
Applying Augmented Reality to Outdoors

Industrial Use

Master’s Thesis
University of Turku
Department of Information Technology
Software Engineering
2016
Mikko Forsman

Supervisors:
Jukka Arvo
Jouni Smed

The originality of this thesis has been checked in accordance with the University of Turku
quality assurance system using the Turnitin OriginalityCheck service.

Turun yliopiston laatujärjestelmän mukaisesti tämän julkaisun alkuperäisyys on tarkastettu
Turnitin OriginalityCheck-järjestelmällä.

Acknowledgements

This thesis was conducted as a part of the MARIN2 project (Mobile Mixed Reality
Applications for Professional Use) funded by Tekes (The Finnish Funding Agency for
Innovation) in Technology Research Center of University of Turku. The project was
carried out in collaboration with partners; Defour, Destia, Granlund, Infrakit, Integration
House, Lloyd’s Register, Nextfour Group, Meyer Turku, BuildingSMART Finland,
Machine Technology Center Turku and Turku Science Park.

UNIVERSITY OF TURKU
Department of Information Technology

MIKKO FORSMAN: Applying Augmented Reality to Outdoors Industrial Use

Master’s Thesis, 72 p., 0 app. p.
Software Engineering
April 2016

Augmented Reality (AR) is currently gaining popularity in multiple different fields.
However, the technology for AR still requires development in both hardware and software
when considering industrial use. In order to create immersive AR applications, more
accurate pose estimation techniques to define virtual camera location are required. The
algorithms for pose estimation often require a lot of processing power, which makes
robust pose estimation a difficult task when using mobile devices or designated AR tools.
The difficulties are even larger in outdoor scenarios where the environment can vary a lot
and is often unprepared for AR.

This thesis aims to research different possibilities for creating AR applications for
outdoor environments. Both hardware and software solutions are considered, but the
focus is more on software. The majority of the thesis focuses on different visual pose
estimation and tracking techniques for natural features.

During the thesis, multiple different solutions were tested for outdoor AR. One commer-
cial AR SDK was tested, and three different custom software solutions were developed
for an Android tablet. The custom software solutions were an algorithm for combining
data from magnetometer and a gyroscope, a natural feature tracker and a tracker based
on panorama images. The tracker based on panorama images was implemented based
on an existing scientific publication, and the presented tracker was further developed by
integrating it to Unity 3D and adding a possibility for augmenting content.

This thesis concludes that AR is very close to becoming a usable tool for professional
use. The commercial solutions currently available are not yet ready for creating tools for
professional use, but especially for different visualization tasks some custom solutions
are capable of achieving a required robustness. The panorama tracker implemented in
this thesis seems like a promising tool for robust pose estimation in unprepared outdoor
environments.

Keywords: augmented reality, tracking algorithms, pose estimation, natural features

TURUN YLIOPISTO
Informaatioteknologian laitos

MIKKO FORSMAN: Applying Augmented Reality to Outdoors Industrial Use

Diplomityö, 72 s., 0 liites.
Ohjelmistotekniikka
Huhtikuu 2016

Lisätyn todellisuuden suosio on tällä hetkellä kasvamassa usealla eri alalla. Saatavilla
olevat ohjelmistot sekä laitteet eivät vielä riitä lisätyn todellisuuden soveltamiseen am-
mattimaisessa käytössä. Erityisesti posen estimointi vaatii tarkempia menetelmiä, jotta
immersiivisten lisätyn todellisuuden sovellusten kehittäminen olisi mahdollista. Posen
estimointiin (laitteen asennon- sekä paikan arviointiin) käytetyt algoritmit ovat usein
monimutkaisia, joten ne vaativat merkittävästi laskentatehoa. Laskentatehon vaatimukset
ovat usein haasteellisia varsinkin mobiililaitteita sekä lisätyn todellisuuden laitteita
käytettäessä. Lisäongelmia tuottaa myös ulkotilat, jossa ympäristö voi muuttua usein ja
ympäristöä ei ole valmisteltu lisätyn todellisuuden sovelluksille.

Diplomityön tarkoituksena on tutkia mahdollisuuksia lisätyn todellisuuden sovel-
lusten kehittämiseen ulkotiloihin. Sekä laitteisto- että ohjelmistopohjaisia ratkaisuja
käsitellään. Ohjelmistopohjaisia ratkaisuja käsitellään työssä laitteistopohjaisia ratkaisuja
laajemmin. Suurin osa diplomityöstä keskittyy erilaisiin visuaalisiin posen estimoin-
ti tekniikoihin, jotka perustuvat kuvasta tunnistettujen luonnollisten piirteiden seurantaan.

Työn aikana testattiin useita ratkaisuja ulkotiloihin soveltuvaan lisättyyn todellisuuteen.
Yhtä kaupallista työkalua testattiin, jonka lisäksi toteutettiin kolme omaa sovellusta
Android tableteille. Työn aikana kehitetyt sovellukset olivat yksinkertainen algoritmi
gyroskoopin ja magnetometrin datan yhdistämiseen, luonnollisen piirteiden seuranta-
algoritmi sekä panoraamakuvaan perustuva seuranta-algoritmi. Panoraamakuvaan
perustuva seuranta-algoritmi on toteuteutettu toisen tieteellisen julkaisun pohjalta, ja al-
goritmia jatkokehitettiin integroimalla se Unity 3D:hen. Unity 3D-integrointi mahdollisti
myös sisällön esittämisen lisätyn todellisuuden avulla.

Työn lopputuloksena todetaan, että lisätyn todellisuuden teknologia on lähellä pistettä,
jossa lisätyn todellisuuden työkaluja voitaisiin käyttää ammattimaisessa käytössä. Tällä
hetkellä saatavilla olevat kaupalliset työkalut eivät vielä pääse ammattikäytön vaati-
malle tasolle, mutta erityisesti visualisointitehtäviin soveltuvia ei-kaupallisia ratkaisuja
on jo olemassa. Lisäksi työn aikana toteutetun panoraamakuviin perustuvan seuranta-
algoritmin todetaan olevan lupaava työkalu posen estimointiin ulkotiloissa.

Asiasanat: lisätty todellisuus, seuranta-algoritmit, posen estimointi, luonnolliset piirteet

Contents

1 Introduction 1

1.1 The problem . 2

2 Augmented reality 5

2.1 Current state of AR . 6

2.1.1 Current AR use cases . 7

2.2 AR in industry . 9

2.2.1 Current and potential use cases in industry 9

3 Related work 11

4 Visual pose estimation 15

4.1 Marker based tracking . 17

4.2 Natural feature tracking . 18

4.2.1 Finding trackable features . 18

4.2.2 Matching features . 20

4.2.3 Optical flow . 25

4.3 Simultaneous localization and mapping 26

4.4 Visual 3D tracking . 27

4.5 Combining different tracking types . 28

5 AR Technology 30

5.1 Hardware . 30

5.1.1 Mobile devices . 30

5.1.2 Sensors . 31

5.1.2.1 Sensors in mobile devices 34

5.1.2.2 Standalone sensors . 34

5.1.3 AR devices . 35

5.2 Software . 36

5.2.1 Suitable SDKs and libraries . 36

5.2.2 Other development tools . 37

6 Built tools 39

6.1 Wikitude demo application . 39

6.1.1 System functionality . 40

6.2 Sensor fusion in Unity . 41

6.2.1 System functionality . 41

6.3 Natural feature tracking . 42

6.3.1 System functionality . 43

6.3.1.1 Initialization and tracking 43

6.3.1.2 Compensating for the drift 44

6.4 Panorama tracker . 45

6.4.1 System functionality . 45

6.4.1.1 Camera calibration . 48

6.4.1.2 Panoramic maps . 50

6.4.1.3 Tracking . 51

6.4.1.4 Updating the map . 54

6.4.1.5 Saving and loading maps 54

6.4.1.6 Reinitialization . 55

7 Results 57

7.1 Wikitude SDK . 57

7.2 Sensor fusion . 58

7.3 Natural feature tracker . 58

7.3.1 Issues in the system . 58

7.3.2 Possible improvements . 60

7.4 Panorama tracker . 60

7.4.1 Performance . 62

7.4.2 Future improvements . 62

8 Conclusions 65

References 67

Chapter 1

Introduction

Augmented reality (AR) applications today are close to becoming a common tool for

many tasks. Currently, most augmented reality applications cannot be considered as pro-

fessional tools, as they are mostly used for entertainment, advertising and navigation.

Majority of the current problems have to do with accurate pose estimation. Pose es-

timation means the estimation of the position and orientation of the device to determine

where the augmented content should be rendered. Pose estimation technologies still have

major issues in reaching the required accuracy levels for professional use, especially in

outdoors scenarios. Thanks to the rapid advances in hardware of mobile devices, AR

applications are becoming more and more common. Better hardware is important since

pose estimation technologies often demand a lot of processing power. Hardware improve-

ments also include higher quality cameras as well as increased number of sensors. Since

the prices of mobile devices are also dropping, it is easy to see that the potential for AR

applications being used in everyday life is rising.

This thesis is structured as follows: This chapter explains the problems that the thesis

tries to solve. Chapter 2 describes augmented reality as a term as well as its current and

potential use cases. Chapter 3 contains related material to the systems implemented in

the thesis. Chapter 4 discusses different pose estimation techniques. Chapter 5 describes

different tools that can be used for the creation of AR applications. Chapter 6 presents the

CHAPTER 1. INTRODUCTION 2

software that was developed during the thesis. Chapter 7 presents the results achieved by

the tools in the previous chapter. Chapter 8 contains the conclusions of the thesis as well

as a discussion about the future of the projects in the thesis. The future of AR in general

is also discussed.

1.1 The problem

Augmented reality has a large potential for multiple tasks in different industrial use cases.

However, in order to be useful these applications must overcome the current issues that

mostly have to do with estimating the pose of the user or device with sufficient accuracy,

especially in outdoor scenarios when no prior (visual) data of the area is known. A large

number of different solutions for visual pose estimation exist, but they are still often lim-

ited by high hardware requirements. Even if the hardware is the best possible available,

visual pose estimation still cannot function in every situation. The algorithms required for

accurate pose estimation can be very demanding, since a large number of camera frames

needs to be processed every second. In order to make the augmentation look immersive

things such as shadows and occlusion should also be taken into account. Occlusion hap-

pens, when the augmented object should appear to be behind a real object. Determining

when the occlusion should happen is a very time consuming and difficult task. The shad-

ows on the augmented object and the shadows cast by the augmented object are also very

difficult to determine. Alongside with the rendering itself, solving these problems further

increase the hardware requirements. This thesis aims at surveying different possibilities

for creating augmented reality applications that can be used outdoors, as well as testing

the usability of different methods in practice. The main focus of the thesis is on using

visual data for pose estimation, but applications for using data from other sensors of the

device are also briefly considered.

The majority of augmented reality applications today are based on monocular (single

RGB camera) visual tracking. The term tracking means determining the movement and

CHAPTER 1. INTRODUCTION 3

position of some object or feature in the images from the camera. Rapidly changing

environments and varying lightning conditions can make visual tracking a difficult task.

Because of the nature of outdoor scenarios both of the aforementioned issues are present

most of the time, which often makes visual tracking unreliable, if it is used as the only

pose estimation technique. However, some visual tracking types that require no prior

knowledge of the area can be useful in the outdoor scenarios, especially when combined

with different sensors of mobile devices. Different types of visual tracking algorithms are

discussed in more depth in Chapter 3.

Another common pose estimation technology is based on using Inertial Measurement

Units (IMUs) of mobile devices. These include sensors such as magnetometers, gyro-

scopes and accelerometers. The issue with IMUs is the accumulation of drift. Drift

happens due to small errors in determining the movement, which can cause the measured

results deviate from the real results over time. However, combining these IMUs with

some visual tracking is currently the most promising method for creating a robust AR

experience. The pros and cons of different sensors are discussed in Section 5.1.2.

The proposed solution is to create a system which relies mainly on visual tracking,

does not require any prior visual knowledge (i.e. markers), and uses the sensors of the

mobile device to support the tracking. The proposed systems do not provide any solution

for estimating the absolute orientation of the device except the sensor fusion algorithm

which is presented in Section 6.2. To determine the position of the user in the world

coordinates with sufficient accuracy more research is required to improve the accuracy

of the Global Positioning System (GPS) and magnetometer or some similar positioning

system. Improvements of positioning systems however falls out of the scope of this thesis.

There are some predefined requirements for tracking system: the accuracy should

be sufficient enough so that there are no visually noticeable inaccuracies in the tracking

quality (i.e. the augmented object should seem to stay still in the real world). The system

should also be relatively simple to be runnable on modern mobile devices with at least 15

CHAPTER 1. INTRODUCTION 4

frames per second. In order to be easily integrated into larger systems, the tracker should

also be usable in Unity 3D game engine [1].

