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Abstract

Many real life problems encountered in industry, economics or engineering
are complex and difficult to model by conventional mathematical methods.
Machine learning provides a wide variety of methods and tools for solving
such problems by learning mathematical models from data. Methods from
the field have found their way to applications such as medical diagnosis, fi-
nancial forecasting, and web-search engines. The predictions made by a lear-
ned model are based on a vector of feature values describing the input to
the model. However, predictions do not come for free in real world applica-
tions, since the feature values of the input have to be bought, measured or
produced before the model can be used. Feature selection is a process of eli-
minating irrelevant and redundant features from the model. Traditionally,
it has been applied for achieving interpretable and more accurate models,
while the possibility of lowering prediction costs has received much less at-
tention in the literature.

In this thesis we consider novel feature selection techniques for reducing
prediction costs. The contributions of this thesis are as follows. First, we
propose several cost types characterizing the cost of performing prediction
with a trained model. Particularly, we consider costs emerging from multi-
target prediction problems as well as a number of cost types arising when
the feature extraction process is structured. Second, we develop greedy re-
gularized least-squares methods to maximize the predictive performance of
the models under given budget constraints. Empirical evaluations are per-
formed on numerous benchmark data sets as well as on a novel water quali-
ty analysis application. The results demonstrate that in settings where the
considered cost types apply, the proposed methods lead to substantial cost
savings compared to conventional methods.
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Tiivistelmä

Monet käytännön ongelmat erityisesti teollisuudessa, taloudessa tai teknii-
kan alalla ovat vaikeita mallintaa perinteisin matemaattisin menetelmin ana-
lyyttisesti, koska ongelma-alueesta ei ole tarpeeksi tietoa tai ratkaisualgorit-
mia ei osata muodostaa. Koneoppiminen tarjoaa työkaluja ja menetelmiä,
joilla tällaisia ongelmia voidaan ratkaista oppimalla matemaattisia malleja
datasta. Koneoppimisalgoritmeja on jo menestyksekkäästi sovellettu useis-
sa tosielämän sovelluksissa kuten esimerkiksi lääketieteellisessä diagnosoin-
nissa, talousennusteissa ja Internetin hakukoneissa. Koneoppimisella opit-
tujen mallien ennusteet perustuvat piirteisiin, jotka kuvaavat mallille anne-
tun syötteen ominaisuuksia. Käytännössä piirrearvot pitää ostaa, mitata tai
tuottaa jollakin tavoin, eikä niitä yleensä saada ilmaiseksi. Piirrevalinnalla
tarkoitetaan sellaisten piirteiden poistamista, jotka ovat joko hyödyttömiä
ennustamisen kannalta, tai eivät tarjoa lisäinformaatiota muihin piirteisiin
verrattuna. Perinteisesti piirrevalintaa on käytetty mallin tulkittavuuden ja
tarkkuuden parantamiseen, kun taas piirrevalinnan käyttökelpoisuutta en-
nustamiskustannusten pienentämiseksi on hyvin vähän tutkittu.

Tässä väitöskirjassa tarkastelemme uudenlaisia piirrevalintamenetelmiä,
joilla saavutetaan kustannussäästöjä, kun opittua mallia käytetään ennus-
tamiseen. Aluksi esittelemme uusia kustannustyyppejä, joita esiintyy useita
toisiinsa liittyviä tehtäviä samanaikaisesti ratkaistaessa. Lisäksi näytämme
miten tällaisia ongelmia voidaan ratkoa kustannustehokkaasti maksimoimal-
la mallin ennustustarkkuutta annetun budjetin rajoissa. Tätä varten ke-
hitämme ahneeseen pienimmän neliösumman menetelmään perustuvia al-
goritmeja. Menetelmiä testataan laajasti erilaisilla datajoukoilla, lisäksi uu-
tena sovelluksena näytämme miten tutkimuksessa kehitettyä kustannuste-
hokasta lähestymistapaa voidaan soveltaa vedenlaadun mittaukseen. Tulok-
set osoittavat, että kustannustyyppien huomioiminen piirrevalinnassa usein
johtaa merkittäviin kustannussäästöihin.
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Chapter 1

Introduction

1.1 Data and intelligent processing

There is a vast amount of data available nowadays. Data is been produced
by human beings in their everyday lives when they are filling questionnaires,
diagnosed in a hospital, buying groceries in super markets or making phone
calls to friends and so on. Technology around us is more and more ubiq-
uitous and wireless meaning that sensors are embedded in everywhere in
small consumer electronics, traffic, vehicles and homes to support our lives.
Sensors measure light, air pressure, acceleration, motion, temperature, mois-
ture, blood pressure etc. However, data sources such as sensors are not free,
and their use can also result in costs. These costs need to be taken into
account when designing intelligent systems with limited budget.

Nowadays, such sensor data is used in many devices or industry appli-
cations. For example, consider a toaster that heats the bread until correct
temperature is reached or a refrigerator that monitors the items inside the
device and warns if a consumer is lacking of fresh milk or vegetables. Simi-
larly, a sensor controlled vacuum cleaner is able to navigate in a room and
clean up dirt. Moreover, automatic traffic lights may turn to green if an
approaching car is the only vehicle in the crossing at the time. In addition
to these small scale tasks, automatic cars are already now mature enough to
navigate and drive automatically on streets without human interaction. In
order to analyze data intelligently, turn data to knowledge, make decisions
from data, or control devices automatically, we need intelligent methods to
reason from data.

There are a numerous different approaches invented to extract informa-
tion from the data, or create mathematical predictive models to classify,
rank or regress things. Data mining (see e.g. Witten et al. (2011); Adriaans
and Zantinge (1997)) contains tools and methods to extract patterns from
the data. Machine learning (see e.g. Bishop (2006) is a related discipline to
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build mathematical models by learning from past observations. The learned
predictive models can then be used to predict on unseen data.

1.2 Thesis background

The motivation to write this thesis and investigate the issues considered here
originates back to the 1990s when I was working in a big telecommunication
company. Looking back at that time now those years can be seen as a
time period when the world turned towards ubiquitous technology. It was a
turning point when many digital innovations such as mobile phones, world
wide web, and personal computers, were seen for the first time at every home.
My motivation is based on to two central questions encountered in industry
applications. First, how to automatically produce intelligent behavior in
smart systems, based on data gathered from sensors. Second, how to lower
the costs related to such systems.

During the industry years, I was working in many novel projects where
our goal was to innovate, design and implement smart applications either
into prototypes or real final products. Such innovations include for example
lightning detector (Mäkelä, 2009), ghost keyboard, touch-based data trans-
fer, context sensitive devices and so on just to mention a few.

Brand new innovations often require concept testing before the design-
ing of final products can be started. One needs a working prototype in
order to demonstrate the functionality of the device for the user experience
team. Additionally, some innovations are too complex to be modeled and
implemented without intelligent techniques such as machine learning. The
machine learning methods are dependent on the data, that is used in train-
ing, testing and prediction phase. While research and development require
resources, when products are mass produced the most important costs are
the manufacturing and product use costs. Each component included in a
manufacture device have a price. Performing each measurement for gath-
ering data may also cost time or money. A central question in innovative
R&D projects is how to implement the acceptable quality products when
subject to hard budget constraints on the cost of the solution.

1.3 Problem setting

Machine learning methods can be used to model a wide range of problems
that are difficult or even impossible to solve analytically with conventional
mathematics or statistics. In this thesis, we restrict our considerations to the
supervised machine learning setting, where both the inputs and the outputs
to be predicted are available in the training data while learning the model.
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The final model can then be used to predict outputs for new inputs, for
which they are unknown.

Feature selection is a process that is usually used in the machine learning
literature in order to improve predictive performance and understandability
of learned models. This is accomplished by means of reducing redundant and
irrelevant features from the model. However, the perspective that feature
selection can also provide cost sensitive models has been less studied. In
this thesis, we study how one can take account of costs related to prediction
using feature selection. Further, we introduce practical machine learning
algorithms that optimize these costs.

While some previous work (Xu et al., 2012; Huang et al., 2009) has
been done on cost-effective learning for simple classification and regression
problems, we focus in this work on more complex structured costs that of-
ten occur in real-world problems. For example, in many applications one
encounters problems, where multiple prediction tasks have to be solved to-
gether. These include multi-class and multi-label learning problems that are
typically solved by training several binary classifiers on shared inputs. In
such settings prediction costs can be lowered by using such feature selection
methods that find a common set of features suitable for all the tasks. This
and other structured feature selection problems, such as those concerning
grouped and Cartesian features, are considered in this thesis.

1.4 Research objectives

The main focus of this thesis is to develop novel machine learning methods
for learning accurate predictive models when subject to budget constraints.
We restrict our considerations to the family of linear models, while most of
the introduced ideas can also be extended to non-linear models. Specifically,
we consider the following two research questions:

1 What type of feature costs should one be aware of when doing predictions
with a trained model?

2 How to maximize predictive performance of the machine learning model
given a budget limit on the costs?

1.5 Organization of the thesis

This thesis consists of two separate parts that both together form the con-
tribution of the research. Part I of the thesis (Chapters 1-5) gives an intro-
duction to the topic by presenting the background for machine learning, as
well as our main findings concerning the research questions. Part II presents
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the six original research publications that were written during the doctoral
studies at the university.

In Chapter 2 we give an introduction to machine learning, shortly ex-
plaining the main concepts, and providing the theory for key methods such
as ridge regression and multi-task learning. The main contribution of the
thesis is presented in the following two chapters. Chapter 3 covers feature
cost types that occur when making predictions with machine learning mod-
els. Chapter 4 concerns training algorithms that take account of the feature
costs. Chapter 5 concludes Part I of the thesis and draws guidelines for
future work.
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Chapter 2

Supervised machine learning

In this section we introduce the most essential linear modeling methods that
we will apply in the thesis. We will provide a formal presentation for such
well-known approaches as least-squares, ridge regression and lasso. We also
present a variety of different problem types, one can encounter in the context
of multiple tasks.

We use the following notations through the whole thesis along with the
vectors and matrices. Vectors are denoted with a bold lowercase letter, that
is v ∈ <d for the vector, whose i:th component is vi. Equivalently, we reserve
a bold uppercase representation for matrices, A ∈ Rn×d. Now, ai,j denotes
the element of the matrix A in its i:th row and j:th column. Further, let
R and C denote index sets containing a subset of possible row indices or
column indices, respectively. Now, we denote the sub matrix that contains
only those rows that are indexed in R as AR, only those columns indexed in
C as A:,C , or both as AR,C . Particularly, a sub matrix that contains only
one row or column, is denoted as Ai and A:,j , where i corresponds to i:th
row and j corresponds to j:th column, respectively. Finally, we may refer to
multiple related matrices by using upper index notation, so that Ai refers
to the i:th matrix.

2.1 Introduction

Given a set of training data, a machine learning algorithm builds a math-
ematical model that can be used to perform predictions on unseen data.
In this work we assume a standard supervised learning setting, where we
are given an input space X = <d and output space Y = <e and a ran-
dom sample D of examples {(xi,yi) : i = 1 . . . n} generated independently
and identically (i.i.d) from some unknown joint probability distribution P
over X × Y. Training inputs are multi-dimensional vectors in which each
component represents feature values that have been collected, measured or
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produced. The output for each example might be a single real or binary
value, or a vector of such values.

The aim of learning is to infer such a hypothesis that is optimal with
respect to a given error measure L and the probability measure P . In this
work, we restrict our considerations to the set of linear functions of the
form Wx, where W ∈ Re×d. Finding the optimal linear functions can be
expressed as the following minimization problem:

W∗ = argmin
W∈Re×d

∫

X×Y
L(Wx,y)dP (X × Y), (2.1)

In practice we can never evaluate this, but rather use instead the empirical
risk measured on the training set.

W∗ = argmin
W∈Re×d

n∑

i=1

L(Wxi,yi). (2.2)

As an important special case of this setting, we will consider also single task
prediction problems, where e = 1 and instead of the matrix W we store the
coefficients of the linear model in column vector w ∈ Rd.

2.2 Least-squares

First, let us consider single-task regression with the least-squares loss (y −
xTw)2. One of the most popular methods used to estimate the coefficients
(see e.g. (Hastie et al., 2001)) is the method of least-squares (LS), where
the aim is to minimize the residual sum of the squares. Let X ∈ Rn×d be a
matrix containing the feature representation of the inputs in the training set,
where n is the number of inputs and d is the number of features. Moreover,
let y ∈ Rn be a vector containing the labels in the training set. The least-
squares error is

J(w) = (y −Xw)T (y −Xw). (2.3)

The residual error can now easily to be minimized by differentiating J(w)
with respect to w and setting the derivative to zero, resulting in the solution

w = (XTX)−1XTy. (2.4)

Linear regression can also be used for classification. For example, let
y be a binary output so that -1 and +1 encode the two classes. Further,
let the predicted output be ŷ. Now the predicted real-value output can be
categorized to the class value according to the formula:

K =

{
−1 if ŷ < 0

+1 if ŷ ≥ 0
,

where K denotes the output of the classification task.

6



2.3 Norms

Norms are often used to regularize the risk in order to achieve lower com-
plexity models that avoid over-fitting.

Definition 1 The norm of vector w is a real number, denoted ‖w‖, that
satisfies the following properties (generalizes to matrices):

1. Non-negative: ‖w‖ ≥ 0.

2. Positive: ‖w‖ = 0 ⇐⇒ w = 0.

3. Homogeneous: ‖α ·w‖ = |α| · ‖w‖ for all complex scalars α.

4. Triangle inequality: ‖w1 + w2‖ ≤ ‖w1‖+ ‖w2‖.

A related concept popular in machine learning, that is however not a
proper norm, is the so-called zero-norm ‖·‖0, that returns the number of
non-zero components of the vector. It is defined as

‖w‖0 = |{wi 6= 0, i = 0, . . . , d}| . (2.5)

2.3.1 Vector norm(s)

Vector norms are often used in single task problems to introduce sparsity
in the coefficients of the model. The most used vector norms are Euclidean
norm also known as l2-norm, denoted by ‖·‖2, which is defined as

‖w‖2 =
√

wT ·w, (2.6)

Manhattan norm or l1-norm

‖w‖1 =
d∑

i=1

|wi| , (2.7)

and l∞-norm
‖w‖∞ = max

1≤i≤d
|wi| . (2.8)

2.3.2 Matrix norm(s)

The matrix norm is an extension to the vector norm. Matrix norms are
applicable as regularizers when predicting multiple outputs. One of the
most useful matrix norms is the Frobenius norm:

‖W‖F =

√√√√
e∑

i=1

d∑

j=1

w2
ij . (2.9)
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The combined norm (matrix norm) l1,∞ is used to encourage sparsity simul-
taneously for the multiple tasks in many of our baseline experiments.

l1,∞ =
d∑

j=1

‖W:,j‖∞. (2.10)

The other popular combined norm to be used to couple tasks together and
thus introduce sparsity in matrices is l1,2-norm, which can be presented
equivalently as follows:

l1,2 =
d∑

j=1

‖W:,j‖2. (2.11)

2.4 Regularized least-squares

Ordinary least-squares is prone to overfitting. It’s well known in the theory
of machine learning that shrinking the coefficients provides a remedy for this
problem. This can be achieved by using norms to penalize the model coef-
ficients. Two of the most popular regularized methods are ridge regression
and lasso, which are regularized by the l2 and l1 norms, respectively.

2.4.1 Ridge regression

By adding a new term into the objective function J for LS, we get the l2-
regularized least-squares problem also known as ridge regression (see e.g.
Hoerl and Kennard (1970))

J(w) = (y −Xw)
T

(y −Xw) + λw
T
w, (2.12)

where λ is the regularization parameter which controls the trade-off of em-
pirical risk and the amount of shrinking.

The minimizer to this objective can easily be found by taking the deriva-
tive and setting it to zero analogously to unregularized least-squares. Thus,
we get the solution

w = (X
T
X + λI)−1X

T
y, (2.13)

where I is an identity matrix.

2.4.2 Lasso

Lasso is an l1-constrained method, introduced by Tibshirani (1994), for
sparse variable selection, also known as basis pursuit (Chen et al., 2001)
in the area of signal processing. Lasso shrinks the coefficients of the linear
model similarly to ridge regression, additionally it also tends to increase the
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number of zero coefficients in the model thus introducing sparsity. Objective
function J for the lasso is

J(w) = (y −Xw)
T

(y −Xw) + λ‖w‖1. (2.14)

Unlike ridge regression lasso has no closed form solution. Computation
of the solution to the Eq. (2.14) is a quadratic programming problem. There
exist efficient algorithms to solve this problem such as least angle regression
(Efron et al., 2004), and coordinate descent, for instance.

2.5 Multiple tasks

Many of the machine learning methods in academic research address prob-
lems which contain only one binary label or real-valued target. In general,
real-world problems are more complex in nature. The outputs can con-
sist of vectors of target values, and more generally, one may want to solve
several related yet separate prediction tasks simultaneously. Further, some-
times a problem is easier to solve by dividing it into smaller pieces and then
solve all the sub problems separately. We present different transformation
approaches that allow dividing problems with multiple tasks into several
simple single-task problems that can be solved with conventional methods.

