh(az) is optimal with different values of a, see Virta and
Nordhausen (2017b).

• g(z) = z · exp
�

–az2/2
�

, where a ≈ 1 is a constant. This works
well when the sources are heavy-tailed.

The last two do not fulfill the consistency conditions, as seen in
Wei (2014).

For the limiting distribution of the general deflation-based fast-
ICA unmixing matrix estimator, see for example Ollila (2010), Nord-
hausen et al. (2011) and Miettinen et al. (2014a). See also Tichavský
et al. (2006), Dermoune and Wei (2013) and Miettinen et al. (2015b).

The deflation-based fastICA with g(z) = z3 was already sug-
gested in Hyvärinen and Oja (1997). The criterion function, for an
orthogonal matrix U= (u1, . . . ,up)′, is

p
∑

i=1

�

�

�E
�

�

u′ix
(s)�4

�

– 3
�

�

� .
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For the symmetric and deflation-based fastICA with g(z) = z3, the
limiting distribution of

p
n vec

�

Γ̂ – Ip
�

is a multivariate normal dis-
tribution with a zero mean vector. For more details, see Miettinen
et al. (2015b).

Miettinen et al. (2015b) also compare the asymptotic efficiencies
of the estimates of Γ using FOBI, JADE and both symmetric and
deflation based fastICA with g(z) = z3. If the independent com-
ponents are identically distributed, JADE and symmetric fastICA
estimates are asymptotically equivalent, while FOBI fails due to the
fact that the elements of B(z) are not distinct.

Nordhausen et al. (2011) suggest a reloaded version of the deflation-
based fastICA. It uses a known estimator, such as FOBI, as an initial
value for an unmixing matrix estimate. Then the extraction order
of the components is optimized in such way that the trace of the
limiting covariance matrix of vec(Γ̂ ) is minimized. This leads to a
faster convergence and algorithm becomes more stable in small sam-
ple sizes. Also the limiting distribution of the estimate corresponds
to the regular limiting distribution of fastICA estimate that extracts
the components in the (same) optimal order.

Miettinen et al. (2014a) have proposed a deflation-based method
with adaptive choices for nonlinearity functions. This method gen-
eralizes the reloaded version by allowing different nonlinearity func-
tions to be used for each component. This again makes the algo-
rithm to converge faster and to become more stable in very small
samples (e.g. when n= 100).

Koldovský et al. (2006) have proposed a symmetric fastICA
method, where different nonlinearities can be used for different sources.
For the limiting distribution of the estimate, see Wei (2015); Tichavský
et al. (2006).

Miettinen et al. (2017b) introduce a squared version of symmet-
ric fastICA, where a criterion function is

p
∑

i=1

�

E
�

G
�

u′ix
(s)���2 ,

in which for function G it is required that

p
∑

i=1

�

E
�

G
�

u′iz
���2 ≤

p
∑

i=1

�

E
�

G
�

zi
���2

.

Miettinen et al. (2017b) show that when they examine the perfor-
mance of the algorithms, in most of the cases the symmetric fastICA
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is more efficient (the asymptotic variance is lower) than the defla-
tion based fastICA. Also the squared symmetric version is shown to
be more efficient in cases where the separation of the components
is difficult. According to all the asymptotic and finite sample es-
timates, the overall performance of the squared symmetric version
seems to be the best, even though it does not beat others in every
case.

As the ICA methods only allow one Gaussian component, Blan-
chard et al. (2006) has suggested Non-Gaussian Component Analysis

(NGCA), which allows to find subspaces z(1) ∈ Rp and z(2) ∈ Rp–k,
where the components are non-Gaussian and Gaussian, respectively.
In such case the model can be written as (2.5), i.e. in the form of

x= µ+Ω1z(1) +Ω2z(2),

where Ω =
�

Ω1,Ω2
�

. Blanchard et al. (2006) has also provided an
algorithm for finding the subspace using fastICA algorithm. Re-
cently Nordhausen et al. (2017c) has suggested a test statistic and
bootstrap test for finding the subspace dimension in the context of
FOBI.

For robust considerations of Independent Component Analysis,
see for example Nordhausen et al. (2008); Ilmonen and Paindaveine
(2011); Hallin and Mehta (2015).

Applications ICA methods have been used for example in biomed-
ical applications. Such applications include analysis and classifica-
tion of heartbeats, functional magnetic resonance imaging (fMRI)
and brain, EEG (electroencephalogram) and MEG (Magnetoen-
cephalography) studies (see Naik and Wang (2014) and the refer-
ences therein).

Assume that we have for example four microphones in a room
and they record voices from four people. The original signals z =
�

z1, z2, z3, z4
�′

are captured partly by different microphones. What

the microphones capture is x =
�

x1, x2, x3, x4
�′

. This is known as
the ‘cocktail party problem’. ICA methods can then be use to ex-
tract the original voices from the microphone records. (Bell and
Sejnowski, 1995)

Other applications include for example financial data (e.g. cur-
rency exchange rates, stock market prices), noise reduction in images
as well as face recognition (see Hyvärinen and Oja (2000) and Stone
(2004) and the references therein).

20



Differences between ICA and PCA Independent Component Anal-
ysis and Principal Component Analysis both can be used in dimen-
sion reduction, but they have several differences.

In ICA the goal is to maximize a measure of non-Gaussianity,
such as skewness or kurtosis, by finding independent components z
that have a unit variance. Then the most interesting components
are the ones that are non-Gaussian.

In PCA the main goal is dimension reduction. First we create
new uncorrelated components z that are ordered in a descending
order of their variances. Then usually the first few components are
kept. Also PCA has no model assumptions unlike ICA.

In PCA the latent components are

z= U′
�

x –µ
�

,

while in ICA they are

z= VΣ–1/2 �x –µ
�

= VUD–1/2U′
�

x –µ
�

,

where U and V are orthogonal matrices. Thus in both we first find
uncorrelated variables. While PCA stops here, in ICA we still stan-
dardize the variables and then rotate them with an orthogonal ma-
trix VU.

For example, let z1, z2 and z3 be independent N(0, 1)-distributed
variables. Let the distribution of z4 be

1
3

N(–5, 1)+
1
3

N(0, 1)+
1
3

N(5,1).

The distribution of z4 is thus a mixture of three normal distributions
with different expected values. In order to fulfill the assumptions of
ICA models, z4 is also standardized to have a unit variance. Thus
E(z) = 0 and Cov(z) = I. The excess kurtosis κ4 ≈ –1.335 for the
component z4 and zero for others.

We simulate 1000 observations from the distribution of z. Figure
2.1 shows the ‘observed’ x = Ωz, where Ω is a random mixing ma-
trix. Figures 2.2 and 2.3 show the resulting principal components
from PCA and independent components from ICA method JADE,
respectively.

The mixed components in Figure 2.1 do not show anything spe-
cial. From Figure 2.2 we can see that PCA is not able to find any-
thing, as all the components seem to be just noise. However, JADE
finds one independent component (IC4) that clearly has three dif-
ferent groups as in z4 (Figure 2.3). JADE is able to find the groups
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Figure 2.1: Scatterplot matrix of x of a sample of size 1000

since the excess kurtosis of z4 is clearly lower compared to others.
The other components cannot be differentiated.
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Figure 2.2: Scatterplot matrix of the principal components of a sample
of size 1000

Figure 2.3: Scatterplot matrix of the independent components of a sample
of size 1000 using JADE
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2.6 Supervised dimension reduction

Now we assume that we have a response y that depends on a random
vector x ∈ Rp via some unknown function f as in (2.6). When the di-
mension p gets higher, modelling such data can become challenging
and computationally intensive. We can first reduce the dimension
of x and then model y with the these new variables. However, we
might then lose some important information on the relationship be-
tween the response and the explaining variables. The main purpose
in supervised dimension reduction is to find a k-dimensional sub-
space of x that captures as much of the relationship between y and
x as possible.

Definition 2.5 A Blind Source Separation model for the joint distri-
bution of a random vector x and a response y is

x= µ+Ωz,

where µ ∈ Rp is location vector and Ω ∈ Rp×p a mixing matrix, as
before. For the latent (unknown) random vector z ∈ Rp the assump-
tions are

E(z)= 0, Cov(z)= Ip

and
�

y,z(1)
�

⊥⊥ z(2), (2.14)

where z =
�

z′(1),z
′
(2)

�′
is divided into vectors z(1) ∈ Rk and z(2) ∈

Rp–k.

As only z(1) contributes to y and z(2) is just noise in which we
are not interested in, we can write the model in the form (2.5).

The goal here is to find an estimate for Γ , which equals to the
first k rows of Ω–1 and therefore Γ

�

x –µ
�

= z(1). To be more precise,
we estimate a k-variate subspace spanned by the rows of Γ and given
by its projection matrix PΓ . Instead of using a projection matrix in
the form

PΓ = Γ
�

Γ ′Γ
�–1
Γ ′,

we can utilize standardization. As Γ = UΣ–1/2 for an orthogonal

matrix U=
�

U′1,U′2
�′ ∈ Rp×p, we can write

PΓ = Σ
1/2
�

U′1
�

U1U′1
�–1

︸ ︷︷ ︸

=Ik

U1

�

Σ–1/2 = Σ1/2 �U′1U1
�

Σ–1/2,
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for U1 ∈ O k×p. This is a projection with respect to Mahalanobis
inner product. It is easy to see that if k = p, then PΓ = I, as no
projection would be needed. We can also write

QΓ = Σ
1/2
�

U′2
�

U2U′2
�–1

︸ ︷︷ ︸

=Ip–k

U2

�

Σ–1/2 = Σ1/2 �U′2U2
�

Σ–1/2,

for U2 ∈ O (p–k)×p. Then PΓ +QΓ = Ip. Also PΓΣQΓ = 0p, i.e. PΓ x
and QΓ x are uncorrelated.

Finally we can write

x= PΓ x
︸︷︷︸

signal

+ QΓ x
︸︷︷︸

noise

.

Let W1 ∈ Rk×k and W2 ∈ R(p–k)×(p–k) be some orthogonal ma-
trices. The assumptions for z are also true for z∗(1) = W1z(1) and

z∗(2) =W2z(2) with Ω∗1 = Ω1W′1 and Ω∗2 = Ω2W′2, as from (2.5) we
get

x= µ+Ω1z(1) +Ω2z(2) = µ+Ω1W′1W1z(1) +Ω2W′2W2z(2)

= µ+Ω∗1z∗(1) +Ω
∗
2z∗(2). (2.15)

However, as we are estimating the subspace, this is not an issue
here. In order to avoid any ambiguity in the model, we also assume
that the value of k is the smallest such value that assumptions for
z are valid.

Now the regression model (2.6) can be reduced to

y= f
�

z(1),ε
�

,

where f(·) is an unspecified function, that may be different than in
(2.6), and ε is an unknown random variable.

Sliced Inverse Regression Li (1991) has first introduced Sliced In-
verse Regression (SIR). In SIR, instead of regressing y on x, Li (1991)
uses inverse regression, where x is regressed against y.