The research questions of this thesis can be summarized as the following:

1. What are the existing technologies that are currently usable for creating mobile

augmented reality solution for outdoor use?

2. Can these technologies be used to build a robust tracking system that can fill out the

previously defined requirements during the thesis?

Chapter 2

Augmented reality

Augmented reality means the augmentation of some virtual content, such as 3D models,

videos or images on top of an image of the real world. An example of a simple AR

application, where a 3D model is augmented on top of an image marker, is shown in

Figure 7.2.

Figure 2.1: Example of Augmented Reality from Wikitude demo application

Most of the time this means using the screen of some mobile device (tablets or smart-

phones) for the augmentation. It is also possible to use some designated AR devices such

CHAPTER 2. AUGMENTED REALITY 6

as Microsofts Hololens [2]. However, AR can also be applied through, for example, au-

ditory content [3] or even smells [4]. In order to augment some visual content to the

user, the pose of the user (both rotation and translation in the world coordinates) must be

known in order to augment the content to its correct position. This estimated pose can be

computed with a wide variety of techniques, including tracking of markers and estimating

the pose using inertial measurement units of a mobile device. AR is often defined using

the Milgram’s Reality-Virtuality continuum [5] (see Figure 2.2), which presents the range

from the real world to completely virtual world. It places AR in the area of Mixed Reality

(MR), between reality and augmented virtuality. Diminished reality [6], in which some

content is removed from the image of the real world (for example removing of a chair

from a scene etc), is sometimes also considered as a part of the continuum.

Figure 2.2: Milgram’s Reality-Virtuality Continuum

2.1 Current state of AR

The current state of AR technology is still not ready to be used as professional tools. AR

is still lacking some technology, such as good enough virtual glasses or helmets. Also, the

accuracy of different pose estimation methods is not always sufficient, especially when

visual tracking is used and prior visual knowledge of the area is not available. Some sim-

ple marker-based pose estimation technologies can already reach a very robust accuracy,

but, unfortunately, marker-based tracking is not usable in larger scale scenarios. Marker-

based tracking is problematic in large scale scenarios, since markers would have to be

large and they would need to be placed in a large enough number of places accurately.

CHAPTER 2. AUGMENTED REALITY 7

When using a more complex pose estimation system instead of tracking markers, the pro-

cessing power requirements also grow, which is a challenge when applications need to

run on mobile devices.

2.1.1 Current AR use cases

Currently, AR is mainly used on rough demonstration, gaming and marketing applica-

tions. For these types of applications, the requirements for the accuracy of tracking are

not so high when compared to professional use cases, and these simpler applications can

use simpler tracking techniques such as marker-based tracking.

For marketing purposes, AR can be a powerful tool due to often simple applications.

For example, the user can scan the side of the box to view its contents in 3D, or possibly

see some instructions on how to use the product inside. Since such applications do not

require the exact position of the user in the world and the accuracy of the tracking is not

that important, these applications can be simple to build. Multiple companies provide

services for building marketing AR applications, and they can often be built with a simple

toolset. For example, Wikitude [7] contains a drag-and-drop type tool for creating AR

apps in addition to AR browser which can be used to view user created AR content. A

good example of an AR marketing tool is TryLive’s facial recognition tool [8], which

allows users to try different types of eyeglasses using AR. For these kinds of applications,

AR can already be used efficiently.

Another large field for AR is education. Augmenting content on top of a book or

any other visual target is quite a simple task. Students can, for example, view videos

regarding whatever they are currently studying, or see and interact with 3D models instead

of plain images. Luckin and Fraser [9] tested the usefulness of AR in education and

evaluated over 300 participants, and came to the conclusion that AR has large potential

in educational tasks. For education, the current state of AR is already enough in order to

create applications of sufficient quality. However, it can get expensive when every student

CHAPTER 2. AUGMENTED REALITY 8

requires also a device to view the AR content. It is often difficult to find early adopters

for a new technology, since the prices of required devices can be high. Especially in

education, if a device is required for each student, the cost might be too expensive.

AR has applications in navigation as well. For example, Wikitude provides an AR

navigation system for smartphones [10] that augments your route on top of the video

feed from the road you are driving on to make it more obvious where you should turn (see

Figure 2.3). The same concepts that can be used in outdoor navigation can also be applied

for indoor navigation to point out different positions on the screen with higher accuracy

than, for example, plain GPS or bluetooth navigation.

Figure 2.3: Wikitude AR navigation tool. Image taken from Wikitude AR navigation tool

demo video [11]

A large potential for AR is also present in entertainment industry, mainly in gaming.

Examples of AR games have been made using Microsoft’s Hololens [2] [12] or Magic

Leap [13]. However, the largest issue with AR gaming are the same as in industrial use:

the quality of the augmentation (shadows, lightning and occlusion should match the real

world) and tracking has to be extremely good for it to be visually appealing. Further-

CHAPTER 2. AUGMENTED REALITY 9

more, current devices do not have enough computing power when the games become too

complicated and have a large amount of things to track and render.

2.2 AR in industry

The main difference with marketing, navigation and simple visualization use cases and

industrial use cases is that industrial use requires much higher accuracy in pose estima-

tion and overall higher quality of tools. For tasks such as visualizing some part of a

building or viewing maintenance instructions, the quality has to be higher since errors in

augmentation can cause some major problems. For example, a problem in the building

planning might go unnoticed or the maintenance of the tool could be done wrong, which

can both be costly mistakes. For industrial use cases, the development of the pose estima-

tion system is also often difficult: a large number of scenarios take place outdoors, where

the environment is unprepared and can vary a lot due to weather conditions and moving

objects. AR has currently a limited number of real use cases in industry, because AR is

still quite immature and requires improvements in both hardware and software. Since in

industrial use the accuracy of the tracking is much more important than in, for example,

navigation or advertisement, it is much more difficult to create AR applications for these

use cases. Moreover, industrial use often requires more complicated tracking systems,

in which tracking simple markers is not good enough. The pros and cons of different

tracking systems in outdoor use is discussed more in Chapter 4.

2.2.1 Current and potential use cases in industry

AR could potentially be used in a large number of different industrial cases, most intu-

itive being visualization tasks. These visualization applications could drastically reduce

the number of tools that are currently required to keep track of the projects. The users

could, for example, view how a building will look like when it is completed, and they

CHAPTER 2. AUGMENTED REALITY 10

could ”see through” already built walls to locate different pipes and wirings. These dif-

ferent visualization tools could be useful in noticing problems with the plans earlier, for

example, if different parts of the models are overlapped or do not fit together well. Visu-

alization tools would also be helpful on the planning phase of different industrial tasks,

since the plans could be viewed in the real world with ease. These applications would

also work very well for demonstrating planned 3D models in real world before actually

building the models. This thesis especially aims at creating a system which could be used

for visualization of large objects such as buildings in their planned locations.

Another potential use case for AR in industry is different maintenance tasks. Workers

who are unfamiliar with devices or vehicles often need someone more experienced to

help them in maintenance tasks. However, by utilizing AR all the required instructions

could be easily shown to the user on top of the actual device. These kinds of applications

already exist: for example, AR-media has built I-Mechanic application [14], which allows

users to do maintenance on their car without requiring any prior knowledge. Similarly to

maintenance, AR could also be used as a tool for teaching how to use complex machinery

that otherwise takes a long time to learn. In smaller scale scenarios, where the pose of

the device can be estimated by tracking of markers, AR is already in a usable state. The

problem with maintenance applications is often the requirement of hands-free tools. In

order to view the instructions and simultaneously do the maintenance, AR-glasses or some

similar tool is required.

Navigation can also be considered as an industrial application for AR. Besides more

traditional navigation systems in vehicles, AR tools could be used to help users navigate

in large industrial halls to find some certain piece of equipment. Especially indoor nav-

igation could use AR. For example, the users could be shown the accurate location of a

certain item in a warehouse.

Chapter 3

Related work

One of the first steps during this thesis was to study existing methods for outdoor AR

applications. The focus was in finding algorithms that could answer the research questions

of this thesis. This chapter presents work that was considered to be closely related to the

introduced implementations in Chapter 6.

One of the most interesting articles about outdoor tracking is the article by Azuma et

al. in 1998 [15], which claims that it is impossible to create an outdoors tracking solution

without using multiple different tracking types, i.e. sensors and visual data. Even though

the article is relatively old, it is still valid to some degree. Due to the uncertainties in

an outdoors scenario, it is understandable that using plain visual tracking is not always

possible. Visual tracking also suffers from motion blur caused by fast movements and

changing lightning conditions, which can be compensated for using inertial measurement

units of different mobile devices.

One system built for outdoor tracking was proposed by Menozzi et al. [16]. The

paper proposes a tracker which uses inertial sensors whose data is combined with a visual

tracker, and it is implemented as a standalone device. The visual tracker is based on

searching for features in the geometry of the horizon line, and it requires a calibration

step for finding the initial orientation of the device. The system proposed in the article

is able to estimate both the position and the orientation of the device. The error in the

CHAPTER 3. RELATED WORK 12

orientation was reported to be below 10 mrad from the real orientation when combining

all the different tracking types presented in the publication.

The paper presented by Wagner et al. [17] (which is used as a reference for the

panoramic tracking system implemented in Section 6.4) explains the use of panoramic

images in tracking in both indoor and outdoor scenarios. The panorama maps generated

by the system are high quality panoramic images. The idea of the system is to simulta-

neously create the panoramic image according to the estimated orientation of the device.

This technique is very powerful since it does not accumulate any drift, other than the drift

caused by errors in the map creation process. The system ran with a very good perfor-

mance on mobile devices; the results presented on the article claim that the tracking of

single frame completed in average of 15.2 milliseconds for mobile devices and 2.2 mil-

liseconds for PC. The paper also reported that the amount of errors accumulated in the

map was very small, and the horizontal errors in the panoramas were in the range of a sin-

gle degree. This level of accuracy would be sufficient for the requirements of the system.

The major downside of the system is that it is only capable of tracking the rotation of the

device, but not the translation.

The panoramic tracking presented by Wagner et al. was also incorporated in to a

tracking system by Schall et al. [18]. The system uses a Differential GPS (DGPS), mag-

netometer and and a barometer to determine the absolute position of the device. The

orientation is calculated using an inertial measurement unit that composes of gyroscopes,

magnetometers and accelerometers. A visual tracker (the previously mentioned panorama

tracker) is also used in order to reset the drift from the inertial measurement unit. The

biggest difference of the system in the paper and the solution proposed in the thesis is that

the authors of the papers built a hand-held system from a scratch, where as the proposed

solution of the thesis aims to be runnable on basic mobile devices. The conclusions of the

paper were promising, as the Kalman filtered compass error stayed below a single degree

combined with the visual tracker that could also reach a similar accuracy. The accuracy

CHAPTER 3. RELATED WORK 13

of the DGPS system was also in a range of one meter, which is notably better than the raw

GPS accuracy that is usually in a range of ten meters.

A recent research by Jing Li and Xiangtao Fan [19] proposes another method for

outdoor tracking. The method uses 3D models of the buildings in a city for estimating the

user’s orientation. This type of tracking is possible since an increasing amount of different

buildings have their 3D models available for anyone, and the increased processing power

of mobile devices is becoming capable of tracking complex objects. The results show a

tracking system that runs around 6 to 7 frames per second, which is not quite sufficient

for a smooth user experience. The paper was published in 2014, so even with current

hardware the fps rate would probably be a lot better. With some optimizations different

types of 3D model trackings can be very helpful in outdoor scenarios.

An evaluation regarding wearable AR devices for outdoors uses was conducted by J

Kerr et al. [20]. The paper presents that wearable AR devices still need development in

different areas in order for them to be usable. The largest amount of issues are presented

by the screens in the devices. The paper reported that the users had issues in seeing the

screen in outdoor lightning conditions. Interaction with the device was also difficult, since

gesture-based interaction caused the inputs to be interpreted wrongly or accidentally. The

users also reported that the wearable should be less ’obvious’, since now it was relatively

intrusive. Some participants also reported that wearing the device for more than 10 min-

utes at a time felt uncomfortable. The findings presented in this paper are also a reason

for why the proposed system uses a hand-held mobile device instead of some wearable

AR device. The issues of wearable AR devices are discussed more in Section 5.1.3.

After studying scientific material related to the subject of the thesis, it became appar-

ent that in order to create a robust system which does not require any prior knowledge,

combination of different pose estimation systems is required. A large number of papers

also propose building a system from scratch instead of using for example tablets or mobile

phones. This is due to the fact that even five years back the hardware of mobile devices

CHAPTER 3. RELATED WORK 14

was lot worse, and often did not include high quality IMUs. The quality of the cameras

has also improved a lot. This lead to the conclusion that building a custom hardware solu-

tion is not required. During the thesis it also became apparent that any custom hardware

was not needed.

