

Measuring software security from the design of software

UNIVERSITY OF TURKU

Department of IT

Master’s thesis in technology

Marko Saarela

February 2016

ii

The originality of this publication has been inspected with the Turnitin OriginalityCheck

system in accordance with the University of Turku’s quality management guidelines.

iii

UNIVERSITY OF TURKU

Department of Information Technology

MARKO SAARELA: Measuring software security from the design of software

Master’s thesis in technology, 73 p, 5 p of appendixes

Software Engineering

February 2016

The vast majority of our contemporary society owns a mobile phone, which has resulted

in a dramatic rise in the amount of networked computers in recent years. Security issues

in the computers have followed the same trend and nearly everyone is now affected by

such issues. How could the situation be improved? For software engineers, an obvious

answer is to build computer software with security in mind.

A problem with building software with security is how to define secure software or how

to measure security. This thesis divides the problem into three research questions. First,

how can we measure the security of software? Second, what types of tools are available

for measuring security? And finally, what do these tools reveal about the security of soft-

ware? Measuring tools of these kind are commonly called metrics.

This thesis is focused on the perspective of software engineers in the software design

phase. Focus on the design phase means that code level semantics or programming lan-

guage specifics are not discussed in this work. Organizational policy, management issues

or software development process are also out of the scope. The first two research prob-

lems were studied using a literature review while the third was studied using a case study

research. The target of the case study was a Java based email server called Apache James,

which had details from its changelog and security issues available and the source code

was accessible.

The research revealed that there is a consensus in the terminology on software security.

Security verification activities are commonly divided into evaluation and assurance. The

focus of this work was in assurance, which means to verify one’s own work. There are

34 metrics available for security measurements, of which five are evaluation metrics and

29 are assurance metrics.

We found, however, that the general quality of these metrics was not good. Only three

metrics in the design category passed the inspection criteria and could be used in the case

study. The metrics claim to give quantitative information on the security of the software,

but in practice they were limited to evaluating different versions of the same software.

Apart from being relative, the metrics were unable to detect security issues or point out

problems in the design. Furthermore, interpreting the metrics’ results was difficult.

In conclusion, the general state of the software security metrics leaves a lot to be desired.

The metrics studied had both theoretical and practical issues, and are not suitable for daily

engineering workflows. The metrics studied provided a basis for further research, since

they pointed out areas where the security metrics were necessary to improve whether

verification of security from the design was desired.

Keywords: computer security, software security, software design, evaluation, assurance,

measuring security, metrics

iv

TURUN YLIOPISTO

Informaatioteknologian laitos

MARKO SAARELA: Ohjelmistoturvallisuuden mittaaminen ohjelman suunnitelmasta

Diplomityö, 73 s., 5 liites.

Ohjelmistotekniikka

Helmikuu 2016

Lähes jokaisella on matkapuhelin näinä päivinä, mikä samalla tarkoittaa tietoverkkoon

liittyneiden tietokoneiden määrän nousseen dramaattisesti viime vuosina. Tietokoneiden

turvallisuusongelmat ovat myös seuranneet tätä nousevaa trendiä ja ongelmat koskettavat

lähes jokaista. Mikä olisi avuksi tässä tilanteessa? Ohjelmistoinsinööreille vastaus on

selvä: ohjelmat tulee kehittää alusta alkaen turvallisuus huomioiden.

Tässä työssä tutkimusongelma on jaettu kolmeen tutkimuskysymykseen. Ensimmäisenä

selvitetään miten ohjelmiston turvallisuutta voidaan mitata. Toisena selvitetään mitä työ-

kaluja turvallisuuden mittaukseen on olemassa. Kolmantena tutkitaan mitä nämä työkalut

oikein kertovat ohjelmiston turvallisuudesta. Mittaustyökaluista tässä yhteydessä käyte-

tään yleisesti termiä metriikat.

Tämä tutkimus tarkastelee ongelmaa ohjelmistoinsinöörien näkökulmasta ohjelmiston

suunnitteluvaiheessa. Suunnitteluvaiheeseen keskittyminen tarkoittaa, että kooditason se-

mantiikan tai ohjelmointikielten yksityiskohtien tarkastelu jätetään työn ulkopuolelle.

Myöskään organisaation toimintatapojen, johtamisen tai ohjelmistokehitysprosessien tar-

kastelu eivät kuulu tutkimukseen. Kahteen ensimmäiseen ongelmaan käytettiin menetel-

mänä kirjallisuuskatsausta. Katsauksen jälkeen viimeistä ongelmaa tutkittiin tapaustutki-

muksen avulla. Tapaustutkimuksen kohteena oli Java-pohjainen sähköpostipalvelin ni-

meltään Apache James, josta oli saatavilla muutosloki, tietoja haavoittuvuuksista sekä

pääsy lähdekoodiin.

Tutkimuksen tuloksena selvisi, että ohjelmistoturvallisuuden englanninkielisestä termi-

nologiasta on olemassa jonkinlainen yksimielisyys. Turvallisuuden arviointitoiminnot

jaetaan yleisesti arviointiin ja varmistamiseen. Tämä työ keskittyi varmistamiseen, joka

siis tarkoittaa ohjelmiston rakentajan oman työn turvallisuuden varmistamista. Työssä

löydettiin yhteensä 34 metriikkaa, joista 5 keskittyi arviointiin ja 29 varmistamiseen.

Metrikoiden yleinen laatu oli heikko. Ainoastaan kolme suunnittelukategorian metriikkaa

läpäisi tarkastelukriteerit ja päätyi käytettäväksi tapaustutkimukseen. Metriikat väittävät

antavansa kvantitatiivista tietoa ohjelmiston turvallisuudesta. Kuitenkin ne ovat suhteel-

lisia ja tämän lisäksi ne eivät kyenneet löytämään turvallisuushaavoittuvuuksia tai osoit-

tamaan muitakaan ongelmia ohjelman mallissa.

Yhteenvetona metriikoiden yleinen tila jättää paljon toivomisen varaa. Tutkimuksessa

tarkastelluissa metriikoissa oli sekä teoreettisia ongelmia että soveltamisongelmia. Met-

riikoiden arviointi tarjoaa kuitenkin pohjan jatkotutkimukselle, sillä jos turvallisuutta ha-

lutaan metriikoilla arvioida, niin tarkastelussa havaitut kehityskohteet on huomioitava.

Asiasanat: tietoturvallisuus, ohjelmistoturvallisuus, ohjelmistosuunnittelu, arviointi, var-

mistaminen, turvallisuuden mittaaminen, metriikat

v

TABLE OF CONTENTS

ABSTRACT .. iii

TIIVISTELMÄ .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

1 INTRODUCTION ... 1
 1.1 Motivation .. 1

 1.2 Scope ... 1
 1.3 Objectives and research questions .. 1
 1.4 Methods .. 2

 1.5 Contents .. 2
2 WHAT IS SOFTWARE SECURITY? .. 3
 2.1 Defining security .. 3
 2.2 Viewpoints to software security ... 4

 2.3 Verifying the security of a software ... 6
3 SOFTWARE SECURITY METRICS ... 8

 3.1 Metrics and measurement ... 8
 3.2 Categories of metrics .. 9

 3.2.1 Security engineering perspective .. 10
 3.2.2 Business perspective ... 11
 3.2.3 Security characteristics perspective .. 13

 3.2.4 Software system perspective ... 16
 3.3 Choosing the category and metrics for this study .. 19

 3.3.1 A look at potential categories from this thesis’ perspective 19
 3.3.2 Additional details of metrics from the chosen category........................ 20
 3.3.3 Conducting a detailed examination of the chosen metrics 22

4 ANALYSIS OF SECURITY CRITICAL INFORMATION FLOW 24

 4.1 Introduction to Alshammari’s four metrics .. 24
 4.2 Theoretical basis: object oriented design properties and data flow 25
 4.3 Practical method for single class analysis .. 31

 4.4 Practical method for multiclass design analysis ... 34

 4.5 Object oriented design metrics: In practice .. 35
5 ANALYSIS OF THE SYSTEM ATTACK SURFACE .. 37
 5.1 Theoretical basis: Software system as an I/O automata model 37

 5.2 Practical method for analyzing a Java program attack surface 39
 5.3 Using the attack surface analysis in practice .. 43
6 THE PRACTICAL ANALYSIS .. 45
 6.1 Brief theoretical background for the case study ... 45
 6.2 The case study target: Apache James mail server .. 46

 6.3 Executing the case study analysis .. 48
 6.3.1 General remarks about the analysis .. 48

 6.3.2 Analysis using single class metrics ... 48
 6.3.3 Analysis using the multiclass metrics ... 52
 6.3.4 Analysis using the attack surface metric ... 53

vi

7 RESULTS OF THE CASE STUDY ANALYSIS ... 58
 7.1 Results of the single class metrics .. 58

 7.2 Results of the multiclass metrics .. 62
 7.3 Results of the attack surface metric .. 64
 7.4 Examining all results together .. 66
8 CONCLUSIONS ... 69
 8.1 Research outcomes ... 69

 8.2 Discussion .. 72
APPENDIX A: KNOWN VULNERABILITIES OF APACHE JAMES 74
APPENDIX B: MAJOR CHANGES BETWEEN APACHE JAMES VERSIONS 77
REFERENCES ... 79

vii

LIST OF FIGURES

Figure 2-1: Software security best practices (adapted from [2]) 4

Figure 2-2: The Microsoft Security Development Lifecycle in brief (adapted from [9]) . 5

Figure 4-1: Example of the metric’s annotations (adapted from [35]) 32

Figure 4-2: Radar chart from single class metrics with example data [35] 33

Figure 4-3: Radar chart from multiclass metrics with example data [35]....................... 35

Figure 5-1: Bar chart of attack surface metric from example data [38] 42

Figure 7-1: Guidance for interpreting the Single class OO metrics’ results 59

Figure 7-2: Comparison of James 2.1.3 case study results with Alshammari’s results for

Single class OO metrics .. 61

Figure 7-3: Guidance for interpreting the Multiclass OO metrics’ results 63

Figure 7-4: Results of the attack surface metric.. 65

Figure 7-5: The security flaws and new functionality introductions highlighted in the

attack surface metric’s results ... 65

Figure 7-6: Attack surface metric results versus Lines of Code in James 66

viii

LIST OF TABLES

Table 3-1: Categorization of metrics into assurance and evaluation 11

Table 3-2: Categorization of metrics into organizational and system property levels 12

Table 3-3: Categorization of metrics based on the security characteristics (adapted from

[21]) ... 14

Table 3-4: Categorization of metrics in software system level concepts. 17

Table 3-5: Five critical elements of measurement (adapted from [17]) 22

Table 4-1: A summary of Alshammari’s metrics .. 24

Table 4-2: Terminology used by Alshammari in his thesis (adapted from [35]) 26

Table 4-3: Single class metrics (collected from [35]) ... 27

Table 4-4: Rationale for the single class metrics (collected from [35]) 28

Table 4-5: Object oriented quality properties’ relation to security (collected from [35])