2.5.1 Multi-class problem

Multi-class classification refers to the setting where each example belongs
to exactly one of several different classes. For example, hand-written digits
have to be classified to exactly one class (0-9). The goal is to learn a function
which will correctly predict the classes for new inputs. Formally, let L denote
the set of classes. If |L| = 2, then the learning problem is called binary
classification problem. In case of |L| > 2, we are referring to multi-class
classification problem.

Multi-class problems can be transformed to multiple binary classification
problems by using the one-vs-all method. Other methods also exist, but
one-vs-all has been shown to be a very competitive approach (Rifkin and
Klautau, 2004). As a result of transformation, there are |L| independent
binary classification problems to be solved. For new data, the class with the
highest predicted value is selected.

2.5.2 Multi-label problem

In real-world situations, one often encounters settings where several labels
may be associated with each input. For example, the same document can
belong to many different categories (sport, news, animal). Such prediction
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problem is called multi-label classification (Tsoumakas et al., 2010). Anal-
ogously, one may consider prediction tasks with real-valued targets, called
multi-target regression (also known as multivariate or multi-output regres-
sion).

There are a wide variety of applications in the area of multi-label classi-
fication. For instance, Trohidis et al. (2011) consider the multi-label task of
identifying emotions in music; in scene classification (Boutell et al., 2004) the
task is to categorize images into semantic classes such as beaches or sunsets;
genes are associated with a set of several functional classes in bioinformatics
(Elisseeff and Weston, 2001).

There are two main approaches to solving multi-label problems, prob-
lem transformation methods and algorithm adaptation methods. Two of
the most popular transformation methods are binary relevance (BR) and
label power-set (LP) method, both of which transform the original prob-
lem to smaller binary problems. Whereas BR divides multi-label problems
into single-task problems, one task per label, LP creates binary single-task
problems for each label combination. BR ignores possible interactions be-
tween the labels due to independently learned predictors, whereas LP is
computationally expensive due to the exponential number of possible label
combinations, and it is sensitive to a small amount of data. While learning
the model for each label or label combination, the data matrix is the same for
each of the tasks. All the tasks can be solved by using conventional methods
developed for single-task classification. Given new data, each model predicts
labels separately. The other major approach to solving multi-label problems
is called algorithm adaptation. As examples of such algorithms, we mention
multi-label extensions for the k-nearest neighbors (Zhang and Zhou, 2005)
and decision trees (Clare and King, 2001).

Multi-label classification requires different evaluation measures than con-
ventional single-label classification, because predictions can be partly cor-
rect meaning that a few of the labels can be associated correctly with an
input and the rest are not. The evaluation measures are considered to be
divided into two categories, example-based (Hamming loss, accuracy, etc.)
and label-based (micro-precision, micro-recall, etc.) measures (Tsoumakas
and Vlahavas, 2007; Nowak et al., 2010; Madjarov et al., 2012).

2.5.3 Multi-task problem

Multi-task learning (Caruana, 1997) is a setting, that concerns several sepa-
rate tasks to be solved simultaneously, meaning that all the tasks have their
own training data but they share the feature space. Multi-task problem is a
generalization of the multi-label problem and the multi-class problem. For-
mally, we are given the input space X and the output space Yl, and several
random samples Dk, k = 1 . . . e of examples {(xk

i ,y
k
i ) : i = 1 . . . nk} gener-
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ated from some unknown joint probability distributions P1, . . . , Pe, where
nk denotes the number of examples in sample Dk and e denotes the number
of tasks. The empirical risk over the training sets is defined as follows:

e∑

l=1

nl∑

i=1

L(Wlxl
i,y

l
i). (2.15)

In this thesis we build linear models for each of the tasks so that each model
shares the same subset of features.
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Chapter 3

Costs of predictive models

This chapter motivates the importance of cost-sensitive machine learning
by presenting several different cost types (see Turney (2000); Krishnapuram
et al. (2011)) that should be considered during a construction of a mathe-
matical model from data and using it to predict on unseen data. We consider
application scenarios that result in different types of prediction costs. Fur-
ther, we show what type of sparsity patterns minimizing these costs leads
to, when using linear models.

3.1 Multiple linear models

In this thesis, we consider linear models that relate the outputs to be pre-
dicted to input features (see Section 2.1). Various types of multi-task learn-
ing problems are considered, including multi-class, multi-label or multi-
target problems that are transformed in our considerations into multiple
single-task problems. Thus the word task, corresponds to a single value to
be predicted, either a binary class label or a real number. The coefficients
of the linear models are stored in the matrix W so that rows and columns
correspond to tasks and features, respectively (see below).

W =




coefficients f1 f2 . . . fd

task1 w11 w12 . . . w1d

task2 w21 w22 . . . w2d
...

...
...

. . .
...

taske we1 we2 . . . wed




A linear model containing just a few non-zero coefficients, is said to be
sparse. Sparsity of the linear model is often seen to be a desirable prop-
erty because having fewer coefficients makes the model easier to interpret.
Moreover, sparse models are less prone to overfitting than dense ones. In
this thesis, we however concentrate on the third advantage of sparsity, that
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is, the cost reduction. All redundant or irrelevant features in the model
increase the cost of prediction. Next, we consider different types of costs
associated with making predictions, and the types of sparsity patterns in W
that allow lowering such costs.

3.2 Prediction cost

Once the linear models are learned and the relevant features are selected
from the set of candidate features, all coefficients in W corresponding to
the selected features are fit to the training data and the rest are set to zero.
The final models can then be employed for prediction by multiplying them
with the feature vector of a given input x. The feature values required in
the input vector x may originate, for instance, from some device, such as
a temperature sensor embedded into a mobile phone, a blood tester in a
hospital or a satellite up in the sky sending humidity data down to Earth
for some weather forecast system, et cetera. Accordingly, one may have to
pay a price for acquiring the feature values in prediction time. We refer to
this cost as feature cost and the total prediction cost is the sum of feature
costs of all selected features. These costs can be reduced by selecting a
small number of features or by selecting only inexpensive features. However,
removing relevant but expensive features from the model may lead to a
lower prediction performance. Therefore, one has to find a suitable trade-off
between prediction performance and cost (Yang and Honavar, 1998; Shalev-
Shwartz et al., 2010; Min et al., 2011).

Example 1 Consider a smart device that calculates calorie consumption
of the user during exercise. Possible data sources include sensors embed-
ded to the device (accelerometer, barometer, GPS, temperature sensor, heart
rate sensor etc.) or components for inputting questionnaire data (sex, age,
weight, etc.). The task is to determine such (software and hardware) com-
ponents that allow predicting calorie consumption as accurately as possible,
while staying under a given budget limit on the total cost of the components.

Example 2 Consider a doctor providing diagnosis for a patient. There are
many possible tests to choose from, each having some cost. These include
questionnaires, where the doctor asks some preliminary questions from the
patient, blood tests, heart rate monitoring, medical imaging scans etc. The
doctor has to choose which tests would be the most useful for making a
reliable diagnosis, while avoiding unnecessary and too costly tests. Moreover,
a doctor might want to screen for several possible diseases based on same
tests.

In Example 1, the features are derived from the sensors embedded into
mobile devices, whereas in Example 2 the features are measured in the medi-
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(a)

(b) (c)

one-to-one

one-to-many

many-to-many

feature
extractor

Figure 3.1: Three settings

cal tests done for the patient. We refer to a source that generates features as
feature extractor and by feature extraction we refer to the procedure, where
such extractors are used to obtain feature values. Feature extractors may be
mapped to the generated features in various ways (three such scenarios are
presented in Figure 3.1). In the first setting (a), each extractor generates ex-
actly one feature (one-to-one mapping). Setting (b) presents a setup where
one extractor produces two or more features (one-to-many mapping). As an
example, consider a group of related features that are derived from the same
sensor signal. The last setting (c) shows an approach (fusion, many-to-many
mapping) where several extractors may produce each feature. The many-
to-one mapping is not separately considered, as it can be mapped to the
one-to-one setting. The prices of the extractors are referred to as extractor
costs, whereas the costs of using the extractors are referred to as extraction
costs. The extractor cost has to be paid only once, so it can be considered
as an initial investment to be able to make predictions. In contrast, the
extraction cost must be paid every time a prediction is done.

In this thesis we assume that there always exists a budget, k, restricting
the allowed cost of the prediction. Depending on the application, the budget
may be set on extractor or extraction cost. However, the training budget
is assumed to be unlimited. It is common in industrial applications that
development costs are marginal compared to the costs that will occur when
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the produced model is deployed. Considering Example 1, the cost of creat-
ing prototypes that may include many expensive sensors most of which are
later discarded is insignificant compared to the costs that occur when the
final products are mass produced. Similarly, considering Example 2, when
designing a new diagnostic method we may perform a large array of tests,
whereas costs must be managed when applying the model in hospitals.

3.3 Separate cost

Let us recall (see Section 3.1), that we have trained multiple linear models,
whose coefficients are stored as rows in matrix W. Separate cost represents
the cost corresponding to the average number of non-zero coefficients over
the tasks, that is, the average number of features needed in prediction.
Formally, the separate cost is defined as

Cseparate(W) =
1

e

e∑

t=1

‖Wt‖0, (3.1)

where e ∈ N is the number of the tasks and ‖·‖0 is the l0-norm of the matrix
row Wt.

Figure 3.2 presents four different distributions of the coefficients over
the tasks in W. Clearly, non-zero coefficients are distributed freely in (a)
compared to non-zero coefficients in (b), where one can recognize some type
of ordering. Despite of different distributions of the non-zero coefficients,
both matrices have the same separate cost (Cseparate(W) = 2).

Separate cost is a reasonable assumption, whenever extraction cost is
considered, and predictions are needed only for a single task at a time. The
cost can be easily optimized, by solving each task independently as a sepa-
rate problem. However, the cost is not realistic when making simultaneous
prediction with multiple models, or when considering extractor costs. For
these cases, we introduce next the concept of a joint cost.

3.4 Joint cost

Joint cost represents the cost corresponding to the number of columns of
which contain at least one non-zero coefficient. Formally, the joint cost is
defined by means of combined l0,∞-norm as

Cjoint(W) = |{j | ∃i, wi,j 6= 0}| , (3.2)

where W is the coefficient matrix over tasks.
Again, consider the matrices in (a) and (b) in Figure 3.2, where both

matrices contain the same number of non-zero coefficients but the joint cost
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Figure 3.2: Four alternative ways to select features from the candidate set
of {f1, f2, f3, f4, f5} for four tasks. The group structure of the features is
known in advance in (c) and (d), that is {G1, G2, G3}. The rows correspond
to tasks and the columns correspond to features. Shaded squares represent
non-zero coefficients, whereas empty squares represent zero coefficients.

is different. In Figure 3.2 the joint cost for the matrix in (a) is Cjoint(W) = 4,
whereas the cost of the matrix in (b) is Cjoint(W) = 2 by means of the joint
cost. In general, the joint cost is minimized by selecting the same features
for all the tasks.

The joint cost is a natural choice when considering the extractor costs
of prediction, since each feature that needs to be generated for at least one
task needs also an extractor. For extraction costs, joint cost corresponds
to applications where predictions are always made simultaneously for all
the tasks. This setting appears for example in standard multi-class, and
multi-label classification, as well as multi-target regression settings.
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Figure 3.3: Figure shows an example of costs for six features. On the left
(a), every single feature is associated with a cost, whereas on the right (b)
each feature group {f1, f2, f3}, {f4, f5} and {f6} is associated with a cost.

3.5 Group cost

In some applications several features may be derived from the same ex-
tractor resulting in a shared cost for the whole group of features (see Fig-
ure 3.3). We extend the definitions of separate cost for the group structure
by defining group separate cost as the average number of non-zero groups
of coefficients over the tasks. Equivalently, group joint cost refers to the
cost corresponding to the number of column groups that contain at least
one non-zero coefficient. In order to formalize the above notions, we assume
that features are divided into disjoint groups Gi ⊂ {1, . . . , d}, i = 1, . . . , J
and Gi ∩ Gj = ∅, i 6= j, where d is the number of features and J is the
number of the groups. Now, group separate cost is given as follows:

Cgroup separate(W) =
1

e

e∑

t=1

|{Wt,Gi 6= 0, i = 1, . . . , J}| . (3.3)

and group joint cost as follows:

Cgroup joint(W) = |{Gi | ∃t,Wt,Gi 6= 0}| , (3.4)

where W is the matrix of coefficients over the tasks.
The average group separate cost for both matrices in (c) and (d) in

Figure 3.2 is Cgroup separate(W) = 1. On the other hand, the group joint cost
in (c) is Cgroup joint(W) = 2 and in (d) it is only Cgroup joint(W) = 1.
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Figure 3.4: An example grid consisting of 4× 5 = 20 elements referred to as
Cartesian features (Figure from Publication VI).

3.6 Cartesian cost

In this section, we consider a novel cost type (Publication VI) for linear
predictive models that has to be paid in settings where features are associ-
ated with the Cartesian product of extractor sets. We assume that there are
two disjoint extractor sets, say the row set and column set as illustrated in
Figure 3.4. The idea can also be generalized to more than two sets but this
is not required in our practical consideration. It requires one extractor from
both sets to extract a single feature value and each feature is associated with
a different pair of feature extractors. These features are referred here to as
Cartesian features.

Definition 2 The Cartesian product refers to a mathematical operation that
creates a product set from two or multiple sets. The Cartesian product R×C
for two sets R and C is given as

R× C = {(r, c)|r ∈ R, c ∈ C},

where (r, c) is an ordered pair.

The terminology related to Cartesian cost is explained in the example in
Figure 3.4. The grid plots two separate sources, where the elements of the
set R corresponding rows and the elements of set C corresponding columns.
Moreover, the elements of the sets R and C are referred to as row indices and
column indices, respectively. The ordered pairs (ri, cj), where i = 1 . . . 4 and
j = 1 . . . 5 in the grid we refer to as Cartesian features. Thus, the number of
Cartesian features is |R||C|, resulting in 4× 5 = 20 features in the example.

This setting gives rise to the Cartesian feature selection problem, whose
search space consists of tuples (P,Q) such that P ⊆ R, Q ⊆ C and |P |+|Q| ≤
k that satisfy budget k. Alternatively, a budget constraint could be given
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Figure 3.5: Two Cartesian cost profiles.

separately for both of the sources, that is |P | ≤ k1 and |Q| ≤ k2. The
problem is to find such a tuple, whose corresponding feature set determined
by P × Q ⊆ R × C maximizes the prediction performance. The Cartesian
cost for the predictor is defined as |P | + |Q|, thus assuming equal costs for
all the indices.

Example 3 Let us consider the problem of identifying the concentration
of different metal ions in water. Our goal is to minimize the number of
different modulator types and the number of different dilution ratios, that
both are associated with different costs. Thus, the aim is to find, subject to
pre-given budget constraints, a subset of both modulators and dilution ratios
to allow predicting the concentration as accurately as possible.

More generally, Cartesian feature selection applies to pairwise learning
problems, where joint features for pairs of objects are often constructed from
the tensor product of their feature vectors (see e.g. Pahikkala et al. (2013,
2015)).

Figure 3.5 shows two Cartesian cost profiles as an example. On
the left, all the row indices are selected and one column index,
thus giving a set of four features as a result of Cartesian product
{r1, r2, r3, r4} × {c2} = {(r1, c2), (r2, c2), (r3, c2), (r4, c2)}. Similarly, for
the profile on the right we get Cartesian product {r1, r3, r4} × {c2, c4} =
{(r1, c2), (r3, c2), (r4, c2), (r1, c4), (r3, c4), (r4, c4)}. The costs of both profiles
are |4|+ |1| = |3|+ |2| = 5. While the profiles have equal costs, the number
of features in the final predictors are different. In most cases larger number
of features results in better prediction performance thus favoring the latter
cost profile.
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3.7 Related costs

In addition to prediction costs, costs related to obtaining training data have
also been considered in related literature. Here we give a brief overview of
such cost types, while the topic is left out of scope for this thesis.

The more representative training data are available, the better the model
in general can be induced. However, training data does not come for free,
because training inputs typically consist of a number of feature values that
may be expensive to acquire. We refer to such costs as training input costs.
Sometimes the outputs are missing as well, and need to be acquired with a
cost. We refer to such costs as training output costs. We refer to input and
output costs together as training data costs. In many applications there is
no need to retrain or adjust the final model once it has been built. In such
settings training costs can be considered as one-time costs that are marginal
compared to prediction costs, which have to be paid every time the model is
used to predict. Therefore, our focus in this thesis is only on the prediction
costs.

Instance completion active feature-value acquisition focuses on the set-
ting where whole feature vectors are acquired with a cost during learning.
Saar-Tsechansky and Provost (2004) proposes an algorithm that finds most
informative training samples based on the variance in probability estimates.
Zheng and Padmanabhan (2002) try to estimate which inputs and how many
should be acquired to optimize the accuracy of the model. Active feature ac-
quisition tries to select individual feature values for training inputs such that
most improve the predictive accuracy of trained model (Saar-Tsechansky
et al., 2009; Melville et al., 2005). Lizotte et al. (2003) consider a setting
related to active feature-value acquisition but the cost of selected feature
values is restricted by a given budget while active feature acquisition algo-
rithms use some other stopping criteria such as accuracy.