The assumption (2.14) implies the assumptions

z(2) ⊥⊥ y|z(1) and (2.16)

E
�

z(2)|z(1)
�

= 0 (2.17)
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in the original SIR article (Li, 1991). The equation (2.17) is known
as the ‘linearity assumption’ (see e.g. Li, 1991; Cook and Weisberg,
1991). From (2.16) and (2.17) it follows that

Cov(E(z|y))=
�

Cov(E(z(1)|y)) 0
0 0

�

. (2.18)

In order to find the estimate for Γ , according (2.7) it is enough

to start from the standardized variables x(s) and search for a matrix
U=

�

u1, . . . ,uk
�′ ∈ O k×p that maximizes








diag
�

UCov
�

E
�

x(s)|y
��

U′
�










2

=
k
∑

i=1

�

u′iCov
�

E
�

x(s)|y
��

ui
�2

. (2.19)

Thus we get an estimate for Γ = UΣ–1/2. Just like ‘true’ latent com-
ponents z, the components Γ

�

x –µ
�

are standardized. Also the com-

ponents of E
�

Γ
�

x –µ
�

|y
�

are uncorrelated and ordered according to
their variances. This means that the elements of the diagonal ma-
trices Cov

�

E
�

Γ
�

x –µ
�

|y
��

are ordered according to their value. A

larger value for the variance λi = Cov
�

E
�

Γ
�

x –µ
�

|y
�

i

�

, i = 1, . . . , k,

means the stronger dependence between E
�

Γ
�

x –µ
�

|y
�

i and the re-
sponse y. Note also that if some of the λi’s are the same, then the
corresponding rows of Γ are not uniquely defined.

Also, similar to FOBI, the eigenvectors of Cov
�

E
�

x(s)|y
��

are the

rows of the matrix U ∈ O k×p and λi’s are the eigenvalues associated
to them.

In practice the response y needs to be sliced into some H dis-
joint intervals Sh, h = 1, . . . ,H in order to calculate the estimate of
Cov

�

E
�

x(s)|y
��

. The new discretized variable can be defined as a
classificatory variable

y∗ :=
H
∑

h=1

h I
�

y ∈ Sh
�

,

where I(·) is an indicator function that equals to 1 if y ∈ Sh and
zero otherwise. Thus y∗ has H unique values and the conditional
covariance matrices Cov

�

E
�

x(s)|y∗
��

are used as an approximation

for Cov
�

E
�

x(s)|y
��

. For observed data we calculate first the average
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value of x for each slice Sh and denote them by µh, h = 1, . . . ,H.
Then we calculate

dCov
�

E
�

x(s)|y∗
��

=
1
H

H
∑

h=1

µhµ
′
h

to estimate Cov
�

E
�

x(s)|y∗
��

. Li (1991) suggested that H = 10 is
an appropriate value for SIR. Also H > k + 1 is required. Often
the slices are chosen to have the same size, e.g. H quantiles of the
response y, or as close to that as possible.

For observed data the value of k needs to be estimated. First we
search for an for an orthogonal matrix estimate Û=

�

u1, . . . ,up
�′ ∈

Rp×p that maximizes








diag
�

ÛdCov
�

E
�

x(s)|y∗
��

Û′
�










2

=
p
∑

i=1

�

u′i
dCov

�

E
�

x(s)|y∗
��

ui
�2

and using then some appropriate rule to decide which of the p com-
ponents are important. If the first k components are chosen, the
estimate Γ̂ is then the first k rows of ÛS–1/2.

Li (1991) has proposed a Chi Squared test to estimate the sub-
space dimension k assuming multivariate normality for x. The es-
timated subspace dimension is k̂ if the average of the last p – k̂
eigenvalues λ̂i can be considered zero. Bura and Cook (2001a) have
proposed a weighted Chi-Squared test, which also relies on asymp-
totics and sequential testing strategies can be used in estimating the
subspace dimension k. The normality assumptions are relaxed and
there are restrictions only for the conditional covariance structure
of the predictors x. An additional assumption

Cov
�

z(2)|z(1)
�

= Ip–k (a.s.), (2.20)

which also follows from (2.14), gives a simpler Chi-squared test.
Also BIC (Bayesian Information Criterion) type criterion func-

tions have been suggested for the subspace estimation, see for ex-
ample Zhu et al. (2006) and Zhu et al. (2010).

Liquet and Saracco (2012) have suggested a practical bootstrap
based criterion to estimate the subspace dimension k as well as the
amount of slices H.
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Nordhausen et al. (2017b) have used Assumption (2.14) in asymp-
totic and bootstrap tests for the estimation of the subspace dimen-
sion k. It could be argued that the difference between the assump-
tion (2.14) and the assumptions (2.16), (2.17) and (2.20) together is
not very big. Finding a distribution that fulfills the aforementioned
three weaker assumptions but not (2.14) could be hard. However,
this needs more research. Another recent contribution to the esti-
mation of k is Luo and Li (2016).

Remark 2.3 There are things to consider when estimating the value
k̂. The slicing may affect the value of k, as seen for example in Bura
and Cook (2001b). The estimate k̂ may be different with different
values of H. Also methods may not find the whole subspace, as
seen in SIR when E(x|y∗)= 0 (see for example Cook and Weisberg
(1991)). Thus it may be that k̂< k.

Remark 2.4 Note that when slicing a variable, the matrix (2.18)
naturally changes, but it still keeps the original block-diagonal struc-
ture. Also when slicing affects the estimate of k, the sizes of the
blocks may change, but not the type of the structure.

Zhu and Ng (1995) have shown that, assuming certain condi-

tions,
p

nvech
�

dCov(x|y∗) – Cov(x|y∗)
�

has a multivariate normal
limiting distribution with zero mean vector and a bounded covari-
ance matrix. See also Li and Zhu (2007) and the references therein.

Sliced Average Variance Estimation The drawback of SIR is that
it fails to work when there are e.g. symmetric relationship between
the explaining variable and the response variable. (Cook and Weis-
berg, 1991) Consider a regression model

yi = 1+ x2
1i + x2

2i + εi, for i= 1, . . . , n,

where x1i and x2i have standardized normal distributions and ε is a
N(0,0.1)-distributed random variable.

Now E
�

x|y∗
�

= 0 and thus Cov
�

E
�

x|y∗
��

= 0 and SIR fails.
This is illustrated in Figure 2.4 using n = 5000 simulated observa-
tions based on the regression model. The scatterplot of y and x1 is
shown with 10 regions showing the slicing of y (10 quantiles). Each
region contains 500 values. In each region the estimated value of
E
�

x1|y∗
�

is quite close to zero (the large points in the figure).
Therefore SAVE (Sliced Average Variance Estimation) is sug-

gested (Cook and Weisberg, 1991; Cook, 2000). SAVE needs the
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Figure 2.4: Scatterplot of y and x1 with the slices of y as the shaded
areas. The large black point in each slice is an estimate of E

�

x1|y∗
�

in
that slice. The y-axis is in a logarithmic scale.

assumption (2.16) and the constant covariance assumption (2.20)
and then

E
�

�

Ip – Cov(z|y)
�2�=

�

E
�

�

Ik – Cov
�

z(1)|y
��2�

0
0 0

�

, (2.21)

a structure that holds also when the response y is sliced, but possibly
with different block sizes, if slicing affects the value of k as in SIR.
Again (2.14) implies both (2.16) and (2.20).

From Figure 2.4 it is rather easy to see that E
�

Ip – Cov
�

x(s)|y
��

is non-zero, as variation grows when y grows. In order to use SAVE,
we first calculate the standardized observations x(s), as before. Then

we search for a matrix U=
�

u1, . . . ,uk
�′ ∈ O k×p that maximizes








diag
�

UE
�

Ip – Cov
�

x(s)|y
��2

U′
�









2

=
k
∑

i=1

�

u′iE
�

�

Ip – Cov
�

x(s)|y
��2
�

ui

�2
.

Finally we can estimate the value of Γ = UΣ–1/2. As in SIR, the
value of k may also need to be estimated and Cov

�

x(s)|y
�

is approx-

imated using the sliced y, i.e. by Cov
�

x(s)|y∗
�

.
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Let x(s)
h1 , . . . , x(s)

hnh
be the observations in slice Sh. For observed

data we calculate

1
H

H
∑

h=1

�

Ip – dCov
�

x(s)|y∗ = h
��2

=
1
H

H
∑

h=1

�

Ip –
1

nh – 1

nh
∑

i=1

�

x(s)
hi – x̄(s)

h

��

x(s)
hi – x̄(s)

h

�′
�2

to estimate Cov
�

x(s)|y∗ = h
�

. BIC type criterions have been sug-
gested for the estimation of the subspace dimension k for SAVE, see
for example Zhu et al. (2006) and Zhu and Zhu (2007). See also Zhu
et al. (2007); Shao et al. (2007). The bootstrap based criterion by
Liquet and Saracco (2012) can be used to estimate k as well as H
also in SAVE.

In addition to being able to handle aforementioned symmetric
regressions, Cook and Critchley (2000) have shown that SAVE is
more comprehensive than SIR, as it is able to capture generally a
larger part of the central subspace. However, SAVE is less efficient
than SIR, because it needs more observations than SIR to work
equally well. Another drawback of SAVE, compared to SIR, is its
sensitivity to the choice of H, which has been discussed e.g. in Cook
(2000) and Li and Zhu (2007). Cook (2000) states that SAVE does
not work if the number of observations per slice, c, is too small, i.e.
the amount of slices H= n/c is too large.

Li and Zhu (2007) have shown that 1
H
∑H

h=1
�

Ip – dCov
�

x|y∗ = h
��2

is
p

n has a multivariate normal limiting distribution with a zero
mean vector only if the response y is discrete-valued.

For the affine equivariance of SIR and SAVE, see for example
Liski et al. (2014). As SIR and SAVE are moment based meth-
ods and not robust, outlying observations may affect the results.
Robustness issues of SIR have been studied for example in Gather
et al. (2001, 2002); Prendergast (2005, 2006, 2007); Prendergast
(2007) has also investigated SAVE.

Hybrid of SIR and SAVE Due to drawbacks of both methods, Ye
and Weiss (2003) has proposed and Zhu et al. (2007) discussed more
in detail about a hybrid version of SIR and SAVE. The idea behind
this hybrid is to combine the best parts of both methods to uncover
the structures as efficiently as possible with as little sensitivity as
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possible. The hybrid uses the convex combination

H1b = b · E
�

�

Ip – Cov
�

x(s)|y
��2
�

+ (1 – b) ·Cov
�

E
�

x(s)|y
��

,

where b ∈ [0, 1]. With b = 0 we get SIR and with b = 1 we get
SAVE. In order to estimate Γ = UΣ–1/2, we need to find a matrix

U=
�

u1, . . . ,uk
�′ ∈ O k×p that maximizes





diag
�

UH1bU′
�





2 =
k
∑

i=1

�

u′iH1bui
�2

.

In practice we can again approximate y by a sliced variable y∗.
For the discussion on choosing the value b, see Zhu et al. (2007).
They also show that if the predictors of y have both even and odd
functions, e.g. yi = z2

1i + z3
2i + εi, the hybrid version works better

than SIR and SAVE alone. This is due to SIR contributing more
to find the odd one and SAVE contributing more to find the even
one. For the estimation of the subspace dimension k in the hybrid
methods of SIR and SAVE, see for example Zhu and Zhu (2007).

Shaker and Prendergast (2011) have also suggested SAVE|SIR,
another combination of SIR and SAVE. As SIR is efficient in find-
ing linear relationships, it can be used to find efficiently a partial
dimension reduction subspace. Then SAVE would be used to find
the remainder of the subspace that SIR was unable to find.

Other methods In SIR, SAVE and their hybrid, the criterion func-
tions are of the form





diag
�

UMU′
�





2
,

where M ∈ Rp×p is a kernel matrix.
Li (1992) has introduced Principal Hessian Directions (PHD)

method for supervised dimension reduction. Here M = E
�

H
�

x(s)��,
where

H
�

x(s)�=
∂ 2

∂ x(s)∂ x(s)′E
�

y|x(s)�

is the so-called Hessian matrix.
Li and Wang (2007) have introduced Directional Regression (DR).

