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ABSTRACT 

Electrochromism, the phenomenon of reversible color change induced by a small electric charge, 

forms the basis for operation of several devices including mirrors, displays and smart windows. 

Although, the history of electrochromism dates back to the 19th century, only the last quarter of 

the 20th century has its considerable scientific and technological impact. The commercial 

applications of electrochromics (ECs) are rather limited, besides top selling EC anti-glare mirrors 

by Gentex Corporation and airplane windows by Boeing, which made a huge commercial success 

and exposed the potential of EC materials for future glass industry. It is evident from their patents 

that viologens (salts of 4,4ʹ-bipyridilium) were the major active EC component for most of these 

marketed devices, signifying the motivation of this thesis focusing on EC viologens.  

Among the family of electrochromes, viologens have been utilized in electrochromic devices 

(ECDs) for a while, due to its intensely colored radical cation formation induced by applying a 

small cathodic potential. Viologens can be synthesized as oligomer or in the polymeric form or as 

functionality to conjugated polymers. In this thesis, polyviologens (PVs) were synthesized starting 

from cyanopyridinium (CNP) based monomer precursors. Reductive coupling of cross-connected 

cyano groups yields viologen and polyviologen under successive electropolymerization using for 

example the cyclic voltammetry (CV) technique. For further development, a polyviologen-

graphene composite system was fabricated, focusing at the stability of the PV electrochrome 

without sacrificing its excellent EC properties. High electrical conductivity, high surface area 

offered by graphene sheets together with its non-covalent interactions and synergism with PV 

significantly improved the electrochrome durability in the composite matrix. The work thereby 

continued in developing a CNP functionalized thiophene derivative and its copolymer for possible 

utilization of viologen in the copolymer blend. Furthermore, the viologen functionalized thiophene 

derivative was synthesized and electropolymerized in order to explore enhancement in the EC 

contrast and overall EC performance. The findings suggest that such electroactive 

viologen/polyviologen systems and their nanostructured composite films as well as viologen 

functionalized conjugated polymers, can be potentially applied as an active EC material in future 

ECDs aiming at durable device performances. 
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TIIVISTELMÄ 

Elektrokromismi on ilmiö, jossa pienellä sähköisellä varauksella saadaan aikaan palautuva 

värinmuutos. Monien laitteiden, kuten peilien, näyttöjen tai älykkäiden ikkunoiden, toiminta 

perustuu tähän ilmiöön. Historiallisesti elektrokromismi on tunnettu 19. vuosisadalta asti, mutta 

vasta 20. vuosisadan viimeinen neljännes on osoittanut ilmiön huomattavan tieteellisen ja 

teknologisen merkityksen. Näiden elektrokromismiin perustuvien tekniikoiden kaupallinen 

hyödyntäminen on vielä melko vähäistä. Tähän asti myydyimpiä tuotteita ovat olleet 

häikäisysuojatut peilit (Gentex Corporation) ja lentokoneen ikkunat (Boeing), jotka olivat valtavia 

kaupallisia menestyksiä osoittaen tekniikan mahdollisuudet tulevaisuuden lasiteollisuudessa. 

Patenteista selviää, että viologeenit (4,4ʹ-bipyridiniumin suolat) ovat yleisimpiä aktiivisia 

komponentteja useimmissa markkinoilla olevissa sovelluksissa, minkä perusteella tässä 

väitöskirjassa keskitytään viologeeneihin.    

Erilaisista sähköväriaineista viologeenejä on käytetty elektrokromisissa laitteissa jo jonkin aikaa 

johtuen niiden voimakkaan värisestä radikaalikationista, joka saadaan syntymään pienellä 

katodisella jännitteellä.Viologeenejä voidaan syntetisoida oligomeerinä tai polymeerinä, sekä 

toiminnallisena ryhmänä osana konjugoitua polymeeriä.  Tässä väitöskirjassa polyviologeenit 

syntetisoitiin käyttämällä lähtöaineena syanopyridinium-pohjaista monomeeriä.  Ristiinkytkettyjen 

syanoryhmien pelkistävä kytkeytyminen tuottaa viologeeniä ja polyviologeeniä peräkkäisissä 

sähköpolymerisaatioreaktioissa, mikä voidaan toteuttaa käyttämällä menetelmänä esimerkiksi 

syklistä voltammetriaa. Systeemiä kehitettiin edelleen siten, että polyviologeenistä ja grafeenista 

valmistettiin komposiitti, jossa parannettiin polyviologeenin stabiilisuutta, menettämättä sen 

erinomaisia elektrokromisia ominaisuuksia. Grafeenilevyjen hyvä sähköinen johtavuus ja suuri 

pinta-ala yhdistettynä ei-kovalenttisiin vuorovaikutuksiin ja synergiaetuihin PV:n kanssa paransi 

huomattavasti komposiittimatriisin elektrokromista kestävyyttä. Työtä jatkettiin kehittämällä 

CNP:llä funktionalisoitu tiofeenijohdos ja vastaava polymeeri, mikä mahdollisti viologeenin 

hyödyntämisen kopolymeeriseoksessa. Lisäksi syntetisoitiin ja sähköpolymeroitiin viologeenillä 

funktionalisoitu tiofeenijohdos, jonka avulla tutkittiin elektrokromisen kontrastin ja 

kokonaissuorituskyvyn parantumista. Havainnot osoittavat, että sähköisesti aktiivisia 

viologeeni/polyviologeenisysteemejä ja niistä valmistettuja nanorakenteisia komposiittikalvoja, 

sekä myös viologeenillä funktionalisoituja konjugoituja polymeerejä on mahdollista hyödyntää 

aktiivisena elektrokromisena materiaalina tulevissa suorituskyvyltään kestävissä elektrokromisissa 

laitteissa. 
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1. INTRODUCTION 

In today’s world, major reforms are essential towards energy consumption, storage and utilization, 

which will impact on the quality of life, global economic welfare, productivity and sustainability [1]. 

In particular, renewable energy storage technologies are beneficial if they are environmentally 

friendly. By now, glazing materials are well-known, which selectively controls the spectral aspect 

of radiation [2]. Although the primary function of the glass is to transmit light, a low-emitting thin 

coating layer provides control over the heat transmitted, thereby rejecting unwanted solar infrared 

[3,4]. This is particularly important due to a significantly high demand of using electrically driven 

air conditioning in most parts of the world, which ultimately require higher energy and is expensive 

[5]. Switchable glass thus controls incoming and outgoing light and heat to increase energy-saving 

effects, especially beneficial in buildings and construction industry. The term ‘smart windows’ was 

introduced for this kind of fenestration in 1984 [6]. Dynamic windows not only promise energy 

savings but also enhance the outside view in high-glare sun orientations [7]. Moreover, such 

windows reflect or transmit both visible and infrared light, thus improving the energy efficiency 

and indoor comfort by reducing lighting, heating or cooling (Fig. 1) [8]. These effects are due to a 

particular type of smart material, known as ‘chromogenics’ that can be used for large area glazing 

in buildings, automobile sunroofs, plane windows, and for certain types of electronic displays [9].  

 

 

Fig. 1. A principle of window technology, where the window blocks solar heat (left) during warm 

weather conditions, without a noticeable change in visible light. During cold weather periods, near 

infrared (NIR) solar heat passes through the window (right).  
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1.1. Chromogenic materials 

Chromogenic materials, usually described as “chameleonic”, change their color reversibly as a 

response to the changes in the environmental conditions (e.g. temperature, light, pressure etc.) or 

by externally induced stimuli [10]. Such change in color is associated with the change in the 

electronic state of the molecule, mainly π or d electron state, often induced by a stimulus, 

consequently resulting in modified optical properties, such as absorption, reflection, transmission 

or emission [11]. When the stimulus ceases, the material returns to its original electronic state, 

restoring the original optical properties, hence the initial color or transparency [12]. Chromogenic 

materials are thus grouped according to the external stimulus or energy source used which incites 

the change in optical properties [13]. A general frame of reference of the most important 

chromogenic categories is given below. 

Photochromic materials exhibit color change when exposed to UV light. The commercial applications 

of photochromism are in ophthalmic products like photochromic lenses and sunglasses [14]. 

Various polymer based materials are used for this purpose.  

Thermochromic materials change their color with temperature. Besides liquid crystals, aerospace 

industry has been particularly benefited by the thermochromic technology altering the emission 

properties of the surfaces upon heating [15]. A well-known product in this category is a ceramic 

mug which changes color when a hot drink is poured in and the coloration fades slowly when the 

mug cools down to room temperature, attaining its original state [16].  Some transition metal oxides 

like vanadium dioxide (VO2) possess thermochromic properties [17]. 

Gasochromic materials alter their optical properties in response to exposed gases like H2. Gasochromic 

films consist of a gasochromic layer and a very thin film of catalyst where the gas adsorbs and 

dissociates, consequently giving color to the gasochromic material [18]. Tungsten oxide (WO3) is 

widely used as gasochromic material [19]. An inexpensive layer configuration and a high solar 

transmittance make these materials suitable for large window applications [20]. 

Electrochromic materials show a change in color in response to an external applied electric field. 

Electrochromism is probably today’s most versatile chromogenic technology due to its easy color 

control mechanism. Additionally, it can easily be used in combination with several external stimuli 

such as stress or temperature [21]. Switchable antiglare mirrors are dominating the market for 

electrochromic technology and several companies making millions of dollars.   

In addition to those mentioned above: Chemochromic (depending on chemical changes) [22], 

mechanochromic (depending on mechanical stimulus like stress) [23], solvatochromic (depending 
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on change in solvent) [24] and biochromic (depending on biological stimulus) [25] materials are 

recognized in the class of chromogenics. 

A recent study from the Madison Gas and Electric, a US-based company provided a brief overview 

of energy index for cooling and for electric lighting of different chromogenic-based glazing types, 

as demonstrated in Fig. 2 [26]. Obviously, clear glass lets in both solar heat and visible light, and 

therefore needs a small electrical lighting energy, however is disadvantageous with regard to cooling 

energy. In contrary, tinted or reflective glass need less cooling energy but increases the demand for 

lighting. Among the different chromogenic technologies, electrochromic glazings are found to have 

strong advantages to improve performance in both parameters, i.e. for cooling energy and for 

electric lighting energy.  

 

 

Fig. 2. Lighting energy vs. cooling energy for different types of glazing. (a Lighting savings assume 

the use of a switched or dimmable electric lighting control.) 
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1.2. Electrochromic materials 

Electrochromic (EC) materials possess the property of evocation or alteration of color induced 

either by an electron-transfer (redox) process or by a sufficient electrochemical potential [27]. 

Electrochromism is thus a result of switching between redox states that generates different 

electronic absorption bands in the visible spectral region. A spectral absorption arise either from a 

moderate internal electronic excitation or an intervalence optical charge transfer where the 

chemical species have two centers of differing valence or oxidation state, as given in eq. 1.  