Sometimes outputs rather than feature values of inputs are missing and it
is costly to acquire them. Active learning (Cohn et al., 1994) is a technique
which focuses on solving this kind of problems. Learning algorithm can
ask outputs for the examples but it has to pay a price for each of them.
As an example application, we may consider a pattern recognition problem
where animals are identified from photos. For a human being labeling the
data, it takes time to identify the object from the picture and then correctly
identify the species of the animal. Often in tasks, where automatic labeling
is not possible but rather human interaction is needed, labeling can be very
expensive. In these cases active learning offers a way to find those examples
whose labeling is the most important to obtain.
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Chapter 4

Novel cost-sensitive feature
selection algorithms

In this chapter we present an overview of the feature selection problem, and
the most important conventional approaches for solving it (filter, wrapper
and embedded). We present several novel greedy search-based methods that
are designed to solve the cost-sensitive feature selection problems introduced
in Chapter 3. In addition, we provide lasso solutions that are employed as
a baseline in our experiments. Moreover, we discuss about the findings of
our experiments, analyzing the weaknesses and strengths of the algorithms.
Next, we introduce feature selection algorithms for the Cartesian greedy
forward selection. Finally, we briefly consider the problem of cost-sensitive
feature selection for learning-to-rank problems.

4.1 Introduction to feature selection

Feature selection (see John et al. (1994); Blum and Langley (1997); Guyon
and Elisseeff (2003)) also known as feature subset selection is a process that
aims at selecting relevant features from the pool of candidate features, thus
discarding irrelevant or redundant features. Reducing the feature space for a
given problem is seen to be important for a number of reasons. First, it may
prevent over-fitting (see e.g. Reunanen (2003)) that is a common problem
when the model is too complex containing too many features compared to
the size of the training data. In general, overly complicated models tend to
fit the training data very accurately but fail to generalize to new unseen data.
Second, the large number of features means that the model is more difficult
to interpret for human experts. Finally, due to the costs associated with the
features, the model should be kept as compact as possible when it comes
to the number of features in order to minimize the prediction costs, which
is our main focus in this thesis. Feature selection methods are commonly
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Figure 4.1: An example of feature selection lattice.

divided into three categories (Saeys et al., 2007): filter, wrapper (Kohavi
and John, 1997) and embedded methods.

Formally, in a conventional feature selection task, we are given a set of
available features Z from which to identify the subset of features S ⊆ Z. Let
d be the number of available features in the set Z and x = (x1, x2, . . . , xd)
be the feature vector of an example. Each of the subset of the features can
now be encoded into binary vector f of size d (we call it as a feature boolean
vector) so that fi = 1 if i:th feature is selected and fi = 0 otherwise. The
search space of the feature selection problem can be represented in the form
of a lattice, where subsets of the set Z are marked as nodes and there is a link
between the nodes if nodes are immediate subsets of each other. Figure 4.1
shows an example search lattice for four features, where the best subset
in terms of given evaluation measure is indicated as a rectangle meaning
that the node in question gives the best prediction performance over all the
subsets. Each node at the same level in the lattice contains an equal number
of features, and the number of different combinations of subsets in level i is(
d
i

)
. Therefore the total number of nodes (or subsets) in the lattice is:

d∑

i=0

(
d

i

)
= 2d.

24



The best subset can be found by applying an exhaustive search that travels
through all the nodes in the lattice. For example in Figure 4.1, the number
of features is four (d = 4) and thus there are only 24 = 16 subsets in the
superset. In this case, it is convenient to go through all the nodes and
determine which one results in the best performance. However, listing all
the subsets is an infeasible task already for very modest values of d because
the number of subsets increases exponentially with respect to d. The search
problem of subsets is said to be NP-complete (Ullman, 1975), meaning that
there is no known polynomial time algorithm for solving the feature selection
problem in general. Branch and bound (Narendra and Fukunaga, 1977) is
an optimal algorithm if a given evaluation measure J is monotonic, meaning
that J(S1) ≥ J(S2) for any two subsets S1 and S2 and S1 ⊆ S2. Still, the
worst case runtime of branch and bound is also exponential.

As pointed out in Chapter 3, features do not usually come for free but
there is a cost associated with them, such as measuring cost or acquisition
cost. We assign a cost to every feature in the set Z and thus define a feature
cost vector c so that ci corresponds to the cost of i:th feature. Whereas in
conventional feature selection problems one aims at optimizing just predic-
tive performance of the model, cost-sensitive feature selection heuristics are
used to search such solutions where not just the predictive performance is
maximized but also the feature costs are minimized. In cost-sensitive prob-
lems there is often given a budget constraint, meaning that the sum of the
costs of selected features needs to be below a given budget. That is, f ·c < k,
where k is the given budget limit. In this thesis, we make the simplifying
assumption that the costs are equal for every feature (c1 = c2 = . . . = cd).
In practice, the assumption of equal costs means that the budget constraint
corresponds to the number of features allowed in the learned model.

4.1.1 Filter methods

In the filter approach, the selection is done as a pre-processing step before
learning, typically by computing univariate statistics such as information
gain, mutual information or χ2 on feature-by-feature basis. The main ad-
vantages of the approach are efficiency and ease of implementation. The
main disadvantages are the inability to take account of interactions between
the features, remove redundant features, or take into account properties of
the learning algorithm which is subsequently trained on the features.

More advanced multivariate filter methods have also been developed (see
e.g. Hira and Gillies (2015)). Correlation-based feature selection methods
assume that features in a relevant subset correlate with the class label, but
are uncorrelated with each other (Hall, 2000), whereas information gain
methods determine how common a feature is in a class compared to other
classes.
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4.1.2 Wrapper methods

In the wrapper model (Kohavi and John, 1997), features are selected through
interaction with a learner training method. Here, the power set of features is
searched over. A new predictor is trained during each search step using the
corresponding feature subset and an estimate of its predictive performance
is used to measure the quality of the subset. Wrapper techniques consist of
three major components:

(i) Base learning algorithm around which the feature selection algorithm
is wrapped

(ii) Search strategy over the power set of features

(iii) Heuristic for assessing the goodness of the feature subsets.

Wrapper methods have been proposed as a way to overcome the limitations
of the filter approach. On the other hand, the biggest disadvantage of the
wrapper methods is considered to be their computationally inefficiency.

Many different approaches are used as the base learning algorithm that
works as a black-box method in wrappers. One of the most popular cate-
gories is a wide variety of different kinds of neural networks (see e.g. Hornik
et al. (1989)) that are easy to use though they are computationally not that
efficient or easy to interpret. Common choices include also random forests
(Breiman, 2001), k-nearest neighbors (Zhang and Zhou, 2005), and linear
regression.

The wrapper type of feature selection methods require a search heuristic
when traversing through possible feature subsets. The most commonly used
search heuristic is greedy forward selection (see e.g. Zhang (2009)) that adds
one feature at a time to the set of selected features, but never removes any
features from the set. Greedy backward elimination starts with all features
in the selected feature set and then drops off the worst feature at each step.
Genetic algorithms (Holland, 1987) provide more sophisticated approaches
for searching for the best subset of features.

In addition to the search strategy, wrapper methods require an approach
for assessing how good the feature subsets under consideration are. This is
done by estimating the prediction performance of a model trained on the
considered features. Measuring the prediction performance on the training
set is known to be unreliable because of overfitting. If there are lots of data
available, one can divide data in training, validation and test sets, where
the test set is used to assess the test error. In many practical problems,
data is not available or producing it can be expensive. Therefore, statistical
re-sampling techniques are often used in model validation, such as cross-
validation or the bootstrap (Kohavi, 1995).
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Cross-validation is an approach where data is divided into P parts about
equal size folds. Each fold in turn is used as validation set and the rest
of the folds form a training set. The P -fold cross-validation estimate for
the prediction error is an average of these P errors. Leave-one-out (LOO)
cross-validation is a special case where each example in turn is left out of
the training set and used for testing. When using cross-validation error as
a selection criterion, one cannot use the same cross-validation estimate to
evaluate the prediction performance of the learned model. This effect has
been called in the literature selection bias. Using a separate test set, or so-
called nested cross-validation, where inner cross-validation is used to select
features and outer for performance evaluation, are the standard approaches
for addressing this problem (Varma and Simon, 2006). We follow these
approaches in all our experiments.

4.1.3 Embedded methods

Embedded methods refer to such feature selection approaches that are learn-
ing algorithm specific (Lal et al., 2006). Lasso (see Section 2.4.2) is among
the most popular embedded methods. Due to the incorporation of the l1
norm regularization in its objective function, lasso tends to set some of the
coefficients down to zero. Thus the method not only shrinks the coefficients
like ridge regression but also carries out feature selection at the same time.

Many variants of lasso are proposed in order to improve some of its weak-
nesses and restrictions. Zou and Hastie (2005) introduced a method called
elastic net that combines lasso and ridge regression in order to create spar-
sity and shrink the coefficients of the linear models. Elastic net encourages
a grouping effect that leads to a model where highly correlating features are
either all selected or discarded. Elastic net outperforms lasso particularly
in the settings that contain a lot of features compared to the number of ex-
amples. Group lasso (Simon et al., 2013; Meier et al., 2008) is applicable in
such settings where a feature grouping is known in advance. Sometimes the
groups are overlapping, a setting for which the the so-called overlap group
lasso (Jacob et al., 2009) may be applied.

4.1.4 Related methods

Dimensionality reduction methods (Roweis and Saul, 2000), such as prin-
cipal component analysis (Tipping and Bishop, 1999), singular value de-
composition (Rokhlin et al., 2009) and Sammon filtering (Kim et al., 2009)
are related to feature selection because they transform the original feature
space to a lower-dimensional one. However, when making predictions one
still needs the original features to transform the new data to the reduced
representation. Therefore, using dimensional reduction methods does not
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lower the cost of the prediction because all the original features are required
anyway.

4.2 Feature selection for multiple tasks

In this section we introduce algorithms for performing feature selection un-
der separate, joint and group cost constraints that were introduced in Sec-
tions 3.3, 3.4, and 3.5. Further, we assume that multi-class (see e.g. Sec-
tion 2.5.1) and multi-label (see e.g. Section 2.5.2) problems are transformed
in a pre-processing step into multiple single-task problems using the one-vs-
all method. The distributions of non-zero elements in the coefficient matrix
W, whose rows are indexed by the tasks, and columns by the features, are
called sparsity patterns (see Figure 3.2 and Publication V).

4.2.1 Separate feature selection

Separate feature selection is a process where feature selection is performed
separately for all the tasks so that the individual training processes do not
share any knowledge between each other. Therefore, all the tasks can be
solved separately using conventional methods created for single-task prob-
lems such as greedy forward selection for least-squares or lasso. In this thesis,
we place our main emphasis on greedy forward type solutions, though lasso
is considered as a baseline method in many of our experiments.

Greedy solution

First, we show how one can solve tasks separately thus creating sparsity
Type I (see Section 3.3) in the coefficient matrix W. This can be achieved
by using Algorithm 1 separately for each task. The algorithm implements
the heuristic called greedy forward selection. The algorithm corresponds to
a wrapper type feature selection heuristic that starts from the empty set of
features and adds features one by one into the set of selected features until
the budget constraint is reached.

Algorithm 1 greedy forward selection

1: S ← ∅ . The set of selected features.
2: while |S| < k do
3: b := argminr∈{1,...,d}\S

{
L(X:,S∪{r},y)

}
. Find the best new feature.

4: S ← S ∪ {b}
5: w← A(X:,S ,y) . Update coefficients.

Let S be the set of selected features, initialized as an empty set. The
size of S will never decrease because the greedy forward search heuristic
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always adds a new feature into the set, but never removes selected features.
Moreover, let k denote the budget limit. By L(�) we denote a procedure
that computes the cross-validation error for a model trained using the data
matrix and output vector given as arguments. Finally, let A(�) be the proce-
dure that trains a final predictor using the selected features. It is assumed,
that the same learning algorithm is used both when computing the cross-
validation error, and when learning the final predictor. The while-loop is
repeated until budget constraint is fulfilled. In every iteration, the algo-
rithm goes through every feature, that has not yet been added into the set
of selected features, and calculates the cross-validation error. The feature
whose addition leads to the lowest error is selected to be included in the set
of selected features S.

The greedy forward selection algorithm requires a lot of computational
resources because the model has to be trained many times in order to esti-
mate the predictive performance during the cross-validation. Thus a naive
implementation will not scale to large problems. However, for ridge regres-
sion this can be done much faster. The greedy-RLS algorithm (Pahikkala
et al., 2010, 2012), combines a number of matrix algebra shortcuts such as
the Woodbury matrix identity for speeding up cross-validation and feature
addition, leading to a linear time algorithm. Further, Okser et al. (2013)
introduce a parallel version of greedy-RLS for selecting the most predictive
features from large datasets.

Lasso solution

Alternatively, type I sparsity can be induced by using the lasso approach
(see Section 2.4.2) that encourages sparse solutions by shrinking some of the
coefficients of the linear models down to zero depending on the adjustable
regularization parameter. Similarly as for the greedy method, separate fea-
ture selection problems can be solved by using the conventional lasso method
for every single-task problem separately, and then collecting the coefficients
into one sparse matrix.

There is no closed form solution to the lasso optimization problem, but
several efficient algorithms have been proposed to solve this objective. Wu
(1998) presented a cyclical coordinate descent algorithm as a solution to
this problem. The more effective algorithm that can be used to calculate
the entire regularization path faster than the earlier method was presented
by Friedman et al. (2007).

Previously Okser et al. (2014) have compared lasso and greedy-RLS for
solving single task feature selection problems on genome wide association
studies. They showed that for small feature set sizes greedy-RLS produced
more accurate models, while for larger feature sets the effect disappeared.
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4.2.2 Joint feature selection

Next, we consider a heuristic called joint feature selection where the aim is
to select a common set of features for a group of tasks simultaneously. We
introduce a feature selection algorithm that outputs models whose nonzero
coefficients are distributed according to sparsity pattern II, thus minimizing
the joint cost.

If the tasks are closely related, the joint feature selection may in some
cases even improve the prediction performance. However, it is not straight-
forward to formally define what is meant by ”related” (Dembczyński et al.,
2012). For example, previously the empirical findings in (Baxter, 1995;
Thrun, 1996) have validated the advantages of sharing knowledge between
the tasks while solving the problems. This is in the literature referred to
as transfer learning. Ben-David and Schuller (2003) consider a notation
of relatedness between learning tasks, thus attempting to present a formal
framework for the relatedness of the tasks. However, if the tasks are too
dissimilar, transfer learning may lower the prediction performance.

Joint greedy forward selection

Joint greedy forward selection presented in Algorithm 2 is an extension to
the above-defined greedy forward selection. The algorithm selects a set of
features that is shared among all tasks. The only difference is in line 3 where
we calculate aggregated cross-validation error over all tasks and select the
feature whose addition minimizes it. The feature is then added into the
selected features set S and this is repeated until budget limit k is reached.

The idea of greedy joint feature selection for multi-label data was first
introduced in Publication II, where it was compared to separate greedy selec-
tion based baseline methods. In Publication III, the approach was extended
to genuine multi-task learning problems, where different tasks may have also
different training sets. Publication IV extends the results of Publication II
by introducing a highly efficient linear time embedded training method for
the multi-label greedy-RLS algorithm, for performing joint greedy selection.
Further, a detailed experimental comparison to the multi-task lasso method
is provided.

Multi-task lasso

Multi-task lasso is an extension of single-task lasso, where the l1 regulariza-
tion is extended to a multi-task setting (Turlach et al., 2005). The objective
for multi-task lasso can be given as follows:

argminW

∑e
t=1 ‖yt −XtWt

T‖22 + λ
∑d

j=1‖W:,j‖∞. (4.1)

30



Algorithm 2 joint greedy selection

1: S ← ∅ . The set of selected features.
2: while |S| < k do

3: b := argminr∈{1,...,d}\S
{∑

t L(Xt
:,S∪{r},y

t)
}

. Find the best new

feature.
4: S ← S ∪ {b}
5: Wt ← A(Xt

:,S ,y
t), t = 1, . . . , e . Update coefficients.

A variety of optimization methods have been proposed for minimizing the
objective function (4.1). Among the most efficient is the blockwise coordi-
nate descent method of Liu et al. (2009), that was also used in our experi-
ments in Publication IV.

The regularizer in Equation 4.1 is referred to as combined norm l1,∞.
Alternatively, the l1,2 norm has also been used (see e.g Obozinski et al.
(2006)). More generally, any combined norm l1,q, where the choice of q
defines the amount of coupling effect among the tasks, may be used. The
larger q is, the more the tasks are tied to together (see Vogt and Roth
(2012)).

Experimental findings

In Publication II, we compared joint greedy forward selection (Method 3
in Figure 4.2) to two greedy forward selection baseline methods. Method 1
corresponds to separate feature selection, where the budget is divided evenly
between the tasks, and then features are selected independently for each
task. Method 2 selects features in the same way as Method 1, but after
selection all the models are re-trained on the union of features selected for
each task. In Figure 4.2, we present experimental comparison of the three
methods on the Scene multi-label data set (see Publication II). We plot the
budget size against the area under ROC curve (AUC), averaged over the
tasks and computed on a separate test set.