Chapter 4

Visual pose estimation

The term pose is used to describe both the rotation and the translation of the used device

in some coordinate system. This computation is known as a 6 degrees of freedom (6DoF)

pose estimation, when rotations around x, y and z axis as well as translation in all three

axis are estimated. A simpler version of the pose estimation, known as 3 degrees of

freedom (3DoF) pose estimation, is also used in some cases, where we have either the

knowledge of rotation or the knowledge of the translation. By combining different 3DoF

systems, it is possible to achieve a 6DoF system.

Pose estimation is the most important part in creating visually appealing AR applica-

tions. If tracking is not robust or accurate, the immersion of the content being in the real

world is easily broken, since the augmented content will be viewed in a wrong position

or it might jump around. For estimating the position of the user, different sensory data

(visual data and inertial measurement units) is used. In order to be a complete tracking

solution, the pose must be estimated in 6DoF. Single tracking systems are sometimes only

capable of estimating 3DoF (pure rotational or translational) pose, but these systems can

always use some other method for estimating the remaining 3DoF.

Tracking the pose in AR applications can be split in to two categories: visual and

non-visual tracking. Visual tracking is the most common tracking type for most of the

applications, since it is often not important to augment the content to an absolute position

CHAPTER 4. VISUAL POSE ESTIMATION 16

in the world, and there is not always a guarantee of all the required sensors existing. In

these cases, the augmented content can be viewed on top of some pre-defined markers or

previously scanned 3D objects. There are also tracking systems that use visual tracking

without any prior knowledge such as Simultaneous Localization And Mapping (SLAM)

[21] and the tracking systems explained in Section 6.3 and Section 6.4.

Tracking the environment using markers or other predefined visual data is a difficult

task to accomplish outdoors. When considering large scale visualization scenarios, plac-

ing a large number of markers accurately is often too time consuming. Such amount of

work would also mean that the usability of the system becomes poor. Visual tracking

methods using pre-defined templates or markers are typically useless in an environment

which varies a lot, such as work sites that have a large number of moving elements and

varying lightning conditions. However, using markers or scans of some objects could be

used in some smaller scale use cases such as viewing maintenance instructions for some

tools.

Visual tracking methods other than marker-based tracking can be viable in outdoor

industrial scenarios. These methods can create a map of the environment during the run-

time of the application. One example of such systems is the aforementioned SLAM,

which tracks the movements of the device in 6DoF by consecutively estimating the pose,

and adding new features to the map when the device is moved to a position where it has

not been before. There are also simpler approaches to create a trackable map of the area

such as panorama tracking proposed by Wagner et al. [17]. Panorama tracking is used

as a reference method for the solution proposed in Section 6.4. However, these types of

tracking solutions have another issue, since they are sourceless (i.e their initial pose in

the world is unknown). In order to be useful, knowledge of the initial starting position

and orientation of the device is required. A lacking initial position can be computed, for

example, by using magnetometer and GPS or some previously defined visual target.

CHAPTER 4. VISUAL POSE ESTIMATION 17

4.1 Marker based tracking

Probably the simplest method for visual pose estimation is to track different types of

markers. The simplest markers are black-and-white images consisting of a grid of squares

that are either black or white (see Figure 4.1). However, markers do not have to be that

simple, since any kind of images can be used. Most of the time black and white markers

are practical to detect due to high contrast differences.

There are two major downsides in using markers in outdoor environments. Firstly,

someone has to place a large number of markers around the scene to predefined positions

in order for the system to work. Secondly, marker-based systems suffer a lot from varying

lightning conditions (i.e. shadows), and, therefore, some camera setting calibration is

required whenever the lightning is different. Markers also have to be pre-defined, whereas

an optimal system should work without any prior knowledge of the area. For large scale

visualization tasks, the required size of the markers becomes large. If the marker is very

close to the camera and the augmented content is far behind, even small errors in the

tracking can cause the augmented content to move around a large amount. Otherwise, the

marker needs to be extremely large in order to be trackable from afar. It is also possible

to improve the quality of marker based tracking by using multiple markers.

Figure 4.1: Example of a simple black and white marker

CHAPTER 4. VISUAL POSE ESTIMATION 18

4.2 Natural feature tracking

The tracking methods used in the thesis are based on sparse optical flow and template

matching, which both count on tracking natural features. Natural feature tracking detects

and tracks features from the image that are easily distinguishable. The largest benefit of

natural feature tracking is that it is not always necessary to know anything about the scene

beforehand, which is a huge advantage in scenarios that change often. A large number

of algorithms exists for both finding and tracking natural features. Especially in outdoors

tracking using natural features, which are not defined beforehand, offers a large potential

due to the problems of pre-defined markers presented in the previous section.

4.2.1 Finding trackable features

One of the most important things for natural feature tracking is locating the features that

can be distinguished easily, since not every pixel can be tracked. For example, if a point

in the image is selected that is located on a vertical edge, it can only be used to track the

horizontal motion accurately. Figure 4.2 shows an example of a good and a bad feature:

the red feature on the edge is difficult to track in horizontal direction, since a similar-

looking position can be found anywhere in the edge. The feature on the corner, however,

can be reliably tracked in both directions. The trackable features must be easy to detect,

but almost as important is the performance of the feature finder. Some trackers rely on

searching a large set of points at every frame, which can cause performance problems if

the selected feature finder is not simple enough. A large number of different algorithms

have been suggested for finding these features. These feature finders are often also called

corner detectors, since the best trackable features in images are usually corner positions,

since those points can be reliably tracked in both horizontal- and vertical directions.

One commonly used corner detector is Harris detector [22], which works by first

applying a Harris edge detector on the image, and then processing each pixel to calculate

CHAPTER 4. VISUAL POSE ESTIMATION 19

Figure 4.2: Example of good feature (green circle in the corner) and bad feature(red circle

in the edge)

whether or not the edge pixel is a feature of sufficient quality. Harris detector computes a

score for each pixel by calculating the difference of the pixel intensities in all directions.

As a result, each pixel in the result image has score between 0 and 255. The higher the

score, the better feature that pixel is.

The feature finder used in Section 6.3 uses a method proposed by Shi and Tomasi [23]

based on the Harris detector. The difference to the original method is that the score of

each pixel is calculated in a differently. This process is implemented in an OpenCV [24]

library function goodFeaturesToTrack. The drawback of this method is that the speed

is often not quite enough for realtime applications, especially if the features need to be

searched for often and in large areas.

For the matching that is used in Section 6.4, the features are searched with FAST

(Features from Accelerated Segment Test) algorithm by Rosten and Drummond [25] [26].

This algorithm is very useful in scenarios where a large number of features needs to

be detected, and the method consumes very little processing power. FAST examines a

circle around each pixel in order to figure out whether the pixel can be used for tracking

according to a set threshold. The radius of the circle is 16 pixels. The pixel is considered

a good enough corner if at least 12 neighboring pixels in the circle differ enough from the

intensity of the center pixel. Figure 4.3 shows a sample image and a corner detected with

the FAST algorithm.

CHAPTER 4. VISUAL POSE ESTIMATION 20

Figure 4.3: How FAST corners are calculated for each pixel. Sample image from Edward

Rosten’s web page [27]

Another common feature finder is the ORB (Oriented FAST and rotated BRIEF) [28]

algorithm, which was also tested in the implemented systems. It is a feature finder based

on FAST, which can also be used for extracting knowledge of the rotations of the features.

In this thesis, a test application was developed in order to compare different corner

detectors to determine their performance as well as the quality of the features located by

the detector. The result images are presented in figures 4.4 and 4.5. The performance for

each detector was also measured in the first sample image on PC (Lenovo T440p laptop

with Intel Core i7-4710Q CPU). The runtimes of each detector are present in Table 4.1.

It is worth noting that the detector does not always need to be run on whole images. The

source image resolution was 640x480 pixels, and the tests were based on the implemen-

tations available in OpenCV library.

4.2.2 Matching features

After a set of features have been selected for tracking, they have to be matched to estimate

the movement between two frames. In order to do this, descriptors have to be extracted for

CHAPTER 4. VISUAL POSE ESTIMATION 21

Table 4.1: Runtimes of corner detectors

Detector Algorithm runtime

ORB 179ms

Shi and Tomasi 41ms

Harris 28ms

FAST 1ms

Figure 4.4: Test results for different corner detectors. Red circles are the detected features.

Top left corner FAST detector, top right corner is Shi and Tomasi method, bottom left

ORB and bottom right Harris detector.

each feature which will then be used for the matching. Descriptors are used to describe

the area around the feature. For each frame, a set of features and their corresponding

CHAPTER 4. VISUAL POSE ESTIMATION 22

Figure 4.5: Test results for different corner detectors. Red circles are the detected features.

Top left corner FAST detector, top right corner is Shi and Tomasi method, bottom left

ORB and bottom right Harris detector.

descriptors are extracted from the image, and they are then matched against a pre-defined

set of features. The pre-defined set of features could be a set from the previous frame or

something else such as a set extracted from an object that should be tracked.

Template matching

In Section 6.4, a template matching is used to track the motion between successive frames.

Template matching is one of the simplest methods for finding a certain area of an image

from another image, so the descriptor can simply be considered as an image of the area

around the feature. The matching happens simply by ”sliding” the template area across

CHAPTER 4. VISUAL POSE ESTIMATION 23

the searchable image, and calculating a similarity threshold in each position using convo-

lution. Due to the simple nature of this tracking type, the template matching algorithm

also has its own problems. The method takes a lot of processing power to calculate the

matching for large templates, and the method is not scale or rotation invariant (template

matching cannot match the template, if the template is rotated or scaled differently than

the original image). Therefore, the template matching requires additional methods for

calculating the rotation and scaling. If the tracking system can somehow overcome these

issues, template matching can be a useful tool for tracking. Figure 4.6 shows an example

of template matching.

In some cases, template matching can be used in tracking applications. These sce-

narios usually require that the matched templates are small (preferably less than 10x10

pixels), and the areas they are matched against should also be small. Using template

matching for pose estimation is possible, if the pose can be estimated with good accuracy

prior to the matching or the movement between successive frames is small. Scale and

rotation invariance issues are more difficult to overcome. If the application uses template

matching for rotation and scale, each of the templates must be scaled and rotated to differ-

ent positions and matched with the target image. However, rotating, scaling and matching

each template can be very computationally intensive, since a large number of matches

must be calculated for each template. Template matching can be used in tracking by, for

example, extracting areas around detected features, and using those areas as templates.

SIFT

SIFT (Scale Invariant Feature Transform) [29] is a method used for both finding and

matching keypoints. What makes SIFT special is its invariance to translation, scaling,

rotation and even slight illumination changes. The basic idea of SIFT is to describe the

found features as vectors. These vectors can then be used to detect information about

translation, rotation and scaling. A major drawback, however, is that using SIFT in real

CHAPTER 4. VISUAL POSE ESTIMATION 24

Figure 4.6: Example of template matching. The original image is the leftmost, the image

in the top is the template to be matched, and the black and white image on the right is the

result of the template matching. The minimum location (the best match) is surrounded by

a white rectangle.

time is computationally difficult for tracking tasks, and even more so on mobile devices.

Some real time implementations using SIFT have been experimented with. Such a so-

lution was developed by Radkowski and Oliver [30], who presents a SIFT-based feature

matcher for recognizing specific circuit boards. That system was run on a PC however,

and its performance was not discussed in much detail. A hardware based SIFT system

could also be a solution for creating a real time feature matcher. A system built by Huang

et al. [31] could achieve 33 milliseconds per frame (at 640 x 480 pixels resolution) with

as many as 890 features for the whole matching process.

ORB

ORB(Oriented FAST and Rotated BRIEF) [28] is a method that aims at creating a real-

time runnable version of SIFT. ORB combines different methods for finding keypoints and

CHAPTER 4. VISUAL POSE ESTIMATION 25

extracting their descriptors: FAST is used as the feature finder, and BRIEF (Binary Robust

Independent Elementary Features) [32] for extracting the descriptors. The system adds an

orientation for the found FAST features by calculating a center of intensity around each

feature. Even though the performance differences between ORB and SIFT are quite large,

the performance of ORB is still not enough for real time tracking applications, especially

on mobile devices. Both of the aforementioned matchers are best used in scenarios where,

for example, we have to search for an object in an image.

