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ABSTRACT

UNIVERSITY OF TURKU
Department of Chemistry/Faculty of Mathematics and Natural Sciences

ENGSTROM, MARICA THERESE: Understanding the bioactivity of plant
tannins: developments in analysis methods and structure—activity studies

Doctoral thesis, 185 p.

Laboratory of Organic Chemistry and Chemical Biology/
Natural Compound Chemistry

June 2016

Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs)
and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found
throughout the plant kingdom. On one hand, tannins may cause harmful nutritional
effects on herbivores, for example insects, and hence they work as plants’ defense
against plant-eating animals. On the other hand, they may affect positively some
herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-
inflammatory or anticarcinogenic activities. This thesis focuses on understanding the
bioactivity of plant tannins, their anthelmintic properties and the tools used for the
qualitative and quantitative analysis of this endless source of structural diversity.

The first part of the experimental work focused on the development of ultra-high
performance liquid chromatography—tandem mass spectrometry (UHPLC-MS/MS)
based methods for the rapid fingerprint analysis of bioactive polyphenols, especially
tannins. In the second part of the experimental work the in vitro activity of isolated and
purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching
and larval motility of two larval developmental stages, L1 and L2, of a common
ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear
relationships between the HT structure and the anthelmintic activity. The activity of the
studied compounds depended on many structural features, including size, functional
groups present in the structure, and the structural rigidness. To further understand
tannin bioactivity on a molecular level, the interaction between bovine serum albumin
(BSA), and seven HTs and epigallocatechin gallate was examined. The objective was
to define the effect of pH on the formation on tannin—protein complexes and to
evaluate the stability of the formed complexes by gel electrophoresis and MALDI-
TOF-MS. The results indicated that more basic pH values had a stabilizing effect on
the tannin—protein complexes and that the tannin oxidative activity was directly linked
with their tendency to form covalently stabilized complexes with BSA at increased pH.
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Tanniinit, joiden kaksi pddryhmdd ovat hydrolysoituvat tanniinit (HT) ja
proantosyanidiinit (PA), ovat kasvien yleisesti tuottamia sekundddrimetaboliitteja.
Tanniineilla voi olla sekd negatiivisia ettd positiivisia vaikutuksia niitd syoviin elidihin.
Ne voivat aiheuttaa haitallisia ravitsemuksellisia vaikutuksia esimerkiksi niitd syoville
hyonteisille. Toisaalta tanniinit voivat olla hyddyllisid kasvinsy6jille, kuten nisdkkaille,
esimerkiksi niiden hapettumista, mikrobiaalista toimintaa, syOpdd sekd tulehduksia
chkdisevien ominaisuuksien takia. Téssd véitoskirjatyossd keskityttiin kasvitanniinien
bioaktiivisuden ymmartdmiseen, niiden loisia/loistauteja ehkdiseviin ominaisuuksiin
sekd ndiden rakenteellisesti monimuotoisten yhdisteiden kvalitatiivisiin  ja
kvantitatiivisiin analyysimenetelmiin.

Kokeellisen tyon ensimmdiisessd osassa kehitettiin erittdin korkean erotuskyvyn
nestekromatografia—tandemmassaspektrometriaan ~ (UHPLC-MS/MS)  perustuvia
nopeita ”sormenjélki”’-analyysimenetelmia tanniinien kvalitatiiviseen  ja
kvantitatiiviseen analyysiin. Toisessa osassa testattiin eristettyjen ja puhdistettujen
HT:ien in vitro -vaikutusta mérehtijéiden ruuansulatuselimiston loisen, Haemonchus
contortuksen, munien kuoriutumiseen ja loistoukkien liikkuvuuteen. Tulosten
perusteella HT:n rakenteen ja antiloisaktiivisuuden vililli havaittiin selvd yhteys:
tutkittujen yhdisteiden aktiivisuus riippui monista rakenteellisista ominaisuuksista,
kuten HT:n koosta, rakenteen funktionaalisista ryhmistd ja rakenteellisesta
jaykkyydestd. Tanniinien bioaktiivisuuden ymmairtdmiseksi molekyylitasolla
malliproteiinin  ja  seitsemdn HT:n sekd epigallokatekiinigallaatin  vélistd
vuorovaikutusta tutkittiin geelielektroforeesilla ja MALDI-TOF-
massaspektrometrialla. Tarkoituksena oli tutkia pH:n vaikutusta tanniini—proteiini-
kompleksien muodostukseen seké tarkastella muodostuvien kompleksien pysyvyytta.
Tulokset osoittivat eméksisen pH:n stabiloivan tanniini—proteiini-komplekseja, ja etti
tanniinin hapettumisherkkyys oli suoraan verrannollinen sen kykyyn sitoa korkeassa
pH:ssa proteiinia kovalenttisesti.
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6 Introduction

1. INTRODUCTION

A single plant synthesizes hundreds of secondary metabolites, which are
essential for the survival of the plant due to their defensive properties, including
resistance against pathogens and herbivores as well as UV radiation (Haslam
1989; Stafford 1991). Polyphenols are the most common class of secondary
metabolites and they are found in almost every plant species and in every part
of the plant (Haslam 1989). Tannins are the most complex class of polyphenols
and compounds found in a wide range of plant species (Bernays et al. 1989;
Haslam, 1989) and are conventionally classified into two major groups:
hydrolyzable tannins (HTs) and proanthocyanidins (PAs). The biochemical
definition of tannins describes them as compounds having a tendency to interact
and form insoluble precipitates with proteins and other biological
macromolecules in aqueous solutions (Bate-Smith and Swain 1962; Hagerman
2012). Tannin—protein interactions have great importance in numerous plant-
related domains and the ability of tannins to bind proteins is one explanation for
their defensive properties (Appel 1993; Salminen and Karonen 2011; Constabel
et al. 2014) as well as for their nutritional benefits (Mueller-Harvey 2006;
Quideau et al. 2011; Li and Hagerman 2013).

Over the last few decades, the use of tannin containing plants as natural
anthelmintics in the control of ruminant parasites has received increasing
interest. The parasitic infections of the gastrointestinal tract are one major threat
associated with the production of various livestock species worldwide (Sykes
1994; Jackson et al. 2009; Hoste et al. 2012). They affect the health and welfare
of cattle, sheep and goats by causing e.g. anemia, anorexia, impaired digestion
and nutrient absorption, which consequently result in significant production
losses (Holmes 1987; Sykes 1994; Hoste et al. 2001; Hoste et al. 2012). For
more than 50 years, the solution for this problem has been the repeated use of
synthetic, chemical anthelmintic drugs (Hoste et al. 2012). However, this
exclusive reliance on the use of synthetic anthelmintic drugs to fight parasitic
infections is constrained by several issues such as the growing concern of
possible residues in food products as well as environmental consequences
(Hoste et al. 2012). In addition, the access of farmers to chemical anthelmintics
is usually limited in developing countries where the livestock production is
constantly increasing (Krecek and Waller 2006). Furthermore, the extensive use
of synthetic anthelmintics against parasites has led to widespread resistance,



Introduction 7

culminating in the formation of multi-resistant nematode strains (Kaplan 2004;
Jackson 2009; Traversa et al. 2015).

As a consequence, there is an urgent need for alternative solutions to control
ruminant parasites. One possible and promising approach is the utilization of
bioactive plants as natural anthelmintics to at least partially replace the use of
synthetic drugs (Niezen et al. 1995; Hammond et al. 1997; Hoste et al. 2015). It
has been shown that by using tannin-rich forage it is possible to reduce the
intestinal parasites of ruminants without any significant risk of resistance
formation (Anthanasiadou et al. 2001; Hoste et al. 2006; Manke et al. 2015).
However, it is still unknown what kinds of tannin structures are most efficient as
natural anthelmintics and which chemical properties and structural features of the
tannins cause the observed effects. While it is commonly accepted that these
bioactivities are consequences of the interaction between tannins and proteins, the
specific mode of action has remained unclear (Frutos et al. 2004; Mueller-Harvey
2006; Hoste et al. 2012). By understanding the mechanisms behind the
anthelmintic effects of the plant tannins, it should be possible to predict which
forage plants are the best choices as feed for ruminants.

The general interest in plant tannins has resulted in many efforts to provide
sensitive and selective analytical tools for their detection and characterization
(Prasain et al. 2004; Ignat et al. 2011; Flamini 2013). The more traditional
tannin detection methods, which utilize the tendency of the functional groups to
undergo characteristic reactions, are beginning to be replaced or accompanied
by more sophisticated methods such as liquid chromatography combined with
diode array detection (DAD) and/or mass spectrometric detection (LC-MS).
The development of ultra-high performance liquid chromatography combined
with tandem mass spectrometry (UHPLC-MS/MS) has further provided
improvements in the performance of separation and detection, and reduced the
time required for qualitative and quantitative analysis (Guillarme et al. 2010;
Rodriguez-Aller et al. 2013). Nevertheless, due to the structural diversity and
complexity of tannins, many methodological problems still exist (Cheynier and
Fulcrand 2003; Salminen et al. 2011; Gu 2012). For example, in PA analysis,
the time-consuming procedures of thiolysis and phloroglucinolysis are still the
most commonly used methods for collecting qualitative and quantitative
information on PA content, composition and mean degree of polymerization
(mDP). Development of improved methods with high-throughput capabilities
would be highly desirable.



8 Literature Review

2. LITERATURE REVIEW

2.1. Plant tannins

Tannins are the most abundant secondary metabolites made by plants and can
be divided in three subgroups based on their structural features. Hydrolyzable
tannins (HTs) and proanthocyanidins (PAs) are the two major groups of these
bioactive compounds found in vascular plants. The third subgroup,
phlorotannins, is a little studied group of secondary metabolites found only in
marine brown algae (Stern et al. 1996; Kubanek et al. 2004; Amsler and
Fairhead 2006) and is not included in this literature review.

2.1.1. Structural features of hydrolyzable tannins

HTs are a group of structurally diverse and complex molecules constructed
around a central polyol, most often glucose, but occasionally glucitol, quinic
acid, quercitol or shikimic acid (Mueller-Harvey 2001; Patra and Saxena 2010).
The term hydrolyzable tannin (HT) stems from the significant feature of these
tannins to be susceptible to hydrolysis by acids, bases or esterases. As a
consequence, HTs yield hydrolysis products characteristic of their functional
groups such as gallic acid and ellagic acid (Fig. 1A,B) (Haslam 1979; Bors et
al. 2001; Patra and Saxena 2010). In the simplest HTs, only gallic acid units are
esterified to the central polyol core whereas more complex HTs are formed by
esterification and cross-linking of these gallic acid units (Gross 1992; Haslam
1998; Patra and Saxena 2010; Okuda and Ito 2011). Based on their structural
features, HTs are divided into three main subclasses: galloylglucoses (GGs),
gallotannins (GTs) and ellagitannins (ETs). Examples of the HT subgroups are
presented in Figure 1. Simple gallic acid derivatives contain one to five gallic
acid units i.e. galloyl groups esterified to the polyol core (Fig. 1C) while GTs
contain six or more galloyl groups that are bound either to the central polyol or
esterified to one of the galloyl groups forming a digalloyl group (Fig. 1D)
(Gross 1992; Grundhofer et al. 2001; Salminen and Karonen 2011). GGs and
GTs are relatively simple molecules whereas the third group, ETs, is
structurally highly diverse. ETs are further divided into six subgroups based on
their structural features: primary ETs, dehydroETs, modified dehydroETs, C-
glycosidic ETs, flavono-ETs and oligomeric ETs (Okuda et al. 2009).
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Primary ETs contain one or two hexahydroxydiphenoyl (HHDP) groups
and up to three galloyl groups (Fig. 1E). The HHDP group is biosynthetically
formed through intramolecular, oxidative C—C bond formation between two
galloyl groups. The position of the HHDP group can be O2—04 and/or O3-06
or 02-03 and/or O4—-06. DehydroETs are formed when the HHDP group is
oxidized to form a dehydrohexahydroxydiphenoyl (DHHDP) group (Fig. 1F)
which can further be oxidized to modified dehydroETs (Fig. 1G) (Okuda et al.
2009; Yoshida et al. 2009, 2010). In DHHDP ETs, the central glucopyranose
core adopts often !Cs conformation instead of the *C; conformation
characteristic for the primary ETs and in aqueous or alcoholic solutions, the
DHHDP group equilibrates between six- and five-membered ring forms (Fig.
IF).

The characteristic feature of C-glycosidic ETs is the acyclic glucose core.
C-glycosidic ETs can be categorized as: (1) castalagin-type (Fig. 11), containing
a nonahydroxytriphenoyl (NHTP) group that participates the C-glycosidic
linkage and (2) casuarinin-type (Fig. 1K), in which an HHDP group participates
the C-glycosidic linkage instead. C-glycosidic ETs with a B-hydroxyl group at
the C1 of the acyclic glucose core show a unique reactivity that is reflected e.g.
in the various condensates formed with other polyphenols. One such condensate
is the subgroup of flavono-ETs that consist of a C-glycosidic ET and a flavan-
3-ol (most often catechin or epicatechin) bound to each other via a carbon-
carbon linkage between C1 of the acyclic glucose and C8 or C6 of the flavan-3-
ol moiety [Fig. 1L (Yoshida et al. 2008, 2009, 2010)].
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galloyl group

modified
DHHDP

group

HR'=0OH,R*=H
I R2=0H,R" =H

Figure 1. The structures of gallic acid (A), ellagic acid (B), pentagalloylglucose (C),
heptagalloylglucose (D), tellimagrandin I (E), geraniin (F), chebulagic acid (G),
vescalagin (H), castalagin (I), stachyurin (J), casuarinin (K) and acutissimin A (L).
HHDP, hexahydroxydiphenoyl;, DHHDP, dehydrohexahydroxydiphenoyl; NHTP,
nonahydroxytriphenoyl.
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Further diversity is brought by the last subgroup of ETs, oligomeric ETs,
which are formed via intermolecular oxidative coupling of monomeric ETs.
Oligomeric ETs can roughly be divided into three subgroups based on their
structural features. The first group contains oligomers that are formed via single
intermolecular C—O bonds between the monomeric units (Fig. 2A—C). The
second group contains macrocyclic oligomers formed via two C-O bonds
between the monomeric units (Fig. 2D). In the third group, C-glycosidic tannin
oligomers are linked via intermolecular C—C bonds between the C1 of the
acyclic glucose of one monomer and the HHDP or galloyl group of the other
monomer (Fig. 2E) (Okuda and Ito 2011; Yoshida et al. 2009, 2010).
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Figure 2. Structures of oligomeric ellagitannins rugosin E (A), lambertianin C (B),
gemin A (C), oenothein B (D) and roburin A (E). m-DOG, valoneoyl group; m-GOD,
sanguisorboyl group; m-GOG, dehydrodigalloylgroup; 2DOG, macrocyclic structure.
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2.1.2. Structural features of proanthocyanidins

Proanthocyanidins (PAs, syn. condensed tannins) are oligomers and polymers
consisting of flavan-3-ols units which are linked by carbon—carbon bonds (B-
type PAs) or in some cases by additional ether-bonds (A-type PAs) (Porter
1989; Bors et al. 2001; Dixon et al. 2005; Ferreira et al. 2005). The origin of the
term proanthocyanidin is that upon acid-catalyzed depolymerization and
oxidation the extension units are converted to colored anthocyanidins (Porter
1989). The three rings of the flavan-3-ols units are labeled as A, B, and C (Fig.
3A). PAs differ structurally based on the number of hydroxyl groups on the A
and B rings, and the stereochemistry of the asymmetric carbons of the C ring
(Haslam 1977; Santos-Buelga and Scalbert 2000; Dixon et al. 2005). In most
PAs, the absolute configuration of C2 is R whereas the absolute configuration
of C3 can be either R or S. Accordingly, the stereochemistry of the molecule is
either cis (2R, 3R) or trans (2R, 3S) (Santos-Buelga and Scalbert 2000).
However, even more isomers can be found since the bond between the two
monomers can be either in a or B configuration (Santos-Buelga and Scalbert
2000; Dixon et al. 2005; Buzzini et al. 2007; Barbehenn and Constabel 2011).
The variable mean degree of polymerization is a further source of structural
complexity of the PAs (Fig 3B).