     ⎻	       (1) 

The color change is commonly between a transparent (bleached) state and a colored state. Despite 

the discovery of electrochromism in 19th century by S.K. Deb and J.A. Chopoorian (in 1968), only 

the last quarter of the 20th century could really see the potential of EC materials, evident by 

increasing number of reviews and scientific publications [28-37]. Though materials are thought to 

be electrochromic when noticeable visible color changes are observed under applied electric 

potential, with time, the definition of electrochromism is getting broader [38]. Recent studies on 

EC materials suggests the modulation of electromagnetic radiation in the near infrared (NIR) [39-

42] and microwave regions [43-45], and the perceived color is a response of detectors to these 

multispectral radiations. The electrochromic technology leaning on tuning of light either reflected 

or transmitted, has already been commercially utilized in several applications. Some of these 

applications are smart windows and antiglare mirrors for cars and buildings [46], active optical 

filters (e.g. sunglasses) [47], controllable aircraft canopies [48], camouflage materials [49], 

chameleonic fabrics [50], spacecraft thermal control [51], reusable price labels [52], frozen food 

monitoring displays [53] and optical information and storage [54]. Of these, self-darkening car rear-

view mirrors designed by Gentex Corporation (USA) have already achieved astonishing 

commercial success and are operating in several millions of cars till date [55,56]. Gentex also 

supplies adjustable darkening windows to The Boeing Company [57-60], as a result, Boeing’s 787 

Dreamliner passenger aircraft windows are all electrochromic.  A very recent forecast by ‘research 

and markets’ suggests a rapid growth in the electrochromic devices market at a CAGR of 12.27% 

from 2014 to 2020 and expected to reach $5.81 billion by 2020 [26]. The advancement of the new 

technologies accompanied by high demands from developing countries accounts for the growth of 

the electrochromic glass market. The key players in this industry include SAGE Electrochromics, 

Inc.(U.S.), ChromoGenics AB (Sweden), RavenBrick LLC (U.S.), Asahi Glass Company (Japan), 

Gentex Corporation (U.S.), EControl-Glas (Germany), Magna Glass & Window, Inc. (U.S.) , 

Guardian Industries (U.S.), PPG Industries (U.S.), and View, Inc. (U.S.). 
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The electrochromic window is based on an optical switching technology that can vary its 

transmittance. Under the application of a voltage, a window tints from clear to a dark shade in a 

given time. The process is reversible and when the voltage source is removed, the window restores 

its original color state. In comparison to low-emissive windows, electrochromic windows are used 

both for solar radiation control and fenestration [61]. The electrochromic windows are still 

relatively expensive with current market price ranging somewhere between $50-$100/ft2 [62]. The 

projections indicate that the price of window under $20/ft2 is needed. Smart windows based on 

electrochromic technology can eliminate the need for and cost of interior or exterior shading 

devices, somewhat offsetting their higher costs.  

There are a vast number of chemical compounds that exhibit electrochromism [21]. The most 

important classes of chemical species which demonstrate electrochromic effects are: metal oxides 

and hydroxides, metal hexacyanometallates like Prussian blue, metal coordination complexes, 

metallopolymers, metal pthalocyanines, conjugated conducting polymers and the viologens, 

summarized in Table 1.  

 

Table 1. Summary of different chemical classes of electrochromic materials with examples and 

possible applications.  

Class of EC material Examples Possible applications 

Metal oxides/hydroxides WO3, NiO, MoO3, V2O5, Nb2O5, 

Ir(OH)3 

Smart windows, thermal 

control of satellites, EC paper 

Metal 

hexacyanometallates 

Prussian blue, Fe4
III [FeII(CN)6]3 

Ruthenium purple, Fe4
III[RuII(CN)6]3 

Displays 

Metal coordination 

complexes, 

Metallopolymers 

Nitrosyl/oxo Mo (V) complexes, 

[MII(bipy)3]2+ complexes (M=Fe, Ru, 

Os), poly[RuII(vbpy)2(py)2]Cl2  

NIR switching, switchable 

mirrors 

Metal pthalocyanines [Lu(Pc)2], Co(II) pthalocyanine EC displays 

Conjugated polymers Polypyrrole, Polythiophene, PANI Smart windows and displays 

Viologens Methyl viologen, Benzyl viologen Car rear-view mirrors, displays 

 

Depending on the physical state at room temperature, three different types of electrochromes can 

be distinguished, as given in Table 2 [63]. Type I electrochromic materials are soluble in its redox 

states and remain in the electrolyte solution during usage. Type II electrochromic materials are 
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soluble typically in their colorless state and form a solid colored film at the electrode surface after 

electron transfer, whereas type III electrochromic materials are solid in all redox states during 

usage. 

 

Table 2. Three simple types of EC materials on the basis of the solubility of each redox state. 

Type Physical state Examples 

Type I Soluble in both the reduced state and 

oxidized state 

Methyl viologen, metal complexes, 

organic redox indicators 

Type II Soluble in one redox state, but forms a 

solid film on electrode surface following 

electron transfer 

Heptyl viologen in water 

Type III Solid in both or all redox states Polyviologens, Prussian blue, WO3, 

conjugated polymers, metallopolymers 

 

In another classification, electrochromes are divided into two categories [64]: i) the materials that 

can switch upon intercalation of small (e.g. Li+ or Na+) ions into the thin films of metal oxides 

(WO3, TiO2, NiO etc.) or ii) a color change is attained upon electrochemical oxidation/reduction 

(redox) reaction; e.g. deep blue color in methyl viologen solution upon electroreduction or 

multicolored electrochromism in conjugated polymers upon oxidation/reduction. All the above 

mentioned classifications of electrochromic materials are somehow interrelated and eventually 

divided into two broad categories: organic EC materials and inorganic EC materials. 

1.3. Electrochromic films and devices 

Electrochemical redox systems that show promising electrochromic properties are generally first 

studied as a film or as an electroactive solute, at an electrochemically inert single ‘working’ 

electrode, under potentiostatic or galvanostatic control using three-electrode circuitry, with 

‘counter’ and ‘reference’ electrodes completing the electrical circuit. Conventional electrochemical 

techniques such as cyclic voltammetry (CV), chronoamperometry and coulometry, all partnered 

by, as appropriate, in situ spectroscopic measurements are employed for characterization.  

After successful initial trials in a three electrode cell, an electrochromic device (ECD) can be 

constructed comprising a simple two-electrode system in a sandwich configuration (Fig. 3) [65]. 

The basic operating principle of an ECD is similar to that of an electrochemical cell or battery. The 
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ECD consists of five superimposed layers sandwiched between two transparent substrates, most 

commonly glass or flexible plastic (PET; polyethylene terephthalate) coated by a very thin layer of 

an optically transparent conducting oxide (TCO), e.g. tin-doped indium oxide (ITO), antimony-

doped tin oxide or F-doped tin oxide (FTO). One of these transparent electrodes is coated by an 

electrochromic (EC) film and the other by an ion storage layer, often referred to as counter 

electrode (CE). An ion conducting colorless electrolyte (solid, gel or liquid) is typically in the middle 

of the ECD adjoining the EC and CE layer on transparent conducting oxide coated glass/PET. 

The device is typically sealed with epoxy and other sealants (e.g. acrylic tape) in order to avoid any 

leakage of the electrolyte from the device. When an appropriate voltage is applied between two 

transparent electrodes, charge is transported between the EC and CE layers, altering the 

transparency of ECD. A voltage of opposite polarity or short-circuiting reverses the phenomenon 

and the ECD goes back to its original state. ECDs are aimed to operate in absorptive/transmissive 

manner or in reflective modes. In recent progress, ‘all polymer’ ECDs have been designed, having 

PEDOT-PSS as the electrically conducting film coated on commercial PET substrates, replacing 

TCO [66].  

 

 

Fig. 3. Typical setup of an electrochromic device (ECD) (left) and photographs of ECP-

Magenta/MCCP ECD with colored and bleached states, as a result of applied voltages of −0.6 V 

and 1.4 V, respectively (right) [67]. 



 Introduction 19 

 
 

1.4. Electrochromic performance parameters 

Contrast ratio (CR) 

The contrast ratio (CR) of an EC material, a measure commonly employed refers to the intensity 

of the color formed during electrochemical switching [68], measuring light transmission or 

reflectance of ECD. The change in CR is given as: 

     
ோ଴
ோई

  or  
%்଴
%்ई

      (2) 

where R0 or %T0 is the intensity of light reflected or transmitted at bleached/transparent state and 

Rx or %Tx is the intensity of light reflected diffusely through or transmitted from the darkened 

/colored state of EC materials, respectively. The higher the contrast ratio, the stronger the 

perceived color change achieved. For materials where CR<3, it is practically impossible to see the 

color change by naked eye.  

Response times (τ) 

For a given EC material or ECD, the response time (τ) is the time required to change from bleached 

to colored state or vice versa [69]. In practice, response times are calculated as the time required 

for the film to achieve 90% of its full electrochromic response. Depending on the application, the 

response time value plays a crucial role in determining device performance. For instance, display 

devices switch rapidly and require a fast response time [63]. On the other hand, a relatively slow 

response time is suitable for large area smart office windows [46]. Inorganic electrochromic 

materials are in general slower in response time compared to the organic ones [70]. Nevertheless, 

one cannot generalize or compare the response times of different EC materials stated in the 

scientific literature due to the lack of consistency in the reporting and precise determination of 

switching kinetic data. There are several parameters affecting the τ values, for example, double layer 

capacitance at the electrochrome-electrolyte interface, substrate (ITO) resistance, resistance at the 

bleached state of electrochrome etc. In recent years, several methods were employed to enhance 

the response times, e.g. use of modified electrode substrates that minimizes the electrical resistance, 

combining two or more electrochromes, applying potential pulses to speed up the coloration, etc. 

[71]. 

Write-Erase efficiency  

The write–erase efficiency of an ECD, generally expressed as a percentage, is the fraction of the 

originally formed color that can subsequently be electro-bleached [69]. In the ideal case, the 

efficiency must approach 100% for a high performing display, which is a stringent test of device 
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fabrication and design. For example, in case of methyl viologen, the write-erase efficiency is always 

lower on a realistic time scale due to the aging process and slowest step of diffusion to and from 

the electrode through solution [72]. The easiest way to enhance the write-erase efficiency is to use 

a type-II and III electrochrome, since between the write and erase parts, the colored form of the 

electrochrome is not lost from the electrode by diffusion. In case of viologens, the improvement 

is done in two ways: i) chemical tethering of the viologen to the surface of e.g. TiO2 modified 

electrode, thereby retarding the diffusion rates, or by immobilizing the viologen species within a 

semi-solid electrolyte like poly (AMPS) and (ii) by choosing asymmetric viologens or its derivatized 

analogue, which yield solid radical cations [72].     

Cycle life  

One of the major factors that limits the use of electrochromic materials in real applications is the 

long term stability, in other words ‘cycle life’. For a given EC material, cycle life demonstrates the 

number of write-erase cycles that can be performed during the voltage switching before any 

significant extent of degradation occurs [73]. The cycle life of an ECD is nothing but the durability 

of the electrochrome. Needless to say, cycle life of electrochromes has to be superior for efficient 

device performance.  

There are several reasons related to the cycle life of electrochrome leading to ECD device failure. 

They are most commonly related to the components utilized in the fabrication of device. This 

includes: conducting electrodes, electrolyte, EC layer, ion exchange layer etc. Failing of all or just 

one of the aforementioned parameters will result in deterioration of the device [74]. The most 

common issues for low cycle life are related to the organic materials (electrochrome or electrolyte) 

used in the device built-up, that are very sensitive towards photo-degradation [75]. Another issue, 

mainly concerning type-II and type III electrochromes, is associated with the continuous 

recrystallizations of solid electrochromes. In improving the durability of ECD, the following 

criteria’s need to be carefully addressed:   

1. The environment for a specific application, which clearly dictates the device operation speed. 

2. The optimum upper and lower temperatures for operation of the device; the climate of the 

region plays a key role. 

3. The robustness of the device towards climate; controlling stresses effected in a device by ‘thermal 

shock’ when it cools/warms rapidly.  

4. The influence of solar light (e.g. UV) on the deterioration of device. 
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5. The effect of surplus stresses such as changes in humidity and mechanical shock for optimum 

performance. For rough handling, strong frames are needed and special care towards device 

encapsulation is required. 

Power consumption and memory effect 

An ECD is switched to its colored/bleached state by repetitive charging/discharging cycles. Once 

the color change is achieved, the new redox state persists, with no or little power. Such retention 

of coloration between write and erase cycles without power input is referred to ‘memory effect’ 

[72]. For instance, the coloration of the viologen radical cation can be observed as remaining 

undimmed over a long time period in the absence of oxidizing agents/O2. At some point, any ECD 

will eventually fade unless it is charged to the colored state again, alike the battery. ECDs require 

less power than CRT displays or mechanical devices to operate. The consumed power is so small 

that lately, a solar powered ECD has been reported [76].  