4.2.3 Optical flow

Optical flow (used in Section 6.3) techniques estimate the motion of pixels between two

successive frames. The idea is to use brightness variations in the image to estimate the

movement between two frames. There are multiple different methods that can be used for

calculating the optical flow. The optical flow algorithm used in Section 6.3 is a pyramidic

version of Lucas and Kanades optical flow algorithm [33]. Lucas and Kanades method

assumes a small amount of movement that is constant within a certain area. The improved

method proposed by Bouquet [34] further improves the calculation by using a pyramidic

model, in which the optical flow is calculated for multiple different search area sizes. In

order to reduce processing requirements of the optical flow algorithm, a sparse optical

flow can be used (i.e. only a limited set of features are tracked instead of the whole

image). There are performance-accuracy tradeoffs in calculating the optical flow as well.

Using more features to track can have a positive effect on the accuracy (if the tracked

features are selected well enough), but the processing power requirements can quickly

become a performance bottleneck.

CHAPTER 4. VISUAL POSE ESTIMATION 26

4.3 Simultaneous localization and mapping

One of the most promising universal visual tracking solution is SLAM, which has a large

number of different implementations. The idea of SLAM is to estimate the user position in

6DoF by estimating the 3D positions of different points that are visible in the camera. The

main principle behind SLAM is somewhat similar to the tracker presented in the Section

6.4. The tracker consists of multiple different parts: extraction of features, estimating the

pose, and updating the system. Currently SLAM systems are used especially in robotic

applications to keep track of the position of a robot.

For each iteration of the tracker, the tracker extracts a number of features from the

device’s surroundings. These features are then matched with the current 3D map created

by the system to estimate the pose of the device. After the pose of the device is estimated,

the map is extended with the features that were not previously in the map.

The difficulty in SLAM systems is to define the depth of the extracted feature points.

The x and y coordinates of a feature can be easily extracted from the image, but estimat-

ing the depth requires some more complicated techniques. The most common way with

monocular cameras is to estimate the depth by using the translation of the device while

tracking the feature. The depth can also be estimated by using stereo cameras or depth

cameras, but unfortunately such devices are not currently integrated to any consumer mo-

bile devices.

Especially for outdoor tracking, different adaptations of SLAM have a lot of poten-

tial, since a well-implemented SLAM can track the user’s position relatively drift-free in

6DoF. The downside with SLAM is the computational complexity and hardware require-

ments. The maps built with SLAM systems can grow very large, which can consume a

lot of memory. Reusing maps can also be difficult, since especially outdoor environment

might change so the map can become unusable, and it is difficult to determine automat-

ically which parts of the map need to be updated, thus it is often easier to restart the

CHAPTER 4. VISUAL POSE ESTIMATION 27

building of the map from a scratch whenever the system is restarted. An example of an

open source SLAM system is PTAM [35]. Even though it is one of the best-known SLAM

systems, it is still not suitable for larger scenes such as outdoor usage due to the sizes of

outdoor maps. Implementations of a SLAM system were also considered to be a part of

this thesis, but in the end they were considered too complicated to be implemented in the

given timespan.

4.4 Visual 3D tracking

Lately visual trackers have also become capable of tracking 3D objects using combina-

tions of different techniques. For example, it is possible to use 3D models as markers,

where different edges and textures can be used to estimate the pose of the 3D object.

SLAM (or similar) systems can also be used to create a map from an object, which can

be used as a marker. As with SLAM, 3D object trackers can be improved by the use of

depth or stereo cameras.

3D models can be tracked in multiple ways. The most common methods consists of

searching edges in the model and edges in the image, and matching those two sets of

edges to estimate the initial pose. After the pose is initialized, the tracking can be realized

using any tracking technique such as using natural features found in the image or tracking

different planes or textures of the object.

One advantage of tracking 3D objects is that the tracked objects can be large, previ-

ously known objects such as buildings. If the used 3D model is complete, tracking is pos-

sible from all directions. Using accurate 3D models also allows for very accurate tracking.

Major downsides are that constructing accurate 3D models can often be time consuming,

and tracking complex objects requires a lot of processing power from the hardware. The

construction of 3D models can be avoided to, at least some degree, by using, for example,

some implementation of SLAM to create a ”map” of the object which is then used for the

tracking. However, using these built maps is often less accurate than tracking a complete

CHAPTER 4. VISUAL POSE ESTIMATION 28

model. 3D model tracking has similar problems to basic marker tracking, since, for exam-

ple, changed lightning conditions and shadows can create ”edges” that can easily confuse

the tracker. This makes the use of 3D object tracking very difficult in outdoors scenarios.

3D object tracking also becomes problematic if the tracked target is prone to change (e.g.

it is a building that is currently under construction, which would require frequent updates

to the 3D model).

The most obvious industrial use for 3D object tracking is the tracking of small gad-

gets such as engine parts or tools. As presented in Section 2.2.1, the 3D object tracking

could be used to view for example maintenance instructions. For larger scale applications,

tracking a building can be considered as a solution for outdoors tracking. However, the

issues with varying conditions and shadows can be difficult to overcome, and, therefore,

it is not often worth to adapt 3D tracking to larger scenarios. It should be noted that as

depth camera technology improves, 3D object tracking will become a lot more useful in

outdoor use. The current ranges of depth cameras is still less than 10 meters, which makes

them unsuitable for outdoors use.

4.5 Combining different tracking types

Non-visual tracking is mostly used for outdoors applications, when no prior visual knowl-

edge of the area exists. Non-visual tracking applications depend on sensory data of the

devices. These sensors usually consist of a Global Positioning System (GPS) sensor, mag-

netometer, gyroscope and accelerometer. The accuracy of non-visual tracking is most of

the time smaller than visual tracking, since the accuracies of the different sensor can vary

a lot. Sensors are discussed in more detail in Chapter 5.

As mentioned by Azuma et al. [15], combining several different tracking methods is

the most reliable method for making reliable tracking outdoors. By combining different

solutions, it is possible to fix a large number of major problems that arise from using

just one tracking system. This thesis proposes a system which combines sensory data

CHAPTER 4. VISUAL POSE ESTIMATION 29

from gyroscope, GPS and magnetometer with a visual tracker. Even though the article of

Azuma et al. is relatively old, the basic idea is still valid. Pure visual tracking should not

be the only form of tracking, since the environment can vary quickly when the lightning

conditions change, and visual trackers can be lost during fast movements or if the camera

view is blocked. When visual tracking fails, Inertial Measurement Units (IMUs) can be

used to restore the devices orientation, and IMUs can also be used to support the visual

tracker by comparing the values of the tracker and sensors. It is easy to determine that

there is something wrong with the visual tracker, if suddenly the orientation given by

IMUs is significantly different from the visual trackers orientation. The visual tracker can

be used to compensate for the drift of the sensors, assuming that the used visual tracker is

drift-free.

A combination of different visual tracking systems is also possible. Nowadays many

AR SDKs provide a tracking method known as extended tracking. In extended tracking,

the user initializes the pose estimation by pointing the camera to a known marker. After

the initial orientation is computed, the tracker starts to build a map of the environment

around the marker by some technique such as a variant of SLAM. This allows the user

to point the camera away from the original marker, but the tracker is still able to estimate

the position of the user with the map. Whenever the marker becomes visible again, the

tracker can correct the orientation of the device if any drift error has been accumulated.

The best results can be achieved by using a drift-free visual tracker for the main track-

ing, while the system can be supported with different sensory data. A complete outdoor

tracking system could consist of, for example, a sensor module which uses a combination

of gyroscope and compass to calculate the absolute orientation of the device, a GPS to

find out the absolute position of the device, and a drift-free visual tracking to do the main

tracking (that can also be supported by different IMUs).

Chapter 5

AR Technology

A large number of different tools exist for creating AR applications. This chapter dis-

cusses both hardware and software that can be used for AR development. The hardware

section focuses mainly on different sensors that can be found in modern mobile devices.

The software section focuses on different software development kits and libraries that can

be used for creating AR applications.

5.1 Hardware

AR applications can often have very demanding hardware requirements. The used devices

must have a lot of processing power, since computer vision algorithms required for pose

estimation can be computationally difficult. IMUs are also a common requirement for

AR applications since they can be used for different pose estimation tasks, such as using

GPS and magnetometer for determining absolute position and orientation in the world

coordinates or using gyroscope to supplement visual tracking.

5.1.1 Mobile devices

The rapid development of mobile technology has allowed AR to reach the hands of reg-

ular customers. Previously AR could only be used in PCs or dedicated tools such as AR

CHAPTER 5. AR TECHNOLOGY 31

glasses/helmets, which are often very expensive. As mobile technology has developed,

basic mobile devices have become capable of running augmented reality applications.

Especially tablet computers can nowadays run AR applications that require a lot of pro-

cessing power. Most of the modern mobile devices today also include a wide variety of

sensors as well as high quality cameras, which AR applications can utilize.

5.1.2 Sensors

Different sensory data can be used to track the movements of the user fairly accurately.

The most important sensors for outdoor tracking are GPS, gyroscope, accelerometer and

magnetometer. These sensors are mostly used since they are often included in regular

mobile devices.

Gyroscopes can be used to approximate the rotations of the device. The accuracy of

gyroscopes can be quite high, since the gyroscopes are not affected by any outside dis-

turbances. The gyroscopes can also track fast rotational movements with good accuracy.

However, the gyroscopes tend to accumulate a drift after they have been used for a while.

Also, the gyroscopes do not have any absolute positioning which could be used to alle-

viate the drift. For example, a Nexus S phone gyroscope test conducted by Subbu and

Dantu [36] showed that when rotating the device around a single axis for 90 or -90 de-

grees, the error remained below 6 percent. However this can become an issue after a large

amount of rotations have been done, since the drift usually keeps on accumulating in a

linear fashion. If the purpose of an AR application is, for example, to view some wiring

inside a wall, the drift error is already much too severe. A compensation for the drift is

required, and one example of such compensation is explained in the Section 6.3, where

another tracker is used to reset the values of the gyroscope.

Accelerometers are used to measure the acceleration of the device. Where the gyro-

scope measures the rotation of the device around the three axes, accelerometer is used to

measure the translation. Modern mobile devices are often equipped by three accelerome-

CHAPTER 5. AR TECHNOLOGY 32

ters, one for each axis. By combining gyroscope and accelerometer, a device can estimate

a full 6DoF pose. However, accelerometers also suffer from the accumulation of drift,

which means that if a tracker is based solely on the inertial measurement units of the de-

vice, some method for drift compensation is required. These methods can include, for

example, the use of magnetometers and visual trackers.

In order to determine the absolute orientation of the device, magnetometers can be

used. One issue with magnetometers is that the accuracy is highly affected by outside

disturbances, such as large metal bodies or electric wirings. Raw magnetometer data is

also often very noisy. The noise of the magnetometer can be reduced by for example

using data from a gyroscope for filtering, as is done in sensor fusion system in Section

6.2. A bigger problem for magnetometers is the sensitivity to outside disturbances. Those

disturbances are often impossible to predict and compensate, which makes the use of

magnetometer unreliable when a high accuracy is required.

The most commonly used outdoor positioning system is GPS, which can be used for

tracking the position of the user almost anywhere in the globe. However, the accuracy

of the GPS on basic mobile devices is around 5 meters. Multiple technologies exist to

improve the accuracy of GPS. For example, Fong et al. [37] present a GPS solution

which can reach accuracies of 10 cm.

For positioning, GPS is not the only method. If the coordinate system does not need

be global (i.e a relative coordinate system can be used), some smaller scale positioning

systems can be used. For example, ultra wide band or bluetooth positioning systems

can provide a level of accuracy that is sufficient even for industrial use cases. However,

most of these systems require some extra work, such as placement of beacons in specific

locations.

The quality of visual tracking is highly dependant on the quality of the camera. Usu-

ally video resolutions upwards of 640 x 480 are enough for tracking purposes, but the

resolution is not the only thing that matters. Low quality cameras are often heavily dis-

CHAPTER 5. AR TECHNOLOGY 33

torted, and have very low focal lengths, which can cause major problems in tracking. The

images often become curved on the edges, which can cause methods such as edge detec-

tion to work poorly on the edges of the image. Distortions also need to be compensated

when building a visual tracking system. Pinhole cameras are also affected by vignetting,

where the pixels closer to the edges of the image are darker than the pixels in the middle

of the image. Vignetting can also be compensated by, for example, using a diffusely lit

white target visible in the image to calculate the amount of vignetting in different parts

of the image [17]. Other compensation methods also exist for taking into account other

distortions. The OpenCV library offers a toolset for calibrating the camera by taking im-

ages of a chess board pattern. The distortion can be estimated from the curvatures of

the assumed straight lines on the board. When the parameters of the camera are known,

distortion can then be removed. These distortions can be quite problematic when trying

to build a solution for customers, since the amount of camera types that are in use in

different devices is very large, and all of them would have to be calibrated separately.