 ... 29

Table 4-6: Multiclass metrics (collected from [35]) ... 30

Table 4-7: Rationale for the multiclass metrics (collected from [35]) 31

Table 4-8: Single class metrics’ formulas (collected from [35]) 33

Table 4-9: Multiclass metrics’ formulas (collected from [35]) 34

Table 5-1: Overview of the attack surface measurement process 39

Table 5-2: Identification of attack surface resources (collected from [38]) 40

Table 5-3: Estimation of damage potential-effort ratio (collected from [38]) 41

Table 5-4: Calculations for attack surface value (collected from [38]) 42

Table 6-1: Summary of known vulnerabilities of James .. 47

Table 6-2: Single class OO metrics’ equation terms ... 49

Table 6-3: Single class OO metrics intermediate calculation results 50

Table 6-4: Multiclass OO metrics’ equation terms ... 52

Table 6-5: Multiclass OO metrics intermediate calculation results 53

Table 6-6: Attack surface calculation terminology ... 53

Table 6-7: Attack surface calculations phase 1 and partial phase 2 results 55

Table 6-8: Attack surface calculations phase 2 end results... 56

Table 6-9: Attack surface calculations phase 3 results ... 57

Table 7-1: Single class OO metrics’ results .. 58

Table 7-2: Alshammari’s results [35] for single class OO metrics 60

ix

Table 7-3: Multiclass OO metrics’ results .. 62

Table 7-4: Alshammari’s results [35] for multiclass OO metrics 64

Table A-1: Details of CVE-2004-2650 (adapted from [83], [84] and [85]) 74

Table A-2: Details of CVE-2006-2806 (adapted from [86], [87] and [88]) 75

Table A-3: Details of CVE-2015-7611 (adapted from [89], [90] and [91]) 76

1

1 INTRODUCTION

1.1 Motivation

At present, software security is an important topic in light of the dramatic rise in the

number of networked computers, such as mobile phones, even compared to the situation

one decade ago. At the same time, detected security issues have increased dramatically

and because almost everyone has a mobile phone, they are connected to almost everyone

on a daily basis. How can security issues be avoided when buying new antivirus software

is not a solution?

For software engineers the obvious answer should be to build the software with security

in mind in the first place. One of the problems in building secure software is how to

measure the security of the software. In other words, how to define secure software and

how to measure that the software in question meets this definition?

1.2 Scope

This thesis deals with the measurement of software security from the perspective of a

software architect or developer. The focus is on the software development lifecycle de-

sign phase and software design. The software development process is not the focus of this

thesis, but it is discussed lightly along with the topic of computer security in order to

define what is meant by the term ‘software security’.

This thesis is not focusing on organizational policy, project management issues, code

level semantical issues, or programming language specifics.

1.3 Objectives and research questions

The main objective of this thesis is to see what security metrics are there available for

measuring the security of software design and whether those metrics actually reveal any-

thing meaningful. One objective is also to inspect the usability of the metrics. Can the

metrics use the common software design artifacts, such as UML charts? Are the metrics

practical in terms of effort required to use them? Finally, an objective is to determine the

ultimate meaning of ‘secure software’ and how is it related to software design.

2

The research questions in this thesis are:

1. How can we measure the security of a software?

2. What metrics are available for measuring software security?

3. What do software security metrics actually reveal about the security of the software?

From now on, the research questions will be marked as RQ1, RQ2 and RQ3.

1.4 Methods

A literature review is used to answer the first and second questions. For the first research

question the purpose is to find a definition for software security and what it means to

measure such things. The purpose of the second research question is to find out what kind

of metrics are available, describe them, and based on the findings for the first research

question, try to find out which are suitable for this study. For the third research question

a case study research design is used in which selected metrics are applied to a target soft-

ware. The purpose is to find out whether the metrics are able to measure anything, are

feasible to use, and are they capable of revealing anything about the security.

1.5 Contents

Chapter 2 explores the problem of defining the phrase, ‘software security’. Chapter 3

briefly explains measurement theory and presents proposed metrics for software security

measurement. Chapters 2 and 3 provide answers to RQ1 and RQ2. Chapters 4 and 5 pro-

vide an in-depth explanation of the two chosen metrics for the case study. Chapter 6 in-

troduces the targeted case study and presents how the case study was conducted. Chap-

ter 7 shows the results of the case study and interprets them. Chapter 8 analyzes and dis-

cusses what the results tell about the security metrics and measuring security.

3

2 WHAT IS SOFTWARE SECURITY?

2.1 Defining security

Because this thesis is focused on computer security the first step to take before measuring

any security is to define what exactly is meant by ‘security’. So what is computer secu-

rity? Few actually attempt to define it, even though most agree that having it is good [1].

In the scope of this thesis, computer security is defined as in [2], which starts with divid-

ing computer security into software and application security. Other aspects of security

engineering, such as physical security, are not considered while discussing computer se-

curity. The reason for this narrow scope is an important idea expressed in [2] and [3]: The

central culprit of issues concerning computer security is actually software security.

There is a difference between the two classes of computer security mentioned above. Ap-

plication security entails protection of software after it has already been built. The view-

point of application security originates from a network centric approach to computer se-

curity. It includes functions such as penetration testing and is reactive in nature. Using a

firewall is an example of a use of an application security technology. [2]

Many sources consider focusing only on the application security as an insufficient ap-

proach and state that security should be built into the applications from the beginning of

their development process. [2] [3]

The concept that this thesis focuses on -software security- means designing, building and

testing software for its security. Software security should not be confused with security

software. The point of software security is to ensure that people developing software do

a better job in considering security as an integral part of the software. Software security

takes into account both security mechanisms (such as cryptography) and design for secu-

rity (such as design that makes circumventing the use of cryptography difficult). [2]

Narrowing the scope from computer security to software security does not fulfil the orig-

inal problem, but rather, transforms the question into another form. So what is software

security? Security can be thought as an emergent property [2] or as a requirement for the

software [1]. For a long time, software engineers have classified system requirements into

functional and non-functional requirements. Security is a non-functional requirement,

4

among others such as performance or reusability. In other words, security is a quality

attribute of the system. [4]

2.2 Viewpoints to software security

Merely defining security is not enough when trying to measure software security. There

are multiple viewpoints from which to look at software security, such as that of a manager,

an organization or a developer. [1] [5] The viewpoint of management or an organization

is usually concerned with concepts such as adherence to standards [5] or the costs of risks

in comparison to the alternative of avoiding them [6]. A developer’s viewpoint is usually

very different from these two due to their approach and methods of working.

Software developers, such as architects, coders and testers, are usually working in a pro-

cess called the software development lifecycle. This process represents all activities and

work products that are necessary to develop a software system. [7] There are multiple

lifecycles to choose from, and there are also specialized lifecycles which define ways to

integrate software security work into the software development process. [8] The follow-

ing figures describe two possible approaches to software security work. Figure 2-1 shows

best practices suitable for any software development lifecycle as presented in [2]. Fig-

ure 2-2 has a shortened version of a specialized software development lifecycle used in

Microsoft for security work [9].

Figure 2-1: Software security best practices (adapted from [2])

REQUIREMENTS
AND USE CASES

- abuse cases
- security
requirements

DESIGN

- risk
analysis

TEST PLANS

- external
review
- risk based
security
tests

CODE

- static
analysis

TEST RESULTS

- risk analysis
- penetration
testing

FIELD
FEEDBACK

- security
breaks

5

Figure 2-2: The Microsoft Security Development Lifecycle in brief (adapted from [9])

The viewpoint used in this thesis is of a software developer at the design phase, but the

objective is not to study the secure software development lifecycles.

Why focus on the design phase? A valid question. Numerous studies have presented a

‘cost of defect’ table, such as the classical IBM study in software quality referenced in

[6] or more contemporary studies [10] where the relative cost of a software defect raises

exponentially during advance stages of software development lifecycle. The purpose is

to demonstrate that focusing on the quality of the software as early as possible in the

software development process pays off. However, this ‘cost of defect’ metric has been

under criticism recently [11] [12] [13].

The criticism has three main points: 1. the ‘cost of defect’ metric actually makes quality

software unfeasible economically [13]; 2. the metric does not account for differences be-

tween the size or complexity of software projects or the programming language used [13];

3. the metric does not account for the differences between defects (e.g. whether the defect

is a major showstopper or a cosmetic one [13]). Regardless of these criticisms, a focus in

software quality by fixing the defects is not contested and such an approach actually does

make economic sense [12]. Therefore, in order to have a useful scope for a thesis, and to

keep in mind the building-in approach to software security, only the design phase is con-

sidered.

What is a security issue or defect? Security issue means that a (security) quality attribute

is not met in the software. Someone who has not considered the definition of security

might argue, that security has a binary value: either a software is secure or it is not [1].

This quick conclusion defeats the purpose of measuring security at all [1], so the defini-

tion of security as a quality attribute of a software is used in this thesis.

REQUIREMENTS

- security
requirements
- quality gates
- risk
assessment

DESIGN

- design
requirements
- attack
surface
analysis
- threat
modeling

IMPLEMENTATION

- approved tools
- static analysis

VERIFICATION

- dynamic
analysis
- fuzz testing

RELEASE

- incident
response
plan
- security
review

6

2.3 Verifying the security of a software

There is a simple and apparent problem when designing software for security: how can

one verify the security that has been designed? Measuring the performance can be ac-

complished through simulations, but what about the security itself [14]? In other words,

how can one ensure that the security requirements meet the security needs, security policy

meets the requirements and the security mechanisms implement the policy [1]?

Commonly these verification activities are grouped and divided into two concepts, called

assurance and evaluation, although the naming of these concepts varies across sources.

The difference in these concepts is quite simple: assurance means making sure that the

software works as intended, whereas evaluation means convincing other people that it

works as intended [14]. This thesis uses the terms and definitions as presented in [14], but

a brief look into other sources is used to clarify the situation.

International Organization for Standardization (ISO) standard 15288 on systems and soft-

ware engineering processes uses the terms verification and validation [15], which differs

from the terms used in this thesis. According to ISO 15288, “the purpose of the verifica-

tion process is to confirm that the specified design requirements are fulfilled by the sys-

tem” [15] and “the purpose of the validation process is to provide objective evidence that

the services provided by a system when in use comply with stakeholders’ requirements”

[15]. Even though the terminology in ISO 15288 is different from this thesis, the defini-

tion and concepts used in the standard are the same.

Another source for the terms is Common Criteria [16], which uses the terms: verification,

assurance and evaluation. Common Criteria defines ‘verification’ as: “rigorously review

in detail with an independent determination of sufficiency” [16], ‘assurance’ as: “grounds

for confidence that a target of evaluation meets the security functional requirements” [16]

and ‘evaluation’ as: “assessment of a protection profile, a security target or a target of

evaluation, against defined criteria” [16]. Common Criteria’s terminology is similar to

that used in this thesis, but the definitions used for assurance and evaluation are too spe-

cific to the context of Common Criteria.

7

Looking from the thesis’ viewpoint of a software developer, the security assurance is

where this thesis focuses on one out of these two. However, a brief look at the concept of

security evaluation is undertaken in order to understand the matter.