In B-type PAs, the monomers are linked by C4-C8 or C4—C6 linkages. In
addition to this, the A-type PAs contain C2-O—-C7 or C2-0O-CS5 linkages [Fig.
3C (Hemingway et al. 1982; Porter 1989; Santos-Buelga and Scalbert 2000;
Dixon et al. 2005; Ferreira et al. 2005; Buzzini et al. 2007; Barbehenn and
Constabel 2011)]. The most common PAs are procyanidins (PCs) consisting of
catechin and/or epicatechin units (Fig 3A), and prodelphinidins (PDs)
consisting of gallocatechin and/or epigallocatechin units (Fig 3A). Also PAs
consisting of both PC and PD units are common (Dixon et al. 2005; Ferreira et
al. 2005; Buzzini et al. 2007). In addition to these main PA classes, some rarer
PAs exist (e.g. propelargonidins, profisetinidins, prorobinetinidins and
proguibourtinidins), but these are specific for certain plant species (Ferreira et
al. 2005) and not discussed herein.
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Figure 3. The most common proanthocyanidin monomeric units (A), an example of a
trimeric proanthocyanidin with epigallocatechin and gallocatechin (PD) as extension
units, and a catechin (PC) as terminal unit and an example of an A-type
proanthocyanidin, procyanidin Al.

2.1.3. Tannin biosynthesis

A simplified scheme of the polyphenol biosynthesis pathway leading to HTs
and PAs is presented in Figure 4. In the first steps of polyphenol biosynthesis,
the carbohydrates such as sucrose and starch from the Calvin cycle are
processed either by glycolysis to glyceraldehyde-3-phosphate or through the
oxidative or reductive pentose phosphate pathway into erythrose-4-phosphate
and glyceraldehyde-3-phosphate (Salminen and Karonen 2011). The first
differences in HT and PA biosynthesis occur between the acetate /malonate
pathway and the shikimate pathway: while PA synthesis utilizes both of these
pathways, HT biosynthesis relies solely on the shikimate pathway (Salminen
and Karonen 2011). Regarding HT biosynthesis, 1-galloyl-$-D-glucose (syn.
glucogallin) can be considered as the first intermediate on the HT biosynthetic
pathway (Gross 1983a; Niemetz and Gross 1999). In the second step,
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glucogallin functions as both an acyl acceptor and acyl donor, in the formation
of digalloylglucose up to pentagalloylglucose (Gross 1983b; Gross 1999a,b;
Niemetz and Gross 2005). The second biosynthetic pathway leads to GTs as the
galloylation of pentagalloylglucose continues to hexa-, hepta-,
octagalloylglucose etc. (Hoffman and Gross 1990; Niemitz and Gross 1998,
1999b, 2001; Gross 2008). The third pathway yields ETs, but in contrast to GT
biosynthesis, the proposed ET pathway is mostly hypothetical, since only two
steps of the ET pathway have been characterized by enzymatic studies (Gross
1999b; Niemetz et al. 2001; Niemetz and Gross 2003, 2005; Gross 2009; Okuda
and Ito 2011). The other details have been deduced from tannin structures and
their seasonal variation in the plant cell or their chemical synthesis (Salminen
and Karonen 2011).

Calvin cycle

— ~.

Glycolysis Oxidative pentose
phosphate pathway

.......... erythrose-4-phosphate

phosphoen:olpyruvate

§ . ‘A glyceraldehyde-3-phosphate
pyruvate

Acetate/malonate
pathway

Shikimate pathway Hydrolyzable

tannin pathwa
3-dehydroquinic acid P Y

acetyl-CoA LI S gallic acid
i 3-dehydroshikimic acid A

malon:yI-CoA monogalldylglucose

shikimic acid :
pentagalloylglucose

Phenylpropanoid
precursors

Proanthocyanidins Gallotannins Ellagitannins

phenylalanine
cinnamic acid
p-coumaric acid

p-couméroyI-CoA

Figure 4. The biosynthetic pathway leading to proanthocyanidins and hydrolyzable
tannins (adapted from Salminen and Karonen 2011).
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PAs are the products of one of the several branches of the biosynthetic
flavonoid pathway. The aromatic B-ring and the three carbon atoms of the
heterocyclic C-ring are considered to originate from the amino acid
phenylalanine, which is produced by the shikimate pathway and transformed
into p-coumaroyl-CoA along the phenylpropanoid pathway (Haslam 1977,
Strack 1997). The A-ring is formed by three units of malonyl-coenzyme A
(malonyl-CoA), produced by the acetate/malonate pathway (Haslam 1977; Tsao
2010). The main steps of PA biosynthesis are presented in Figure 5. At the start
of the flavonoid pathway, one coumaroyl-CoA molecule is condensed with
three malonyl-CoA molecules to form tetrahydroxychalcone (Haslam 1977;
Winkel-Shirley 2001; He et al. 2008; Tsao 2010). The closure of the C-ring
converts it into flavanone naringenin which further transforms into
dihydrokaempferol by the addition of a hydroxyl group to the C3 position of the
C-ring (Holton and Cornish 1995). These dihydroflavonols are reduced to form
(2R,3S5,4S5)-leucoanthocyanidins (flavan-3,4-diols) and further to (2R,3S)-
flavan-3-ols catechin and gallocatechin (Stafford 1991; Winkel-Shirley 2001).
Alternatively, the leucoanthocyanidin molecules can be oxidized to form
anthocyanidins (Holton and Cornish 1995; He et al. 2008), which can further be
converted into (2R,3R)-flavan-3-ols epicatechin and epigallocatechin (Xie and
Dixon 2005; He et al. 2008). All three, (2R,3R)-flavan-3-ols, (2R,3S)-flavan-3-
ols and (2R,35,45)-flavan-3,4-diols, could potentially function as precursors for
the PAs (Dixon et al. 2005; Xie and Dixon 2005; Tian et al. 2010). However, so
far, the polymerization step of PAs has remained unsolved (Dixon et al. 2005;
He et al. 2008; Zhao et al. 2010; Jiang et al. 2015).
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Figure 5. The main steps involved in the biosynthesis of proanthocyanidins.
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The two types of terrestrial tannins seldom accumulate in high
concentrations in the same plant tissues; while PAs accumulate in the vacuole
(Stafford 1988; Dixon et al. 2005; Zhao et al. 2010), HTs appear to be
concentrated in the cell wall of the plant tissues (Gross 1999a; Grundhofer et al.
2001). An explanation for why PAs and HTs are rarely found simultaneously in
high concentrations in same plant tissue can be found from the biosynthetic
pathways of these tannins. As a consequence of the common building blocks in
HT and PA biosynthesis, there is a potential “competition” for the formation of
these compounds. If the glycolytic phosphoenolpyruvate is efficiently directed
for the shikimate pathway, the production of pyruvate, which is utilized in the
acetate/malonate pathway, is significantly reduced. This results in reduced PA
biosynthesis, since it would need malonyl-CoA as one of their building blocks
(Salminen and Karonen 2011). Similarly, PA biosynthesis is reduced by the
efficient production of gallic acid from 3-dehydroshikimic acid as it negatively
affects the synthesis of shikimic acid and thus the formation of the other PA
precursor, phenylalanine (Salminen and Karonen 2011). The same holds for the
two HT classes, GTs and ETs; they do not accumulate in the same plant tissue,
presumably due to the common precursor, pentagalloylglucose (Salminen and
Karonen 2011).

2.2. Liquid chromatography—mass spectrometry in tannin analysis

The growing interest towards plant tannins has resulted in many efforts to
provide sensitive and selective analytical methods for their determination.
Traditionally, tannin analysis has exploited the chemical reactivity of the tannin
functional groups to undergo characteristic reactions that result in colorful
chromophores to be detected by spectrophotometry. These types of methods
include both the general polyphenol methods (Ciocalteau 1927) and the more
selective functional group methods for the detection of PAs and HTs (Bate-
Smith 1972; Porter et al. 1986; Hagerman and Butler 1989; Wilson and
Hagerman 1990). While these spectrophotometric methods are rapid and
simple, they lack the specificity for individual compounds. For this purpose,
more sophisticated methods are needed. In addition to liquid chromatography
coupled with a diode array detector, liquid chromatography coupled with mass
spectrometry (LC-MS) is one of the most important tools in the characterization
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of all organic compounds, including quantitation and identification of different
tannins.

2.2.1. Liquid chromatography—mass spectrometry in general

LC is a separation technique in which a mobile phase is continuously passed
over a stationary phase packed in a column. LC utilizes the interactions of the
analyte with both the mobile and stationary phase; the stronger the interaction
with the stationary phase compared to the mobile phase, the longer the retention
time (Niessen 2007). Based on the polarity of the mobile and stationary phases,
LC is divided into normal-phase LC and reversed-phase LC (Adrey 2003). In
normal-phase LC, the stationary phase is more polar than the mobile phase (e.g.
mobile phase hexane, stationary phase silica) whereas in reversed-phase LC, the
mobile phase is more polar than stationary phase (e.g. mobile phase acetonitrile,
stationary phase octadecylsilyl). LC utilizing very small particle sizes of the
stationary phase (< 2 um) combined with very high pressures (up to 1300 bar)
is referred as ultra-high performance liquid chromatography (Guillarme et al.
2010; Rodriquez-Aller 2013). The advantages of UHPLC compared to its
predecessor, high performance liquid chromatography (HPLC), include the
improved chromatographic resolution, the increased sensitivity and the shorter
analysis time (Guillarme et al. 2010).

When mass spectrometry is used in conjunction with a chromatographic
technique, the compounds enter the ionization source based on their elution
order from the chromatographic column used (Rodriguez-Aller et al. 2013).
Mass spectrometry involves the following steps: ionization of the analytes at
the ionization source, separation of the produced ions based on their mass to
charge ratios (m/z) and detection of the ions (Adrey 2003). There are a number
of ion sources available in mass spectrometry but currently most LC-MS
systems utilize electrospray ionization (ESI) technique (Holcapek et al. 2012).
In ESI, the sample is first injected into a capillary maintained at high voltage
(Adrey 2003). Because of the high voltage, the liquid stream disperses into a
mist of highly charged droplets that undergo desolvation due to the heated
drying gas (often nitrogen) flow (Greavez and Roboz 2014). The droplet size
decrease until the repulsive forces between the charges on the surface of the
droplets overcome the surface tension and the so called Coulombic explosion
occurs (Fenn et al. 1989; Adrey 2003; Kebarle and Verkerk 2009). A number of
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smaller droplets are formed which further decrease in size until the droplet
radius reaches ~10 nm, and the electric field starts to support direct ion
evaporation (Niessen and Tinke 1995; Greavez and Roboz 2014). When this
occurs, the droplets distort and the so called Taylor cone develops (Fig. 6). A
Taylor cone is formed also at the tip of the ESI probe when the initial droplets
are formed due to the nebulization of the solvent flow (Greaves and Roboz
2014). The released ions, i.e. analytes, are then transferred through a series of
focusing lenses into the mass spectrometer (Adrey 2003; Holcapec et al. 2012).
ESI is a soft ionization technique, in which analyte fragmentation remains
moderate. However, due to the mechanism of ionization in ESI, larger
molecules often become multiply charged, allowing their detection with
common mass analyzers (Adrey 2003).

kV charged nebulized liquid
N, === l‘..____.—

e_©O
-]
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nebulization
gas \
Taylor cone ¢
L
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a supplementary drying
gas, such as heated N,

Figure 6. Taylor cone formation occurs both at the end of the ESI tube and when the
droplet breaks up and releases ions (adapted from Greaves and Roboz 2014).

After the ions are formed, they are separated based on their m/z ratios.
Several different mass analyzer types exist, and even if many of them differ
significantly in the modes of operation, they all separate ions according to the
m/z ratios (Greaves and Roboz 2014). Current mass analyzers include
quadrupoles, quadrupole ion traps, time-of-flight analyzers, Fourier transform
ion traps, ion mobility analyzers and magnetic sector analyzers (Gross 2011;
Greaves and Roboz 2014). As such, these analyzers reveal the mass of the
analyte, but limited information on the structure of the analytes is obtained. For
this purpose, multi analyzers, i.e. tandem mass spectrometry (MS/MS) is
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required. Several forms of MS/MS are available, but triple quadrupole (QqQ) is
one the most widely used MS/MS instruments.

2.2.2. Triple quadrupole tandem mass spectrometry

As the name suggests, QqQ consists of three quadrupoles in series (Fig. 7). The
first and third quadrupoles function as mass separation devices while the second
quadrupole is a collision cell, in which fragmentation of the ions from the first
quadrupole is carried out with a radio frequency voltage and collision gas, often
argon. In some QqQ instruments, the second quadrupole is a hexapole, an
octapole or an ion tunnel instead, but the principle remains the same (Niessen
2007; de Hoffman and Stroobrant 2008). The first and third quadrupoles are
controlled by changing the radio frequency and direct current potentials to
allow the transmission of ions of a single m/z ratio or a range of m/z values,
depending on the application (Andrey 2003; Greavez and Robos 2014). Mass
separation is based on the oscillation of the ions entering the electronic field of
the quadrupole. Only ions with specific m/z values have stable oscillatory flight
paths while other ions oscillate in an unstable pattern and are lost by collision to
the rods of the quadrupole (Greaves and Roboz 2014).

ion [ s— : [ s—
source  "TTeTTeee Oy B Ty} == 5 n SO detector
Q1 q2 Q3

Figure 7. Principle of the triple quadrupole analyzer. Q1 and Q3 can operate in
scanning mode or held static, depending on the application. In g2, the precursor ions
are fragmented into product ions.

By keeping the two analyzers (Q1 and Q3) in either scanning mode or held
static, different modes of data collection can be utilized, including full scan,
product ion scan, precursor ion scan, neutral loss scan and selected/multiple
reaction monitoring (Table 1). For full scan purposes, the direct-current and
radio frequency voltages are changed progressively while keeping their ratio
constant; this yields mass spectra comprised of all the different m/z values
present in the sample. Due to the scanning technique, the QqQ analyzers have a
limited resolution for full scan analysis and are categorized as low resolution
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mass spectrometers, capable of measuring the m/z ratio of an ion to the nearest
integer value (Adrey 2003). As a consequence of the low resolution, two ions
with the same nominal mass but with a different exact mass cannot be
separated.

Table 1. Different analysis modes in tandem mass spectrometry (modified from
Niessen 2007).

Mode Q1 Q3 Application

To obtain information on the

Full Scan Scanning Scanning sample composition

Product . . To obtain structural information
Selecting Scanning . . .

Ion Scan on the ions produced in the ion source

Precursor Scannin Selectin To monitor compounds which give an

Ion Scan & & identical fragment in CID*

Q1 and Q3 scanning at fixed m/z

Neutral Loss . Offset . .

Scanning . difference: to monitor compounds
Scan scanning -

that lose a common neutral species
Selected/
Multiple . . . . " .
. Selecting Selecting To monitor a specific CID* reaction

Reaction
Monitoring

*CID: collision induced fragmentation, takes place in the collision cell q2

The true potential of QqQ analyzers is revealed when quantifying known
compounds or when elucidating structural information concerning the structure
of the molecule involved. As much as 100% of the instruments scanning
capacity can be used for a selected ion, making the instrument highly sensitive
when monitoring single m/z values (Hoffman and Stroobant 2008; Graves and
Roboz 2014). In addition to the traditional MS/MS analysis, many instruments
enable to utilize in-source fragmentation for selected and multiple reaction
monitoring (SRM and MRM, respectively) methods. In this approach, ions are
fragmented within the source of the mass spectrometer by application of a
voltage in the nozzle-skimmer system through which the ions are sampled to
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the analyzer (Adrey 2003; Hoffman and Stroobant 2008). The applied voltage
increases the velocity of the ions exiting into the relatively high-pressure region
between the nozzle and the skimmer. This increases the probability of the ions
to collide with the residual gas molecules, leading to fragmentation of the
analyte ions (Adrey 2003). These ions then travel to the Q1 where the MS/MS
analysis continues as described above.

In general, QqQ instruments are well suited for both qualitative and
quantitative analysis as they provide excellent sensitivity and selectivity, and
high signal-to-noise ratios are obtained especially in SRM/MRM analyses.
However, the number of MS/MS transitions in a single SRM/MRM segment is
limited and thus, when applying many SRMs or MRMs a compromise between
sensitivity and acquisition rate is unavoidable (Guillarme et al. 2010). When
analyzing a large number of compounds, it is possible to divide the MS/MS
method into several time-scheduled windows with different SRM/MRM
channels and time segments (Guillarme et al. 2010). For example, an MRM
method with a dwell time (time spent for particular transition) between 16 and
25 ms was used in UHPLC-MS/MS analysis of seven oligomeric ETs in willow
herb leaves (Baert et al. 2015) but when analyzing 154 polyphenols in wine, it
was reduced to 5 ms (Lambert et al. 2015). The partial limitation of this
procedure arises from the possible variation in elution-time; with too many
analytes to be detected, the time windows become very narrow and adjustments
are required if the analyte retention times fluctuate outside the original time-
window (Guillarme et al. 2010).

