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Abstract

We describe the Shilov boundary ideal for a q-analog of algebra of holomorphic func-
tions on the unit ball in the space of 2× 2 matrices.

1 Introduction

The Shilov boundary of a compact Hausdorff spaceX relative a uniform algebraA in C(X)
is the smallest closed subset K ⊂ X such that every function in A achieves its maximum
modulus on K, a notion that is closely related to the maximum modules principle in
complex analysis.

One of the most important developments in Analysis in recent years has been ”quan-
tisation”, starting with the advent of the theory of operator spaces in the 1980’s. A
quantisation of the Shilov boundary is a Shilov boundary ideal of a C∗-algebra, that was
introduced by W. Arveson in his foundational papers [1, 2] and studied intensively by
many authors.

In the middle of 1990’s within the framework of the quantum group theory L.Vaksman
and his coauthors started a ”quantisation” of bounded symmetric domains (see [16] and
references therein). One of the simplest of such domains is the matrix ball U = {z ∈
Matm,n : zz∗ ≤ I}, where Matm,n is the algebra of complex m×n matrices. Its q-analog
was studied in [11, 14] where the authors defined a non-commutative counterpart of the
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polynomial algebra in the spaceMatm,n, the ∗-algebra Pol(Matm,n)q. A q-analog of poly-
nomial algebra on the Shilov boundary S(U) of the matrix ball U and the corresponding
Cauchy-Szegö integral representation that recovers holomorphic functions from its values
on the Shilov boundary was studied in [14]. The authors used a purely algebraic approach
”quantizing” a well known procedure for producing the Shilov boundary in the classical
case. In particular, they constructed a ∗-homomorphism ψ : Pol(Matm,n)q → Pol(S(U))q
that corresponds to the restriction of the polynomials onto the Shilov boundary in the
classical case. That the kernel of ψ gives rise to Arveson’s Shilov boundary ideal for the
q-analog of holomorphic functions on the unit ball of Matn,1 = C

n was shown in [15]. In
this paper we prove the statement for the case m = n = 2.

Our approach relies on a classification of irreducible representations of Pol(Mat2,2)q
obtained in [13] and elaborates methods of quantum groups and the Sz.-Nagy’s unitary
dilation theory. We note that all irreducible representations of Pol(Matm,n)q are known
only in the cases when either m = 1, or n = 1 or m = n = 2.

In this paper we use the following standard notations: R is the set of real numbers, Z
denotes the set of integers, Z+ = {0, 1, 2, . . .}, N = {1, 2, . . .}. All algebras are assumed
to be unital one over the field of complex numbers C and q ∈ (0, 1). We write Matn for
the space of n × n complex matrices. By {en : n ∈ Z+} we denote the standard basis in
the Hilbert space ℓ2(Z+).

2 The ∗-algebra Pol(Cn)q

The ∗-algebra Pol(Cn)q is a ∗-algebra generated by zj , j = 1, . . . , n, subject to the
relations:

zjzk = qzkzj , j < k,

z∗j zk = qzkz
∗
j , j 6= k,

z∗j zj = q2zjz
∗
j + (1− q2)(1−

∑

k>j

zkz
∗
k).

This ∗-algebra is a q-analog of the ∗-algebra of polynomials on C
n. It was first introduced

by Pusz and Woronowicz in [9] but in terms of slightly different generators (see a remark
in [15, section 3]). Its irreducible representations are well-known, see [9]. If n = 1 we have
the following list of representations up to unitary equivalence:

1. the Fock representation ρF on ℓ2(Z+): ρF (z1)en =
√

1− q2n+2en+1,

2. one-dimensional representations ρϕ, ϕ ∈ [0, 2π): ρϕ(z1) = eiϕ.

The ∗-algebra C[SU2]q of regular functions on the quantum SU2 is given by its gener-
ators tij, i, j = 1, 2, satisfying the relations:

t11t21 = qt21t11, t11t12 = qt12t11, t12t21 = t21t12,

t22t21 = q−1t21t11, t22t12 = q−1t12t22, (1)

t11t22 − t22t11 = (q − q−1)t12t21, t11t22 − qt12t21 = 1,

t∗11 = t22, t
∗
12 = −qt21.



By [6] any irreducible representation of C[SU2]q is unitarily equivalent to one of the
following:

1. one-dimensional representations:

ξϕ(t11) = eiϕ, ξϕ(t21) = 0, ϕ ∈ [0, 2π). (2)

2. infinite-dimensional representations πϕ, ϕ ∈ [0, 2π), on ℓ2(Z+):

πϕ(t11)e0 = 0, πϕ(t11)ek = (1− q2k)1/2ek−1, k ≥ 1,

πϕ(t21)ek = qkeiϕek, (3)

πϕ(t22)ek = (1− q2(k+1))1/2ek+1,

πϕ(t12)ek = −qk+1e−iϕek.