For visual tracking, different cameras are also available in addition to the basic monoc-

ular cameras. Both stereo cameras and depth cameras can be used to help extraction of

three-dimensional data from features. Where a monocular camera requires horizontal

movement of the device to determine depth of the features, stereo and depth cameras

do not. Stereo and depth cameras can be useful in tracking of 3D objects, or in SLAM

system implementations. However, one issue with these cameras is that they can not be

found in any consumer grade mobile devices, so integrating them into a tablet or mobile

phone would be difficult. In the near future, depth sensors might become commonplace in

mobile devices as well. Some standalone depth cameras (such as Structure Sensor [38])

already exist, and, for example, Dell is including Intel’s RealSense depth sensors in some

of their new tablets (Dell Venue 8 7000 Series) [39]. The problem with depth sensors is

that at least in their current state, the usefulness of depth sensors outdoors is very limited,

since they usually have a sub-10 meter range. Stereo cameras can have a larger range for

CHAPTER 5. AR TECHNOLOGY 34

sensing depth by separating the cameras further apart from each other.

5.1.2.1 Sensors in mobile devices

Most of current mobile devices (mainly tablets and smartphones) have at least a camera,

GPS and some sort of compass. Majority of these sensors are accurate enough, and can

be used in tracking systems. However, there can be some differences in the quality of the

sensors. One of the most noticeable differences is the GPS quality of different mobile

devices. Both the accuracy and update frequency of the GPS can vary. If the device is not

the cheapest available, accelerometers and gyroscopes are also included most of the time.

Some sensors can also be connected to the mobile devices, such as the Structure Sensor

depth camera mentioned in the previous chapter.

5.1.2.2 Standalone sensors

Some external sensor modules are also available for mobile devices. Examples of such

sensors are Texas Instruments Sensor Tag [40], and NODE+ [41] device. Sensor Tag

and NODE+ can both be connected to a mobile device, in the case when some required

sensors are missing from the device itself. The accuracy from external sensor modules

can be better than the accuracy of the inbuilt sensors. Since some mobile devices might

use lower-end sensors, and external sensors might also include more effective filtering

or even sensor fusion functionality, it could be beneficial to use these external sensors as

they might provide higher accuracy.

Especially in the case of GPS, sensor accuracy can be improved much by using profes-

sional grade external GPS receivers. Some higher end GPS receivers claim to be able to

reach sub-1 meter accuracies. External sensors are often difficult to connect to tablets for

example, which lowers the usability. External sensors can also often require placement of

beacons in specific spots, which can cause inaccuracies if positioned wrong. Beacons are

usually small devices, and a varying amount of beacons need to be placed for different

CHAPTER 5. AR TECHNOLOGY 35

indoor positioning systems.

5.1.3 AR devices

Since it has been shown that AR technologies have large potential in a number of different

fields [42], there have been large advances in developing devices that focus solely on AR

applications. These devices have large variances: some of the devices are expensive

developer-only devices, and some are much cheaper consumer products. However, they

still have large problems that are discussed in this section. The presented problems are

also the reason why they are not used in this thesis.

AR (and VR) devices have two major challenges: performance and displays. It is

difficult to get a large amount of processing power into standalone AR glasses (such as

Epson BT-200 [43]). Glasses which can be used as another screen for PC’s (such as Vuzix

M2000AR [44]), and virtual reality helmets like Oculus Rift [45] can be difficult to use

in outdoor environments since a PC is required. The displays of AR glasses are usually

quite small and they have a small field of view (FoV), which makes them unsuitable for

professional AR tools. The visibility of the translucent screen of AR devices outdoors

is often very poor. In their current state, AR devices are only usable for viewing, for

example, some text, since augmenting any large 3D models is difficult due to the limited

field of view, which would mean that only a small part of the model can be visible at a

time.

Some non-commercial AR tools can also be found from literature. For example, the

systems presented by Menozzi et al. [16] and Schall et al. [18] are both custom solutions.

By building the systems from a scratch, the systems can be optimized to a further degree

which can allow for more complicated tracking algorithms. Both systems included some

inertial measurement units such as GPS, magnetometers and gyroscopes. However, one

could argue that these types of solutions are becoming more and more obsolete, since

modern handheld devices already include a large number of sensors and high quality

CHAPTER 5. AR TECHNOLOGY 36

cameras, and even depth cameras in the future.

The social acceptance is also something that should be taken into account when con-

sidering standalone AR device, as pointed out by Carmigniani et al. [46]. Many of the

standalone AR devices can be large and obtrusive, which can make people unwilling to

use them. A large number of people also considers it inappropriate to wear AR devices

that includes a camera which is always recording. Since mobile devices are already quite

commonplace, their use in AR applications can be considered more acceptable.

5.2 Software

Since the AR technology has become more and more popular during the last years, a

large number of different libraries and software development kits have been released that

support the creation of AR applications. In order to select suitable tools for this thesis, a

small scale research was done in order to map out some of the possible software solutions

for implementing a tracking system.

There is a large variance on the quality and ease-of-use of these libraries. Some AR

tools are simple content management systems that have a drag-and-drop interface that

can be used to create AR applications using images or locations as targets and that can

view different kinds of content such as images, videos and 3D models on the target. A

large amount of lower-level development tools also exist, which only provide a track-

ing functionality but require some amount of programming in order to create the actual

applications.

5.2.1 Suitable SDKs and libraries

A large number of smaller libraries exist that support the creation of sensor-based AR

applications for outdoors use such as DroidAR [47], PanicAR [48], 3DAR [49] and Be-

yondAR [50]. However, these smaller libraries are mainly meant for creating navigation-

CHAPTER 5. AR TECHNOLOGY 37

and other applications which do not require a high quality tracking as different visualiza-

tion applications do. These smaller libraries are also sometimes relatively difficult to use

and outdated, since they are not always updated frequently.

One of the largest AR SDK providers today is Wikitude [7]. Their SDK supports

creation of multiple types of AR applications, including sensor-based AR. The Wikitude

SDK also provides possibility for using image/template based tracking systems. Although

Wikitude’s SDK is relatively easy to use, the SDK also has its flaws. Since the SDK

is a commercial product, large parts of actual functionality is hidden. This means that

adjusting the tracking is currently very difficult. The SDK does not do any visual tracking

to support the geolocation-based AR. Therefore, applications have to rely heavily on the

use of compass. In order to create very accurate tracking systems, it is not recommended

to use magnetometer data for determining the devices orientation. Wikitude’s SDK is

also going to have a SLAM tracking system in the near future, as the current version of

the SLAM tracker is on a beta stage. For the thesis, a test application for Wikitude was

developed, and it is discussed in more depth in Section 6.1.

One of the largest computer vision library available today is the open source library

OpenCV [24]. OpenCV itself does not include any complete tracking algorithms or pos-

sibilities for 3D model rendering, since it mostly consists of low level image processing

algorithms. However, OpenCV can be used in combination with different game engines

such as Unity 3D, which makes it a powerful development tool. A large number of AR

trackers are based on OpenCV, and all of the tracking systems developed for this thesis

are based on the OpenCV library.

5.2.2 Other development tools

One of the challenges in creating AR applications from scratch with OpenCV is 3D ren-

dering. Using an image processing library such as OpenCV does not include 3D rendering

capabilities, which can cause for a large amount of work. One possible tool for supporting

CHAPTER 5. AR TECHNOLOGY 38

the creation of AR applications is Unity3D [1]. Unity3D provides a large number of tools

that can be used to create AR applications: Unity3D can handle UI creation, 3D render-

ing and building to Android, iOS and Windows devices. Recently, the latest iteration of

Unreal Engine [51] has also shown some interest towards AR application support. Using

these game engines is helpful when integrating different tracking systems together, since

tracking systems can be implemented as Unity 3D plugins.

Chapter 6

Built tools

The work for the thesis has been split in to four different categories: Wikitude application,

Sensor Fusion algorithm, Natural Feature Tracker and Panorama Tracker. Each of these

projects are described in their own chapters. The results for each of the chapters are

described in Chapter 7.

All of the applications were developed and tested on a Lenovo T440p laptop [52].

The tablet that was used for testing is Nvidia Shield [53]. On PC version, Logitech C920

webcamera [54] was used.

All of the used applications (excluding the commercial Wikitude) were targeted for

Unity 3D, since Unity 3D allows easy development for multiple platforms, and Unity

3D helps the integration of different systems together. The applications developed in

the thesis were run on PC as well as on Android device which has a gyroscope and a

magnetometer. All image processing is done using OpenCV library.

6.1 Wikitude demo application

In the first phases of the thesis, commercial solutions for building AR applications were

reviewed, and Wikitude SDK was selected as the most promising solution, since it is one

of the largest AR SDK providers today and it also has a free trial version that can be used

CHAPTER 6. BUILT TOOLS 40

for testing. Wikitude SDK provides a number of tools for creating geolocation and image

tracking based AR applications, and it is also relatively easy to use. Therefore, a demo

application was fast to build with Wikitude SDK. The idea was to test the viability of

commercial solutions in building industrial-usable AR applications that could be mainly

used for different visualization tasks, for example, viewing a 3D model of a building in

its correct position before it is built. The aim of the demo application was to find out the

accuracy and potential limitations of pure IMU tracking.

Figure 6.1: Image from the Wikitude demo application

6.1.1 System functionality

The basic idea of the application was to show some augmented content such as buildings,

in outdoor environment. The plan was to build an application which could be used as a

visualization tool for construction. Wikitude tracking relies solely on the GPS and IMUs

of the mobile device. The exact functionality of the SDK is hidden, which means that it

is unknown how different sensors are used.

CHAPTER 6. BUILT TOOLS 41

Wikitude application uses GPS to determine the users position, and 3D models can be

augmented to a pre-defined GPS coordinates. Two different use modes were implemented

mainly to find limitations regarding the inaccuracies of the GPS system.

1. The basic use mode was a plain AR-browser like application, in which the applica-

tion determines the location of the user according to the GPS, and the orientation

of the device was determined by different IMUs of the device.

2. The second mode was implemented to account the inaccuracies in the GPS. This

mode used a simulated GPS, where the location of the user was defined beforehand

and the GPS was pinned to that location. The pinned location allowed testing the

accuracy of the tracking using the sensors when the inaccuracies of the GPS were

not taken into account, since sometimes the GPS can cause large jumps in the aug-

mented content when the position is updated. The results for testing Wikitude are

presented in Section 7.1.

6.2 Sensor fusion in Unity

After finding out the limitations with Wikitude SDK, other tools were studied. The next

step was to start building a custom tracking solution from scratch. Firstly, the noisy

magnetometer data needed accuracy improvements in order to have a system that allows

the estimation of the device’s absolute orientation. The noise removal was accomplished

by combining the sensor data from the gyroscope with the data from the magnetometer.

This fusion also aims at making the augmentation look more appealing to the user, since

the augmented content would not jitter so much because of the noise.

6.2.1 System functionality

The fusion of gyroscope and magnetometer was done in a fairly straightforward way:

the orientation was determined from both the gyroscope readings and the magnetometer

CHAPTER 6. BUILT TOOLS 42

readings, and they were combined every frame using a defined coefficient value (a value

between 0 and 1) which determined how much each of them affected the result. For each

axis, the combined orientation was calculated as follows:

orientation = (gyroReading ∗ coefficient) + (magnetometerReading ∗ (1− coefficient))

After testing, the used coefficient value was set at 0.9. The coefficient value should be set

so that the gyroscope’s orientation effects the result more than the magnetometer’s orien-

tation to remove as much noise as possible. Since the magnetometer does not accumulate

any drift, the drift of gyroscope could be accounted for by reseting the orientation of the

gyroscope each frame and by setting magnetometer’s orientation to the gyroscope’s ori-

entation. In the final Unity 3D version of the application, previously defined augmented

content could be placed on the screen according to the orientation from the formula pre-

sented earlier. This simple augmentation was implemented to visualize the difference

between the raw magnetometer data, raw gyroscope data and the combined data. The

results of the sensor fusion algorithm are presented in Section 7.2.

6.3 Natural feature tracking

Due to the disturbances of magnetometers, it is desirable to depend on magnetometers as

little as possible. In order to make that happen, a visual tracking was combined with the

sensor fusion system. The idea of the visual tracking is to supplement the magnetometer

and gyroscope fusion so that the magnetometer is only required in the beginning of the

tracking to determine the absolute orientation, or when the visual tracker accumulates too

much drift. If the magnetometer is only used for getting the initial orientation, a visual

tracking system which minimizes the drift accumulation is required. The first iteration

of the visual tracking was built with OpenCV, and the visual tracker calculated a sparse

optical flow for a set of points in the image. The idea of the sparse optical flow is to

estimate the movement of a certain set of points, rather than the movement of every pixel

CHAPTER 6. BUILT TOOLS 43

of the image. This tracker was built to test the performance of a simple natural feature

tracking system and see how much drift is accumulated and in which types of scenarios

the method could be used in. The visual tracker only computes a 3DoF pose, since the

depth of the tracked features is not taken into account.