The security evaluation is defined in [14] as: “the process of assembling evidence that a

system meets, or fails to meet, a prescribed assurance target”. The definition is a bit vague,

since it overlaps with testing, but it should not be confused with testing. The purpose of

evaluation is to convince a superior, a client or a court that the system is suited for the

purpose that was built (i.e. that it works). The need for evaluation arises when those bear-

ing the cost of implementing the protection are different from those who carry the risk or

cost of failure, of the protection. Evaluation is usually done with a third party evaluation

scheme such as the Common Criteria. [14]

Assurance is defined more precisely in [14] as an “estimate of the likelihood that a system

will fail in a particular way”. The estimate can be based on a number of different factors,

such as the process used to develop the system, the identity of the developers, a particular

technical assessment, or an introduction of deliberate flaws or experience. [14]

Assurance can focus on many things including the examination of security policy, mech-

anisms and/or the implementation [14]. All of these are important, but from the viewpoint

of software design, this thesis focuses on the implementation aspect of ‘assurance’. Fo-

cusing on implementation means the central topic will be whether the product has been

implemented correctly with the agreed functionality and mechanisms (i.e. whether there

are any technical security failures in the product). [14]

Security testing is an example of a technical assessment in [14] that is performed for

security assurance. Security testing consists of reading product documentation, reviewing

code and running test programs. More precisely, the process is defined as beginning with

an initial assessment for architectural flaws, then to look for implementation flaws and

finally to use a list of less common flaws [14]. An assessment look for architectural flaws

is the process of examining the software design and looking for coding errors such as

stack overflows or integer overflows. It is also possible to benefit from the experience of

others and use a list of less common security flaws for the examination [14].

8

3 SOFTWARE SECURITY METRICS

Now that boundaries for this thesis have been established,-particularly- what is this thesis

looking for and where is it related to- there is a question of how to answer such questions.

What could be used to test, process or measure the software design to come up with results

regarding the security of the design? Before venturing any further, the term ‘metric’ needs

to be explained.

3.1 Metrics and measurement

A metric has multiple possible definitions depending on the chosen source [17] and some

sources even try to avoid using the term altogether [18]. A useful metric is one that “quan-

titatively characterizes a property” [17], implying that there has to be a property (some-

times called the measurand [17]) to characterize.

The measurement theory also defines the terms ‘measure’, ‘measurement’ and ‘value’

[17] [18]. A measure is something that a metric needs, such as an instrument or a formula

that allow the metric to be applied to related objects under inspection [17]. A measure-

ment is a process to get the results with the measure. Finally, all measurements need to

end up with a value [17].

According to [17], whenever there is a need for a measurement, all measurements end up

using these five critical elements:

1) The property to be measured needs to be identified.

2) A metric needs to be defined to quantitatively characterize the property.

3) A measure needs to be developed that applies the metric to a target.

4) A measurement process needs to be designed.

5) Each measurement needs to have a value and an estimate of its accuracy.

However, there is an immediate problem when using concepts from the physical world

and measurement theory: software is not a tangible product and therefore it does not have

physical properties to measure. Two concessions are required to measure software secu-

rity. First, if there are not any directly measurable properties, then a concept called ‘latent

variable’ can be used. This means that a property can be estimated using some observable

attributes. Second, the definition of metric can be loosened. [17]

9

In this thesis, the definition of metric is: “a consistent standard for measurement” as de-

fined in [6]. According to [6], a good metric should be:

 Consistently measured without subjective criteria.

 Cheap to gather, preferably in an automated way.

 Expressed as a cardinal number or percentage instead of qualitative labels.

 Expressed using at least one unit of measure, such as “defects”, “hours” or “dol-

lars”.

 Ideally, it is contextually specific.

This thesis uses a simple measurement process as presented in [19]:

1) Metrics need to be available.

2) A suitable metrics framework needs to be chosen and implemented.

3) Measurements need to be interpreted.

Before choosing suitable metrics frameworks, this chapter explores and presents the cur-

rently available software security metrics.

3.2 Categories of metrics

Software security metrics can be categorized in multiple ways that represent viewpoints

or abstractions within the metrics. The reason for different viewpoints is obvious: a man-

ager has very different needs for the metrics from a software developer. The categories

indicate the environment where the metric works well or is designed to work while show-

ing where the metric is most likely to fail.

The four categories presented in this section are collected from the sources of the metrics.

Because most sources provide minimal examples of metrics in the categorization, the

thesis author performs most categorization found here. The best attempt was made to find

all related metrics for this work. The first two categories divided the metrics into two

groups, but the metrics are presented from one side of the division for clarity. The division

in the sections is quite obvious and presenting all of the metrics at the first categorization

would cause the focus to be lost. Many presented metrics also fit into multiple categori-

zation schemes, but when they do, they are only presented in detail for the first time they

are introduced.

10

3.2.1 Security engineering perspective

One possible way to categorize metrics is to use the definition of verification activities,

as specified in [14], which divides metrics into assurance and evaluation. Evaluation met-

rics verify the product or process against standards, while assurance metrics verify

whether the product is built securely. The focus on this categorization is on the verifica-

tion process. The following Table 3-1 presents the metrics divided into assurance and

evaluation categories. However, only evaluation metrics are explained with additional

detail because the assurance metrics are presented in the other categories. The metrics for

evaluation criteria are chosen by the thesis author based on ideas and guidance provided

by [14], [6] and [20]. This section continues by examining some of the metrics before

presenting the whole Table 3-1.

Common Criteria [16], formally called Common Criteria for Information Technology

Security Evaluation, is the successor to Orange book and ITSEC metrics for governmen-

tal evaluation. The Common Criteria is a three-actor evaluation scheme that includes a

producer, evaluator and consumer. Its primary purpose is to verify three aspects of the

product: correct definition of the requirements, correct implementation of the require-

ments and correct documentation [21].

Orange book [22], the Trusted Computer System Evaluation Criteria of the US Depart-

ment of Defense, and its European counterpart ITSEC [23], Information Technology Se-

curity Evaluation Criteria, were developed due to the need to use commercial information

technology systems in military use. They were abandoned as a result of troublesome eval-

uation practicalities, insistence on formal models for mandatory security and excessive

demands for documentation [24].

NIST 800-55 [25], the Performance Measurement Guide for Information Security, is a

US government guide for the development and measurement of organizational or infor-

mation system level security activities. The main goal of the guide appears to be helping

US government agencies to comply with legislative demands. It does not measure secu-

rity as such, but it defines where security should be measured and in what ways it could

be measured.

11

Table 3-1: Categorization of metrics into assurance and evaluation

Component analysis [26] is a method to evaluate the security of a software architecture

based on the individual components’ evaluations. The method is applicable to architec-

tures that already have defined security requirements. The method evaluates the im-

portance of individual components and whether their security measures fulfill the require-

ments.

3.2.2 Business perspective

Another way of categorization is to divide the metrics into organizational levels (enter-

prise level, management level) and technical level (software system property level) met-

rics as done in [5]. This categorization stems from differing needs regarding information

ASSURANCE METRICS EVALUATION METRICS

ISO 27004 Common Criteria

MBSA Orange book

SSE-CMM ITSEC

Security assessment framework NIST 800-55

Security estimation framework Component analysis

Catalog of metrics for SDLC

CWE

CVSS

CMSS

Security metrics for software systems

Formal analysis for secure architectures

Analyzing architectures with Bauhaus

Measuring security article

SEEA to ISO 26262

Security metrics for object oriented programs

Hierarchical assessment model

Object oriented class design

Object oriented multiclass design

Attack surface analysis

Formal constrain analysis

OCL signature analysis

Risk analysis for security pattern systems

Security pattern analysis

USIE model

Vulnerability index in dynamic architectures

Attack prone component prediction

ASSM

CCD

Three code metrics

12

between the management’s organizational level and the developers’ system property

level. In other words, the organizational level places more focus on the economic risk

management [6] or processes, while the system property focuses more on the security

assurance.

Table 3-2 presents the metrics divided into organizational level and system property level

categories. The organizational level metrics are explained further in this section, while

system property metrics will be presented in subsequent sections.

Table 3-2: Categorization of metrics into organizational and system property levels

ORGANIZATIONAL LEVEL METRICS

Common Criteria

Orange book

ITSEC

NIST 800-55

ISO 27004

MBSA

SSE-CMM

Security assessment framework

Security estimation framework

Catalog of metrics for SDLC

SYSTEM PROPERTY LEVEL METRICS

CWE

CVSS

CMSS

Security metrics for software systems

Formal analysis for secure architectures

Analyzing architectures with Bauhaus

Measuring security article

SEEA to ISO 26262

Security metrics for object oriented programs

Hierarchical assessment model

Component analysis

Object oriented class design

Object oriented multiclass design

Attack surface analysis

Formal constrain analysis

OCL signature analysis

Risk analysis for security pattern systems

Security pattern analysis

USIE model

Vulnerability index in dynamic architectures

Attack prone component prediction

ASSM

CCD

Three code metrics

13

ISO 27004 [27] is part of the ISO 27000 family of information security management

standards. The 27004 standard provides guidance on creating and using metrics for meas-

uring the information security management activities and systems [28].

MBSA [29], a Security Metric Based on Security Arguments, is a framework that pro-

vides a process for mapping security goals of the system stakeholders and the individual

information security metrics. The fulfillment of the security goals is measured in a qual-

itatively using a ‘degree of belief’.

SSE-CMM [30] [31], shorthand for the ISO 21827 Systems Security Engineering Capa-

bility Maturity Model, is a standard aimed at improving organizational or engineering

processes related to information security. The standard defines the required processes and

how to monitor and improve them.

Security assessment framework [32] is a process that attempts to help select metrics

that could verify software security at the design time. No instructions on how to use the

process or any security metrics are provided.

Security estimation framework [33] is a framework that defines the stages of a process,

which can be used estimate security at the early stages of the software development lifecy-

cle. Process stages are vaguely described and no security metrics are listed.

Catalog of metrics for SDLC [34] is a collection of qualitative metrics for all phases of

the software development lifecycle. Metrics are based on seemingly random variables

present in the development phase. No reasoning for the selection of the metrics is given.

Metrics are meant to help detect and assess risks during the phases, but there are no in-

structions on how to interpret the results.

3.2.3 Security characteristics perspective

The next category is slightly different from the earlier categorizations, which focused on

different abstraction levels. This category is based on an interesting idea presented in [21]

where the authors examined ten software security metrics based on their security charac-

teristics. The focus of this category is on the features of the security metrics. The follow-

14

ing Table 3-3 is combined from the tables presented in [21] and reproduced as such. Fea-

ture coverage is marked with a “X” for full feature coverage and a “/” for partial feature

coverage.

Table 3-3: Categorization of metrics based on the security characteristics (adapted from

[21])

METRIC

CHARACTERISTIC O
b

je
ct

 o
ri

en
te

d
 c

la
ss

 d
es

ig
n

S
ec

u
ri

ty
 e

st
im

at
io

n
 f

ra
m

ew
o

rk

C
o

m
m

o
n

 C
ri

te
ri

a

IS
O

 2
7

0
0
4

A
tt

ac
k

 s
u

rf
ac

e
an

al
y

si
s

C
W

E

C
V

S
S

C
M

S
S

N
IS

T
 8

0
0

-5
5

S
ec

u
ri

ty
 m

et
ri

cs
 f

o
r

so
ft

w
ar

e
sy

st
em

s

Authenticity X X X / X X X X /

Confidentiality X X X / X X X X /

Conformance X X X / X X X X /

Detection of attacks / / / X X X X / /

Availability / X X X / /

Integrity X X X / X X X X /

No repudiation X / / / / / /

Traceability / X X X / / / X /

Conformance (safety) X X X X X X X /

Security and health of operator / / / / /

Public health and security / / / / /

Commercial damage / / / / /

Environmental damage / X /

Object oriented class design [4], presented more thoroughly in a PhD dissertation titled

Quality Metrics for Assessing Security-Critical Computer Programs [35], is a method

that allows the comparison of two similar object-oriented classes for their security. It uses

15

metrics created from the characteristics of object-oriented classes to analyze the infor-

mation flow of the program. The dissertation also introduces metrics such as Object-ori-

ented multiclass design, Security metrics for object-oriented programs, and Hierarchical

security assessment model. These other metrics can be used together with the object ori-

ented class design metric and are presented in the next section.