In DR we first assume that ỹ and x̃(s) are independent copies of y and

x(s), respectively. Write A
�

y, ỹ
�

:= E
�

�

x(s) – x̃(s)� �x(s) – x̃(s)�′ |y, ỹ
�

.

Then

M= E
�

2Ip – A
�

y, ỹ
��2

.
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PHD and DR are both inverse regression methods just like SIR
and SAVE and for them we assume also the linearity and constant
covariance assumptions (2.17) and (2.20).

There are also some non-parametric methods, such as Minimum
Variance Average Estimation (MAVE) (Xia et al., 2002) and its
variants, and semiparametric methods. For a review on these and
other methods for supervised dimension reduction, see for example
Ma and Zhu (2013).

Bura and Yang (2011) have also proposed asymptotic Chi Squared
tests for the rank of an asymptotically normal random matrix, such
as an estimate of a kernel matrix M. Such tests can be used to
determine the dimension k of the subspace in dimension reduction
methods based on the kernel matrices, including the ones described
in this section.

Example: Supervised dimension reduction with SIR and SAVE

Consider a random vector z =
�

z1, . . . , z5
�′

, with a distribution

N
�

0, I5
�

, and a random variable ε ∼ N(0, 0.1) that is independent
of z. Consider then the following two models:

M1: y= z1 – z2 + ε and

M2: y= z2
1 – z2

2 + ε.

We simulate 1000 observations from z and ε and then calculate
the values of the response y based on the aforementioned models.
We then use a random mixing matrix Ω to create the ‘observed’
predictors x= Ωz.

Figure 2.5 has the response y of the model M1 with the observed
predictors x, while Figure 2.6 has the directions found using the SIR
method with H= 10. We can see that Figure 2.5 does not give us a
clear idea of the relationship between y and x. On the other hand,
Figure 2.6 shows clearly one direction with a linear relationship with
y, while the other directions seem to be just noise.

Figure 2.7 has the observed values based on the model M2. This
figure does not seem to reveal anything interesting. Figure 2.8 then
has the directions found using the SAVE method with H = 5 and
it shows clearly two directions with quadratic relationships between
them and y. The other directions seem to be just noise.
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Figure 2.5: Scatterplot of y and x based on model M1.

Figure 2.6: Scatterplot of y and the directions uncovered using the SIR
method with H= 10 based on model M1.
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Figure 2.7: Scatterplot of y and x based on model M2.

Figure 2.8: Scatterplot of y and the directions uncovered using the SAVE
method with H= 5 based on model M2.
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3 Time series

Time series data differ greatly from iid data, as observations at
time t may depend on observations on the previous time points
t – 1, t – 2, . . .. This presents a challenge for data analysis. Methods
for iid observations can often be used in time series context, but
they do not utilize the information on temporal dependence and
therefore cannot extract all the information available. Sometimes
this can be circumvented by introducing lagged values of variables

xt as new variables x∗t =
�

x′t,x
′
t–1, . . . ,x′t–s

�′
and then use the original

iid methods for the augmented x∗t .
Principal Component Analysis has been used as a tool also in

time series applications, see for example Stock and Watson (2002).
Ku et al. (1995) have also proposed to apply PCA for augmented
variables x∗t . For an overview of PCA for time series, see Jolliffe
(2002). For some recent contributions on methods related to the
use of PCA for time series data as well as dynamic PCA and factor
models that are designed for dimension reduction for multivariate
time series, see for example Matteson and Tsay (2011); Barbarino
and Bura (2015); Forni et al. (2015); Peña and Yohai (2016).

In this chapter we first discuss some time series models in Sec-
tion 3.1. In Section 3.2 we review Second Order Source Separa-
tion (SOS) models, where the latent components are assumed to
be uncorrelated, as in PCA. In Section 3.3 we generalize Indepen-
dent Component Analysis (ICA) for time series. Both SOS and
ICA models are submodels of the Blind Source Separation (BSS)
model. The methods in Sections 3.2 and 3.3 utilize the information
on temporal dependence without needing to use augmented sets of
variables. In Section 3.4 we discuss supervised dimension reduction
for time series.

3.1 Some time series models

In this section we consider various time series models. The simplest
univariate time series is a white noise process

�

εt
�

t∈Z, which is a
series of uncorrelated random variables that have a zero mean and
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a finite variance. The process εt is called a Gaussian white noise,
if εt is a series of independent random variables with a distribution
N
�

0,σ2�, i.e. εt ∼ iid N
�

0,σ2� (Shumway and Stoffer, 2011).

Similarly, a multivariate iid time series
�

εt
�

t∈Z is a white noise

process if E
�

εt
�

= 0, Cov
�

εt
�

= Σε is a non-singular matrix and

Cov
�

εtε
′
s
�

= 0 for s 6= t. If the distribution is multivariate normal,
then εt is Gaussian white noise (Lütkepohl, 2005).

For a univariate process
�

xt
�

t∈Z the autocovariance is defined as

σx;s,t = E
��

xs –µs
� �

xt –µt
��

, (3.1)

for all time points s and t, measures a linear dependence between two
values xs and xt. The values µs and µt denote the theoretical means
of the process at time s and t, respectively. Note that the variance

of the process σ2
x;t = σx;t,t = E

�

�

xt –µt
�2�

. The autocorrelation

ρx;s,t =
σx;s,t

Ç

σ2
x;sσ

2
x;t

measures how well a value xt of a time series can be predicted by
using only the value xs.

The cross-covariance between the two time series yt and xt can
be defined as

σxy;s,t = E
��

xs –µx;s
� �

yt –µy;t
��

, (3.2)

where µx;t is the theoretical means of the process xt at time t and
µy;t the theoretical mean of the process yt at time t. The cross-
autocorrelation is

ρxy;s,t =
σxy;s,t

Ç

σ2
x;sσ

2
y;t

.

For many time series methods stationarity is an important prop-
erty. For a strict stationarity of a time series xt it is assumed that

P
�

xs1
≤ a1, . . . , xsk

≤ ak
�

= P
�

xs1+t ≤ a1, . . . , xsk+t ≤ ak
�

,

for all t ∈ Z, all k = 1, 2, . . ., and all a1, . . . , ak and s1, . . . , sk. The
joint strict stationarity of the time series xt and yt can be defined
similarly. In practice, however, weaker assumptions are generally
enough. For a weak (or second-order) stationarity it is assumed
that the time series xt has a finite variance and its
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• mean value µt does not depend on time t.

• autocovariance (3.1) (and hence the autocorrelation) depends
only on the absolute difference of the time points, i.e. τ =
|s – t|.

In this thesis we only need weak stationarity and the series is
then called briefly stationary. The aforementioned difference τ ∈ Z+
is called here lag.

Assume now a stationary time series xt that has a mean value
µ. Then (3.1) simplifies to

στ = E
��

xt –µ
� �

xt+τ –µ
��

.

Time series xt and yt are jointly stationary if they both are station-
ary and the cross-autocovariance (3.2) does not depend on time,
i.e.

σxy;τ = E
��

xt –µx
� �

yt+τ –µy
��

. (3.3)

For an overview on characteristics of time series, see for example
Shumway and Stoffer (2011).

Autoregressive Moving Average models

Box and Jenkins (1970) introduce the AutoRegressive Moving Av-
erage (ARMA) process for time series. An ARMA(p,q) process is
defined as

xt =
p
∑

i=1

φixt–i + εt +
q
∑

j=1

θjεt–j, (3.4)

where the coefficients φi, i= 1, . . . , p are autoregressive coefficients,
the coefficients θj, j = 1, . . . , q, moving average coefficients and εt
an unobserved Gaussian white noise process with a variance σ2

(Shumway and Stoffer, 2011). To simplify notation, we assume here
wlog that the mean value of the process µ = 0. If q = 0, then (3.4)
is called an AR(p) process and if p= 0, then it is an MA(q) process.

We also assume that the ARMA processes are causal and invert-
ible. An ARMA process is causal if it can be written as a linear
MA(∞) process

xt =
∞
∑

j=0

ψjεt–j, t= 0,±1,±2, . . . ,
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where
∑∞

j=0 |ψj| <∞ and ψ0 is set to 1, and invertible if it can
be written as

εt =
∞
∑

j=0

πjxt–j, t= 0,±1,±2, . . . ,

where
∑∞

j=0 |πj| <∞ and π0 is set to 1. Causality ensures that
the process does not depend on its future values and invertibility
ensures that the model is uniquely defined.

For an MA(∞) process here Var(xt) = σ2∑∞
j=0ψ

2
j for all t.

Also the autocovariance for a lag τ> 0 is

στ = E
�

xtxt+τ
�

= σ2
∞
∑

j=0

ψjψj+τ.

This process is stationary in the sense that the mean value does not
depend on the time point and the autocovariance only depends on
the time difference.

ARMA model parameters can be estimated for example using
a maximum likelihood method, where the likelihood can be writ-
ten, using a conditional distribution of xt given its past values, as
∏T

t=1 f
�

xt|xt–1, . . . , x1
�

. For more on ARMA-processes, including
different estimation methods of the model parameters, see for ex-
ample Shumway and Stoffer (2011).

For a p-variate time series
�

xt
�

t∈Z the VARMA(p, q) (Vector
ARMA) process is

xt =
p
∑

i=1

Φixt–i + εt +
q
∑

j=1

Θjεt–j, t= 0,±1,±2, . . . ,

where εt ∈ Rp is a white noise process with a covariance matrix Σ,
Φi ∈ Rp×p is a matrix of VAR coefficients and Θj ∈ Rp×p is a matrix

of vector MA coefficients. We assume here wlog that µ= E
�

xt
�

= 0.
Similar to the univariate case, VARMA process is causal if it can

be written as a vector MA(∞) process

xt =
∞
∑

j=0

Ψ jεt–j, t= 0,±1,±2, . . . ,

where
∑∞

j=0
∑p

k=1

∑p
l=1

�

�

�

�

Ψ j
�

kl

�

�

� < ∞ and Ψ j ∈ Rp×p is a coeffi-

cient matrix. Invertibility is also analogous to the univariate case
(Shumway and Stoffer, 2011).
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For a vector MA(∞) process Var
�

xt
�

=
∑∞

j=0Ψ jΣΨ
′
j for all t.

Also the autocovariance for a lag τ> 0 is

Στ = E
�

xtxt+τ
�

=
∞
∑

j=0

Ψ jΣΨ
′
j+τ.

This process is again stationary in the sense that the mean value
does not change over time and the autocovariances of the process do
not depend on the time t, but only on the absolute time difference
τ = |s – t|. The maximum likelihood estimation can be used for
estimating the VARMA model parameters. For more on the multi-
variate ARMA models, including the parameter estimation, see for
example Lütkepohl (2005).

Assume that we have two zero mean ARMA(1,1) processes. If we
estimate their parameters separately, four AR and MA coefficients
need to be estimated; for both ARMA processes parameters φ1 and
θ1. If we use a bivariate VARMA(1,1) model, eight VAR and vector
MA coefficients need to be estimated: 2× 2-parameter matrices Φ1
and Θ1.

With p zero mean ARMA(1,1) processes we need to estimate 2p
AR and MA coefficients, and with a p-variate VARMA(1,1) process
we need to estimate 2p2 VAR and vector MA coefficients. It is
easy to see that when p gets larger, VARMA modelling becomes
harder. Hence if the p-variate process can be transformed into p
uncorrelated univariate processes, much less parameters would need
to be estimated.