3 The ∗-algebra Pol(Mat2)q and ∗-representations

The ∗-algebra Pol(Mat2)q, a q-analog of polynomials on the space Mat2 of complex 2×2
matrices, introduced in [11], is given by its generators {zαa }a=1,2;α=1,2 and the following
commutation relations:

z11z
1
2 = qz12z

1
1 , z12z

2
1 = z21z

1
2 ,

z11z
2
1 = qz21z

1
1 , z12z

2
2 = qz22z

1
2 ,

z11z
2
2 − z22z

1
1 = (q − q−1)z21z

1
2 , z21z

2
2 = qz22z

2
1 ,

(4)

(z11)
∗z11 = q2z11(z

1
1)

∗ − (1− q2)(z12(z
1
2)

∗ + z21(z
2
1)

∗)+
+q−2(1− q2)2z22(z

2
2)

∗ + 1− q2,
(z12)

∗z12 = q2z12(z
1
2)

∗ − (1− q2)z22(z
2
2)

∗ + 1− q2,
(z21)

∗z21 = q2z21(z
2
1)

∗ − (1− q2)z22(z
2
2)

∗ + 1− q2,
(z22)

∗z22 = q2z22(z
2
2)

∗ + 1− q2,

(5)

(z11)
∗z12 − qz12(z

1
1)

∗ = (q − q−1)z22(z
2
1)

∗, (z22)
∗z12 = qz12(z

2
2)

∗,
(z11)

∗z21 − qz21(z
1
1)

∗ = (q − q−1)z22(z
1
2)

∗, (z22)
∗z21 = qz21(z

2
2)

∗,
(z11)

∗z22 = z22(z
1
1)

∗, (z12)
∗z21 = z21(z

1
2)

∗.
(6)

The irreducible representations of Pol(Mat2)q were classified in [13]. Next theorem
presents them in a different form that is convenient for our purpose.

Let C, S, d(q) : ℓ2(Z+) → ℓ2(Z+) be operators defined as follows

Sen = en+1, Cen = (1− q2n)
1

2 en, d(q)en = qnen.

Theorem 1 Any irreducible bounded representation of Pol(Mat2)q is unitarily equivalent
to one of the following non-equivalent representations:

1. the Fock representation acting in ℓ2(Z+)
⊗4:

πF (z
2
2) = CS ⊗ 1⊗ 1⊗ 1,

πF (z
1
2) = d(q)⊗ CS ⊗ 1⊗ 1,

πF (z
2
1) = d(q)⊗ 1⊗ CS ⊗ 1,

πF (z
1
1) = 1⊗ d(q)⊗ d(q)⊗ CS − q−1S∗C ⊗ CS ⊗CS ⊗ 1;



2. representations τϕ, ϕ ∈ [0, 2π), acting in ℓ2(Z+)
⊗3:

τϕ(z
2
2) = CS ⊗ 1⊗ 1,

τϕ(z
1
2) = d(q)⊗ CS ⊗ 1,

τϕ(z
2
1) = d(q)⊗ 1⊗ CS,

τϕ(z
1
1) = eiϕ1⊗ d(q)⊗ d(q)− q−1S∗C ⊗ CS ⊗ CS;

3. representations ν1,ϕ and ν2,ϕ acting in ℓ2(Z+)
⊗2:

3a)

ν1,ϕ(z
2
2) = CS ⊗ 1,

ν1,ϕ(z
1
2) = eiϕd(q)⊗ 1,

ν1,ϕ(z
2
1) = d(q)⊗ CS,

ν1,ϕ(z
1
1) = −eiϕq−1S∗C ⊗ CS,

3b)

ν2,ϕ(z
2
2) = CS ⊗ 1,

ν2,ϕ(z
1
2) = d(q)⊗ CS,

ν2,ϕ(z
2
1) = eiϕd(q)⊗ 1,

ν2,ϕ(z
1
1) = −eiϕq−1S∗C ⊗CS;

4. representations ρϕ1,ϕ2
, ϕ1, ϕ2 ∈ [0, 2π), acting in ℓ2(Z+):

ρϕ1,ϕ2
(z22) = CS,

ρϕ1,ϕ2
(z12) = eiϕ1d(q),

ρϕ1,ϕ2
(z21) = eiϕ2d(q),

ρϕ,ϕ2
(z11) = −ei(ϕ1+ϕ2)q−1S∗C;

5. representations θϕ, ϕ ∈ [0, 2π), acting in l2(Z+):

θϕ(z
2
2) = eiϕ, θϕ(z

1
2) = θϕ(z

2
1) = 0, θϕ(z

1
1) = q−1CS;

6. one-dimensional representations γϕ1,ϕ2
, where ϕ1, ϕ2 ∈ [0, 2π)

γϕ1,ϕ2
(z22) = eiϕ1 , γ(z12) = γ(z21) = 0, γϕ1,ϕ2

(z11) = eiϕ2q−1.