Coloration efficiency (CE or η) 

In simple electrochemical reactions, the amount of deposited material is proportional to the 

electrochemical charge passed, according to Faraday’s first law. In a similar way, one can correlate 

the color centers formed by the electrode reaction [69], and hence is the change in absorbance (∆A) 

in direct proportion to the amount of charge (Q) passed. 

           (3) 

The coloration efficiency (CE or η) is thus given as  

           (4) 

where the proportionality factor η, the ‘coloration efficiency’, is a quantitative measure of the 

amount of color being formed per unit injected charge measured at a fixed monochromatic 

wavelength (λmax). In practice, a plot of change of the absorbance or optical density (∆A/∆OD) vs. 

injected charge as a function of electrode area (Qd), accurately gives the CE or the η value as the 

gradient expressed as area per unit charge, cm2 C-1. The higher the CE, the more efficient is the 

ECD. In an ideal case, the device should exhibit large %T change by virtue of a small amount of 

charge. Generally, η value is positive if the color is cathodically generated and negative if the color 

is anodically generated [72]. In recent studies, Reynolds et al. proposed composite coloration 

efficiency (CCE) for accurately measuring CE of organic conjugated polymers [77]. CCE provides 

detailed insight into the reasons for high efficiencies as well as structure-property relationship in 
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organic polymer systems. Similarly as the response times, the coloration efficiencies of inorganics; 

particularly metal oxide electrochromes are lower compared to their organic counterparts.  

Table 3 gives a detailed comparison between inorganic and polymer based electrochromic 

materials with respect to their method of preparation, processability, cost of final device, obtainable 

colors and various performance parameters [78]. 

 

Table 3. Comparison between inorganic and polymeric EC materials [78]. 

Sr. No. Property Inorganic materials Polymers 

1 Method of preparation Needs sophisticated 

techniques such as 

vacuum evaporation, 

spray pyrolysis, 

sputtering, etc. 

The material can be easily prepared 

by simple chemical, 

electrochemical polymerization 

and the films can be obtained by 

simple techniques such as dip-

coating, spin coating, etc. 

2 Processability of the 

materials 

The materials are poor 

in processability 

The materials can be processed 

very easily 

3 Cost for making 

the final device 

High as compared to 

the polymer based 

devices 

Low cost as compared to the 

inorganic materials 

4 Colors obtainable Limited number of 

colors are available 

from a given 

material 

Colors depend on the doping 

percentage, choice of the 

monomer, operating potential, etc. 

Hence, large number of colors are 

available with the polymeric 

materials 

5 Contrast Contrast is moderate Very high contrast can be obtained 

6 Switching time (ms) 10–750 10–120 

7 Lifetime 103–105 104–106 cycles 
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1.5. Organic electrochromic materials 

As can be expected from the enormous width of the organic synthetic chemistry, many organic 

materials exhibit electrochromism in the course of electrochemical redox reaction [79]. In 

particular, two main characteristics of organic electrochromes need to be highlighted: the ease in 

processability via solution based low cost processes and diversity in the color palette. Main classes 

of organic electrochromic materials, include the viologens, conjugated polymers, metallopolymers 

and metallopthalocyanines [72]. While the latter two also belong to the inorganic class, they are 

mentioned here due to the coloring properties of organic ligands bound to the metal centers. Other 

organic EC materials to be mentioned are electroactive polymers or compounds containing redox 

active molecules like nitroxyl [80], phenoxyl [81], carbazole [82], cyanines [83], quinones [84], 

hydrazyl triarylamine [85], methoxybiphenyl [86], thiazine [87], pyrazoline [88], tetracyano-

quinodimethane (TCNQ) [89], tetrathiafulvalene (TTF) [90], 2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO) [91], etc.. In this thesis, the main focus is on the viologen based organic EC materials. 

1.6. The viologens 

Introduction 

A major group in the organic electrochromes is the bipyridilium species [92]. The diquaternization 

reaction of 4,4ʹ -bipyridyl yields 1,1ʹ-disubstituted-4,4ʹ-bipyridilium salts (I). The localized positive 

charge seen on N is better viewed as being delocalized over the respective rings. The counter anion 

(X-) need not be monovalent and can be a part of the polymer backbone.  

 

The most appropriate abbreviation for any bipyridyl system irrespective of its redox state is ‘bipm’, 

with its charge indicated, for instance the dication can be assigned as bimp2+. In the literature, these 

compounds hold several trivial, non IUPAC names. The most common is ‘viologen’, originating 

from Michaelis’s work on 1,1ʹ-dimethyl-4,4ʹ-bipyridilium [93], when he noticed the violet color 

formation during one-electron reduction, subsequently naming the compound as ‘methyl viologen’ 

(MV) in this nomenclature. Similarly, other such bipyridilium compounds are named as substituent 

viologen, e.g. ethyl viologen, heptyl viologen, benzyl viologen, etc. Another widely used name is 
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‘paraquat’ (PQ), a brand name for methyl viologen, which was developed by Imperial Chemical 

Industries (ICI) for herbicidal use.  

Redox chemistry of viologens 

There are three well defined redox states of viologen (V): a dication (V2+), a radical cation (V•+) and 

a di-reduced neutral form (V0), as shown in Scheme 1. Of these three, the dication salt is the most 

stable one and is colorless in its pure form. Reductive electron transfer to the dication produces a 

radical cation (V•+) which is intensely colored and highly stable among organic radicals. The strong 

color in V•+ is owing to the intramolecular optical charge transfer process. The viologen radical is 

very sensitive to oxidizing agents or molecular oxygen [92]. The stability of the radical cation is 

governed by the delocalization of the radical electron along the π-framework of the bipyridyl 

nucleus, part of the charge is weakly carried by the 1 and 1ʹ substituents [94]. Further reduction of 

V•+ gives neutral di-reduced viologens (V0), decaying the intense color of radicals. The neutral form 

of viologen is extremely reactive, hence often termed as bi-radicals [72]. Studies have shown that 

bi-radicals are diamagnetic in nature at solid state and the spins are paired. V0 is often weakly 

colored as there is no optically assisted charge transfer or any accessible internal transition 

corresponding to the visible wavelength [69].  

 

Scheme 1. Different redox states of viologen. 
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Electrochromism in viologens 

Most of the viologen compounds exhibit electrochromism due to its ability of forming highly 

colored radical cation. As discussed before, such coloration is arising from the delocalization of 

positive charge in the radical cation form accompanied by an optical charge transfer process. 

Hence, the origin of the color is perhaps better viewed as an intramolecular photo-effected 

electronic excitation [72]. Desired color can be tuned by choosing suitable nitrogen substituent, 

thereby attaining the appropriate molecular orbital energy levels. Simple alkyl groups offer a blue-

violet coloration to the radicals [95]. As the chain length increases, color transforms into crimson 

due to the increased dimerization, as the dimer is generally red colored. On the other hand, aryl 

groups such as 4-cyanophenyl usually imparts a green hue to the viologen radical cation [95]. The 

color properties of the radical cation also depend on the counter ion and solvent used [72]. The 

major advantage of viologen electrochromes lies in their ease in molecular design, relatively high 

charge efficiency, and quick response time. Unlike inorganic materials, viologen absorption 

spectrum is sharp and can be located anywhere in the visible wavelength region. Poor consistency 

and unexpected side reactions leading to further degradation have been the major problems in the 

viologen EC system. Besides all the mentioned liabilities, viologens are by far the most intensively 

studied organic electrochromes for research and commercialization purposes [72]. 

1.7. Type I viologen electrochromes 

The most extensively studied viologen electrochrome to-date is 1,1ʹ-dimethyl-4,4ʹ-bipyridilium, i.e. 

methyl viologen. In device application, methyl viologen as type-I electrochrome is studied and 

commercially used for several years by now [72]. The best example of such an electrochromic 

system is Gentex automatic dimming interior mirror, world’s best-selling type-I ECD where the 

primary electrochrome is a viologen [55]. In the context of device performance, write-erase 

efficiency of type-I electrochrome based on short alkyl chain viologens is generally quite low as 

both the dication and radical cation are soluble in polar solvents like water [96]. To avoid the 

complicated electrochemistry of viologens in aqueous solvents, they are often dissolved in non-

aqueous solvents such as acetonitrile, propylene carbonate or γ-butyrolactone. The write-erase 

efficiency in such cases has been improved reasonably over the observation period. Another 

improvement is achieved by retarding the rate of radical cation diffusion away from the electrode 

and into the bulk electrolyte [95]. Generally, type-I electrochromes tend to have poor response 

times if the optimum contrast ratio is anticipated. As a consequence, most type-I electrochromes 

are suited for applications such as anti-glare mirrors or long term data displays, where slow response 

times are enough [72]. 
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1.8. Type II viologen electrochromes 

The viologen materials become type-II electrochrome when the nitrogen substituents are long alkyl 

chains or aryl groups. The problems concerning solubility-diffusion and slow response time in 

type-I electrochrome can be avoided in type-II systems, where viologen species are dissolved in 

aqueous solvents, and the colored radical cation product, produced by an electron transfer reaction, 

is insoluble [69]. This insolubility is driven by long chain alkyl substituents or aryl chain. Such a 

process is called electrodeposition. The mechanism for such electrodeposition is a three step 

process: radical cation being formed at the electrode, followed by acquisition of an anion X- in 

solution and thereafter precipitation of the radical salt from solution [95], as given in eq. 5. 

    V•+ (aq) + X⎺ (aq) → V•+ X⎺ (s)     (5)                           

The obtained viologen is essentially a solution-to solid type II electrochrome. Heptyl viologen (HV; 

1,1′-diheptyl-4,4′-bipyridilium) is the best example of this type, where its dibromide or bipthalate 

salt has been thoroughly studied for display applications [97]. Its dication is water soluble, but, 

upon reductive one-electron transfer, forms a crimson radical salt insoluble in the solvent, obtained 

on the surface of the electrode. An ECD developed by the Philips Laboratories in Holland, which 

was never commercialized, used HV electrochrome for their display [97]. When tested, it was found 

to have a contrast ratio of 20:1, very fast response times (~10-50 ms), with a cycle life of 105 cycles 

between its redox states. In 1971, ICI Ltd. submitted a first patent on the use of aryl-substituted 

viologen ‘cyanophenyl paraquat’ (CPQ), which electro-precipitates to a green colored radical [98]. 

The choice of CPQ over HV is owing to its greater extinction coefficient and therefore its faster 

response time per injected charge. The electrodeposition process follows eq. 5 for precipitating 

CPQ•+. Following the successful initial trials, a first full flex ECD was promoted as a data display 

device in the early 1970s. However, the slow kinetics in type-II device from ICI could not resist 

the competition from fast switching liquid-crystal displays (LCDs) entering the market at about the 

same time. Fletcher et al. reported a nucleation-assisted reduction mechanism for HV type II 

systems [99]. Once the nucleation is initiated, the crystal-growth starts which is controlled by mass 

transport and is a very rapid process. The study also inferred hemispherical diffusion that creates a 

diffusion zone, subsequently multiplying into semi-infinite planar diffusion. In brief, the process 

can be summarized as electron transfer → nucleation → hemispherical diffusion → linear 

diffusion. However, the kinetic process is much more complicated when developing a precise 

mathematical model of deposition for specific application. 
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Viologen radical cation dimerization/comproportionation 

Most viologen species have tendency to form dimers by spin-pairing their radical cations. The 

process often termed as ‘comproportionation’ [92]. For example, the MV radical-cation monomer 

is blue (λmax=600 nm) while the dimer is red (λmax=550, 900 nm) in aqueous solutions [79]. Very 

often, the absorption spectrum shows presence of both the monomeric and dimeric form of radical 

cation. Electrochemical oxidation of the radical-cation dimer (V•+)2 is quasi-reversible and very 

slow, meaning that the bleaching process is really sluggish. This particularly affects write/erase 

efficiency of viologens in device applications. Monk et al. showed how widely the 

comproportionation occurs in several viologen redox systems [92]. In the case of heptyl viologen 

(HV), a maroon colored film precipitates after radical cation formation. Since the alkyl substituted 

viologens generally produce blue colored radical cation, the maroon color implies 

comproportionation reaction in HV.  