Stochastic volatility models

In stochastic volatility processes the variance of the process is a
random process itself. For such models the variance, also called
volatility, has its own process and own parameters related to it. Such
processes are used widely in finance, where often there are periods of
low volatility followed by the periods of high volatility. For example,
in Lütkepohl (2005) an example of the monthly returns of German
Stock Index (DAX) between 1965 and 1995 is shown to have no
significant linear autocorrelation. However, some autocorrelations
of the squared process is shown to be significant. This indicates
that an ARMA process is not enough to capture the autocorrelation
structure of the returns, as the autocorrelation is non-linear.

In stochastic volatility process the main interest is usually the
volatility process and the actual value of the time series is of less
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interest. For time series with stochastic volatility, some of the most
popular models for such time series are ARCH, GARCH and SV
models. Assume that Ft =

�

xs
�

s≤t, i.e. it contains all the informa-
tion on the process xt until time t.

ARCH and GARCH models Engle (1982) first introduces ARCH(p)
(AutoRegressive Conditional Heteroskedasticity) processes, where
the individual time series process can be written as

xt = σtεt,

where the conditional variance process
�

σ2
t
�

t∈Z, given Ft–1, is

σ2
t =ω+

p
∑

i=1

αix
2
t–i (3.5)

and εt a process with E
�

εt
�

= 0 and Var
�

εt
�

= 1. Originally Engle
(1982) assumed that εt ∼ iid N(0,1), but also other distributions
may be used (Lütkepohl, 2005). Bollerslev (1986) then generalizes
this and introduces GARCH(p,q) processes, where (3.5) is replaced
by

σ2
t =ω+

p
∑

i=1

αix
2
t–i +

q
∑

j=1

βjσ
2
t–j, (3.6)

where ω > 0 and αi,βj ≥ 0, for all i and j. The current value of

the conditional variance σ2
t = Var

�

xt|Ft–1
�

thus depends on the
previous values of the series and the previous values of the condi-
tional variance itself, and ω is the constant part of the conditional
variance.

For the second order stationarity of a GARCH(p, q) process it is
required that

p
∑

i=1

αi +
q
∑

j=1

βj < 1. (3.7)

With these requirements the unconditional variance is

σ2 =
ω

1 –
∑p

i=1αi –
∑q

j=1βj
> 0.
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Let us now define a process υt := x2
t –σ2

t|t–1 and then substitute

σ2
t|t–1 in (3.6) by x2

t –υt. We get

x2
t =ω+

p
∑

i=1

�

αi + βi
�

x2
t–i +υt +

q
∑

j=1

βjυj,

where wlog we assume that p ≤ q and βj’s are set to zero when

j > m. This is now in the form of an ARMA(p, q) process for x2
t .

Hence calculating the autocorrelations for the squared process can
reveal the presence of stochastic volatility, as in the German Stock
Index example. (Lütkepohl, 2005)

Also in GARCH(1,1) process, the constraint (3.7) for α1 and
β1 are sufficient to ensure the positivity of the conditional variance.
(see e.g. Teräsvirta, 2009). However, in higher-order models the nec-
essary and sufficient conditions for this are more complicated (see
Nelson and Cao, 1992). Some time series methods designed for the
stochastic volatility processes also require the existence of higher
order moments of the processes. To assess the finiteness of the mo-
ments, see e.g. Lindner (2009). For example, finite eight moments
exist for a GARCH(1,1) with a Gaussian white noise process εt if
and only if

β4
1 + 4β3

1α1 + 18β2
1α

2
1 + 60β1α

3
1 + 105α4

1 < 1.

For GARCH models there also exists many different versions,
see for example Teräsvirta (2009).

Just like with ARMA models, also GARCH model has multivari-
ate extensions. Engle et al. (1986) first generalize ARCH model to
a bivariate case. Then Diebold and Nerlove (1989) suggest a multi-
variate ARCH type model and Bollerslev et al. (1988) propose the
first multivariate GARCH type model. Assume a multivariate time
series process

xt = Σ
1/2
t εt,

where εt ∈ Rp is a white noise process, with a mean 0 and a vari-

ance Ip, and Σ
–1/2
t , the symmetric positive definite square root of

Σt, is the conditional covariance matrix of xt, given Ft–1, i.e. the
history of the process xt. For εt for example the multivariate normal
distribution can be considered.
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For a multivariate GARCH (MGARCH) the conditional variance
process can be written as

vech
�

Σt
�

=ω+
p
∑

i=1

Aivech
�

xt–ix
′
t–i

�

+
q
∑

j=1

Bjvech
�

Σt–j|t–j–1
�

,

where ω ∈ Rp(p+1)/2 is a base level of the variance process, and
Ai ∈ R(p(p+1)/2)×(p(p+1)/2) and Bj ∈ R(p(p+1)/2)×(p(p+1)/2) are co-
efficient matrices.

As a GARCH model can be written as an ARMA model of a
squared process, also MGARCH model can be similarly written as
a VARMA model of a p-variate squared process. MGARCH model
is stationary if for a matrix

C=
p
∑

i=1

Ai +
q
∑

j=1

Bj

it is true that det
�

Ip – Cz
�

6= 0 for all z ∈ C and |z|≤ 1. (Lütkepohl,
2005)

The number of the parameters to be estimated in multivariate
GARCH model is very large. Bollerslev et al. (1988) has discussed
MGARCH models, where the matrices Ai and Bj are diagonal, i.e.
the covariances only depend on their own past. A simpler way to
reduce the number of parameters to be estimated would be to trans-
form the p-variate processes to a different coordinate system, where
the processes are independent and therefore the parameters of the
different processes could estimated separately.

Parameter estimation in GARCH models, in both univariate and
multivariate case, can be done for example via maximum likelihood
or quasi maximum likelihood estimation. For more on GARCH
models and different multivariate GARCH models and their param-
eter estimation, see for example Lütkepohl (2005); Matteson and
Ruppert (2011).

SV models Taylor (1982) has introduced an SV (Stochastic Volatil-
ity) model, where the process is

xt = eht/2εt, (3.8)

where

ht = µ+φ
�

ht–1 –µ
�

+σηt.
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The form (3.8) can also be written in a ‘linearized’ form as

log
�

x2
t
�

= ht + log
�

ε2
t
�

.

The volatility process ht has a stationary distribution with an

initial state h0|
�

µ,φ,σ
�

∼ N
�

µ, σ2

1–φ2

�

. Requirement for station-

arity of the process xt is |φ| < 1. The processes εt and ηt are
independent N(0, 1) processes. For the finiteness of the moments,
see e.g. Andersen (1994).

Melino and Turnbull (1990) have used the generalized method
of moments and Harvey et al. (1994) the quasi-maximum likelihood
method for the estimation of the SV parameters. Using the maxi-
mum likelihood method in SV parameter estimation is not straight-
forward, as the conditional likelihood cannot be expressed analyti-
cally (see e.g. Bauwens et al., 2012a); numerical methods are needed.
For a review on different estimation methods, see for example Broto
and Ruiz (2004). For a recent contribution on the parameter esti-
mation of SV models, see Kastner and Frühwirth-Schnatter (2014).

SV model has also been generalized to a multivariate case in
Harvey et al. (1994), where they use the quasi-maximum likelihood
method for the parameter estimation. For an overview of different
stochastic volatility models, see for example Shephard and Andersen
(2009); Bauwens et al. (2012b).

In general the SV models have not been used in applications
as much as GARCH models, likely due to a large scale of different
estimation methods and the lack of appropriate software packages
(Bos, 2012). Kastner and Frühwirth-Schnatter (2014) has recently
proposed an efficient estimation procedure and Kastner (2016) a
software package.

Examples of ARMA, GARCH and SV models are in Figure 3.1.
The models are

• ARMA(1,1) process with φ1 = 0.8 and θ1 = –0.2.

• GARCH(1,1) process with ω= 0.1, α1 = 0.2 and β1 = 0.7.

• SV process with µ= –1.5, φ = 0.95 and σ = 0.4.

For GARCH and SV processes we can see that there are periods of
high and periods of low volatility.
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Figure 3.1: Simulated ARMA (top panel), GARCH (middle panel) and
SV (bottom panel) processes.

3.2 Second Order Source Separation

From this section onwards we assume that x=
�

xt
�

t∈Z is a p-variate
time series. The term time series here means both the process that
creates them and the observed time series, as from the context it
is clear which one is meant. For a matrix A ∈ Rp×p and a vector
b ∈ Rp, Ax+ b is a time series

�

Axt + b
�

t∈Z.

Definition 3.1 Time series x and y are said to be uncorrelated if xt
and ys are uncorrelated for all t and s.

Definition 3.2 A Second Order Source Separation (SOS) model, a
submodel of the BSS model, is written as

xt = µ+Ωzt, t= 0,±1,±2, . . . , (3.9)

where µ ∈ Rp is a location vector and Ω ∈ Rp×p a mixing matrix,
sometimes called also a signal separation matrix. For the p-variate
time series z=

�

zt
�

t∈Z we assume that

E
�

zt
�

= 0, Cov
�

zt
�

= Ip (3.10)

and the p processes in z are assumed to be jointly stationary and
uncorrelated.

The general procedure to find an unmixing (or signal separation)
matrix Γ here is the same than in i.i.d. case. Now the goal is to
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uncover the latent uncorrelated time series z up to sign changes and
the order of the components. For time series z and a standardized
time series x(s),

z= U0x(s),

for an orthogonal matrix U0. This is analogous to (2.7) in iid
data. This means that after calculating the standardized variables
x(s) = Σ–1/2 �x –µ

�

, a BSS problem can be solved by only finding
an orthogonal matrix U.

In the SOS model the latent time series z are only assumed to
be uncorrelated, so the assumption on independence does not need
to be fulfilled. This means that

E
�

ztz
′
t+τ
�

= E
�

zt+τz′t
�

= Dτ, (3.11)

for τ > 0, where Dτ is a diagonal p× p matrix. For a chosen τ > 0
the diagonal values Dτ are assumed to be distinct.

Tong et al. (1990) has introduced AMUSE (Algorithm for Mul-
tiple Unknown Signals Extraction) method. AMUSE uses the cross-
autocovariance matrix, a matrix version of (3.3),

Στ (x)= E
�

�

xt –µ
� �

xt+τ –µ
�′�

, (3.12)

for a lag τ > 0, and maximizes, for an orthogonal matrix U, the
criterion function








diag
�

UΣτ
�

x(s)�U′
�










2
=

p
∑

i=1

�

u′iΣτ
�

x(s)�ui
�2

, (3.13)

for a selected lag τ.
Similar to FOBI, also for AMUSE the eigenvectors of Στ

�

x(s)�

are the rows of an orthogonal matrix U and Γ = UΣ–1/2 is uniquely
defined only if the eigenvalues of Στ

�

x(s)� are distinct. The affine
equivariance of Γ has been shown in Miettinen et al. (2012).

Now Γ ∈ Rp×p satisfies

ΓΣΓ ′ = Ip and ΓΣτ(x)Γ ′ = Λτ,

where Λτ is a diagonal matrix in which the diagonal elements are in
decreasing order. The matrices Λτ and Dτ are the same up to the

order of the diagonal elements. Note that as ΓΣΓ ′ = Ip, Γ = UΣ–1/2
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for an orthogonal matrix U. Now Στ
�

x(s)� = Σ–1/2Στ(x)Σ–1/2 is
the autocorrelation matrix and thus the criterion function can be
written in the form of (3.13) (Miettinen et al., 2012).