It can be easily seen from the above list of representations that the ∗-algebra Pol(Mat2)q
is ∗-bounded (see [7]), i.e., there exist constants C(a), a ∈ Pol(Mat2)q, such that ||π(a)|| ≤
C(a) for any bounded ∗-representation π. Let C(Mat2)q denote the universal enveloping
C∗-algebra of Pol(Mat2)q. The following theorem was proved first in [8] and in general
case for Pol(Matn)q in [10].



Theorem 2 Given an irreducible representation, π, of C(Mat2)q, let Aπ be the C∗-
algebra generated by operators of the representation π. Then there exists a homomorphism
δπ from the C∗-algebra AπF to the C∗-algebra Aπ such that

δπ(πF (z
j
i )) = π(zji ), i, j = 1, 2.

Consequently, the Fock representation πF of C(Mat2)q is faithful and C(Mat2)q ≃ AπF .

In what follows we will use another description of irreducible representations. For this
we need the following ∗-homomorphisms whose existence was indicated in [3] without a
proof.

Lemma 1 The map

D : zij 7→
2

∑

a,b=1

zab ⊗ tbj ⊗ tai, i, j = 1, 2,

is uniquely extendable to a ∗-homomorphism

D : Pol(Mat2)q → Pol(Mat2)q ⊗ C[SU2]q ⊗ C[SU2]q.

Proof. Consider the Hopf algebra C[SL4]q generated by {tij}
4
i,j=1 and the commutation

relations

tijtkl − qtkltij = 0, i = k & j < l or i < k & j = l,

tijtkl − tkltij = 0 i < k & j > l,

tijtkl − tkltij = (q − q−1)tiltkj i < k & j < l,

detqT :=
∑

s∈S4

(−q)l(s)t1s(1)t2s(2)t3s(3)t4s(4) = 1,

with l(s) = card{(i, j) : i < j&s(i) > s(j)}. The comultiplication ∆ is given by

∆(tij) =

2
∑

k=1

tik ⊗ tkj.

Let t = t{1,2}{3,4} := t13t24 − qt24t23. Consider the map

I : zαa 7→ t−1t{1,2}Jaα .

where Jaα = {3, 4} \ {5 − α} ∪ {a} and tIJ := ti1j1ti2j2 − qti1,j2ti2j1 with I = {i1, i2},
J = {j1, j2}. By [12, Proposition 6.10], it determines a homomorphism from Pol(Mat2)q
to a localisation of Pol(X̃)q := (C[SL4]q, ∗) (see [12, (6.6)] for the involution ∗ on C[SL4]q)
with respect to a multiplicative system tt∗, (tt∗)2, . . ..

Consider now the two-sided ideal J ⊂ C[SL4]q generated by tkl with k ≤ 2 and l > 2
or k > 2 and l ≤ 2, and the canonical onto morphism

j : C[SL4]q → C[SL4]q/J.

Let C[S(U2 × U2)]q = (C[SL4]q/J, ⋆), an involutive algebra, where

t⋆ij = (−q)j−idetqTij



and Tij is derived from (tij)
4
i,j=1 by deleting its i-th row and j-th column and detqT

is the quantum determinant of T (see [12] for the definition). By [12, Lemma 9.3] the
composition ∆̃ = (id ⊗ j)∆ is a homomorphsim of ∗-algebras ∆̃ : Pol(X̃)q → Pol(X̃)q ⊗
C[S(U2 × U2)]q. The ∗-homomorphism can be naturally extended to the localization of
Pol(X̃)q which we shall also denote by ∆̃.

Let I be the two-sided ideal of C[S(U2 × U2)]q generated by t11t22 − qt12t21 − 1 and
t33t44 − qt34t43 − 1 (we note that 1 = detq(tij) = (t11t22 − qt12t21)(t33t44 − qt34t43) in
C[S(U2 × U2)]q). Then C[SU2]q ⊗ C[SU2]q = C[S(U2 × U2)]q/I.

Let
i : C[S(U2 × U2)]q 7→ C[SU2]q ⊗ C[SU2]q

be the canonical onto homomorphism.
Then (id⊗i)◦∆̃◦I is a ∗-homomorphism from Pol((Mat2)q to Pol(Mat2)q⊗C[SU2]q⊗

C[SU2]q. To prove the lemma it is enough to see now that D = (id⊗ i) ◦ ∆̃ ◦ I.
Using relations in [SL4]q/J we obtain

∆̃(t) = ∆̃(t13t24 − qt14t23) = (

4
∑

k=3

t1k ⊗ tk3)(

4
∑

i=3

t2i ⊗ ti4)− q(

4
∑

k=3

t1k ⊗ tk4)(

4
∑

i=3

t2i ⊗ ti3)

=
4

∑

k,i=3

t1kt2i ⊗ (tk3ti4 − qtk4ti3) = t13t24 ⊗ (t33t44 − qt34t43)

+ t14t23 ⊗ (t43t34 − qt44t33)

= t13t24 ⊗ (t33t44 − qt34t43)− q−1t14t23 ⊗ (t44t33 − q−1t43t34)