There are a couple of options to avoid the dimerization of radicals and subsequently improve the 

write-erase efficiency. These are either to employ non-aqueous solutions or to add redox mediators 

into the dication-containing solution [100]. Redox couples such as hydroquinones, ferrocyanide, 

ferrous ions or ferrocene in acetonitrile were employed for this purpose [100,101]. The process can 

be illustrated as follows: V2+ gets reduced to V•+following one electron transfer. During re-

oxidation, the mediator, e.g. ferrocyanide is oxidized at the electrode to ferricyanide (Fe3+), allowing 

chemical oxidation of V•+ back to V2+, thereby inhibiting the dimerization process. Most of the 

type-II electrochromes based on alkyl or aryl viologens uses mediator assisted electro-oxidation of 

radical cation species [72]. 

In the case of HV type-II systems, the as deposited maroon colored salt is amorphous, but soon 

after precipitation, slight crystallization occurs and the film looks patchy; the phenomenon 

normally referred as ‘aging’ of an electrochrome [72]. Such patchy films are more difficult to 

oxidize, a higher applied potential is required. An addition of auxiliary redox couple like ferrocene 

eases the aging problem. Another effective strategy to avoid the aging process is to add another 

spacer between two pyridine rings (II) or to use asymmetric substituents at ring nitrogen group 

(III) [102,103]. The molecular asymmetry inhibits the crystallization of viologen radical cation salts. 

Furthermore, it has also been found that the ECDs based on certain viologen compounds form a 

yellowish brown stain on the electrode surface after prolonged color/bleach switching cycles. A 

careful investigation suggests that this stain is due to the dimerization of viologen radicals or else 

comprises both radical and dication in the intervalent form [104]. In order to understand these 

processes of recrystallization and comproportionation of cation radicals, many techniques are 
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employed including in situ UV–Vis spectroelectrochemistry [105-107], ESR spectroscopy and 

spectroelectrochemistry [108], Raman spectroscopy [109,110], photoacoustic spectroscopy [111], 

photothermal spectroscopy [112] and the electrochemical quartz-crystal microbalance (EQCM) 

technique [113]. 

 

Despite all the above mentioned downsides, many prototypes of viologens ECDs have been made. 

For example, IBM laboratories fabricated 64 x 64 pixels integrated ECD with 8 levels of grey tone 

on a 1 inch square silicon chip utilizing heptyl viologen chromophore [114].  

1.9. Type-III viologen electrochromes 

In this type, the electrochrome is essentially an insoluble solid over all the redox states and generally 

studied as a thin film on electrode surface. In such systems, the precursor for electrochrome is 

dissolved in an electrolyte solution and the electrochrome is deposited as film on the electrode. 

Alternatively, an electrochrome dispersion in proper solvents can be drop cased on the surface of 

the electrode and dried for further use. Once the desired redox state is achieved, no further charge 

is needed to retain a new electrochromic state, such systems have optical memory [72]. This is a 

clear advantage over type-I ECD that need a constant flow of current to diffuse back the 

electrochrome towards the electrode.  

Using type-III electrochromes, the write–erase efficiency of viologen ECDs is significantly 

improved. There are two main approaches in this method: either by retarding the rate at which the 

radical cation salt diffuses away from the electrode, into the bulk solution, following the electron 

transfer or by completely preventing the diffusion process altogether. The former strategy is best 

achieved by immobilizing the viologen species into the semi-crystalline electrolyte. The electrolytes 

used for this purpose are e.g. poly(2-acrylamido-2-methylpropanesulfonic acid) (poly(AMPS)) 

[115], several carboxylate polymers [116], styrene [117] or succinonitrile [91]. The latter approach 

is best achieved via immobilizing viologens by tethering the dication to the surface of an electrode, 

thereby forming a chemically modified, in other words ‘derivatized’ electrode. Wrighton et al. 

utilized tethering of short alkyl chain terminating in the trimethoxysilyl group to the oxide lattices 
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of ITO surface (IV) [118]. This way, attachment of viologen species in achieved on the electrode 

surface exclusively.  

 

1.10. Viologen functionalized conjugated polymers  

Another little different approach of tethering viologens is reported by Wrighton et al., where a 

viologen nucleus is attached to the pyrrole monomer, separated by short alkyl chain (V) [119]. 

Anodic polymerization of pyrrole yields a poly(pyrrole) film derivatising the electrode surface, 

thereby attaching viologen units.  Similar structural modifications were later reported by H. Lee et 

al. by using different thiophene based monomers containing a pendant viologen group, that were 

polymerized to polythiophene (VI) [120], poly(cyclopentadithiophene) (VII) [121] and PEDOT 

(VIII) [122], all bearing the viologen electrochrome. Though the electroactivity of a pendant 

viologen moiety is very high, that of the polymer backbone degraded after continuous scanning. 

Such approach has also been utilized for improving the overall contrast and multicolored 

electrochromism of the conjugated polymeric heterocycles. This thesis also provides detailed 

structural analysis and EC property investigations on similar structures [123,124]. 

 

Earlier, N.S. Sariciftci et al. reported spectroelectrochemical investigations of different poly (3-

alkylthiophene) derivatives bearing pendant viologen [125,126]. Similarly, P. Bäuerle et al. provided 

tunable synthesis as well as structural insights of polythiophenes possessing viologen side groups 

[127]. Recently, Krompiec et al. developed an electropolymerizable block copolymer containing 

alternating quaterthiophene and diquat (viologen-like moiety) blocks derived from bis-bithiophenyl 

derivative of diquat (IX) [128]. This conjugated polymer with redox viologen moiety was reported 

to be very stable, showing decent electrochromic properties.  
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Kim at al. synthesized a new electrochromic molecule, viologen–perylenediimide diad (X) and 

utilized it in the fabrication of layer-by-layer (LBL) self-assembled multilayers with (PEDOT:PSS) 

[129]. A dual type ECD with P3HT-coated ITO as a counter electrode exhibited a sharp color 

change between deep red and dark blue when switched between +2.0 and −2.0 V.  
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Recently, Bhandari et al. reported dual type flexible ECD, composed of viologen doped PEDOT 

polymer, electropolymerized at a deposition potential of +1.8 V with Prussian blue (PB) as counter 

electrode in ionic liquid based electrolyte [130]. The films could be switched between +1.5 V and 

-1.5 V giving pale and deep purple coloration respectively, with faster response times and coloration 

efficiency (CE) of 187 cm2 C-1 in the visible region (Fig. 4). 

 

 

Fig. 4. Photographs of the flexible PEDOT-Viologen-IL gel-PB device in the a) colored (-1.5 V) 

and b) bleached (+1.5 V) states [130]. 
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1.11. Polymeric viologens or Polyviologens 

Electrochromic polymeric viologens; named poly (viologen) or polyviologen (PV) is again a perfect 

example of type-III electrochromes [95]. A precursor monomer of viologen is dissolved in solution 

and the cation radical is adhered on the surface of an electrode substrate by the electrodeposition 

method. Stepp et al. reported self-assembled electrochromic multilayers of a poly (butanyl 

viologen) dibromide (PBV) and poly (styrene sulfonate) (PSS) using an alternating polyion solution 

deposition technique [131]. The prepared films were robust, easy to synthesize and strongly 

colored. DeLongchamp et al. prepared poly (hexyl viologen) (PXV) and PEDOT:PSS multilayers 

using LBL technique. The 40- or 50-layer-pair films were found to exhibit a contrast of 82.1% at 

525 nm, one of the highest reported for polymer electrochromes [132]. Jain et al. reported ionic 

self-assembled multilayers of polyviologen and poly (AMPS) [133]. 40 bilayer films of PV/poly 

(AMPS) on ITO electrode showed high contrast (∆T=61%) with color changes from transparent 

yellow to dark violet and CE of 57 cm2 C-1. Ho et al. recently reported all solid state complementary 

ECD, based on poly (butyl viologen) (PBV) and Prussian blue (PB) using LiBF4-succinonitrile as 

solid electrolyte [134]. The device can reversibly be switched from colorless to purplish-blue, with 

decent EC performance and cycle life up to 4000 cycles. Saika et al. synthesized six bis(4-cyano-1-

pyridinio) derivatives and electropolymerized to EC PV films with blue/red violet coloration [135]. 

Such a coupling of cyanopyridyl radicals to viologen was reported much before by Kosower et al. 

in 1964 [136] and later explored by several researchers [137-139]. Based on similar phenomenon, 

this thesis also reports preparation of PV films from cyanopyridinium based monomers [140]. 

1.12. Hybrid electrochromic composite systems  

Viologen-metal oxides EC composites 

In recent years, nanostructured EC materials have been employed to improve the viability of smart 

windows [141]. Especially, hybrid organic-inorganic electrochromic systems have been developed 

aiming at enhancing the EC performance parameters. Fitzmaurice et al. for the first time reported 

the adsorption of viologens on transition metal oxide layers [142]. Following this work, NTera Ltd., 

who developed a so-called NanoChromics™ display device using viologen-TiO2 (anatase) hybrid 

owing to the high surface area of anatase and ease of making thin films. Several other workers later 

reported improved electrochromic performance of viologens modified with mesoporous anatase 

nanostructures [143-146]. Sun et al. adsorbed viologens on ZnO nanowire as a thin film coated on 

ITO glass electrode [147]. Their ECD had fast response times (170 ms) with CE of 196 cm2C-1.              
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Viologen-graphene EC composites 

Graphene, a 2D allotrope of carbon, has attracted enormous interest in recent years, especially after 

the mid 2000’s. Other than many of its extraordinary physicochemical properties, the richness in 

optical and electronic properties of graphene is particularly significant towards electronics related 

applications. Regarding EC applications, graphene has been employed by two main ways: as an 

electrode substrate material owing to its low sheet resistance, high transparency and flexibility or 

as a functional component in a composite assembly together with active electrochrome. There are 

few reports on using graphene analogues with several electrochromic materials for improving the 

EC performance parameters. In a very recent works, researchers exploited both the functions of 

graphene materials for enhancing the electrochromic properties of viologens (Fig. 5). Hwang et al. 

fabricated flexible ECD prototype using electrostatically strong methyl viologen (MV) and 

graphene quantum dot (GQD) nanocomposite [148]. The resulting device exhibited excellent 

operational stability over 3000 s when switched between 0 and -2.8 V, with faster switching rates, 

in comparison to the bare MV device. Palenzuela et al., on the other hand, electrodeposited reduced 

graphene oxide (rGO) films on the ITO coated PET substrate, and the resulting flexible 

transparent electrodes have been employed in making ECDs of ethyl viologen (EtV) [149]. The 

electrochromic performances were compared with bare ITO-PET electrodes. Upon continuous 

cycling, rGO gets oxidized and dispersed in the electrochromic mixture, thus required lower 

switching voltages and exhibited higher optical contrast compared to EtV-ECD without rGO 

films. The findings encouraged designing of ECDs integrated with a second component like 

graphene having electrocatalytic properties, requiring low operational voltages, thereby preventing 

undesired degradation or side reactions in viologens. This thesis also elaborates the improved 

electrochromic properties of viologens in assembled composite thin films with graphene [150]. 

 

   

Fig. 5. Photograph of MV2+-GQD bent ECD using ITO-on-PET (left) [148]. Photographs of an 

EtV2+-RGO ECD in the (a) bleached and (b) colored state (right) [149]. 
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1.13. Viologen based ECDs in market 

Following is a list of commercial viologen based ECDs marketed by different industrial groups in 

the order of their arrival in patents or marketable products. Few of these devices are already 

mentioned in the previous sections, they are summarized here.  