The tracking system was ported to two different plugins in Unity 3D: one for debug-

ging in the editor on PC, and another for running in Android devices. The tracker was

originally developed as a C++ application on PC.

6.3.1 System functionality

The Unity 3D application consists of four different usage modes: compass-only, gyroscope-

only, natural feature tracking (NFT) only or combined mode, in which the natural feature

tracking is combined with the sensor fusion presented in Section 6.2. Changing between

different usage modes was required in order to make the testing and comparing of different

systems easy. A simple augmentation with a cube object was also possible to accomplish,

since it was required to test, if the initialization using magnetometer was functional and

to visualize the drift and robustness of the tracking. Due to the simplicity of the system,

the tracker was only capable of tracking the rotation of the device but not translation.

The initialization was required to be run again whenever the user moved to a different

position. The system did not include any absolute positioning system such as GPS, since

it was only supposed to be used for the testing of the tracking accuracy. Adding a GPS

support would have been a simple task, but due to the accuracy issues of plain GPS the

GPS support was not implemented.

6.3.1.1 Initialization and tracking

Whenever the user pushes the ”Start Tracking” button in the UI, the previously defined

AR content is placed to its correct position according to the orientation of the device. The

initial orientation is computed by the sensor fusion algorithm described in the previous

CHAPTER 6. BUILT TOOLS 44

chapter. After the content is positioned, the NFT is initialized by searching the whole

frame for trackable features with the method proposed by Shi and Tomasi [23] (explained

more accurately in Section 4.2.1). For the version run on tablets, maximum of 50 fea-

tures were searched for with a minimum quality of 0.5 and minimum distance of distinct

features 25 pixels. All the found features were added to a vector of points. However,

often the number of tracked features were far below the minimum, since no good enough

features were found.

After the features were found, tracking was started. For each feature, the optical flow

was calculated using pyramidical version of Lucas and Kanade’s optical flow algorithm

[34] (see Chapter 4). The amount of movement was calculated by taking the movement

of each feature along y-axis and x-axis and by calculating their averages. Estimating the

rotation around z-axis was not considered important, since the testing was more focused

in getting a general idea of how accurate the tracking is, and it was assumed that the

user would keep the device straight all the time. In order to compensate loss of features

that are dropped when they move out of screen, new features were searched whenever the

estimated movement of the camera exceeded 100 pixels (with the camera resolution being

640x480 pixels) in either horizontal or vertical direction. Since these updates were only

run on a small part of the frame, they did not have a noticeable effect on performance.

6.3.1.2 Compensating for the drift

Since the system does not have any sort of reinitialization system or a system which

would locate points that have been previously tracked, the system accumulates drift over

time whenever the user moves the device in wide angles, which causes the system to

search for new points frequently. In these cases it is required to recalibrate the augmented

content back to the correct position as defined by the sensor fusion system. In the final

system, the recalibration happened in static intervals of 5 seconds, or manually when the

user presses a reset button. The results of the tests for natural feature tracker are presented

CHAPTER 6. BUILT TOOLS 45

in Section 7.3.

6.4 Panorama tracker

The most time consuming part of the thesis was the development of the panorama tracking

system, which aimed to correct the problems (mainly the drift) present on the simple

natural feature tracker. The main reason to start developing the panorama tracker was

the fact that a tracker which accumulates no drift would remove the need of compass

altogether, except for the initial calibration. It is also possible to calibrate the absolute

position and orientation by using some other methods besides compass, such as different

visual recognition techniques. The main functionality of the panorama tracker is based

on the article by Wagner et al. [17]. The basic idea of the tracker is the same as in the

paper, but some parts of it have been changed. The largest difference is the integration

of the tracker to Unity 3D, which also allows the augmentation of virtual content. The

developed system also has some different methods for calculating the orientation from the

tracked features. The system presented in the paper uses iterative Gauss-Newton method

for estimating the orientation more accurately, but such method was not implemented

during the thesis. The system presented in the paper maps the image to a cylinder, in

which each point is presented in 3D form. The system developed in the thesis stores the

whole map in a single 2D image. Multiple smaller differences are also present.

6.4.1 System functionality

The panorama tracker creates panoramic images of the surrounding area, which are used

to track the rotational movements of the camera. The maps are created parallel to the

tracking, so the tracker does not require previously built panorama images. The main

problem with this type of tracking system is that it does not work with translational move-

ment; whenever the user moves to a different position, a new panorama map has to be

CHAPTER 6. BUILT TOOLS 46

Figure 6.2: Partial panorama on PC. The current viewpoint is visualized as the red rect-

angle, cells as white rectangles and tracked features as green circles.

Figure 6.3: Image from the UI of the panorama tracker on Android Unity 3D

created. With mobile devices the tracker can also be configured to use the gyroscope to

support the tracking. For example, when the visual tracking is lost and the relocalizer

CHAPTER 6. BUILT TOOLS 47

is started, the tracker can visualize the augmented content using the gyroscope until the

tracker has reinitialized. It is also possible to combine the orientations of the gyroscope

and the panorama tracker in a similar fashion as the sensor fusion (presented in Section

6.2) combines the orientations of the gyroscope and magnetometer. Especially, when the

tracking quality is detected to be low, using the gyroscope can be more accurate.

The tracking is done using a set of features that are template matched to the current

images from the camera, and the map is updated each frame whenever the camera covers

new area that has not yet been added in to the map. The system also includes a relocal-

ization system, which is based on the template matching. A certain similarity to SLAM

systems can be seen, since the basic idea of the panorama tracker is very similar: each

frame the estimated orientation is updated, and new features are added to the map. The

flow of the system is explained in Figure 6.4.

Figure 6.4: Control flow inside the application.

CHAPTER 6. BUILT TOOLS 48

6.4.1.1 Camera calibration

The first step in the initialization of the panorama tracker is image correction. The current

system does four different operations for each image: grayscale conversion, camera dis-

tortion correction, warp the image based on the current rotation of the camera and scale

the original frame to a half- and a quarter sized.

The grayscale conversion is done in order to improve the performance of the system.

Template matching is already quite slow, and using color images makes it even slower.

Using colored images has no advantage in the quality of the tracking either, so using

grayscale were used. Colored images were tested with the template matching, but they

provided no difference in the quality of the tracking. The only difference between colored-

and grayscale images is that the performance is a lot lower when using colored images.

The camera distortion is fixed using the camera calibration functionality that is found

from OpenCV. The calibration is done by viewing a chessboard pattern from different

angles, after which the OpenCV calculates the intrinsic camera parameters that can be

used to fix the distortion that usually appears on the edges of the image. Each image is

also warped based on the rotations around z-axis and y-axis. The warping is done so that

the images from the camera can be mapped to a (cylindrical) panorama image. Without

warping the images, creation of the panorama image would be impossible. The image

warper in OpenCV is also used to resize the images. A sample of the warper functionality

is presented in the Figure 6.5.

Attention should also be paid to the settings of the camera. Especially auto-focus,

auto-gain and auto-exposure can become an issue. Disabling the automatic parameter

adjustments can improve the tracker quality, but in some cases disabling the automatic

adjustments is not possible. The issue with automatic parameter adjusting is especially

problematic due to the usage of template matching as a tracking method for features.

Since template matching is a simple procedure, it does not take changes in brightness into

account very well. In outdoor scenarios the removal of these automatic parameters can

CHAPTER 6. BUILT TOOLS 49

Figure 6.5: Functionality of the warper: the original image on the right, and the resized,

grayscale warped image on the left. The image is warped to represent the change when

the camera is rotated 10 degrees on the y-axis.

also become a problem in some cases, since the image might become way too saturated

due to varying lightning conditions. In the tablet version of the tracker, these camera set-

tings were left untouched, since adjusting them using Unity 3D was not possible. Motion

blur is also problematic when the camera is rotated quickly, since the system has no im-

plementation for determining whether or not the current image is blurred. This can cause

the system to add blurred data to the map, which is often difficult or impossible to track.

Since the conversion from pixels to degrees (explained in more detail in next section)

is dependent on the field of view of the camera, a method was required to estimate the

FoV as accurately as possible. For a web camera that was used with the laptop, the FoV

information was available online, but for the tablets this data was not found. The FoV

was estimated by placing two images on a wall, and the distance between the images was

measured. The camera or tablet was then placed on a tripod, and moved to a position

where both of the images were on the edges of the camera image. Then the distance of

the camera was measured from the wall, and the field of view could be calculated.

CHAPTER 6. BUILT TOOLS 50

6.4.1.2 Panoramic maps

The system creates three maps, which are used to create a pyramidical method for track-

ing. The maps cover 360 degrees in horizontal direction, and 60 degrees in vertical di-

rection. Limiting the vertical movement reduces the map sizes, and most of the time it is

not required to track very far on the vertical direction. For the visualization tasks that the

tracker was built for, larger vertical movements are also not necessary, since beyond the

60 degrees nothing else is often visible than the sky and the ground, which are difficult to

track accurately.

The size of the map is dependent on the FoV, the resolution of the camera and the

covered degrees of the map. For example, on PC with image resolution of 640x480 pixels,

horizontal FoV of 55 degrees and vertical FoV of 43 degrees the resolution of the map

was 2940x655 pixels. The map was set to cover 420 degrees of horizontal movement.

The application does allow to change the map size in the settings menu by scaling the

images from the camera, if performance becomes an issue or if the tracking quality needs

to be higher and the hardware is capable. The smaller maps are a half- and a quarter sized

versions of the biggest map. Limiting the map sizes has a direct effect on the performance

of the tracking, but it also lowers the tracking quality. The maps are also split into 32x18

equally sized cells. These cells are used for two purposes: updating the smaller versions

of the map, and for searching new features. Updating the map is explained in Section

6.4.1.4, and the searching of new features in Section 6.4.1.3.

The orientation of the device is stored to a viewpoint rectangle. The rotations around

x-axis and y-axis are saved as pixel positions in the map, which can be translated to

degrees when the resolution and FoV of the camera are known. The rotations around

x-axis and y-axis are calculated using the following formula:

degrees = (pixel position/map width or height) ∗ 360

The information about rotation around z-axis is not stored in the viewpoint, and it is only

CHAPTER 6. BUILT TOOLS 51

taken into account when warping the image as presented in the previous chapter. The

rotation around z-axis is stored as degrees instead of pixels.

6.4.1.3 Tracking

The actual tracking detects features that are searched with a FAST (described in Section

4.2.1) feature search. FAST detector was selected due to its good performance, and since

the points selected by FAST rarely have points that are difficult to track. Some other

detectors were also tested, such as ORB, Harris corner detector and the method proposed

by Shi and Tomasi [23], but the quality differences in the features were not very high, and

other detectors provided no advantage over FAST. Performance of the feature detector

was not important, since the features are not searched every frame.

The feature search is based on the cells within the map. Each of these cells contain

their own list of features. The feature finder is applied after a cell gets completely filled

with pixels in the map. The maximum amount of features per cell can be adjusted to either

affect the performance or the quality of the tracking. The final system used a maximum

of 10 features per cell. With larger amount of features per cell the tracker often ended

up selecting features with too low quality, so using more features was rarely useful. The

threshold parameter used for FAST in the system was set to 15.

The tracking always assumes that the pose during the previous frame is known in order

to limit the area from which the selected features are searched for. The current pose can

be seen in the images as the red rectangle. The requirement for knowledge of the pose

in the previous frame also means that when the tracker is initialized, a guess of the initial

orientation is made. On mobile devices, IMUs could be used to estimate the initial pose.

However, using IMUs for the initial pose was not implemented, so the initial orientation

was always set to (0,0,0) on both PC and tablet. This can cause some issues, if the initial

pose is wrong. The created map becomes highly distorted if the initial rotation around

y-axis or z-axis is incorrect.

CHAPTER 6. BUILT TOOLS 52

The tracking is done in three different steps, one for each map, beginning from the

smallest resolution map. The current frame of the camera is given to the system, and the

image is warped according to current estimated pose. Since the system has a knowledge

of the orientation of the previous frame, the new orientation can be assumed to be close

to the orientation of the previous frame. The current frame is first resized to quarter

resolution to make it matchable with the quarter resolution map. For each cell that is

estimated to be inside the current view, each feature is iterated through. For each feature,

an 8x8 pixel template is extracted from the map. Then, a search area is extracted from

the current frame inside which the location of the feature can be assumed to be. Since the

calculation is done each frame, it can be assumed that the new location of the feature is

found near to the old location. Therefore, the template matching is run on a small area.

The size of the search area is different for the three maps: the quarter resolution map uses

16x16 pixels, the half sized map uses 12x12 pixels and the largest one uses 12x12 pixels.

The sizes were selected by testing the tracker with different settings to find good balance

between quality and performance. Larger search area sizes found more false positives.