= (t13t24 − q−1t14t23)⊗ (t33t44 − qt34t43) = t⊗ (t33t44 − qt34t43)

and hence (id⊗ i) ◦ ∆̃(t) = t⊗ 1⊗ 1.
Similarly,

∆̃(t{12}J11) = ∆̃(t11t23 − qt13t21) = (

2
∑

k=1

t1k ⊗ tk1)(

4
∑

i=3

t2i ⊗ ti3)

− q(

4
∑

k=3

t1k ⊗ tk3)(

2
∑

i=1

t2i ⊗ ti1)

=

2
∑

k=1

4
∑

i=3

t1kt2i ⊗ tk1ti3 − q

4
∑

i=3

2
∑

k=1

t1it2k ⊗ ti3tk1

=

2
∑

k=1

4
∑

i=3

(t1kt2i − qt1it2k)⊗ tk1ti3

and

(id⊗ i) ◦ ∆̃(t−1t{12}J11) =
2

∑

k=1

4
∑

i=3

(t−1(t1kt2i − qt1it2k))⊗ tk1 ⊗ t(i−2)1

=
2

∑

k=1

4
∑

i=3

I(zi−2
k )⊗ tk1 ⊗ t(i−2)1



giving (id⊗ i) ◦ ∆̃ ◦ I(z11) = D(z11). Similarly one checks that (id⊗ i) ◦ ∆̃ ◦ I(zji ) = D(zji )

for other generators zji .

Consider now a mapping Πϕ : Pol(Mat2)q → Pol(C)q given on the generators by
(

Πϕ(z
1
1) Πϕ(z

2
1)

Πϕ(z
1
2) Πϕ(z

2
2)

)

→

(

q−1z 0
0 eiϕ

)

.

It is straight forward to check that Πϕ is a ∗-homomorphism.
Clearly, if ρ is a ∗-representation of Pol(C)q, τ is a ∗-representation of Pol(Mat2)q, and

π1, π2 are representation of C[SU2]q then ρ◦Πϕ and (τ⊗π1⊗π2)◦D are ∗-representations
of Pol(Mat2)q.

Let ρF be the Fock representation of Pol(C)q , ρϕ, ϕ ∈ [0, 2π), be the one-dimensional
representations of Pol(C)q and πϕ, ϕ ∈ [0, 2π) be the infinite-dimensional representation of
C[SU2]q given by (3). Consider the following families of ∗-representations of Pol(Mat2)q:

Fϕ = ρF ◦Πϕ, χϕ1,ϕ2
= ρϕ1

◦ Πϕ2

and
(Fϕ ⊗ π0 ⊗ π0) ◦ D, (χϕ1,ϕ2

⊗ π0 ⊗ π0) ◦ D,

where ϕ,ϕ1, ϕ2 ∈ [0, 2π).
We have

(Fϕ ⊗ π0 ⊗ π0) ◦ D(z11) = (Fϕ ⊗ π0 ⊗ π0)(
∑

zab ⊗ tb1 ⊗ ta1)

= q−1ρF (z)⊗ π0(t11)⊗ π0(t11) + eiϕ ⊗ π0(t21)⊗ π0(t21)

= q−1CS ⊗ S∗C ⊗ S∗C + eiϕ ⊗ d(q)⊗ d(q),

(Fϕ ⊗ π0 ⊗ π0) ◦ D(z22) = (Fϕ ⊗ π0 ⊗ π0)(
∑

zab ⊗ tb2 ⊗ ta2)

= q−1ρF (z)⊗ π0(t12)⊗ π0(t12) + eiϕ ⊗ π0(t22)⊗ π0(t22)

= qCS ⊗ d(q)⊗ d(q) + eiϕ ⊗ CS ⊗ CS,

(Fϕ ⊗ π0 ⊗ π0) ◦ D(z21) = (Fϕ ⊗ π0 ⊗ π0)(
∑

zab ⊗ tb1 ⊗ ta2)

= q−1ρF (z)⊗ π0(t11)⊗ π0(t12) + eiϕ ⊗ π0(t21)⊗ π0(t22)

= −CS ⊗ S∗C ⊗ d(q) + eiϕ ⊗ d(q)⊗ CS,

(Fϕ ⊗ π0 ⊗ π0) ◦ D(z12) = (Fϕ ⊗ π0 ⊗ π0)(
∑

zab ⊗ tb2 ⊗ ta1)

= q−1ρF (z)⊗ π0(t12)⊗ π0(t11) + eiϕ ⊗ π0(t22)⊗ π0(t21)

= −CS ⊗ d(q)⊗ S∗C + eiϕ ⊗ CS ⊗ d(q),

and

(χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D(z11) = q−1eiϕ1S∗C ⊗ S∗C + eiϕ2d(q)⊗ d(q),

(χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D(z22) = qeiϕ1d(q) ⊗ d(q) + eiϕ2CS ⊗ CS,

(χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D(z21) = −eiϕ1S∗C ⊗ d(q) + eiϕ2d(q)⊗ CS,

(χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D(z12) = −eiϕ1d(q)⊗ S∗C + eiϕ2CS ⊗ d(q).