Clearly, in Figure 4.2 the joint feature selection (Method 3) outperforms
the separate feature selection (Method 1), and also slightly outperforms
Method 2. Similar results were seen on the other data sets, where joint
feature selection also outperformed separate one, while differences between
Method 2 and joint feature selection were not seen to be as substantial.
The results indicate that when subject to joint costs, one should enforce a
common set of features in order to obtain cost-wise predictors. With the
same cost one can have more accurate predictors, or conversely, equally
accurate predictors for lower cost.

A similar trend was also observed in Publication III, where we extended
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Figure 4.2: Performance curves on the Scene data (Figure from Publica-
tion II).

the joint greedy selection algorithm to the more general multi-task setting.
In this setting the training data may differ for each of the tasks, whereas
the aforementioned multi-label problems share the training inputs. We eval-
uated the performance of both joint and separate greedy methods on two
real-world datasets. Joint greedy selection outperformed both separate se-
lection methods clearly over all budget values.

In Publication IV we compared the multi-label greedy RLS approach
to the multi-task lasso, that is one of the most popular methods to induce
sparse multi-task models via l1,∞-regularization. Our method outperformed
lasso on the data sets over the whole budget range, and it clearly outper-
formed lasso particularly for small budget sizes.

Figure 4.3 (taken from Publication IV) plots performance curves on the
Scene data in terms of the Hamming loss (above) and the macro averaged
AUC (below) comparing multi-task lasso and multi-label greedy RLS al-
gorithms. First, one can see that the performance curves do not change
much after a small portion of the total budget is used. This indicates that
the Scene data set includes several redundant features that do not improve
the performance, that is, feature selection results in cost savings by means
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Figure 4.3: Performance curves on the Scene data over feature budgets
(number of features) with respect to Hamming Loss and Macro-averaged
AUC (Figure from Publication IV).

of fewer features in the predictive model. Secondly, the greedy algorithm
reaches the maximum performance earlier than the lasso algorithm, which
means that the greedy algorithm outperforms the lasso significantly with
the small budget values. Our results with the other datasets considered fur-
ther confirmed our hypothesis that one should favor greedy instead of lasso
particularly with small budgets.

We encountered a few practical problems when working with the lasso
approach. First, in order to find a sparse model corresponding to budget
constraint k (and the whole path from 1,2, . . . k − 1), one has to define
the correct grid of regularization parameters λi. For single-task problems,
there exists the LARS-algorithm (Efron et al., 2004) that allows solving
2.14 for all values λ ∈ [0,∞] that result in different number of non-zero
coefficients. However, for multi-task problems, we are not aware of similar
efficient algorithm. Warm start optimization methods can be used to slightly
speed up regularization grid search (Liu et al., 2009), but there is no known
path solution to exactly find the sparse models corresponding to a given
budget. Compared to lasso, the greedy algorithm has the advantage that it
provides the models corresponding to all the given budget sizes up to the
given budget constraint.
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4.2.3 Group feature selection

Group feature selection defines a heuristic where features are selected as a
whole group instead of individual features based on predefined division of
features into groups. In this thesis the groups are defined from the cost
perspective (see Section 3.5). Feature groups can be selected for each task
either separately or jointly.

Analogously to the consideration in Section 4.2.1, feature groups can be
selected separately for each task resulting in Type III sparsity. The costs
are associated with groups of features as described in Section 3.5. Separate
group selection analogously to the separate selection (Algorithm 1) given in
Section 4.2.1 is shown in Algorithm 3. The main difference to Algorithm 1
is that Algorithm 3 keeps track of the indices of the selected groups (F ).

Algorithm 3 greedy group separate feature selection

1: Gi ⊂ {1, . . . , d}, i = 1, . . . , J . Init the disjoint feature groups
2: F ← ∅ . The set of selected feature groups.
3: S ← ∅ . The set of selected features.
4: while |F | < k do
5: b := argminr∈{1,...,J}\F {L(X:,S∪Gr ,y)} . Find the best feature

group.
6: F ← F ∪ {b}
7: S ← S ∪Gb

8: W← A(X:,S ,y) . Update coefficients.

There are many l1-norm solutions that encourage Type III sparsity
group-wisely. Yuan and Lin (2006) propose a group lasso, group LARS
and group Non-negative Garrote that provide a model where some blocks
of coefficients are exactly zero. Kim et al. (2006) extended group lasso for
generalized linear models and it works for general loss functions. Further
extensions for lasso is presented in (Meier et al., 2008) which proposes group
lasso for logistic regression.

Joint group feature selection is done analogously to joint feature selec-
tion. This will lead to Type IV sparsity (Figure 3.2) in Section 3.5. Algo-
rithm 4 presents a greedy forward method for selecting features group-wisely
jointly for several tasks. It is an adaptation of Algorithm 2 thus extending
it to grouped features. There is no known implementation for lasso that
induces sparsity jointly in group-level for several tasks simultaneously.

4.3 Cartesian feature selection

The Cartesian feature selection problem, that is based on a real-world chem-
istry application, is considered in Publication VI. Instead of selecting directly
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Algorithm 4 greedy group joint feature selection

1: Gi ⊂ {1, . . . , d}, i = 1, . . . , J . Init the disjoint feature groups
2: F ← ∅ . The set of selected feature groups.
3: S ← ∅ . The set of selected features.
4: while |F | < k do

5: b := argminr∈{1,...,J}\F
{∑

t L(Xt
:,S∪Gr

,yt)
}

. Best new feature
group.

6: F ← F ∪ {b}
7: S ← S ∪Gb

8: Wt ← A(Xt
:,S ,y

t), t = 1, . . . , e . Update coefficients.

features, the key idea is to select feature indices from two distinct index sets;
the final features selected correspond to the Cartesian product of these sets.
The Cartesian cost is presented in detail in Chapter 3.6.

Algorithm 5 presents the Cartesian greedy forward selection method pro-
posed. Variables P ⊆ R and Q ⊆ C denote the selected indices for sources
1 and 2, respectively. The first feature is selected from the set of Cartesian
product, R × C, based on the lowest cross-validation error. Function J re-
turns the cross-validation error, taking as input the features that are formed
as a result of Cartesian product of candidate indices. After that, the algo-
rithm selects remaining feature indices either from set R \ P or C \ Q. On
each iteration, the index which gives the lowest cross-validation error will be
selected and added into selected feature set. Selection continues until given
budget k limit is reached.

The functionality of the Cartesian feature selection heuristic is described
with an example in Figure 4.4. The elements in the matrix present candidate
Cartesian features determined by the Cartesian product of two index sets,
R and C. At the beginning, the algorithm is initialized by searching the
feature that returns the lowest cross-validation error. In order to define the
first feature, one has to pay a cost equal to two because a feature index has
to be selected from both index sets at the beginning. While the following
steps always increase the cost by one, the number of new features varies
depending on which indices have already been selected. This can be seen
in step 3 (bottom left in the Figure 4.4), where selecting index c3 results
in selecting two features at the cost of one. Equivalently, in the bottom
right of the figure, selecting index c4 increases the cost budget by one, but
the number of the features increases by two. In general, the set of selected
features can be determined as a result of the Cartesian product of subsets
P and Q as {r1, r3} × {c1, c3, c4}. Adding a new index to set Q increases
the number of features by the factor |P |, and vice versa.

In Publication VI, we apply Cartesian feature selection to a novel chem-
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Figure 4.4: Top left: The algorithm is initialized by selecting first the feature
providing the lowest cross-validation error, in this case (r3,c1). Top right:
one row index is selected, now altogether two features have been selected.
Bottom left: one column is selected, now four features have been selected
e.g. the size of the set is increased by 2 for the price of a single index
addition. Bottom right: one additional column is selected, now six features
have been selected (Figure from Publication VI).

istry application of identifying metal ion concentration in drinking water.
This is seen as an important research problem, because contaminated wa-
ter is a significant health problem in developing countries. The proposed
system combines a number of modulators and liquid sample dilutions, and
a machine learning algorithm for assessing metal ion concentrations. The
problem was formulated as a Cartesian feature selection problem because
the features correspond to modulator-dilution combinations, both of which
are associated with costs. The goal was to minimize both the number of
modulators and dilutions while maintaining high prediction performance, in
order to find a low-cost solution. The findings in the Publication VI showed
that our Cartesian feature selection method was able to find relevant fea-
tures without reducing much the predictive performance of the model even
with low budgets.
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Algorithm 5 Cartesian greedy forward selection

1: R 6= ∅ . Index set 1
2: C 6= ∅ . Index set 2
3: (a, b)← argmin(r,c)∈R×C J((r, c)) . Initialize first index pair
4: P ← {a} . Set of selected indices from R
5: Q← {b} . Set of selected indices from C
6: while |P |+ |Q| < k do
7: a← argminr∈R\P J((P ∪ {r})×Q)
8: b← argminc∈C\Q J(P × (Q ∪ {c}))
9: if J((P ∪ {a})×Q) < J(P × (Q ∪ {b})) then

10: P ← P ∪ {a}
11: else
12: Q← Q ∪ {b}
13: Return P , Q

Figure 4.5 plots heat maps for metals ions (Cu and Ni) to be identified,
where the axes correspond to the modulator and dilution budgets, and the
color to cross-validated predictive performance. The bottom left corner
indicates the start of the feature selection process, whereas the top right
corner corresponds to the end of the process where all features have been
selected. The heat map is based on averaged results from a large number of
cross-validation experiments with different randomized splits for the data.
On different rounds of cross-validation, the selection process can take a
different route. Still, due to the greedy search criterion most of the budget
space is not covered.

At first, the more features are included into model, the better accuracy
is reached (the red color refers to higher accuracy values, whereas the blue
color refers the lower accuracy values). The best performance is reached
before the upper right corner where all the features are included. Thus, in
these experiments including too many features is seen to actually reduce the
predictive performance.

4.4 Feature selection for learning to rank

Traditionally, the most popular machine learning tasks have been classifica-
tion and regression in the area of supervised learning, clustering in unsuper-
vised learning, but lately ranking has gained popularity particularly in the
area of applications of information retrieval (Frakes and Baeza-Yates, 1992)
and recommender systems (Ricci et al., 2010).

Learning to rank problems contain a training set of lists of items that
are ordered, and the learning algorithm that fits the ranking model to the
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Figure 4.5: Heat maps for Cartesian feature selection on two metal ion data
sets (Figure adapted from Publication VI).

training data in a learning process. The goal is to find such a ranking
model that is able to rank accurately every unseen item list. In document
retrieval training data consist of a set of documents and queries and a rele-
vance degree that defines the quality of each match. Query-document pairs
are represented typically in the form of feature vectors. Due to real-time
response demands faced by search engines, one should limit the number of
computed features to be as small as possible. Therefore feature selection
is seen as an important step in order to create accurate and cost-sensitive
ranking models, where consumed time or computation is the most natural
cost.

Many learning to rank algorithms have been developed, such as
RankSVM (Joachims, 2002) or RankRLS (Pahikkala et al., 2007) but em-
bedded or wrapper type feature selection methods for learning to rank are
not that common. We present a greedy forward selection method to the task
of learning to rank by extending RankRLS in Publication I to the greedy
RankRLS method. In the cross-validation step we use the so-called leave-
query-out heuristic that guarantees that data points in a same query are
used either in the training or test test but not in both at the same time.
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Chapter 5

Conclusions

This section summarizes the contributions given in the six original publica-
tions included in the thesis. We also consider extensions of the algorithms
and methods for more general settings in future work.

Our answer to the first research question is explorative, in the sense
that we formulated a number of cost profiles that we encountered in our
applications. Namely, we provide mathematical characterization for the
separate, joint, separate group and joint group costs as well as Cartesian
costs, based on budget constraints on the model coefficients.

For each cost profile we have developed a greedy feature selection al-
gorithm. The proposed methods were shown to outperform both simpler
greedy baselines, as well as lasso type methods.

The methods developed in this thesis have already shown their impact in
a well established scientific challenge, which recently compared cost effective
feature selective methods. Specifically, the greedy joint feature selection im-
plemented in multi-label greedy RLS algorithm (Publication IV), provided
the best results in the 2014 Broad-DREAM Gene Essentiality Prediction
Sub-Challenge 3 (Gönen et al., 2017).

5.1 Overview of the research articles

Publication I presents an efficient algorithm for learning to rank with regu-
larized least-squares, focusing on the task of document retrieval. We showed
in experimental evaluation that the algorithm induced sparse ranking mod-
els. The considered cost is the number of features that a web search engine
needs to compute in order to rank documents for web queries.

We extended our considerations to such classification and regression
problems (Publications II, III and IV) where multiple targets have to be
predicted under a given budget. We showed in experimental evaluation for
multi-task and multi-label problems that in order to induce cost-effective
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models one should favor joint feature selection. We presented an efficient
joint greedy forward selection algorithm for both multi-label and multi-task
problems, which outperformed lasso in most of our experiments, especially
with low budget values.

In Publication V we provided a unified overview of sparsity patterns,
which characterize the solutions to the separate, joint, and group costs.
We further showed in detail how two types of cost settings, extractor and
extracting cost, map to feature costs of predictors.

Publication VI introduced a novel feature selection problem referred to
as Cartesian feature selection. The features are formed as a Cartesian prod-
uct of two separate sets of indices that each are associated with cost. We
presented a greedy forward selection heuristic that cost-efficiently selects
feature indices from two sources one by one until the Cartesian budget con-
straint is satisfied. A problem of predicting metal ion concentration from
drinking water promotes the need of Cartesian feature selection in real life
applications. The experimental results show that the Cartesian feature se-
lection method finds relevant features efficiently with respect to cost and
better than simpler greedy and lasso type methods.

5.2 Future work

So far we have assumed equal costs for features. However, the presented
algorithms can be extended to the variable cost setting. This is a natural
direction to future studies since often in real life applications features are
associated with variable costs. For example, in health applications one may
use sensors that monitor for instance users blood pressure, location, heart
rate or movement patterns to make conclusions about the state of one’s
health. All the sensors, however, come with a variable cost ranging from
few cents to several euros.
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ABSTRACT
Ranking is a central problem in information retrieval. Much
work has been done in the recent years to automate the de-
velopment of ranking models by means of supervised ma-
chine learning. Feature selection aims to provide sparse
models which are computationally efficient to evaluate, and
have good ranking performance. We propose integrating the
feature selection as part of the training process for the rank-
ing algorithm, by means of a wrapper method which per-
forms greedy forward selection, using leave-query-out cross-
validation estimate of performance as the selection crite-
rion. We introduce a linear time training algorithm we call
greedy RankRLS, which combines the aforementioned pro-
cedure, together with regularized risk minimization based
on pairwise least-squares loss. The training complexity of
the method is O(kmn), where k is the number of features to
be selected, m is the number of training examples, and n is
the overall number of features. Experiments on the LETOR
benchmark data set demonstrate that the approach works
in practice.

Keywords
feature selection, learning to rank, ranking, RankRLS, reg-
ularized least-squares, variable selection

1. INTRODUCTION
Learning to rank for information retrieval has been a

topic of intense research during the recent years. The possi-
ble benefits of automatically inducing ranking models from
data, compared to purely handcrafted systems, include re-
duced manual labor, increased ranking performance, and
adaptivity to individual user preferences. A number of su-
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pervised machine learning methods have been proposed, and
successfully applied for this task. These include both pair-
wise approaches such as RankSVM [8], RankNet [2], and
RankRLS [16, 17], as well approaches which optimize mul-
tivariate loss functions defined over queries, also known as
the listwise approach [3, 4, 25].

In this article we consider the task of feature selection for
learning to rank, specifically concentrating on the task of
document retrieval. The task is to recognize an informative
subset of the features, such that a machine learning method
trained on the subset achieves good ranking performance
on unseen future data. Perhaps the most fundamental ad-
vantage of this approach is that it leads to sparse models,
as only a limited subset of features is used for prediction.
Since applications such as web-search engines are typically
constrained by strict real-time response demands, being able
to restrict the number of features that need to be calculated
can be quite useful. Further, feature selection can also pro-
vide feedback on the quality of different features, which can
be very useful when developing and testing new ones.

Feature selection methods are typically divided into three
categories [6]. In the filter approach the features are se-
lected as a pre-processing step before applying a learning
algorithm, wrapper methods select features through inter-
action with a learning algorithm, and embedded methods
perform the selection as part of the learning process itself.
Feature selection for ranking is not as of yet a well stud-
ied area, but a number of approaches have been introduced
during the past few years. Geng et al. [5] proposed a fil-
ter method for selecting such features which produce good
rankings, while at the same time aiming to minimize the
redundancy in the set of selected features. The work was
further improved upon by Yu et al. [24]. Metzler [12] and
Pan et al. [19] considered feature selection for ranking with
Markov random fields and boosted trees, respectively.