2.2.3. Tannin analysis by tandem mass spectrometry

Tandem mass spectrometry can be used for both qualitative and quantitative
determination of tannins. The SRM/MRM methodology enables high sensitivity
and selectivity for the quantitation of tannins while the other applications allow
the analysis of their fragmentation patterns and thus the structural elucidation of
tannins. In particular, ESI-MS/MS approach is a powerful tool for the
identification and structural characterization of tannins. The different utilization
modes (full scan, product ion scan, precursor ion scan, neutral loss as well as
SRM/MRM) and combination of the data obtained with the different modes are
very useful in structure elucidation (Bubba et al. 2012). Still, the most common
method to study the fragmentation patterns is to use the product ion scan for a



24 Literature Review

selected precursor ion. This enables to tentatively identity the molecules and
further, to select suitable parameters for the SRM/MRM methods (Zywicki et
al. 2002). The fragmentation patterns of both HTs and PAs are well
documented. Considering GGs and GTs, their fragmentation patterns have been
suggested already by full scan MS (e.g. Salminen et al. 1999; Mammela et al.
2000) but utilization of MS" has enabled a more detailed description of the
fragmentation patterns. The fragmentation of GGs and GTs is rather
straightforward as they contain only galloyl groups attached to the core polyol
(GGs) and additional galloyls linked to the core galloyl groups via depside
bonds (GTs). The depside bonds between two galloyls are less stable than the
ester bonds between the core polyol and galloyl groups (Salminen et al. 1999),
and thus the fragmentation of the former type of galloyl groups leads to the loss
of 152 Da while the latter one gives a fragment ion at m/z 169. In principle, all
the galloyl groups attached with depside bonds to the core galloyl groups are
fragmented first and then the galloyl groups attached to core polyol start to
fragment (Berardini et al. 2004; Regazzoni et al. 2013).

Figure 8 summarizes the current knowledge of the fragmentation patterns
of galloylglucoses. The pentagalloylglucose shows consistent mass loss of
galloyl moieties to tetra-, tri-, di- and monogalloylglucoses. This has been
confirmed also by the neutral loss of gallic acid in case of pentagalloyl- to
digalloylglucose (Tan et al. 2010). Interestingly, the fragmentation of
digalloylglucose contributes not only to the loss of galloyl group but also two
major product ions at m/z 439 and m/z 423 have been reported (Soong and
Barlow 2005; Tan et al. 2010). While the former derives from decarboxylation,
the latter has been suggested to derive from the removal of two formaldehyde
moieties from the central glucose (Taylor et al. 2005; Tan et al. 2010).
Similarly, the monogalloylglucose fragment ions at m/z 271 and m/z 211have
been explained by the removal of one and two formaldehyde groups,
respectively (Tan et al. 2010).
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Figure 8. Fragmentation pathway of galloylglucoses in negative mode ESI-MS"
(Zywicki et al. 2000; Soong and Barlow 2005; Tan et al. 2010). 5GG,
pentagalloylglucose; 4GG, tetragalloylglucose; 3GG, trigalloylglucose; 2GG,
digalloylglucose; 1GG, monogalloylglucose.

ET structures are more complex than GG and GT structures, and
correspondingly, their fragmentation is less straightforward. However, the
fragmentation patterns do follow the same general rules and for monomeric
ETs, the main fragments are often related to the functional groups such as the
galloyl group and the HHDP group (Zywicki et al. 2002; Fracasetti et al. 2013;
Regueiro et al. 2014). For example, tentative fragmentations of an acyclic ET,
vescalagin, are presented in Figure 9. In case of oligomeric ETs, additional
fragmentation pathways emerge due to their fragmentation into the monomeric
units of which the ET consists of (Mullen et al. 2002; Hager et al. 2008; Bubba
et al. 2012; Baert et al. 2015).
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Figure 9. Fragmentation pathway of vescalagin in negative mode ESI-MS" (Zywicki et
al. 2002; Hager et al. 2008). EA, ellagic acid.

The last group of tannins, PAs, is structurally significantly different from
HTs. For B-type PAs, the main fragmentation patterns include quinone-methide
(QM) mechanism, heterocyclic ring fission (HRF) and retro-Diels—Alder
(RDA) fragmentation (Gu et al. 2003; Callemien and Collin 2008; Pérez-
Jiménez and Torres 2012) which are presented in Figure 10 for a PC dimer.
With QM fragmentation it is possible to define the extension and terminal units
of the oligomers and polymers. For example, in B-type PC dimers, the cleavage
of the interflavanoid bond gives fragments (negative mode) with m/z 289
(terminal unit) and m/z 287 (extension unit). Trimeric PC gives fragments at
m/z 577 and m/z 287 if the cleavage takes place between the upper units and m/z
289 and m/z 575 if it takes place between the lower units (Callemien and Collin
2008; Pérez-Jiménez and Torres 2012; Flamini 2013; Tala et al. 2013). For the
PC dimer and trimer, HRF gives fragments at m/z 451 and m/z 739 while RDA
fission results in a fragment at m/z 425 for the PC dimer and at m/z 713 for the
PC trimer (Callemien and Collin 2008; Jaiswal et al. 2012; Pérez-Jiménez and
Torres 2012; Teixeira et al. 2016). Further, losses of H>O and CO are common
and explain many of the other ions produced in the fragmentation of PAs
(Callemien and Collin 2008; Li and Deinzer 2008; Delgado de la Torre et al.
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2013). For PA gallates, the loss of the galloyl group (-152 Da) is
characteristically observed (Pezet et al. 2011; Jaiswal et al. 2011; Pérez-
Jiménez and Torres 2012). In general, same fragmentations occur also for A-
type PAs and the m/z values of PAs with one A-type bond differ from the
corresponding B-type PA by 2 Da. However, A-type interflavanoid linkages do
not readily undergo RDA fissions because of the additional ether bond and thus,
these differences can be used to distinguishing A-type and B-type PAs (Gu et
al. 2003; Li and Deinzer 2008; Jaiswal et al. 2011; Flamini 2013).

m/z 287 m/z 289

Figure 10. Fragmentation pathways of procyanidin dimer in negative ion mode (Gu et
al. 2003; Callemien and Collin 2008; Pérez-Jiménez and Torres 2012). RDA, retro-
Diels-Alder fragmentation; HRF, heterocyclic ring fission; QM, quinone methide
cleavage.

Compared to the number of publications that have utilized MS/MS for
tannin identification and to study the tannin fragmentation patterns, surprisingly
few papers have used MS/MS for tannin quantitation. Examples of SRM and
MRM methods used in the literature for the quantitation of tannins are listed in
Table 2. In addition to adjusting the typical interface parameters, when utilizing
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QgQ mass analyzers, the cone voltage, collision energy and the pressure of the
collision gas are manually optimized (Sherwood et al. 2009). Usually, the most
abundant fragment ion is selected for the SRM/MRM transition (Sherwood et
al. 2009) and for smaller tannins, the selection of precursor ion is rather
straightforward and often the singly charged molecular ions is chosen for that
purpose. However, when the molecular weight of the tannin exceeds the mass
range of the analyzer, multiple charged ions are utilized (Baert et al. 2015).



29

Literature Review

0102 'Te 3 B3940 S1/01 S S0T/ SHT 68¢ 062 [TTREIA
010T 'T& 30 Swe[[Ino ST ot 601 68¢ 062 UIo3ed
£10¢ 'Te 32 punpigy| 9% 8¢ 10€ v€6 0L81 uruowige
¥102 'Te 30 moradsen 9%/ ¢ 43 10€ / €€9 v€6 0L81 uruowige
¥102 'Te 30 moradsen 8¢/ TC e 10€ /€€9 v€6 0L81 9H urm3ues
S10T ‘T8 10 1deg 001 /SL 9% 10€ /SLT 6281 T6¥S L3 oudweydoy
S10T 'Te 30 1oy 0L/ 06 4% SLT/10€ 8961 LOLY 1 LA duowexay
S10T 'Te 30 1oy SL/S9 ot SLT/10€ 90¢1 €T6€ (LA duweyuad
S10T 'Te 30 1oy 09/ 0S 43 SLT/10€ SHOT 8¢€I€ 1 LA duowena)
S10T 'Te 30 1oy 79/TS 9% SLT/10€ 9LI1 vSeT V UIdYIOU0
S10T ‘T8 19 1oy 0¥ /0T 0¢ 10€ / S9L €8L 6951 S QUELULIEN
¥102 'Te 30 moradsen 9% /92 99 10€ / €€9 S€6 9¢6 UnoLIBNSEd
£10¢ 'Te 32 punpigy| 43 9% 10€ €€9 €9 9s00n[3-JqHH-1A0[[e3
¥10T 'Te 30 punpey] 9T 9T 10€ 18% [43% asoon(3-JaHH-($)-€°C
¥10T 'Te 30 punpey] 4% 96 10€ €8L ¥8L urgenounpad
£10¢ 'Te 30 punpigy S¢S % 10€ S8L 98. [ urpueIgewr[[o)
£10T ‘Te 30 punprgy] T 43 Sof S€9 9¢9 0s00n[3 [A0[[e3Ln
2002 T8 3 DPIMAZ 0S 0S 691 S€9 9¢9 osoon[3Ao[[e3Ly
700T 'Te 30 BIMAZ 0¢€ ¢ 691 €8y ¥8% asoon(3[Ao[esp
¥10T 'Te 30 punpey] w € 691 1€€ 433 asoon(3[Ao[e3-0-1
700T 'Te 30 BPIMAZ 0T 0¢ 691 1€€ 433 asoonj3[Aofregouou
2002 T8 3 DPIMAZ Sl ST 94! 691 0L1 proe or[es
200T T8 3 DPIMAZ S¢ S¢S SP1 10€ 20¢ proe o13eq[o
(A9)

A3I9Ud (A) uor uor

AUAJY UoISsI[[0D 33¥)[0A JU0) Jonpo.ag J0SINIJ MIN punoduio)

‘suonisuen} 191y1[enb pue 1oyynuenb Jo asn oy 9)edIPUL SUOT
yonpoad o[dnnA ‘uoneInuenb uruue) J0J SINJLISI] Y} Ul PASN SUOIISULI) JOJIUOW UONoral o[dinu pue pajodas Jo sojdwexy 7 diqe].



Literature Review

30

urpruekoopueord 1y d ,

“S)IuN [ UIpUeISEW[[9} UO PASeq SUTUULIISE[]d JLSWOSI[Q,

0107 ‘1812 83310 0€/0¢ 0 TSI/ LLS 9621 v6ST Ioweuou vd
0107 ‘T8 12 83310 ST/ST 9 €86/5L8 TSI 90€T 1oWe)0 vd
0107 ‘T8 12 83310 0T/0T 09 SLS/S98 8001 810¢ pueyday vq
010T 'Te 39 B33)0 0€ /0€ 08 €98/ €ST1 6CLI 0€LT Towexay vd
0107 ‘T8 12 83310 0€/ST 08 IST1/8201 171 Tyl Hweyad v
010T Te 30 €300 0€/0T 0L SLS/S98 €ST1 298! Towend) vd
010T Te 30 €300 §T/0T 09 $69/LLS $98 998 Town vd
10T 'Te 30 punpiey| 9¢ (1}7 68¢ $98 998 Vd ooy
¥10T Te 10 punpres| 91 0€ STy LLS 8LS Vd oueuip
¥10T Te 10 punpies| 91 0€ STy LLS 8LS ¢V d duawIp
010C 'Te 10 e30)0 S¥/0¢ 8% STh / 68C LLS 8LS 74 uiptueAooyjueoxd
€102 0¢ $9 6t / 6€S / S8T SLS 9LS ¢v uipruekooyjueord

‘e 39 2110 ], ©] 9p
€10T 0¢€ S9 STL/ L0V / 68T LLS 8LS 74 wiprueooypueord

‘e 39 2110 ], ©] 9p
€10T 0¢€ S9 STL/ L0V / 68T LLS 8LS 19 wipruefooyueord

‘e 39 2110 ], ©] 9p
010T ' 10 duLIe[[Io ST 1}7 691 LSt 8St ajees uryoajesofesido
010 '[e 30 suLe[[mno ST 1}7 691 LSt 8St aje[[es uIyoa)edo[[es
010 ‘[e 30 suLre[[mnn ST 1}7 4| S0¢€ 90¢ uryoajedsof[esido
0T0T Te 12 duuIe[[Ino ST 0 691 847 (424 aje[[es uryoareords
010T 'Te 10 duLIe[[Io ST (1}7 691 It 444 9JE[[ES UIOo)ed
010T 'Te 39 B33)0 S1/01 St 6L1/SHT 68¢ 062 urgodreards
010T ' 10 duLIe[[Io ST (1}7 601 68¢ 062 urgodyeards

(Ad)
ASI9Ud A) uol uol

AUAJY UoISsI[[0D 33¥)[0A JU0) Jonpoag J0SINIJ MIN punoduio)




Literature Review 31

2.3. Tannin—protein interactions

Tannin—protein interactions have great importance in numerous plant related
domains, from the most basic functions in plant physiology and ecology to their
utilization in agriculture, foods and medicine. The interest in tannin research
has increased substantially during the past few decades and a particular interest
has been on the role of tannins on the human and animal health and nutrition.
Many of these nutritional and health effects have been associated with the
ability of tannins to interact with proteins in biological systems. In order to
understand the exact roles of tannins and proteins in these interactions, it has
been essential to determine the nature of the interactions and the features
affecting the complex formation.

2.3.1. Nature of tannin—protein interactions

The nature of the interactions between tannins and proteins can be divided
into covalent and non-covalent bonding based on whether the molecules are
irreversibly bound to each other or not, respectively. At low pH, tannins most
often form non-covalent bonds with proteins, while at higher pH the formation
of covalent complexes is favored (Prigent 2005; Hagerman 2012). Non-
covalent bonds, more often referred as non-covalent interactions, enable tannins
to bind specifically but transiently to other molecules. Tannins, as well as
polyphenols in general, are amphiphilic molecules, containing both hydrophilic
and hydrophobic characteristics. The hydrophilic character is caused by the
phenolic hydroxyl groups whereas the aromatic ring itself is hydrophobic
(Poncet-Legrand et al. 2006; Mueller-Harvey et al. 2007; Hagerman 2012).
Although non-covalent bonds are weak, stable associations between tannins and
proteins are formed when the interaction system forms multiple non-covalent
bonds simultaneously (Haslam 1998). Almost all non-covalent interactions can
be divided into subclasses of the electrostatically attractive interactions. From
these interactions, n-n stacking, hydrogen bonding and hydrophobic interactions
are the most important ones regarding tannin—protein interactions (Haslam
1998; Lodish et al. 2000; Dangles and Dufour 2006; McRae et al. 2011).

At neutral to alkaline pH, tannins may be oxidized to form quinones via
unstable semiquinone radicals (Appel 1993). A scheme of oxidation of the
HHDP group present in ETs is shown in Figure 11. Oxidation occurs most
readily at a pH higher than the pKa of the tannin phenolic hydrogen, which
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typically is in the range of 7-9 (Appel 1993; Hider et al. 2001). However,
oxidation of the tannins by biological free radicals or reactive oxygen species is
independent of the pH. The formed quinones are relatively unstable molecules
and are easily quenched by a reaction with a protein to form covalently
stabilized adducts (Appel 1993; Prigent et al. 2007; Quideau et al. 2011;
Salminen and Karonen 2011). In this process, the electrophilic quinone is
attacked by the lone-pair bearing amine or thiol of the protein and therefore
may alter the structure and function of the protein (Ludlum et al. 1991; Prigent
et al. 2007).

+2 H,0,

+2 Fe?

The quinones form covalent bonds 2 Fe3* 2 HO + 2 HO®
with proteins and thus, affect the
protein structure and function

[s] o] O\ 0 [s)
< s 4‘/< cysteine
4 —O0H ———————>
HO \4</h0<\7 /— HO
o\
A
Ay

Hydroxyl radicals cause
oxidative stress by damaging
lipids, proteins etc.

Figure 11. The oxidation of a hexahydroxydiphenoyl group to form a quinone, which
further forms covalent bonds with proteins and as a consequence affect the structure
and function of the protein. In addition, the byproducts cause oxidative stress by
damaging lipids, proteins and other biomolecules (adapted from Salminen and Karonen
2011).