The Philips Device 

The Philips device, reported by Schoot et al. in 1973, might be the first viologen based ECD 

projected [97]. The Philips labs were seemed to have started making ECDs at some time during 

the mid-1960s. The first patent by Philips in 1970 reports use of heptyl viologen (HV) type-II 

electrochrome system [151]. HV is soluble in water in the dicationic form. After one electron 

transfer, it forms a crimson colored insoluble film of HV•+ strongly adhered on the electrode 

surface. The final ECD device has contrast ratio of 20:1, rapid erasing time (10-50 s) and switching 

durability of more than 105 cycles. The HV was chosen among the viologen based electrochromes 

owing to its ease in the film formation and durability. The Philips ECD was never marketed. 

The ICI device 

Imperial Chemical Industries Limited (ICI) submitted their first patent on the use of the aryl-

substituted viologen 1,1ʹ-bis(p-cyanophenyl)-4,4ʹ-bipyridilium, ‘cyanophenyl paraquat’ (CPQ, XI), 

which electro-precipitates to an intense olive-green colored radical [98]. The preference of CPQ 

over other simpler bipyridiliums like HV, in ICI device, was due to its greater extinction coefficient 

leading to a device with higher CE and faster switching time. The ECD followed type-II electro-

coloration mechanism, according to eq. 5 and found to be more resistant to aerial oxidation. The 

reduction potential was limited to -0.4 V (vs. Ag/AgCl), as further reduction would yield the pale-

red species CPQ0. A reverse oxidative potential of +1.0 V vanished the electro-generated color. 

The ICI ECD was first marketed as a data display device in the early 1970s. At about the same 

time, ultra-fast switching LCD entered the electronic market and overwhelmingly captured an 

unassailable market share. The ICI’s ECD falls to this competition, mainly because of its slower 

switching kinetics. Since the electrolyte layer was gelled with agar (5%) to improve the stability, 

after many write-erase cycles, a yellow-brown oil eventually stains the electrode surface. Such 

gelling (oiling) of electrochrome was found to be a reason for slower switching rates.   
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The IBM device 

The IBM laboratories, in 1970, developed an impressive ECD using HV electrochrome on a 64 × 

64 pixel integrated device [114]. The one inch square silicon chip contained eight levels of grey 

tone of HV, capable of giving detailed images. These devices were not exploited further, obviously 

again due to competition from LCDs. However, they promised a great potential in the large-sized 

devices. 

The Gentex Device 

The most well-known device, Gentex’s best-selling automatic dimming ‘Night Vision Safety’ 

(NVS®) mirror entirely functions on the principle of type-II/solution electrochromism [152-154]. 

As illustrated in Fig. 6, NVS® mirror comprises two electrodes: a front ITO coated-glass electrode 

and a reflective metallic rear electrode, spaced by a sub-millimeter gap, thus forming the basis of 

two electrode cell. The solution containing two electroactive molecules that function both as 

electrochrome and supporting electrolyte filled the cell cavity. The two electroactive chemical 

species are cathodically coloring substituted viologen (V) and anodically coloring 9,10-

dimethylphenazine (DMP) [152]. After switching the mirror on, primary electrochrome viologen 

reductively forms colored V•+ via ohmic mass transport of the positively charged uncolored 

precursor propelling the viologen towards the cathode. On the other hand, the secondary 

electrochrome, neutral DMP electro-oxidized at the anode and provides a complementary color to 

the viologen. Electro-oxidation of DMP0 depletes the solution of uncharged species, so mass 

transport in this case occurs only by diffusion. The dual electro-coloration process can be expressed 

as the color forming viologen reduction and complementary oxidation of DMP, according to eq. 

6 and 7:  

     V2+ + e⎻ → V•+     (6) 

     DMP → DMP•+ + e⎻      (7) 
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Once the dual electrochromic coloration process has started, the products diffuse away from their 

corresponding electrodes and meet in the intervening solution, where their mutual reaction occurs 

according to eq. 8: 

     DMP•+ + V•+ → DMP + V2+       (8) 

The reaction regenerates both the original uncolored species in solution so that the coloration 

process can start again. The mechanism is explained schematically in Fig. 6, with a photograph of 

the auto-dimming mirror. This type of ECD thus needed a continuous small current for the renewal 

of the colored electroactive species that were vanished during their mutual redox reaction in 

solution. Bleaching of the device occurs at open or short circuit by homogeneous electron transfer 

in the bulk of the solution.  

 

Fig. 6. Schematic representation of the redox cycles occurring within the Gentex NVS® mirror 

(left). Coloration occurs electrochemically at both electrodes; bleaching occurs chemically midway 

between the two parallel electrodes by a process of radical annihilation. A photograph of Gentex 

auto dimming mirror with inbuilt Homelink® press button for outside temperature and compass 

(right). 

The NTERA device 

The NTERA Ltd., a Dublin based spin off from the Grätzel cell, devised a new ECD in 1997 

developed by Fitzmaurice and co-workers, based on layered/thin film electrodes composed of 

nanostructured anatase [155]. The rough surface of the porous TiO2 consists of an interconnected 

network of oxide nanocrystals with high surface area. As a result, a high number of viologen 

molecules could be fitted in a relatively small area, leading to a high CE. Owing to their electron 

deficiency, viologen molecules adsorb strongly on the surface of TiO2 modified electrode. Because 

of their strong surface confinement, the viologen electrochromes need not diffuse to the electrode 
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surface, leading to the shorter response times. Such electrode systems have long been investigated 

in dye-sensitized photo-electrochemical solar cells [156]. 

The NanoChromics Cell 

Fitzmaurice et al. later developed a ‘next generation display technology’ so-called NanoChromics™ 

displays, following the initial field trials [157,158]. The device was claimed as ‘paper quality’ 

meaning high definition (HD) display as demonstrated in Fig. 7 [159]. NanoChromics ECD 

comprises of two metal oxide coated FTO electrodes. In a typical cell assembly, the negative FTO-

glass electrode was coated by a wide band gap TiO2 film, followed by a self-assembled monolayer 

of chemisorbed phosphonated viologen electrochrome, bis(2-phosphonoethyl)-4,4′-bipyridilium 

dichloride (XII) [158,160]. The positive counter electrode FTO-glass was coated by a heavily doped 

antimony tin oxide (SnO2:Sb), followed by a self-assembled monolayer of chemisorbed 

phosphonated phenothiazine molecules. The TiO2 film was further modified by a monolayer of 

viologen XII. The γ-butyrolactone solvent mixed with LiClO4 and ferrocene served as electrolyte. 

The trial experiments of this device showed CE of 170cm2C-1 and stability over 104 switch cycles. 

By applying a potential of -1.2 V, viologen gets reduced to the blue colored radical while 

phenothiazine oxidizes from its pale yellow color to red. The overall color change virtually appeared 

as colorless to blue-red purple. The display was said to be ultra-fast, owing to its faster switching 

speed, where an absorbance change of 0.6 was attained in just one second.  

 

NTera demonstrated a NanoChromics™ display operating in a converted iPod and ‘consumer 

product reference designs’ for digital clocks and an eight-digit calculator [161]. The flexible 

prototype display was also stated to be applicable to several products including windows, mirrors, 

flexible electronic displays, dimmable window laminates, games and toys.  
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Fig. 7. Picture of Nanochromics™ ‘paper quality’ devices (left) [159]. Prototype of a fast switching, 

high-contrast blue-red colored ECD viewed at a low angle (right) [160]. 

The Grätzel Device 

Grätzel et al. prepared display and shutter devices using series of alkyl and aryl substituted viologens 

[162]. The viologen molecules were decorated at a TiO2 surface by using different anchoring groups 

such as benzoate, salicylate or phosphonate. The ECD cell geometry is: OTE│TiO2- 

poly(viologen)│glutaronitrile-LiN(SO2CF3)2│Prussian blue│OTE [163]. An optical density 

change up to 2 units with color alterations between transparent to blue or yellowish to green and 

red-brown (at higher potential) were reported for this device having switching times in the range 

of 1–3 s. A construction of reflective type display with very fast switching times was also reported, 

by modifying ECD cell geometries.   

Based on a similar principle, Pettersson et al. constructed a very attractive reflective type ECD 

made of nanocrystalline titania electrodes with chemisorbed viologen electrochromes [164]. The 

device comprises viologen-TiO2 electrode in combination with nanocrystalline, capacitive, porous 

antimony-doped tin oxide counter electrodes, a white reflective layer and lithium triflate 

(LiCF3SO3) in polyethylene glycol electrolyte. The final ECD acts as a direct-driven display with 

promising stability and attractive paper-like visual qualities.  

 

The viologen based electrochromics is a well-established field by now in the context of their basic 

properties and structural investigations, as well as their successful device applications. The recent 

developments in the viologen based ECDs mainly focusses on enhancing the coloration rate and 

cycle life. The nanostructured materials and integrated systems are being employed for this 

purpose.  
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2. AIMS OF THE THESIS 

The aim of the thesis was to design viologen based redox polymers for electrochromic (EC) 

investigations. Since viologen EC materials have been commercially used in smart windows (e.g. 

self-darkening car mirrors from Gentex Corporation), but lacks good cyclic stability, the aim was 

to elevate some of the important electrochromic performance parameters of viologens. For this 

reason, polymeric viologens, viologen functionalized polythiophene and polyviologen- reduced 

graphene oxide (PV-rGO) composite films were studied. Electrochemical polymerization and 

deposition techniques were employed for assembling viologen based EC thin films. All deposited 

films were thoroughly characterized using different instrumental as well as electrochemical 

techniques. Finally, the electrochromic properties of these films casted on transparent conducting 

electrodes were tested using spectroelectrochemical methods.  

 

For each publication, the specific aims were: 

 

I. To synthesize a cyanopyridinium based monomer precursor CNP, study its reductive 

electropolymerization to polyviologen thin films at an electrode surface and to study its structural 

analysis. Understand the mechanism of formation of viologens from CNP, using electrochemical 

and spectroelectrochemical characterization methods. 

II. To fabricate polyviologen-reduced graphene oxide composite films in order to explore the 

effect of grafting a secondary component like graphene on the electrochromic performance of 

polyviologens. Thorough characterization of the composite films using different spectroscopic, 

microscopic and electrochemical analytical methods. Investigate the interactions between two 

electroactive components within the composite matrix. 

III. To synthesize a thiophene monomer with a cyanopyridinium moiety at the side chain and 

perform electropolymerization of the thiophene derivative and reductively cross-link the polymers 

by the CNP to viologen. Copolymerize this monomer with another thiophene monomer and 

monitor the spectral changes using UV-Vis spectroelectrochemistry. Understand the structural 

differences between homopolymers and copolymer and examine EC properties. 

IV. As a comparison, synthesize a thiophene monomer bearing viologen functionality and perform 

the electrochemical polymerization. Detailed structure analysis using spectral techniques and in situ 

ESR-UV-Vis-NIR spectroelectrochemistry. Investigate the EC performances of the polythiophene 

films and possible improvement in the EC properties after the viologen functionalization.  
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3. MATERIALS AND METHODS 

A detailed description of materials employed in each work is given in the list of original publications 

(I-IV). A brief summary with some additional details is presented here. 

3.1 Synthesis of monomers 

Table 4 provides a brief list of monomer structures employed in each publication.  
 

Table 4. List of monomers employed in each publication. 

Publication Monomer structure and name Abbrev. 

