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Gonzales Inca, C.A. 2017. Modeling the spatial and temporal trends of water quality in 
boreal managed watersheds. Annales Universitatis Turkuensis Serial AII 337, 
Biologica-Geographica-Geologica. 

Abstract 
Land use changes have altered natural hydrological pathways and 
biogeochemical cycling of carbon, nitrogen and phosphorus, among 
other elements, affecting the quality of aquatic ecosystems such as rivers, 
lakes and coastal areas. In this dissertation, the spatial and temporal 
trends of water quality variation in Finnish managed watersheds was 
studied by applying methods of multivariate statistics, time-series 
analysis, ecohydrological modeling and high-resolution geospatial data. 
The results show the complex effects of current land use, particularly 
agriculture, on stream water quality. New emerging trends of nutrient 
concentrations and loads were detected in the time-series analysis, such 
as an increase in the concentrations and loads of dissolved reactive 
phosphorus and total nitrogen, and a decrease in suspended sediment 
concentration in streams. This might be linked to the current erosion 
reduction strategy of land management for water protection. An 
ecohydrological modeling assessment showed an increasing downstream 
nutrient export from agricultural watershed under climate change 
scenarios. The modeling results also showed a potential nutrient export 
reduction by restoring potential biogeochemical hotspot areas - wet areas 
or areas prone to water saturation. These areas can function as nutrient 
sinks and enhance the watershed resiliency. High-resolution geospatial 
data allowed easier and more accurate mapping of wet areas as well as 
the extracting of their hydraulic characteristics. However, the 
ecohydrological models involved several sources of uncertainties, which 
need to be carefully addressed with extensive observational data, expert 
knowledge of model parameter definitions, proper modeling unit 
selection and empirical knowledge of the functioning of the studied 
watershed system. The results of this dissertation highlight the 
importance of combined methods for watershed management research, 
and the proper identification of the biophysical processes in the modeling 
of non-point pollutant sources; this can in turn lead to an efficient water 
protection measure, and restoring biogeochemical hotspot areas within 
the watershed. 

Keywords: Watershed,	modeling,	water	quality,	ecohydrological,	
biogeochemical,	climate	change,	resiliency,	wet	areas	
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Gonzales Inca, C.A. 2017. Vedenlaadun alueellisten ja ajallisten vaihteluiden 
mallintaminen viileän vyöhykkeen valuma-alueilla. Turun Yliopiston Julkaisuja Sarja 
AII 337, Biologica-Geographica-Geologica. 

Tiivistelmä 
Maankäytön muutokset ovat vaikuttaneet luonnollisiin hydrologisiin 
prosesseihin sekä hiilen, typen ja fosforin biogeokemiallisiin kiertoihin. 
Nämä puolestaan vaikuttavat vesiekosysteemien tilaan joissa, järvissä ja 
rannikkoalueella. Väitöstutkimuksessa tutkittiin vedenlaadun alueellisia 
ja ajallisia muutoksia suomalaisessa maaseutumaisemassa käyttäen 
monimuuttujamenetelmiä, aikasarja-analyysejä, ekohydrologista mallin-
nusta ja erotuskyvyltään tarkkoja paikkatietoaineistoja. Tulokset 
todentavat maatalouteen kytkeytyvien maankäytön piirteiden komplek-
sisia vaikutuksia jokivesien laatuun. Aikasarja-analyysit osoittivat myös 
aiemmin tuntemattomia trendejä jokivesien ravinteiden määrissä ja 
pitoisuuksissa, esimerkkeinä liuenneen reaktiivisen fosforin määrän ja 
pitoisuuden lisääntyminen sekä sedimenttisuspension väheneminen; 
molemmat eroosion vähentämiseen tähtäävien vesiensuojelutoimien 
seurauksena. Ekohydrologinen mallinnus osoitti myös sen, että 
ravinteiden huuhtoutuminen maatalousvaltaisilla valuma-alueilla 
lisääntyy ilmastonmuutoksen seurauksena. Tulokset kannustavat 
biogeokemiallisten avainalueiden, kuten kosteikkojen ja vettä keräävien 
painanteiden kunnostamiseen, jolloin ravinteiden huuhtoutuminen 
vähenee. Ravinnenieluina toimiessaan ne voivat myös parantaa valuma-
alueen ekologista kestävyyttä ja palautumiskykyä. Tutkimuksessa 
osoitettiin myös erotuskyvyltään tarkkojen paikkatietoaineistojen 
hyödyllisyys avainalueiden kartoituksessa ja alueiden hydrologisten 
ominaisuuksien tunnistamisessa. Ekohydrologiseen mallinnukseen 
sisältyy toisaalta myös epävarmuustekijöitä, joihin tulisi paneutua vielä 
kattavammin hyödyntäen asiantuntijatietoa parametrien täsmen-
tämisessä, määrittämällä tarkennettuja mallinnusyksiköitä tai hyödyn-
täen empiirisiä tutkimustietoja valuma-alueen toiminnasta. Väitöstutki-
mus osoittaa myös sen, miten erilaisten tutkimusmenetelmien yhdistely 
vahvistaa valuma-aluetarkastelua ja siihen liittyen erilaisten 
biofysikaalisten prosessien ymmärtämistä ja keskeisten päästölähteiden 
mallintamista. Näin muodoin yhdistelmämenetelmien käyttö tukee 
entistä tehokkaampien vesiensuojelutoimien kehittämistä ja valuma-
alueiden biogeokemiallisten avainalueiden kunnostamista. 

Avainsanat:  Valuma-alue, mallinnus, veden laatu, ekohydrologinen, 
ilmaston muutos, resilienssi, kosteikkoalueet 
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Gonzales Inca, C.A. 2017. Modelado de las tendencias temporales y espaciales de la 
calidad del agua en cuencas hidrográficas boreales manejados. Annales Universitatis 
Turkuensis Serial AII 337, Biologica-Geographica-Geologica. 

Resumen 
El cambio del uso del suelo ha alterado los procesos hidrológicos naturales 
y los ciclos biogeoquímicos del carbono, el nitrógeno y el fósforo, entre 
otros elementos, afectando directamente la calidad de los ecosistemas 
acuáticos como los ríos, lagos y zonas costeras. En esta disertación, las 
tendencias espaciales y temporales de la variación de la calidad del agua 
en cuencas hidrográficas finlandesas se estudiaron mediante la aplicación 
de métodos de estadística multivariante, análisis de series de tiempo, 
modelos ecohidrológicos y datos geoespaciales de alta resolución. Los 
resultados muestran los efectos complejos del uso actual del suelo, 
particularmente la agricultura, en la calidad del agua de los ríos y 
corrientes. Se detectaron nuevas tendencias emergentes de 
concentraciones y cargas de nutrientes en el análisis de series temporales, 
como un aumento en la concentración y carga del fósforo disuelto reactivo 
y nitrógeno total, y una disminución en la concentración de sedimentos en 
suspensión en los ríos y corrientes. Esto podría estar vinculado a la 
estrategia actual de manejo  del suelo, orientado a la reducción de la 
erosión para la protección del agua. Una evaluación a través de 
modelización ecohidrológica mostró un aumento de la exportación de 
nutrientes aguas abajo de la cuenca agrícola bajo escenarios de cambio 
climático. Los resultados de la modelización también mostraron una 
posible reducción de la exportación de nutrientes mediante la 
restauración de posibles zonas críticas biogeoquímicas: áreas húmedas o 
áreas propensas a la saturación de agua. Estas áreas pueden funcionar 
como sumideros de nutrientes y mejorar la resiliencia de la cuenca. Los 
datos geoespaciales de alta resolución permitieron un fácil y más preciso 
cartografiado de las áreas húmedas, así como la extracción de sus 
características hidráulicas. Sin embargo, los modelos ecohidrológicos 
involucraron varias fuentes de incertidumbre, que deben abordarse 
cuidadosamente con bastantes datos de observación, conocimiento 
experto de las definiciones de los parámetros del modelo, selección 
adecuada de la unidad de modelado y conocimiento empírico del 
funcionamiento del sistema de la cuenca estudiada. Los resultados de esta 
disertación destacan la importancia de los métodos combinados para la 
investigación de gestión de cuencas hidrográficas y la identificación 
adecuada de los procesos biofísicos en la modelización de fuentes 
contaminantes difusas; esto a su vez puede conducir a una medida 
eficiente de protección del agua, y restauración de áreas claves de alta 
función biogeoquímica dentro de la cuenca. 

Palabras 
clave: 