In addition to dividing the tannin—protein complexes to covalent or non-
covalent, the nature of the interactions can be described by the solubility of the
formed complexes. Even if the classical definition of tannin emphasizes their
ability to precipitate proteins (Swain and Bate-Smith 1962), precipitation does
not necessarily occur in conditions where the stoichiometry of the interacting
species favors soluble complexes (Chen and Hagerman 2004; Hagerman 2012).
Thus, even if a tannin does not precipitate proteins efficiently, it may have a
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high affinity for the proteins. Formation of either soluble or insoluble
complexes depends on many different features including the structural nature of
the protein and the tannin as well as the conditions where the reaction takes
place (Chen and Hagerman 2004; Kusuda et al. 2006; Hagerman 2012). The
precipitation may occur via two different mechanisms, depending on the tannin
(Fig. 12). Tannins with a strong hydrophobic character, such as
pentagalloylglucose (PGG), precipitate proteins by forming a hydrophobic coat
around the protein (Kawamoto et al. 1996; Chen and Hagerman 2004; Karonen
et al. 2015). For more polar, hydrophilic tannins, such as PAs, the multidentate
nature that enables the tannin to cross-link protein molecules plays an important
role in the precipitation reaction (Charlton et al. 1996; Charlton et al. 2002;
Simon et al. 2003; Jobstl et al. 2004; Quideau et al. 2011). In general, soluble
complexes are favored when the protein is in excess (Luck et al. 1994; Kusuda
et al. 2006) and the number of tannin molecules required to precipitate protein
is dependent on the size and structural flexibility of the tannin (Charlton et al.
2002). Together with these features the concentration of protein affects the
initial interaction, while environmental factors including pH, ionic strength and
temperature influence the precipitation of the complexes (McRae et al. 2011).

Figure 12. Protein precipitation may occur via two different mechanisms: hydrophobic
tannins, such as PGG, precipitate proteins by forming a hydrophobic coat around the
protein (A), while hydrophilic tannins, such as PAs, precipitate proteins by cross-
linking the protein molecules (B). The model protein structure, BSA, is from RCSB
protein data bank (www.rcsb.org, PDB ID: 4F5S, Bujacz 2012).
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The third aspect regarding the nature of the tannin—protein interactions is
the specificity of the interaction between the tannin and the protein. Specific
interaction refers to drug/target-like interactions in which the polyphenol is
bound to the protein as a substrate or as an inhibitor of that particular protein
(Douat-Casassus et al. 2009; Fraga et al. 2010; Quideau et al. 2011). While
non-specific mechanisms are related to the presence of the structural features
commonly found among tannins, e.g. the phenolic groups, specific mechanisms
are caused by a particular structural characteristic of the active tannin. For
example, the structure of the protein may include a certain pocket, an active
site, in which particular tannin fits perfectly as it structurally resembles the
original molecule supposed to bind to the protein (Fraga et al. 2010; Jung et al.
2010). Non-specific mechanisms often require high tannin concentrations, but
the specific mechanism may occur already in significantly lower tannin
concentrations (Fraga et al. 2010; Gonglaves et al. 2011; Quideau et al. 2011).
The most studied polyphenols include different flavonoids but also PAs and
ETs have been evaluated for their ability to specifically bind proteins (Zhu et al.
1997; Quideau et al. 2005, Mackenzie et al. 2008; Erlejman et al. 2008; Fraga et
al. 2010; Gonglaves et al. 2011; Quideau et al. 2011; Bellesia et al. 2015).

2.3.2. The effect of tannin and protein structures on their interactions

The structure of a tannin affects its covalent and non-covalent interactions with
proteins considerably. Due to the differences of these two types of interactions,
certain molecular features under defined conditions may favor one or the other
mode of interaction. On one hand, the affinity of a tannin for a protein is
determined by its ability to reach the protein and to form hydrogen bonds or
hydrophobic interactions with it (Haslam 1996). On the other hand, covalent
binding with a protein is dependent on the oxidation of the tannin, and thus, on
the oxidative activity of the tannin (Appel 1993; Baxter et al. 1997; Salminen
and Karonen 2011; Hagerman 2012). Regarding non-covalent complexes,
tannin size and structural flexibility play an important role in its complexation
with a protein (Haslam 1996; Deaville et al. 2007; Lorenz et al. 2013; Zeller et
al. 2015; Kilmister et al. 2016). The effect of size on these complexes is
partially explained by the increasing number of hydroxyl groups (Haslam et al.
1992; Baxter et al. 1997; Feldman et al. 1999; de Freitas and Mateus 2001;
Aguie-Beghin et al. 2008) as the affinity for proteins increases with the number
of phenolic groups and associated aromatic rings that enable the tannin to build
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bridges between proteins and other tannin molecules (Charlton et al. 1996;
Baxter et al. 1997; Dangles et al. 2001; Aguie-Beghin et al. 2008; Karonen et al.
2015). However, the correlation between tannin size and protein binding
capacity may have an upper limit as the steric hindrance of large tannins may
prevent access to binding sites (Baxter et al. 1997; Poncet-Legrand 2007).

The observed differences in binding characteristics between GTs, ETs
(Deaville et al. 2007; Karonen et al. 2015) and PAs (Hagerman and Butler
1981; Hofmann et al. 2006; Ozdal et al. 2013) have further highlighted the
importance of conformational flexibility of the polyphenol molecule. The
HHDP groups characteristic of ETs constrain the structure, resulting in loss of
conformational freedom and therefore higher ligand concentrations are needed
to achieve protein aggregation. PAs in turn have flexible structures and are free
to form cross-links between the molecules (Hofmann et al. 2006). Among HTs,
the orientation of the substituent in the possible anomeric carbon of the sugar
moiety is important in protein binding. For example, a-D-pentagalloylglucose
appears to have a higher affinity for BSA than its natural stereoisomer f-D-
pentagalloylglucose (Feldman et al. 1999), presumably because in the former
the surfaces of the C1 and C2 galloyl rings are better exposed for hydrophobic
interactions. Among PAs, the interflavanoid bond C4-C8 seems to be more
favorable than the C4—-C6 bond when comparing the affinities for salivary
proteins. This has been suggested to be caused by the lesser steric rigidity of the
C4—C8 bond (de Freitas and Mateus 2001; Cala et al. 2010; McRae et al. 2011).
The protein affinity of PAs depends also on the stereochemistry of the
heterocyclic ring hydroxyl group linked to the C3, on the stereochemistry of the
interflavanoid bond (a or B) and on the degree of polymerization. The different
affinities between isomers are mainly explained by the different conformations
they adopt: a more extended conformation increases, and a compact and more
rigid conformation decreases the affinity for the proteins (de Freitas and Mateus
2001; Cala et al. 2010).

Because tannins can be oxidized to form species which may covalently
react with proteins, the oxidative activity of tannin could be indicative of the
tendency of a tannin to covalently bind proteins (Appel 2003; Barbehenn and
Constabel 2011; Salminen et al. 2011). Studies with the monomeric units of
PAs, epigallocatechin gallate, epigallocatechin, epicatechin gallate, epicatechin
and catechin have shown that the trihydroxylated B-ring is essential in the
formation of covalent adducts with proteins (Poncet-Legrand 2007; Hagerman
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2012). Considering this, PAs possessing a higher number of PD subunits should
be more prone to form covalently stabilized complexes with proteins than PAs
containing predominantly PC subunits. This is indirectly supported by the
oxidative activity studies showing that PDs are more easily oxidized at high pH
than PCs (Barbehenn et al. 2006). Regarding HTs, GGs and high-molecular-
weight GTs have intermediate to low oxidative activities (Chen and Hagerman
2004; Barbehenn et al. 2006; Salminen et al. 2011; Hagerman 2012). On the
contrary, ETs are more readily oxidized (Barbehenn et al. 2006; Moilanen and
Salminen; Salminen and Karonen 2011). Detailed information about how the
ET structure and their oxidative activities are related was reported by Moilanen
and Salminen (2008). By comparing the structures of 27 ETs they showed that
the oxidative activity can be predicted from the exact ET structures. The results
showed that the order of how much the structural features affected the oxidative
activities of ETs was: valoneoyl group > acyclic glucose having an a-OH like in
castalagin > xylose / lyxose > NHTP group > valoneoyl group (with bound
COOH) = sanguisorboyl group > HHDP-group = acyclic glucose having a B-
OH like in vescalagin. The other structural details (cyclic glucose, galloyl,
dehydrodigalloyl, catechin and methyl groups) either had no significant effect
or had a slightly negative effect on the oxidative activity (Moilanen and
Salminen 2008). Unfortunately, there have been relatively few studies on the
covalent reaction between proteins and tannins, one difficulty being the
characterization of the highly cross-linked adducts (Hagerman 2012). Similarly,
the relation of the tannin oxidative activity and their tendency to form
covalently stabilized complexes with proteins remains still unsolved and further
studies are required to understand this biologically important aspect of tannin—
protein interactions.

Similar to the effect of tannin structure, the interaction between tannins and
proteins is affected by the size, structure, conformation and isoelectric point of
the protein (Hagerman and Butler 1981; Charlton et al. 1996; Charlton et al.
2002). It appears that the conformational flexibility of the protein may be as
important factor as the flexibility of the tannin for the complex formation and a
flexible protein structure might decrease the importance of tannin flexibility.
For example, the rigidity of the ET does not play a major role in determining
binding strength with flexible proteins such as gelatin (Deaville et al. 2007)
whereas it does impact the ability to bind to less flexible BSA (Hofmann et al.
2006; Deaville et al. 2007). Accordingly, the amino acid composition of the
protein is a major factor in tannin—protein interactions. The presence of proline
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is a common characteristic for proteins with high affinity for polyphenols. The
tertiary amide carbonyl groups of the prolyl residue form hydrogen bonds with
the phenolic groups of the tannin (Fig. 13A). Non-specific interactions are
formed between the galloyl units of the tannin and the open, flat and rigid
hydrophobic surface of the pyrrolidine ring of the proline (Fig. 13B, Hagerman
and Butler 1981; Haslam 1998). Proline acts as a binding site but the high
proline content also extends the protein structure and thus larger surface is
available for the tannin (Baxter et al. 1997). It has been proposed that besides
providing favorable binding sites, multiple repeated regions rich in proline
make the structure of the protein more flexible. This in turn, enables the protein
to fold and wrap around the polyphenol, and the multiple intermolecular
interaction increases the association (Charlton et al. 1996; Santos-Buelga and
de Freitas 2009).

OH
M,/EOH-"
HO OH OH

HO OH

vﬂ""o

Figure 13. Hydrogen bonding of a galloyl group with the tertiary carbonyl group of a
prolyl residue (A). Hydrophobic interactions may occur between the galloyl ring and
the open, flat and rigid surface of the pyrrolidine ring (B) (modified from Haslam
1996).

In addition to the tannin and protein structures, the physicochemical
conditions affect both the type of binding and the availability of both the tannin
and the protein interacting with each other. These include the pH (Appel 1993;
Hagerman et al. 1998; Bennick 2002; Li and Gu 2010; Adamczyk et al. 2012),
the concentrations of both the protein and the tannin (Hagerman 1998; Frazier
et al. 2006; Deaville 2007; Cala et al. 2010; Gongalves et al. 2011), the solvent
composition (Serafini et al. 1997; Hagerman et al. 1998; Pascal et al. 2007; Li
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and Gu 2011), other ions and molecules present in the reaction mixture (Luck et
al. 1994; Haslam 1998; de Freitas et al. 2003; Carvalho et al. 2006; Gongalves
et al. 2011; Chen et al. 2011), the ionic strength of the reaction solution (Luck
et al. 1994, Kawamoto and Nakatsubo 1997; Carvalho et al. 2006) and the
temperature (Haslam 1996; Kawamoto and Nakatsubo 1997; Hagerman et al.
1998; Charlton et al. 2002; Carvalho et al. 2006; Hofmann et al. 2006).

2.3.3. Analytical techniques for studying tannin—protein interactions

Numerous physicochemical methods have been developed over many years to
study the tannin—protein interactions; aggregate formation, protein
precipitation, binding affinities, stoichiometry of binding, conformational
changes and kinetics, for example. These methods include electrophoretic
methods, isothermal titration calorimetry, nephelometry, chromatography, mass
spectrometry, NMR, and computational methods. All of these methods give
complementary, but different types of information on tannin—protein complexes
and the complex formation itself. Here, two commonly used methods for the
verification of tannin—protein complexes and for the investigation of the
stoichiometry of these complexes, gel electrophoresis and matrix-assisted laser
desorption/ionization mass spectrometry (MALDI-MS), are briefly discussed.
All electrophoretic methods are based on the movement of ions in an
electrophoretic field. Most often electrophoresis is carried out in a porous
support matrix such as polyacrylamide or agarose. During the electrophoretic
run, the gel serves as a size-selective sieve; due to the porous structure of the
gel, smaller proteins travel more rapidly than larger proteins in the electric field
(Barril and Nates 2012). Gel electrophoresis can utilize either so called
continuous or discontinuous systems. In the former one, the separation matrix is
uniform and yields protein bands that are rather diffuse and not well resolved.
The latter one contains a large-pore stacking gel on the top of a small-pore
resolving gel. Thus, when the proteins enter the resolving gel, the movement on
the gel slows down, and tight protein bands are formed and improved resolution
is obtained (Ahmed 2004). The two main gel electrophoresis techniques are
native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (native
PAGE and SDS-PAGE, respectively). In native PAGE, the protein undergoes
migration without denaturation (Shewry et al. 1995) while in SDS-PAGE, the
proteins are fully denatured and dissociated from each other and adapt
longitudinal, rod-like shapes instead of the usual complex tertiary conformation
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(Laemmli 1970; Horie and Kohata 2000; Kusuda et al. 2006). Due to the SDS,
SDS-PAGE is not useful method for detecting non-covalent tannin—protein
complexes; also these interactions are dissociated by the SDS (Hagerman
2012). The proteins separated by the gel can be detected with various methods,
staining being probably the most common technique. For detection of tannin—
protein complexes, Coomassie blue and nitro tetrazolium blue staining
techniques are often used (Paz et al. 1991; Gravel and Golaz 1996; Hagerman
2012).

MALDI-MS was first introduced by Karas and Hillenkamp (Karas and
Hillenkamp 1988) and it has become a commonly used tool for the analysis of
proteins, peptides and other biomolecules (Niesse and Falck 2015). MALDI is
an ionization technique where the analyte is first co-crystallized with a matrix
compound or mixture, such as sinapinic acid, having a strong absorption at the
laser wavelength (de Hoffman and Stroobant 2008). The matrix has two
important functions: (1) it heats rapidly when radiated with the laser and is
vaporized together with the sample; (2) it protects the sample from being
destroyed by the laser (Marvin et al. 2003). The three different mass analyzers
used together with the MALDI source are a linear time-of-flight (TOF), a TOF
reflectron, and a Fourier transform mass analyzer (de Hoffman and Stroobant
2008). In MALDI, ions are produced in a pulsed, non-continuous manner, and
therefore it is well suited for the TOF analyzer (Marvin et al. 2003).
Accordingly, TOF is the most commonly used mass analyzer for MALDI
(Marvin et al. 2003; Hoffman and Stroobant 2008).

In TOF analysis, ions with constant kinetic energy are accelerated to a
detector. The ions have the same kinetic energy, but ions with different
mass have different velocities and thus they arrive to the detector at different
times (Guilhaus 1996; Gross 2011). As the velocity is inversely proportional to
the square root of m/z, the ions enter to the detector in order of increasing mass
(Guilhaus 1996). Due to soft ionization, single charged ions and a broad mass
range, the MALDI-TOF mass spectrometer is a powerful tool for analyzing
tannin—protein complexes (Mané¢ et al. 2007). Further advantage is achieved by
the singly charged ions, which makes the interpretation of the tannin—protein
complex spectra relatively simple (Chen and Hagerman 2004; Mané et al.
2007). However, the resulting data in MALDI-TOF depends highly on the
choice of a suitable matrix and the solvents, as well as the analyte properties,
sample purity, and sample preparation (Marvin et al. 2003; Hoffman and
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Stroobant 2008). Also, MALDI suffers from some disadvantages such as low
sample-to-sample and shot-to-shot reproducibility (Gusev et al. 1995). In
addition, the signal level strongly depends on the laser beam homogeneity and
irradiance, sample preparation (primarily the crystallization process) and
substrate surface conditions (Gusev et al. 1995; Hoffman and Stroobant 2008).