Since the final goal of the feature selection process is to
produce a sparse ranking model with good performance, we
argue that the most natural selection criterion is the so-
called wrapper approach [6,10,11]. We select such features,
which result in maximal ranking performance for the super-
vised learning method that we are actually using to learn our
model. A standard approach for estimating the generaliza-
tion performance of a model trained on a subset of features



is to use cross-validation, as proposed by [10] for wrapper
based feature selection. More specifically, we propose us-
ing leave-query-out (LQO) cross-validation. This allows one
to make maximal use of training data, and guarantees that
data points related to the same query are never split between
the training and test folds. Further, to make the search over
the power set of features feasible, we propose to use greedy
forward selection, where on each iteration the feature whose
addition yields best cross-validation performance is selected.

In this article we propose the greedy RankRLS algorithm,
that is able to efficiently perform the aforementioned selec-
tion procedure. The algorithm is equivalent to a wrapper
method that for each tested feature set, and each round of
cross-validation would train the RankRLS method [16, 17],
which minimizes the pairwise regularized least-squares loss.
It can also be considered as an embedded method, since the
proposed training algorithm for greedy RankRLS training
is far more efficient than the straightforward approach of
using RankRLS as a black-box method within the selection
process would be. Previously, RankRLS has been shown
to produce good ranking results in document retrieval, and
in general achieve ranking performance similar to that of
RankSVM [16,17].

To achieve computational efficiency for the wrapper
method, we combine the training algorithm with matrix al-
gebra based shortcuts. These are made possible by the fact
that RankRLS has a closed form solution, which can be fully
expressed in terms of matrix operations. Firstly, the devel-
oped shortcuts allow efficient update of the solution when
new features are added, without having to recompute the
solution from scratch. We have previously proposed similar
shortcuts for the greedy RLS algorithm [13,14], which allows
one to train sparse regressors and classifiers in linear time.
Second, based on the results in [1,15] we derive a formula for
the exact LQO estimate that is more efficient than the one
previously proposed in [16], and combine it with the update
operation for feature addition. The resulting complexity of
greedy RankRLS training is O(kmn), where k is the num-
ber of features to be selected, m is the number of training
examples, and n is the overall number of features. The mem-
ory complexity of the method is O(mn). We are not aware
of as efficient greedy forward selection methods with cross-
validation based selection criterion for other state-of-the-art
learning to rank methods.

2. SETTING
We start by introducing some notation. Let Rm and

Rn×m, where n,m ∈ N, denote the sets of real valued col-
umn vectors and n × m-matrices, respectively. To denote
real valued matrices and vectors we use bold capital letters
and bold lower case letters, respectively. Moreover, index
sets are denoted with calligraphic capital letters. By denot-
ing Mi, M:,j , and Mi,j , we refer to the ith row, jth column,
and i, jth entry of the matrix M ∈ Rn×m, respectively. Sim-
ilarly, for index sets R ⊆ {1, . . . , n} and L ⊆ {1, . . . ,m}, we
denote the submatrices of M having their rows indexed by
R, the columns by L, and the rows by R and columns by L
as MR, M:,L, and MR,L, respectively. We use an analogous
notation also for column vectors, that is, vi refers to the ith
entry of the vector v.

We assume, that we are given a training set in a form of
data matrix X ∈ Rn×m and a label vector y ∈ Rm. The
rows of the data matrix are indexed by the n features and

the columns by the m training examples. Thus, by X:,i we
denote the column vector containing the features of the ith
example, sliced from the data matrix and by yi we denote its
corresponding real value label. Let I = {1 . . .m} denote the
index set for the training set. The index set is divided into
a number of disjoint queries, where Q = {Q(1), . . . ,Q(|Q|)}
is the set of queries, and Q(i) ⊂ I,

S|Q|
i=1Q(i) = I and

Q(i) ∩ Q(j) = ∅, if i 6= j. Each example represents a query-
document pair. The features are a joint feature represen-
tation for the query the example is associated with, and
a candidate document, and the label denotes how relevant
the document is with respect to the query. The ranking of
the documents associated with a query can be obtained by
sorting them according to the values of their labels.

In feature selection, the task is to select a subset S ⊂
{1 . . . n}, |S| = k, of the n available features, such that
the resulting predictor is sparse, but still produces a good
ranking performance on new data. The number of selected
features k may be decided in advance, or selected against a
validation set, according to application specific criteria. We
consider linear predictors of type

f(x) = wTxS , (1)

where w is the k-dimensional vector representation of the
learned predictor and xS can be considered as a mapping
of the data point x into k-dimensional feature space. Note
that the vector w only contains entries corresponding to the
features indexed by S. The rest of the features of the data
points are not used in prediction phase. The computational
complexity of making predictions with (1) and the space
complexity of the predictor are both O(k), provided that
the feature vector representation xS for the data point x is
given.

The pairwise ranking error for a learned predictor f can
be defined as

1

|Q|
X
Q(i)∈Q

1

N (i)

X
j,k∈Q,yj<yk

H(f(X:,j)− f(X:,k)), (2)

where H is the Heaviside step function defined as

H(a) =

8<: 1, if a > 0
1/2, if a = 0
0, if a < 0

and N (i) is the number of pairs in the i:th query, for which
yj < yk holds true. In this definition, the error is normalized
so that each considered query has the same importance, re-
gardless of size. Since (2) is non-convex, successful pairwise
approaches for learning to rank typically minimize convex
approximations instead.

The RankRLS algorithm [16, 17] is based on regularized
risk minimization, where a least-squares based approxima-
tion of (2) is minimized, together with a quadratic regular-
izer. We approximate (2) with the pairwise least-squares
loss, where step function H is replaced with the pairwise
squared loss

l(i, j) = (yi − yj − f(X:,i) + f(X:,j))
2.

Compared to the discrete pairwise loss, this loss also en-
forces the magnitudes of the prediction differences. For the
purpose of simplifying the derivation and implementation of
the learning algorithm, we modify the normalizers, and also



include tied predictions within the same query in the loss.
The linear RankRLS solution is found by solving

argmin
w∈R|S|

( X
Q∈Q

1

2|Q|
X

i,j∈Q
l(i, j) + λ‖w‖2

)
(3)

where the first term is the empirical risk measuring how
well the model determined by w fits to the training data,
and the second term called regularizer penalizes complex
models. The regularization parameter λ > 0 controls the
tradeoff between these terms.

Let

Ll = I− 1

l
11T

be the l × l-centering matrix with l ∈ N. The matrix L
is an idempotent matrix and multiplying it with a vector
removes the mean of the vector entries from all elements of
the vector. Moreover, the following equality can be shown

1

2l

lX
i,j=1

(ci − cj) = cTLlc ,

where ci are the entries of any vector c. Without loss of
generality, we can assume that the training data is ordered
according to the queries, so that first come the examples
belonging to the first query, next to the second, etc. Now,
let us consider the following quasi-diagonal matrix:

L =

0B@ Ll1

. . .

Ll|Q|

1CA ,

where li = |Qi| for i ∈ {1, . . . , |Q|}. The matrix L is again
symmetric and idempotent, and can be interpreted as a
query-wise centering matrix, that removes the mean from
the prediction errors for each query [18]. It is also a normal-
ized version of the Laplacian matrix encoding the structure
of the preference graph induced by the queries, which has
been used in previous derivations of RankRLS [16,17].

Now, (3) can be re-written in matrix notation as

argmin
w∈R|S|

n
((wTXS)T − y)TL((wTXS)T − y) + λwTw

o
.

(4)
Analogously to the results in [16,17], a minimizer of (4) is

w = (XSL(XS)T + λI)−1XSLy.

Due to the symmetry and idempotence of L, this can be
re-written as

w = ( bXS( bXS)T + λI)−1 bXSby, (5)

where bXS = XSL and by = Ly. Using the sparse decom-
position of L, the first multiplication can be performed in
O(m|S|), and the second inO(m) time. We note (see e.g. [7])
that equivalently, the RankRLS solution can be obtained
from

w = bXS(( bXS)T bXS + λI)−1by. (6)

The overall complexity of solving (5) is O(m|S|2 + |S|3),
and that of solving (6) O(m2|S|+m3). We note that these
are solutions to the ordinary regularized least squares (RLS)
problem. Thus, by the query-wise centering of the data
matrix the RankRLS problem can be mapped to that of
solving the ordinary RLS problem.

Finally, we consider the issue of cross-validation. As dis-
cussed before, we aim to perform LQO cross-validation,
where in turn each query is left out of the training set, and
used for testing. Let Q be the index set of a query, and let
Q = I \ Q be the complement of this index set.

Let us consider the centered data matrix from which the
rows corresponding to the Q have been removed, bXSQ. Due
to the quasi-diagonal structure of L, the submatrices LQQ
have only zero entries. Therefore, we have

XSQLQQ = bXSQ −XSQLQQ = bXSQ.
The significance of this result is that when removing a query
from the training set, we can recover the centered repre-

sentation of the remaining data simply by slicing bX. The
centering operation does not need to be re-calculated. The
feature representation for the test query is also centered, if
we recover it from the centered training data matrix. Since
using centered data does not affect the relative ordering or
relative differences in prediction values, as long as ranking
based performance measures are used, this makes no differ-
ence.

These results considerably simplify the development of ef-
ficient cross-validation methods for RankRLS. As long as
folds are defined along query lines, the task of performing
cross-validation with RankRLS is identical to that of per-
forming cross-validation with RLS using centered training
data. In problem settings where L does not have quasi-
diagonal structure, such as when learning from a single
global ranking, such results do not exist, making develop-
ment of cross-validation shortcuts more challenging.

3. ALGORITHM DESCRIPTION
Here, we present the computational short-cuts that enable

the efficient feature subset search strategy for RankRLS with
LQO error as a heuristic. First, we recall an approach for
computing the hold-out error for the RLS algorithm. By
hold-out, we indicate the method that is used to estimate
the performance of the learning algorithm by holding a part
of the given data set as a test set and training a learner with
the rest of the data. Our hold-out formulation assumes that
the whole data set is used to train a RLS predictor and the
hold-out set is then“unlearned”afterwards. The formulation
can then be used, for example, to perform a N -fold CV by
holding out a different part of the data set at a time and
averaging the results. In this paper, we use it specifically for
LQO-CV, that is, each query is held out from the training
set at a time, and for a particular query, the corresponding
hold-out set consists of all the training examples associated
with the query.

Now, let us define

G = (( bXS)T bXS + λI)−1

and

a = Gby.
The following theorem can be straightforwardly inferred
from the results presented by [1,15].

Theorem 3.1. The predictions for the data points in-
dexed by Q made by a RLS predictor trained using the fea-
tures indexed by S and with the whole training set except the
examples indexed by Q can be obtained frombyQ − (GQQ)−1aQ.



According to the above theorem, the result of LQO-CV with
squared error as a performance measure can be obtained
from X

Q∈Q
(pQ)TpQ, (7)

where

pQ = (GQQ)−1aQ.

It is quite straightforward to show that the vector of hold-
out errors is centered query-wise, that is, p = Lp, because

we use bX and by in place of X and y. Therefore, the sum
of squared hold-out errors (7) is, in fact, the sum of squared
query-wise centered hold-out errors. As shown earlier, this
corresponds to the sum of pairwise squared losses, calculated
for each query separately.

Algorithm 1: Greedy RankRLS

Input: bX ∈ Rn×m, by ∈ Rm, k, λ
Output: S, w
a← λ−1by;1

C← λ−1 bXT;2

U← bXT;3

p← by;4

S ← ∅;5

while |S| < k do6

e←∞;7

b← 0;8

foreach i ∈ {1, . . . , n} \ S do9

c← (1 + bXiC:,i)
−1;10

d← cCT
iby;11

ei ← 0;12

foreach Q ∈ Q do13

γ ← (−c−1 +CT
i,QUQ,i)

−1;14

p̃Q ← pQ−dUQ,i−γUQ,i(U
T
i,Q(aQ−dCQ,i));15

ei ← ei + (p̃Q)Tp̃Q;16

if ei < e then17

e← ei;18

b← i;19

c← (1 + bXbC:,b)
−1;20

d← cCT
bby;21

t← cbXbC;22

foreach Q ∈ Q do23

γ ← (−c−1 +CT
b,QUQ,b)

−1;24

pQ ← pQ − dUQ,b − γUQ,b(U
T
b,Q(aQ − dCQ,b));25

UQ ← UQ −UQ,bt− γUQ,b(U
T
b,Q(CQ −CQ,bt));26

a← a− dC:,b;27

C← C−C:,bt;28

S ← S ∪ {b};29

w← bXSa;30

Next, we go through the actual feature selection algorithm
whose pseudo code is presented in Algorithm 1. Let us first
define the following quasi-diagonal matrix:

Q =

0B@ (GQ1,Q1)−1

. . .

(GQ|Q|,Q|Q|)
−1

1CA .

In order to take advantage of the computational short-cuts,
the feature selection algorithm maintains the current set of
selected features S ⊆ {1, . . . , n}, the vectors a,p ∈ Rm, and

the matrices C,U ∈ Rm×n whose values are defined as

a = Gby,
C = GbXT,

U = QGbXT,

p = QGby.
In the initialization phase of the greedy RankRLS algorithm
the set of selected features is empty, and hence the values of

a, C, U, and p are initialized to λ−1by, λ−1 bXT, bXT, and by,
respectively. The computational complexity of the initial-
ization phase is dominated by the O(mn) time required for

storing the matrices C, U, and bX in memory. Thus, the ini-
tialization phase is no more complex than one pass through
the training data.

Let us now consider the computation of the LQO perfor-
mance for the modified feature set S ∪ {i}, where i is the
index of the feature to be added. Recall that the hold-out
prediction for the examples that are associated with query Q
can be computed from pQ = (GQ,Q)−1aQ, where a = Gby.
However, since a new feature is temporarily added into the
set of selected features, we must use the matrixeG = (( bXS)T bXS + ( bXi)

T bXi + λI)−1

in place of G. Due to the well-known Sherman-Morrison-

Woodbury (SMW) formula, the matrix eG can be rewritten
as eG = G−G( bXi)

T(1 + bXiG( bXi)
T)−1 bXiG

= G− cC:,iC
T
i,

where

c = (1 + bXiC:,i)
−1.

Accordingly, the updated vector of dual variables ã can be
written as

ã = eGby
= (G− cC:,iC

T
i)by

= a− dC:,i,

where

d = cCT
iby.

Now, concerning ( eGQ,Q)−1, we have

( eGQ,Q)−1 = ((G− cC:,iC
T
i)Q,Q)−1

= (GQ,Q − cCQ,iC
T
i,Q)−1

= (GQ,Q)−1

−γ(GQ,Q)−1CQ,iC
T
i,Q(GQ,Q)−1

= (GQ,Q)−1 − γUQ,iU
T
i,Q,

where

γ = (−c−1 + CT
i,QUQ,i)

−1

and the equality between the second and third rows are again
due to the SMW formula. Finally, we can compute the hold-
out predictions p̃Q for the updated feature set as

p̃Q = ( eGQ,Q)−1ãQ

= (GQ,Q)−1ãQ − γUQ,i(U
T
i,QãQ)

= pQ − dUQ,i − γUQ,i(U
T
i,Q(aQ − dCQ,i)).



The calculation of the last row requires onlyO(|Q|) time pro-
vided that we have all the required caches available. Since
the sizes of the query index sets sum up to m, the overall
complexity of LQO-CV for the updated feature set becomes
O(m). Further, as the greedy forward selection approach
tests each of the order of n unselected features before the
best of them is added into the set of selected features, the
complexity of the selection step is O(mn).

What is still left in our consideration is the phase in which
the caches are updated after an new feature is added into the
set of selected features. The vectors a and p are updated in
the same way as they were temporarily updated in the LQO-
CV computations. The update processes of the matrices U
and C are analogous to those of the vectors p and a except
that the matrix C is used in place of the vector a and the
vector

t = cbXbC,

where b is the index of the selected feature, is used in place of
the constant d. The computational time required for updat-
ing U and C is O(mn), that is, updating the caches after
the selection step is not more complex than the selection
step itself.

Putting everything together, the overall computational
complexity of greedy RankRLS is O(kmn), where k is the
number of features the algorithm selects until it stops. This
is because the algorithm performs k iterations during which
it adds one new feature to the set of selected features and
each iteration requires O(mn) time as shown above. The
space complexity of the algorithm is O(mn) which is domi-

nated by keeping the matrices C, U, and bX in memory.

4. EXPERIMENTS
We perform experiments on the publicly available LETOR

benchmark data set (version 4.0) for learning to rank for
information retrieval 1 [21]. We run experiments on two
data sets, MQ2007 and MQ2008. MQ2007 consists of 69623
examples divided into 1700 queries, and MQ2800 contains
15211 examples divided into 800 queries. In both data sets
the examples have the same 46 high-level features.

We follow the experimental setup proposed by the au-
thors of LETOR. All results are averages from 5-fold cross-
validation, where on each round 3 folds are used for training,
1 for parameter selection and 1 for testing. We use the exact
splits provided in the data sets. Mean Average Precision
(MAP) is used when selecting parameters. In addition to
average precision, we measure Normalized Discountive Cu-
mulative Gain (NDCG) when calculating test performance.
In the results we present MAP, P@10, mean NDCG, and
NDCG@10 values.