Cuenca hidrográfica, modelización, calidad del agua, 
ecohidrológico, biogeoquímico, cambio climático, 
resiliencia, áreas húmedas 
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1. Introduction 
Water is an essential resource for maintaining life, biodiversity, ecosystem 
functioning and social well-being. In spite of the great importance of water 
for life, the quality and quantity of water resources has been rapidly 
impaired by human land use in the last decades (Haygarth and Jarvis 
2002). In Finland, the surface area of fresh waters cover 10% of the 
territory, being distributed to tens of thousands of lakes of varying size and 
streams (Eloranta 2004). However, in spite of the large inland water area, 
the water volume is relatively small, because most of the water bodies are 
shallow (Eloranta 2004). Finnish socio-economic activities are highly 
dependent on water resources and most of the Finnish water bodies are 
highly vulnerable to pollution, particularly in the coastal area in the west, 
where intense agricultural practices have been developed. In Finland, point 
pollution sources, such as urban sewage, has been substantially reduced 
(Meriläinen et al. 2003), but diffuse sources, agriculture and forestry in 
particular, account for large amounts of nutrients (33% of total nitrogen 
and 56% of total phosphorus) into surface water draining to Baltic Sea 
(HELCOM 2004). Agricultural areas are the main diffuse pollutant sources 
to aquatic ecosystems globally, causing problem of toxic algae bloom, 
eutrophication, loss of aquatic biodiversity, etc. (Carpenter et al. 1998). The 
effects of agricultural practices on aquatic ecosystems and water resources 
are a continuous process with a long-term impact on the environment. 
Scientists and policy-makers are currently challenged by the question of, 
how to secure water quantity and quality for the next generations and 
maintain a healthy ecosystem, while covering the demand for food 
production, industry, water supply and entertainment (Pimentel et al. 
2004). These issues are also acknowledged in legislative frameworks, e.g., 
in EU’s water framework directive (European Commission 2000), which 
are aimed at an ecological integrity and water resource protection. 
 In Finland, diffuse water pollution from agriculture has been studied 
in field experiments, small catchment monitoring and computer 
simulation models (e.g. Rekolainen & Posch 1993, Rankinen et al. 2004, 
Bärlund et al. 2007, Tattari et al. 2009, Puustinen et al. 2010, Warsta 2011, 
Kirkkala 2014, Huttunen et al. 2016). Because of the high cost, low control 
and low manipulability of catchment scale experiments to assess different 
scenarios of catchment management, computer-based catchment models 
are in high demand. However, early catchment scale models were mainly 
developed for hydrological prediction. Many of them are currently also 
extended to model biogeochemical and ecological processes, thus called 
ecohydrological models. As these models cannot capture all natural 
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processes, many of them stochastic, they inevitably present some 
shortcomings. Nevertheless, ecohydrological models do have diverse 
applications, such as assessing the environmental impact of infrastructure 
development, ecosystem services, landscape management, climate change 
effects and watershed resiliency (Collins and McGonigle 2008).  
 Methodologically, alternative ecohydrological models differ in their 
conceptual basis, mathematical formulation, and landscape representation 
(lump, semi-distributed and full spatial distributed) and the simulation 
result is often very different, particularly in terms of their spatial pattern 
(Grayson and Blöschl, 2000). For a proper representation of all 
hydrological, biogeochemical and ecological processes in the model, a 
process-oriented unit of modeling is required. In other words, 
ecohydrological models need to capture different zones of the landscape 
(e.g. saturation-excess runoff zones and riparian areas), which can be 
distinguished from the surrounded areas in their hydrological, 
biogeochemical and ecological processes and functions (Tetzlaff. et al., 
2009). Having the modeling unit delineation based on a study of the 
landscape’s hydrogeomorphic features, the semi-distributed 
ecohydrological model is assumed to achieve better prediction results. The 
mapping of such units can be easily made using high-quality digital terrain 
models (Schneiderman et al. 2007, Fuka et al. 2016). 
 Despite the usefulness of computer modeling to study catchment 
ecohydrological processes, it is important to carry out empirical studies, 
not only to identify factors affecting stream water quality, but also to 
determine on what scale a certain factor is operating and affecting the 
quality of stream water (Buck et al. 2004). Nowadays, the availability of 
spatial environmental data, the development of geographic information 
system (GIS) analysis and multivariate statistical methods have allowed the 
study of the linkages between stream water quality and landscape features 
in a more integrated manner (e.g. Griffith et al. 2002; Varanka and Luoto 
2012, Li et al. 2015, Varanka et al. 2015). Moreover, studying long-term 
detection of hydrological and water quality trends is important, for 
instance, to determine stream water quality responses to changes in land 
use, land management, and climate (Hirsch et al. 2010). Additionally, the 
new automatic water quality monitoring systems with high temporal 
resolution (sub-hourly) data provide an advantage in gaining a better 
insight into nutrient and sediment mobilization dynamics on a catchment 
level (Kotamäki et al. 2009). 
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2. Research aims 
The general aim of this dissertation is to gain a better understanding of the 
linkages between landscape management and aquatic ecosystems in order 
to foster water resources protection in boreal catchments. 
The dissertation address the following research questions: 

● What is the role of landscape spatial pattern controlling stream 
water quality, and which parts of the watershed are the most 
important in their biochemical functioning, regulating the nutrient 
export from terrestrial to stream ecosystems? 

● What has been the effect of the current land management strategy 
for water protection in Finnish catchments on surface water 
quality? 

● How the hydrological and biogeochemical processes occurring 
within a watershed can be better represented with the current 
computer modeling techniques? 

● Can the restoration of biogeochemical hotspot areas reduce 
nutrient loading from land to stream water in the current and 
future climate condition? 

In order to answer these questions, the dissertation has the following 
specific objectives: 

1) To evaluate the effect of the land use pattern on surface water 
quality in different hydrogeomorphic functional zones in 
agricultural watersheds. 

2) To analyze long-term trends of agriculture-related water quality 
variables. 

3) To assess a process-oriented ecohydrological model for evaluation 
of the effects of land use/management and climate change on water 
quality, by mapping and simulating wet areas restoration. 

To reach these objectives several statistical methods including multivariate 
analysis, temporal time series analysis, ecohydrological models, and 
sediment fingerprinting were applied. In addition, GIS analyses with high-
resolution environmental data were used. 
 The dissertation outcome is based on four scientific articles (listed on 
page 3). 
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 Article I provides an empirical evaluation of the relationship between 
land use patterns and spatial water quality variation though a multivariate 
statistical analysis. The study area included 16 agricultural sub-watersheds. 
The landscape patterns were characterized in three scales of different 
hydrological importance: the entire sub-watershed area, saturation-excess 
zones, and riparian areas. 
 In Article II, a long-term trend analysis of water quality was carried 
out in two agricultural watersheds having different hydrological responses. 
Three statistical trend detection methods were applied by using data from 
a 19 to 34 year-long time series of nutrient concentrations, loads, and river 
discharges. 
 In Article III, an evaluation of sediment transfer during the snow-melt 
period was conducted. The snow-melt period was assumed to be a critical 
period of pollutant mobilization from agricultural areas into watercourses. 
Automatically registered, temporal high-resolution data (sub-hourly) of 
turbidity, sediment concentration, water discharge and weather conditions 
were used. In addition, the sediment source was fingerprinted by analyzing 
Cesium-137 radioactivity and total phosphorus content. In addition, a 
snowmelt runoff and a process oriented soil erosion model were applied to 
study the sediment erosion pattern. 
 In Article IV, a process oriented Soil and Water Assessment Tool 
(SWAT) ecohydrological model was applied to simulate the main 
biogeochemical processes and to estimate the nutrient loads in the 
watershed. Furthermore, the watershed resilience and climate change 
effects were evaluated. The article also presents a model-based evaluation 
of the potential reduction of nutrient loads by restoring biogeochemical 
hotspot areas. To this end, SWAT model was set up, calibrated, and 
validated, and with model sensitivity and uncertainty analysis included. 
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3. Theoretical Background 

3.1. Aquatic ecosystem and water resource management 
research 

For sustainable development, the maintenance of healthy ecological status 
and the integrity of the aquatic ecosystem services are highlighted by 
several studies and policy programs (Abell et al. 2002, Frederiksen et al. 
2007, Colling and McGonigle 2008). In the early stages, aquatic systems 
(lentic and lotic) were studied by mainly focusing on internal bio-physical 
processes. For ecological processes in rivers, the benchmark concept was 
the river continuum concept (Vannote et al., 1980, Lorenz et al. 1997), 
which assumes a mass flux gradient from headwater to downstream, to 
which different organisms are adapted. The headwater is assumed to have 
low primary productivity and dependent on allochthones detritus, but the 
dependence on allochthone nutrients decreases lower downstream where 
the sources of organic matter and stream primary production increase 
(Lorenz et al. 1997). Because the river continuum concept does not fully 
explain the ecological and biogeochemical status of rivers, several other 
concepts have emerged, such as the stream hydraulics concept (Statzner 
and Higler 1986), which gives more emphasis to the role of stream 
geomorphologic and hydraulic properties influencing the ecological 
functioning of rivers (Statzner and Higler 1986, Petts 1994). Similarly, the 
river–floodplain interaction concept emphasizes the floodplain 
hydrological and biogeochemical processes influencing river ecology; the 
nutrient release function from the floodplain and riparian zone nutrient 
sink being particularly highlighted (Pinay et al. 1990, Brunet et al. 1994). 
Currently, most of the studies on river ecology and river water quality 
protection emphasize the catchment or landscape integrated concept 
(Moldan and Cerny 1994), where a river is viewed as a four-dimensional 
connected system (Ward 1989): 1) Laterally, the river is influenced by the 
riparian zones and upland continuum landscape composition; 2) 
longitudinally, it is influenced by biophysical processes from upstream to 
downstream; 3) vertically, the influence is from underground geological 
characteristics, particularly in the hyporheic zone, where the surface and 
groundwater mix (Grimm et al. 2007). All these connections vary in the 4) 
temporal dimension, as the hydrological and biogeochemical processes 
vary seasonally, annually and in the long-term (Ward, 1989). 
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 As an operational framework for an integral conservation of 
ecological, hydrological, and biogeochemical functions of catchment, and 
the ecosystem services they provide, the concept of River Basin 
Management (RBM) and Integrated Water Resources Management 
(IWRM) is often used in scientific literature and policy decision making. 
Although these concepts vary in definition and scope, they also overlap in 
recognizing the terrestrial and aquatic ecosystem as an interdependent 
system, the river basin as the fundamental environmental management 
unit, and the inclusion of socioeconomic factors in the planning process. 
The planning of river basin management started in Europe in the 1960s 
when it was mostly oriented towards flood and debris protection. 
Currently, it has been extended to conservation planning and sustainable 
use of water resources (surface water, groundwater and coastal water). For 
instance, the European Water Framework Directive states as a target the 
maintenance of a good ecological status for all form of water resources 
(Frederiksen et al. 2007). Integrated water resources management, in turn, 
attempts to provide a more holistic framework for water and land use 
planning and to ensure ecosystem sustainability together with social and 
economic welfare (Varis et al. 2014). In contrast to the traditional sector-
by-sector top-down management approach, the IWRM promotes the 
integration of water user sectors: nature, agriculture, human population, 
and industries (GWP and INBO, 2009), which can extend beyond the river 
basin. It encourages more participatory processes and proactive decision 
making in order to promote the efficient management of water resources 
(GPW and INBO, 2009). 