Lemma 2 The ∗-representation (Fϕ⊗π0⊗π0)◦D, ϕ ∈ [0, 2π), is irreducible and unitarily
equivalent to τϕ.

Proof. Fix ϕ ∈ [0, 2π). Let Zji = τϕ(z
j
i ) and W j

i = (Fϕ ⊗ π0 ⊗ π0) ◦ D(zji ), i, j = 1, 2.
The operators act on ℓ2(Z+)

⊗3. Let Ω = e0 ⊗ e0 ⊗ e0. It can be easily verified that Ω is
cyclic for both of the families {Zji , (Z

j
i )

∗, i, j = 1, 2}, {W j
i , (W

j
i )

∗, i, j = 1, 2}, and

(Z2
2 )

∗Ω = (W 2
2 )

∗Ω = 0, (Z1
2 )

∗Ω = (W 1
2 )

∗Ω = 0,

(Z2
1 )

∗Ω = (W 2
1 )

∗Ω = 0, (Z1
1 )

∗Ω = (W 1
1 )

∗Ω = e−iφΩ.

Hence both τϕ and (Fϕ⊗π0⊗π0) ◦D determine so-called coherent representations of
the Wick algebra corresponding to Pol(Mat2)q, with the same coherent state (see [4] for
definition and properties of coherent representation of ∗-algebra allowing Wick ordering).
Since coherent representation of Wick algebra is unique, up to the unitary equivalence,
and irreducible (see [4, Proposiiton 1.3.3]), we have the required statement.

4 Shilov boundary

Let E1 and E2 be subspaces of C
∗-algebras A1 and A2 respectively. We denote byMn(Ei)

be the space of all n×n matrices with entries in Ei. We equipMn(Ei) with norms induced
from the C∗-algebras Mn(Ai). Note that the norms are independent of the embeddings of
Ei into a C∗-algebra. Let T : E1 → E2 be a linear operator. Denote by T (n) the mapping
from Mn(E1) to Mn(E2) defined by

T (n)((aij)i,j) = (T (aij)i,j), (aij)i,j ∈Mn(E1).

T is called contractive if ||T || ≤ 1 and completely contractive if ||T (n)|| ≤ 1 for any n ≥ 1.
T is called an isometry if ||T (a)||E2

= ||a||E1
, and is a complete isometry if T (n) is an

isometry for any n ≥ 1.
Let A be a linear subspace of a C∗-algebra B such that A contains the identity of B

and generates B as a C∗-algebra. The following definition was given by Arveson [1].

Definition 1 A closed two-sided ideal J in B is called a boundary ideal for A if the
canonical quotient map q : B → B/J is completely isometric on A. A boundary ideal is
called the Shilov boundary for A if it contains every other boundary ideal.

Note that the Shilov boundary exists and unique, [1, 5]. Shilov boundary ideal is
a non-commutative analog of Shilov boundary of a compact Hausdorff space X relative
to a subspace A of the space C(X) of continuous functions on X which is by definition
the smallest closed subset K of X such that every function in A achieves its maximum
modulus on K.

Let us give some examples of Shilov boundary and Shilov boundary ideals.

Example 1 • If D = {z ∈ C
n : |z| ≤ 1} is the unit disk. It is known that any

holomorphic function on D attains its maximum on the unit disk U = {z ∈ C
n :



|z| = 1} and moreover it is the smallest closed set with this property and hence U

is the Shilov boundary of D with respect to the set of holomorphic functions A(D).
The ideal J = {f ∈ C(D) : f |U = 0} is the Shilov ideal of the C∗-algebra C(D) with
respect to A(D).

• A q-analog of C(D) is the universal enveloping C∗-algebra of Pol(Matn,1)q. It was
proved by L.Vaksman, [15] that a closed two-sided ideal generated by

∑n
j=1 zjz

∗
j−1 is

the Shilov boundary ideal for the closed unital algebra generated by zi, i = 1, . . . , n,
which is a q-analog of the algebra of holomorphic functions on D.

In C(Matn)q consider a closed two-sided ideal J generated by

n
∑

j=1

q2n−α−βzαj (z
β
j )

∗ − δαβ , α, β = 1, . . . n,

where δαβ is the Kronecker symbol. The ideal J is a ∗-ideal, i.e. J = J∗. The quotient
algebra C(S(D))q := C(Matn)q/J is a Uqsun,n-module ∗-algebra called the algebra of
continuous functions on the Shilov boundary of a quantum matrix ball. The canonical
homomorphism

jq : C(Matn)q → C(S(D))q

is a q-analog of the restriction operator which maps a continuous functions on the disk
D = {z ∈ Matn : zz∗ ≤ 1} to its restriction to the Shilov boundary S(D) = {z ∈ Matn :
zz∗ = 1}.