We compare greedy RankRLS to RankRLS and
RankSVM, which are trained on all the features. For greedy
RankRLS, we choose via grid search both the number of se-
lected features and value of regularization parameter, such
that lead to best MAP performance on the validation fold.
For normal RankRLS, which is trained on all the features,
only the value of the regularization parameter needs to be
tuned. RankRLS and greedy RankRLS are implemented as
part of the RLScore open source machine learning frame-
work 2. The RankSVM results are taken directly from the
1http://research.microsoft.com/en-us/um/beijing/
projects/letor/
2http://www.tucs.fi/rlscore

baselines section of the LETOR distribution website. The
experimental setup for the RankSVM runs, as described by
LETOR authors, is the same as outlined here, the used im-
plementation was the SVMrank of Joachims3 [9]. We also
plot performance curves as a function of the number of se-
lected features on the validation sets, and examine the fea-
ture sets selected on different folds.

Tables 1 and 2 contains the selected features on the
MQ2007 and MQ2008 data sets, respectively. Where more
than 10 features was selected, we present only the first 10.
On two of the folds of MQ2007, the optimal number of fea-
tures are 11 and 12, on three of the folds almost all of the
features are chosen. On MQ2008 relatively few features were
chosen on all of the folds, on two of the folds the best valida-
tion performance was reached with only one feature. There
are differences in the feature sets selected in the different
rounds of cross-validation, but one thing remains constant.
On both data sets, and on each cross-validation round, the
feature selected first is feature number 39, “LMIR.DIR of
whole document”. The feature is a language model based
feature which corresponds to a posteriori estimate of the
likelihood of the query given the whole document, where a
Dirichlet prior over the documents is used [26]. Based on
our results this feature seems to be very useful for ranking,
since as it turns out models using only it can in some cases
be competitive with models trained on all the features.

In Figures 1, 2, 3, and 4 are the average MAP and mean
NDCG performances over the validation folds, plotted for
different regularization parameter values. We note that the
results are quite unstable, suggesting that reliable selection
of the regularization parameter and number of selected fea-
tures remains a challenging problem. On MQ2007 the per-
formance increases with the number of selected features.
This is why in three of the folds the selection strategy used
in our study lead to selecting almost all of them. How-
ever, on MQ2008 best validation performances are reached
with relatively few features, after which the performance de-
creases. On MQ2007 close to optimal validation results can
be reached already with around 15 features. This suggests
that perhaps a multi-objective criterion should be used in
parameter selection, which in addition to favoring high vali-
dation performance would also penalize models that use too
many features.

In Tables 3, 4, 5, and 6, are the test results for MQ2007,
and in Tables 7, 8, 9, and 10 are the test results for MQ2008.
Overall, the results for greedy RankRLS, RankRLS and
RankSVM are very close to each other, even on fold-by-fold
basis. The results further verify the earlier results in [16,17],
which suggest that RankRLS and RankSVM optimization
often lead to very similar results. Further, the results show
that at least on this data, sparse models learned using greedy
forward selection are competitive with models learned using
all the features.

5. DISCUSSION AND FUTURE WORK
The greedy RankRLS implementation presented in this

paper is computationally feasible when dealing with data
sets, such as LETOR, in which the overall number of avail-
able features is not very large. However, the situation is
different if the data points are represented, for example, as

3http://www.cs.cornell.edu/People/tj/svm_light/
svm_rank.html



Table 1: Selected features on MQ2007.
Model fold1 fold2 fold3 fold4 fold5
λ 28 26 29 28 27

k 11 40 46 44 12
selected 1 39 39 39 39 39
selected 2 19 32 27 28 25
selected 3 25 19 23 45 19
selected 4 23 26 19 23 43
selected 5 32 23 13 43 23
selected 6 16 16 18 33 29
selected 7 43 5 42 13 22
selected 8 22 33 33 18 18
selected 9 5 18 16 22 5
selected 10 33 3 5 15 16

Table 2: Selected features on MQ2008
Model fold1 fold2 fold3 fold4 fold5
λ 20 210 23 26 20

k 1 4 7 4 1
selected 1 39 39 39 39 39
selected 2 23 29 29
selected 3 37 25 25
selected 4 32 23 23
selected 5 46
selected 6 37
selected 7 19

raw text documents, and the words or their composites oc-
curring in the documents form the set of available features.
In this case, there is the drawback that m × n-dimensional
dense matrices has to be maintained in memory, while the
data are stored in a sparse matrix of the same size having
only a few nonzero entries. This is, because each document
has nonzero values only for a small subset of features. In ad-
dition to the feasibility problems with memory, the O(mn)
time required per iteration may be too expensive in practise.
Fortunately, it is possible to design such variations of greedy
RankRLS that are better suited for this type of data.

First, we can avoid storing the dense m × n-matrices by
spending more computational resources. This is possible
with a variation whose time complexity is O(k2mn). As
an additional modification, we can reduce the time spent in
each iteration by selecting the new feature from a random
subset of the available features, resulting to a time complex-
ity O(k2mκ), where κ is the size of random subsets. This
type of idea is used, for example, for selecting the basis vec-
tors for Gaussian process regressors by [22]. Finally, we can
take advantage of the sparsity of the data matrix in reduc-
ing the time complexity down to O(k2mκ), where m is the
average number of training examples for which the features
have nonzero values, if we use so-called back-fitting varia-
tion of our algorithm instead of performing pre-fitting as our
current implementation does. For descriptions of the terms
back-fitting and pre-fitting, we refer to [23]. The detailed

Table 3: Map results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.4859 0.4912 0.4894
2 0.4571 0.4573 0.4573
3 0.4655 0.4655 0.4676
4 0.4423 0.4425 0.4401
5 0.4709 0.4687 0.4680
avg 0.4643 0.4650 0.4645

Table 4: P@10 results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.3958 0.3997 0.4036
2 0.3858 0.3855 0.3932
3 0.3684 0.3684 0.3699
4 0.3670 0.3673 0.3652
5 0.3808 0.3811 0.3847
avg 0.3796 0.3804 0.3833

Table 5: MeanNDCG results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.5228 0.5281 0.5278
2 0.4840 0.4841 0.4810
3 0.5056 0.5056 0.5042
4 0.4757 0.4754 0.4699
5 0.5033 0.5003 0.5003
avg 0.4983 0.4987 0.4966

Table 6: NDCG@10 results on MQ2007
Fold GRankRLS RankRLS RankSVM
1 0.4735 0.4784 0.4818
2 0.4247 0.4246 0.4266
3 0.4466 0.4466 0.4461
4 0.4221 0.4221 0.4163
5 0.4487 0.4460 0.4485
avg 0.4431 0.4435 0.4439

Table 7: Map results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.4311 0.4524 0.4502
2 0.4239 0.4300 0.4213
3 0.4582 0.4542 0.4529
4 0.5283 0.5225 0.5284
5 0.5183 0.5006 0.4950
avg 0.4720 0.4719 0.4696

Table 8: P@10 results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.2333 0.2391 0.2423
2 0.2178 0.2217 0.2229
3 0.2363 0.2325 0.2357
4 0.2975 0.2949 0.2981
5 0.2484 0.2503 0.2465
avg 0.2467 0.2477 0.2491

Table 9: MeanNDCG results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.4454 0.4633 0.4577
2 0.4186 0.4269 0.4296
3 0.4787 0.4741 0.4686
4 0.5403 0.5407 0.5442
5 0.5369 0.5138 0.5159
avg 0.4840 0.4838 0.4832

Table 10: NDCG@10 results on MQ2008
Fold GRankRLS RankRLS RankSVM
1 0.1920 0.2145 0.2117
2 0.1585 0.1669 0.1738
3 0.2558 0.2489 0.2494
4 0.2940 0.2874 0.2892
5 0.2254 0.2165 0.2155
avg 0.2251 0.2268 0.2279
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Figure 1: Average MAP on validation sets for
MQ2007.
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Figure 2: Average Mean NDCG on validation sets
for MQ2007.

descriptions of these variations are left for future work.
The greedy forward selection approach can sometimes suf-

fer from the so-called nesting effect, meaning that the best
subset of size k, for example, may not necessarily cover the
features included in the best subset of size k − 1. Float-
ing search methods (see e.g. [13, 20, 27]), which are able to
discard features selected in previous iterations, have been
proposed as a means to deal with this issue. Replacing the
greedy search strategy with a floating search would be a
fairly straightforward extension to the presented algorithm.

6. CONCLUSION
To conclude, we propose a computationally efficient

method for learning sparse predictors for ranking tasks. The
method uses on greedy forward selection as a search strategy
and leave-query-out cross-validation as a selection criterion.
The computational complexity of the method is linear in the
number of training examples, in the overall number of fea-
tures, and in the number of features to be selected. Thus,
the method is computationally highly efficient despite the
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Figure 3: Average MAP on validation sets for
MQ2008.
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Figure 4: Average Mean NDCG on validation sets
for MQ2008.

fact that the method optimizes a pairwise ranking loss func-
tion and uses a complex cross-validation criterion. Empiri-
cal evaluation with the LETOR benchmark data set demon-
strates the soundness of the proposed approach.
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Abstract—Multi-task feature selection refers to the problem
of selecting a common predictive set of features over multiple
related learning tasks. The problem is encountered for example
in applications, where one can afford only a limited set of
feature extractors for solving several tasks. In this work, we
present a regularized least-squares (RLS) based algorithm
for multi-task greedy forward feature selection. The method
selects features jointly for all the tasks by using leave-one-
out cross-validation error averaged over the tasks as the
selection criterion. While a straightforward implementation
of the approach by combining a wrapper algorithm with
a black-box RLS training method would have impractical
computational costs, we achieve linear time complexity for the
training algorithm through the use of matrix algebra based
computational shortcuts. In our experiments on insurance and
speech classification data sets the proposed method shows a
better prediction performance than baseline methods that select
the same number of features independently.

Keywords-feature subset selection; multi-task learning; bud-
geted learning; regularized least-squares

I. INTRODUCTION

Multi-task feature selection concerns the task of selecting
jointly a common set of representative features for a group
of interrelated learning tasks. Perhaps the main benefit of
feature selection [1] is that it allows one to reduce the costs
associated with acquiring the feature values. For example,
in a multi-sensory environment, where different features
correspond to inputs from different sensors, limiting the
number of used features may allow one to discard unneces-
sary sensors. This can allow reductions for example in the
manufacturing costs of a product. In such multi-task learning
problems [2] where several learned models are applied in
the same environment, it may be beneficial to use learning
algorithm that can take this into account, rather than to treat
all tasks as separate. More specifically, in multi-task feature
selection, one may search for such subset of features that
can simultaneously support all the considered tasks well.

A typical example where one may require the ability
to solve several tasks simultaneously would be a smart
handheld device. Given that the device contains a set of
sensors like accelerometer, barometer, GPS, temperature
sensor, heart rate sensor and so on, it could be used to
simultaneously predict certain health related properties of
the user, such as calorie consumption, current stress level,
whether the user is fit to drive et cetera. These tasks are

similar in nature in the sense that some of the sensors could
be used in solving several of the tasks. However, the sensors
and other sources of information come at a cost, be it money
or space in a circuit board, and we may have to make a
choice which of them will be included in the final product.

In this work, we study the problem of multi-task learning
under a sparsity budget. We assume that a number of
different learning tasks need to be solved in the same
environment, and that all the tasks share the same feature
representations. Acquiring the feature values comes at a
cost, therefore it is necessary to limit the number of needed
features, while still maintaining as high predictive accuracy
as the budget allows. Here, we assume that the training data
corresponding to the different tasks may have been gathered
from different populations, environments, or points in time.
Thus, essentially we have several training sets corresponding
to different tasks, and the goal is to be able to find accurate
models for each task, while enforcing that the union of the
feature sets selected does not grow larger than the allocated
budget.

There has been recently an interest in designing methods
for feature selection in the multi-task setting. Proposed
methods include L1 regularization based techniques, such as
the group lasso method [3, 4] and the method of Obozinski
et al. [5], the maximum entropy discrimination based method
of Jebara [6], and the work of Xiong et al. [7]. Argyriou
et al. [8] proposed a method that learns common sparse
representations over a pool of related tasks via joint reg-
ularization. Zhou et al. [9] presented a group regularization
method, exclusive lasso, which was applied to multi-task
feature selection setting. The method assumes a negative
correlation among the tasks and it was shown to generate
sparse solutions due to competitions among variables within
the same group. Zhang et al. [10] introduces a probabilistic
framework for multi-task feature selection using l1,q norm,
where optimal value for q was determined from data auto-
matically.

The wrapper approach [11] is one of the mainstream
approaches to feature selection. Here, one performs a search
over the power set of features, at each search step training a
learning method for the tested feature set, and evaluating the
quality of the features via some performance estimate such
as cross-validation error. However, the wrapper approach to
multi-task feature selection has not been much explored.
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A probable reason for this, as mentioned by Obozinski
et al. [5], is the perceived computational cost of wrapper
based feature selection, as typical implementations of the
approach result in combinatorial growth in the number of
times a learner needs to be trained. Even with greedy search
strategies, having to re-train a learner for each task, each
search step and each round of cross-validation is simply too
much for the approach to be practical.

Recently, Pahikkala et al. [12] have proposed a wrapper
selection method for the regularized least-squares (RLS)
learner. The method, which they call greedy RLS, performs
greedy forward selection over the powerset of features, using
leave-one-out cross-validation performance as the selection
criterion. Linear time complexity is achieved by using matrix
algebra based computational shortcuts for operations such
as cross-validation computations and updating a predictive
model in order to incorporate new features. Naula et al. [13]
extended this work to the multi-label learning setting.

In this work, we propose an efficient approach to perform-
ing wrapper selection in a general multi-task setting, where
features may be selected from multiple datasets sharing
same features, but corresponding to different populations and
learning tasks. The method generalizes the computational
shortcuts proposed for the greedy RLS method, preserving
the linear time complexity. The method is applicable both for
classification and regression problems. In addition to settings
where the individual learning tasks correspond to simple
binary classification or single output regression problems,
the method can also be used in settings where some or all
of the tasks require learning to predict multiple outputs. Thus
the method allows also efficient feature selection jointly over
multiple multi-class classification, multi-label classification
or multi-output regression problems.

In the experiments, we demonstrate that the approach in
practice scales to large real-world datasets. Further, given a
fixed feature budget the proposed approach leads to higher
predictive performance than the baseline methods that do
not take into account the related tasks when performing
selection.

II. METHODS

Let Xj ∈ Rmj×n for j = 1, . . . , t be matrices containing
the feature representation of the examples in the training set
for the jth task, where n is the number of features, mj is
the number of training examples in the jth task and t is the
number of tasks. The h, ith entry of Xj contains the value
of the ith feature in the hth training example. Moreover,
let Yj ∈ Rmj×lj for j = 1, . . . , t, where lj is the number
of labels per training example in the jth task, be matrices
consisting of the labels of the training examples for the t
tasks. The number of labels per training example can be
larger than one if the task in question is, for example, a
multi-class classification task. In multi-class settings, the
labels can be restricted to be either −1 or 1 depending

whether the data points belong to the class, while they can
be any real numbers in multi-label regression tasks (see e.g.
Hsu et al. [14] and references therein).

For each of the t tasks, we construct as many linear pre-
diction functions as is required by the tasks. The functions
for the jth task can be expressed as

f j(x) = (xS)TWj ,

where Wj ∈ R|S|×lj is a matrix containing the coefficients
of the lj learned predictors for the jth task, x is a data point
for which the prediction of is to be made, and xS a vector
representation of x that only contains the features indexed
by the set S. For example, if the jth task is a one-versus-all
classification problem with lj different classes, the matrix
Wj contains lj linear predictors, one per column. Note also
that the different tasks may have different amount of labels
per data point, that is, it is possible that lj are not equal for
all j.

We assume that the set S contains feature indices selected
by a training algorithm that performs feature selection while
constructing the predictors. Moreover, we assume that the
number of features we can extract from a data point at
prediction time is constrained by a given sparsity budget,
that is, we have |S| ≤ k for some k ∈ N. Note that
since the sparsity budget constraint is given for the number
of features, it is assumed that all features have an equal
extraction cost at the prediction time. This can be easily
generalized to a setting in which each feature would have
a different extraction cost. However, this is not considered
further in this paper, because of limited space and the lack
of available data for practical experiments.

The most straightforward approach for constructing the
predictors under a common budget constraint is to simply
train them separately and select, say k/t features separately
for each task. After this, it is possible to perform a subse-
quent training phase in which the predictors for each task
are retrained with the union of the separately selected feature
sets. This can be achieved via numerous off-the-shelf feature
selection methods available for solving single-task problems.
It may of course happen that the size of the union of the
separately selected feature sets is smaller than k, if the sets
are not mutually disjoint. Then, the selection process can be
continued until the sparsity budget is completely fulfilled. A
natural step forward is to select the features jointly for all
tasks, favoring such features that increase the performance
averaged over all tasks.