3.2. Spatial and temporal effect of land use on surface 
water quality 

Surface Water Quality (WQ) is affected by multiple environmental factors 
(e.g. weather, geology, soil, topography, biota, and land use and land 
management). From all the factors influencing water quality, land biota 
cover has changed more rapidly than other factors due to land use change, 
with agricultural practices being the major driver (Riebsame et al. 1994). As 
all landscapes are complex by their very nature, the combination and 
interaction of different environmental factors with agricultural land use 
leads to different effects on the catchment hydrological and biogeochemical 
processes affecting aquatic ecosystem; most of these processes are not yet 
fully understood (Galloway et al 2003).  
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 Agricultural systems are sustained by the application of synthetic 
fertilizers and manure, and a modification of the landscape function by 
artificial drainage (Haygarth and Jarvis 2002). This has changed the 
natural nutrient recycling of the landscape. For example, a lowering of the 
water table has enhanced nutrient mineralization and caused the loss of 
large wetlands, where nutrient sinks naturally occurred (Arango and Tank 
2008). The effects of an excessive loading of nitrogen (N) and phosphorus 
(P) into aquatic ecosystems, causing eutrophication and toxic algae bloom, 
has been widely documented in the literature (e.g. Carpenter et al. 1998, 
Kirkkala 2014). These elements in agricultural systems have relatively 
different hydrological pathways of transportation into rivers and lakes. N 
losses generally occur as a soluble reactive form of N, ammonium (NH4+N), 
nitrate (NO3-N) and organic nitrogen (Galloway et al 2003). NH4+N usually 
represent a small part of N losses and NO3-N is transported by overland 
flows, subsurface flows, and groundwater flows (Lepistö 1996). N is 
denitrified back to the non-reactive N2 in areas where high NO3-N or 
NH4+N concentrations, high organic matter and high soil water saturation 
coincide (Galloway et al 2003). The amount of denitrification occurring in 
areas prone to water saturation in agricultural land has not been 
thoroughly studied (Galloway et al 2003). P is delivered to watercourses as 
particulate P and/or dissolved reactive P (Sharpley 2006). Particulate P is 
linked to soil erosion, and hence the importance of soil erosion reduction 
in agricultural areas (Rekolainen 2006). Particulate P and dissolved 
reactive P are mostly transported by runoff, although several studies have 
demonstrated substantial loss of particulate P and dissolved reactive P by 
subsurface drainage (e.g. Ulén and Mattsson 2003, Uusitalo et al. 2007). 
Several studies have pointed out that a substantial amount of P loss occurs 
in small areas, defined as critical source areas. In these areas, a high P 
concentration, high erosivity, the transportation capacity of the runoff, and 
the hydrological connectivity to the stream network coincide (Pionke et al. 
2000, McDowell and Srinivasan 2009). However, the flow path length, the 
soil moisture condition, the soil texture and soil pH are also important 
factors influencing P loss (McDowell and Sharpley 2002). 
 N and P exports increase during high flow periods (spring and 
autumn) and decrease during low flow periods (winter and summer). 
Substantial amounts of annual nutrient loss from agricultural areas may 
occur in only a few extreme events (Royer et al. 2006). High-resolution 
(sub-hourly) water quality data also show a high temporal variability in 
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nutrient concentrations with different forms and directions of hysteresis 
(House and Warwick 1998, Bowes et al. 2005). Seasonal weather 
conditions also affect soil redox conditions; during snowmelt and in the 
autumn rainy period, soils are wet and the water table is high and soil 
oxygen is reduced, affecting the biogeochemical processes in the soil (Creed 
and Sass 2011). The soil wetness condition is also affected by topography. 
Depressions and flat areas are more prone to water saturation and for a 
longer time than the rest of the area. These areas can function as nutrient 
sinks for elements such as N, but they can also act as sources for some other 
elements e.g. P, which may be extracted when the runoff increases 
(Sharpley et al. 2008). In general, areas with high biogeochemical 
dynamics are defined as biogeochemically critical areas, and the periods of 
major alterations in soil biochemistry as biogeochemically critical periods 
(Vidon et al. 2010; Pinay et al. 2015). 

3.3. Analysis scale in assessment of the effect of land use on 
water quality 

The detection of the effect of land use on water quality in rivers is scale 
dependent (Buck et al. 2004). However, the concept of scale can be 
confusing due to its various definitions, such as map scale, analysis scale 
and phenomenon scale (Montello 2001). In this dissertation, the analysis 
scale is assumed to be the size of the analysis unit at which certain 
phenomenon  are studied (Montello 2001), whereas the phenomenon scale 
is referred to as the scale in which certain phenomena are best represented 
(Zhang et al. 2004). In practice, it is very challenging to define precise 
scales in hydrological and water quality studies, and most studies simply 
use an arbitrary scale of analysis (where the data is available). 
 In general, in a large analysis unit, such as a large river basin, the 
effects of land use on water quality might not be detected, whereas the 
effect signal might be stronger in a smaller catchment. For instant, Burt 
and Pinay (2005) show a large nitrate flux variability in catchments ranging 
from 5 to 500 km2, and a low variability in a very large basin. Therefore, 
the selection of an adequate catchment size to study factors affecting 
stream water quality is very important. Kyllmar et al. (2014) suggest small 
size catchments for the monitoring and detection of the effect of land 
management measures on stream water quality. A large catchment 
involves complex processes where auxiliary sources or sinks of pollutants 
can also become involved. Moreover, for P loss, there is a higher variability 
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in small catchments than in large ones, although the difference is rather 
small according to Kronvang et al. (2007). Scientific literature also includes 
several empirical studies relating stream water quality to catchment 
features and land use in very different sizes of catchments; most of these 
studies identified the agricultural land use as the most important factor 
explaining water quality variability (e.g. Ekholm et al. 2000, Mattsson et 
al. 2009, Ekholm et al. 2015). However, other studies in larger catchments 
highlight the role of other factors like physiography (Varanka and Luoto 
2012; Varanka et al. 2015), and lake and in-river processes (Malve et al. 
2012, Wollheim et al. 2006). Additionally, a number of studies of land use 
effects on stream water quality have characterized the analysis unit by 
contrasting landscape features in the entire catchment area and in the 
riparian zone (e.g. Johnson et al. 1997, Sliva and Williams 2001, Guo et al. 
2010). However, the criteria defining riparian or buffer zones vary and the 
results of the studies are conflicting and not comparable. 
 Runoff is the major driver of nutrient transportation, and runoff 
generation in the landscape is complex and varying in time and space 
(Grayson and Blöschl 2000). While runoff generation on a plot scale can 
be dominated by infiltration-excess overland flow and perceived 
immediately after a rainfall event, on the watershed scale the response can 
be delayed and several mechanisms can be involved and become dominant, 
such as saturation-excess, subsurface through flow, transmissivity 
feedback, etc. (Lepistö 1996). In headwater catchments, stream flows are 
generally more responsive to precipitation and they exhibit high flow and 
hydro-chemical variability (McGlynn et al. 2004, Laudon et al. 2007, 
Vivoni et al. 2008, Dawson et al. 2011), while in large catchments the 
variability is low or with attenuated hydrological response (Sanford et al. 
2007). 

3.4. Ecohydrological models 

In the last decade, several computer-based hydrological, hydraulic, and 
water quality models have been developed, and they continue to evolve. 
Nowadays, hydrological models are more integrated and have incorporated 
the major physical, chemical, and biological processes occurring in 
terrestrial and aquatic ecosystems. Consequently, they are called 
ecohydrological models (Krysanova and Arnold 2008), but other names are 
also used in the literature, e.g. catchment models, biogeochemical models, 
integrated models. In general, there are several computer models, but 
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based mostly on the same few biophysical theories. Some commonly used 
models are: AGricultural Non-Point Source Pollution (AGNPS), Chemicals, 
Runoff, and Erosion from Agricultural Management Systems (CREAMS), 
Soil and Water Assessment Tool (SWAT), Geospatial Watershed Assessment  
(AGWA), Integrated Catchment Assessment (INCA), Hydrologic 
Simulation Program-Fortran (HSPF), Gridded Surface Subsurface 
Hydrologic Analysis (GSSHA), Water Evaluation And Planning System 
(WEAP), and finally the watershed simulation and forecasting system and 
water quality and nutrient load model (WSFS-VEMALA). These models 
can be classified in several groups, depending on the criteria of 
classification (Fig 1A), such as the conceptual approach (physical or 
empirical-based), spatial representation (distributed, semi-distributed or 
lump/spatial average models), and a simulation time-step (continuous or 
event-based), but also on the nature of the data input (determinist and 
stochastic models) (Grayson and Blöschl 2000). Due to the spatial nature 
of the environmental data and information, ecohydrological models are 
well integrated with geographic information system. The watershed is the 
most recognizable feature in a landscape and watershed scale modeling is 
widely applied (Mulligan 2004). The watershed area is also easily 
delineated in geographic information software using a digital terrain 
model, although river catchment area does not necessarily correspond to 
the topographic divisor, e.g. in a karstic watershed. 
 The selection of a particular type of model depends on the purpose of 
the application and data availability. If the purpose, for example, is a 
prediction of the maximum river discharge in the watershed outlet or in a 
site of interest, a simple lump hydrological model can perform well. In such 
a case, the objective is just to know the quantity of water delivered at the 
outlet, and it no emphasis is placed on where and how the water is stored 
and released within the catchment (Mulligan 2004). However, if the 
purpose is to evaluate a given water protection/management plan, a 
particular land use change effect or assess the catchment’s ecosystem 
services, a more advanced spatially distributed model is required. Such 
models consider where precisely the different hydrological and 
biogeochemical processes within the catchment occur. 
 To select which appropriate model complexity to apply can sometimes 
be challenging. In general, two model building approaches, bottom-up and 
top-down, are acknowledged in ecohydrological modeling (CRC-CH 2005): 
1) In a bottom-up approach the modeling starts with the simplest model to 
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fit the observation data, e.g. precipitation and river discharge, and the 
model complexity is increased by adding more components contributing to 
a better fit of the observed data. 2) In a top-down approach all identified, 
relevant components are included in the model, although some of them are 
omitted due to sensitivity analysis, i.e. if they do not have a significant 
influence on the simulation of the observed data. Each approach has 
advantages and disadvantages. The selection of a proper level of model 
complexity should also be evaluated as regards the study objectives and 
what the available data can ultimately support. Too simple or too complex 
models lead to conceptual problems, and uncertainties in the parameters 
and data used (EPA, 2009) (Fig 1B). 