I & II 

Pyridinium, 1,1ʹ-(1,6-hexanediyl) bis (4-cyano) dibromide 

CNP 

III 

 
3-octyloxy-4-methylthiophene bromide 

 
3-[(6-bromohexyloxy)-4-methyl] thiophene bromide 

 
1-[6-[(4-methyl-3-thienyl) oxy] hexyl]-4-cyanopyridinium bromide 

OOT 

 

 

 

 

HOT 

 

 

 

HOT-

CNP 

IV 

 

N,Nʹ-bis{[6-(4-methyl-3-thienyl)oxy]hexyl}-4,4ʹ-bipyridinium dibromide 

Th-V 
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3.2 Synthesis of graphene oxide (GO) and its reduction 

GO is produced by oxidation of graphite using a modified Hummers method [165]. In brief, natural 

graphite flakes (2 g) were suspended in a mixture of conc. H2SO4 (68 mL) and NaNO3 (1.5 g) in a 

three-necked round bottom flask equipped with a thermometer and a gas trap. KMnO4 (9 g) was 

then added slowly over ½ h in the above mixture, cooled under ice bath and then continuously 

stirred for ~2 h. The reaction mixture was then allowed to warm to room temperature under 

continuous stirring. After a day, the mixture becomes two thick to stir. It was allowed to react 

further for 4 days. During this time, the reaction temperature was not allowed to rise above 35 °C. 

Next, the oxidation reaction was terminated by adding dropwise 5 wt.% H2SO4 in the mixture, in 

an ice bath and the unreacted KMnO4 was removed by addition of 30% H2O2 (6 mL) at room 

temperature. The brown colored mixture was then centrifuged after which the precipitate was 

dispersed in water and centrifuged again. The process was repeated several times until desired pH 

was achieved. The dispersion was then placed in a cellulose dialysis tubing and kept in a bathtub 

containing double distilled water. The bath solution was changed twice a day until no significant 

UV–vis absorbance was noticed in the outer solution. The final dispersion from the dialysis tube 

was collected as GO, with concentration ~4.4 mg/mL and pH=2.5, and used thereof.  

The produced GO thus facilitates the solution processing of graphene; however the harsh 

oxidation conditions employed on graphite eradicates most of its important physical properties like 

conductivity. Therefore, reduction of graphene oxide is desired to partially recover the π-

conjugated network of graphite, thereby restoring some of its excellent properties like electrical 

conductivity. Kauppila et al. discussed several methods for the reduction of GO in great details 

[166]. For electrochemical applications, electroreduction of GO is favored, since it does not involve 

any harsh chemicals reductants and can be directly performed on the GO-coated electrode by 

simply passing sufficient electrical voltage [167]. Such electrochemical reduction has been proven 

to be effective green strategy for removing most of the oxygenated surface groups on GO, as 

illustrated in Scheme 2. In the case of graphene composites with polymers, the monomers or 

precursors are usually dispersed in the GO suspension with/without electrolyte and 

electropolymerization is carried out. Following the deposition of films, electro-reduction of 

deposited GO is carried out by applying suitable reduction potential. Similarly, pristine GO films 

can be casted at the electrode surface and reduced thereafter. However, after electroreduction, the 

resulting physical changes in the material causes detachment of the rGO from the electrode surface, 

limiting its further use. Therefore, at least in the case of polymer-GO composites, mixing monomer 

precursors in the GO dispersion is an effective strategy and after the deposition, the 
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electrodeposited GO within the composite film can be reduced in situ. The non-covalent forces 

between resulting polymer and GO stabilize the composite matrix, and adhere at electrode surface 

firmly. In Publication II, a CNP monomer is mixed with the as prepared GO aqueous dispersion 

and the electrocodeposition is carried out for synthesizing PV-rGO composite. 

 

Scheme 2. Reduction of graphene oxide (GO) to reduced graphene oxide (rGO). 

3.3 Electrochemical synthesis and characterization of electroactive thin films  

All the electrosynthesis/electropolymerization experiments were carried out in a conventional 

three-electrode one-compartment cell, performing cyclic voltammetry (CV) measurement using a 

Autolab (PGSTAT101) potentiostat. The working electrodes employed were a glassy carbon (GC) 

or gold (Au) electrode (d=1 mm) or fluorine doped tin oxide (FTO) (K Glass-Pilkington, sheet 

resistance=8.1 Ω□-1, active d=10 mm) or indium doped tin oxide (ITO) (Delta-technology Inc., 

sheet resistance=100 Ω□-1, active d=10 mm) on glass. GC or Au electrodes were polished 

mechanically with diamond paste containing polyethylene glycol (DP-Paste-P by Struers) of 

different grain sizes (0.25, 1, 3, 7, 15 μm) before use. FTO or ITO electrodes were cleaned 

successively in acetone, ethanol and water using ultra- sonication before use. A Pt wire and Ag wire 

coated with AgCl served as counter electrode and quasi-reference electrode, respectively. The 

Ag/AgCl wire was calibrated vs. ferrocene (Fe/Fe+) (E1/2 (Fe/Fe+) = 0.45 V) and all the potentials 

mentioned are vs. Ag/AgCl electrode. The monomers or mixtures of appropriate concentrations 

were dissolved in supporting electrolyte solution (acetonitrile or water) containing electrolyte salts 

(TBAPF6, LiClO4 or KCl). The electropolymerization experiments were performed in a specific 

potential window depending on the electroactivity of the material under study. For thiophenes, the 

potential was scanned in anodic direction while for the viologens, the potential scanning was 

performed in cathodic direction, mostly between 0 and -1.2 V. The scan rate was after optimization 
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set to 50 mVs-1 for all polymerization and electrodeposition experiments since it provides well 

defined voltammogramms. For the copolymerization’s, different feed ratios of monomers were 

tested to achieve optimum monomer proportions in the final copolymer. All the given solutions 

were deaerated by dry nitrogen (N2) stream for 15 min before each CV experiment and a slight N2 

overpressure was maintained during the reaction.  

After each deposition, polymer films were rinsed, generally with the solvent used in the electrolyte, 

several times in order to remove electrolyte residues or unreacted monomers. The deposited films 

were then placed in a monomer-free supporting electrolyte solution and CVs of the film-coated 

electrodes were recorded. In order to check the reversibility of the electrochemical system, the 

films were further subjected to CV scanning at different scan rates. 

3.4 Spectroscopic & surface characterization techniques 

FTIR spectra of samples dispersed in KBr pellet were recorded using a dry-air-purged Nexus 870 

FTIR spectrometer (Nicolet) with a DTGS detector. In another method, the spectra of samples 

were recorded by a Bruker VERTEX 70 FTIR spectrometer equipped with a Harrick VideoMVPTM 

diamond ATR accessory using liquid N2 cooled MCT (broad-band) detector. The Raman spectra 

of the polymer or composite samples were recorded using visible laser excitation wavelength (λexc= 

514 nm) and a Renishaw Ramascope (system 1000 B) equipped with a Leica DMLM microscope 

connected to a thermoelectrically cooled CCD detector. The scattering signal was collected at an 

angle of 1800. For FTIR and Raman studies, comparative analysis was performed in order to track 

the structural changes and modifications in the materials. 

XRD patterns of solid samples were measured using a Huber G670 image plate Guinier camera 

with copper Kα1 radiation (λ=1.5406 Å) and 2θ in the range of 4-1000. Total 10 scans of the image 

plate were taken with data collection time of 30 min. For XPS measurements, the samples were 

placed on gold coated Si (100) wafers. A 100 nm thick gold layer was deposited on pre-cleaned Si 

(100) wafer using the Edwards E306A thermal coating system. XPS spectra were measured by a 

Perkin–Elmer PHI 5400 spectrometer using Mg Kα radiation (1253.6 eV) and the spectral analysis 

was performed with the Unifit2009 software (Unifit Scientific Software GmbH, Leipzig, Germany). 

XRD and XPS techniques were mainly employed for the analysis of PV-rGO composite materials. 

For SEM imaging, the thin electroactive films were deposited on ITO/glass electrodes. A Leo 

(Zeiss) 1530 Gemini FEG-SEM was used in order to obtain surface morphological features of the 

samples. 
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3.5 In situ spectroelectrochemical characterization 

In situ UV-Visible spectroelectrochemistry 

For spectroelectrochemical and electrochromic studies, the polymer or composite samples were 

electrosynthesized on FTO or ITO/glass electrode, with Pt wire as counter electrode and Ag/AgCl 

wire as reference electrode. The electrochemical set-up was assembled in a quartz cuvette (path 

length = 1 cm) with suitable electrolyte. For in situ measurements, HP 8453 or Agilent Cary 60 

UV-Vis spectrometer was connected to an IviumStat potentiostat. The in situ UV-Vis spectra were 

recorded by stepwise changing of potential by 0.1 V between the recordings. In order to check the 

electrochromic performance of the films, two potential values are selected where the film showed 

bleaching and coloring state. The film was then switched between these two applied potentials and 

kinetics of switching at monochromatic wavelength was recorded using in situ UV-Vis 

measurements performing chronoamperometry. 

In situ ESR/UV–Vis–NIR spectroelectrochemistry 

Electrochemical techniques provide detailed understanding of charge transfer, transport and 

distribution, but very little is known about the structure, the intermediates, the electrode reaction 

mechanism and the magnetic features, which might be crucial for further potential applications. 

For this reason, in situ spectroelectrochemistry was introduced, performing time-dependent studies 

of electrode reactions simultaneously as the changes are recorded by spectroscopic techniques 

[168]. During an electrochemical reaction, an organic redox system initiate primary cathodic or 

anodic electron transfer which result in radical ion formation. Since the radicals are paramagnetic 

in nature, the spectroscopic method of choice would be ESR spectroscopy. A second electron 

transfer or the follow-up reaction of the radicals results in the dimer formation which is not 

detectable by ESR. For this purpose, an additional spectroscopic tool is required. Dunsch et al. 

developed an optical ESR cavity that significantly advances the era of spectroelectrochemistry, 

utilizing simultaneously both ESR and UV–vis-NIR spectroscopy in a single 

spectroelectrochemical cell [169]. Thus, both paramagnetic and diamagnetic features in the redox 

molecules can be followed at the same working electrode. 

For in situ ESR/UV–vis–NIR spectroelectrochemical studies, a specially designed flat cell was 

employed (Fig. 8) which fits the optical electron spin resonance (ESR) cavity (ER 4104OR, Bruker 

Germany). ESR spectra were recorded by the EMX Micro X-band CW spectrometer (Bruker, 

Germany). UV–Vis–NIR spectra were measured by Avantes spectrometer AvaSpec-2048x14-

USB2 equipped with a CCD detector and AvaSpec-NIR256-2.2 equipped with the InGaAs 

detector using the AvaSoft 7.5 software. A HEKA potentiostat PG 390 was connected to both the 



44 Materials and Methods  

ESR and the UV–Vis–NIR spectrometer for in situ measurements and triggering was performed 

by the software package PotMaster v2x40 (HEKA Electronic, Germany). A three electrode system 

consisted of a laminated working electrode, a Pt wire as a counter electrode and an Ag wire as 

pseudo reference electrode were positioned in a flat spectroelectrochemical cell. An ITO electrode 

or a Au microgrid (1024 meshes/cm2) was positioned between two pieces of chemically inert 

polyester based lamination foils (DocuSeal, USA). A small, well defined electrochemically active 

surface area was obtained, with circular holes giving 0.1 cm2 of free active electrode surface. 

 

 

Fig. 8. Experimental design of in situ ESR/UV-Vis-NIR spectroelectrochemical flat cell [169]. 
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4. RESULTS AND DISCUSSIONS 

Following sections summarizes some of the key findings published in papers I-IV along with 

some additional details. More detailed information can be found in each publication. 