In this section we show that for n = 2, the ideal J is the Shilov boundary ideal for
the (non-involutive) closed subalgebra A(Mat2)q of C(Mat2)q generated by zji , i, j = 1, 2.
Our approach, similarly to [15], is based on Sz.-Nagy’s and Foyas’ dilation theory.

Theorem 3 (Sz.-Nagy’s dilation theorem). Let T ∈ B(H) with ||T || ≤ 1. Then
there exists a Hilbert space K containing H as a subspace and a unitary U on K with the
property that

T n = PHU
n|H for all nonnegative integers n.

Lemma 3 The only irreducible representations that annihilate the ideal J are ρϕ1,ϕ2
and

γϕ1,ϕ2
, ϕ1, ϕ2 ∈ [0, 2π).

Proof. A straightforward verification.

Lemma 4 Given a representation π of Pol(Mat2)q that annihilates the ideal J and a ∈
Pol(Mat2)q, ||π(a)|| ≤ supψ1,ψ2

||ρψ1,ψ2
(a)||.

Proof. We start by noting that the operators C, S, d(q) : ℓ2(Z+) → ℓ2(Z+) defined in
Section 3 satisfy the equalities

C2 = (1− q2)

∞
∑

n=0

q2nSn+1(Sn+1)∗, d(q) =

∞
∑

n=0

qn
(

Sn(Sn)∗ − Sn+1(Sn+1)∗
)

(7)



and hence the C∗-algebra, C∗(S), generated by S coincides with the one generated by S,
C and d(q)), and the mapping S 7→ eiϕ can be naturally extended to ∗-homomorphism

Θϕ : C
∗(S) → C, Θϕ(S) = eiϕ, Θϕ(C) = 1, Θϕ(d(q)) = 0.

Recall that

ρϕ1,ϕ2
(z22) = CS,

ρϕ1,ϕ2
(z12) = eiϕ1d(q), (8)

ρϕ1,ϕ2
(z21) = eiϕ2d(q),

ρϕ,ϕ2
(z11) = −ei(ϕ1+ϕ2)q−1S∗C,

and
γϕ1,ϕ2

(z22) = eiϕ1 , γϕ1,ϕ2
(z12) = γϕ1,ϕ2

(z21) = 0, γϕ1,ϕ2
(z11) = eiϕ2q−1.

For a representation π of Pol(Mat2)q) we let Aπ denote the unital C∗-algebra gen-

erated by π(zji ), i, j = 1, 2. Then Aρϕ1,ϕ2
= C∗(S). In fact it follows from (8) and

(7) that Aρϕ1,ϕ2
⊂ C∗(S). To see the other inclusion we note that 0 is an isolated

point in the spectrum σ(C) of C, and hence the function f given by f(0) = 0 and
f(t) = t−1, t ∈ σ(C), t 6= 0, is continuous on σ(C). Therefore, since T := ρϕ1,ϕ2

(z22) = CS
one has C = ((1 − q−2)I + q−2T ∗T )1/2 ∈ Aρϕ1,ϕ2

and S = f(C)T ∈ Aρϕ1,ϕ2
implying

C∗(S) ⊂ Aρϕ1,ϕ2
.

Evidently, Bγϕ1,ϕ2
= C. The homomorphism Θϕ1

gives rise to a homomorphism be-
tween Aρϕ1,π+ϕ2

and Bϕ1,ϕ2
:

Θϕ1
(ρϕ1,π+ϕ2

(zji )) = γϕ1,ϕ2
(zji ), i, j = 1, 2

proving that

|γϕ1,ϕ2
(a)| = |Θϕ1

(ρϕ1,π+ϕ2
(a))| ≤ ‖ρϕ1,π+ϕ2

(a)‖ ≤ sup
ψ1,ψ2

||ρψ1,ψ2
(a)||, i = 1, 2.

Lemma 5 The ideal J is a boundary ideal, i.e. the restriction jA(Mat2)q of jq to A(Mat2)q
is a complete isometry.

Proof. Since jq is a ∗-homomorphism between C∗-algebras, jq and hence jA(Mat2)q is a
complete contraction. Therefore it is enough to prove that for aij ∈ A(Mat2)q, we have

||(πF (aij))i,j ||Mn(C(Mat2)q) ≤ ||j(n)q ((πF (aij))||Mn(C(S(D))q).

Since by Lemma 3 the only representations of C(Mat2)q that annihilate the ideal J are
ρϕ1,ϕ2

and γϕ1,ϕ2
, ϕi ∈ [0, 2π), and

|γϕ1,ϕ2
(a)| ≤ sup

ψ1,ψ2

||ρψ1,ψ2
(a)||

we have
||b+ J ||C(S(D))q = sup

ψ1,ψ2

||ρψ1,ψ2
(b)||.