 

 

 

 

Fig. 1. A. Types of hydrological and eco-hydrological models and their data requirements 
(based on Grayson and Blöschl 2001). B. Links between model complexity and 
uncertainty. Total model uncertainty (red line) increases when the model is too simple 
or too complex. Data uncertainty (blue dotted line) increases when the model complexity 
increases, while model framework uncertainty (green dashed line) decreases when the 
model complexity increases. Modified from Hanna (1988) and EPA (2009). 
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4. Materials and Methods 

4.1. Study area 

The study area included the watershed of the Yläneenjoki River (231 km2) 
and the Pyhäjoki River (78 km2), in southwestern Finland; and the head 
watershed of the Lepsämänjoki River (22.4 km2), a tributary of the 
Vantaanjoki River in Southern Finland (Fig. 2). These areas were selected 
because long-term environmentally monitored data was available and 
several water protection measures had been implemented in the 
watershed. Yläneenjoki River and the Pyhäjoki River are tributaries of Lake 
Säkylän Pyhäjärvi, which has suffered eutrophication in the past decades. 
Currently, the lake has ecologically recovered, but is still highly sensitive to 
eutrophication due to its shallowness, intense agricultural practices in the 
catchment area and climate change (Ventelä et al. 2007). The Vantaanjoki 
River discharges into the Baltic Sea, where eutrophication is one of the main 
threats to the marine environment. 
 The main land cover forms in these watersheds are agricultural areas, 
forested areas and built up areas. As in other part of the Finnish rural 
landscape, the studied area has changed rapidly from the 1950s as a part of 
the overall shift towards intense mechanized agricultural practices; for 
example, open ditches have been replaced by tile drainage making the 
agricultural landscape more homogeneous (Hietala-Koivu 1999; Hietala-
Koivu 2002). Since the 1990s, nearly all farmers in the study area have 
committed themselves to the European Union’s (EU) agri-environmental 
program and implemented water protection measures such as field soil 
erosion control through minimum tillage practices, the installation of 
stream vegetation buffer zones, as well as the construction of artificial 
wetland and sedimentation ponds (Ventelä et al. 2011, Aakkula and 
Leppänen 2014). Additional measures include the installation of nutrient 
trapping and filters in the drainage systems (Kirkkala et al. 2012).  
 The study areas belong to the boreal temperate zone. The terrain was 
formed by land uplift 5 600 BP (Eronen et al. 1982, Kirkkala 2014). The 
geological units in the zone are granitic migmatites, late Svecofennian 
granites, and rapakivi granites (Korsman et al. 1997, Skyttä and Mänttäri 
2008). The dominant soil types in the studied watersheds are marine and 
lacustrine clay soils, glaciofluvial sandy till, and bedrock. The climate 
shows strong seasonality. The average precipitation in the southwestern 



Materials and Methods 

 22	

study area is 630 mm, and in the south 650 mm, of which snowfall 
represents 10-20%. The annual mean discharge of the rivers is 2.7 m3s−1 in 
Yläneenjoki, 0.9 m3s−1 in Pyhäjoki and 0.2 m3s-1 in the head watershed of 
Lepsämänjoki, a tributary of the river Vantaanjoki. All the rivers have two 
periods of high flow (April and November-December) and two periods of 
low flow (May- October and January-March). 

 

Fig. 2. The study area included two adjacent watersheds of the Yläneenjoki River and 
the Pyhäjoki River, in southwestern Finland (1); and the head watershed of the 
Lepsämänjoki River, a tributary of the Vantaanjoki River in Southern Finland (2). Black 
arrows indicate river flow direction. The land use map is the SLICES (separated Land 
Use/Land Cover Information System) data (Sucksdorff and Teiniranta 2001). 

4.2. Environmental data and information 

The hydrological and water quality data collected by the Finnish 
Environment Institute (SYKE) was used (available at 
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www.syke.fi/avoindata). River discharge and the following stream water 
quality variables were selected: nitrite and nitrate nitrogen concentrations 
(NO2-N, NO3-N), total nitrogen concentration (Ntot), dissolved reactive 
phosphorus concentration (DRP), total phosphorus concentration (Ptot), 
and total suspended sediment concentration (TSS). The selected water 
quality variables are related to N and P, which are the key limiting elements 
in aquatic systems. NO2-N and NO3-N were measured together, with NO3-

N representing the largest portion, thus, henceforth they will only be 
referred to as NO3-N. Additionally, a high temporal resolution data of river 
discharge and turbidity recorded by automated station installed in the 
River Lepsämänjoki (Fig. 3A) was used (Article III). The data was provided 
by the Water Protection Association of the River Vantaanjoki and the Helsinki 
Region. Weather data was obtained from the Finnish Meteorological 
Institute (Article III and IV). Additionally, climate change data was 
obtained from World Climate Research Programme’s CMIP3 Multi-Model 
Dataset (Meehl et al. 2007). 
 Spatial data such as the stereo-photogrammetric 10-meter digital 
terrain model (DTM) and the Light Detection and Ranging (LiDAR) based 2-
meter DTM were obtained from the National Land Survey of Finland, and 
the soil map using 1: 20 000 from the Geological Survey of Finland. The 
SLICES (separated Land Use/Land Cover Information System) land use 
data (Sucksdorff and Teiniranta 2001) was also used. Most of the spatial 
data needed pre-processing for the purpose of the research. Land use and 
soil data were reclassified into broader land cover types to be used for 
landscape indices estimation (Article I), erosion modeling (Article III) and 
ecohydrological modeling (Article IV). 
 Field work was carried out (Article II) in the snow melt period in 2012 
in the River Lepsämänjoki area, by collecting suspended sediment samples 
in seven peak flow events with a time-integrated sediment sampler (Fig. 
3B). A soil and sediment sampling campaign from agricultural fields, river 
banks, and channel beds was carried out in the same period. Cesium-137 
(137Cs) radioactivity and total phosphorus content were analyzed from the 
collected samples to identify sources of suspended sediment.  



Materials and Methods 

 24	

 

Fig. 3. Hydrometric automatic monitoring station at the River Lepsämänjoki (A) and 
time-integrated suspended sediment sampler (B). 

4.3. Data analysis and modeling 

4.3.1. Statistical analysis and time-series trend detection 

The following statistical models were applied in this research: a generalized 
linear model (GLM) (Article I) was used to study the relationship between 
the individual water quality variables and landscape indices; a multivariate 
redundancy analysis - RDA (Zuur et al. 2007) was used to study the linear 
response of multiple water quality variables to multiple landscape indices 
simultaneously and to find out relationship pattern between the variables 
(Article I); and a time series trend analysis (Article II) was carried out to 
find trend patterns in long-term water quality data and nutrient loads. For 
this purpose, the univariate Mann-Kendall trend test, the multivariate 
Mann-Kendall (MMK) trend test (Hirsch and Slack 1984, Hirsch et al. 
2010) and the MMK trend test applied to flow-normalized water quality 
data were used. The flow normalization of water quality and nutrient loads 
data were carried out by a semiparametric regression method (Wahlin 
2008). 

4.3.2. Topographical-based mapping of wet areas 

The soil wetness condition is an important aspect affecting hydrological 
and biogeochemical processes (Groffman et al. 2009, Creed and Sass 2011). 
Therefore, the accurate mapping of areas with soil prone to water 
saturation or wet areas was highly relevant (Galloway et al 2003, Ågren et 
al. 2015). High resolution LiDAR-DTM provided good information for the 
prediction and mapping of wet areas (Murphy et al. 2011). However, 
LiDAR-DTM often contains artifact pits and spurious topographic noise, 
because of a greater surface roughness at finer resolutions (MacMillan et 
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al. 2003; Zandbergen 2006). In addition to which, the inability of LiDAR-
DTM to represent manmade underpass infrastructures, for instance 
bridges and road culverts, hinders accurate drainage pattern modeling (Li 
et al. 2013, Lindsay and Dhun 2014). Therefore, for a hydrological 
application, LiDAR DTM needs to be pre-corrected and artificial 
discontinuous flows over the terrain need to be avoided (Soille 2004, 
Lindsay and Creed 2005, Wang and Liu, 2006). To identify the manmade 
drainage obstructions, a simple boolean algebra operation was carried out 
with a grid of roads and stream network topographic data in a geographic 
information system.  After which, the DTM was hydrologically corrected 
with an ANUDEM algorithm (Hutchinson, 1989), which couples the 
minimization of a terrain specific roughness penalty with an automatic 
drainage enforcement. 
 Another aspect affecting DTM-based hydrological index estimation is 
the flow direction algorithm selection (Seibert and McGlynn 2007). There 
are several algorithms to compute flow direction. For example the eight 
flow direction (D8) (O’Callaghan and Mark 1984) multiple flow direction 
(Freeman 1991), digital elevation model network (DEMON) (Costa-Cabral 
and Burges, 1994), infinite possible flow directions (D∞) (Tarboton, 1997), 
and triangular multiple flow direction (MD∞) (Seibert and McGlynn 2007). 
A detailed revision of these algorithms is provided by Erskine et al. (2006) 
and by Seibert and McGlynn (2007). In general, multiple flow direction 
algorithms are preferred. 
 The most widely applied DTM-based hydrological indices for the 
mapping of wet areas are the topographic wetness index (TWI), and its 
variants, e.g. downslope TWI (Hjerdt et al. 2004), hydrological connectivity 
index (Lane et al. 2009), catchment area modified TWI in SAGA GIS or 
MTWI (Böhner and Selige 2006). TWI is also used to identify landscape 
groundwater recharge and discharge areas (Brydsten 2008). TWI is a 
component of the rainfall-runoff model called TOPMODEL and it is 
defined as ln(a/tanβ), where a is a cumulative upslope area per unit 
contour length or a specific catchment area, while β is the slope. The 
natural logarithm (ln) scales this index into a linear range (Beven and 
Kirkby 1979, Grabs et al. 2009). Another approach for wet area mapping is 
by estimating the elevation above the stream network, such as the 
cartographic depth to water index (White et al. 2012) and height above the 
nearest drainage (Nobre et al. 2011). All the above mentioned indices 
assume steady-state conditions and spatially invariant conditions for 
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infiltration and transmissivity. Additionally, the combination of two or 
more DTM-based indices, e.g. terrain classification index for lowlands 
(TCIlow) (Bock et al. 2007), provide further tools for terrain analysis and 
wet area mapping. The TCIlow index combines an inverted normalized 
STWI with altitude above the channel network. 
 Mapping wet areas based on terrain hydrological indices can be 
classified into classes of potential wetness condition. In the simplest form, 
the classification is performed using threshold values (Article I and Article 
III). However, the selection of an appropriate value for the threshold is 
challenging as it depends on the characteristics of a particular terrain, and 
many times an arbitrary value is taken (Mengistu et al. 2014). For a more 
precise terrain index based wet area mapping, a machine learning 
algorithm such as a random decision forest algorithm (James et al. 2013) 
can be applied. For this purpose, a training and evaluation data was 
generated from the photogrammetric-based wetland map of the study area. 
The relative classification accuracy was evaluated by estimating the error 
matrix (Congalton 1991) by comparing the classification result to existing 
maps of wetlands. 
 Riparian zones are important wet areas. DTM-based mapping of 
riparian zones is better obtained by estimating the elevation above the 
stream network (Article I). This method produces riparian zones with 
varying width and identifies areas with high potential of hydrological 
connection to the stream network (Fernández et al. 2012). The riparian 
zones classification was performed by using threshold values of river 
maximum daily flow elevation corresponding to a 10 year return period, 
which was estimated from the time-series river discharge data. Wet area 
mapping based on the elevation above the stream network was also used to 
identify potential areas in order to construct an artificial wetland and 
model the potential nutrient removal (Article IV). Such areas might pose a 
longer hydro-period or a longer time per year in which the area remains in 
a water saturated condition than the surrounding areas, and therefore it is 
more efficient for nutrient removal.  