2.4. Anthelmintic properties of plant tannins
2.4.1. Gastrointestinal nematodes of ruminants

Although there are many different species of nematode parasites that infect
ruminant livestock, gastrointestinal nematode (GIN) infections represent the
greatest threat for livestock production worldwide by causing numerous
infectious diseases on their hosts (Sutherland and Scott 2010; Charlier et al.
2014; Preston et al. 2014). The most relevant GINs of ruminants are those
belonging to the order of Strongylida, superfamily Trichostrongyloidea (Balic
et al. 2000; Zajac 2006; Sutherland and Scott 2010). Among them, Haemonchus
contortus, also known as the barber's pole worm, (Fig. 14A) is one of the
species with greatest pathologic and economic importance (Whittier et al. 2009;
Sutherland and Scott 2010; Gilleard 2013). H. contortus is a blood feeding
abomasal parasite of sheep and goats but it has been found also in other
ruminant species such as cattle and reindeer (Achi et al. 2003; Hrabok et al.
2006). An adult H. contortus is 2-3 cm in length and can easily be observed by
eye on the abomasal content during post-mortem examination (Fig 14B). It is
one of the most rapidly reproducing GINs and individual females can produce
thousands of eggs per day (Loukas et al. 2005; Sutherland and Scott 2010;
Roeber et al. 2013). In optimal conditions, this can lead to rapid contamination
of the pasture with the larvae (Vlassoff et al. 2001). The fact that sheep are pack
animals and naturally tend to graze close to each other and only on certain areas
of the grass, makes them very susceptible to the larvae (Whittier et al. 2009;
Roeber et al. 2013). The main pathogenic effects are caused by the L4 stage
larvae and adult nematodes, which both feed on blood. As a consequence, the
animal loses large quantities of blood and protein, which further causes general
weakness and anemia (Fig 14C). A rapid infestation with the parasite may lead
to sudden death of the animal due to excessive blood loss, even if they appear to
be healthy and in good body condition. In case of a slower build-up of the
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infection, the animals lose weight, suffer from anemia and their wool becomes
brittle and may fall out (Zajac et al. 2006; Whittier et al. 2009; Roeber et al.
2013). The low protein levels can cause also a condition known as “bottle jaw”,
in which fluid accumulates under the skin of the lower jaw (Fig. 14D, Whittier
et al. 2009). Unlike with many other GINs, infection with H. contortus rarely
results in diarrhea (Fig 14E) and therefore its effects are often not detected by
routine observation (Zajac 2006). Thus, by the time symptoms appear, the
larvae have already caused significant damage to the animal, and prompt action
IS necessary to prevent further consequences (Zajac 2006; Whittier et al. 2009).

Figure 14. Haemonchus contortus nematode by scanning electron microscopy (A) and
a direct view of a sheep abomasum full of H. contortus nematodes (B). Severe
infestations with H. contortus cause anemia, which can be diagnosed e.g. from pale
eyelids (C). The loss of protein may cause the condition called “bottle jaw*, where
fluid accumulates under the skin of the lower jaw (D). Unlike many other
gastrointestinal nematodes, infection with H. contortus rarely results in severe diarrhea
(E). The images were kindly provided by Dr. H. Hoste.
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Most GINs belonging to the order Strongylida share the same life-cycle
(Zajac 2006). The life cycle of H. contortus was described in detail as early as
1915 (Veglia 1915). Each of the different larval stages includes two phases of
development. The first phase is a period of activity during which the larva feeds
and grows. The second phase is a period of inactivity, and this is when the
structure of the larva changes substantially, resulting in the removal of the old
cuticle through exsheathment (Nikolaou and Gasser 2006). The time required
and the degree of growth in each developmental stage vary and are dependent
on both the environment and the host (Rossanigo and Gruner 1996). The main
stages of the life-cycle of H. contortus are illustrated in Figure 15. The cycle
begins when the adult female nematode lays eggs in the abomasum of the
ruminant. The development of the eggs requires oxygen and thus they are
passed out in the feces. In the moist conditions of the feces, the eggs develop,
hatch and continue to develop into L1 and L2 juvenile stages by feeding on
bacteria in the dung. The L2 stage larva sheds its cuticle (exsheathment) and
develops into a non-feeding L3 infective larva which then migrates to the top of
a blade of grass to maximize its chances of meeting a host (Loukas et al. 2005).
The ruminants become infected when they graze and ingest the L3 stage larvae
which pass through the first three stomachs to the abomasum. There, the L3
larva exsheaths the protective cuticle and burrows into the internal layer of the
abomasum, where it develops into an L4 preadult larva. Finally, the L4 larva
develops into an L5 adult nematode via exsheathment (Loukas et al. 2005;
Roeber et al. 2013). The adult nematodes, both male and female, live and mate
in the abomasum where they feed on blood (Vlassoff et al. 2001; Nikolaou and
Gasser 2006; Whittier et al. 2009).

The L3 larva may also stay in the abomasum and go into hypobiosis, a
state of arrested development that occurs when the conditions do not favor
completion of the life cycle (Gibbs 1982). This may occur e.g. during the winter
months and the development into L4 and L5 stages continues in the early spring
(Balic et al. 2000; Zajac 2006) as a response to changed conditions such as
rising temperature and humidity (Gibbs 1982; Zajac 2006; Roeber et al. 2013).
Also the immune system of the animal has a significant effect; e.g. relaxation of
the immune system of periparturient animal (around the time of giving birth)
makes them especially susceptible to nematode infections (Gibbs 1982; Zajac
2006). This phenomenon, called the periparturient egg rise, further exposes the
vulnerable young lambs to highly infected pastures (Zajac 2006).
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Figure 15. The life-cycle of Haemonchus contortus.

The control of GINs has relied for decades mainly on the use of synthetic
anthelmintic drugs. One reason for this is the achievements on developing new
anthelmintic drugs between the 1960s and 1990s (Kaplan 2004). At the same
time, resistance of GINs against the synthetic anthelmintics started to emerge.
The first reports of anthelmintic resistance are from the late 1950s and early
1960s with the first species of GIN with resistance formation being identified as
H. contortus (Drudge et al. 1957; Conway 1964). Since then, the intensive use
of anthelmintics for treating and controlling GINs has caused a global spread of
parasite populations that are resistant to one or more classes of anthelmintics
(Zajac et al. 2006; Thler 2010; Kaplan and Vidyashankar 2014; Traversa and
von Samson-Himmelstjerna 2015). Furthermore, multiple-resistant GINs are
already highly prevalent in many parts of the world (Taylor et al. 2009; Gilleard
2013; McRae et al. 2015) and even situations in which the nematodes have
developed resistance to all anthelmintic drugs available have been reported
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(Cezar et al. 2010; Howell et al. 2008). Adding to this the growing concern of
possible drug residues in food products as well as the environmental
consequences (Beynon 2012) and the increasing national and international
restrictions in the use of chemical anthelmintics (Kaplan 2013), it is clear that
there is an urgent need for alternative solutions to control ruminant parasites.
One promising approach is the utilization of bioactive plants as natural
anthelmintics to at least partially replace the use of synthetic chemical drugs
(Githiori et al. 2006; Hoste et al. 2015).

2.4.2. Methods for studying the antiparasitic effects of plant tannins

The methods used for testing the antiparasitic effects of plants and plant tannins
include both in vivo and in vitro methods. The selection of the approach
depends largely on the objective of the study. In more general studies, where
the effect of certain plants is tested, the most realistic approach is to screen
them in vivo by feeding infected ruminants with the plant. The reason for this is
that the conditions change throughout the gastrointestinal track of the ruminant
and it is impossible to accurately mimic these conditions in vitro. Thus, the true
effect of plants on ruminants infected with nematodes can be obtained only in
vivo. However, when studying the anthelmintic effects of large number of
plants, or even more so, when utilizing purified tannin fractions or single
compounds in order to learn about the tannin/nematode viability structure-
activity relationship, it would not be feasible or even possible to test them all
with animals. In such cases, several in vitro techniques are available for the
primary screening (Table 3). With these methods, the effects of plant tannins
can be tested on the different key stages of the GIN life cycle (eggs, infective
larvae and adults). All the methods, except the larval exsheathment inhibition
assay, have been adapted from the methods used to test synthetic anthelmintic
drugs against ruminant GINs (Wood et al. 1995, Bahuaud et al. 2006; Jackson
and Hoste 2010). Often, the more simple assays such as the egg hatch, larval
migration inhibition and larval feeding inhibition assays are used for the first
screening and the more time consuming and/or expensive assays such as the
larval exsheathment, larval development and adult motility assays are used with
the products for which some preliminary activity has been witnessed (Jackson
and Hoste 2010). However, due to the difficulties in maintaining the complex
life-cycles of parasitic nematodes, they are not ideal laboratory specimens
(Holden-Dye and Walker 2007; Gilleard 2013). Furthermore, the tests with e.g.
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adult H. contortus involve the killing and dissecting of an animal host to
provide adults for the experiments. Therefore, more user-friendly model
systems have been developed. One such a model system is Caenorhabditis
elegans, a free living soil nematode that is often used as a model for veterinary
parasites (Geary and Thompson 2001; Holden-Dye and Walker 2007), when
screening the anthelmintic properties of different plant resources (Mori et al.
2000; Yamasaki et al. 2002; Katiki et al., 2011, 2013). The use of free-living
nematodes as models for parasitic nematodes can be justified as the separation
of nematodes into free-living and parasitic has been suggested to remain less
relevant in comparison to how much the species have biologically in common
(Rochfort et al. 2008). However, when using C. elegans as a model in
parasitology research, significant emphasis should be made on detailed
comparative analysis and careful experimental interpretation (Gilleard 2004).

Table 3. In vitro bioassays used in testing plant extracts for their anthelmintic activities
(adapted from Jackson and Hoste 2010).

Bioassay Target stage Process disrupted

Egg Hatch Assay Eggs Hatching to L1 stage larva
Larval Migration Inhibition L3 Locomotion of L3 stage larva
Larval Feeding Inhibition L1 Feeding of L1 stage larva
Larval Exsheathment L3 Exsheathment of L3 stage larva
Larval Development Eggs— L1 Development to L3 larva

Adult Motility L5/adults Motility of adult nematodes

One often utilized tool for studying the anthelmintic effect of plants is
electron microscopy (Martinez-Ortiz-de-Montellano et al. 2013; Williams et al.
2014a; Pefia-Espinoza et al. 2015). The two basic types of electron microscopy
are scanning electron microscopy (SEM) and transmission electron microscopy
(TEM). SEM is used for the high-resolution imaging of surfaces (Fig. 16A,B).
In SEM, a beam of electrons with defined incident energy, usually between 1—
40 keV, is generated in an electron column (Goldstein et a. 1992). The electrons
produced are focused into a smaller beam by electromagnetic lenses, and
scanning coils are used to direct and position the electron beam onto the sample
surface (Egerton 2005). To produce a contrasting image, the electron beam is
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scanned in a raster pattern over the surface of the sample. The actual image is
generated when the emitted low energy electrons, i.e. secondary electrons, are
detected with an electron detector and transferred into an image (Goldstein
1995; Egerton 2005). Depending on the instrument used, the object can be
magnified roughly between 10 and 100,000 times (Goldstein 1992; Stadtlander
2007). In contrast to SEM, in TEM the electrons are projected through an
ultrathin slice of the sample which produces a two-dimensional image (Egerton
2005, Fig. 16C,D). Thus, TEM gives information of cellular structures of the
specimen (Stadtldnder 2007). In TEM, magnifications between 500 to 500,000
times can be achieved. However, magnifications above 200,000 are rarely used
in biology (Standlander 2007). Both SEM and TEM are operated under vacuum
to enable the electron beam to travel in straight lines (Goldstein et al. 1992;
Standldnder 2007). The electron microscopes operate under the guidance of
computers which makes the sample analysis rather straightforward and the main
difficulty remaining is the sample preparation (Standlédnder 2007). SEM sample
preparation includes cleaning of the surface, stabilization of the sample with a
fixative, rinsing, dehydrating and drying the sample, mounting the specimen on
a metal holder, and coating the sample with a layer of a material that is
electrically conductive (Standldnder 2007). Each preparation step is critical
regarding the quality of the produced images (Goldstein et al. 1992; Egerton
2005; Standlander 2007).
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Figure 16. Scanning electron microscopy images of Haemonchus contortus 1.2 stage
larva (A, B) and transmission electron microscopy images of cross-section of H.
contortus L3 stage larva body (C, D). Panels C and D: “cu” indicates cuticle, “hy”
indicates hypodermis and “dt” indicates digestive tract. The transmission electron
microscopy images were kindly provided by Dr. H. Hoste.

2.4.3. Effects of tannins on the digestive parasites of ruminants

Plants and plant extracts have been used for centuries as de-wormers for both
humans and livestock and a wide range of plants and their products around the
world have been explored as alternative choices to synthetic anthelmintic drugs.
A literature search with SciFinder Scholar® using research topic “plant” refined
with “anthelmintic” resulted in 1942 references (dated 22.01.2016). The first
reference available was a patent from 1868, an improved vermifuge against
worms prepared of several plant materials (wormseed, aloes and catgut)
(McKinsey 1868). Since then, numerous studies have been conducted to test the
anti-nematode of different plants and plant materials, with the maximum
number of papers published on the subject between 2011 and 2012 (Fig. 17).
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Figure 17. The number of references published per year obtained with SciFinder
Scholar®, using “plant” as research topic and the results refined with ”anthelmintic”.

Several reviews exist describing the anthelmintic properties of different
plant species on ruminant parasites (Rochfort et al. 2008; Mali and Mehta 2008;
Manke et al. 2015). Unfortunately, most of these studies contain insufficient or
no information on the chemical composition of the studied plants which makes
the characterization of the active compounds impossible. Hoste et al. 2015 have
suggested three main potential impacts on the GIN life cycle associated with the
intake of tannin containing plants: 1) decrease in the establishment of the
infective L3 stage larvae; 2) decrease in the excretion of nematode eggs by
adult worms; and 3) reduction in the development of the nematode eggs into the
third-stage larvae. In addition, partial paralysis and interference with the
neurophysiology or neuromuscular coordination of the larvae have been
witnessed (Molan et al. 2000; 2004).

To explain the mechanism by which plants act against GINs and to
understand what types of compounds are the most active ones by this mechanism
of action, pure compounds must be utilized in the activity tests. The better
understanding on the structure—activity relationships between plant tannins and
their anthelmintic properties would enable to select plant species with preferred
tannin composition to be used as ruminant feeds or feed additives for the control
of GINs. Hypothetically, this knowledge could be used to breed new plant
varieties with enhanced tannin composition. Unfortunately, because of the
difficulty of purifying individual PAs from plants, only few studies have
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addressed the question about the effect of tannin structure on the anthelmintic
effect. Molan et al. (2003) were the first ones to report that fodder species with
higher PD/PC ratios resulted in more consistent anthelmintic activities than the
species with lower PD/PC ratios. In vitro studies with the monomeric building
blocks of PAs further supported this and it was shown that gallocatechins (PD
building blocks) were usually more potent anthelmintic compounds than
catechins (PC building blocks) (Molan et al. 2003; Brunet and Hoste 2006;
Brunet et al. 2008; Williams et al. 2014b). Moreover, a comparison of the effect
of galloylated versus non-galloylated PA building blocks has shown that the
galloylation of flavan-3-ols results in higher activity against the different
developmental stages of the nematodes (Molan et al. 2003; 2004; Brunet and
Hoste 2006). Studies with the PA monomeric units have shown no or a small
differences on the anthelmintic effect of the 2,3-cis versus 2,3-trans
stereochemistry of the PA monomeric units (Molan et al. 2003; Brunet and Hoste
2006; Williams et al. 2014b). However, in a study where the effect of dimeric
PCs B1 and B3 on C. elegans was compared, the dimer with 2,3-trans, 3,4-trans
combination reduced motility more efficiently than the dimer with 2,3-cis, 3,4-
trans combination (Mohamed et al. 2000). The effect of the PA size has been
studied mostly with characterized PA fractions, and the results from these studies
indicate that increase in mean degree of polymerization results in greater
anthelmintic activity (Mohamed et al. 2000; Yamasaki et al. 2002; Williams et al
2014a, b; Klongsiriwet et al. 2015; Quijada et al. 2015; Desrues et al. 2016).