Attack surface analysis [36] [37], presented more thoroughly in a PhD dissertation titled

An Attack Surface Metric [38], is a method of measuring a software system’s interaction

with its environments. The analysis uses the theory of automata to model the software

system and presents methods to measure the attack surface on different programming

languages. The analysis results in a quantitative value for the system’s attack surface.

CWE [39], the Common Weakness Enumeration, is an attempt at creating a formal com-

mon ground for discussing software vulnerabilities and weaknesses. CWE authors upkeep

a list or dictionary of common software weaknesses that can occur in the design or im-

plementation of a given software. CWE is designed for educational purposes and is meant

for software developers.

CVSS [40], the Common Vulnerability Scoring System, is a method to evaluate individ-

ual software vulnerabilities by quantifying the severity of the security issue. The evalua-

tion is platform independent and allows a comparison of vulnerabilities from different

vendors.

CMSS [41], the Common Misuse Scoring System, is a sibling metric to CVSS (and a

third one called CCSS). CMSS attempts to give quantitative evaluation for software fea-

ture misuse vulnerabilities where CVSS targets software flaws and CCSS configuration

flaws. The evaluation methods of CMSS and CVSS are similar.

Security metrics for software systems [42] presents a method that uses CVSS scores

and the assigned CVEs (Common Vulnerabilities and Exposures, a unified vulnerability

ID scheme) as a basis for calculating the level of security of a software package. No rea-

soning for the formulas used is provided.

16

3.2.4 Software system perspective

The final category presented in this thesis is based on the idea presented in [43]. In this

viewpoint the software system is divided into three levels based on how detailed view

they give to the system. This viewpoint is likely to be most familiar to software develop-

ers. Table 3-4 shows the abstraction levels used: the system level, design level and the

code level. The focus of this category is a technical one, so some previously presented

metrics are ruled out from the scope.

Formal analysis for secure architectures [44] is a technique presented in a PhD disser-

tation, which describes a way to reconstruct the software environment used in construct-

ing the software architecture. The technique allows the comparison of the written archi-

tecture against the uncovered architectural assumptions.

Analyzing architectures with Bauhaus [45] [46] is a method for extracting the software

architecture from software for threat modeling. The extraction is done with the help of a

tool called Bauhaus. Security is measured by evaluating whether the discovered architec-

ture exhibits signs for the vulnerabilities discovered during thread modeling.

Measuring security article [17] proposes a method of measuring security by using CVE

data and CVSS numbers found on them. The article falls short on providing actual infor-

mation on working with the data and what kind of results the work would bring.

SEEA to ISO 26262 [47] describes a way to use the Software Error and Effects Analysis

(SEEA) [48] in fulfilling the automotive industry standard ISO 26262 requirements for

security evaluation of software architecture. SEEA is a process that qualitatively analyzes

possible errors in the system components and how the consequences of these errors would

propagate throughout the system.

Security metrics for object-oriented programs [35] is a metric for Java based object-

oriented programs presented in a PhD dissertation [35]. It combines two object-oriented

class based metrics presented in the dissertation with some additional Java specific pro-

gram code metrics. The aim of the metric is to extend the object-oriented class based

metrics into automated tools that could process source code or bytecode for obtaining

results.

17

Table 3-4: Categorization of metrics in software system level concepts.

Hierarchical security assessment model [49] [35] is a model that combines three met-

rics presented in a PhD dissertation [35] to produce a more descriptive quantitative as-

sessment of software. The three metrics this model uses are: object-oriented class design,

object-oriented multiclass design, and security metrics for object-oriented programs. The

model presents calculation formulas for combining the results from the metrics and gives

each program a single quantitative number to describe their security.

Object oriented multiclass design [50] [35] is a metric that allows measurement of se-

curity from a multiclass object-oriented design. It is part of the set of metrics presented

in a single PhD dissertation [35]. It differs from the single class version in the object

oriented design properties that are used to create the metric. The metric provides a way

to calculate security quantitatively and gives some guidance in interpretation.

SYSTEM LEVEL METRICS

Common Criteria

CVSS

CMSS

Security metrics for software systems

Formal analysis for secure architectures

Analyzing architectures with Bauhaus

Measuring security article

SEEA to ISO 26262

Security metrics for object oriented programs

Hierarchical assessment model

DESIGN LEVEL METRICS

Component analysis

Object oriented class design

Object oriented multiclass design

Attack surface analysis

Formal constrain analysis

OCL signature analysis

Risk analysis for security pattern systems

Security pattern analysis

USIE model

Vulnerability index in dynamic architectures

CODE LEVEL METRICS

Attack prone component prediction

ASSM

CCD

Three code metrics

18

Formal constrain analysis [51] is a process for analyzing the software architecture’s

compliancy with the security requirements of the software. The process is not described

in depth and no evaluation criteria are presented.

OCL signature analysis [52] is a method of describing and analyzing software architec-

tures by using a formal language called Object Constraint Language (OCL). The method

does not provide analysis metrics, but instead describes how metrics data can be extracted

from the architecture model.

Risk analysis for security pattern systems [53] is a method of performing risk analysis

on software that is designed by using security design patterns. The method measures se-

curity qualitatively by describing the risk or change in the risk that comes from introduc-

ing or removing security design patterns.

Security pattern analysis [19] is another method of analyzing software architecture se-

curity by using security design patterns. It is an earlier work made by the author of Formal

analysis for secure architectures and describes a way to combine the security require-

ments of software to security design patterns and the metrics associated with the patterns.

USIE model [54], shorthand for User System Interaction Effect model, is a notation

framework for describing Service Oriented Architecture diagrams in a way that is more

security oriented to allow for improved metrics development and security analysis. The

authors of USIE model do not provide the metrics or analysis methods.

Vulnerability index in dynamic architectures [55] is a method for analyzing the dy-

namic, or runtime, architecture of software for characteristics such as security. The

method models the dynamic software architecture as a discrete time Markov chain. The

probabilities and calculations of a security related vulnerability index are not defined

clearly.

Attack prone component prediction [56] is a model, presented in a PhD dissertation

using static code analyzers to demonstrate there is a possibility of determining the com-

ponents in software that have a higher probability of vulnerabilities. The model first de-

fines the code features that the static analyzers should look for and then describes the

connection between vulnerability probability and the static analysis results.

19

ASSM [57], shorthand for Analyzer-based Software Security Measurement, is a model

that combines several code and design level metrics to give a single security indicator

value for a software system. The model does not describe how to measure the metrics,

but it defines what values to expect from them and how to combine the values into results

for the model.

CCD [58] is an acronym given to a set of metrics (in complexity, code churn and devel-

oper activity) that define a qualitative method to predict vulnerabilities in individual files.

The method first describes the metrics used, and then instructs the user how to calculate

and interpret the results. Access to source code management repository is needed in ad-

dition to the source code.

Three code metrics [43] is a collection of three source code metrics presented in an ar-

ticle. The article defines the metrics and a calculation formula for a single value, but no

instructions for interpreting the results are given.

3.3 Choosing the category and metrics for this study

Upon examining the different categories and their subcategories, it becomes clear that

some metrics are unsuitable for the purposes of this thesis. To recap, the focus of this

thesis was on software design and how to measure its security. With this in mind, it is

time to evaluate the individual categories.

3.3.1 A look at potential categories from this thesis’ perspective

The security engineering perspective is a suitable category for process improvement or

procurement purposes, but it is not very helpful for software design activities. The sub-

category of evaluation is defined to mean external evaluations, which is not the case in

this thesis. Therefore, the security engineering perspective and evaluation metrics are

ruled out.

The business perspective focuses on economic or management aspects of the security

measurement. Because the focus of this thesis is not on the software development lifecy-

cle process, the subcategory of organizational level metrics and the business perspective

category are ruled out.

20

The security characteristics perspective is quite interesting and informative for studying

metrics, but it offers very little from the viewpoint of software design. Thus, while the

security characteristics perspective is useful for the purposes of the RQ2, it is not practical

for discovering what the metrics reveal about the software’s design security. We therefore

eliminated the security characteristics perspective from our list.

The fourth category -the software system perspective- appears quite suitable for the pur-

poses of this thesis. It has a clear technical focus and a subcategory for the software de-

sign. Because the system level or the code level metrics are not really suitable for analyz-

ing software design, the metrics for the case study in the thesis will be chosen from the

design level metrics subcategory of the software system perspective.

3.3.2 Additional details of metrics from the chosen category

The design level metrics subcategory of the software system perspective has ten metrics,

as seen on Table 3-4. The purpose of this section is to examine the metrics in more detail

and find out whether they fulfill the criteria of a ‘good’ metric given in Section 3.1. The

criteria of a good metric was: the metric should be consistently measured, cheap to gather,

expressed as a cardinal number and using at least one unit of measure and contextually

specific. All metrics not fulfilling the criteria need to be rejected since it is not the goal

of this thesis to develop existing metrics further.

The easiest metrics to reject outright are the Formal constrain analysis, the OCL signature

analysis, the USIE model and the Vulnerability index in dynamic architectures. Reading

the details of these ‘metrics’ in depth reveals that none actually provide any metrics at all.

The component analysis metric and the Risk analysis for security pattern systems metric

share the same trait: they are both qualitative methods. Their analysis is based on quali-

tative descriptions and evaluations of the security (such as high, low, etc.) and are rejected

because the criteria for a good metric calls for quantitative approach for measurement.

There are four metrics left in the design level metrics category: the Object oriented class

design, the Object oriented multiclass design, the Attack surface analysis and the Security

pattern analysis. The Security pattern analysis is inspected next.

21

The Security pattern analysis is a qualitative security metric and provides a method for

interpreting the results of the metrics. However, it suffers from two flaws. First, the anal-

ysis method does not provide the metrics. The metrics used in [19] are only applicable to

the specific examples of security design patterns given in the article, and the authors do

not give any indication as to how to make more metrics or where to acquire them. Second,

the analysis also requires that the inspected software use security design patterns in its

design, and is therefore not universally applicable. For these two reasons the Security

pattern analysis is rejected.

The Object oriented class design metric, presented in [4], and the Object oriented mul-

ticlass design metric, presented in [50], are examined together since they are explained

more thoroughly in the same PhD dissertation [35]. Both metrics are consistently meas-

ured, since they are based on the properties of object-oriented classes. This makes them

relatively cheap to gather, especially on common object-oriented languages, such as Java,

which have numerous helpful tools available for extracting this kind of information. The

metrics are quantitative and use numbers to express the results. The metrics also use units

of measure, such as the number of attributes. Finally, the metrics are related to software

design and thus, the object-oriented properties used are generic to object-oriented design.

Both metrics are also independent of the programming language used. In conclusion, both

of the metrics are good candidates for the case study.