Before considering the actual training algorithms, we
present some of the building blocks. As a base learner,
we use regularized least-squares (RLS) [15] for multiple
outputs (also known as ridge regression [16]), a state-of-
the art machine learning method suitable for several types
of machine learning tasks. With multiple outputs, we refer
to the fact that the tasks we consider may be instances
of multi-label prediction problems, such as the standard
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one-versus-all approach for multi-class classification for
example. Training of a multi-output RLS can be expressed
for a single task with training data X ∈ Rm×n,Y ∈ Rm×l

as finding a solution to the following problem:

argmin
W∈Rn

{
∥XW −Y∥2F + λ∥W∥2F

}
, (1)

where λ > 0 is a regularization parameter and ∥W∥F is
the Frobenius matrix norm. The first term in (1), called the
empirical risk, measures how well the prediction function fits
to the training data. The second term is called the regularizer
and it controls the tradeoff between the empirical error on
the training set and the complexity of the prediction function.
The regularization parameter λ can be set separately for each
of the tasks, if some tasks require more regularization than
the others.

As a feature selection criterion, we use the leave-one-out
(LOO) cross-validation performance averaged over all tasks.
It is well-known that, for RLS-based learning algorithms,
LOO performance can be calculated as efficiently as training
set error via computational short-cuts based on matrix alge-
bra (see e.g. Elisseeff and Pontil [17] and references therein).
For a more in-depth description of LOO performance, we
refer to Lachenbruch [18], Elisseeff and Pontil [17].

Pahikkala et al. [12] proposed a feature selection method
for single-task problems with a single label per training ex-
ample, named greedy RLS, whose computational complexity
is O(kmn), that is, the method is linear with respect to the
number of data points in the training set m, to the overall
number of features among which the selection is made n
and to the number of features selected k. This method was
later extended for tasks having multiple labels per data point
by Naula et al. [13]. The modification of greedy RLS for
multi-task learning is quite straightforward, since only the
selection criterion has to be modified.

As a training algorithm for learning predictors with a
restricted sparsity budget, we present a greedy forward
feature selection method for RLS with LOO criterion. By
greedy, we indicate that the algorithm starts from an empty
set of features and adds one feature at a time to the set but
never removes any features from the set. A high level pseudo
code of the multi-task greedy RLS algorithm is given in
Algorithm 1. The technical details consisting of the efficient
matrix algebra -based computational short-cuts are given in
Algorithms 2, 3 and 4. The short-cuts are analogous to those
presented by Pahikkala et al. [12] for a single-task single-
label greedy RLS and their correctness and computational
complexities can be shown in similar way. Therefore, these
considerations are not repeated in this paper.

In the pseudo code, the outermost loop adds one feature
at a time into the set of selected features S until the size
of the set has reached the sparsity budget k. The middle
loop goes through every feature that has not yet been added
into the set of selected features. For the ith feature available

Algorithm 1 MTGRLS(X1, . . . ,Xt,Y1, . . . ,Yt, k)

1: S ← ∅ ◃ The current set of selected features common
for all tasks.

2: Initialize(X1, . . . ,Xt,Y1, . . . ,Yt, λ)
3: while |S| < k do ◃ Select k common features.
4: e←∞
5: b← 0
6: for i ∈ {1, . . . , n} \ S do
7: eavg ← 0
8: for j ∈ {1, . . . , t} do
9: ei,j ←Looperf(i, j)

10: eavg ← eavg + ei,j/t

11: if eavg < e then
12: e← eavg

13: b← i
14: S ← S ∪ {b} ◃ Update the set of selected features.
15: for j ∈ {1, . . . , t} do
16: Update(b, j) ◃ Update predictors for each task.
17: return W1, . . . ,Wt, S

for addition, the inner loop computes the average LOO
performance over the t tasks for all RLS predictors trained
using the features S ∪{i}. Instead of the average LOO, also
other approaches such as weighted average could be used
to measure the overall performance. After going through all
feature candidates, the algorithm then adds the feature with
the best average LOO performance into the set of selected
features.

Algorithm 2 Initialize(X1, . . . ,Xt,Y1, . . . ,Yt, λ)

1: for j ∈ {1, . . . , t} do
2: Aj ← λ−1Yj ◃ Initialize mj × lj-matrix Aj .
3: dj ← λ−11 ◃ Initialize mj-vector dj .
4: Cj ← λ−1XjT

◃ Initialize mj × n-matrix Cj .

Algorithm 2 called in the beginning of the main program
allocates space and initializes all cache matrices and vectors
required in the computational short-cuts. For each task, the
algorithm must initialize two matrices and one vector that are
used to store the intermediate results of the feature selection
process.

Algorithm 3, called as Looperf(i, j) during each iteration
of the inner loop of the main program, returns a real value
corresponding to the LOO performance of a RLS predictor
trained with a feature set S ∪ {i} for the jth task. The
computational complexity of this algorithm is O(mj), that
is, it depends only on the number of training examples in the
jth task. This is because it takes advantage of the previously
computed and cached results stored in Aj , dj and Cj .

Algorithm 4, called as Update(b, j) for each task in the
end of each iteration of the outer loop of the main program,
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Algorithm 3 Looperf(i, j)

1: v← (Xj
i )

T

2: u← Cj
:,i(1 + vTCj

:,i)
−1

3: Ã← Aj − u(vTAj)
4: for h ∈ {1, . . . ,mj} do ◃ Compute LOO predictions

for training examples
5: d̃h ← dh − uhC

j
h,i

6: Ph ← Yj
h − (d̃h)−1Ãh

7: e← L(P,Yj) ◃ LOO error measured with loss L
8: return e

Algorithm 4 Update(b, j)

1: v← (Xj
b)

T

2: u← Cj
:,b(1 + vTCj

:,b)
−1

3: Aj ← Aj − u(vTAj)
4: for h ∈ {1, . . . ,mj} do
5: dj

h ← dj
h − uhC

j
h,b

6: Cj ← Cj − u(vTCj)

updates the cached results required by Algorithm 3 so that
they correspond to the currently selected set of features. This
is done always after a new feature has been added into S.
The computational complexity of this algorithm, dominated
by the size of the matrices A and C, is O(mj lj + mjn).

Putting everything together, the computational complexity
of the main algorithm scales as O(knc), where

c =
t∑

j=1

mj lj

is the overall number of all labels in the overall multi-task
multi-label training set. This complexity is linear with all
three variables, and hence it is analogous to that of greedy
RLS presented by Pahikkala et al. [12].

III. EXPERIMENTS

A. Datasets and Setup

In the experiments we compare two baseline meth-
ods (Method 1 and Method 2) and our proposed method
(Method 3) for budgeted multi-task learning. We assume that
all the features have equal cost and we are given a budget
constraint k on the number of features, and the number of
different tasks is t. Method 1 performs feature selection for
all the t tasks separately, using the (multi-class variation
of) greedy RLS algorithm, so that the individual training
processes do not share any knowledge between each other.
The budget is divided evenly between the tasks, meaning
that each individual predictor uses k/t features. Method 1
can be considered wasteful in the sense that none of the
tasks benefit from the features selected for the other tasks.
Method 2 aims to fix this problem as follows. All the features

are again selected as in Method 1, but after the selection is
finished, the predictors for each task are re-trained using
the union of all the selected feature sets. Finally, Method 3
(Algorithm 1) aims to improve on Method 2 by performing
the selection process itself jointly over all the tasks, in
each step selecting such features that give the best average
performance over all the tasks. The methods are compared
over a varying range of budgets. In the comparisons, the
budget size is always computed as the size of the final set
of selected features. Thus, if some of the features selected
by Method 1 are shared by multiple tasks, each such feature
incurs only unit cost in the budget. This means that the
comparison between the three methods are always made so
that they all use exactly the same number of features.

We carry out our experiments on two real world datasets,
Isolet spoken alphabet recognition1 and CoIL 20002. The
Isolet dataset consists of 7797 examples3 of spoken English
alphabet characters, where 150 speakers have spoken each
letter twice. The goal of the task is to find out which
alphabet has been spoken by the speaker based on 617
acoustic features such as spectral coefficients, sonorant- and
post-sonorant features etc (more about the features, see
Fanty and Cole [19]). The dataset is divided into 5 disjoint
subsets, isolet1-5, where each subset consists of 30 similar
speakers. CoIL dataset consists of 5822 training and 4000
test examples of customers of an insurance company. The
goal of the task is to predict who would be interested in
buying a caravan insurance policy based on 86 features of
product usage and socio-demographic data.

We modify the datasets in order to make them usable for
the purpose of multi-task learning. We follow the experi-
mental setup on the Isolet data presented by Parameswaran
and Weinberger [20] by treating each subsets, isolet1-5, as its
own classification task (5 tasks). We simulate a setting where
the different tasks would correspond to different languages
as follows. We select a reduced number of disjoint labels
for each of the tasks (Labels A-E, F-J, K-O, P-T and U-
Z for the tasks 1,2,3,4 and 5, respectively) and remove all
the examples that do not belong under these labels in the
datasets. Moreover, we generated the training and test sets
by random splits of the data, so that 2/3 of the examples
from each task belong to the training set and 1/3 to the test
set. CoIL dataset is transformed into multiple tasks by using
categorical features 1,4,5,6,44 and 86 as output variables and
leaving the remaining 80 features as the joint data set. Each
task has an identical input dataset but a different number of
output labels (Labels 1-404, 1-6, 1-10, 0-9, 0-3 and 0-1 for
the tasks 1,2,3,4,5 and 6, respectively).

The regularization parameter λ is set to 1 in this study.
We carried out experiments also with other regularization

1available at UCI Machine Learning Repository
2available at http://kdd.ics.uci.edu/databases/tic/tic.html
3Three examples are historically missing.
4class number 14 does not include any samples
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parameter values, the results were very similar to those
obtained with λ value 1. All the individual tasks in both the
data sets correspond to multi-class classification problems,
average accuracy over all the tasks on the test sets is used
to evaluate the overall behavior of both of the algorithms.

B. Results

We plot the performance curves for the Isolet data and
CoIL data in Figures 1 and 2, respectively. Both figures
contain the performance curves for the proposed method
(Method 3) and the two baseline approaches. The average
multi-class accuracy is plotted as a function of the available
budget.

We can see in Figures 1 and 2 that multi-task learning
(Method 3) outperforms both single-task methods (Method
1 and Method 2) on both Isolet and CoIL datasets. Par-
ticularly with the low available budgets, the difference in
performances is clear. Thus, the experimental results support
the notion that selecting features jointly over the tasks is
beneficial when limited by a common feature budget.

Figures 3 and 4 shows the cost curves on Isolet and
CoIL datasets, respectively. The cost curves indicate the
overlap between the feature sets selected for each task
separately in a single-task learning by Method 1. Realized
cost represents the size of the union of feature sets over all
the tasks as a function of the given budget constraint. Max
cost represents the upper bound on the realized cost for a
given budget constraint. This situation can be happened only,
if the feature sets selected for all the tasks are mutually
exclusive. Min cost represents the lower bound on the
realized cost and it can occur in a case where the feature
sets selected for all the tasks are exactly the same. Max
cost and realized cost curves are quite close in Figure 3 on
Isolet data, which indicates that the feature sets selected for
the separate tasks are very different. This situation favors
Methods 2 and 3 over Method 1, as more features can be
allocated for the individual predictors. The clearly higher
accuracy of Method 3 compared to Method 2 on Isolet
(see Fig. 1) further indicates that the joint selection strategy
leads to better performance than the combination of the
independently selected feature sets. On the contrary, the
realized cost curve is quite similar to the min cost curve
on CoIL dataset, indicating the situation where the feature
sets selected for different tasks overlap much more than for
Isolet. This is reflected in the performance differences that
are in this case smaller (see Fig. 2).

Tables I and II provide the classification accuracies for
Methods 1, 2 and 3, for each of the tasks on Isolet data and
CoIL data over some of the selected budgets, respectively.
The numbers in the brackets for Method 1 indicate the
size of the feature sets per each individual task on selected
budgets. It should be noted that the sum of the sizes of the
feature sets over all the tasks on different budgets is often
bigger than selected budget due to the redundant features.

Table I
PERFORMANCE FOR TASKS ON ISOLET DATA WITH METHOD 1 (TOP),

METHOD 2 (MIDDLE), AND METHOD 3 (BOTTOM).

Budget avg task 1 task 2 task 3 task 4 task 5
4 (1) 0.381 0.400 0.390 0.400 0.400 0.317
8 (2) 0.580 0.600 0.610 0.600 0.600 0.492
16 (4) 0.868 0.800 0.950 0.820 0.880 0.891
26 (6) 0.901 0.830 0.950 0.890 0.920 0.917

Budget avg task 1 task 2 task 3 task 4 task 5
4 0.527 0.360 0.670 0.400 0.630 0.575
8 0.805 0.700 0.890 0.760 0.890 0.783
16 0.882 0.790 0.980 0.840 0.910 0.892
26 0.937 0.840 0.990 0.940 0.950 0.967

Budget avg task 1 task 2 task 3 task 4 task 5
4 0.740 0.530 0.930 0.640 0.860 0.742
8 0.864 0.820 0.970 0.810 0.870 0.850
16 0.894 0.860 0.980 0.840 0.890 0.900
26 0.950 0.940 1.000 0.920 0.950 0.942

Table II
PERFORMANCE FOR TASKS ON COIL DATA WITH METHOD 1 (TOP),

METHOD 2 (MIDDLE), AND METHOD 3 (BOTTOM).

Budget avg task 1 task 2 task 3 task 4 task 5 task 6
5 (1) 0.588 0.120 0.548 0.358 0.518 0.964 0.941
19 (5) 0.631 0.252 0.598 0.450 0.580 0.964 0.940
35 (10) 0.657 0.298 0.616 0.501 0.623 0.964 0.940
48 (15) 0.658 0.303 0.606 0.502 0.634 0.964 0.940

Budget avg task 1 task 2 task 3 task 4 task 5 task 6
5 0.603 0.233 0.553 0.393 0.534 0.964 0.940
19 0.647 0.284 0.605 0.486 0.605 0.964 0.940
35 0.665 0.314 0.620 0.519 0.634 0.964 0.940
48 0.674 0.339 0.629 0.523 0.650 0.964 0.940

Budget avg task 1 task 2 task 3 task 4 task 5 task 6
5 0.619 0.246 0.592 0.440 0.533 0.964 0.941
19 0.659 0.296 0.615 0.513 0.625 0.964 0.941
35 0.677 0.339 0.633 0.533 0.655 0.964 0.940
48 0.680 0.352 0.627 0.538 0.656 0.964 0.940

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a computationally efficient
approach to learning multiple tasks under a sparsity budget
using greedy forward selection. The proposed method com-
bines the ideas of multi-task learning and feature subset se-
lection by selecting a minimal set of common features simul-
taneously for several tasks. We evaluated the performance of
the method on two real world public datasets, Isolet spoken
alphabet recognition and CoIL2000. The results show that
our proposed multi-task method outperforms approaches that
do not share information between the tasks during the selec-
tion process, especially with a small available budget. The
results are fascinating for example from the industry point of
view due to the fact that many small-sized home appliances
or portable devices are manufactured under hard budget
constraints resulting in a restricted space for a numerous
of expensive and large-sized hardware components.

So far we have been investigating settings where all the
features are assumed to be equally costly but it would be
worth while to extend the method to settings where features
are associated with variable costs. Finally, especially in the
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Figure 1. Performance curves on Isolet data.
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Figure 2. Performance curves on CoIL data.

context of variable feature costs, it might be beneficial to use
also other search strategies than the greedy forward selection
such as genetic algorithms [21] due to their effectiveness in
multi-criteria optimization.
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Abstract. We consider how one can lower the costs of making pre-
dictions for multi-target learning problems by enforcing sparsity on the
matrix containing the coefficients of the linear models. Four types of
sparsity patterns are formalized, as well as a greedy forward selection
framework for enforcing these patterns in the coefficients of learned mod-
els. We discuss how these patterns relate to costs in different types of
application scenarios, introducing the concepts of extractor and extrac-
tion costs of features. We experimentally demonstrate on two real-world
data sets that in order to achieve as low prediction costs as possible
while also maintaining acceptable predictive accuracy for the models, it
is crucial to correctly match the type of sparsity constraints enforced to
the use scenario where the model is to be applied.

Keywords: Multi-target learning problems · Sparsity patterns · Feature
selection · Extractor cost · Extraction cost

1 Introduction

Linear models are often preferred in real world prediction tasks due to their
simplicity, understandability and ease of evaluation. A linear model

Y = w0 + w1X1 + w2X2 + . . . + wdXd + ε,

describes a relationship between the output variable Y and input variables
{Xi}d

i=1. The unknown regression coefficients {wi}d
i=0 have to be estimated

before the model can be used in prediction tasks such as classification or regres-
sion. Typically, the regression coefficients are determined by learning from data
that are acquired, depending on the application in question, for example by
making measurements using physical sensors, sending out questionnaires, per-
forming medical experiments, following user behaviour online, or buying from a
data provider. Usually the data does not come for free [9], rather there are costs
associated with the features needed during model construction and when mak-
ing predictions. Measuring the data takes time, hardware components needed for
measurements are expensive, data providers may charge money for each variable
recorded etc. Thus often it is beneficial if one can produce accurate predictions
using as few input variables as possible, that is, sparsity of the model is preferred.

c© Springer International Publishing Switzerland 2015
M. Ali et al. (Eds.): IEA/AIE 2015, LNAI 9101, pp. 252–261, 2015.
DOI: 10.1007/978-3-319-19066-2 25



Learning Low Cost Multi-target Models by Enforcing Sparsity 253

In single-target regression or classification tasks, where the model is rep-
resented as a vector of coefficients, the degree of sparsity for the model can be
defined as the number of non-zero components in the coefficient vector. Formally,
‖w‖0 = |{wi �= 0, i = 0, . . . , d}| where ‖ � ‖0 denotes l0-norm. Sparse models con-
tain less variables than dense ones and are therefore easier to interpret. Some-
times too complex models are prone to overfitting the data, enforcing sparsity
may prevent this as a form of model regularization. However, the advantage con-
sidered in this work is the cost reduction [7] gained through removal of redundant
or irrelevant features.