4.3.3. Ecohydrological modeling 

A physical-oriented soil erosion model named Modified Morgan-Morgan-
Finney (MMF; Morgan and Duzant 2008) (Article III) and Soil and Water 
Assessment Tool (SWAT, Arnold et al. 2012a) (Article IV) were used in this 
study. SWAT is a semi-distributed ecohydrological model operating with 
daily time steps. It has integrated algorithms to simulate watershed 
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hydrology, soil erosion, and some major terrestrial bio-geochemical 
processes, including C, N and P cycling, ground water flow, plant growth 
and land management effect (Arnold et al. 2012a). In SWAT, an in-river 
biochemical transformation is simulated by coupling a one-dimensional 
hydrodynamic model and the enhanced water quality model (QUAL 2E) 
(Brown and Bernwell 1987, Arnold et al. 2012a). Spatial data input required 
for the SWAT model was prepared by using a SWAT geographic 
information system interface (ArcSWAT and QSWAT). SWAT needs a large 
number of parameter values, which were completed from previous 
modeling experiences in the study area (Bärlund et al. 2007, Tattari et al. 
2009), literature reviews, and by using a pedo-transfer function to derive 
soil characteristics from texture data (Schaap 2005). 
 The ecohydrological modeling procedure included the model set up, 
its calibration and validation, as well as a sensitivity and uncertainty 
analyses for the model (Abbaspour 2015). Computation proceeds as an 
iterative process until an acceptable level of model performance is reached. 
Then, the observed data was separated into calibration data and validation 
data. Several methods exist to estimate the general model performance. 
The commonly used methods are regression (r2) between the simulated and 
observed data, a root mean square error based (RMSE) on the value of 0 
indicating a perfect fit, and the Nash-Sutcliffe efficiency (NSE), in which 
normalized statistics that determine the relative magnitude of the residual 
variance (noise) is compared to the measured data variance (information). 
NSE ranges from -∞ to 1, and values close to 1 indicate good performance, 
while values <0.0 indicate a poor model performance (Moriasi et al. 2007). 
These methods are greatly affected by extreme values (outliers), and 
regression methods are insensitive to additive and proportional differences 
between model output and observation. Alternative methods, which reduce 
the limitation of the previous methods for model evaluation, include the 
modified NSE, percent bias (PBIAS), and the RMSE-observations’ 
standard deviation ratio (RSR). PBIAS estimates the relative average bias 
of the simulated output to the observed data. Positive values indicate model 
underestimation bias, negative values model overestimation bias and zero 
values non bias (Gupta et al. 1999, Moriasi et al. 2007). RSR standardizes 
the RMSE with the observations’ standard deviation, which allows 
comparison of different variables with different data variability. It varies 
from zero to large positive values, values close to zero indicating zero RMSE 
or residual variation and therefore no error in the simulation output 
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(Moriasi et al. 2007). The advantages and disadvantages of these methods 
are discussed in Moriasi et al. (2007), Krause et al. (2005) and Abbaspour 
(2015). In this dissertation, the model performance evaluation was based 
on combined criteria using several statistics as in Moriasi et al. (2007) and 
Arnold et al (2012b). For example, in a monthly time-step simulation, 
satisfactory model performance in predicting discharge might reach NSE 
>0.5, RSR ˂ 0.7 and PBIAS ±25%. Similarly, for nitrate and total 
phosphorus loads prediction: NSE of >0.5, RSR ˂ 0.7 and PBIAS ±70%  
 In the modeling process, the initial parameter value was usually far 
from suitable, which lead to a large discrepancy between the simulation 
and observed data. Therefore, the initial model set up and parameter values 
needed to be adjusted by model calibration (Grayson and Blöschl 2001). 
Ecohydrological models involve a large number of parameters to be 
adjusted and this demands computer-based calibration procedures 
(Abbaspour 2015). Inverse modeling is a widely used calibration procedure 
technique (Vrugt et al. 2008), where the true values of the parameters are 
assumed to be unknown, because most of the parameter values are 
obtained in a small plot experiment and laboratory analysis, and might not 
be representative of spatially highly varying parameters (Beven 2001). 
Several mathematical models have been developed to identify a set of 
optimal values of parameters for the inverse modeling approach. An 
extensive review of these methods can be found in Matott et al. (2009) and 
Zhang et al. (2009). In this dissertation, a comparative calibration using 
the following parameter optimization algorithm was carried out:  
Parameters optimization and uncertainty analysis tool (ParaSol), 
generalized linear uncertainty estimation (GLUE), sequential uncertainty 
fitting (SUFI), particle swarm optimization (PSO) (Abbaspour 2015).  
 Sensitivity analysis attempts to identify which parameters and data 
inputs have the strongest effect on the model output. Sensitive analysis can 
be separated into two general categories: local sensitive analysis and global 
sensitive analysis (Cibin et al. 2010). The first explores the influence of an 
individual parameter at one point in time. A commonly used local sensitive 
analysis method is the one-at-a-time (OAT) analysis, which shows the 
sensitivity of a variable to the change in one parameter while holding all the 
other parameters constant (Abbaspour 2015). In order to increase 
sampling efficiency, latin hypercube sampling is usually coupled with OAT. 
In latin hypercube the sampling process is stratified along the range of 
parameter value variation (Abbaspour 2015). A global sensitivity analysis 
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attempts to analyze the influence of all factors simultaneously (Cibin et al. 
2010). To this end, the Monte Carlo approach is commonly used. Here an 
intense repeated sampling is carried out over a specified range of 
parameters values. This incorporates the variance of the input variable on 
the model output (EPA 2009). The parameter sensitivity statistic is 
evaluated by multiple regressions of the parameters generated by latin 
hypercube sampling against the objective function values (Abbaspour 
2015). The relative significance of each parameter is determined by t-stat, 
which is the coefficient of the parameters divided by its standard error. A 
large absolute value for a t-stat with low p-values (<0.05) indicates a 
sensitive parameter (Abbaspour 2015). 
 In the context of ecohydrological modeling, uncertainty can result 
from incompleteness and/or misspecification of the model structure, 
unknown true parameter values, poor spatial and temporal data quality, 
errors in computational algorithms, etc. (EPA 2009). Therefore, an 
uncertainty assessment is an effort to qualitatively or quantitatively 
evaluate model reliability (Grayson and Blöschl 2000). Model calibration 
and sensitivity and uncertainty analyses are interlinked, and generally the 
same algorithm of model calibration and parameter sensitivity analysis 
provides a tool for uncertainty assessment, which can be expressed for 
example as P-factor and R-factor. The P-factor expresses the percentage of 
observed data enveloped by the 95 percentage of the predictive uncertainty 
band (PPU95), which is on the 2.5% and 97.5% level of the accumulative 
distribution of the model output in a stochastic calibration. The R-factor 
indicates the thickness of the PPU95, ranging from zero to infinity. Values 
close to zero indicate low uncertainty in the model prediction (Abbaspour 
2015). 
 The model calibration as well as the sensitivity and uncertainty 
analyses was carried out with SWATCUP software (Abbaspour 2015). The 
calibrated SWAT ecohydrological model was used to evaluate climate 
change impact on nutrient loads, watershed resilience, and the effect of 
restoration on a wet area with a long hydro-period (Article IV). 
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5. Results and Discussion 