4.1. Polyviologen from cyanopyridinium based monomer  

Due to its significant electrochemical properties, viologen and polyviologen modified electrodes 

are commonly employed for several applications like electrochromics [170], electro-catalysis [171] 

and organic electronic devices [172]. There are several ways to develop viologen modified 

electrodes. It goes back to 1960’s when Kosower et al. showed a unique synthesis of stable free 

radicals of viologen starting from 1-alkyl-4-cyanopyridinium iodide [173,174]. A chemical reducing 

agent, sodium dithionite (Na2S2O4) was used for this purpose. Alternatively, viologen cation radicals 

can be deposited by electrochemical reduction of 4-cyanopyridinium species. Kitamura et al. 

showed both chemical and electrochemical ways of producing polymeric membrane cross-linked 

by viologen units via reduction of the homopolymer containing a pendant cyanopyridinium 

structure, poly (l-vinylbenzyl-4-cyanopyridinium perchlorate). Following this work, there are 

several reports on utilizing the cyanopyridinium structures for viologen formation directly on the 

electrode [135,138,139]. In publication I, a new monomer structure based on cyanopyridinium ion 

CNP (XIII) was synthesized, that is reductively polymerizable by both chemical [171] and 

electrochemical methods [140,175]. The mechanism for the reduction processes is illustrated in 

Scheme 3. 1-alkyl-4-cyanopyridinium ion gets reduced to its neutral radical, which can be 

equilibrated to its dimer. A part of this neutral dimer loses two of its cross-connected –CN groups, 

yielding a viologen dication. A successive reductive coupling reaction of 4-cyanopyridyl radicals 

gives a highly cross-linked viologen skeleton.  

 

Scheme 3. Mechanism of the reductive coupling reaction of 4-cyanopyridinium to viologen. 

Fig. 9A shows continuous cyclic voltammogramms of CNP derivative dissolved in aqueous 

electrolyte containing 0.1 M KCl at GC electrode. On the first scan, a very steep reduction peak 
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can be seen at -0.8 V with its corresponding oxidation peak at -0.6 V. These redox peaks are 

assigned to the –CN group reduction. As the electroreduction continues, these peaks decreased, 

and eventually diminished after nearly 5-6 cycles. With further scanning, new reduction peaks start 

to appear at -0.5 and -1.0 V, with their respective oxidation peaks observed at -0.4 and -0.8 V, 

respectively and then increased with repetition of scans. During the process, one can observe an 

insoluble, obscure purple colored layer being deposited at GC surface. The color can be more 

clearly visualized when using ITO as working electrode. The as-deposited film is insoluble in 

aqueous and most common organic solvents like ethanol, methanol, acetone, ACN, CHCl3, 

propylene carbonate or THF. The CV response of PV deposited GC electrode comprises well 

resolved, two step redox process at -0.5 and -1.0 V (inset of Fig. 9). The CV peak positions are 

analogous to viologen species. FTIR analysis revealed vanishing of the -C≡N stretching band (at 

2244 cm-1) in PV, suggesting effective electroreduction of CNP moieties (Fig. 9B). Typical 

viologen UV-Vis absorption can be seen, at max400, 550 and 900 nm, when the PV film 

undergoes one electron transfer at -0.6 V (Fig. 9C). Thus, the electrochemical tests as well as 

spectral analysis proves successful reductive coupling of cyanopyridyl structure to 

viologen/polyviologen skeleton via elimination of cyano groups.  

 

 

Fig. 9. A) Successive CVs of derivative XIII in 0.1 M KCl aq. electrolyte at GC electrode (Inset: 

CV response for a PV modified electrode after electrosynthesis). B) FTIR spectra of a) CNP and 

b) PV. C) In situ UV-Vis spectra of PV modified ITO electrode at 0 and -0.6 V and corresponding 

EC film. 
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4.2. Polyviologen-reduced graphene oxide (PV-rGO) electrochromic films 

In recent years, there has been enormous interest in producing electroactive composite materials 

in order to enhance the electrochemical performance of an individual material in the hybrid 

assembly [176]. There are several methods of combining two or more materials for composite 

formation. The electrolytic co-deposition is best suitable method for different electrochemical 

applications like electro-catalysis, supercapacitors, photoactive materials and several other energy 

storage applications. Such electrodeposition processes consists of different electroactive precursors 

suspended in an electrolyte solution; and variable amounts of these materials can be embedded in 

the electrochemically produced solid phase. The material imparts special properties that are 

significantly improved compared to those of the individual components. Lately, graphene oxide 

has been utilized for this purpose owing to its surface oxygenating groups suitable for binding, 

extended π conjugation network and electrostatic forces [177]. Conjugated polymers and materials 

have been widely employed together with GO for several purposes [178]. Lindfors et al. showed 

that GO can be utilized as counter ion during the electropolymerization of conducting polymers 

[179,180]. The resulting polymer-graphene composites exhibit excellent electrochemical properties 

compared to pristine polymer.  

In publication II, electrochromic composite films were prepared composed of polyviologen (PV) 

and reduced graphene oxide (rGO) [150]. Previously synthesized cyanopyridinium precursor 

monomer CNP is dispersed in GO suspension using ultra sonication. The ultrasonic forces 

separate clustered graphene sheets into their individual state, assisting the proper dispersion of 

both monomer and GO. Due to its anionic character, GO has been previously employed as counter 

ion/dopant during electropolymerization process, thereby hindering the use of any additional 

dopants or surfactants. This phenomenon is not applicable for electrodeposition of PV-rGO 

composite films, mainly due to the lack of sufficient electrical conductivity of the polymeric 

viologen as well of GO. Hence, 0.1 M KCl aqueous supporting electrolyte was employed during 

composite film formation. A cathodic potential window between 0 and -1.2 V has been used during 

electropolymerization of PV. And coincidently, the same potential window is desired for reducing 

GO to rGO. Therefore, we envisaged electrodeposition of PV-rGO films would not only form to 

PV from CNP moieties but also ensures the reduction of GO to rGO during the same process. 

We thus utilized the one step cathodic electrocodeposition of CNP-GO dispersion in 0.1 M KCl 

aqueous electrolyte using cyclic voltammetry. The three electrode system comprising FTO working 

electrode, Pt wire counter electrode and Ag/AgCl pseudo reference electrode was used. There is a 

small shift in all CV peaks to more negative applied potentials and the shape of all the peaks is 
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broader, during electrodeposition of PV-rGO films in comparison to those of pristine PV. The as-

obtained films possess tiny blackish colored material together with the highly colored PV, 

indicating the presence of rGO species in the composite. Since the GO dispersion is brown 

colored, the blackish spots suggests effective electroreduction of GO to rGO. The composite was 

thoroughly characterized by using several instrumental methods mentioned in the ‘Materials and 

Methods’ section. Cyclic voltammetry comprises two redox waves characteristics of viologen, at 

their respective, well documented potentials (Fig. 10). The FTIR, Raman, XRD and XPS and 

morphological analysis confirms the involvement of both PV and rGO components within the 

composite matrix. Moreover, GO was reduced efficiently to rGO during reductive 

electrodeposition, as evident by removal of most of the oxygen containing bands from PV-RGO 

spectra. For comparison, pristine PV, graphite, GO and rGO films were prepared beforehand. The 

possible interactions between PV and rGO are illustrated (Fig. 10), and confirmed by carrying out 

some simple measurements, as explained in Publication II. A negative zeta potential value of rGO 

(-25.2 mV) and positive value of PV (53.7 mV) was compensated in the composite which possesses 

a zeta potential value  (25.1) in between the two, indicative of possible intermolecular non-covalent 

interactions. The fluorescence intensity of PV was quenched with the stepwise addition of rGO, 

due to the electrostatic interactions. Furthermore, viologen materials possess π- bipyridinium core, 

which is multiplied in the polymeric viologens while graphene sheets also contain π- conjugated 

network in their structure. Therefore, there might be π-π stacking of both rings in the composite 

assembly. The above experiments proved that the non-covalent interactions like π-π stacking, 

electrostatic (viologen cation and negative GO) and viologen cation-graphene π interactions might 

have stabilized the hybrid composite matrix and also facilitated the electrocodeposition process. 

The composite films showed improved electron transfer properties towards a redox mediator and 

better electrical conductivity verified by impedance measurements.  

It was previously observed that the PV films exhibit explicit electrochromism between bleached 

and intense purple colored state when switched between 0 V and -0.6 V, respectively (Fig. 9). 

Owing to its effective and highly stabilized composite formation with rGO, the PV-rGO films 

deposited on FTO were further exploited to electrochromic switching’s over long scan period 

(8000 s) at a monochromatic wavelength of 525 nm.  In comparison to pristine PV/FTO, the 

composite PV-rGO/FTO films showed very high optical stability in terms of transmittance change 

(%T), during continuous switching. PV/FTO films, on the other hand, decayed significantly 

during the switch cycles, showing continual decrease in %T from ~60% to ~10% at the end of 

the scan. Especially, the transmittance at the coloring state has dropped dramatically by 43% in 

comparison to that of the bleaching state showing negligible %T decay (3.5%). A high optical 
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stability of PV-rGO/FTO system suggests that the color bearing radical cation species are 

stabilized by intermolecular forces in the composite matrix with graphene. The response times and 

coloration efficiency values of composite films were also superior compared to those of the pure 

polymer. Similar improvement in the graphene based viologen electrochromic systems has also 

been reported [148,149,181]. The synergetic mechanism, high surface area and conductivity 

provided by graphene sheets, together with experimentally proven non-covalent interactions might 

have played a key role in enhancing the electrochromic properties of PV-rGO films. This particular 

study opens up an era of using nanostructured graphene materials in combination with 

electrochromes for improving the electrochromic performance parameters, especially the cycle life. 

 

 

Fig. 10. Illustration of the possible non-covalent interactions in PV-rGO composite structure (left). 

A CV of PV-rGO coated FTO-glass electrode with inserted photographs of the bleached and 

colored state films at their respective applied potentials and the equation showing the coloration 

mechanism (right).  

4.3. Electrosynthesis of viologen cross-linked thiophene copolymer 

When two or more dissimilar monomers couple and polymerize, the resulting material is termed 

as copolymer and the process is called copolymerization. The copolymers offer several advantages 

not normally seen in the homopolymers. An enhancement in terms of electrical conductivity, 

electrochemical activity, solubility, thermal stability etc. can be observed in copolymers [182]. The 

copolymer thus possesses improvement in the desired electrochemical properties that are 

intermediate between the individual polymers.  
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Among the conjugated polymers, polythiophenes (PTh) family has been extensively studied due to 

their great synthetic flexibility, good electrical conductivity and chemical stability in both the neutral 

and doped states, satisfying operational and environmental stability, good optical properties etc. 

Especially, for improving the optoelectronic related properties, chemical modifications of 

monomers/polymers is desired. An introduction of substituent functionality to PTh is a well-

established approach for tuning and enhancing several properties, that a pure polymer does not 

offer.  

 

Scheme 4. Schematic representation of electrocopolymerization of OOT and HOT-CNP 

monomer and suggested mechanism for cross-linking of viologen into polythiophene backbone. 

In publication III, a monomer precursor of a thiophene derivative containing a cyanopyridinium 

moiety in its side chain (HOT-CNP) is synthesized. The anticipation was that electrochemical 

oxidation of HOT-CNP would yield a stable PTh film. Subsequently, the attached CNP 

functionality can be electrochemically reduced to viologen by coupling the two cross-connected 

cyano groups. The final PTh backbone can thus be cross-linked by viologen units and might offer 

improved electrochromic properties. Accordingly, the electropolymerization was carried out in a 

three electrode setup using the CV technique. The resulting film started to drop off from the 

electrode during successive CV scans in organic supporting electrolyte. This might be due to the 

bulky structure of HOT-CNP. Similarly, a poor adhesion of conjugated PTh films containing 

viologen functionality has been reported previously [120,121]. Due to the solubility problem of the 

resultant film, we introduced another analogous thiophene monomer without any functionality 

OOT, for copolymerization with HOT-CNP. OOT was easy to polymerize and could produce a 

very firm thin film deposited on the electrode during electropolymerization. The anodic 

copolymerization of these two monomers was thus performed, which generated a well adhered 

insoluble copolymer film at the surface of an electrode. After polymerization, the films were 

subjected to cathodic potential sweep where the attached cyanopyridinium moiety could be reduced 

to viologen units. In order to ensure optimum structural composition, different feed ratios of 
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monomers were employed. The copolymer films with feed ratio of 1:4 (HOT-CNP:OOT) yielded 

the best possible PTh copolymer, evident by different characterization techniques. The CV 

response of the copolymer shows typical PTh and also characteristic viologen voltammogramms.  