Let x1, . . . ,xT be the observed time series. An estimate for Στ(x)
can be achieved using a symmetrized version of the sample autoco-
variance matrices

Σ̂τ =
1

T –τ

T–τ
∑

t=1

xtx
′
t–τ, τ= 0,1, 2, . . . .

As the matrices (3.11) are assumed to be symmetric under SOS
model, it is natural to symmetrize the sample autocovariaces. The
symmetrized version of this matrix

Σ̂τ
S =

1
2

�

Σ̂τ + Σ̂τ
′� .

Thus the estimate Γ̂ is a p× p matrix that satisfies

Γ̂ Σ̂Γ̂
′ = Ip and

Γ̂ Σ̂
S
τΓ̂
′ = Λ̂τ.

In order to find the joint limiting distribution, we consider the
model (3.9) with µ = 0 (wlog). Firstly we assume that z is a mul-
tivariate MA(∞) process that fulfills the assumptions (3.10) and
(3.11). We also assume that the components of z have finite fourth
moments and they are exchangeable and marginally symmetric, i.e.

JKzt ∼ zt,

for all sign change matrices J and permutation matrices K.
As Γ̂ is affine equivariant, we can concentrate on the case where

Γ = Ip. The limiting distribution for
p

Tvec
�

Γ̂ – Ip
�

is a p2-variate
normal distribution with a zero mean vector and the covariance
matrix as in Miettinen et al. (2012).

The drawback with AMUSE is that the choice τ is crucial, as
only one lag is used. Belouchrani et al. (1997) has generalized this
to use of a set of lags. In symmetric SOBI (Second Order Blind
Identification) the covariance matrices of all lags are jointly diago-
nalized. The criterion function to be maximized for an orthogonal
matrix U is

∑

τ∈T








diag
�

UΣτ
�

x(s)�U′
�










2
=
∑

τ∈T

p
∑

i=1

�

u′iΣτ
�

x(s)�ui
�2

, (3.14)
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where T is a set on lags in Z+. Then Γ = UΣ–1/2. In deflation-based
SOBI (Miettinen et al., 2014b), on the other hand, the uncorrelated
components are found one by one.

Assume that we have a multivariate MA(∞) process that fulfills
all the assumptions mentioned in the context of AMUSE, except for
(3.11) that now is assumed for all K lags τ1, . . . ,τK. In addition, we

assume that the diagonal elements of
∑K

i=1Λ
2
τi

are distinct and in
decreasing order. Due to affine equivariant we use Γ = Ip. Then

p
Tvec

�

Γ̂ – Ip
�

is a p2-variate normal with a zero mean vector. For more details, see
Miettinen et al. (2014b) for the deflation-based SOBI and Miettinen
et al. (2016) for the symmetric SOBI.

Applications of SOBI SOBI method has been widely used for ex-
ample with EEG, MEG and fMRI data, see e.g. Tang et al. (2005);
Tang (2010) and the references therein. For example, Joyce et al.
(2004) have used SOBI for EEG data in the automatic removal of
eye movement and blink artifacts.

SOBI has also been used in separating the vibrations caused by
the underground traffic from other vibration sources (Popescu and
Manolescu, 2007), in the operational modal analysis of civil struc-
tures (Rainieri, 2014) and in the forecasting of wind speed (Firat
et al., 2010), among others.

Some other versions of SOBI SOBI is a popular algorithm and
there are several versions and extensions available. Taskinen et al.
(2016) have proposed a method that allows the user to use several
lag combinations and chooses the combination that leads to the
lowest sum of the limiting variances of the off-diagonal elements
of
p

Tvec
�

Γ̂Ω – Ip
�

. Miettinen (2015) has suggested a method that

uses
∑

τ∈T
∑p

i=1

�

�

�u′iΣτ
�

x(s)�ui

�

�

�

a
, where a ∈ (1,∞), as a criterion

function. With a= 2 the regular symmetric SOBI is obtained.
For the SOBI method it should be noted that the sample mean

vector, the sample covariance matrix and the sample autocovari-
ance matrices are highly non-robust, i.e. they are sensitive to out-
liers. In order to make SOBI robust, these population quanti-
ties should be replaced by their robust counterparts. Theis et al.
(2010) have proposed a robustified version of SOBI, where the sam-
ple mean is replaced by spatial median (see for example Haldane
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(1948)) and the sample covariance matrix are replaced by the spa-
tial sign covariance matrix (see Visuri et al. (2000) and the references
therein). Similarly the autocovariance matrices are replaced by the
spatial sign autocovariance matrices. Ilmonen et al. (2015) have
proposed an affine equivariant robust version of SOBI, where the
sample mean vector and the sample covariance are replaced instead
by the Hettmansperger-Randles estimates of location and scatter
(Hettmansperger and Randles, 2002), which are robust and affine
equivariant.

For other recent extensions of SOBI, see for example Theis et al.
(2004), Lietzén et al. (2017) and Virta and Nordhausen (2017a).

3.3 Independent Component Analysis

The ICA methods in Section 2.5 can be used for time series, but
as they ignore the temporal dependence, they may not utilize all
the information available in data. In addition to the EEG, MEG
and fMRI applications mentioned in Section 2.5, these ICA methods
have been popular also in financial applications. ICA methods not
designed for time series have been used for financial time series for
example in Back and Weigend (1997); Chen et al. (2007); Broda
and Paolella (2009); Lu et al. (2009); Kumiega et al. (2011); Garćıa-
Ferrer et al. (2011, 2012). Next we present some methods that are
designed for time series with stochastic volatility, a phenomenon
that is common for example in financial data.

We know that SOBI works very well with the second order sta-
tionary time series, such as ARMA models, but what happens when
there are individual time series with stochastic volatility, i.e. time
series where the variance is changing over time?

Assume that the components of z are all ARCH and GARCH
processes. As z is a standardized process, the cross-autocovariance
matrices (3.12) are

Σ
�

zt
�

= E
�

ztz
′
t+τ
�

= E
�

σtεtε
′
t+τσ

′
t+τ
�

= 0p

for every lag τ > 0. As Σ
�

zt
�

= 0p for all lags τ, the assumption
(3.11) for SOBI (and, of course, for AMUSE) is violated.

The same is clearly true for the SV processes. To overcome this
issue we can use for example fourth cross-moment and fourth cu-
mulant matrices instead of the cross-autocovariance matrices. First
we define independence for time series
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Definition 3.3 Time series x and y are said to be independent, writ-

ten as x ⊥⊥ y, if
�

xt1 , . . . , xtn

�

and
�

ys1
, . . . , ysm

�

are independent for

all t1, . . . , tn and s1, . . . , sm.

Independent Component (IC) model for time series is defined as
follows.

Definition 3.4 In IC model for time series we assume that

xt = µ+Ωzt, t= 0,±1,±2, . . . ,

where µ ∈ Rp is a location vector and Ω ∈ Rp×p a mixing matrix.
For the p-variate time series z=

�

zt
�

t∈Z we assume that

E
�

zt
�

= 0, Cov
�

zt
�

= Ip

and the p processes in z are assumed to be jointly stationary and
independent.

Similar to (2.8) and (2.9), consider the fourth cross-moment ma-
trices

Bjk
τ (x)= E

�

xt+τx′tE
jkxtx

′
t+τ
�

(3.15)

and the cross-cumulant matrices

Cjk
τ (x)= Bjk

τ (x) –Στ(x)
�

Ejk + Ekj�Στ(x)′ – trace
�

Ejk
�

Ip, (3.16)

for all j, k= 1, . . . , p. For the latent process z,

Bjk
τ (z)= E

�

xt+τx′tE
jkxtx

′
t+τ
�

.

and the cross-cumulant matrices

Cjk
τ (z)= Bjk

τ (x) –Στ(x)
�

Ejk + Ekj�Στ(x)′ – trace
�

Ejk
�

Ip.

Generalized FOBI (gFOBI) Matilainen et al. (2015) have pro-
posed gFOBI, a generalized version of FOBI, where we use the fourth
cross-moment matrices. From (3.15) it follows that

Bτ(x)=
p
∑

j=1

Bjj
τ(x)= E

�

xt+τx′txtx
′
t+τ
�

.
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Then the criterion function to be maximized for an orthogonal ma-

trix U=
�

u′1, . . . ,u′p
�

is

∑

τ∈T








diag
�

UBτ
�

x(s)�U′
�










2
=
∑

τ∈T

p
∑

i=1

�

u′iBτ
�

x(s)�ui
�2

, (3.17)

where T is a set of lags τ in Z0,+. Thus the unmixing matrix is

Γ = UΣ–1/2. The solution for gFOBI is unique (up to the order
and signs of the rows) if, for all j 6= k, j, k = 1, . . . , p, there exists
a lag τ > 0, such that the j:th and the k:th diagonal values of

Bτ(z)=
∑p

j=1

�

E
�

�

zj
�2
t

�

E
�

�

zj
�2
t+τ

�

+ p – 1
�

Ejj are different.

Generalized JADE (gJADE) Matilainen et al. (2015) have also
proposed gJADE, a generalized version of JADE. The gJADE method
uses the fourth cross-cumulant matrices (3.16). The criterion func-

tion to be maximized for an orthogonal matrix U =
�

u′1, . . . ,u′p
�

is

∑

τ∈T

p
∑

j=1

p
∑

k=1








diag
�

UCjk
τ

�

x(s)�U′
�










2

=
∑

τ∈T

p
∑

i=1

p
∑

j=1

p
∑

k=1

�

u′iC
jk
τ

�

x(s)�ui

�2
, (3.18)

where T is a set of lags τ in Z0,+. Now an unmixing matrix for

gJADE is Γ = UΣ–1/2. The gJADE solution is unique (up to the
order and signs of the rows) if, for at least p – 1 components, there

is a lag τ ∈ T such that Cjj
τ (z) 6= 0

For both methods also more general lag combinations are possi-
ble. Write τ1:4 :=

�

τ1,τ2,τ3,τ4
�

. Then

Bτ1:4
(x)= E

�

xt+τ1
x′t+τ2

xt+τ3
x′t+τ4

�

and

Cjk
τ1:4

(x)=Bjk
τ1:4

(x) –Σ12(x)EjkΣ43(x)′

–Σ13(x)EkjΣ42(x)′ –Σ14(x)Σ23(x)′,

where Σjk(x) := Στj–τk
(x). Then Bτ1:4

�

x(s)� would replace Bτ
�

x(s)�

in (3.17) and Cjk
τ1:4

�

x(s)� would replace Cjk
τ

�

x(s)� in (3.18).
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The gJADE with more general lag combinations has also been
proposed in the PhD thesis of González Prieto (2011) under the
name FOTBI (Fourth Order Temporal Blind Identification); see also
Garćıa-Ferrer et al. (2011).

According to the limited simulations in Matilainen et al. (2015),
the more general combinations in gFOBI and gJADE do not seem to
produce better separation of the components. These combinations
are also computationally more intensive than the basic combinations
in (3.17) and (3.18).

For both gFOBI and gJADE the joint diagonalization methods
are needed to solve the optimization problem. The affine equivari-
ance properties of the unmixing matrix functionals of gFOBI and
gJADE have been proved in Matilainen et al. (2015).

Remark 3.1 If we choose τ = 0 in (3.17) and (3.18), we have the
classic FOBI and JADE methods designed for iid observations.