5.1. Stream water quality indicates both land-use and 
riparian processes 

The results of my research (Article I) show that the spatial variation of 
nutrient  concentrations in stream was (Ntot, NO3-N, Ptot, and DRP) directly 
related to the portion of agricultural land-use in the entire watershed. 
When the percentage of agricultural land has increased in the watershed, 
the concentration of Ntot, NO3-N, Ptot, and DRP also increased. However, 
the strength of the relationship varied seasonally and across the scale of 
analysis (watershed-wide, zones of saturation-excess runoff and riparian 
areas). This finding agrees with the results found by other studies claiming 
that agricultural land use is the main factor affecting stream nutrients 
variations on a watershed scale (e.g. Mattsson et al. 2009, Varanka and 
Luoto 2012, Ekholm et al. 2015). However, these studies present different 
scales of analysis, for instance, different catchment sizes. Similarly, studies 
considering riverine areas usually delineate stream buffer zones by using 
an arbitrary width (e.g. Sliva and Williams 2001, Guo et al. 2010). These 
arbitrary boundaries may proffer little explanatory power as regards spatial 
water quality variability (Clerici et al. 2013), since they may not capture the 
most important hydrological and biogeochemical processes in the 
landscape. 
 This dissertation claims a process-oriented scale of analysis, in which 
the analysis unit for water quality studies and nutrient export from 
terrestrial ecosystem into aquatic systems must be based on the clear 
representation of the hydrological and biogechemical functional unit of the 
landscape. Although watershed is a functional hydrological unit of the 
landscape, internal watershed characteristics need to be better 
represented, such as variable source areas or zones of saturation-excess 
runoff and hydrological meaningful riparian areas (Baker et al. 2006, Yang 
et. al. 2011, Lane et al. 2009). The digital terrain model based definition of 
the scale of the analysis applied in this dissertation poses advantages in 
explaining spatial water quality variation, nevertheless, in a heavily altered 
agricultural landscape it seems to be hampered by artificial agricultural 
drainage, which enhances the delivering of nutrients from agricultural 
fields to streams (Ulén and Mattsson 2003, Uusitalo et al. 2007, Arango 
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and Tank 2008). Therefore, the agricultural area on a watershed-wide scale 
becomes relevant for most of the studied water quality variables. 
 Seasonally, changes in the strengths of the relationships between 
landscape and water quality variables might reflect the hydro-
biogeochemical seasonality in boreal climate. It was observed (Article I) 
that Ntot and NO3-N were well predicted by the total agricultural area of the 
watershed in winter, spring, and autumn, when most of the watershed area 
tends to be well hydrologically connected. However, during the summer 
low flow period they were better explained by the portion of agricultural 
area in the saturation-excess zone of the watershed, but with much less 
explanatory power. In addition, the riparian zones became important 
nitrate sinks only in autumn. Some field studies have shown that the 
nutrient sink capacity of riparian zones is less efficient in the winter and 
spring snowmelt period, than in wet autumn conditions (Arango and Tank 
2008). Ptot and DRP were also well predicted by watershed-wide 
agricultural areas in all seasons. Additionally, the saturation-excess zone 
was also important for DRP in spring and autumn. This might reflect 
additional DRP sources from organic saturated areas in high flow periods, 
because re-flooding organic soils increase DRP release (e.g. Reddy 1983, 
Sharpley et al. 2008). Suspended sediment concentration was well 
predicted by the portion of agricultural land located in the saturation-
excess zone and clay soils in all seasons. This might be linked to the high 
erodibility of clay soils in agricultural lands combined with the high runoff 
production in saturated areas (Singh et al. 2009), although soil erosion in 
agricultural land is commonly linked to the slope; it is assumed that steeper 
slopes present high soil erosion. However, runoff is usually increased in 
saturated area and can cause severe erosion, particularly in wet seasons 
(Singh et al. 2009).  
 The study on the sediment transfer from agricultural lands in the 
snowmelt period in the Lepsämänjoki River watershed (Article III) 
provided a more detailed insight concerning sediment mobilization from 
agricultural areas into watercourses. Based on the high temporal resolution 
hydrometric data, hysteresis analysis of sediment concentration showed a 
clock-wise pattern for most of the snowmelt events, suggesting a rapid 
mobilization of sediments. A similar pattern has also been observed in 
other small catchments and not only in sediment concentrations but also 
for Ptot (House and Warwick 1998, Bowes et al. 2005). However, by 
analyzing only the hysteresis pattern, the origin of the sediments remains 
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unclear. They can originate from the nearest (agricultural) areas, from 
channel sediment resuspension or from bank erosion. To identify the 
dominant source of suspended sediments, sediment fingerprint with 
Cesium-137 (137CS) was analyzed. The result showed that the agricultural 
fields are the dominant source of suspended sediments showing a higher 
137CS radioactivity and higher content of Ptot than the sediments from the 
channel bank and bed. Additionally, by modeling soil erosion with a 
process-oriented erosion model in GIS with LiDAR data, a high erosion rate 
was observed in agricultural areas with high runoff, mainly located in 
saturation excess zones. In addition, the spatial patterns of erosion rate for 
the various sizes of sediment -clay, silt and sand- was different. Fine clay 
and silt sediments presented highest erosion rate and broadest eroded 
area. Based on the modeling results, the sediment contribution of 
agricultural land into streams was estimated, and it was shown that more 
than 75% of the main stream segment is potentially affected by sediment 
eroded from agricultural fields (Article III). It is important to note that fine 
sediment enrichment can occur during the snowmelt erosion process and 
these sediments are highly active chemically and transport large amounts 
of agrochemical pollutants, including P (e.g. Uusitalo et al. 2001, 
Hartikainen et al. 2010, Kleinman et al. 2011). 

5.2. Emerging trends in stream water quality variables 

The results of the time series analysis of water quality data in the 
Yläneenjoki River and Pyhäjoki River showed different trends (Article II). 
In the Yläneenjoki River, an increasing trend was found in the 
concentrations and loads of Ntot, NO3-N, DRP and a decreasing trend in the 
concentration of total suspended solids. In the Pyhäjoki River, no clear 
trends were detected in any of the studied water quality variables. An 
increasing trend of loads and concentrations of Ntot, and DRP and a 
decreasing trend of Ptot have also been found in other agricultural 
watersheds in Finland (Ekholm et al. 2015, Rankinen et al. 2016, Tattari et 
al. 2017) and elsewhere (Jarvie et al. 2017). 
 In boreal watersheds, inter-annual climatic variations induce high 
variability in stream water quality confounding the land management 
effects (Stålnacke and Grimvall 2001). Previous studies in the Yläneenjoki 
River have found a relationship between increased nutrient loading and the 
occurrence of mild winters, which have become more frequent in the last 
years (Ventelä et al. 2011). Currently, the reliability of trend detection is 
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constrained by observed data availability. Conventional water quality 
monitoring data provides only temporally sparse observations, which miss 
important peak flows (Ekholm et al. 2015). River discharge data is available 
as a continuous daily observation and it is generally used as surrogate data 
to interpolate water quality concentrations and to improve load 
estimations. However, weak linear relationships were found between flow, 
solute and sediment concentrations in my study area, as in many other 
catchments (e.g. Johnes 2007). In the light of high-frequency monitoring 
data, the concentration of water quality variables exhibits a hysteresis of 
varying form and direction, depending on the antecedent conditions of 
nutrient flux from land to water (Article III, House and Warwick 1998, 
Bowes et al. 2005). Therefore, there is an unavoidable degree of 
uncertainty in long-term trend detection using conventional data. Some 
emergent methodologies, e.g. wavelet transforms (Nalley et al. 2012) and 
spectral fractal scaling (Kirchner and Neal 2013), could help to address this 
problem by combining high-frequency sampling data with conventional 
data and reconstructing long-term data. However, such methodologies are 
still under development. Currently, the availability of high-frequency 
monitoring data is still scarce; it exists only for short-term and only for a 
few water quality variables. Also, automatic station generated data is not 
free of errors (Kirchner et al. 2004). 
 The multivariate semiparametric regression model was used to flow-
normalize the water quality variable concentrations and loads (Article II). 
This way the effect of flow variation in the water quality data was 
minimized. This method attempted to complete the information from 
several time-series providing an advantage compared to other regression-
based methods of flow normalization using singular time-series (Wahling 
and Grinvall 2008). Consequently, the trend analysis using flow-
normalized data can be related to other causes than to the variation in river 
flow. However, in my study area, the normalization was only effective for 
the loading data, but not for the concentrations, which exhibited weak 
correlation with the flow data. In spite of this, the trend analysis provided 
an important clue as regards the tendency of water quality in the study area. 
The decreasing trend of TSS concentration might be linked to the erosion-
reducing land management practices implemented in the last decade. The 
increasing trends of the other solutes (TN; NO3-N and DRP) might reflect 
a response to the same practices, as many field studies have found an 
increasing mobilization of solutes in areas with minimum-tillage practice 
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(Koskiaho 2002, Uusitalo et al. 2007, Groffman et al. 2001, Kirchman et al 
2002). 
 It was also found in this dissertation that long-term trends will be 
influenced by watershed characteristics (Article II). The watershed of the 
Yläneenjoki River, where trends for most of the water quality variables 
were detected, is characterized by clay soils, and shows a low base-flow 
index. This suggests that a lower portion of the flow in the river was 
sustained by groundwater contribution. In contrast, the watershed of the 
Pyhäjoki River, where no trends were detected for most of the water quality 
variables, is a sand soil dominated watershed and shows a higher base-flow 
index. Therefore, it seems that there is a higher contribution of ground 
water to sustain the river flow. These aspects make the response of stream 
water quality to land management confusing, although in both watersheds 
similar water protection measures were implemented. 

5.3. Topographic-based wet area mapping is highly 
influenced by the modeling techniques  

DTM-based wet area mapping resulted in different spatial patterns when 
applying different DTM resolutions and algorithms to calculate the 
topographic wetness index (TWI). The standard computing of TWI was 
greatly influenced by small differences in elevation and flow direction, as 
these affected the calculation of the slope and upslope catchment area 
respectively (Franchiniav et al. 1996, Erskine 2006, Lin et al. 2010). A 
modified topographic wetness index (MTWI) corrected this fact. For 
example, with LiDAR DTM (2 m resolution), the wet area pattern 
computed by using MTWI resulted in a more homogeneous pattern in 
gentle slopes, and also more extreme values, than when using the standard 
TWI (Fig. 4). Wet area estimation based on the coarse DTM resolution (10 
m resolution) also resulted in different spatial patterns when applying 
different algorithms for the topographic wetness index (TWI or MTWI), 
but both tended to estimate higher values than with the fine resolution 
LiDAR data, and more uniform and broader wet areas. Similar results were 
also obtained by Lin et al. (2010) and Buchanan et al. (2014). In spite of the 
differences in the spatial pattern produced by the different algorithms and 
digital terrain model resolutions, the overall classification accuracy of the 
classified wet areas by the random forest machine learning approach was 
comparable. The TWI and MTWI from the LiDAR data both resulted in an 
accuracy of 70%, and from a DTM with a 10 m resolution in 75 %. 
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Fig. 4. Topographic wetness index (TWI) pattern. High values of TWI represent wet 
areas and low values dry areas. (A) TWI-based on a triangular multiple flow direction 
algorithm. (B) Modified TWI for flat areas (Böhner and Selige 2006). Data are from the 
Yläneenjoki area, SW Finland. 

Wet area mapping by estimating the elevation above the stream network 
resulted in a different spatial pattern than the mapping based on TWI in 
my study area. This method does not take into account the flow 
contribution from upland areas and only identifies areas with a similar 
altitudinal elevation to the stream network (Murphy et al. 2011, Ågren et 
al. 2014). Nevertheless, this method is useful for riparian zone delineation, 
as it identifies wet areas surrounding the stream network. The 
identification of riparian zones with hydrological and biogeochemical 
meaning was important for a better statistical inference of land use change 
and land management impact on stream water quality (Article I). The 
application of combined indices resulted in a more accurate prediction, for 
example, the wet area mapping based on the TCIlow index resulted in an 
accuracy of 82%. However, the evaluation of mapping accuracy solely by 
classification an accuracy index is not sufficient, and a more detailed spatial 
pattern prediction screening is required. For instance, even though the 
accuracy index of wet areas based on the TCIlow index was the highest, the 
method tended to overestimate the wet areas extension more than other 
methods, and it was observed that wet areas were identified even in high 
slope areas. Overall, using MTWI with LiDAR DTM resulted in a more 
consistent mapping of wet areas. The inclusion of dynamic hydrological 
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processes in the wet area estimation can improve the accuracy of wet area 
mapping (Sørensen et al. 2005, Grabs et al. 2009) 