The other group of tannins found in terrestrial plants, HTs, has gained less
attention, presumably due to their smaller presence at leguminous plants
compared to PAs and the holding belief of HTs as toxic compounds (Patra and
Saxena 2013). In reality, both PAs and HTs may reduce feed intake, feed
digestibility or even cause toxicity if consumed in large quantities, but neither is
toxic when consumed in moderation (Katiki et al. 2013). Several screening
studies have been conducted with plants known to be rich in HTs
(Chandrawathani et al. 2006; Mukai et al. 2008; Manolaraki et al 2010;
Waterman et al. 2010) but no unambiguous evidence on the relationship
between the HTs and the anti-parasitic properties of these plants have been
established. However, the few studies with focus on HTs have indicated
potential anthelmintic activity (Konig et al. 1994; Mori et al. 2000; Mohamed et
al. 2000; Yamasaki et al. 2002; Katiki et al. 2011, 2013). Results in Katiki et al.
(2013) suggested that both HT-rich and PA-rich plant extracts possess
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anthelmintic activity but plant extracts rich in ETs were most lethal to soil
nematode C. elegans. Further, Konig et al. (1994) showed that an ET rich
fraction from Quercus petraea (sessile oak) bark inhibited the reproduction of
the soil nematode C. elegans with a 50% lethal concentration (LC 50) of 500 pg
mL!. Under the same conditions, the LC 50s for the synthetic anthelmintic
mebendazole and a PA rich fraction from Q. petraeu were 10 ngmL™! and 125
ng mL!, respectively (K&nig et al. 1994). Unfortunately, these studies do not
enable direct comparisons between the activities of different types of tannins as
the extracts and fractions were not analyzed for a detailed tannin composition.
Thus far, the most comprehensive work on the effect of HT structures on
their anthelmintic effect was done by Mori et al. (2000), Mohamed et al. (2000)
and Yamasaki et al. (2002). Ironically enough, the objective of these studies were
to provide evidence that tannins are essentially toxic for animals by exploring the
effect of mono- to hexagalloylglucoses, a few ETs and a series of PAs on the
motility and mortality of C. elegans. The results showed a correlation between
the tannin size and the anthelmintic activity of galloylglucoses and PAs. A 1 mg
mL! solution of mono- and digalloylglucoses had no or very little effect on either
the motility or the mortality during a 72 hour incubation whereas
trigalloylglucose solution with the same concentration significantly affected the
motility after 42 hour incubation and the mortality after 72 hour incubation
(Mohamed et al. 2000). The larger galloylglucoses, tetra- to hexagalloylglucoses
were markedly more active; shorter incubation times resulted in decreased
motility and increased mortality, and after 72 hours 100% mortality was observed
(Mohamed et al. 2000). Regarding PAs, PC dimers and trimers decreased the
motility in some extent but showed no lethal activity. Even for the PC tetramer,
only a low mortality rate was observed while the motility steadily decreased to
60%. On the contrary, the polymeric PAs were significantly active and 72 hour
incubation resulted in almost 100% mortality (Mohamed et al. 2000). However,
the average molecular weight of the ETs did not correlate with the observed
reduction in the motility or the increased mortality. Unfortunately, only two of
the ten ET structures were confirmed, so no conclusion could be made on the
effect of structural features other than molecular weight. In these studies, the LC
50 wvalues for five day incubations obtained for pentagalloylglucose,
tellimagrandin I, rugosin A methyl ester, the largest PA polymer (the average
MW 4530) and ten unidentified ETs were 15 pgmL™!, 88 pg mL!, 26 ng mL!, 5
ng mL', and 26-83 pg mL™!, respectively (Yamasaki et al. 2002). All in all, these
studies indicated that both HTs and PAs possess in vitro anthelmintic activity.
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Thus, in addition to PA-rich forages, the utilization of HT-containing forages to
control ruminant GINs should be a fertile area for future research.

The mode of action behind the anthelmintic effect of tannins has been
discussed, but is still largely unknown. Two main hypotheses, the direct and the
indirect modes of action, could explain the effect of tannins against ruminant
GINs. The direct mode of action presumes that tannins affect the biology of the
nematode by a drug-like effect and thereby causes a dysfunction of the
nematode (Hoste et al. 2012). A generally accepted hypothesis is that the direct
effect of plant tannins is based on their interactions with the egg and larvae
proteins vital for the development and biological functions of the larvae
(Athanasiadou et al. 2001; Molan et al. 2010; Molan 2014). This direct
hypothesis is supported by the results obtained from in vitro studies and also,
some in vivo studies have suggested the direct effects of tannins against GINs
(Athanasiadou et al. 2001, 2005; Hoste et al. 2006; Brunet et al. 2008). These
functional modifications have been further supported by scanning and
transmission electron microscopy experiments, in which major changes in the
larval structure e.g. the cuticle, the digestive tract and the female reproductive
tract have been observed (Hoste et al. 2006; Martinez-Ortiz-de-Montellano et
al. 2013; Williams et al. 2014a; Yoshihara et al. 2015).

Alternatively, tannins may act indirectly by improving the response of the
host immune system against the GINs. This can take place, for example, as a
consequence of increased protein availability (Anthanasiadou et al. 2001).
Because of the protein binding ability, tannins protect proteins from the
microbial degradation in the rumen, thus making the non-degraded proteins
available for digestion and absorption in the small intestine where the
complexes are readily dissociated due to the increased pH (Frutos et al. 2004;
Mueller-Harvey 2006). As a consequence, the resilience and resistance of the
animal to parasites is enhanced indirectly via improved protein nutrition (Coop
and Kyriazakis 2001). The tannins could also complex with the bacteria and
nutrients that the non-parasitic larval stages feed on, thus inhibiting their
availability and causing larval starvation and ultimately death (Anthanasiadou
et al. 2001; Igbal et al. 2007). Despite the numerous studies, the exact mode of
action has remained obscure. However, it seems undisputed that it differs
depending on the parasite, the stage of development and also the characteristics
of the plant and the tannins causing the observed effects.
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3. AIMS OF THE STUDY

The focus of this PhD-research was on development of an understanding of
tannin bioactivity and their structure—activity relationships by investigating the
chemical properties of those plant tannins that have greatest anthelmintic effects
on ruminant parasites and to study the possible mechanisms of action between
plant tannins and proteins on a molecular level. An additional aim of this
research was to develop analytical methods for analysis of these bioactive
tannins in plants extracts. The main topics under investigation were:

1. development of UHPLC-MS/MS methods for the qualitative and
quantitative analysis of plant polyphenols, especially tannins (I and II);

2. establishment of a fast, sensitive and selective method for fingerprint
analysis of the two most common proanthocyanidin types, procyanidins and
prodelphinidins, including their ratios and mean degree of polymerization

@D:
3. understanding the bioactivity of plant tannins (III and IV);

4. the effect of pH, tannin structure and tannin oxidative activity on the
formation of tannin—protein complexes (III);

5. the effect of tannin structure on the in vitro anthelmintic activity (IV); and

6. the possible mode of action of plant tannins as anthelmintic substances (IV)
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4. MATERIALS AND METHODS

4.1. Plant material, extraction and isolation

The plant materials (Fig. 18) used for the isolation of the studied HTs in articles
I-IV were collected during the summer 2010 and 2011 from south-western
Finland, including willowherb flowers (Epilobium angustifolium), silverweed
leaves (Potentilla anserina), herb bennet leaves (Geum urbanum), English oak
acorns (Quercus robur), purple loosestrife leaves and flowers (Lythrum
salicaria), meadowsweet flowers (Filipendula ulmaria), raspberry leaves
(Rubus idaeus), wood cranesbill leaves (Geranium sylvaticum), rose leaves
(Rosa rugosa), and burnet rose leaves (Rosa pimpinellifolia). Sea buckthorn
(Hippophae rhamnoides) and white birch (Betula pubescens) material was the
same as used in Moilanen et al. (2015) and Salminen et al. (2002), respectively.

Figure 18. Plants sources utilized in compound purification: Epilobium angustifolium
(A), Potentilla anserina (B), Geum urbanum (C), Quercus robur (D), Lythrum
salicaria (E), Filipendula ulmaria (F), Rubus idaeus (G), Geranium sylvaticum (H),
Rosa rugosa (1), Rosa pimpinellifolia (J), Hippophae rhamnoides (K), Betula
pubescens (L). Images UTU Natural Chemistry Research Group.
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The plant material was collected directly into 1 L glass bottles filled with
pure acetone. Glass bottles were left to extract at 4°C for 15 days. For the oak
acorns, the shells were first removed and the nuts were crushed using a hand
craft blender before addition of the acetone/water (4:1 v/v). In article III, after
maceration, the extract was filtered, the acetone was evaporated and the
remaining aqueous solution was frozen and lyophilized. In article IV, the
extraction was further continued after 15 days of maceration by replacing the
extract with 800 mL fresh 70% aqueous acetone and the plant material was
crushed to fine grit with a high performance dispenser (IKA® VWR VDI 25
adaptable homogenizer, VWR, Illinois, US) and mixed with a reciprocating
shaker for 48 hours. The extraction was repeated three times. Each time the
extraction solution was changed, the samples were vacuum filtered and, after
adding the new solvent, the samples were mixed with the high performance
dispenser. The filtered samples were evaporated to remove the acetone, and the
water-phases were extracted three times with ethyl acetate and re-evaporated to
yield aqueous solutions. The water phases of all extracts were mixed with a
slurry of Sephadex LH-20 material (in 100% water) and eluted with water,
methanol/water (1:1 v/v), methanol, acetone/water (4:1 v/v) and acetone in a
Biichner funnel (@ = 240 mm) in vacuo. The organic solvents were evaporated
from the fractions, and the remaining aqueous solution was frozen and
lyophilized.

The fractionation was further continued with Sephadex LH-20 column
chromatography. The samples were dissolved in 15 mL of ultrapure water,
filtered (0.45 um, PTFE) and applied on top of Sephadex LH-20 gel loaded into
a glass column (40 x 4.8 cm i.d., Kimble-Chase Kontes™ Chromaflex™) and
equilibrated with ultrapure water. The eluent profile depended on the HT to be
isolated; the solvents used were ultrapure water, aqueous methanol, and
aqueous acetone. Fractions were analyzed by UHPLC-DAD-MS (section 4.2.),
concentrated to the water phase and lyophilized. Selected Sephadex fractions
were further purified by preparative liquid chromatography.

The LC-DAD system used in the preparative and semipreparative LC
consisted of a Waters Delta 600 liquid chromatograph, a Waters 600 Controller,
a Waters 2998 Photodiode Array Detector and a Waters Fraction Collector III.
In preparative LC, the column was manually filled with LiChroprep RP-18 (40-
63 um) material (Merck KGaA, Darmstadt, Germany) and a binary solvent
system with methanol (A) and 1% aqueous formic acid (B) at a constant flow
rate of 8 mL min! was used. The elution protocol depended on the composition
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of the fractions; a typical gradient was as follows: 0—5 min, 100% B; 5-180
min, 0-40% A in B; 180—-220 min, 40-60% A in B; 220-240 min, 60-80% A in
B. The final purification of HTs was performed by semipreparative LC with a
Gemini C18 column (150 x 21.2 mm, 10 pum, Phenomenex) and the eluents
were acetonitrile (A) and 0.1% aqueous formic acid (B). Different gradients
were used for different HTs; for example, a typical gradient for acyclic ETs was
as follows: 0—5 min, 2% A in B; 5-51 min, 2-32% A in B; 51-55 min, 32-70%
A in B. All steps in the preparative and semipreparative purifications were
followed by UHPLC-DAD-MS (section 4.2).

4.2. UHPLC-MS/MS analysis

Sample analysis in articles I-IV was carried out with an Acquity UPLC system
(Waters Corporation, Milford, MA, USA) coupled with a Xevo TQ triple
quadrupole mass spectrometer (Waters Corporation, Milford, MA, USA). The
UPLC system consisted of a sample manager, a binary solvent manager, a
column and a diode array detector. The column used was a 100 mm X% 2.1 mm
i.d., 1.7 pm, Acquity UPLC BEH Phenyl column (Waters Corporation,
Wexford, Ireland). The flow rate of the eluent was 0.5 mL min™!. The elution
profile used two solvents, acetonitrile (A) and 0.1% aqueous formic acid (B):
0-0.5 min, 0.1% A in B; 0.5-5.0 min, 0.1-30% A in B (linear gradient); 5.0—
5.1 min, 30-90% A in B (linear gradient); 5.1-8.5 min, column wash and
stabilization. UV and MS data were collected from 0-6 min. Negative
ionization mode was used for MS analyses. ESI conditions were: capillary
voltage 2.4 kV, desolvation temperature 650 °C, source temperature 150 °C,
desolvation and cone gas (N2) 1000 and 100 L h'!, respectively and the
collision gas was argon. Catechin (1 pg mL') was used as a system standard to
monitor the stability of the ionization efficiency of the mass spectrometer. All
samples were filtered with a syringe filter (4 mm, 0.2 pm PTFE, Thermo Fisher
Scientific Inc., Waltham, USA) prior to the UHPLC-MS analyses.

The optimization of cone voltages and collision energies in articles I and II
was done by infusing aqueous solutions of different compounds and fractions
directly into the ESI source with a syringe pump at a flow rate of 5—40 pL min
!. For pure compounds, the concentrations of the aqueous solutions were 40 pug
mL"! and for the fractions 2 mg mL™!. The range of cone voltage and collision
energy varied between 10—170 V and 5-50 eV, respectively.
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4.3. MALDI-TOF-MS analysis

In article III, the stability of tannin—protein complexes were studied by
MALDI-TOF-MS. Tannin and protein were mixed in molar ratio 7:1
(polyphenol:protein) in pH 5 Mcllvaine (citrate-phosphate) buffer and
incubated at room temperature for 1 h. These control samples were analyzed
before and after ultrafiltration. Alternatively, pH 7 buffer solution was added to
adjust the final pH to 6.7 and the final tannin and protein concentrations to 0.32
and 0.045 mM, respectively. Samples were incubated at 37°C for 90 minutes
and analyzed before and after ultrafiltration, which removes unbound or loosely
bound polyphenol from the protein (Fig. 19). For ultrafiltration, samples were
transferred to filter units (Amicon® Ultra -0.5 Centrifugal Filter Devices 30kDa
MWCO) and repetitively washed with 100 mM KCI solution by adding 100 uLL
KCI solution and filtering the sample to 30 pul (16000xg, 5 min, 20 °C). The
final volume of all samples was adjusted to 300 uL with 100 mM KCI before
mixing with sinapinic acid (10 mg ml"! in 70% aqueous acetone) in 1:1 ratio
(v:v) and spotting 2 uL on the steel target plate. The MALDI experiments were
run with a Bruker Reflex III TOF mass spectrometer (Bruker, Billerica, MA)
using nitrogen laser (337 nm, Laser Science, Franklin, MA). For ionization,
60—90% of the maximum laser power was used and the detection range was
10-140 kDa. Three replicates for each sample were run. BSA in sinapinic acid
was used to calibrate the instrument. The data were handled by Compass
DataAnalysis software (version 4.0; Bruker Daltonics).

TP <> T + P

Figure 19. The ultrafiltration technique is based on the equilibrium between the
protein bound and unbound tannin during repetitive centrifugation with the filter unit.
T: tannin, P: protein.
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4.4. Gel electrophoresis

In article 111, the effect of pH (pH 5, pH 6.7 and pH 7.6) on the formation of
tannin—protein complexes was tested using Laemmli SDS-PAGE and native
borate PAGE. Tannin and protein were mixed in molar ratio 7:1
(polyphenol:protein) in pH 5 Mcllvaine (citrate-phosphate) buffer. After
incubating at room temperature for 1 h, additional buffer (pH 5, 7 or 9) was
added to adjust the final pH to 5, 6.7 or 7.6, and the final concentrations of
polyphenol and protein to 0.32 mM and 0.045 mM, respectively. The samples
were incubated at 37 °C for 90 min.

SDS-PAGE. After complex formation, samples were mixed with sample
buffer, held at 100 °C for 10 minutes and loaded on the gel in 2 pL aliquots. The
resolving gel was 10% acrylamide and the stacking gel 3% acrylamide
(Laemmli 1970). Gels were run at 160 V and stained with Coomassie blue or
with nitroblue tetrazolium (NBT) after semidry electroblotting to transfer the
analytes to nitrocellulose. While Coomassie blue reacts with protein, NBT
specifically binds to the quinone forms of polyphenols. Markers (Fisher
BioReagents, #BP3603500) comprised of 10 recombinant proteins covalently
coupled to a blue chromophore plus 10 kDa and 72 kDa reference bands tagged
with green and orange dyes, respectively.

Native PAGE. Borate was used to modify 10% native polyacrylamide gels.
After complex formation, samples were mixed with sample buffer and loaded to
the gel in 2 pL aliquots. Gels were run at 120 mV and stained with Coomassie
blue. To analyze the gels, the relative mobilities were calculated based on the
34 kD marker band. The relative mobility for the band representing the tannin-
complexed protein was expressed as a % of the relative mobility for the tannin-
free control. Three independently prepared samples were run for each reaction
condition.