The final metric left in the subcategory is the Attack surface analysis, which is introduced

in [38]. The analysis starts by defining the system’s attack surface through the theory of

automata and then proceeds to define how to measure the attack surface on two different

programming languages. The metric can be consistently measured and it is cheap to

gather. Additionally, the result of the metric is a number expressing the size of the attack

surface and is therefore valid as a unit of measure. Software architecture and design work

deal with the environment of the software as well, and since the point of this metric is to

measure the exposure of the software to its environments, the metric is context specific.

The Attack surface analysis seems to be a good candidate for the study too.

The design level subcategory shrunk from ten to three metrics. However, this does not

guarantee the metrics will be useful for the purposes of this thesis. The measurement

22

process of this thesis requires the metric to be implemented after selecting the suitable

metric. The next section describes the process of exanimation for the chosen metrics.

3.3.3 Conducting a detailed examination of the chosen metrics

The following two chapters will inspect the three chosen metrics in depth to evaluate their

suitability for practical security measurement. Suitability for practical measurement

means that there must be a way to implement the metric. The two object-oriented class

metrics, introduced by Alshammari in [35], are discussed in Chapter 4 and the attack

surface metric, described by Manadhata in [38], is the topic of Chapter 5.

The inspection evaluates whether the metrics fulfill the criteria for the elements of meas-

urement presented in Section 3.1. The evaluation is subjective and qualitative because the

source of the elements of measure, [17], only vaguely defines the fulfillment criteria. Ta-

ble 3-5 repeats the elements of measurement from Section 3.1 and describes the fulfill-

ment criteria of each element. All elements are abbreviated for easier reference in subse-

quent chapters.

Table 3-5: Five critical elements of measurement (adapted from [17])

In practice the evaluation in Chapters 4 and 5 is achieved by first introducing the theoret-

ical foundation of the metric. After presenting the theoretical foundation, a practical way

of applying the theory into reality is presented. During the evaluation, the elements of

ABBR NAME DEFINITION

EM1 Property Identify the property to be measured. Build a model of the phenomenon.

EM2 Metric
Define a metric that quantitatively characterizes the property. Can be a unit

of measurement, standard to apply against or scale to evaluate against.

EM3 Measure

Develop a measure, which applies metric to the target. Can be a measuring

instrument, formula or other mental device to apply a metric. Should be

linear, that is, identical changes in the property value affect the change in

measure similarly.

EM4 Measurement
Design the measurement process. Calibration of the measuring device.

Collection and availability of the data.

EM5 Value
Each instance of measurement must deliver a result that is composed of a

value and an estimate of its accuracy (an error).

23

measurement are discussed when appropriate. Criticism towards the metrics and other

remarks of interest are not discussed in Chapters 4 and 5, but are left for later chapters.

Finally, we present ideas and remarks regarding how to perform the practical measure-

ments with current tools. The object-oriented language chosen for these tools is Java be-

cause the original authors use Java and because there are a multitude of Java tools avail-

able.

24

4 ANALYSIS OF SECURITY CRITICAL INFORMATION

FLOW

As mentioned in the previous chapter, Alshammari introduces four metrics in [35] with

the aim of measuring security critical information flow in object-oriented programs. The

first section introduces all four metrics and the subsequent sections deal with two metrics

chosen for closer inspection.

4.1 Introduction to Alshammari’s four metrics

The metrics with their important characteristics are presented in Table 4-1 for easy refer-

ence. From now on, Alshammari’s metrics will be referenced with the abbreviations from

Table 4-1.

Table 4-1: A summary of Alshammari’s metrics

Alshammari begins his thesis by introducing the two object-oriented design metrics, from

which AM1 is meant for single class designs while AM2 is for multiclass designs. Both

of these metrics use UML diagrams and can be considered as pure design metrics. He

then proceeds to introduce refactoring rules for the UML diagrams and examines their

effect on the security of the designs. Discussing the refactoring highlights potential ways

to use his metrics’ findings in improving the security of a program.

ABBR NAME TYPE MATERIAL NOTE

AM1
Object oriented class

designs
Single class metric

Annotated UML

class diagram

AM2
Object oriented mul-

ticlass designs
Multiclass metric

Annotated UML

class diagrams
Complements 1

AM3

Security metrics for

object oriented pro-

grams

Full Java program

metric

Annotated program

source or byte code

Combines 1 and 2

with some extra met-

rics

AM4
Hierarchical security

assessment model
Composition metric

Results from all met-

rics

Provides formulas for

calculating meaning

for metrics’ results

25

After refactoring, Alshammari proceeds to introduce additional metrics for full Java pro-

grams, AM3, which are complementing the object-oriented design metrics he introduced

earlier. These new metrics depend on implementing the program and require source code

for analysis. [35] It is interesting to note that he also introduces a method for using the

previous AM1 and AM2 metrics with Java source code. In addition, his work includes

the definition of an automated tool for calculating the values for his metrics.

There appears to be a minor issue in Alshammari’s work related to the single class metric

AM1 and full program measurement: How is a single class metric calculated when eval-

uating a program? Alshammari’s answer -based on the description of his automated tool

in [35]- seems to be to consider all classes as one (i.e. to collect data from all classes to

calculate his single class metric).

As a final metric, Alshammari introduces a composite metric AM4, which is meant to

help interpret the results from his full Java program metric. Since the Java program metric

only complements the earlier metrics, the hierarchical assessment model is actually de-

scribing a way of interpreting all of his metrics. The idea in AM4 is that it has four levels

of quantitative results that describe the relative security of the program. The results of

higher levels are derived from the lower level metrics’ results. [35]

The two object-oriented class design metrics have the most solid foundation of Alsham-

mari’s metrics. They are language agnostic and do not require any specific implementa-

tion level details, but they require special annotations into existing UML diagrams. Both

metrics are relative, meaning that they can be only used to compare programs of similar

type. [35]

4.2 Theoretical basis: object oriented design properties and data flow

The main idea behind object-oriented class design security metrics is to measure software

security from the perspective of potential information flow through a program’s object-

oriented module structure [35]. The metrics are based on established properties of object-

oriented programs and are used in combination with data flow analysis principles that

trace potential information flow between high- and low-security system variables [35].

Alshammari describes the goal of his metrics as protecting the confidentiality of the data

26

in regard to the software architecture [35]. Table 4-2 explains the terms Alshammari uses

when describing his metrics.

The single class metric AM1 uses two properties of object-oriented classes as the basis:

data encapsulation and cohesion. The reason for selecting these properties is not just that

they are well known and widely used, but also because their relation to lower level class

properties is clearly defined. Furthermore, because the purpose of the AM1 is to measure

the information flow through the class, the selected properties align well with two security

design principles: “the principle of least privilege” and “reduce attack surface”. [35]

Table 4-2: Terminology used by Alshammari in his thesis (adapted from [35])

* Note: Questions and problems related to indirect access are discussed in Chapters 6 and 8.

TERM EXPLANATION

Classified attribute An attribute annotated as “secrecy”

Instance attribute An attribute with separate values for each class instance

Class attribute An attribute with shared value for all class instances

Classified method A method which reads from or writes to a classified attribute*

Unclassified method A method which does not interact with classified attributes

Mutator A method that sets the value of an attribute

Accessor A method that reads the value of an attribute

Classified mutator A method that sets the value of a classified attribute

Classified accessor A method that reads the value of a classified attribute

Critical class A class with classified attributes

27

Table 4-3: Single class metrics (collected from [35])

In other words, the AM1 is divided into two groups: accessibility and interaction metrics.

The metrics aim to measure the amount of privilege granted to parts of the program and

the relative size of the attack surface of the program. Accessibility metrics try to measure

information relevant to the least privileged principle and obtain their information from

the data encapsulation properties. Interaction metrics attempt to measure information rel-

evant to the attack surface reduction and draw information from the cohesion properties.

[35]

Based on the use of object-oriented class properties and their connection to the security

design principles, the AM1 metric fulfills the EM1 criteria. The use of ratios in the AM1

metrics is based on the earlier work by other authors on object oriented quality metrics

[35]. Therefore, the EM2 criteria are fulfilled by the definitions of these metrics.

 ABBR NAME DEFINITION

A
C

C
E

S
S

IB
IL

IT
Y

 CIDA
Classified Instance

Data Accessibility

The ratio of non-private classified instance attributes to

classified attributes in a class.

CCDA
Classified Class Data

Accessibility

The ratio of non-private classified class attributes to clas-

sified attributes in a class.

COA
Classified Operation

Accessibility

The ratio of non-private classified methods to classified

methods in a class.

IN
T

E
R

A
C

T
IO

N

CMAI
Classified Mutator

Attribute Interactions

The ratio of mutators that may interact with classified at-

tributes to the maximum possible number of mutators that

could interact with classified attributes.

CAAI
Classified Accessor

Attribute Interactions

The ratio of accessors that may interact with classified at-

tributes to the maximum possible number of accessors that

could have access to classified attributes.

CAIW
Classified Attributes

Interaction Weight

The ratio of all methods that could interact with classified

attributes to the total number of methods with access to all

attributes.

CMW
Classified Methods

Weight

The ratio of classified methods to the total number of

methods in a given class.

28

Table 4-3 presents the definitions of the AM1 metrics arranged into the two groups. Table

4-4 presents the rationale behind each AM1 metric. The definitions and rationale are col-

lected from [35].

Table 4-4: Rationale for the single class metrics (collected from [35])

The multiclass metric AM2 is designed to complement the single class metric. As the

name implies, the metric is no longer aimed at individual classes, but at class structures.

The basis for AM2 comes from five quality properties of object-oriented programs: com-

position, coupling, extensibility, inheritance and design size. The security principles used

in the development of the metrics are still the same as AM1 (i.e. “the principle of least

privilege” and “reduce attack surface”). Each quality property’s contribution to the secu-

rity of the design is defined separately.

While Table 4-5 shows relations between quality properties and security, the link between

the security design principles and quality properties is not as tight as in the single class

metric [35]. Regardless, the object-oriented quality properties are well established in the

field so the EM1 criteria are fulfilled for AM2 metric.

ABBR RATIONALE

CIDA
Measures direct accessibility of classified instance attributes. Helps protect classified inter-

nal representations of a class from direct access. Higher value means higher accessibility.

CCDA
Measures direct accessibility of classified class attributes. Helps protect classified internal

representations of a class from direct access. Higher value means higher accessibility

COA
Measures potential attack surface size exposed by classified methods. Helps protect classified

internal operations of a class from direct access. Higher value means higher surface.

CMAI

Measures interactions between mutators and classified attributes in a class. Higher values

indicate stronger cohesion between mutators and classified attributes, and thus, more privi-

leges for mutators over classified attributes.

CAAI

Measures interactions between accessors and classified attributes in a class. Higher values

indicate stronger cohesion between accessors and classified attributes, and thus, more privi-

leges for accessors over classified attributes.

CAIW
Measures interactions of classified attributes by all methods of a class. Shows how many po-

tential class interactions are dependent on classified attributes.

CMW
Measures the weight of methods in a class that potentially interacts with any classified attrib-

utes. Shows the attack surface size based on operations over confidential data.

29

Table 4-5: Object oriented quality properties’ relation to security (collected from [35])

To put it differently, the AM2 metrics are divided into five groups according to the chosen

quality properties of object oriented programs. The metrics aim to measure the amount of

privilege granted to the parts of the program and the relative size of the attack surface of

the program, as was the case with the single class metric. Connection of the metric groups

to the security design principles is loose, but each individual metric is connected to either

principle. [35]

Table 4-6 presents the definitions of the AM2 metrics arranged into the object oriented

quality properties. Table 4-7 presents the rationale behind each AM2 metric. The defini-

tions and rationale are collected from [35]. As with AM1 metric, the definitions of AM2

metrics fulfil the criteria for EM2.