The false positives can happen, when the search area is large and might contain multiple

areas that look similar, which can cause the template matcher to select the wrong location.

Matching the template to a larger search area size also lowered the performance. Smaller

search area sizes make the tracking a bit more robust, but if the search area sizes are

dropped more the amount of movement that can be done between each frame becomes

very small. Since the position estimation starts from the smallest map, and the viewpoint

is moved towards the estimated position after each map, the search area can be kept small

for each map.

The actual matching of the support areas in the search areas is done using template

matching. Template matching is a simple method for matching similar areas, and template

matching can be efficient when used in a small area. Template matching was selected

since it is a fairly effective method whenever the matched templates are very small, and

CHAPTER 6. BUILT TOOLS 53

after some testing template matching was found to be quite reliable when the feature

actually exists in the searched area. Since the panoramic tracker only functions in 3DoF,

the issue of scale invariance in template matching is ruled out. Rotation invariance can

also be accounted for: as template matching can work if the rotation is very small, the

rotation can be estimated by calculating the a rigid transformation between each frame.

The rigid transformation is calculated with an OpenCV function estimateRigidTransform.

The rigid transform estimation function takes two vectors of points as input. One of the

vectors holds the tracked features from the previous frame, and the other vector holds the

matched features from the current frame. The rotation can be extracted from the matrix

that is provided by the function. This estimated rotation is provided for the warper, which

rotates each frame accordingly. The rotated frames are then matched against the map. Out

of the available methods template matching was also one of the fastest for this scenario,

since the compared templates and areas are very small.

OpenCV provides multiple methods for matching the templates, but the differences

in tracking quality or performance were not large. The selected template matching style

(CV SQDIFF NORMED) in OpenCV is used to return the best match for each feature,

and since it also returns a quality value, it can be used to filter out bad matches or false

positives, and to estimate the overall quality of the tracking. More detailed explanation of

template matching method can be found from Section 4.2.2.

The movement between the current and the previous frame is estimated quite similarly

to the NFT, with a few differences. The x- and y-movements are calculated for each frame,

and their averages are calculated. A simple filtering was also implemented to remove the

obviously faulty matches. The filtering module calculates the median for both x- and

y-translations, and removes points which differ more than a threshold. The maximum

difference between the median and the point was set at 2 pixels.

CHAPTER 6. BUILT TOOLS 54

6.4.1.4 Updating the map

Whenever the quality of the tracking (given by template matching) is sufficient, the map

is updated. The update is computed once per frame, whenever there are new pixels inside

the camera view that are not yet inserted to the map.

The updating of the map is based on three different binary mask images: the mask

of currently mapped areas in this frame and in the previous frame, and the mask of the

current frame. Mask of the current frame is required since the warping of the images

causes a number of black pixels on the edges of the image, as can be seen in Figure 6.5.

The first step in the updating of the map is to calculate a bitwise-or between the mask of

the current frame, and the mask of the whole map in order to extract the coordinates of

the pixels that can now be added to the map. The resulting pixels are then extracted from

the frame and set to the map. After setting the pixels to the map, the corresponding pixel

positions are added to the mask of the whole map.

The smaller maps are not necessarily updated every frame, since copying and resizing

images takes a large amount of processing. Because of the computational cost of resizing

images the smaller maps are only updated whenever a cell in the map becomes completely

filled. Whenever that happens, the pixels in the filled cell are extracted and resized, and

placed in their correct position in the smaller versions of the map. New features are also

searched for when smaller maps are updated.

6.4.1.5 Saving and loading maps

The maps can be saved and loaded on the PC version. The process of storing the maps is

straightforward: the application stores text files which contain all the information about

every keypoint and which cell they belong to. All three maps and all the masks are saved

as plain png images. Relocalization images are also saved to another text file that contains

the orientations of each image.

The saving and loading function are mainly built for debugging purposes, since in

CHAPTER 6. BUILT TOOLS 55

real scenarios the scene changes very often, so previously saved maps are inaccurate.

This functionality could also be used for scenarios where the panorama image is created

beforehand, for example, with an 360-degree camera. Using previously built panorama

images allow creation of error-free maps.

6.4.1.6 Reinitialization

As with all visual trackers, the tracking is sometimes lost, if the camera moves too quickly

or something obstructs the camera view. In these cases, it is important to have a system

which can reinitialize the tracking back to a correct position as soon as possible.

The reinitialization system is closely based on the system described by Wagner et al.

[17], and the relocalizer system is based on template matching. Every time the tracker

has recognized more than 10 degrees of x-axis movement, the current frame is saved as a

relocalization image. The selected image is first resized to 80x60 pixels in order to make

the template matching in relocalization faster. The resized images are also blurred, to

lower the amount of detail in the image. The selected images are then saved to a vector

in the application with knowledge about the orientation of the selected images. Since the

images are blurred, they are easier to match to whenever the relocalization is required. If

something small has changed in the scene, template matching will not match the images

correctly. Blurring the images makes the relocalizer functional even when small changes

have occurred in the scene. If the memory usage of the system becomes too large, or

the relocalization becomes too slow, the relocalization images can be made even smaller,

and they can be taken at smaller intervals. The performance of the reinitialization system

also drops with respect to the image count, since each frame of relocalization, all of the

relocalization images have to be matched against the current frame.

When tracking is lost, the relocalizer begins running every frame. Each input frame is

resized and blurred similarly to the relocalizer images, and then the downscaled current

frame is matched against each saved relocalizer image. Whenever the template match

CHAPTER 6. BUILT TOOLS 56

finds a match with good enough quality, it reads the current pose from the relocalizer

images data. The viewpoint is then moved to that position, and normal tracking continues.

Figure 6.6: Sample image from the relocalizer. On the left the original image, and on the

right the resized and blurred image that is used with reinitialization.

Chapter 7

Results

The results and findings of each developed application are presented in this chapter. The

results are split into four different sections, one for each developed application.

7.1 Wikitude SDK

The first use mode (IMUs only with GPS on) was highly reliant on the accuracy of the

GPS. Since the used devices had a basic GPS sensors, the GPS accuracy was in range of

around 10 meters. In order to augment content accurately, this accuracy is not sufficient.

When the GPS was pinned to a pre-defined location to determine the accuracy of the rest

of the sensors, it quickly became obvious that the accuracy of these sensors is not good

enough for these kinds of visualization tasks. The visualization did not look smooth,

and due to the issues with magnetometers the position of the augmented content jumped

around a lot. The Wikitude SDK also had its own downsides due to being a commercial

system. This means that there was no possibility to affect the actual tracking of the system,

or see how it was built.

The Wikitude demo application was a confirmation that pure IMU data is not sufficient

for high quality tracking, and it was easy to see that Wikitude could not achieve the targets

set in the project. However, the Wikitude SDK still could be used for a number of different

CHAPTER 7. RESULTS 58

tasks, where the accuracy requirements are not so high. For example, it could be used for

navigation systems, since the inaccuracies are not so obvious from larger distances. The

demo application augmented models only when the user was closer than 100 meters to

the target, but navigation applications often shows augmented content that is much further

away, so small jittering is not noticeable and a 10 meter error in GPS makes barely any

difference.

7.2 Sensor fusion

For sensor fusion calculations some statistics were measured in order to see the difference

between the raw magnetometer data and the combined data. The graphs in Figure 7.1

clearly show that the gyroscope makes the movement a lot smoother when compared to

the compass only. Augmenting content using Unity 3D was also tested, but as could be

determined from results of the Wikitude application, the accuracy of IMUs is not sufficient

in cases where high accuracy is required.

7.3 Natural feature tracker

The difference between the tracking by plain sensor data versus the combined solution

was clearly visible during the testing. The augmentation looked more appealing to the eye.

However, the drift in the system was very large if the device was rotated, for example, 90

degrees in horizontal direction. 90 degree movement was enough to move the augmented

object too much from the original position of the object.

7.3.1 Issues in the system

A major problem in this type of tracking is the accumulation of drift. The features that

go off the screen are lost permanently since there is no reinitialization. This causes a drift

whenever the user rotates the device a lot and new features are constantly searched for.

CHAPTER 7. RESULTS 59

Figure 7.1: Compass orientation on y-axis, measurement times on x-axis. Blue represents

the sensor fusion, red is the raw data and green is a sliding average of last measurements.

The data in the left image was recorded when the device was steady, and the data on the

right image was recorded when the device was rotated slowly.

If the device is not rotated very much and the original features remain visible, the drift

accumulated is not that large.

Another issue with calculating the optical flow is the requirement for processing

power. The processing power requirement becomes a problem especially since the pro-

gram is supposed to be run on a mobile device such as a tablet. By lowering the amount

of tracked features the performance problems can be compensated for to some degree, but

using lower number of features also makes the tracking more inaccurate and causes more

drift.

As it is with all visual trackers, it is also important to have a large enough number

of easily distinguishable feature points (for example, some walls that have barely any

texturing are impossible to track). Some terrains such as gravel can also cause some

challenges, since there can be a large number of differences in gradient that make those

spots good features, but since there are many similar spots, errors can happen in the

CHAPTER 7. RESULTS 60

tracking of the features.

7.3.2 Possible improvements

The biggest future improvement for NFT would be to build some sort of reinitialization

system, which would help to alleviate the accumulated drift in the system. For example,

a reinitialization system that is used in the panorama tracker described in Section 6.4.1.6

could be used. The smoothness of the tracking could also be improved by some filtering.

It could also be taken into account that a faster method for finding the features could be

used such as FAST.

The drift compensation system could also be improved. In the current system the

position is recalibrated with the magnetometer at static intervals, but the recalibration is

not necessary if the device has not rotated by a large amount and no original feature points

are lost. In these cases the recalibration interval could be longer.

7.4 Panorama tracker

After testing the panoramic tracker in multiple places both outdoors and indoors, it has

become apparent that this type of tracking can potentially function in both scenarios.

Originally, there was doubt about the quality of indoor tracking, since the distances be-

tween the camera and features are small, which cause issues since the translation is not

taken into account. It was thought that involuntary translational movement when rotating

the device would be problematic, but while holding the tablet steady, the translational

movements were not that large. Indoor scenarios often include a lot clearer features for

tracking, since the gradient differences are often much clearer in man-made environments

than outdoors. However, it is worth noting that the usefulness of the system for indoor

tracking is much lower, since in indoor scenarios the user often needs to move around

much more,more frequently which requires restarting the tracking more often.

CHAPTER 7. RESULTS 61

A set of 30 videos was recorded outside, from which 10 were 90-degree movement

videos, 10 180-degree movement videos and 10 longer videos with random movement in

all directions. The tracker was able to get to the end of each video without the tracking

dropping in 28 of the videos, and there were not any large visual errors in any of the maps

as long as the rotation estimation around z-axis was disabled. In two of the longer videos

the tracking was lost, but the relocalizer restored the tracking shortly. Some smaller errors

were still visible, where the maps accumulate ”waves” whenever the map is updated with

a small error in the pose. These small errors however had no effect on the accuracy of

the tracking. With the rotation estimation around z-axis enabled, the tracker was still able

to get to the end of the videos but the quality of the maps was very bad and large visual

errors were visible. Since the videos were recorded with a tablet, the automatic image

adjustment options were at default, which made the map look a bit distorted in some parts

of the image. The lightning errors are visible in Figure 7.3, where it is visible when the

camera has adjusted the settings automatically. These errors however did not seem to have

noticeable effect on the quality of the tracking.

A possibility for augmenting content was implemented for testing in the Unity 3D

version of the application. The quality of the tracking looked very good when the device

was on a tripod, and as expected the system did not accumulate any drift except for the

errors that happened during the mapping process. The augmentation looked smooth and

stayed in its initial position well. When the device was handheld and the rotation around

z-axis was also estimated, the tracking quality was significantly lower, and the maps often

became very distorted and untrackable. This is probably due to the movements being

more shaky when the device was handheld, and the low quality of rotation estimation

around z-axis. If the estimation of rotation around z-axis was turned off, handheld quality

improved, and became very close to the quality while the device was set on a tripod.

However, it can be difficult to keep the device from rotating even a little around z-axis

when moving the device around.

CHAPTER 7. RESULTS 62

The inaccuracy in estimating the rotation around z-axis is probably due to the es-

timation only calculating the difference in rotation between last two frames, instead of

comparing it against the map. Since the rotation does not take the map into account,

the rotation estimation can accumulate drift which will lower the quality significantly.

The quality of tracking was much better, when the z-axis rotations were not taken into

account. Using the device handheld was also possible without estimating the rotation

around z-axis, if the user avoids large rotations around z-axis.