4.5. Egg hatch assay and motility experiments

In article IV, the in vitro anthelmintic effect of HTs was tested by egg hatch
assay (EHA) and motility experiments. Parasite eggs were freshly obtained
from the feces of a donor sheep experimentally infected with H. contortus. To
separate the eggs from the feces material, a water suspension of feces was
filtered through a mesh (150 um pore size) and transferred into 15 mL
centrifuge tubes. The suspension was centrifuged (Heraeus Labofuge 400 R,
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2500 rpm, 3 min, 20 °C) and the supernatant replaced with tap water. After
repeating this three times, the supernatant was removed, replaced with saturated
sugar solution and centrifuged. The eggs were collected from the top of the
sugar solution into a 15 mL falcon tube, were washed with phosphate buffered
saline solution (PBS) to remove the sugar solution residues, and the egg
solution was diluted with PBS to a final concentration of 1000 eggs mL!. Then,
100 puL of the egg solution was pipetted into a 300 uL well of a 96 well plate
together with 100 pL of tested HT solutions. After mixing, the samples were
incubated for 48 h at 26 °C (Incucell - V 111, MMM Medcenter Einrichtungen
GmbH, Grifelfing, Germany). Thereafter, a drop of Lugol solution (1 g iodine
+ 2 g potassium iodide in 50 mL water) was added into each well to kill the
larvae and to facilitate microscopic examination (Axio Scope.Al, Carl Zeiss
Microscopy, LLC, US). The number of larvae, eggs with larvae inside and eggs
with embryo inside was counted per well (Fig. 20). Tested HTs were dissolved
in DMSO/PBS (4:96, v/v) and six different tannin concentrations, in four
replicates, were tested: 2.0, 1.5, 1.0, 0.5, 0.25 and 0.125 mM. In addition, a
positive control (thiabendazole at a concentration of 50 ug mL™! in DMSO/PBS
(10:90, v/v)) and a negative control (DMSO/PBS (4:96, v/v)), in five replicates,
were included in the assay. The negative control was run for each batch of egg
solution to take into account possible differences in the egg quality between
different runs and days. As the egg hatching percentage had daily variation, the
0% egg hatching inhibition level was calculated for each batch separately. The
percentage of inhibition was determined as follows:

5
A—-(Bx ;Z
Inhibition (%) = 11;‘ o x100%  (Eq.1)
B-(BX
(Bx 2,

D/’

where A is the number of unhatched eggs; B is the total number of eggs and
larvae; C is the number of unhatched eggs in control; D is the total number of
eggs and larvae in control; and i refers to replicate (1-5). The final inhibition
levels were presented as average egg hatch inhibition values and were
calculated as an average from all the individual dose averages.
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Empty egg

Egg with larvae

Egg with
blastomeres

Hatched larvae

Figure 20. In egg hatch assay, the number of larvae, eggs with larvae inside and eggs
with embryo inside was counted per well after the addition of Lugol solution. In
addition, the visibility of empty eggs was evaluated.

The “motility after hatching” test was carried out similarly as in EHA
except that approximately 150 eggs were pipetted per well and without adding
Lugol solution prior to microscopic examination. After 48 h incubation, the
number of motile and non-motile L1 and L2 stage larvae was counted per well.
As the motility percentage of the controls varied between the different batches,
the 0% motility inhibition level was taken into account in the calculations
similarly as in EHA.

4.6. Scanning electron microscopy

Cryo-scanning electron microscopy (cryo-SEM) images were obtained with a
FEG FEI Quanta 250 microscope (FEI Company, Eindhoven, Holland). The
larvae and eggs obtained from the in vitro incubation in control or HT solutions
(see section 4.5.) and were fixed with 2% glutaraldehyde in Serensen buffer
(0.1 M, pH = 7.4). The sample was deposited on a filter and the filter was
placed to a stub using graphite mounting media. Then the sample was frozen in
nitrogen slush at -200 °C and transferred under vacuum to the cryo-chamber
apparatus (Quorum PP3000T Cryo Transfer System) at -140 °C. The
temperature was then increased to -95 °C and maintained at this temperature
during 1 hour for sublimation. The sample was then metalized with Pd (60 s, 10
mA) and introduced into the microscope chamber where it was maintained at -
140 °C during the observation, operating at 5 kV accelerating voltage.
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S. RESULTS AND DISCUSSION

5.1. Development of UHPLC-MS/MS methods

The developments in LC-MS/MS instruments have enabled utilization of
compound-specific MRM methods for the identification and quantitation of
single polyphenols. In these methods, MS/MS conditions are optimized
separately for each precursor ion/product ion pair. Therefore, their use in
screening large amounts of plant samples for their bioactive polyphenol content
is laborious and time-consuming. However, since compounds belonging to the
same polyphenol group typically share similar functional groups, it has been
possible to measure the group-specific fingerprints for each polyphenol
subgroup by utilizing parent ion and neutral loss scan modes. For example,
galloylglucoses and gallotannins can be detected by the parent ion scan of m/z
169 (in negative mode) due to the fragmentation of gallic acid units (170 Da).
Unfortunately, due to the scanning technique, each parent ion scan is rather
time-consuming, depending on the selected m/z range. Thus, if including
multiple parent ion scans for the simultaneous detection of several polyphenol
sub-groups, the number of data points per single detection remains insufficient.
To provide a solution for the current methodological problems in tannin
analysis, non- scanning UHPLC-MS/MS methods measuring group-specific
fingerprints for the two main tannin subgroups, HTs and PAs, and in addition
for quinic acid derivatives, quercetin-, kaempferol- and myricetin-based
flavonol glycosides were developed in I and I1.

The MRM methods were optimized for different polyphenol subgroups by
direct flow injection experiments with reference compounds and/or
representative fractions for each polyphenol subgroup. Negative ion mode was
preferred over positive for all polyphenol subgroups studied due to the
increased sensitivity, less extensive fragmentation and clearer fragmentation
patterns. As hypothesized, fragmentation of the functional groups of different
polyphenol subclasses resulted in production of characteristic ions that were
selected to serve as precursor ions for the group-specific MRM methods (Fig.
21). For gallic acid derivatives, ellagitannins, quinic acid derivatives,
kaempferol-, quercetin- and myricetin-based flavonoids, the m/z values of these
fragments corresponded to gallic acid, ellagic acid, quinic acid, and kaempferol,
quercetin and myricetin aglycones, respectively. However, for PAs four types
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of fragments were used due to the quinone methide cleavage; both PC and PD
units yielded two different types of ions depending on whether they represented
the extension or terminal units of the corresponding PA molecule.

quinic acid
unit

galloyl
group

R, = H; catechin extension unit

R; = OH; gallocatechin extension unit ® Ry, R, = OH; myricetin unit

R, = H, R; = OH; quercetin unit
R4, R; = H; kaempferol unit

\". R; = H; catechinterminal unit
;‘/’ R; = OH; gallocatechin terminal unit

Figure 21. The functional group of each polyphenol subgroup which fragmentation
was utilized in the polyphenol group-specific multiple reaction monitoring methods.
HHDP, hexahydroxydiphenoyl.

The optimal cone voltage required for the maximal accumulation of the
precursor ions of each polyphenol subgroup varied depending on the structural
features of the studied molecules: e.g. the position of the functional unit, the
number of selected functional units in the polyphenol structure, the size of the
molecule and the general rigidness of the structure (see I and II for details). For
example, for the monomer tellimagrandin I and its dimeric and trimeric
macrocyclic oligomers, oenothein B and oenothein A, the optimal cone voltages
for the accumulation of the selected precursor ion, m/z 301, were 90 V, 100 V
and 130 V, respectively. Similarly, larger PAs required considerably higher
cone voltages for the maximal accumulation of the precursor ions than smaller
PAs, the optimal cone voltages ranging from 30 V to 150 V. Thus, it was not
possible to utilize a single cone voltage for the maximal accumulation of the
group-specific precursor ion for all different types of compounds in the same
polyphenol subgroup. On one hand, increasing the cone voltages beyond the
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optimum decreased the sensitivity due to extensive fragmentation of the ions
before they entered the first quadrupole. On the other hand, use of cone voltages
that were too low led to poor fragmentation of the original molecule and caused
lower sensitivity. Therefore, a range of cone voltages was used to maximize the
detection of variable compounds from the different polyphenol subgroups
(Table 4). The variability of the optimal cone voltages was largest for PAs and
finally, six different cone voltages were selected to be used in the method: the
lowest cone voltage was used for the detection of the monomeric PA units and
the five other cone voltages were selected to produce maximal precursor ion
intensities for the various PA structures (Table 4).

After selection of suitable product ions, the collision energies were
adjusted to produce maximal ion intensities. Herein, a slightly different
approach was used in I and II; while I utilized only one precursor ion —
product ion transition, in II, two transitions were selected for the detection of
each group of compounds. The first transition (quantifier) was used for
quantitation purposes and the second transition (qualifier) to distinguish
possible false positives in the detection. The separation between true and false
detection was done by calculating the ratio of the peak areas obtained by the
qualitative and quantitative MRM transitions; their ratio should be constant for
true detections while false positives result in a change in this ratio. The
selection of optimal collision energy for the maximal accumulation of the
selected product ion was straightforward due to the common precursor ions;
only one optimal collision energy per transition was available. The precursor
ions, product ions, cone voltages and collision energies utilized in I and II are
presented in Table 4.
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Table 4. Cone voltages (CV) and collision energies (CE) in the created multiple
reaction monitoring methods for the detection of different polyphenol subgroups.

PA Unit Precursor Product CVl Cv2 Cv3d CVv4 CV5 CVe CE
Ion (m/z)  lon(m/z) (V) (4] ™) (4] ™) ™) (V)

PC extension 287 125 30 50 75 85 110 140 15
PC terminal 289 145 30 50 75 85 110 140 15
PD extension 303 125 30 55 80 110 130 150 20
PD terminal 305 125 30 55 80 110 130 150 20
Polyphenol  Precursor Product Ion CV (V) CV Range CE Qual :
Class Ion (m/z) (quant/qual) ) (eV) Quant (%)*
(m/z)

Gallic acid 169 125/107 80 50-130 15720 32+8
derivatives
Ellagitannins 301 200/ 145 110 90-110 40/35 44 +3
Quinic acid 191 127/109 70 50-90 15720 39+3
derivatives
Quercetin 301 151/179 85 60-110 20/20 46 £2
derivatives

300 271/255 85 60-110 25/20 48+3
Kaempferol 285 229 /257 80 60-110 20/25 27+4
derivatives

284 25517227 80 60-110 25/25 99 +4
Myricetin 317 271/287 75 60-85 20/25 14+1
derivatives

316 2717287 75 60-85 20/25 61+2
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With the methods developed, fingerprints of ETs, gallic acid and quinic
acid derivatives, quercetin, kaempferol and myricetin glycosides as well as PAs
can be recorded together with UV chromatograms and full scan mass spectra.
Thus, a broad overview of fingerprints of eight common polyphenol classes can
be achieved, and with correctly selected standards, this information can be
transformed into quantitative data. In addition, as the PA MRM methods were
based on the QM cleavage, it was possible to determine both the PC/PD ratios
as well as the mean degree of polymerization for the PAs present in any studied
sample. The latter feature was obtained by measuring the total peak areas
obtained for PC and PD extension and terminal units separately, which enabled
to develop an equation for the calculation of the PA mean degree of
polymerization (see I). Furthermore, since PA fragmentation takes place after
the chromatographical separation, the method can be used to create sample-
specific fingerprints of the PA composition, PC/PD ratio and mean degree of
polymerization throughout the chromatographic hump produced by the larger
PA oligomers and polymers. This provides a straightforward visual tool, but
also a quantitative comparison of different PA containing samples. For
example, in Figure 22, PA concentration (Fig. 22A), PC and PD concentrations
(Fig. 22B), PC to PD ratio (Fig. 22C) and mean degree of polymerization (Fig.
22D) of three plant samples are plotted against retention time (Salminen et al.,
unpublished material). This facilitates the use of the fingerprinting method to
find differences or similarities in plant samples, which then can be grouped
based on their chromatographic profiles.
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Figure 22. PA concentration (A), PC (B, solid line) and PD (B, dashed line)
concentrations, PC to PD ratio (C) and mean degree of polymerization (D) as a
function of retention time for Rhododendron 'Cunningham's White' (black lines),
Rhododendron canadense (red lines) and Thuja plicata (grey lines). Salminen et al.,
unpublished material.

5.2. Analysis of tannin—protein interactions

It has been suggested that tannins may affect the protein structure and function
by two different mechanisms: at low to neutral pH, tannins could reversibly
bind to protein while at increased pH or in presence of oxidizing enzymes, the
tannin-quinones formed could irreversibly bind to proteins (Hagerman 2012).
Although the oxidative activity of tannins has been connected to their ability to
form highly stabilized adducts with proteins (Appel, 1993; Barbehenn et al.
2006), this issue has not been verified by experimental studies. In III, the
objective was to define the effect of pH on the formation of highly stabilized
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tannin—protein complexes and to see how the tendency to form these adducts is
related to tannin structure and oxidative activity.

The model compounds were selected to represent low oxidative activity
(PGG), medium oxidative activity (tellimagrandin I, oenothein B and oenothein
A) and high oxidative activity (vescalagin, castalagin, vescavaloninic acid and
epigallocatechin gallate). To study the effect of rather moderate changes in pH
on the formation of tannin—protein complexes, Laemmli SDS-PAGE and native
PAGE experiments were performed for samples where tannin and BSA had
been incubated at pH 5, pH 6.7 or pH 7.6. The results showed that already the
change from pH 5 to pH 6.7 affected the formation of highly stabilized tannin—
protein complexes. At pH 5, only BSA treated with epigallocatechin gallate or
vescalagin resulted in a distinguishable response to NBT staining while at pH
6.7, the incubation of BSA with any of the studied compounds, except PGG,
resulted in response to NBT. Further, more intensive responses to NBT were
achieved after incubation at pH 7.8 than after the incubation at pH 6.7.
However, as the NBT staining is based on cyclic redox reactions (Paz et al.
1991), this increase in intensity at higher pH did not explicitly indicate more
tannin molecules were bound to BSA. In addition, one must also consider that
the redox capacity of the tannins at different pH might have affected the
response.

To obtain more comparable data, the incubated samples were analyzed
with native PAGE which separates proteins according to their mass to charge
ratio instead of only mass. Thus, the more tannin bound to the protein, the
further the complex travels on the gel in comparison to native protein. Analysis
of the gel shifts suggested that the pH induced differences in the tannin—protein
complexes formed (Fig. 23A). At pH 5, a small shift was observed between
native BSA and BSA incubated with tellimagrandin I, vescalagin or
epigallocatechin gallate. At pH 6.7, no shift appeared for BSA treated with
PGG, while for the other compounds the gel shifts varied between 3% and 8%.
The incubation at pH 7.6 resulted in the most distinct differences in the gel
shifts between the tannin treated and native BSA; for the less oxidatively active
compounds, PGG, tellimagrandin I, oenothein B and oenothein A, the shifts
were 4-5% while for the tannins with high oxidative activities, vescalagin,
castalagin, vescavaloninic acid and epigallocatechin gallate, the gel shifts were
7-11%. This indicative relationship between the tannin oxidative activity and
the gel shift of the tannin-treated BSA at pH 7.6 was confirmed by plotting
these two measures against each other (Fig. 23B). By contrast, the mobility
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shifts of tannin-treated BSA at pH 5 and pH 6.7 did not correlate with the
measured oxidative activity (R’ = 0.02 and 0.15, respectively). These results
showed that the oxidatively more active compounds influence the mobility of
the BSA to a greater extent, consistent with being more reactive with the
protein. In other words, the compounds with low oxidative activities had a fixed
stoichiometry that did not change with pH, while with compounds with high
oxidative activity the stoichiometry was affected by the pH, so that more tannin
was bound to BSA at increased pH.
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Figure 23. The relative mobility of the tannin treated BSA band in native PAGE at
different pH, expressed as a % of the relative mobility for its matched untreated band
(A) and the correlation between the BSA mobility at pH 7.6 and the tannin oxidative
activity (B).