QUALITY

PROPERTY
RELATION TO SECURITY

Composition

Composition means a lifetime dependency between an object (outer class) and its

composite objects (inner classes). Assumption: inner classes are only accessible

by outer classes. Usage of inner classes thus increases security.

Coupling

Coupling means the degree of interaction an object has with other objects. Ob-

jects with high coupling are greater target for successful attacks than objects with

small coupling.

Extensibility

Extensibility means that a class or method can be extended by other classes or

methods. Extensibility is considered to be bad for security and should be discour-

aged unless considered necessary.

Inheritance

Inheritance allows to provide classes with generalizations and special relation-

ships. Inheritance allows reuse. Inheritance could allow subclasses access to

classified information.

Design size
Measures classes in a design. Design size has a large impact on functionality and

reusability.

30

Table 4-6: Multiclass metrics (collected from [35])

 ABBR NAME DEFINITION

COMPO-

SITION
CPCC

Composite-Part

Critical Classes

The ratio of critical composed-part classes to the total

number of critical classes in a design.

COU-

PLING
CCC

Critical Classes

Coupling

The ratio of all class links with classified attributes to the

total number of possible links with classified attributes in a

given design.

EXTENSI-

BILITY

CCE
Critical Classes Ex-

tensibility

The ratio of the non-finalized critical classes in a design to

the total number of critical classes in that design.

CME
Classified Methods

Extensibility

The ratio of the non-finalized classified methods in a de-

sign to the total number of classified methods in that de-

sign.

INHER-

ITANCE

CSP
Critical Super-

classes Proportion

The ratio of critical superclasses to the total number of

critical classes in an inheritance hierarchy.

CSI
Critical Super-

classes Inheritance

The ratio of the sum of classes which inherit from each

critical superclass to possible inheritances from all critical

classes in a class hierarchy.

CMI
Classified Methods

Inheritance

The ratio of classified methods which can be inherited in a

hierarchy to the total number of classified methods in that

hierarchy.

CAI
Classified Attrib-

utes Inheritance

The ratio of classified attributes which can be inherited in

a hierarchy to the total number of classified attributes in

that hierarchy.

DESIGN

SIZE
CDP

Critical Design Pro-

portion

The ratio of critical classes to the total number of classes

in a design.

31

Table 4-7: Rationale for the multiclass metrics (collected from [35])

4.3 Practical method for single class analysis

The source material for single class metrics are the UML class diagrams, although the

standard UML notation is not enough. All UML diagrams need to be annotated with UM-

Lsec [59] and SPARK programming language [60] specific annotations, even though only

a handful of these specific annotations are used in the measurement process. [35]

From the UMLsec, we use the labels “secrecy” and “critical”. The label of “secrecy” is

assigned to any data attribute that needs to remain confidential. The label of “critical” is

ABBR PRINCIPLE RATIONALE

CPCC attack surface

Measures the inner and outer class structure of critical classes. Aims to

reward the use of inner classes to hold classified data. Higher values indi-

cate higher numbers of outer classes with classified data.

CCC privilege

Measures the degree of security relevant coupling between classes and

classified attributes. Aims to penalize programs with high coupling. A

high value indicates a high degree of coupling.

CCE attack surface

Measures the extensibility of critical classes. Aims to penalize designs

with extensible critical classes. Higher value means higher extensible

critical classes.

CME attack surface

Measures the proportion of non-finalized classified methods to all classi-

fied methods. Aims to reward designs with inextensible classified meth-

ods. High value means high amount of extensible classified methods.

CSP attack surface

Measures the proportion of critical superclasses to all critical classes in

inheritance hierarchy. Aims to penalize the use of critical superclasses.

High value means a high amount of critical superclasses.

CSI privilege

Measures the ratio of inheritance from critical superclasses versus all

critical classes. Penalizes class hierarchies where critical classes appear

near the top. High value means high amount of classes can inherit from

critical superclasses.

CMI attack surface

Measures the proportion of classified methods that are exposed to inher-

itance. Penalizes the use of inheritance for classified methods. High value

means high amounts of classified methods that can be inherited.

CAI attack surface

Measures the proportion of classified attributes which are exposed to in-

heritance. Penalizes the use of inheritance for classified attributes. High

value means a high amount of classified methods that can be inherited.

CDP attack surface

Measures the proportion of critical classes to all classes. High value

means a high amount of critical classes in the design compared to other

designs of same size.

32

assigned to any class that holds attributes labeled as “secrecy”. Figure 4-1 shows an ex-

ample of the annotations used in the metric. The decision of what data is actually confi-

dential is left for the user of the metric to decide. This means that the accuracy of the

user’s annotations has a high impact on the accuracy of the metrics. [35]

+ GetName() : String
[derives GetName() from name]
+GetPhoneNumber() : String
[derives GetPhoneNumber() from phoneNumber]
+SetPersonelNumber(_number : String) : void
[derives personelNumber from _number]
+GetPersonelNumber() : String
[derives GetPersonelNumber() from personelNumber]

+ name : String
+ phoneNumber : String
+ <<secrecy>> personelNumber : String
+ <<secrecy>> homeAddress : String

<<Critical>>
Contact details

Figure 4-1: Example of the metric’s annotations (adapted from [35])

From the SPARK programming language only the subroutine data flow annotation is

used, wherein the user of the metric describes the possible data flow between variables

and parameters. The idea is to highlight values of a specific variable that might be derived

from the value of another variable elsewhere in the system. [35]

Table 4-8 shows the exact formulas for counting metrics. The results of the metrics are

scaled to the range 0 to 1 [35]. Since the AM1 metric is counted with a formula, it fulfils

the criteria of EM3.

A simple way to interpret the results of the calculations is to present them in a radar chart

such as that found in Figure 4-2, derived from [35]. The closer to zero (the center of

Figure 4-2) the value is, the better is the result. Values between designs are usually not

uniformly better or worse, so a decision between the designs must be made using

knowledge of each metric’s denominator. [35]

33

Table 4-8: Single class metrics’ formulas (collected from [35])

Figure 4-2: Radar chart from single class metrics with example data [35]

0

0,2

0,4

0,6

0,8

1
CIDA

CCDA

COA

CMAICAAI

CAIW

CMW

ABBR FORMULA EXPLANATION

CIDA
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝐶𝐼𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴

NCIA = non-private classified instance

attributes

CA = classified attributes

CCDA
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝐶𝐶𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴

NCCA = non-private classified class

attributes

CA = classified attributes

COA
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝐶𝑀

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑀

NCM = non-private classified methods

CM = classified methods

CMAI
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝐶𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑀 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴

CA = classified attributes

mCA = mutator methods that can ac-

cess classified attributes

MM = mutator methods

CAAI
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝐶𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑀 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴

CA = classified attributes

aCA = accessor methods that can ac-

cess classified attributes

AM = accessor methods

CAIW
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝐶𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴
1

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝐴
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴
1

CA = classified attributes

nCA = methods that can access classi-

fied attributes

A = attributes

nA = methods that can access attributes

CMW
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑀

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀

CM = classified methods

M = methods

34

4.4 Practical method for multiclass design analysis

The practicalities of multiclass metrics are exactly the same as for single class metrics,

but naturally the UML class diagram is larger.

Table 4-9 shows formulas for multiclass metrics and Figure 4-3 shows an example of a

radar chart as found in [35]. As with the AM1 metric, the AM2 metric is counted with a

formula and therefore fulfils the criteria for EM3.

Table 4-9: Multiclass metrics’ formulas (collected from [35])

ABBR FORMULA EXPLANATION

CPCC 1 −
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐶

CP = composed-part critical classes

CC = critical classes

CCC
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝐶𝐴

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴
1

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶 − 1) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴

CA = classified attributes

aCA = classes, which interact with

classified attributes

C = classes

CCE
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐶𝐶

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐶

ECC = extensible critical classes

CC = critical classes

CME
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐶𝑀

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑀

ECM = extensible classified meth-

ods

CM = classified methods

CSP
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆𝐶

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐶

CSC = critical superclasses

CC = critical classes

CSI
∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝐶𝑆𝐶

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑆𝐶
1

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶 − 1) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐶

CSC = critical superclasses

nCSC = classes, which may inherit

from the critical superclass

C = classes

CC = critical classes

CMI
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝐼

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑀

MI = classified methods that may

be inherited

CM = classified methods

CAI
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝐼

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴

AI = classified attributes that may

be inherited

CA = classified attributes

CDP
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐶

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶

CC = critical classes

C = classes

35

Figure 4-3: Radar chart from multiclass metrics with example data [35]

4.5 Object oriented design metrics: In practice

AM1 and AM2 metrics require UML diagrams with UMLsec and SPARK annotations,

however, no premade tool comes with support for both of these and SPARK is not com-

monly used with UML [61]. It is a subset of ADA programming language [62] and the

tools are not meant for processing UML diagrams.

A quick search on the Internet through the major UML tool vendor’s products reveals that

UMLsec is not a common UML extension either. UMLsec seems to receive greatest sup-

port from the UMLsec author’s own tools [63] [64], but these are not compatible with the

AM1 or AM2 metrics.

The AM3 metric, which encompasses AM1 and AM2 metrics, does not use the UMLsec

or SPARK syntaxes anymore. AM3 uses Java source code annotation to mark confiden-

tial data. The data flow analysis is based on a type inference model that Alshammari

presents and it is also done on the source code. The reason for using this type inference

model seems to be the need for creating rules for an automated source code analyzer [35]

[65], but use of the inference model does not seem to be necessary for the application of

the AM1 and AM2 metrics. Alshammari’s own automated source code analyzer is not

available at the writing of this thesis and attempts to contact Alshammari have been un-

successful.

0

0,2

0,4

0,6

0,8

1
CPCC

CCC

CCE

CME

CSPCSI

CMI

CAI

CDP

36

In conclusion, it seems that the original way of using the AM1 and AM2 metrics are not

feasible for existing software projects. Most projects have source code and binaries avail-

able, but are not annotated in any special way. UML diagrams and architecture documen-

tation do not usually exist for small open source software projects, which would be a good

target of evaluation for this thesis. Building an automated tool is out of the scope of this

thesis because of the research questions and due to the time and effort required to build a

Java bytecode analyzer, annotation processor, and logic for data flow analysis.

The AM3 metric provides an idea for practical application because it uses Java source

code for the analysis. The AM1 and AM2 metrics can be applied to small to medium size

software projects manually. By looking at the Table 4-8 from Section 4.3 and Table 4-9

from Section 4.4, it is quite clear that most of the metrics’ data can be gathered with only

a small effort.

So the steps for applying the AM1 and AM2 metrics in practice are:

1) Locate the relevant Java source code files.

2) Decide and locate the classified data attributes.

3) Identify other relevant data, such as classes, attributes and methods.

4) Gather easy-to-locate data manually.

5) Gather additional data that is difficult to locate using text parsing tools (such as

grep) or IDE (such as Eclipse or IntelliJ IDEA) search functions.

The criteria for EM4 is fulfilled by including a measurement process for the metrics. Us-

ing manual work naturally does bring an extra source of error to the calculations, but the

results of this process can be easily verified due to the simplicity of the required data.

Since the biggest sources of error (i.e. the decision of confidential data and the manual

work) are known, and the process always delivers results, the criteria for EM5 is fulfilled.