Many sparse modeling methods have been developed in order to remove
unnecessary features from a set of candidate features. One of the most popular
method is the lasso [8] which is often used to encourage sparsity by regularizing
with l1-norm. Sometimes prior knowledge about expected sparsity patterns can
be used in feature selection, which motivates for example the use of the group
lasso [10] that encourages sparsity in group level. The other popular family of
techniques for inducing sparseness in coefficients of the model, is to implement
a search over the power set of available features [2]. Considering all the possible
feature subsets is computationally infeasible, rather suboptimal search heuris-
tics are applied. In practice, the most widely used search approach is the greedy
forward selection method (see e.g. [11]). We note that many standard dimension-
ality reduction techniques, such as principal component analysis, are not suitable
for learning sparse models. While they project the data into a low-dimensional
space, they still require all the original features to perform the projection.

Typically, rather than requiring only a single prediction, many real-world
problems constitute rather multi-target prediction tasks. Here one may based
on same variables make predictions on multiple related outcomes, using several
linear models. Examples of such settings include multi-class classification with
one-versus-all encoding [6], multi-label classification problems [3] and multivari-
ate regression problems. More generally we may consider multi-task prediction
problems where the tasks still share a feature representation, but unlike in the
previous cases the training data for different tasks may be gathered from different
sources, and predictions are not necessary needed for all possible targets dur-
ing prediction time. For multi-target prediction problems, the coefficients of the
models can be represented in a matrix form, where rows correspond to different
targets and columns correspond to features. A matrix is considered sparse, if it
consists primarily of zero elements. However, compared to the single-target case
the concept of matrix sparsity allows for different sparsity patterns, depending
whether the non-zero elements are distributed freely, or along rows or columns in
the matrix. Depending on the application, two coefficient matrices with exactly
the same number of non-zero elements may lead to drastically different evalua-
tion costs.

In this paper, we study how one can lower the costs of making predictions for
multi-target learning problems by enforcing sparsity on the matrix containing
the coefficients of the linear models. We consider different types of costs that
lead to favoring different types of sparsity patterns in the predictive models, and
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show how such sparsity can be obtained. The goal of this work is not to propose
completely new algorithms, since the optimization problems needed for learning
sparse predictors can already be solved sufficiently well using existing greedy or
lasso type of methods. Rather, the goal of this work is to explore what are the
types of sparsity patterns best suited for different types of application settings.
For our experiments we implement greedy regularized least-squares methods, as
they have been recently shown in a comprehensive experimental comparison to
have state-of-the art performance when learning linear multi-target models with
sparsity constraints [3].

2 Sparsity Patterns

In this section, we consider a setting where several targets have to be predicted
under a strict budget. We assume that features or groups of features have unit
costs (a natural extension is to allow varying costs, but for the simplicity of
presentation and lack of suitable data this case is not considered in this work). By
feature extractor we refer to a source that generates features. Such an extractor
can for example be a sensor embedded into a device, a medical test, a question
in a questionnaire etc. We consider two settings, one where there is a one-to-one
mapping between features and extractors, and one with one-to-many mapping,
where each extractor produces a group of features. Correspondingly, by feature
extraction we refer to the procedure, where the extractors are used to obtain
the features. We assume that the available extractor or extraction budgets are
essentially unlimited when gathering the training data and building the model,
but the final models should be as cheap to use as possible. This is a fairly
reasonable assumption for example in product development in industry, where
one may accept large initial R&D costs when building model prototypes, but
the per unit cost of the final products should be as low as possible.

Thus, we may distinguish between two different costs, the extractor or the
extraction costs. The extractor cost refers to the price of the feature extractors
needed for computing the predictions. The cost could be for example the amount
of money needed to manufacture the sensors embedded in a device or the number
of medical devices needed in a hospital ward. The extractor cost can be consid-
ered as an initial investment made before the predictor can be used. In contrast,
extraction cost is paid every time a prediction is made. This can be, for exam-
ple, the monetary costs of performing blood tests for a patient, the time spent
filling a questionnaire or the time spent for computing the predictions. In the
single-target case there is no real need to distinguish between these two settings,
as minimizing the number of non-zero coefficients in the model (possibly subject
to variable costs and group structure) will lead to good solutions for both goals.
However, for multi-output prediction problems the settings clearly differ.

The coefficients of the linear models of the predictors are denoted in matrix
form, with rows and columns corresponding to targets and features, respec-
tively. By Sparsity patterns we refer to the different ways non-zero coefficients
can be distributed in the matrix. In this study we consider four types of spar-
sity patterns (see Fig. 1, where blue cells denote non-zero coefficients). Type I
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Type III Type IVType I Type II

Fig. 1. Sparsity patterns. Rows correspond to targets and columns to features. The
columns are ordered into three groups: {1, 2}, {3, 4} and {5}.

presents a pattern where non-zero coefficients are distributed freely over the
rows and columns. Type II denotes the pattern where non-zero coefficients are
set columnwise, reflecting a setup where all the targets require the same features
for prediction. Type III and IV extend these two basic cases with the additional
assumption that the features are ordered in groups and they are selected a whole
group at a time. Next, we discuss how these sparsity patterns relate to differ-
ent types of extractor or extraction costs that may be encountered in practical
settings.

2.1 Predicting Multiple Outputs Simultaneously

In the standard setting for multi-class or multi-label classification, with binary
encoding of the classes or labels, or in multi-output regression, one needs to
provide predictions for all possible outputs simultaneously. For example, one
may analyze a picture aiming to detect multiple properties of it simultaneously
(outside or inside, contains a face, nature or city), or assign a news document to
one or several possible categories (sports, weather, business...). Since the models
are evaluated at the same time, clearly any feature that has a non-zero coefficient
on any of the rows needs to be extracted.

First, let us consider the feature extractor costs for the case where each
feature is generated by its own extractor (see Fig. 1). Here, the cost of the Type
I is 5, since we need to be able to generate every single feature for computing
the predictions. In contrast, the cost for Type II and IV is only 2, since only
two features is needed for prediction. If we further assume the previously defined
group structure, then Type I needs all 3 extractors, Types II and III two of them
and Type IV only one of them. In the latter setting the feature extraction costs
coincide with the extractor costs, since every feature that is present in the model
for even one target will be used during prediction.

2.2 Predicting Outputs Independently

Prediction may also be done independently for the outputs. For example, mobile
phone applications may use the same set of available feature extractors (sensors
and basic software on phone), but the predictions are made independently at
different time points (one app for health monitoring while running, other for
managing diabetes while at home).

Here (see Fig. 1 again), the feature extractor costs are the same as in the pre-
vious case, since the number of required extractors does not depend on whether
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the predictions are made at the same time or not. However, if the group struc-
ture is not assumed the extraction costs are the same for all the models. For
all the outputs, on average two features need to be extracted. Here, instead of
enforcing sparsity on column-level (Type II or IV sparsity), it is often advan-
tageous to select features independently for each linear model (Type I or III
sparsity), since allowing this freedom results in no extra costs. As a summary, if
the extractor costs are the main concern, then this setting corresponds to the one
considered in the previous subsection. However, in case one needs to consider
only the extraction costs, then the models corresponding to different targets
may be independently learned using standard sparsity-enforcing methods such
as (group) lasso or greedy search methods.

3 Framework for Sparse Multi-target Problems

In the following considerations we reserve bold lowercase and uppercase letters
for vectors and matrices, respectively. Moreover, we denote by AI the submatrix
of A containing only the columns indexed by I.

3.1 Optimization Framework

In this section we present a framework for learning linear multi-target predictors
under budget constraints. Let T be the number of targets and k and be the
budget. Let Xt ∈ Rnt×d be a design matrix for tth problem, where the rows cor-
respond to training instances and the columns to feature values, and nt denotes
the number of samples for the target t and d is the number of features, and let
yt ∈ Rnt be the output vector for the tth target. We also divide the features
into disjoint groups Gi ⊂ {1, . . . , d}, i = 1, . . . , J and Gi ∩ Gj = ∅, i �= j.

The aim is to create a linear model for each of the T targets:

yt = Xtwt + εt, t = 1, . . . , T,

where wt ∈ Rd are true regression coefficients that are going to be estimated
and εt are error terms. Let wt be estimated regression coefficients for target
t and let W be a matrix that contains these vectors of coefficients in rows.
Applying the square loss for least squares regression, we can write the multi-
target optimization problem in the following form:

argmin
W∈RT ×d

T∑

t=1

‖yt − Xtwt‖2
2 + λ1Ω1(W) + λ2Ω2(W), (1)

where Ω1, Ω2 : Rd → R are penalties, and λ1, λ2 are regularization parameters.
Constraint function Ω1(W) is not mandatory in (1) but to shrink the regres-

sion coefficients to achieve some regularization effect we use quadratic constraint

Ω1(W) =

T∑

t=1

‖wt‖2
2
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Table 1. Sparsity inducing constraints

Ω2(W) separate joint

no group
∑T

t=1 ‖wt‖0 |{j | ∃i,Wi,j �= 0}|
group

∑T
t=1

⏐
⏐{wt

Gi
�= 0, i = 1, . . . , J}

⏐
⏐
⏐
⏐{Gi | ∃t,wt

Gi
�= 0}

⏐
⏐

over all the targets. The choice of constraint function Ω2(W) depends on the
type of sparsity we wish to enforce, the different alternatives are presented in
Table 1. If features are not generated in groups Type I sparsity (1st row, 1st
column) or Type II sparsity may be enforced (1st row, 2nd column). If the
group structure is known in advance, we may either enforce Type III sparsity
(2nd row, 1st column), or Type IV sparsity (2nd row, 2nd column).

3.2 Algorithms

The optimization problem (1) cannot be optimally solved in polynomial time due
to the presence of the sparsity constraint Ω2. However, it has been previously
shown that in such settings approximative greedy forward selection procedure
can still produce quite good solutions (see e.g. the recent results in [3] on enforc-
ing Type II sparsity). We consider a greedy search heuristic that starts from an
empty set of features and on each iteration chooses one additional feature such
that provides the lowest mean squared error via cross-validation, when added
to the model. The new chosen feature is then added into the current selected
feature set and same procedure is continued until budget limit k is reached.

Algorithm 1. greedy separate feature selection

1: for t ∈ {1, . . . , T} do � go through all the targets
2: S ← ∅ � The set of selected features.
3: while |S| < k do
4: b := argminr∈{1,...,d}\S

{
L(Xt

S∪{r},yt)
}

� Find the best new feature.
5: S ← S ∪ {b}
6: wt ← A(Xt

S ,yt) � Update coefficients.

Algorithm 1 presents a pseudocode for enforcing Type I sparsity. Inside the
while-loop, we go through all the remaining features r ∈ {1, . . . , d} \ S and
calculate the mean squared cross-validation error in the procedure denoted by
L(�) that trains predictor for target t using features included in the set S ∪ {r}.
The feature b that returns the lowest error will be selected and added into feature
set S. After budget limit k is reached, we train the final model using only the
features in the set S in the procedure denoted by A(�).

Algorithm 2 selects jointly a set of common features for all the targets, enforc-
ing Type II sparsity. Otherwise it behaves similarly as the Algorithm 1 except
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Algorithm 2. greedy joint feature selection

1: S ← ∅ � The set of selected features.
2: while |S| < k do
3: b := argminr∈{1,...,d}\S

{∑
t L(Xt

S∪{r},yt)
}

� Find the best new feature.
4: S ← S ∪ {b}
5: wt ← A(Xt

S ,yt), t = 1, . . . , T � Update coefficients.

Algorithm 3. greedy group separate feature selection

1: Gi ⊂ {1, . . . , d}, i = 1, . . . , J � Init the disjoint feature groups
2: for t ∈ {1, . . . , T} do � go through all the targets
3: F ← ∅ � The set of selected feature groups.
4: S ← ∅ � The set of selected features.
5: while |F | < k do
6: b := argminr∈{1,...,J}\F

{
L(Xt

S∪Gr
,yt)
}

� Find the best feature group.
7: F ← F ∪ {b}
8: S ← S ∪ Gb

9: wt ← A(Xt
S ,yt) � Update coefficients.

Algorithm 4. greedy group joint feature selection

1: Gi ⊂ {1, . . . , d}, i = 1, . . . , J � Init the disjoint feature groups
2: F ← ∅ � The set of selected feature groups.
3: S ← ∅ � The set of selected features.
4: while |F | < k do
5: b := argminr∈{1,...,J}\F

{∑
t L(Xt

S∪Gr
,yt)
}

� Best new feature group.
6: F ← F ∪ {b}
7: S ← S ∪ Gb

8: wt ← A(Xt
S ,yt), t = 1, . . . , T � Update coefficients.

that the mean squared error is calculated over all the targets. Algorithm 3 and
Algorithm 4 works similarly than Algorithm 1 and Algorithm 2, respectively,
but instead of selecting features they select feature groups.

A straightforward implementation of the Algorithms 1-4 based on black-box
solver that would compute the regularized-least squares cross-validation estimate
for each tested feature at a time is computationally demanding, as the training
needs to be done for each tested feature, target and round of cross-validation. It
has recently been shown that both Algorithm 1 [4,5] and Algorithm 2 [3] can be
performed in linear time, using linear algebra shortcuts. An interesting direction
of future research, that falls outside the scope of this work, would be to extend
these speed-ups also for Algorithms 3 and 4.

4 Experiments

In the experiments we study how enforcing different sparsity patterns reduces
the prediction costs on two real-world problems.
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4.1 Datasets and Setup

We perform our experiments on two real world datasets, the Flags (43 features,
19 feature groups, 7 labels) and the Kddcup10 (118 features, 41 feature groups,
9 labels), available at the Mulan library1 and at the UCI KDD archive2, respec-
tively. We modify both data sets to make them suitable for our test settings.
First, the Kddcup10 and the Flags data sets are transformed into multi-target
data sets by considering each label as its own binary classification task. In order
to create feature groups for the setting where we compare group separate fea-
ture learning and group joint feature learning schemes, we code each categorical
variable as a group of binary features, one for each possible value. Because the
Kddcup10 is a quite unbalanced dataset that includes only a few samples for
some rare labels, we consider only the 9 most common labels in our experiments.

The experiments are based on nested 5-fold cross-validation [1]. Parameter
and feature selection is performed in an inner cross-validation loop, and the final
model trained on four folds is always tested on the independent test fold that
was not used for feature or parameter selection. Both data sets are tested over
regularization parameter values in grid [2−4, 2−2, 20, 22, 24] and the best value for
each budget is chosen based on the lowest 4-fold internal cross-validation error.
We report the average AUC (area under the ROC curve) over all the targets.

4.2 Results

Fig. 2 contains the average AUC performance curves with respect to costs over
all the targets on the Flags and the Kddcup10 datasets. The figures on the
first and the second row are based on the assumption that there are no feature
groups, whereas the last two rows show the case where the features are divided
into groups. Moreover, on the left column we plot the average costs for each
target, while on the right column are the joint costs over all the targets.

First, we consider the case where the predictions are done independently for
the targets (left column) and extraction costs dominate. This corresponds to the
application setting where the models may be jointly trained but the predictions
are not done at the same time. In this case better classification performance can
be gained with smaller extraction costs by favoring Type I sparsity (or in group
case Type III) on the Kddcup10 dataset whereas benefits on the Flags dataset
are dependent on the budget size, maybe due to the small sample size of the
dataset. Thus, the results support the notion that if the costs are not shared
between the targets, then sharing common features might not be beneficial,
though apparently it can sometimes still be helpful.

Second, we consider the case where the costs are shared between the targets
(right column), either because the extractor costs dominate, or because the pre-
dictions are always done jointly, so that the extraction costs are shared. Here, the
methods that perform feature selection jointly, enforcing Type II or IV sparsity,

1 http://mulan.sourceforge.net
2 http://kdd.ics.uci.edu
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Fig. 2. Performance curves

are clearly beneficial as they allow much higher predictive accuracies especially
with small budget sizes. Thus, the results match the intuition behind what spar-
sity patterns are best suited for which type of setting, though for the Flags data,
enforcing joint sparsity proves to be beneficial even if from budget perspective
there is not a specific reason why the sharing should be needed.

5 Conclusions and Future Work

In this study, we considered the costs of making predictions for multi-target
problems defining four types of sparsity patterns. The results also demonstrate
how these patterns relate to extractor and extraction costs resulting in lower
prediction costs in different application domains. We presented also greedy for-
ward selection algorithms that enforce such sparsity in the coefficients of the
models resulting in lowered prediction costs.
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