7.4.1 Performance

The largest problem in the system on mobile devices was the performance. On Unity

3D PC-version the fps during tracking was at 35-40, which is sufficient for high quality

tracking. However on tablets the tracker was only capable of 5 fps. After integrating

OpenCV for Tegra SDK [55] with the system, the performance was improved to the re-

quired 15fps. The issue with using OpenCV for Tegra is that the optimizations only work

on mobile devices using the Tegra chipset.

Optimizing the system to improve the system further is quite difficult. Currently, a

majority of the processing goes to the template matching of the small images. This can be

affected by either lowering the number of tracked features, or by lowering the resolution of

the camera images, but lowering the settings also lowers the quality of the tracking. Some

processing power is also consumed when the images from the camera are converted to a

format read by OpenCV. The tracking alone can be run on the Nvidia Shield tablet with

20 fps, but using Unity 3D causes some overhead which lowers the fps to 15.

7.4.2 Future improvements

There are multiple possible future improvements for the system. One of the major chal-

lenges is the calibration of the cameras. Especially on tablets, it is often very difficult

to turn off features such as auto-focus, auto-exposure or auto-gain. All of the automatic

CHAPTER 7. RESULTS 63

Figure 7.2: Sample panoramic image created by the tracker

Figure 7.3: Sample panoramic image created by the tracker

image adjustments can cause major issues in tracking, since template matching might not

find the keypoints correctly if the lightning or focus of the area is different. The problem

with these automatic parameter adjustments is visible in Figure 7.3, where areas with dif-

ferent lightness can be seen very clearly. Vignetting, where the pixels in the edges of the

camera are darker than in the middle, is also an issue which is unaccounted for. Another

application is also required in order to accurately determine the actual field of view of the

image.

The two biggest features for improving the quality of the maps is to take into account

sub-pixel accuracies. Currently the result for tracking of a single frame might challenge

that the change compared to previous frame is average of 2.5 pixels. This causes the issue

of determining what to do when the result is not exact. Currently, the system works by

simply rounding up the results for each frame, which cause visible distortions in some

CHAPTER 7. RESULTS 64

parts of the map. The next improvement for the system is better handling of sub-pixel

accuracies. The second large improvement is an improved method for pose estimation,

which would eliminate any small jittering which can causes errors in the map creation.

This type of filtering would also help a lot when the device is handheld instead of being

steady on a tripod. These small errors can become very severe, since if a small error

happens at some point of the map, that small error will disturb the tracking, which in turn

will cause more errors.

The z-axis rotation estimation requires some improvements. Since the system cur-

rently compares two successive frames for estimating the rotation, drift accumulates. An

improved estimation is required which estimates the rotation by comparing the current

frame to the map, instead of the previous frame.

If the mapping process goes very wrong at some point, the map becomes useless for

tracking purposes. In these cases, it would be important to have a feature in the application

which could be used to update the maps after they are created, since now once a pixel is

set, it will never be set again. This would be useful in order to account for small errors in

the map, and possible changes in the scene or lightning.

Since the panoramic maps can be saved on PC, they should have an application with

which one could edit and view the maps. Editing of the maps would be beneficial if,

for example, some features on the map are located at a difficult-to-track positions. The

saving and loading of the maps should also be extended to work on Unity 3D and Android

tablets.

Chapter 8

Conclusions

This thesis presented a number of different methods that can be used for visual pose

estimation outdoors. The idea for the thesis arose when it became obvious that there are

currently no commercial solutions available, which could achieve the required accuracy.

After the research of commercial solutions, a development for custom solution was begun.

However, the initial custom solution had too large issues to be considered as a potential

solution. After the initial solution, more research was done on potential outdoor tracking

solutions. A paper presenting a panoramic tracker was selected for implementation as a

potential solution for the presented issues.

The research into tracking technologies provided a large amount of insight on how the

issues for outdoor AR could be overcome. It seems that the technology is already avail-

able, but no one has yet implemented these solutions for public use. Majority of problems

have also been related to the hardware of the mobile devices, which have improved dras-

tically in the last few years. If the hardware improvements continue, it is likely that the

possibilities for outdoor pose estimation also improve.

Out of the developed solutions, the panoramic tracker seems like a potential solution

for 3DoF tracking outdoors. Some issues still remain unsolved, but especially if the used

device is held on top of a tripod the functionality can reach the required level in accuracy.

The targets set for performance can also be reached, as long as the used device uses a

CHAPTER 8. CONCLUSIONS 66

Tegra chipset so that the OpenCV for Tegra library can be used. Handheld use is also

possible, if the rotation estimation around z-axis is turned off and the user is able to avoid

large rotations around z-axis.

References

[1] Unity 3D. https://unity3d.com/.

[2] Microsoft. https://www.microsoft.com/microsoft-hololens/en-us.

[3] Robert Albrecht and Tapio Lokki. Auditory distance presentation in an urban aug-

mented reality environment. volume 12, pages 5:1–5:19, March 2015.

[4] Katie Collins. Sensory hacking: perfume-infused dreams and virtual inti-

macy, 2014. http://www.wired.co.uk/news/archive/2014-03/31/touch-taste-and-

smell-technology.

[5] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. Augmented

reality: A class of displays on the reality-virtuality continuum. In Proceedings of the

SPIE Conference on Telemanipulator and Telepresence Technologies, pages 282–

292, October 1994.

[6] Siavash Zokai, Julien Esteve, Yakup Genc, and Nassir Navab. Multiview para-

perspective projection model for diminished reality. In Proceedings of the 2Nd

IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR ’03,

pages 217–226, July 2003.

[7] Wikitude. https://www.wikitude.com/.

[8] TryLive. http://www.trylive.com/demos/trylive-eyewear/face-analysis.

REFERENCES 68

[9] Rosemary Luckin and Danae Stanton Fraser. Limitless or pointless?; an evaluation

of augmented reality technology in the school and home. International Journal of

Technology Enhanced Learning, 3(5):510–524, August 2011.

[10] Wikitude. http://www.wikitude.com/showcase/wikitude-navigation/.

[11] Wikitude. https://www.youtube.com/watch?v=g-0cuqeUvCQ.

[12] Microsoft. https://www.youtube.com/watch?v=xgakdcEzVwg.

[13] Magic Leap. http://www.magicleap.com/.

[14] AR-media. http://www.armedia.it/i-mechanic.

[15] Ronald Azuma, Bruce Hoff, Howard Neely, III, Ronald Sarfaty, Michael Daily, Gary

Bishop, Leandra Vicci, Greg Welch, Ulrich Neumann, Suya You, Rich Nichols, and

Jim Cannon. Making augmented reality work outdoors requires hybrid tracking. In

Proceedings of the International Workshop on Augmented Reality : Placing Artifi-

cial Objects in Real Scenes, IWAR ’98, pages 219–224, 1999.

[16] Alberico Menozzi, Brian Clipp, Eric Wenger, Jared Heinly, Enrique Dunn, Herman

Towles, Jan-Michael Frahm, and Gregory Welch. Development of vision-aided nav-

igation for a wearable outdoor augmented reality system. In Position, Location and

Navigation Symposium - PLANS 2014, 2014 IEEE/ION, pages 460–472, May 2014.

[17] Daniel Wagner, Alessandro Mulloni, Tobias Langlotz, and Dieter Schmalstieg. Real-

time panoramic mapping and tracking on mobile phones. In Virtual Reality Confer-

ence (VR), 2010 IEEE, pages 211–218, March 2010.

[18] Gerhard Schall, Daniel Wagner, Gerhard Reitmayr, Elise Taichmann, Manfred

Wieser, Dieter Schmalstieg, and Bernhard Hofmann-Wellenhof. Global pose es-

timation using multi-sensor fusion for outdoor augmented reality. In Mixed and

REFERENCES 69

Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium, pages

153–162, October 2009.

[19] Jing Li and Xiangtao Fan. Outdoor augmented reality tracking using 3d city models

and game engine. In Image and Signal Processing (CISP), 2014 7th International

Congress, pages 104–108, October 2014.

[20] Steven Kerr, Mark Rice, Yinquan Teo, Marcus Wan, Yian Ling Cheong, Jamie Ng,

Lillian Ng-Thamrin, Thant Thura-Myo, and Dominic Wren. Wearable mobile aug-

mented reality: Evaluating outdoor user experience. In Proceedings of the 10th

International Conference on Virtual Reality Continuum and Its Applications in In-

dustry, VRCAI ’11, pages 209–216, 2011.

[21] Søren Riisgaard and Morten Rufus Blas. Slam for dummies: A tutorial approach to

simultaneous localization and mapping. Technical report, 2005.

[22] Chris Harris and Mike Stephens. A combined corner and edge detector. In In Proc.

of Fourth Alvey Vision Conference, pages 147–151, 1988.

[23] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and

Pattern Recognition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society

Conference, pages 593–600, 1994.

[24] OpenCV. http://opencv.org/.

[25] Edward Rosten and Tom Drummond. Machine learning for high-speed corner de-

tection. In European Conference on Computer Vision, volume 1, pages 430–443,

May 2006.

[26] Edward Rosten and Tom Drummond. Fusing points and lines for high performance

tracking. In IEEE International Conference on Computer Vision, volume 2, pages

1508–1511, October 2005.

REFERENCES 70

[27] Edward Rosten. http://www.edwardrosten.com/work/fast.html.

[28] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient

alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE International

Conference, pages 2564–2571, November 2011.

[29] David Lowe. Object recognition from local scale-invariant features. In Computer

Vision, 1999. The Proceedings of the Seventh IEEE International Conference, vol-

ume 2, pages 1150–1157 vol.2, 1999.

[30] Rafael Radkowski and James Oliver. Virtual, Augmented and Mixed Reality. Systems

and Applications, chapter Natural Feature Tracking Augmented Reality for On-Site

Assembly Assistance Systems, pages 281–290. 2013.

[31] Feng-Cheng Huang, Shi-Yu Huang, Ji-Wei Ker, and Yung-Chang Chen. High-

performance sift hardware accelerator for real-time image feature extraction. Cir-

cuits and Systems for Video Technology, IEEE Transactions on, 22(3):340–351,

March 2012.

[32] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Bi-

nary robust independent elementary features. In Proceedings of the 11th European

Conference on Computer Vision: Part IV, ECCV’10, pages 778–792, 2010.

[33] Bruce Lucas and Takeo Kanade. An iterative image registration technique with an

application to stereo vision. In Proceedings of the 7th International Joint Conference

on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, 1981.

[34] Jean yves Bouguet. Pyramidal implementation of the Lucas Kanade feature tracker.

Intel Corporation, Microprocessor Research Labs, 2000.

[35] Georg Klein and David Murray. Parallel tracking and mapping for small ar

workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and

ACM International Symposium on, pages 225–234, November 2007.

REFERENCES 71

[36] Christopher Barthold, Kalyan Subbu, and Ram Dantu. Evaluation of gyroscope-

embedded mobile phones. In Systems, Man, and Cybernetics (SMC), 2011 IEEE

International Conference, pages 1632–1638, October 2011.

[37] W.T. Fong, Son-Khim Ong, and Andrew Nee. A differential GPS carrier phase tech-

nique for precision outdoor AR tracking. In Mixed and Augmented Reality, 2008.

ISMAR 2008. 7th IEEE/ACM International Symposium, pages 25–28, September

2008.

[38] Structure. http://structure.io/.

[39] Dell. http://www.dell.com/us/p/dell-venue-8-7840-tablet/pd.

[40] Texas Instruments. www.ti.com/sensortag.

[41] Variable, Inc. http://shop.variableinc.com/pages/frontpage.

[42] Nektarios Kostaras and Michalis Xenos. Assessing the usability of augmented real-

ity systems. In 13th Panhellenic Conference on Informatics, PCI2009, pages 197–

201, October 2009.

[43] Epson. http://www.epson.com/cgi-bin/Store/jsp/Product.do?sku=V11H560020.

[44] Vuzix. https://www.vuzix.com/Products/LegacyProduct/5.

[45] Oculus Rift. https://www.oculus.com.

[46] Julie Carmigniani, Borko Furht, Marco Anisetti, Paolo Ceravolo, Ernesto Damiani,

and Misa Ivkovic. Augmented reality technologies, systems and applications. Mul-

timedia Tools Appl., 51(1):341–377, January 2011.

[47] Bitstars. https://github.com/bitstars/droidar.

[48] doPanic. http://panicar.dopanic.com/.

REFERENCES 72

[49] 3DAR. http://3dar.us/.

[50] BeyondAR. http://beyondar.com/.

[51] EPIC GAMES INC. https://www.unrealengine.com.

[52] Lenovo. http://shop.lenovo.com/us/en/laptops/thinkpad/t-series/t440p/.

[53] Nvidia. https://shield.nvidia.com/.

[54] Logitech. http://www.logitech.com/en-us/product/hd-pro-webcam-c920.

[55] Nvidia. http://docs.nvidia.com/gameworks/content/technologies/mobile/opencv main.htm.