Both AM1 and AM2 metrics pass the criteria for the critical elements of measurement,

and can therefore be used in the case study of this thesis.

37

5 ANALYSIS OF THE SYSTEM ATTACK SURFACE

The analysis of a system’s attack surface is a metric from Manadhata’s PhD dissertation

[38] and is based on the idea that a system’s potential security can be measured by the

size of the system’s attack surface. An attack surface is defined as: the ways in which an

attacker can enter the system and potentially cause damage. [38]

Manadhata’s metric does not fit well into the software system categorization from Sec-

tion 3.2.4 because the metric includes parts of all three categories. However, it mostly

deals with concepts that are related to software design or software architecture, so it is

justified to include this metric into this thesis. No further explanations are given at this

point, since the next section explains the basic concepts behind the metric, shedding light

the issue.

The attack surface metric is a relative metric that only allows comparison of similar sys-

tems and does not measure code quality. Manadhata states that the metric “measures the

potential of being more insecure than the other”. The attack surface metric is not depend-

ent on any programming language or a specific implementation. In theory, it could use

design phase artifacts, but in practice the metric requires source code and binaries of the

program. [38]

5.1 Theoretical basis: Software system as an I/O automata model

The basic idea of an attack surface is quite intuitive, consisting of three different elements

[38]:

1) Channels that the attacker uses to connect to the system.

2) Methods that the attacker uses on the system.

3) Data items that the attacker sends or receives from the system.

All three elements are referred together as resources [38], which are present in the system

and its environments. However, not all resources contribute equally to the system’s attack

surface, leading to the steps involved in the attack surface calculation. First, the resources

of the attack surface must be found with the entry- and exit-point framework. Then, their

potential to cause harm must be estimated, and finally, the effort required from the at-

tacker must be considered. The logic is intuitive: easily reached high damage resources

38

contribute more to the attack surface than hard to reach resources of the same kind. The

damage refers only to technical damage in this context and does not consider business

aspects. [38]

The software systems are modeled as I/O automata in attack surface metric. In fact, all

other actors such as the other software systems, users, data storage etc., are considered

I/O automata. The channels of a system are modeled as state variables of the automaton

and the methods of a system are modeled as actions of the automaton. Entry points are

methods in the system that receive data from the environment, while exit points are meth-

ods that send data to the environment. Entry and exit points can be direct or indirect, but

the indirect entry points are not discussed any further due to problems with finding them

automatically. [38]

The I/O automata model is not presented in more detail here, since it is not necessary for

understanding the content of this thesis, nor for the application of the attack surface met-

ric. Nevertheless, Manadhata proves mathematically that the attack surface calculations

and some of its features are valid. Manadhata’s model of I/O automata fulfills the criteria

for EM1 and the calculations and features he provides fulfill the criteria for EM2.

The attack surface metric calculation has three phases [38]:

1) Identification of entry and exit points (methods), channels and untrusted data

items.

2) Estimation of damage potential-effort ratio for each of the resources.

3) Calculation of the attack surface from the results of step 1 and 2.

The term ‘untrusted data item’ refers to data items that the entry points read or exit points

write. However, in the calculations, untrusted data items refer to data coming from data

storage in the environment as opposed to data that is sent directly to entry points by an

attacker. Data sent by an attacker directly is already counted in the calculations for the

methods. [38]

The result of the attack surface metric is a quantified triple that has values of the sums of

damage potential-effort ratios in the order of: methods, channels and untrusted data. The

39

result is not dependent on the attacker. Only the system design and the inherent properties

of the system have an effect on the results. [38]

5.2 Practical method for analyzing a Java program attack surface

Manadhata’s theoretical model is too abstract for any real world usage, so he introduces

two practical methods of his attack surface metric: one for C language and one for Java.

The methods share similarities, but are different, especially the identification of entry and

exit points [38]. The Java program analysis method is designed to measure programs on

a Java application server platform (SAP NetWeaver), so the analysis is likely to be less

optimal or have issues outside such an environment.

Table 5-1: Overview of the attack surface measurement process

The practical method requires access to the source code and the binaries of the Java pro-

gram. Table 5-1 gives an overview to the measurement process and the steps [38]. Table

PHASE STEPS RESULTS

1

(Identification)

I. Find methods. Number of methods.

II. Find channels. Number of channels.

III. Find untrusted data items. Number of untrusted data items.

2

(Damage potential-effort)

IV. Estimate potentials. Numeric amounts in potential groups.

V. Organize potentials. Potential groups in descending order.

VI. Estimate effort. Efforts for the potential groups.

VII. Organize effort. Efforts in descending order.

VIII. Assign numeric values. Coefficients for ratio calculations.

3

(Calculation)

IX. Calculate method sums.
Sum of all methods’ damage potential-ef-

fort ratios.

X. Calculate channel sums.
Sum of all channels’ damage potential-

effort ratios.

XI. Calculate data item sums.
Sum of all untrusted data items’ damage

potential-effort ratios.

XII. Present results. Attack surface triple.

40

5-2 describes the detailed steps taken in the first phase of the calculation where the re-

sources taking part in the attack surface are identified. The details of the calculation are

collected from [38]. The results from this phase are numeric amounts for each resource.

Details of the second phase, where the damage potential-effort is estimated, are presented

in Table 5-3. A key point in phase two is the assignment of numeric values or the step

between the values being highly subjective and completely dependent on the user of the

metric. The numeric values should be decided based on the knowledge of the system and

its environments. [38]

Table 5-2: Identification of attack surface resources (collected from [38])

STEP DETAILS

IA

Find direct entry points

Direct entry point (a method that receives data) is one of the following:

1) A method that is in the public interface and receives data as input

2) A method that invokes another system’s interface method and receives

data as result

3) A method that invokes Java I/O library read methods.

IB

Find direct exit points

Direct exit point (a method that sends data) is one of the following:

1) A method that is in the public interface and sends data as result

2) A method that invokes another system’s interface method and sends

data as input

3) A method that invokes Java I/O library write methods.

II

Find channels

Monitor the runtime behavior of a system:

1) Identify channels opened by the system.

2) Determine protocol and access rights level for each detected channel.

III

Find untrusted data items

Monitor the runtime behavior of a system:

1) Identify untrusted data items accessed by the system.

2) Determine the type and access rights level of each untrusted data item.

41

Table 5-3: Estimation of damage potential-effort ratio (collected from [38])

STEP DETAILS

IV

Estimate poten-

tials (privileges)

In Java, the method’s data sources or destinations are used in grouping the potentials.

The method belongs to one of the following groups:

1) Method receives or sends data as input parameter.

2) Method receives or sends data to external data store.

3) Method receives or sends data to other systems in the environment.

For channels, the channel type (for example the protocol) is used in the grouping.

For untrusted data items, the data item type (for example a file) is used in the group-

ing.

V

Organize poten-

tials (privileges)

Organize the potential groups in descending order from highest to lowest potential.

VI

Estimate efforts

(access rights)

In Java, the method’s access rights level is used in grouping the efforts. The method

belongs to one of the following groups:

1) Method is in public interface.

2) Method is in internal interface.

For channels, the channel access right (for example “remote unauthenticated”) is

used in the grouping.

For untrusted data items, the data item access right (for example the username) is

used in the grouping.

VII

Organize efforts

(access rights)

Organize the effort groups in descending order from highest to lowest effort.

VIII

Assign numeric

values

In numeric value assignment all potentials and efforts must get a value. The value it-

self is subjectively decided. For example, the group in the first place of the ordering

receives the amount of groups as the numeric value, the second one receives the

amount minus one, etc.

The third phase of the metric is the simplest of them all. This phase includes only the

calculation of the sums of the damage potential-effort ratios (abbreviated as DER) and

presenting them as the attack surface metric triple. Table 5-4 describes the third phase

with which the criteria for EM3 is fulfilled. Note that even though Table 5-1 describes

the measurement process, it does not fulfill the criteria for EM4 because it lacks the dis-

cussion of data collection and availability.

42

Table 5-4: Calculations for attack surface value (collected from [38])

Even though the attack surface metric does not provide many numeric values, it can be

visualized for easier interpretation and comparison of systems. Figure 5-1 shows an ex-

ample of a bar chart as found in [38].

Figure 5-1: Bar chart of attack surface metric from example data [38]

0

100

200

300

400

500

600

Method Channel Data

System 1 System 2

STEP DETAILS

IX

Calculate

method sums

The DER sums for methods are calculated with the formula:

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ×
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒)

𝑒𝑓𝑓𝑜𝑟𝑡 (𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑖𝑔ℎ𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠

1

X

Calculate chan-

nel sums

The DER sums for channels are calculated with the formula:

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ×
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒)

𝑒𝑓𝑓𝑜𝑟𝑡 (𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑖𝑔ℎ𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠

1

XI

Calculate data

item sums

The DER sums for untrusted data item are calculated with the formula:

∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑡𝑒𝑚𝑠 ×
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 (𝑝𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒)

𝑒𝑓𝑓𝑜𝑟𝑡 (𝑎𝑐𝑐𝑒𝑠𝑠 𝑟𝑖𝑔ℎ𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠

1

XII

Present results

The attack surface value is the triple:

(STEP IX results, STEP X results, STEP XI results)

43

5.3 Using the attack surface analysis in practice

As mentioned previously, applying the Attack surface metric to Java software is different

from applying it to a C-program. Manadhata uses SAP Netweaver platform in his appli-

cation. SAP Netweaver is a Java application server, among many other things, and similar

enough to a Java Virtual Machine (JVM) for the purposes of this thesis. This means that

the application of the Attack surface metric on Java programs can be repeated on normal

computer installations running JVM.

The attack surface analysis requires access to both source code and the compiled binary

code of the software. In theory, the whole analysis could be completed with only the

compiled binary, but some of the required data for the metric is easier to obtain manually

from the source code. In fact, there are no automated tools for performing the attack sur-

face analysis, requiring a manual analysis with the aid of certain tools that are presented

subsequently.

The data collection for the method calculations (entry and exit points) requires the exam-

ination of method calls and groups them into three categories. The challenge here is that

typical Java debug tools are geared towards helping developers find issues, rather than

specific information required by the metric. A tool called Java Call Graph Utilities that

helps find all of the method calls from the library is introduced in [66]. This tool requires

compiled code and the results require manual examination to find the relevant calls for

this metric. The Call Graph Utilities do not help with some categories of the methods that

can be called that require manual examination of the source code.

Data collection for the channel calculations can be completed using a Microsoft tool

called The Process Monitor [67]. A single Java application running inside the JVM pro-

cess can be monitored for all network connections, and the requisite data is captured eas-

ily.

The data collection for the untrusted data item calculations can be also completed using

a Microsoft tool. This time the tool is named Process Explorer [68]. As with the channel

data, the required data is easily acquired by monitoring the JVM process.

44

Since the phases of the measurement process were explained in the previous section in

Table 5-1 alongside the data collection explanation, the criteria is fulfilled for EM4.

Sources of error for this metric are the manual assignment of numeral values and the

manual work. Because each instance of measurement produces a value, the criteria for

EM5 is fulfilled.

The Attack surface metric passes the criteria for the critical elements of measurement, so

it can be used in the case study in this thesis.