The FTIR spectra of the copolymer in comparison to the individual monomers, showed successful 

viologen formation marked by disappearance of -C≡N stretching band at 2246 cm-1. An intense 

broad band at 1633 cm-1 assigned to the C=N ring stretching vibration in viologen can also be 

observed in the copolymer FTIR spectra. A speculated mechanism of viologen crosslinking into 

the polythiophene backbone is given in Scheme 4. In situ UV-Vis spectroscopy of homopolymer 

derived from OOT and copolymer showed an absorbance doublet at 530 and 590 nm during initial 

anodic scans and polaronic absorption at 830 nm after the oxidation state of PTh is achieved. 

Additionally, a band at 400 nm analogous to the viologen dimer absorption can also be seen in the 

copolymer absorption spectra already during the anodic scanning. When the copolymer was 

scanned to the cathodic side, representative viologen absorption bands can be seen at 400, 550 and 

700 nm (tiny band) and are increasing successively with increase of applied potential. The results 

indicate successful cross-linking of viologen from the cyanopyridinium ion into the polythiophene 

backbone. The copolymer exhibits electrochromism with striking color changes between purple 

and greenish blue at fully reduced and oxidized state, respectively (Fig. 11). The copolymerization 

concept turned out to be a successful approach for improving the adherence of the 

electropolymerized films and modifying the polymer backbone properties by introducing another 

redox functionality with improved stability and electrochromism.  

 

 

Fig. 11. In situ UV-Vis spectra of electrochromic copolymer film at 1.0 V (left) and -0.8 V (right), 

showing color changes at 525 nm. Inset: CV response of copolymer at anodic (left) and cathodic 

side (right). 
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4.4. Electrosynthesis of polythiophene derivative bearing a pendant viologen  

Due to the difficulties in the electropolymerization of HOT-CNP, a thiophene dimeric derivative 

was synthesized bearing viologen moiety in its side chain, Th-V (XVII). The electropolymerization 

was carried out in mixed electrolyte comprising water and acetonitrile (v/v; 50:50) containing 0.1 

M LiClO4 as supporting salt. Since the viologens could be well studied in aqueous solutions while 

the polythiophenes in the organic electrolyte media, an electrolyte mixture was employed. Three 

electrode system using Au working electrode, Pt wire counter electrode and Ag/AgCl pseudo-

reference electrode was employed for electropolymerization experiments using the cyclic 

voltammetry technique. As discussed in publication IV, the successive CV scanning was initiated 

in the cathodic direction in order to accumulate the viologen species, and thereafter continued in 

the anodic direction for polymerizing the thiophene moieties. This procedure was adapted from 

previous works on similar materials [122] and a potential window between -1.2 to +1.5 was selected 

for polymerization based on the initial trials.  During the reductive scan, a sharp redox peak can be 

observed at ~-0.4 V, assigned to the viologen radical cation formation. A broad peak due to neutral 

viologen can be detected at -0.75 V. In the anodic direction, three peaks were seen between 0.8-

1.2 V assigned to oxidation of thiophene. With continues scanning, constant increase in current 

could be observed indicating film growth. At the end of polymerization, an obscure layer could be 

noticed near the electrode surface. More importantly, the film did not drop off the electrode and 

could withstand 30 CV sweeps during polymerization, without any degradation.  

The redox response of the PTh-V modified electrode in the monomer free electrolyte showed 

redox activity due to the viologen as well as PTh at their respective potentials. The in situ UV-Vis 

spectra of a PTh-V thin film deposited on ITO demonstrate the electrochromic behavior of the 

film, discussed in great details in publication IV. The absorption intensity is higher in the range 

where viologen absorbs, indicating the significance of adding extra redox active viologen moiety 

into the polymeric chain for enhancing electrochromic properties. An improved contrast of the 

PTh film bearing a pendant viologen could be spotted visually as well as by potential dependent 

absorbance changes (Fig. 12). Bleaching of the film is fixed at the PTh side, in its fully oxidized 

state (+1.0 V) while the coloring of the film occurred obviously at the cathodic side, due to the 

viologen cation radical, showing deep violet color at -0.6 V. The color/bleach characteristics of 

PTh-V showed reasonable optical contrast (∆%T=39%) during switching. The film was found to 

be very stable over 1000 cycles, without any sign of significant degradation. Introducing some 

conducting properties of PTh into the colored viologen functionality seems to have improved the 

overall electrochrome durability. The thermal stability of PTh-V has also been enriched due to 
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similar reasons. Although, a real ECD was not presented, these initial experiments showed that 

PTh-V film can be upgraded for device applications.   

 

 

Fig. 12. A CV of PTh-V film with inserted photographs of the films showing its color/bleach 

characteristics. 

4.5. In situ ESR-UV-Vis-NIR spectroelectrochemical studies 

Due to its radical forming ability and the importance of radical cation in the electrochromic 

investigations, viologen/polyviologen system was studied by using multi in situ ESR/UV-Vis-NIR 

spectroelectrochemistry. Part of publication I and IV presents the in situ ESR/UV-Vis-NIR 

spectroelectrochemical studies of polyviologen (PV) and viologen functionalized polythiophenes 

(PTh-V), respectively.  

At cathodic side (n-doping):  

Polyviologen and viologen connecting polythiophene chain showed quite similar behavior in both 

ESR and UV-Vis-NIR spectroscopy during the cathodic scan, despite of its structural differences. 

At the beginning of the cathodic scan, both the ESR and UV-Vis spectra remain unchanged for 

the PV and PTh-V film modified electrode. Once the applied potential reached the viologen 

reduction onset, a sudden increase in the ESR signal as well as UV-Vis absorbance response could 
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be observed. Interestingly, ESR only shows a single line in its spectrum (Fig. 13) instead of well 

documented hyperfine splitting generally reported for the molecular viologen cation radical. This 

is probably due to the presence of polymer structures in both PV and PTh-V, restricting viologen 

species within the polymer matrix. The UV-Vis spectra, on the other hand, show a very typical 

viologen absorption with three characteristic bands at 400, 550 and 900 nm assigned to the viologen 

cation radical (Fig. 13). Dedoping of materials eventually decreases the spin concentrations 

detected by a decrease in ESR and UV-Vis intensity. At the end of the scan, the trapped radical 

species gives rise to a higher ESR signal and absorption intensity compared to that observed at the 

beginning of the scan.  

 

 

Fig. 13. A PTh-V film deposited on the Au mesh electrode during in situ ESR-UV-Vis-NIR 

spectroelectrochemical studies showing UV-Vis-NIR spectra at its fully oxidized (+1.0 V) and 

reduced (-0.6 V) state with their respective CV and ESR spectra as inset. 

At anodic side (p-doping):  

There is no reaction for viologens on the anodic side. Therefore, the anodic sweep is applied only 

on the PTh modified electrode and presented in publication IV. ESR comprises a single line (Fig. 

13) during oxidation of PTh that increases linearly with potential scan. The UV-Vis spectra follow 

a similar trend where the absorbance at around 700 and 1400 nm evolved and increased (Fig. 13). 

With increase in the oxidation potential, there was no sign of evolution of any new band which is 
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very typical for many conjugated polymers. These additional bands are normally assigned to 

polaron pairs or bipolaron formation. Since there was no sign of these processes, the obtained ESR 

and UV-Vis-NIR signals can be associated to only polaronic bands. Such behavior can be due to 

the formation of short polymer chains due to the dimeric structure of the precursor. During 

dedoping, the spins decreases and eventually vanished at the end of the scan. 

Both techniques follow a similar potential dependence trend, signifying the sensitivity and 

importance of multi in situ ESR/UV-Vis-NIR spectroelectrochemistry towards precise structural 

investigation.  
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5. CONCLUSIONS AND OUTLOOK 

In conclusion, this thesis provides a detailed study on the structural and electrochromic properties 

of viologen/polyviologen based conjugated polymers and composite structures. Starting from the 

synthesis, the electrochemical fabrication of different electroactive thin films was assembled on the 

electrode surfaces for their electrochemical and spectroelectrochemical characterization. Finally, 

the different films were tested for their electrochromic properties and the effect of structural 

modifications on the electrochromic parameters was evaluated.  

The main conclusions based on each publication are: 

I. Since the reduction process of cyanopyridinium to viologen is well-established, a new 

cyanopyridinium based monomer was synthesized and reductively electropolymerized to yield 

polymeric viologen species at the electrode surface. The structural investigations proved a 

successful polyviologen formation via coupling of 4-cyanopyridyl radicals. Spectroelectrochemical 

investigations endorse single line ESR spectra and characteristic viologen absorption features. 

II. The above mentioned monomer was mixed in a graphene oxide aqueous dispersion and utilized 

for electrodeposition of polyviologen-reduced graphene oxide composite films at the electrode in 

a cathodic potential window. The composite films were exclusively characterized by FTIR, Raman, 

XRD, XPS, SEM and in situ UV-Vis spectroelectrochemistry and structural changes were analyzed. 

Besides successful composite assemble, an enhancement in the electrochromic cycle life was 

observed in composite films compared to those of pristine polyviologens. High electrical 

conductivity and high surface area offered by graphene sheets together with non-covalent 

interactions between viologen cation and anionic graphene oxide is accounted for such 

improvement. 

III. A thiophene monomer with cyanopyridinium functionality was synthesized and copolymerized 

with another thiophene monomer. A stable, insoluble copolymer film was obtained and 

characterized thoroughly by using cyclic voltammetry, FTIR, SEM and UV-Vis 

spectroelectrochemistry and structural differences between homopolymers and copolymer were 

studied. The copolymer film showed multi-electrochromic properties due to the involvement of 

viologen in the polythiophene structure. 

IV. A thiophene monomer with pendant viologen moiety was synthesized and electropolymerized. 

The ESR/UV-Vis-NIR spectroelectrochemistry showed single line ESR and characteristic 

absorption bands for viologen and polythiophene derivative films during cathodic and anodic 
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scanning, respectively. Addition of such pendant viologen into the polythiophene backbone was 

found to enhance the electrochromic contrast of the overall film and showed good thermal stability. 

The thesis offers a novel approach towards the synthesis of polyviologens, via successive 

electroreduction of a unique cyanopyridinium based precursor, which is electrochemically stable 

and appropriate for EC applications. The polyviologen forms highly stable composite films with 

reduced graphene oxide showing enhanced long term durability of the viologen electrochrome, 

greatly desired for progressive field of ECDs. Although, viologen based polythiophene structures 

have also been proposed, their stability is a concern towards device applications. Nevertheless, 

polythiophenes with pendant viologen moiety synthesized in this work is more stable in 

comparison to the similar structures reported previously and found to sustain several EC switching 

cycles without any significant degradation. Moreover, these structures were thoroughly studied by 

using specialized multi in situ techniques, which provide detailed insights into the structural aspects 

necessary to understand the absolute properties of these materials.  Future directions of this work 

could be towards utilizing polyviologen derivatives in the ECD assembly. Addition of 

nanostructured materials has been found to improve the EC performance of viologens. Therefore, 

fabrication of ECDs based on polyviologens and its composites with nanomaterials could also be 

tested aiming at durable ECD performance. A polythiophene derivative with pendant viologen 

could be more suitable for multicolored ECDs. I believe that the work presented in this thesis is 

very fundamental touching the basics of viologen/polyviologen EC materials and certainly valuable 

considering high demand for durable smart windows and displays. Though, some experiments 

could still be improved and some interpretations might be considered as intermediate, the study 

proposes strong guidelines for further work on polyviologen based ECDs. 
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