Use of different nonlinearity functions There are also several meth-
ods for time series that use nonlinearity functions. The criterion
functions mentioned in this part search for an orthogonal matrix

U=
�

u1, . . . ,up
�′

, which is then used to calculate Σ, as before.
Hyvärinen (2001) has proposed the criterion function

p
∑

i=1

�

�

�E
�

�

u′ixt+τ
�2 �

u′ixt
�2�

– E
�

�

u′ixt
�2�

E
�

�

u′ixt+τ
�2�
�

�

� (3.19)

for a lag τ> 0.
Shi et al. (2009) introduce FixNA (Fixed-point algorithm for

maximizing the Nonlinear Autocorrelation), where the criterion func-
tion is

∑

τ∈T

p
∑

i=1

E
�

G
�

u′ixt+τ
�

G
�

u′ixt
��

.

The choices mentioned for G(y) are y2 and log(cosh(y)). The sources
can be estimated one by one (deflation-based) or all at once (sym-
metric; joint diagonalization). Shi et al. (2009) also discuss some
theoretical properties of the method. Matilainen et al. (2017d) gen-
eralize (3.19) to FixNA2 method with the criterion function

∑

τ∈T

p
∑

i=1

�

�E
�

G
�

u′ixt+τ
�

G
�

u′ixt
��

– E
�

G
�

u′ixt
��

E
�

G
�

u′ixt+τ
���

� ,

(3.20)
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where the function G(y) is as in FixNA method. Both FixNA and
FixNA2 are also implemented in the R package tsBSS (See Section
4).

Matilainen et al. (2017d) also propose an alternative version to
(3.20) called vSOBI (variant of SOBI), where the criterion function
is of the form

∑

τ∈T

p
∑

i=1

�

E
�

G
�

u′ixt+τ
�

G
�

u′ixt
��

– E
�

G
�

u′ixt
��

E
�

G
�

u′ixt+τ
���2

.

Remark 3.2 The name for vSOBI comes from the SOBI method,
for which the criterion function (3.14) can be written as

∑

τ∈T

p
∑

i=1

�

u′iE
�

xst
t xst

t+τ
′�ui

�2 =
∑

τ∈T

p
∑

i=1

�

E
�

�

u′ix
st
t
� �

u′ix
st
t+τ
�′��2

.

Remark 3.3 As the methods described in this section and in Section
3.2 transform the p-variate time series into p uncorrelated (or mu-
tually independent) time series, the univariate time series models
can be used for the estimation instead the multivariate time series
models.

The main benefit here is that less parameters need to be estimated
even with a large p. Also the computational burden is lower, as the
large residual covariance matrices do not need to be calculated.

Illustration To illustrate how for example vSOBI works, consider a

time series z=
�

z1, z2, z3
�′

, where the components are GARCH(1,1)

processes with
�

ω,α1,β1
�

parameter vectors (1, 0.2,0.7), (1, 0.1,0.8)
and (1, 0.05,0.9). The components are also standardized to meet
the requirements of the ICA methods. The components are then
mixed using a random full-rank mixing matrix Ω. The vSOBI
method is then used to uncover z, up to the signs and order of
the components, with lags τ= 1, . . . , 10.

We simulate 5000 observations based on z. The first 1000 values
of the latent z are in Figure 3.2.

Figure 3.3 has the mixed components and we can see that there
are two very similar time series and one that is clearly in a different
scale. The results using the vSOBI method can be seen in Figure
3.4. The uncovered time series are coloured to match the latent time
series in order to see clearly which of the mutually independent time
series corresponds to which of the latent time series. It is rather easy
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Figure 3.2: The simulated GARCH(1,1) processes based on z.

to see that vSOBI results match very well to the latent time series,
up to the signs and order of the components.
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Figure 3.3: The mixed components x= Ωz.

3.4 Supervised dimension reduction

Assume that we have a univariate response time series y =
�

yt
�

t∈Z,

that is dependent on the p-variate time series x=
�

xt–s
�

t∈Z; s=0,1,....

As p may be large, it would be advantageous if we could explain the
response y adequately with some k < p time series. The supervised
dimension reduction methods designed for iid observations in Sec-
tion 2.6 can be used for also time series, but they do not utilize any
information on temporal dependence. This is a drawback, as now
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Figure 3.4: The mutually independent time series uncovered by vSOBI.

the response y might depend also on the previous value of the time
series x.

Becker and Fried (2003) apply the original SIR method to time
series data by using the lagged values of y and x as the predictors,
i.e.

x∗t =
�

x′t, yt–1,x′t–1, . . . , yt–τmax
,x′t–τmax

�′
.

Then the standardized vector x∗(s) is used in (2.19) instead of x(s).
This approach can also be used with other iid supervised dimension
reduction methods such as SAVE. With these methods in applica-
tions τmax can be very large. This may lead to a large number of
variables and reduce the sample size, which are clear drawbacks.

Barbarino and Bura (2015) propose RSIR (Regularized SIR)
method for time series, see also Barbarino and Bura (2017). First
PCA is applied to predictors x to create the principal components
z1, . . . , zp. Then often m of them are kept using an appropriate rule
for PCA. Finally they compile a set of predictors

x#
t =

�

z1t, . . . , zmt, yt, yt–1, . . . , yt–τmax

�′

and then apply the regular SIR method to x#(s). Here the number
of predictor time series depends on the number of lags used as well
as how many principal components are chosen.

Another approach, discussed next, would be to directly reduce
the number of predictor time series using the joint distribution of
the time series y and x ∈ Rp. This way it is possible to also find out
with which lag(s) the chosen directions contribute to the response
time series y.
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Assume that a univariate response time series y and a time se-
ries x ∈ Rp are jointly (second-order) stationary and they have a
relationship of the form

yt+1 = f
�

xt,xt–1, . . . ,εt,εt–1, . . .
�

, (3.21)

where f(·) is an unspecified function and ε =
�

εt
�

t∈Z is an unob-
served stochastic process independent of x.

Definition 3.5 A Blind Source Separation model for the joint distri-
bution of a time series x and a response time series y is

xt = µ+Ωzt, t= 0,±1,±2, . . . ,

where, as before, Ω ∈ Rp×p is a full-rank mixing matrix and µ ∈ Rp

is a location vector. For the stationary latent p-variate process z =
�

zt
�

t∈Z the assumptions are

E
�

zt
�

= 0, Cov
�

zt
�

= Ip (3.22)

and
�

y,z′(1)

�′
⊥⊥ z(2), (3.23)

where z =
�

z′(1),z
′
(2)

�′
can be divided into two subseries z(1) ∈ Rk

and z(2) ∈ Rp–k, as in Section 2.6.

The subseries z(1) ∈ Rk is again of interest, while z(2) ∈ Rp–k

can be considered noise. The assumption (3.23) implies that for all
t1, t2,τ ∈ Z the following is true:

�

yt1+τ,z′(1),t1

�′
⊥⊥ z(2),t2 .

Again the value of k is chosen to be the smallest value for which
the assumptions (3.22) and (3.23) are true. All this leads to a pre-
diction model

yt+1 = f
�

z(1),t,z(1),t–1, . . . ,εt,εt–1, . . .
�

,

where f(·) is an unspecified function, that may be different than in
(3.21), and ε is an unobserved stochastic process independent of x.

As in Section 2.6, the goal is to find an estimate for Γ , such
that Γ

�

x –µ
�

= z(1). Also, even though the model is again not
directly well-defined as in (2.15), we note that we are only looking
for the subspace spanned by the rows of Γ . Note that here also
the important lags corresponding to the components of z(1) are also
uncovered.
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Time series SIR Matilainen et al. (2017b) proposes TSIR, a time
series version of SIR. For TSIR we need two additional assumptions
for z,

z(2) ⊥⊥ y|z(1) and (3.24)

E
�

z(2),t+τ|z(1),t
�

= 0, (3.25)

which are time series versions of (2.16) and (2.17), respectively.
These assumptions follow from (3.23).

From (3.24) and (3.25) it follows that

Cov
�

E
�

zt|yt+τ
��

=

�

Cov
�

E
�

z(1),t|yt+τ
��

0
0 0

�

. (3.26)

Note that the main difference between (2.21) and (3.26) is that in
the latter one we calculate also the lagged supervised covariance
matrices.

Starting from the standardized variables x(s), we search for a

matrix U=
�

u1, . . . ,uk
�′ ∈ O k×p that maximizes

∑

τ∈T








diag
�

UCov
�

E
�

x(s)
t |yt+τ

��

U′
�










2

=
∑

τ∈T

k
∑

i=1

�

u′iCov
�

E
�

x(s)
t |yt+τ

��

ui

�2
=:

∑

τ∈T

k
∑

i=1

�

λiτ
�2

.

Now we can estimate Γ = UΣ–1/2 and then the standardized compo-
nents Γx. As this leads to a joint diagonalization of several scatter
matrices, the ordering of the components is more complicated. Write
λi· :=

∑

τ∈Tλiτ, i = 1, . . . , k. Then the components of E
�

Γx|y
�

are
uncorrelated and ordered according to λi·’s (directions).

TSIR is shown to work generally better than the vectorized SIR
by Becker and Fried (2003) in simulations. It also has more desirable
properties such as producing a table of λiτ’s, from where it is easy to
see which latent sources contribute to the response at which lag(s).
Also in a real data example it shows better performance (Matilainen
et al., 2017b).

Time series SAVE TSIR has the same kind of drawbacks as the
original SIR. It works well when the relationship is linear, no matter
what is the lag, but for example when squared relationships, i.e.
relationships of the form y= z2, are used, then it fails. This can be
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seen in the illustrations and simulations in Matilainen et al. (2017c),
where also TSAVE, a time series version of SAVE, is proposed.

TSAVE needs the assumptions needed in TSIR, and in addition

Cov
�

z(2),t+τ|z(1),t
�

= Ip–k (a.s.), for all τ ∈ T,

similar to Section 2.6. This assumption also follows from (3.23).
Eventually we get

E
�

�

Ip – Cov
�

zt|yt+τ
��2�=

�

E
�

�

Ik – Cov
�

z(1),t|yt+τ
��2�

0
0 0

�

.

(3.27)

For TSAVE, starting from the standardized observations x(s),

we search for a matrix U=
�

u1, . . . ,uk
�′ ∈ O k×p that maximizes

∑

τ∈T








diag
�

UE
�
�

Ip – Cov
�
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t |yt+τ

��2�
U′
�









2

=
∑
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∑
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�

u′iE
�
�
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�

x(s)
t |yt+τ

��2�
ui

�2
=:

∑

τ∈T

k
∑

i=1

�

λiτ
�2

.

From this we get an estimate for Γ = UΣ–1/2 and then the standard-
ized components Γx. The components of E

�

Γx|y
�

are uncorrelated
and ordered according to the values of λi· =

∑

τ∈Tλiτ, i= 1, . . . , k.
According to the simulations in Matilainen et al. (2017c), TSAVE

produces generally better results than a vectorized SAVE, where the
SAVE method is used to a set of predictors that include also some
lagged variables.

The lagged supervised covariance matrices are approximated by
slicing the response y, as in iid case. The slicing affects the values
of the covariance matrices, but not their block diagonal structure
(3.26) or (3.27). The number of slices may also affect the sizes of
the blocks in (3.26) and (3.27), as it is possible that k̂, the estimated
dimension of the subspace, maybe smaller than k. Also the used
method may affect the value k̂, as shown with TSIR in Matilainen
et al. (2017b). For some ideas on how to estimate k in TSIR and
TSAVE, see Matilainen et al. (2017b).