Therefore, we must show that

||(πF (aij))i,j ||Mn(C(Mat2)q) ≤ sup
ψ1,ψ2

||(ρψ1,ψ2
(aij))||Mn(B(ℓ2(Z+)⊗ℓ2(Z+)))

for all (aij) ∈Mn(A(Mat2)q). We will do this in two steps.
Step 1. It follows from the definition of operators C and S that T = CS is a

contraction on H = ℓ2(Z+). By Sz.-Nagy dilation theorem there exists a unitary operator
U on a Hilbert space K with K ⊃ H such that (CS)n = PHU

n|H for any n = 1, 2, . . ..
Consider a mapping Ψ : {zji , i, j = 1, 2} → B(H⊗4) given by

Ψ(zji ) = πF (z
j
i ), (i, j) 6= (1, 1), and Ψ(z11) = 1⊗ d(q)⊗ d(q)⊗U − q−1S∗C⊗CS⊗CS⊗ 1.

Then Ψ extends uniquely to a homomorphism of A(Mat2)q and

πF (a) = (1H⊗3 ⊗ PH)Ψ(a)|H⊗3⊗H , a ∈ A(Mat2)q.

Moreover, it is easy to see that Ψ has an extension to a ∗-representation of Pol(Mat2)q
whose irreducible subrepresentations are unitarily equivalent to τϕ, ϕ ∈ [0, 2π). Therefore

||πF (a)|| ≤ ||Ψ(a)|| ≤ sup
ϕ∈[0,2π)

||τϕ(a)||, a ∈ A(Mat2)q.

Similarly,

||(πF (aij))||Mn(B(H⊗4)) ≤ sup
ϕ∈[0,2π)

||(τϕ(aij))||Mn(B(H⊗3)), (aij) ∈Mn(A(Mat2)q).

Step 2. Our next goal is to prove that for any ϕ ∈ [0, 2π)

||τϕ(a)|| ≤ sup
ϕ1,ϕ2

||ρϕ1,ϕ2
(a)||, a ∈ A(Mat2)q.

It is a routine to verify that the representations (χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D annihilate the

ideal J for any ϕ1, ϕ2 ∈ [0, 2π). In particular this fact implies

sup
ϕ1,ϕ2

||(χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D(zji )|| ≤ sup

ϕ1,ϕ2

||ρϕ1,ϕ2
(zji )||, i, j = 1, 2.

So, it will be enough for us to show that for any ϕ ∈ [0, 2π) and i, j = 1, 2

||τϕ(z
j
i )|| ≤ sup

ϕ1,ϕ2

||(χϕ1,ϕ2
⊗ π0 ⊗ π0) ◦ D(zji )||.

Indeed, as in the first step let U be a unitary operator on a Hilbert space K with K ⊃ H,
H = ℓ2(Z+), such that

(CS)n = PHU
n|H .

Then the mapping Ψ defined on the generators zji , i, j = 1, 2, that replaces CS by U in the

first component in the expressions for τϕ(z
j
i ) = Fϕ ⊗ π0 ⊗ π0(D(zji )) can be extended to

a ∗-representation Ψ of Pol(Mat2)q whose all irreducible subrepresentations are unitarily
equivalent to (χϕ1,ϕ ⊗ π0 ⊗ π0) ◦ D, and, moreover,

Fϕ ⊗ π0 ⊗ π0(D(a)) = (PH ⊗ 1H⊗2)Ψ(a)|H⊗H⊗2 , a ∈ A(Mat2)q



Hence for a ∈ A(Mat2)q

||τϕ(a)|| = ||(Fϕ ⊗ π0 ⊗ π0)(D)(a))|| ≤ ||Ψ(a)||

≤ sup
ϕ1∈[0,2π)

||(χϕ1,ϕ ⊗ π0 ⊗ π0)(D(a))||

≤ sup
ϕ1,ϕ2

||ρϕ1,ϕ2
(a)||,

the last inequality is due to Lemma 4. Using similar arguments one gets that

||τ (n)ϕ ((aij))||Mn(B(H⊗3)) ≤ sup
ϕ1,ϕ2

||(ρϕ1,ϕ2
(aij))||Mn(B(H⊗2)), (aij) ∈Mn(A(Mat2)q).

Combining the results from Step 1 and Step 2 we obtain

||π
(n)
F ((aij))||Mn(B(H⊗4)) ≤ sup

ϕ1,ϕ2

||(ρϕ1,ϕ2
(aij))||Mn(B(H⊗2)) for all (aij) ∈Mn(A(Mat2)q),

giving the statement of the theorem.

Remark 1 We have proved that for any a ∈ A(Mat2)q, πF (a) = PHψ(a)|H , where ψ is
a ∗-representation of Pol(Mat2)q that annihilates the ideal J .

Theorem 4 The ideal J is the Shilov boundary ideal for the subalgebra A(Mat2)q.