5.4. High spatial and temporal uncertainty in 
ecohydrological modeling 

The modeling results showed that adopting different approaches to a 
discretized landscape unit for modeling in semi-distributed models plays 
an important role in spatial pattern prediction, such as runoff and nutrient 
sources. Figure 5 shows the predicted annual average of runoff (2000-
2013) of a SWAT model with two different forms to define the modeling 
unit or hydrological response unit (HRU). The commonly used delineation 
of HRU was based on overlapping land use, soil types and slope, and the 
alternative approach for HRU delineation was based on a topographic 
wetness index instead of slope. The first approach predicted runoff 
occurrence in a broad area of the watershed but with a low runoff rate. In 
the second approach, the runoff occurrence areas were substantially 
reduced, but with high runoff rates, particularly in areas prone to water 
saturation and agricultural areas in clayey soils. Even though the prediction 
patterns were different, both modeling approaches showed similar 
statistical performance (Table 1), and both approaches were able to 
reproduce the hydrological seasonal pattern in an acceptable manner. 
Similar results were also found in others studies (Easton et al. 2008, Arnold et al. 
2010). This predictive difference in the spatial pattern of hydrological 
processes, which also influence on biogeochemical processes, has 
important implications for realistic identification of nutrients source areas, 
particularly for the assessment of ecosystem services, environmental 
impact, and catchment management plans. Therefore, a better 
representation of the heterogeneity and complexity of the landscape and its 
ecohydrological process is required (McGlynn 2004, Tetzlaff et al. 2009). 
Currently, most of the modeling approaches geared to overcoming this 
problem are oriented towards fully spatially distributed, grid-based models 
(Gorgan et al. 2012, Rathjens et al. 2015, Nijzink et al. 2016). However, 
adding more details into the model does not always guarantee an 
improvement in the model’s prediction (Arnold et al. 2015), nor a proper 
representation of the internal organization of the landscape system. On the 
contrary, it leads to higher levels of predictive uncertainty and equifinality 
(Savenije 2010). 
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Fig. 5. Annual average runoff prediction (2000-2013) in the Yläneenjoki River 
watershed (Finland). Two types of landscape discretization for defining the hydrological 
response unit (HRU) in the Soil and Water Assessment Tool (SWAT) model is shown. A) 
The commonly used approach in the SWAT model to define HRU, based on an 
overlapping slope, land use, and soil types. B) The HRU was defined by replacing the 
slope by a topographic wetness index in the previous approach. 

Table 1. Statistical evaluation of the SWAT model simulating the monthly flow in the 
Yläneenjoki River. Coefficient of determination (r2) of the simulated and observed data, 
Nash-Sutcliffe model efficiency coefficient (NSE), percent bias (PBIAS), ratio of the 
mean square error to the standard of measured data (RSR), P-factor (representing the 
percentage of observed data enveloped in the 95% prediction uncertainty band, 95PPU), 
and R-factor (represent the thickness of the 95PPU band). Model A is the standard 
modeling approach and the model B is the topographic wetness index –based modeling. 

  r2 NSE PBIAS (%) RSR P-factor R-factor 

Model A 0.67 0.68 21.2 0.64 0.63 1.25 

Model B 0.73 0.72 -0.8 0.53 0.69 0.65 

 

A hydrogeomorphic-based modeling unit in a semi-distributed model 
offers an advantage for simulations by identifying more precisely those 
zones with different hydrologic, biogeochemical, and ecological processes 
and functions. Such properties are largely influenced by the geomorphic 
features of the landscape. Hydrogeomorphic indices, like the topographic 
wetness index, have been used in hydrological modeling (Beven 2006). In 
semi-distributed models, classifying the landscape into recharge, 
transition, and saturation zones allows the model, in a simpler manner and 
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retaining the model parsimony, to adjust or calibrate the model according 
to the dominant hydrological condition of the zone. For example, in the 
SWAT model, the runoff curve number can be adjusted according to the 
different soil moisture condition assumed for the hydromorphic zones. A 
hydro-geomorphic based SWAT model adjustment has already been 
adopted in some studies (Collick et al. 2015; Fuka et al. 2016,). There are 
also emerging methods for hydrologic simulation based on landscape bio-
functional zones (Savenije 2010; Savenije and Hrachowitz 2017). 
 The calibration, sensitivity, and uncertainty analysis of the SWAT 
ecohydrological model (HRU based on a modified topographic wetness 
index) with different algorithms, using the same objective functions, 
showed comparable statistics to the model performance for discharge 
prediction, but with some differences in the parameter sensitivity analysis 
(Table 2). The common parameters identified as sensitive by all the 
calibration algorithms were a delayed time for aquifer recharge 
(GW_DELAY), the aquifer percolation coefficient (RCHRG_DP), the 
available water capacity of the soil layer (SOL_AWC) in forest and 
cropland, and the base recession constant (ALPHA_BF). Additionally, 
some algorithms also identified the saturated hydraulic conductivity 
(SOL_K), threshold water level in a shallow aquifer for the base flow 
(GWQMN), the minimum snow water content of the minimum depth 
above which there is 100% cover (SNOCOVMX.bsn), and the initial 
moisture condition SCS II curve value (CN2) in cropland with a 
hydrological soil group A as the sensitive parameters. These parameters 
were rather different from the identified sensitive parameters in the 
previous study by Tattari et al. (2009) using a SWAT model with a standard 
HRU delineation. For example, in this study, the soil depth (SOL_Z), the 
snow pack temperature lag factor (TIMP), the soil evaporation 
compensation factor (ESCO), and the initial moisture condition SCS II 
curve value CN2 for all land use classes, were identified as highly sensitive 
parameters. One reason for these differences might be the different ranges 
of parameters used in the calibration. In addition, the parameter 
calibration and sensitive analysis were carried out in a more detailed HRU 
in this study. For example, for the CN curve, the calibration was carried out 
for each of the land use types occurring in each hydrological soil group, 
while in the studies carried out by Tattari et al. (2009) a single parameter 
range for CN value calibration for all lands use types in all soil types was 
used. On the other hand, in a highly-parameterized model there are several, 
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if not thousands, of combinations of parameters that can lead to a similar 
solution – this is the non-uniqueness or equifinality problem described by 
Beven (2006), and is independent of the calibration methods used. When 
the number of parameters is high and the calibration ranges are broad, it 
leads to a higher level of predictive uncertainty, making the model output 
unreliable and difficult to interpret (Cibin et al. 2010; Zhang 2015; 
Houshmand Kouchi et al. 2017). Therefore, reducing model uncertainty 
due to the parameter definitions is one of the most important steps in the 
modeling process. Retaining the model parsimony and defining the proper 
initial parameter ranges for calibration is recommended. Moreover, as little 
information is usually available to validate all the models output 
quantitatively, soft calibration plays an important role (Yen et al. 2016). 
This includes the use of empirical knowledge about the system functioning, 
for example, the rate of denitrification in agricultural fields. Increasing the 
model complexity by adding more processes, does not improve the model’s 
statistical performance (Orth et al. 2015). However, processes considered 
important need to be included in the model. For example, subsurface 
drainage is an important component influencing agrochemical 
mobilization in the Finnish agro-system. Applying base-flow separation in 
the model calibration improves the statistics of the model performance 
(Zhang et al. 2013, Zhang et al. 2015). 

 



Table 2. Sensitivity analysis of SWAT model parameters by Particle Swarm Optimization (PSO), Sequential Uncertainty Fitting (SUFI), ParaSOL: 
Optimization and uncertainty analysis tool, Generalized Likelihood Uncertainty Estimation (GLUE). The HGS stand for Hydrological Soil Group. Wet 
areas restoration shows that it may have the potential to mitigate the effects of climate change on water quality. 