TSAVE also has the same kind of drawbacks than the original
SAVE, as it is not as efficient as TSIR in examples where they both
work, and is more affected by the the choice of number of slices H;
TSAVE needs more observations per slice than TSIR, i.e. the value

57



of H for TSAVE should be smaller than for TSIR. Matilainen et al.
(2017c) concluded that H = 10 is the best for TSIR and H = 2 and
5 are the best for TSAVE.

Hybrid of TSIR and TSAVE Generalizing the SAVE|SIR method
by Shaker and Prendergast (2011) (see Section 2.6) for time series
would be difficult. It is not clear how we would choose the partial
dimension reduction subspace, as we do not check just the directions
but the combinations of directions and lags. Also the threshold value
would have a significant impact on the results.

However, in the same way as Zhu et al. (2007) for iid data,
Matilainen et al. (2017c) proposes TSSH, a hybrid which is a convex
combination of TSIR and TSAVE. The TSSH method is shown to
work more efficiently when the response y depends on the explaining
variables with odd and even powers. Write

H2b = b · E
�
�

Ip – Cov
�

x(s)
t |yt+τ

��2�
+ (1 – b) ·Cov

�

E
�

x(s)
t |yt+τ

��

,

where b ∈ [0,1]. Similar to Section 2.6, with b = 0 we get TSIR
and with b= 1 we get TSAVE.

In order to estimate Γ = UΣ–1/2, we need to find a matrix U =
�

u1, . . . ,uk
�′ ∈ O k×p that maximizes

∑

τ∈T





diag
�

UH2bU′
�





2 =
∑

τ∈T

k
∑

i=1

�

u′iH2bui
�2

.

According to Matilainen et al. (2017c) the values of b around 0.5
and 0.6 are generally preferable.

Matilainen et al. (2017c) also suggest to use different values of
H for TSIR and TSAVE part of the method, as the methods work
best with different H’s. The suggested values are H = 10 for the
TSIR part and H= 2 (or H= 5) for the TSAVE part.

For TSIR, TSAVE and TSSH examples, see Chapter 4.
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4 R package tsBSS and
examples

For the methods developed in this work there is an R (R Core Team,
2017) package tsBSS (version 0.3.1; Matilainen et al., 2017a) avail-
able on CRAN. The version 0.3.1 described here includes the fol-
lowing main functions:

• gFOBI

• gJADE

• vSOBI

• FixNA with an option to choose between the original FixNA
by Shi et al. (2009) and FixNA2

• tssdr with an option to choose between TSIR, TSAVE and
TSSH methods

All these functions, except for gFOBI, are partly implemented in
C++ in order to reduce the computation time. In addition, gFOBI,
gJADE and tssdr use the joint diagonalization algorithm from the
JADE package (Miettinen et al., 2017c), which is implemented in
C++.

Using the package In each function the user is allowed to input
the data x as a multivariate time series (‘ts’ object) or as a matrix,
and in function tssdr also the response y can be input as a time
series (‘ts’ object) or as a vector. The lags used in the algorithms
are given as a vector.

The method for the joint diagonalization along with the maxi-
mum number of iterations and the convergence tolerance are passed
on to the JADE package in gFOBI, gJADE and tssdr. In vSOBI
and FixNA the optimization is implemented using the Lagrangian
multiplier technique, naturally with options to choose the maximum
number of iterations and the convergence tolerance. Also for vSOBI
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and FixNA there are currently two non-linearity functions G avail-
able, G(z)= z2 and G(z)= log(cosh(z)).

For tssdr also the number of slices H is given by a user. For
TSSH it is given as a 2-vector, where the first value corresponds
to the TSIR part and the second value to the TSAVE part. The
function creates a class ‘tssdr’ for printing, plotting and extracting
the latent sources of ‘tssdr’ objects.

In addition, in the summary function summary.tssdr there are
different strategies available for choosing the number of lags and the
amount of directions. The summary function lets the user choose
the desired strategy along with the threshold value for how much
of the dependence needs to be retained at least. This function also
creates its own class, ‘summary.tssdr’, which is used for printing,
plotting as well as extracting the coefficients and the chosen latent
directions of ‘summary.tssdr’ objects. The package uses the compo-
nents method from the ICtest package (Nordhausen et al., 2017a)
for the extraction of the source components for the ‘tssdr’ and ‘sum-
mary.tssdr’ objects.

Other packages related to package tsBSS Currently the tsBSS
package depends also on the JADE package (Miettinen et al., 2017c),
in which several BSS methods have been implemented, along with
joint diagonalization methods as well as other utility functions.

The ICA methods FOBI and JADE have been implemented in
the JADE package, as well as AMUSE and SOBI for the second
order stationary time series. The package also has a joint diago-
nalization algorithm for both the deflation-based and the symmet-
ric approaches and tsBSS package uses the symmetric one. For the
symmetric approach it uses Jacobi angles (Cardoso and Souloumiac,
1996).

JADE package also includes the Minimum Distance Index (MDI)
by Ilmonen et al. (2010a), which is used in simulations to assess
how well different BSS methods perform. The MDI for an unmixing
matrix estimate Γ̂ can be defined as

D̂=
1

p

p – 1
inf

C∈C





CΓ̂Ω – Ip




 ,

where C is a set of matrices with exactly one non-zero element in
each row and column. Clearly 0≤ D̂≤ 1 and D̂= 0 only if CΓ̂ = Ω–1.
The lower the value the better it separates the components. The
index does not depend on the model specification and hence it is
affine invariant.
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Package tsBSS also uses the class ‘bss’ from the JADE package.
It is used by gFOBI, gJADE and vSOBI functions for printing,
plotting as well as extracting the coefficients and the latent sources
of ‘bss’ objects.

The package tensorBSS (Virta et al., 2017) uses tsBSS functions
gFOBI and gJADE in their tensor-valued versions of the methods.

Other packages related to time series, ICA and supervised dimen-
sion reduction For GARCH models there exists packages such as
fGarch (Wuertz and Rmetrics Core Team, 2016) and rugarch (Gha-
lanos, 2015). Package tseries (Trapletti and Hornik, 2017) includes
tools for example for ARMA and GARCH models. Tools for fore-
casting using different models, such as ARMA models, see package
forecast (Hyndman, 2017). For SV models there is the package
stochvol (Kastner, 2016).

For multivariate time series analysis package MTS (Tsay, 2015)
includes functions for VARMA models, multivariate GARCH type
models, among others. BigVAR package (Nicholson et al., 2017)
includes tools for dimension reduction for multivariate time series.

For Independent Component Analysis, other than JADE pack-
age, there are several packages, such as ica (Helwig, 2015) and
steadyICA (Risk et al., 2015) as well as fastICA (Marchini et al.,
2017) and fICA (Miettinen et al., 2015a) for fastICA, to name a
few. Also ICtest package (Nordhausen et al., 2017a) includes tools
for ICA (and PCA).

The package BSSasymp (Miettinen et al., 2017c) can be used
to compute the asymptotic covariance matrices of the mixing and
unmixing matrix estimates of several BSS methods.

For supervised dimension reduction there are for example the
packages dr (Weisberg, 2002), which has a function for SIR and
SAVE for example, edrGraphicalTools (Coudret et al., 2017) and
MAVE (Weiqiang and Yingcun, 2017).

Example usage of tsBSS package We assume that the user has
installed the package tsBSS along with its dependencies JADE and
ICtest. First load tsBSS.

> library(tsBSS)

The stochvol package is used for simulating SV models and the
fGarch package for simulating GARCH models.
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> library(stochvol); library(fGarch)

Assume we have four source time series of length 10000. Two
are based on SV models and two on GARCH models. The first and
the second source are simulated from an SV model with parameter
vectors (µ= –0.04, φ = 0.8, σ = 0.1 ) and (µ= –0.12, φ = 0.9, σ =
0.2), respectively. The third and the fourth source are simulated
from GARCH(1,1) models with parameter vectors (ω= 0.255, α=
0.05, β = 0.7) and (ω= 0.101, α= 0.1, β = 0.8), respectively.

> set.seed(2)

> n <- 10000

> s1 <- svsim(n, mu = -0.04, phi = 0.8, sigma = 0.1)$y

> s2 <- svsim(n, mu = -0.12, phi = 0.9, sigma = 0.2)$y

> s3 <- garchSim(garchSpec(model = list(omega = 0.255,

+ alpha = 0.05, beta = 0.7)), n = n)

> s4 <- garchSim(garchSpec(model = list(omega = 0.101,

+ alpha = 0.1, beta = 0.8)), n = n)

These four source time series are then mixed with a mixing ma-
trix in order to get the ‘observed’ time series x. The mixing matrix
can be any full-rank matrix of size 4× 4.

> A <- matrix(rnorm(16), 4, 4)

> X <- cbind(s1, s2, s3, s4) %*% t(A)

Then different methods can be used to uncover the latent source
time series z. Here the methods gFOBI, gJADE, vSOBI and FixNA
methods are used with the default lags 0, . . . , 12.

> res1 <- gFOBI(X)

> res2 <- gJADE(X)

> res3 <- FixNA(X)

> res4 <- vSOBI(X)

The comparison of these unmixing matrix estimates can be done
using the Minimum Distance Index. Values of the index are between
0 and 1 and the lower the value the better the separation of the
components.

> MD(coef(res1), A)

[1] 0.3257535
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> MD(coef(res2), A)

[1] 0.07726117

> MD(coef(res3), A)

[1] 0.1027123

> MD(coef(res4), A)

[1] 0.07107797

From all the methods gFOBI is clearly the worst and it seems
that vSOBI gives here the best results. Its unmixing (signal sepa-
ration) matrix estimate is the following.

> coef(res4)

[,1] [,2] [,3] [,4]

[1,] 0.19748665 0.3461760 0.9652557 -0.13391310

[2,] -0.41172965 0.9126516 1.0750717 -0.02615942

[3,] -0.48743988 -0.2346775 1.4604355 0.23368565

[4,] 0.04665906 0.6246627 0.4970670 0.41666496

If this matrix is multiplied by the mixing matrix A, the resulting
matrix should be close to an identity matrix up to the signs and
order of the rows.

> coef(res4) %*% A

[,1] [,2] [,3] [,4]

[1,] 0.05615189 0.017184664 -0.01094783 0.997069916

[2,] 0.01705792 -0.997650043 -0.01042140 0.004608566

[3,] 0.99300526 0.005295150 0.06422456 -0.037852962

[4,] -0.07736697 -0.001452764 0.99505378 0.009100759

For the chosen method vSOBI the estimated sources are plotted.

> plot(res4)
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The first few observations of the latent sources can also be printed.

> head(bss.components(res4))

Series 1 Series 2 Series 3 Series 4

[1,] -0.3217990 1.9448108 -0.9915257 0.7659239

[2,] -0.3023507 1.4110913 1.4826359 -0.8927301

[3,] -0.3589765 -2.2087150 -1.5360480 -0.3917388

[4,] -0.3169541 0.3187540 1.0166698 1.0637498

[5,] 0.1666706 0.8522360 -0.5873536 -1.0398834

[6,] 0.2977453 0.9505946 -0.7337683 -1.7155187

Let y be a response time series that depends on the predictor x in
such way that yt = z2

1,t–1+3z2,t–3+εt, where the process εt ∼ N(0, 1)
is independent of x.