Proof. Assume that I is a boundary ideal for A(Mat2)q with I ⊃ J . We have,
in particular, that the quotient maps jq : C(Mat2)q → C(Mat2)q/J = C(S(D))q and
iq : C(Mat2)q → C(Mat2)q/I = (C(Mat2)q/J)/(I/J) = C(S(D))q/(I/J) are isometries
when restricted to A(Mat2)q. Therefore for a ∈ A(Mat2)q we have

‖a+ J‖ = ‖a‖ = ‖(a+ J) + I/J‖

and hence the quotient map kq : C(S(D))q → C(S(D))q/(I/J) is an isometry when

restricted to A(Mat2)q+J . In particular, 0 6= ||zji || = ||zji +J || = ||(zji +J)+ I/J ||, i 6= j.

If T is an irreducible representation of C(S(D))q/(I/J) such that T ((zji +J)+I/J) 6= 0
then the representation T ◦ kq is an irreducible representation of C(Mat2)q/J which does

not vanish on zji + J , i 6= j, and T ◦ kq(I/J) = 0. The only irreducible representations of

C(S(D))q that do not vanish on zji + J , i 6= j, are ρ̃ϕ1,ϕ2
(a+ J) := ρϕ1,ϕ2

(a). Therefore,
T ◦ kq is unitarily equivalent to one of ρ̃ϕ1,ϕ2

and hence T ◦ kq(I/J) = 0 implies I/J ⊂
ker ρ̃ϕ1,ϕ2

. Let

K = {(ϕ1, ϕ2) ∈ [0, 2π) × [0, 2π) : ρϕ1,ϕ2
(I) = 0} and XK = {(eiϕ1 , eiϕ2) : (ϕ1, ϕ2) ∈ K}.

We want to see that K is dense in [0, 2π) × [0, 2π).
In C(S(D))q consider the subalgebra generated by zji + J , i 6= j. It is easily seen that

the algebra is commutative and that the elements zji + J , i 6= j are normal in C(S(D))q,
i.e. they commute with their adjoints. This follows from the fact that the operators
ρϕ1,ϕ2

(zji ), i 6= j commute and are normal for any ϕ1, ϕ2 ∈ [0, 2π). The joint spectrum
of {ρ̃ϕ1,ϕ2

(z21 + J), ρ̃ϕ1,ϕ2
(z12 + J)} is {(eiϕ1qk, eiϕ2qk) : k = 0, 1, . . .} ∪ {(0, 0)}. If T is an



irreducible representation of C(S(D))q/(I/J) then it follows from the description of the
representations ρϕ1,ϕ2

that if (eiϕ1 , eiϕ2) is in the joint spectrum of {T ◦ kq(z
2
1 + J), T ◦

kq(z
1
2 + J)} then T ◦ kq is unitarily equivalent to ρ̃ϕ1,ϕ2

and hence (ϕ1, ϕ2) ∈ K.
Now, given a holomorphic function on D

2 = {(ξ1, ξ2) ∈ C
2 : |ξ1| < 1, |ξ2| < 1} which

is also continuous on D2 we have

‖f(z21 + J, z12 + J)‖ = ‖f((z21 + J) + I/J, (z12 + J) + I/J‖.

As

‖f(z21 + J, z12 + J)‖ = sup
(ϕ1,ϕ2)∈[0,2π)2

‖f(ρϕ1,ϕ2
(z21), ρϕ1,ϕ2

(z12))‖

= sup{|f(ξ1, ξ2)| : (ξ1, ξ2) ∈ ∪k≥0q
k
T
2} = sup

(ξ1,ξ2)∈T2

|f(ξ1, ξ2)|

= sup
(ξ1,ξ2)∈D2

|f(ξ1, ξ2)|,

(here T
2 = {(ξ1, ξ2) ∈ C

2 : |ξ1| = |ξ2| = 1} and the last two equalities follows from the
maximum principle), and

‖f((z21 + J) + I/J, (z12 + J) + I/J)‖

= sup{f(T ◦ kq(z
2
1 + J), T ◦ kq(z

1
2 + J)) : T ∈ Irrep(C(S(D))q/(I/J))}

= max{ sup
(ϕ1,ϕ2)∈K

‖f(ρϕ1,ϕ2
(z21), ρϕ1,ϕ2

(z12))‖, f(0, 0)}

= sup{|f(ξ1, ξ2)| : (ξ1, ξ2) ∈ ∪k≥0q
kXK}

(Irrep(A) denote the set of all irreducible representations of A), we obtain

sup{|f(ξ1, ξ2)| : (ξ1, ξ2) ∈ D
2} = sup{|f(ξ1, ξ2)| : (ξ1, ξ2) ∈ ∪k≥0q

kXK}.

Hence ∪k≥0qkXK contains the Shilov boundary of D2 which is T2. Therefore T2 ⊃ XK ⊃
T
2 giving that K is dense in [0, 2π) × [0, 2π).
This implies

I/J ⊂ ∩(ϕ1,ϕ2)∈K ker ρ̃ϕ1,ϕ2
= {0}

and I = J .
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