Parameters	 PSO	 SUFI	 ParaSOL	 GLUE	
	 t‐Stat	 p‐Value	 t‐Stat	 p‐Value	 t‐Stat	 p‐Value	 t‐Stat	 p‐Value	
Minimum	snow	water	content	of	the	minimum	depth	above	which	there	is	100%	
cover	(SNOCOVMX.bsn)	 ‐0.03	 0.98	 0.44	 0.66	 3.05 0.00** ‐0.25	 0.81	
Initial	Moisture	condition	SCS	II	curver	value;	in	Cropland	with	HSG	A	
(CN2.mgt__B____SWHT)	 ‐0.15	 0.88	 ‐0.29	 0.77	 0.91	 0.36	 1.22	 0.22	
(Initial	Moisture	condition	SCS	II	curver	value;	in	Cropland	with	HSG	D	
(CN2.mgt__D____SWHT)	 0.25	 0.80	 ‐1.80	 0.07	 ‐0.28	 0.78	 0.16	 0.88	
Depth	to	impervious	layer	(DEP_IMP.hru______SWHT)	 ‐0.51	 0.61	 0.30	 0.77	 1.13	 0.26	 ‐1.15	 0.25	
Soil	evaporative	compensation	coeffiencient	(ESCO.hru)	 ‐0.70	 0.48	 1.22	 0.22	 1.01	 0.31	 1.25	 0.21	
Initial	Moisture	condition	SCS	II	curver	value;	in	Forest	with	HSG	D	
(CN2.mgt__D____FRSE)	 ‐0.83	 0.41	 0.02	 0.98	 ‐0.65	 0.51	 1.27	 0.21	
Initial	Moisture	condition	SCS	II	curver	value;	in	Forest	with	HSG	A	
(CN2.mgt__A____FRSE)	 ‐0.84	 0.40	 ‐0.17	 0.86	 0.49	 0.62	 ‐1.23	 0.22	
Initial	Moisture	condition	SCS	II	curver	value;	in	Cropland	with	HSG	A	
(CN2.mgt__A____SWHT)	 1.06	 0.29	 0.28	 0.78	 2.85 0.00** 0.12	 0.90	
Surface	runoff	lag	coefficient	(SURLAG.bsn)	 ‐1.12	 0.26	 ‐1.56	 0.12	 ‐0.61	 0.54	 ‐1.55	 0.12	
Initial	Moisture	condition	SCS	II	curver	value;	in	Forest	with	HSG	B	
(CN2.mgt__B____FRSE)	 ‐1.24	 0.22	 ‐0.57	 0.57	 ‐0.14	 0.88	 ‐0.55	 0.59	
Initial	residuo	cover	or	Material	in	the	residue	pool	for	the	top	10mm	of	soil,	in	
cropland	(RSDIN.hru______SWHT)	 ‐1.28	 0.20	 ‐0.86	 0.39	 1.28	 0.20	 0.41	 0.68	
Thresold	water	level	in	shallow	aquifer	for	revap	(REVAPMN.gw)	 1.31	 0.19	 1.76	 0.08	 ‐0.94	 0.34	 1.41	 0.16	
Saturated	hydraulic	conductivity	(SOL_K(1).sol)	 1.61	 0.11	 4.48 0.00** -3.76 0.00** 4.90 0.00** 
Fraction	of	snow	water	equivalent	that	provides	50%	of	snow	cover	(SNO50COV.bsn)	 ‐1.72	 0.09	 ‐0.87	 0.38	 ‐1.13	 0.26	 ‐0.29	 0.77	
Mannin's	n	value	for	overland	flow	in	cropland	(OV_N.hru______SWHT)	 1.78	 0.07	 0.24	 0.81	 ‐1.54	 0.12	 0.28	 0.78	
Threshold	water	level	in	shallow	aquifer	for	base	flow	(GWQMN.gw)	 ‐2.01	 0.04*	 -3.70 0.00** 2.02 0.04** ‐1.52	 0.13	
Maximum	canopy	storage,	in	forest	(CANMX.hru______FRSE)	 -3.06 0.00** ‐0.21	 0.83	 1.91	 0.06	 ‐1.70	 0.09	
Delay	time	for	aquifer	recharge	(GW_DELAY.gw)	 -3.83 0.00** -4.29 0.00** 6.30 0.00** -4.02 0.00** 
Aquifer	percolation	coefficient	(RCHRG_DP.gw)	 3.89 0.00** 5.84 0.00** -3.48 0.00** 5.31 0.00** 
Revap	coefficient	(GW_REVAP.gw)	 -6.21 0.00** -7.47 0.00** ‐0.10	 0.32	 -8.55 0.00** 
Available	water	capacity	of	the	soil	layer,	in	cropland	(SOL_AWC(1).sol______SWHT)	 -9.47 0.00** -13.49 0.00** 7.55 0.00** -17.43 0.00** 
Available	water	capacity	of	the	soil	layer,	in	forest	(SOL_AWC(1).sol______FRSE)	 -10.9 0.00** -1.83 0.07** 7.83 0.00** -3.50 0.00** 
Base	recession	constant	(ALPHA_BF.gw)	 50.70 0.00** 55.61 0.00** -46.48 0.00** 58.11 0.00** 
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 Finally, there are other sources of predictive uncertainty related to the 
data quality, both spatial and temporal. The result of my modeling 
approach indicated a better model performance for the continuously 
monitored variables, such as stream flow, but a low performance for those 
variables with temporally sparse observations (water quality variables) 
(Article IV). Even though the hydrological process are relatively more 
simple to predict than biogeochemical processes, some studies using 
temporally more frequent continuous data were able to improve the 
nutrient export accuracy (e.g. Jeong et al. 2010; Yang et al. 2016).  
Predictive uncertainty due to spatial data quality was not evaluated, but a 
high resolution of data for soil, land use, and topography was used in the 
modeling. In general, the results of studies comparing different data 
resolutions found that high spatial resolution data tends to obtain a better 
ecohydrological prediction (Geza and McCray 2008, Yang et al. 2014, Son 
et al. 2016, Thomas, et al. 2017, Fisher et al. 2017). 
 Modeling assessment of runoff, stream flow, nutrient loads, as well as 
soil erosion showed substantially higher values in the climate change 
scenarios (2046-2064) than current, and they were particularly high in 
winter and spring-time (Jan-May). However, there is a considerable degree 
of uncertainty in the modeling output, and as consequence, the results of 
nutrient load assessment in climate change scenarios are diverse, 
particularly in the quantitative estimation of future nutrient loads 
(Arheimer et al. 2012, Rankinen et al. 2013, Huttunen et al. 2015). 
However, most of the studies agree in suggesting an impairment risk to 
aquatic ecosystems and Baltic Sea due to excess nutrient loading. Similarly, 
empirical studies using current weather data have found an increasing 
export of nutrients in mild winter years (Puustinen et al. 2007, Ventelä et 
al. 2011), and there is a general assumption that nutrient export in climate 
change scenarios will increase (e.g. Kirkkala 2014). 
 The discrepancy in the quantitative assessment of future nutrient 
loading is caused by different methods, different periods, and the data 
sources adopted in the ecohydrological modeling. Therefore, a more careful 
and transparent modeling approach is required, such as by explicitly 
documenting data sources, parameter definitions, modeling sensitivity, 
and uncertainty analysis. Another source of uncertainty in predicting 
future nutrient loadings from agricultural catchments is the difficulty of 
properly representing the biogeochemical processes in future conditions as 
the growing season and land management practices change. More research 
is required in order to conduct a more reliable assessment of the climate 
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change effects on nutrient loading as well as an assessment of future 
abatement strategies to prevent water quality impairment. 
 Watershed resilience assessment based on the modeling output 
indicated different responses for nitrate and total phosphorus loadings 
(Article IV). Most of the studied sub-catchments showed low resilience to 
change in nitrate loads but high resilience to change in total phosphorus 
loading. The vulnerability index was high in all sub-catchments for both 
nutrients. The watershed resilience index for nitrate was positively 
correlated with the relative area of forestland and inversely correlated with 
the relative area of clayey soils in the sub-catchments. The Resilience index 
for total phosphorus loads was inversely correlated with the relative area of 
agricultural lands and clay soils of the sub-watersheds. This result implies 
the low resilience capacity of watersheds dominated by clay soils and 
agricultural land use, making them highly vulnerable to nutrient load 
changes. These areas might demand more effort as regards restoration. 
However, the estimation of the resilience index (resiliency-reliance-
vulnerability index) is highly dependent on the accuracy of the nutrient 
loading estimation and the standard water quality threshold, where the 
system passes from a safe to a failure stage (Hoque et al. 2012). The 
methodology of the watershed resiliency assessment to biogeochemical 
change still needs more methodological development in order to provide 
consistent assessment tools (Hipsey et al. 2015). 
 The modeling assessment of the effect of restoring wet areas, which 
have potentially high biogeochemical value, showed a reduction of nutrient 
export from the catchment to downstream of 15 kg ha-1 yr-1 of nitrate, 2.4 
kg ha-1 yr-1 of total phosphorous, and 0.4 ton ha-1 yr-1 of suspended 
sediment. This indicates the relative removal capacity of wet areas in the 
study area of 15% for nitrate loading, 35% for total phosphorus loading and 
4% of suspended solid loading. Thus, by restoring wet areas as constructed 
wetlands contributes to an increase in watershed resiliency. However, 
empirical field studies report varying nutrient reduction efficiencies of 
restored wetlands, for example nitrogen reduction ranges from 11 to 280 
kg M ha-1 yr-1 (Koskiaho et al. 2003) and total phosphorus reduction from 
0-460 kg P ha-1 yr-1 (Koskiaho et al. 2003, Uusi-Kämppä et al. 2000). In my 
study area, the simulated values of nutrient removal were rather low 
compared to those found in field research. This indicates that the relative 
removal capacity in my study area can be even higher than simulated. 
Mapping potential wet areas to be restored with LiDAR DTM, as was 
carried out here, can identify areas with high nutrient removal capacity. 
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6. Conclusions 
The following main conclusions are drawn from this work: 

1) Landscape patterns affect water quality differently on different spatial 
scales. The strength of the relationships vary seasonally. Spatial 
variations of total N, nitrate and total P were mostly affected by the 
agricultural practices on the watershed level, but for nitrate the 
riparian zone was an important factor in the autumn. This implies that 
this zone functions as a potential sink for nitrate. Dissolved reactive P 
was also related to agricultural land use in the entire watershed, and 
additionally to other land covers in zones prone to water saturation, 
e.g., forests were also important in high flow periods. This indicates a 
potential contribution of dissolved reactive phosphorus from areas 
with high organic matter content, when they become hydrologically 
connected to water courses. This issue requires further investigation 
to identify and understand the underlying biophysical processes.  

 
2) The dominant sources of suspended sediments appear to be linked to 

agricultural areas located in clay soils and saturation-excess zones, 
where high rates of runoff are produced.  As fine clay sediments are 
chemically highly active and transport the pollutants bound in them, 
and fine sediment enrichment ratios occur during the soil erosion 
process, it is important to further develop strategies to control fine 
sediment erosion in agricultural lands. In the snowmelt period, 
sediment mobilization can occur rapidly as many snowmelt events 
show a clockwise hysteresis. 

 
3) New emerging long-term trends of nutrient concentrations and loads 

were detected in a managed agricultural watershed, indicating a 
decrease in total suspended solids over time, but an increase in total 
N and dissolved reactive phosphorus in the clayey soil watershed. This 
phenomenon may be linked to the change in land management, 
however, no such cause-effect evaluation was carried out in this study. 
No similar trends were found for most of the water quality variables 
in the sand soil watershed. Therefore, it was found that there were 
spatially and temporally dissimilar responses in the water quality 
trends to similar land management in watersheds. This finding 
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suggests evaluating the side effect of the current water protection 
strategies in agricultural fields in particular. 

 
4) The mapping of hydrologically and biogeochemically meaningful 

zones or hotspot areas, such as wet areas and riparian zones is greatly 
supported by high-resolution topographic data and geographic 
information system techniques. These allow a process-oriented spatial 
data analysis for hydrological and biogeochemical modeling to 
investigate factors affecting stream water quantity and quality, as well 
as the identification of potential areas for restoration. 

 
5) The ecohydrological modeling results contained high degrees of 

uncertainty. Model evaluation is important not only for the model 
performance statistics but also for evaluating the prediction of the 
spatial patterns; this is particularly relevant to correctly identifying 
where the important hydrological and biogeochemical processes 
occur. Integration with empirical studies and soft calibration is an 
important step to reduce model predictive uncertainty. Defining a 
modeling unit based on more meaningful units of landscape 
hydrology and biogeochemistry improves model predictions. 

 
6) An increasing nutrient export was predicted in climate change 

scenarios, which implies surface water resources and aquatic 
ecosystem impairment. Restoration of wet areas could reduce nutrient 
export and enhances watershed resilience, particularly in agricultural 
watersheds with clayey soils. However, a more accurate modeling of 
the biogeochemical process in hotspot areas is required. 

 
7) Finally, the integration and complementing of different methods of 

data analysis and modeling is very important for watershed 
management research, since by its nature the environment is a 
complex system and environmental data is limited, and, in addition to 
which, none of the environmental data analysis methods and models 
are free of uncertainties. More consistent environmental information 
is very important in order to foster more efficient water protection 
measures and to the restoring and management of key ecosystem 
services in current and future climatic conditions; thus, leading to 
sustainable watershed management. 
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