> eps <- rnorm(n - 3)

> y <- s1[3:(n - 1)]^2 + s2[1:(n - 3)] + eps

> X <- (cbind(s1, s2, s3, s4)[4:n, ]) %*% t(A)

The dimension of the subspace is known to be k = 2 and es-
pecially the lags 1 and 3 are important. The TSIR, TSAVE and
TSSH with b = 0.5 are used with lags τ = 1, . . . , 5. For TSIR and
the TSIR part of TSSH H = 10 and for TSAVE and the TSAVE
part of TSSH H= 2.

> res1 <- tssdr(y, X, algorithm = "TSIR", k = 1:5, H = 10)

> res2 <- tssdr(y, X, algorithm = "TSAVE", k = 1:5, H = 2)

> res3 <- tssdr(y, X, algorithm = "TSSH", k = 1:5,

+ H = c(10, 2), weight = 0.5)
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The summary method is used to find the dimension of the sub-
space and the important lags for each method. Threshold value
0.8 is used along with the rectangle method to choose lags and the
number of directions.

> summ1 <- summary(res1, type="rectangle", thres = 0.8)

> summ2 <- summary(res2, type="rectangle", thres = 0.8)

> summ3 <- summary(res3, type="rectangle", thres = 0.8)

> summ1

Summary of TSIR for response y and predictors X

The signal separation matrix W is:

[,1] [,2] [,3] [,4]

[1,] -0.406 0.906 1.02 -0.0301

The L matrix is:

Dir.1 Dir.2 Dir.3 Dir.4

Lag 1 0.00125 0.00107 0.00370 0.000745

Lag 2 0.00598 0.00310 0.00196 0.002475

Lag 3 0.94038 0.00359 0.00115 0.002655

Lag 4 0.00395 0.00684 0.00290 0.003269

Lag 5 0.00224 0.00664 0.00466 0.001424

Using the rectangle method:

The first direction and the first 3 lags are relevant.

> summ2

Summary of TSAVE for response y and predictors X

The signal separation matrix W is:

[,1] [,2] [,3] [,4]

[1,] -0.476 -0.238 1.49 0.21

The L matrix is:
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Dir.1 Dir.2 Dir.3 Dir.4

Lag 1 0.866762 0.00201 0.000453 0.000460

Lag 2 0.000452 0.00221 0.004916 0.002937

Lag 3 0.000689 0.10748 0.000343 0.001997

Lag 4 0.000989 0.00043 0.001573 0.000891

Lag 5 0.000373 0.00209 0.002434 0.000512

Using the rectangle method:

The first direction and the first lag are relevant.

> summ3

Summary of TSSH for response y and predictors X

The signal separation matrix W is:

[,1] [,2] [,3] [,4]

[1,] -0.412 0.904 1.03 -0.0269

[2,] -0.481 -0.226 1.51 0.2092

The L matrix is:

Dir.1 Dir.2 Dir.3 Dir.4

Lag 1 0.00173 0.45986 0.002062 0.000625

Lag 2 0.00401 0.00197 0.002798 0.003143

Lag 3 0.49876 0.00147 0.000995 0.002651

Lag 4 0.00209 0.00247 0.003113 0.002344

Lag 5 0.00216 0.00208 0.004752 0.000915

Using the rectangle method:

The first 2 directions and the first 3 lags are relevant.

TSIR is able to find only one direction and completely misses the
direction corresponding to the quadratic term. On the other hand,
TSAVE finds easily the direction corresponding to the quadratic
term, but with the used threshold value the direction corresponding
to the linear term is not chosen. The hybrid method TSSH finds
easily both directions. The signal separation matrix is now a 2× 4-
matrix, as from the four time series two are chosen.

> coef(summ3)
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[,1] [,2] [,3] [,4]

[1,] -0.4116843 0.9042441 1.034378 -0.02690265

[2,] -0.4813061 -0.2261688 1.508242 0.20922292

> plot(summ3)

> head(components(summ3))
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The response and the chosen directions

Series 1 Series 2

[1,] 0.3120054 0.9592157

[2,] 0.8583688 -0.5268373

[3,] 0.9576241 -0.6385566

[4,] -2.3195483 -1.2101137

[5,] -1.2353125 0.7278113

[6,] -1.4249150 -0.6469661

The chosen two directions was plotted along with the response.
Also the first few values of them were printed.
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5 Conclusions

This work has dealt with Blind Source Separation, with a focus
on Independent Component Analysis, and dimension reduction in
multivariate time series. The ICA methods gFOBI and gJADE,
time series versions of well-known ICA methods FOBI and JADE,
were introduced. These methods work well with the components
of the multivariate time series exhibit stochastic volatility. Another
method called vSOBI, a variant of SOBI, was also introduced. While
SOBI works well with the second order stationary time series, vSOBI
method works well with the time series with stochastic volatility.
According to Matilainen et al. (2017d) vSOBI seems to work even
better than gFOBI and gJADE. As FixNA, a method similar to
vSOBI, has already been introduced earlier (Shi et al., 2009), also
FixNA2 method in its general form was introduced. The methods
gFOBI, gJADE, vSOBI and FixNA2, introduced in this thesis, are
included in the R-package tsBSS. Also an implementation for FixNA
is included in the package, as it has not been done earlier, to the
best of our knowledge.

The aforementioned methods can be used for dimension reduc-
tion, when all the time series have the same role, i.e. none is used
as a response. For supervised dimension reduction, when there is
also a response y that depends on some predictor time series x, two
new methods TSIR and TSAVE, as well as their hybrid TSSH, were
introduced. These methods are generalizations of SIR, SAVE and
their hybrid. A function tssdr for the time series supervised dimen-
sion reduction with options for TSIR, TSAVE and TSSH has also
been included in the tsBSS package, with its own class with methods
for printing, plotting etc.

FixNA, FixNA2 and vSOBI methods all work with time series
with stochastic volatility, whereas SOBI does not. But what if the
latent time series z includes components with stochastic volatility
and components without stochastic volatility? Currently gSOBI, a
generalized version of SOBI which combines SOBI and vSOBI with
g(z) = z2, is being investigated along with ways to order the latent
time series by their ‘volatilitiness’ (Miettinen et al., 2017a). The
purpose for the method would be to find efficiently different types
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of autocorrelation (linear and squared) in the data.
Currently the order of the latent components obtained using

gFOBI, gJADE, FixNA and vSOBI methods do not have a specific
order. The ordering of the components according to their volatility
is also being investigated.

Theoretical properties of FOBI and JADE as well as SIR and
SAVE have been investigated. For the time series versions of these
methods, theoretical properties still need to be investigated more,
including the limiting distributions of the estimators. For SOBI,
Miettinen et al. (2016) have derived the limiting distribution for
Γ̂ in a case of uncorrelated multivariate linear processes; such lin-
ear processes include ARMA(p,q) processes. Also for gSOBI (and
for vSOBI as its special case) some results are already available in
Miettinen et al. (2017a).

In location-scatter models only the covariance matrix Σ have
been used in this thesis. These matrices can also be replaced by
other scatter matrices, given appropriate additional assumptions.
For example, when robustifying methods, the covariance matrix can
also be replaced, under certain circumstances, with a robust coun-
terpart of the covariance, one that is not sensitive to outliers in the
data. Such scatter matrix needs to have the so-called independence
property, see for example Taskinen et al. (2007). Robustifying the
whole methods proposed here is still to be investigated, as different
kind of outliers, such as level shifts, may affect the results in ways
that are not desirable.

In this thesis we have assumed that the source time series are sta-
tionary. This assumption is relaxed in Nonstationary Source Separa-
tion (NSS), where the variances of the source time series are allowed
to change over time. There are several second-order NSS models,
see for example Nordhausen (2014) and the references therein.

The methods gFOBI and gJADE have also been generalized to
tensor-valued time series in Virta and Nordhausen (2017a).

For SOBI Taskinen et al. (2016) have proposed a way to choose
the best lag combinations by utilizing the asymptotic distribution of
the estimator. For the time series methods presented in this thesis
such methods are not yet available. Thus the current guideline for
applications would be to take enough of them, for example lags
1, . . . , 12, as it is safer to take too many than too few.

It may be unreasonable to always assume that all the compo-
nents are independent. Independent Subspace Analysis is an ex-
tension of ICA, where instead of the component-wise independence
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assumption, groups of components are assumed to be independent
from each other, see for example Theis (2007) and Nordhausen and
Oja (2011).

Future work also includes extending the idea of Non-Gaussian
Component Analysis (NGCA) (Blanchard et al., 2006) to time series
context. Only one Gaussian component is allowed in ICA, including
gFOBI, gJADE and vSOBI. In a time series version of NGCA one
could assume that the signal part z(1) is a k-variate possibly depen-
dent time series with non-trivial linear autocorrelations and z(2) is
p – k-dimensional Gaussian white noise.
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Summaries of original publications

I There are several methods available for finding latent struc-
tures in high-dimensional data such as Independent Compo-
nent Analysis (ICA) methods FOBI (Cardoso, 1989) and JADE
(Cardoso and Souloumiac, 1993). Such methods are not very
efficient when dealing with time series data, as temporal depen-
dence needs to be considered as well. SOBI (Belouchrani et al.,
1997) is a second-order Blind Source Separation (BSS) method
for time series. However, SOBI cannot handle time series with
stochastic volatility, i.e. time series where the volatility may
change over time. Paper I focuses on extending the ICA meth-
ods FOBI and JADE for time series, especially to handle time
series with stochastic volatility. Methods, called gFOBI and
gJADE, are compared to classic methods to show that not only
they work well with time series with stochastic volatility, but
also that utilizing information on temporal dependence is im-
portant.

II In paper II, SOBI, a popular BSS methods for time series, and
two methods developed in paper I, namely gFOBI and gJADE,
are first reviewed. Also fastICA (Hyvärinen, 1999), a method
designed for iid data, but widely used also in time series context,
is discussed. Then a new family of vSOBI methods are proposed
and compared to the aforementioned methods. According to
the simulation results vSOBI methods seems to work better
than fastICA and the methods in paper I.

III In supervised dimension reduction one (or more) variable(s)
depends on another set of variables. Li (1991) has introduced
such method by proposing Sliced Inverse Regression (SIR). SIR
method has been used for time series before (see e.g. Becker
and Fried (2003)), but only in a way that all the lagged val-
ues of the predictors are also used as predictors in the original
SIR method. This type of vectorizing does not produce any
easy way to examine which of the lags of which latent variables
contribute to the response variable. Therefore in paper III the
original SIR method is generalized to work directly with time
series data. This TSIR method can now be easily used to assess
the relationships between the response and the latent variables
and their lags. Then, by using some appropriate criterion, we
can choose the most important lags and number of directions
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and use them for prediction. Simulations and a real data exam-
ple are used to show that this method works usually as good
as or even better than the vectorized version, where also the
lagged values are used as the predictors.

IV SIR method has been found to have issues when it comes to
symmetric relationships around zero between a set of predictors
and the response. Therefore Cook and Weisberg (1991) have
introduced Sliced Average Variance Estimate (SAVE), which
works in such situations. Also Zhu et al. (2007) has proposed
a hybrid version of SIR and SAVE methods. This method
uses jointly the efficiency of SIR and the comprehensiveness of
SAVE. In Paper IV a time series version of SAVE is proposed.
Also a hybrid of this TSAVE and TSIR is introduced along
with a proposition on how to choose the weights for the convex
combination. A simulation study to find the optimal values for
the number of slices used in TSIR and TSAVE is conducted.
TSAVE is also shown to perform better than the vectorised ver-
sion of SAVE as well as TSIR, using different types of models,
levels of autocorrelation and threshold values.
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