Other changes observed on the BSA bands after incubation with tannin
were the width of the shifted bands, which indicated heterogeneity of the
tannin—protein complexes. The variation was consistent with the gel shifts; the
protein bands started to be broader at the pH values where the mobility of the
complex increased. The broadness of the protein bands correlated somewhat
with the oxidative activity of the polyphenol. The most oxidative polyphenols
(vescavaloninic acid, epigallocatechin gallate, castalagin and vescalagin) had
bands that were broader when pH was high compared to the polyphenols with
medium (tellimagrandin I, oenothein B and oenothein A) or low oxidative
activities (PGQG).
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Tannin—protein complexes formed at pH 5 and pH 6.7 and their stability
was further studied by MALDI-TOF-MS. The extensive precipitation of BSA
by PGG at both pH values and oenothein A at pH 5 interfered with the
ionization process and thus no signals were detected for these samples. At pH 5,
only oenothein B formed complexes with BSA that were not removed by
ultrafiltration. The MALDI spectra obtained after the incubation of BSA with
vescalagin, castalagin and vescavaloninic acid indicated unstable complexes as
they were removed by ultrafiltration. The smallest compounds studied,
tellimagrandin 1 and epigallocatechin gallate, did not form detectable
complexes with BSA at pH 5. On the contrary, at pH 6.7, all the compounds
studied formed detectable complexes with BSA. The MALDI spectra of BSA
incubated with tellimagrandin I, oenothein B, vescalagin, castalagin and
epigallocatechin were similar before and after the ultrafiltration, suggesting that
the main tannin—protein complexes formed were highly stabilized. However, for
BSA incubated with oenothein A and vescavaloninic acid, the ultrafiltration
caused the peaks at the higher molecular weight to disappear, indicating that
both stable and unstable tannin—protein complexes were present.

These results indicated that complex formation was affected by a
combination of pH, tannin structure and tannin oxidative activity. The effect of
tannin size effect could be seen when comparing the MALDI spectra of
tellimagrandin I, oenothein B and oenothein A at pH 6.7 before and after the
ultrafiltration (Fig. 24A,B). The largest complexes (clear signals) between BSA
and oenothein B had an average molecular weight of ~70.9 kDa both before and
after the ultrafiltration, which corresponded to complexes containing a
maximum of three oenothein B molecules bound to one BSA. For oenothein A,
the maximum distinguishable peak value at pH 7 was at m/z ~85.2 kDa before
ultrafiltration, while after the ultrafiltration it was ~75.4 kDa. These values
corresponded to complexes containing a maximum of eight and four oenothein
A molecules bound to one BSA, respectively. Incubation of BSA with the
monomeric precursor of both compounds, tellimagrandin I, did not result in
additional peaks in the MALDI spectra but instead a slightly broadened hump
was observed.
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Figure 24. MALDI-TOF-MS spectra for tellimagrandin I (black line), oenothein B
(dark grey line) and oenothein A (light grey line) before (A) and after (B)
ultrafiltration. The protein precipitable phenolics method, in which the amount of
protein bound tannin was measured by analytical HPLC after 30 min incubation at pH
7, showed differences in the ability of the three compounds to precipitate BSA (C). The
dashed line shows the amount of tannin added in the MALDI experiments (added BSA
4.5 nmol).

The dimeric oenothein B consists of two tellimagrandin I monomers linked
via two m-DOG (Yoshida et al. 2009) bonds, and thus is a macrocyclic
structure in nature. In the trimeric oenothein A, the additional monomeric unit
is attached by one m-DOG-type linkage, increasing both the size and the
flexibility of the molecule. While the rigid structure of the former caused the
formation of only highly stabilized complexes with BSA, the flexibility brought
to the latter by the extra tellimagrandin I unit enabled the formation of both
unstable and highly stabilized tannin—protein complexes. This is in agreement
with a previous study with isothermal titration calorimetry, where a similar
trend was observed for the complexation of the tellimagrandin I based
oligomeric ET series with BSA (Karonen et al. 2015). In addition to the smaller
molecular size, one explanation for the inefficient complex formation of
tellimagrandin I with BSA could be the molar ratio used (32:4.5;
tannin/protein). Experiments in which the amount of BSA bound tannin was
measured as a function of tannin added to BSA solution (at pH 7) suggested
that the tannin concentration selected for the MALDI-TOF-MS experiments
was not ideal for tellimagrandin I to efficiently bind BSA (Fig. 24C).

The investigation of the MALDI-TOF-MS results in the light of oxidative
activity indicated the same trend as the gel electrophoresis experiments; the
oxidatively more active compounds were more sensitive to the change of pH.
Altogether, it could be concluded that at low pH, the ability of tannins to non-
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covalently bind with protein is an absolute pre-requisite for the formation of
highly stabilized complexes; this seemed to occur with tannins having low or
intermediate oxidative activities. At high pH, however, the tannin oxidative
activity directly correlated with the formation of highly stabilized tannin—
protein complexes. Although the results suggested the nature of the highly
stabilized tannin—protein complexes to be covalent and the unstable complexes
to be driven by non-covalent interactions, none of the methods utilized in III
unambiguously describe the tannin—protein complexes as non-covalent or
covalent. Thus, in future studies, emphasis will be put on determining whether
covalent bonds stabilize the tannin-protein complexes formed at elevated pH.

5.3. Tannins as anthelmintics

In IV, 33 purified HTs and their most common hydrolysis product, gallic acid,
were tested against the egg hatching of H. contortus to provide data on the
structure—activity relationships between individual tannins and their in vitro
anthelmintic activity. The HTs studied were selected to represent a wide variety
of HT structures from ten different biosynthetic branches of the HT pathway
(Table 5).
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Table 5. The compounds studied in article IV.

Number Compound MW Number Compound MW
1 gallic acid 170.1
simple galloylglucoses macrocyclic m-DOG oligomers
2 monogalloylglucose 332.3 23 oenothein B 1569.1
3 tetragalloylglucose  788.6 24 oenothein A 2353.6
4 pentagalloylglucose  940.7 25 tetramer 3138.2
gallotannins 26 pentamer 3922.7
5 hexagalloylglucose  1092.8 27 hexamer 4707.2
6 heptagalloylglucose 1244.9 m-DOG oligomers
7 octagalloylglucose  1397.0 28 rugosin E 1723.2
monomeric HHDP* esters 29 rugosin D 1875.3
8 tellimagrandin I 786.6 m-GOG oligomers
9 tellimagrandin II 938.7 30 agrimoniin 1871.3
10 pedunculagin 784.5 31 gemin A 1873.3
11 casuarictin 936.7 m-GOD oligomers
12 isostrictinin 634.5 32 sanguiin H6 1871.3
monomeric DHHDP* esters 33 lambertianin C 2805.9
13 geraniin 952.6 C-glucosidic oligomers
14 carpinusin 952.6 34 salicarinin A 1869.2
C-glucosidic ET* monomers
15 vescalagin 934.6
16 castalagin 934.6
17 vescavaloninic acid  1102.7
18 castavaloninic acid  1102.7
19 stachyurin 936.7
20 casuarinin 936.7

21 hippophaenin B 1104.8
22 hippophaenin C 1104.8

*HHDP: hexahydroxydiphenoyl, DHHDP: dehydrohexahydroxydiphenoyl, ET: ellagitannin.

The egg hatching inhibition percentages varied considerably between the
compounds and the concentrations tested. Most commonly the anthelmintic
effects are reported as EC50 (half maximal effective concentration) values but
as only 16 of the tested HTs reached 50% inhibition levels, this could not be
used to rank them. Instead, the activities were presented by taking the whole
concentration range into account and an average inhibition value was calculated
for each compound, and the compounds were ranked based on this (Fig. 25).
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Figure 25. The studied 33 hydrolyzable tannins and gallic acid in the order of
increasing average egg hatch inhibition activity. The average egg hatch inhibition was
calculated as the average % unhatched eggs compared to control at the tested
concentration range (2.0, 1.5, 1.0, 0.5, 0.25 and 0.125 mM). See compound identities in
Table 5.

After calculating the average inhibition values for each compound, it was
possible to compare those against the chemical characteristics of their
structures. Comparison of the HT molecular weight against the in vitro
anthelmintic activity showed that compounds with a molecular weight below
700 or above 2000 Da had no or very little effect on the egg hatching of H.
contortus. On the contrary, the most active compounds had molecular weights
relatively close to that of pentagalloylglucose, 940 Da, (Fig. 26A). However,
this type of match did not guarantee a high activity, if the structures were
biosynthetically distant from pentagalloylglucose. For instance, tellimagrandin
II (MW 938 Da) is the immediate biosynthetic product from
pentagalloylglucose and it was the second most active of the tested HTs.
However, casuarictin, vescalagin and castalagin, which also have similar
molecular weights to pentagalloylglucose (936 Da, 934 Da and 934 Da,
respectively) but are biosynthetically distant from pentagalloylglucose, had
significantly smaller activities (82% vs. ~10%). This dependence on the
biosynthetic closeness to pentagalloylglucose could be seen also e.g. from the
change in average activity of the monomeric HTs with cyclic glucose core
along their proposed biosynthetic pathway (Fig. 26B).
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Figure 26. Average anthelmintic activity vs. molecular weight plot (A) and the change
in the anthelmintic activity on the biosynthetic pathway of the studied monomeric HTs
with cyclic glucose core (B). G, galloyl group; H, hydrogen; HHDP,
hexahydroxydiphenoyl group. 1GG, 4GG, 5GG, 6GG, 7GG and 8GG indicate mono-
to octagalloylglucose, respectively.

The structural differences between the 33 HTs were further compared
compound-by-compound to reveal possible relationships between the tannin
structure and their anthelmintic activity. This facilitated a tentative
determination of the effect of a certain structural feature of an HT on the egg
hatching inhibition activity (Fig. 27). Based on these comparisons, it was
possible to create an equation for the estimation of the inhibitory activity on the
egg hatching of H. contortus. To ensure enough degree of freedom in the
equation, only those structural features that had a major effect on the activity
were included and coefficients reflecting the relative impact of each structural
feature were adjusted in Microsoft Excel to produce activity estimates that
would best correlate with the measured activities. In comparison to the
measured values, the final equation enabled an estimation of the average egg
hatch inhibition activities of the studied HTs [R = 0.89 (IV)]. The equation
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created provided a tool, if not to calculate the absolute activities, but especially
to estimate whether plant HTs have low, moderate or high anthelmintic

activities.

Figure 27. Compound-to-compound comparisons enabled to conclude whether a
specific structural feature of a HT had a positive (green thumb) or negative (red thumb)
effect on the egg hatching inhibition activity. For example, compound 20 vs. 19, a-OH
vs. f-OH at C1 (A); 8 vs. 9, OH vs. a galloyl group at C1 (B); 9 vs. 11, 2 x galloyl
group vs. hexahydroxydiphenoyl group (C); 15 vs. 19, nonahydroxytriphenoyl group
vs. galloyl and hexahydroxydiphenoyl group (D); 19 vs. 21, hexahydroxydiphenoyl
group vs. valoneoyl group. See compound identities in Table 5.

Based on the results from EHA, twelve structurally different compounds
were selected for further testing against the motility of hatched L1 and L2 stage
larvae of H. contortus. In general, the most effective egg hatching inhibitors
also markedly decreased the motility and the least effective egg hatching
inhibitors were also less active in the motility tests. However, all the
compounds tested were more effective in inhibiting the larval motility than the
egg hatching of H. contortus (Fig. 28). This was interesting especially when
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considering in vivo conditions and the life cycle of H. contortus, in which the
inhibition of motility may be more relevant than the inhibition of egg hatching.
The motility inhibition values were calculated as the percentage of moving and
non-moving larvae. In addition, all studied compounds decreased motility of the
larvae already at the lower concentrations tested, progressively leading to the
total immobilization at high concentrations.
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Figure 28. The inhibitory effect of selected HTs on the egg hatching (black lines) and
motility (red lines) of H. contortus: gallic acid (A), monogalloylglucose (B),
pentagalloylglucose (C), heptagalloyglucose (D), tellimagrandin I (E), tellimagrandin
II (F), casuarictin (G), geraniin (H), castalagin (I), stachyurin (J), casuarinin (K) and
oenothein B (L). GA, gallic acid; ET, ellagitannin; HT, hydrolyzable tannin.

Several observations suggested the possible modes of action by which the
compounds inhibited the egg hatching and motility of H. contortus. Firstly, the
amount of unhatched eggs with the embryo inside was constant in both control
and HT solutions and only the amount of hatched vs. unhatched eggs varied
depending on the tests. Secondly, before the addition of the Lugol solution,
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most of the larvae were still moving inside the egg. Thirdly, the SEM results
showed that when the eggs were incubated with pentagalloylglucose, the eggs
were fully covered with chip-like layers of aggregates. On the contrary, no
visible cover was observed when the eggs were incubated with the oxidatively
more active casuarinin. For both compounds, aggregates located at the buccal
capsule and the anterior amphidial channels of L1 and L2 stage larvae were
observed after incubation, but for pentagalloylglucose these aggregates were
more extensive and covered also parts of the surface of the other cephalic areas.
Altogether, these observations indicated that the studied HTs were not prone to
penetrate inside the eggs and disturb the development of the embryo directly.
More likely, the HTs bound to the surface of the egg shell and either disturbed
the proteins involved in the hatching process or the HTs changed the egg shell
so that the penetration of the larvae through the shell was disabled. The partially
different effect of the two compounds supported the assumption that different
types of compounds may be effective via different modes of action. In regard to
the hatched L1 and L2 stage larvae, the observed changes could suggest that the
possible mode of action in inhibiting the motility occurred via binding to the
surface of the larvae. Interestingly, it was observed in the cryo-SEM
experiments that the eggs incubated with pentagalloylglucose had more often
bacteria on their surfaces than the eggs incubated with casuarinin or in the
control solution (unpublished results, Fig. 29). It was difficult to interpret this
observation, but it could somehow be related to the anti-microbial properties of
HTs (Buzzini et al. 2008); for example, pentagalloylglucose bound to the egg
surface could bind bacteria and cause the observed effect.

Figure 29. The egg of H. contortus incubated in control solution (A) and in the
presence of pentagalloylglucose (B). In (B), clusters of microbes can be seen on the
surface of the egg. Images are from cryo-scanning electron microscopy.
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The prediction of the cause for the witnessed in vitro anthelmintic activity
in IV was further complicated by the results that showed that the studied
compounds underwent hydrolysis and oxidation during the 48h incubation time.
The UHPLC-MS/MS analysis showed that for pentagalloylglucose, all
degradation products were derivatives formed by the loss of galloyl group(s).
With full scan MS it was possible to identify the main peaks as tetra-, tri- and
digalloylglucoses =~ which are = common  hydrolysis  products  of
pentagalloylglucose. The results obtained with casuarinin indicated that both
hydrolysis and oxidation occurred. These observations could partially explain
the observed differences in the HT activities between EHA and motility
inhibition assays. In EHA experiments, the HTs could bind to the egg shell
immediately after adding the tannin to the incubation solution and before
extensive degradation of the tannin occurred. On the contrary, in the motility
inhibition experiments, the larvae were hatched first after ~24 hour incubation.
Thus, at that point the possible degradation of the original tannin structures
could have already occurred and the resulting hydrolysis and oxidation products
be less or more active than the initial tannin. Altogether, three different modes
of action by which HTs could disturb the egg hatching and the motility of the
hatched larvae are suggested: (1) HTs with high protein precipitation capacity
may bind to the eggs and larvae via non-covalent bonds, (2) HTs with high
oxidative activity may be auto-oxidized and the oxidation products bind
covalently to the egg and larvae and (3) HTs could undergo hydrolysis and the
hydrolysis products may interact with the eggs and larvae via non-covalent or
covalent interactions.
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6. CONCLUSIONS

The methodological problems associated with tannin research were confronted
by developing rapid UHPLC-MS/MS methods for the qualitative and
quantitative fingerprint analysis of eight different polyphenol subgroups
directly from crude plant extracts. These methods utilized rapid
chromatography of different kinds of polyphenols achieved with UHPLC and
their fragmentation into group-specific precursor and product ions for detection
with multiple reaction monitoring methods. The developed methods provide a
user-friendly, robust and fast addition to the chemical tools currently used for
the qualitative and quantitative screening of large numbers of samples for their
bioactive polyphenol types and contents.

The second main result in this thesis was the establishment of a
relationship between the tannin structure and the in vitro anthelmintic activity.
It was shown that tannin bioactivity against H. contortus can be predicted rather
precisely from their structural features. In addition, the studies with scanning
electron microscopy suggested the possible mode of action of tannins against
nematodes to be their binding to the surface structures of both nematode eggs
and larvae.

Regarding tannin—protein interactions, both tannin structure and pH have a
strong influence on the formation of tannin—protein adducts and the stability of
these adducts. While more basic pH had a stabilizing effect on the tannin—
protein complexes, the tannin oxidative activity was directly linked with their
tendency to form highly stabilized complexes with BSA at increased pH. Thus,
it was concluded that tannin oxidative activity may in part determine the range
of pH where the tannin is able to interact with proteins and express bioactivity.

To conclude, while this thesis provided many new findings regarding
tannin bioactivity, at least equally as many new questions emerged. The
mechanism of action by which tannins possess bioactivity provides an
intriguing objective for the future studies. Also, more detailed work on the fate
of plant tannins in different conditions and, correspondingly, the precise
determination of the structural units that actually cause the observed bioactivity,
will provide further evidence on their positive biological effects.
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