45

6 THE PRACTICAL ANALYSIS

This chapter introduces the practical part of this thesis. First a brief look at the theoretical

background used in the case study research of this thesis, followed by an introduction of

the case study target. The final part of the chapter explains the execution of the case study

analysis. The case study is used for studying RQ3 (what metrics reveal about security) in

this thesis, while a literature review was used to study RQ1 and RQ2 in the earlier chap-

ters.

6.1 Brief theoretical background for the case study

A case study is defined in [69] as an empirical enquiry that uses multiple sources to study

one instance of a contemporary software engineering phenomenon in its context. By ex-

amining RQ3, it becomes clear that the case study is both exploratory and descriptive. An

exploratory case study is “finding out what is happening, seeking new insights, and gen-

erating ideas and hypotheses for new research” [69]. A descriptive case study describes

the current status of the phenomenon [69].

The data used in this case study is both quantitative (derived from the metrics) and qual-

itative (used to interpret the results of the metrics). According to [69], such “mixed meth-

ods” data studies often provide better understanding of the phenomenon in question.

However, this case study does not provide conclusions that would be of statistical signif-

icance [69].

Multiple possible sources of error in this case study exist despite seemingly quantitative

metrics, primarily because the metrics have points requiring subjective decisions on the

numeric values. Applying the metrics manually might be error prone and vulnerable to

subjective bias while analyzing the source material. Triangulation can be used in a case

study to reduce the effect of errors [69]. There are three kinds of triangulation types used

in this study: data, methodological and theory triangulation. Data triangulation means

“using more than one data source or collecting the same data at different occasions” [69].

In this case study, multiple versions of the target software are used. Methodological tri-

angulation means: “combining different types of data collection methods” [69]. This case

study uses qualitative interpretation of the quantitative results provided by the metrics.

46

Theory triangulation means “using alternative theories or viewpoints” [69]. There are two

different metrics used in this case study.

There are five steps in case studies [69] that can be mapped to parts of this thesis. The

following list (from [69]) illustrates the phases and how they correspond to the thesis:

1) Case study design. Chapters 1 and 6.

2) Preparation for data collection. Sections 4.5 and 5.3.

3) Collecting evidence. Collected data presented on Section 6.3 and Chapter 7.

4) Analysis of collected data. Chapter 7.

5) Reporting. Chapters 6, 7 and 8.

The theory of case studies is not explained in further detail due to the small size of the

case study in this thesis.

6.2 The case study target: Apache James mail server

The Apache James, shorthand for Java Apache Mail Enterprise Server [70] is a Java-

based email and news server [71]. James was given an independent project status at

Apache around 2003, although the James project had started previously [71]. The goal of

the Apache James project was to build a server that provided support for multiple different

email and news protocols [71] [72]. The development of James came to a halt around

2012 [73].

James is built using Apache Avalon project [71], a web application framework [74] that

Apache worked on during 1999-2004 [75]. The Apache Avalon project evolved from a

project that gave Java servlet support to the Apache HTTP server. [74] The Avalon pro-

ject was focused on the server side components [74]. After the Apache Avalon project

closure, a conversion to Spring web application framework was planned [73]. The con-

version plans seem to originate at least from the year 2007 [73].

James has a modular structure, where the server and other parts delivering different func-

tionalities are separated [76]. One of the key features advertised in James is the Mailet

API, which allows the creation of mail processing applications (such as aliasing, forward-

ing, etc.) [71]. Due to the modular structure and the APIs offered, the developers advertise

James as “the complete email application platform” [76].

47

As mentioned earlier, the server development seems to have stopped in 2012 [73]. In fact,

most major development in James seems to have occurred during 2002-2004, which saw

the addition of support for major protocols such as NNTP and SMTP [Appendix B].

James version 3 was supposed to add IMAP protocol support, but version 3 has been

under development since 2003 and is currently in beta [73].

Because major development of James seems to have stopped in 2012, one may ask why

it was chosen for the case study. Firstly, James is built with Java, so the analysis can be

repeated on multiple platforms. Both metrics also used Java as their chosen application

language. Second, James is an email server and therefore uses network resources and is

considered a high value target for malicious users. Finally, Alshammari uses James in his

thesis, providing comparison data [35, pp. 139-143] for this study.

James also has useful attributes for the analysis portion of the case study because of three

known vulnerabilities in James resulting from the developers forgetting to sanitize the

inputs and check the error conditions. Despite many efforts to find all James related vul-

nerabilities and their source, it seems that the general interest in James has diminished as

the development has stopped. Table 6-1 provides a brief look at the vulnerabilities and

Appendix A presents their details.

The versions of James used in this case study are those that can be downloaded from the

Apache download repository at [77], which means versions from 2.1.0 to 2.3.2.1. A prac-

tical note for accessing the series binaries of James version 2: James uses the Avalon

framework, which means that the binaries are packed twice in JAR packages. Unpacking

this double JAR package (called a SAR package) with normal tools reveals a normal ex-

ecutable JAR.

Table 6-1: Summary of known vulnerabilities of James

ID TYPE FIXED IN COMPONENT AFFECTED

CVE-2004-2650 Denial of service 2.2.0 Spooler functionality

CVE-2006-2806 Denial of service 2.3.0 SMTP processing

CVE-2015-7611 Remote command execution 2.3.2.1 File based user repository

48

6.3 Executing the case study analysis

This section presents the details of how the case study research was conducted and the

intermediate results that were acquired during the analysis. This section discusses general

remarks regarding practicalities, followed by analyses of metrics in order of single class,

multiclass and attack surface.

6.3.1 General remarks about the analysis

The codebase analysis of James was only performed on the subfolder “\src\java\org\

apache\james” in the James source package, which contains the Java source code for

James server components. The analysis was conducted using several small Windows util-

ities as follows:

 WinMerge [78], to analyze the differences between the versions.

 GrepWin [79], to search for the necessary text strings within the codebase.

 Java Call Graph tool [66], to list the function calls from the James binary.

 Sysinternals Suite tools [67] [68], to monitor James runtime behavior.

The following sections will summarize the analyses, including practical remarks when

deemed useful for the study. The practical remarks are any considerations that needed to

be accounted for when apply the metrics to a target.

The intermediate results presented are those that were used to calculate the metrics’ re-

sults in Chapter 7. Not all individual intermediate results are presented though, as they

provide little value for the bigger picture. The analysis took approximately 40 hours of

work, including planning of the analysis, conducting the actual analysis and resolving any

encountered issues.

6.3.2 Analysis using single class metrics

The starting point of the analysis was the James 2.1.0 version, from which, all of the

values were calculated thoroughly. Next, differences between versions 2.1.0 and 2.1.1

were inspected and the values were altered accordingly. The analysis continued in this

fashion until version 2.3.2.1. Table 6-2 recollects the terms used in the Single class metric

equations, while equations and terminology are the same as in Table 4-8.

49

Table 6-2: Single class OO metrics’ equation terms

TERM EXPLANATION

NCIA
Non-private classified instance attributes (attributes with individual val-

ues to all classes)

CA Classified attributes (attributes marked as confidential data)

NCCA
Non-private classified class attributes (attributes with single value to all

classes)

NCM Non-private classified methods

CM Classified methods (methods that access classified attributes)

mCA Amount of the mutator methods that can access classified attributes

MM Mutator methods (methods that change attribute values)

aCA Amount of the accessor methods that can access classified attributes

AM Accessor methods (methods that read attribute values)

nCA Amount of the methods that can access classified attributes

nA Amount of the methods that can access attributes

M Methods

The Classified Attributes in James are the same as used by Alshammari. [35, p. 139] All

versions have three in class DefaultUser: username, hashedPassword and algorithm. In

addition from version 2.2.0 onwards, there are two more in class Account: fieldPassword

and fieldUser.

Before starting the single class metric analysis, several decisions were necessary due to

ambiguities. Alshammari does not explain how the single class metrics are supposed to

work with complete projects, but from his results [35, p. 140] it is clear that he is applying

them to projects. The assumption taken here is that the single class metric calculation

includes all classes in the project. This means that not only is the class with classified

attributes counted, but all classes. Needless to say, this decision has major impact on the

metric results.

50

Alshammari also fails to explain how abstract or interface classes are considered in Java

language, so in this thesis both of the class types are counted normally in the metrics. The

reason for this decision is: interface classes can have classified attributes in their method

signatures whereas abstract classes have already implemented methods that can access

classified attributes. Interface and abstract classes were as far as object-oriented special-

ties were considered. Class inheritance and the effect of inheritance to the calculations

was not considered in this thesis.

The final problem at the onset of analyses was the lack of an exact definition for ‘private’.

In Alshammari’s work there are only two access right levels: private and non-private [35],

whereas the Java language has four access right levels. This issue is not clarified in Al-

shammari’s work, so in this thesis Java access right “private” corresponds to metric access

right “private” and all of the other Java access rights correspond to metric access right

“non-private”.

Table 6-3 presents the intermediate calculation results during the case study and some

notes/remarks related to the calculation of the intermediate results follow.

Table 6-3: Single class OO metrics intermediate calculation results

VERSION

N
C

IA

C
A

N
C

C
A

N
C

M

C
M

m
C

A

M
M

a
C

A

A
M

n
C

A

n
A

M

2.1.0 0 3 0 27 28 1 14 29 41 30 1171 1091

2.1.1 0 3 0 27 28 1 14 29 41 30 1175 1095

2.1.2 0 3 0 27 28 1 14 29 41 30 1177 1095

2.1.3 0 3 0 27 28 1 14 29 41 30 1191 1104

2.2.0 0 5 0 33 34 3 23 33 95 36 1479 1601

2.3.0 0 5 0 36 37 3 23 39 98 39 1695 1973

2.3.1 0 5 0 36 37 3 23 39 98 39 1695 1973

2.3.2 0 5 0 36 37 3 23 39 98 39 1695 1974

2.3.2.1 0 5 0 37 38 3 23 40 99 40 1696 1979

51

The Classified Method (CM) count includes methods from the class that contains Classi-

fied Attributes (CA), which were called ‘critical classes’. The CM count also includes

some classes that indirectly use CAs. Classes counted using CAs indirectly were classes

implementing the User interface, which is also implemented by the DefaultUser class.

In broader terms, Alshammari is a bit unclear on how to deal with indirect references. His

text recognizes indirect referencing from time to time, but does not deal with the subject

in a coherent fashion [35]. This is especially problematic when defining concepts such as

the Classified Method.

The Mutator Method (MM) and the Accessor Method (AM) calculations use the phrase

“could potentially interact” (changed to “which may access” in Table 6-2) in some of

their formulas. Alshammari does not define exactly what he means with this potential

interaction. He only mentions that the MMs (and AMs) need to be in the scope of CAs

for this calculation, which means that only classes with CMs are considered. In this thesis

“may access” or “could interact” is defined as all methods in the scope that change (or

access, in case of the AMs) attributes.

The AMs also have an interesting problem with indirect referencing. The CAs are stored

in the class DefaultUser and are often used through the interface User. This behavior is

detected by the metrics. However, sometimes a mailbox is fetched using the username

(which is a CA) in a text string instead of a class attribute. An example of this behavior

is in file James.java at method getUserInbox. Using a text string in similar fashion to a

CA is unnoticed in the metrics since it does not use the classes DefaultUser or User.

Calculating all methods that can access any attributes proved quite difficult, but were

estimated by calculating the number of distinct attributes a method uses (not counting

internal method variables of course). Method amount calculations did not have an exact

scope defined, so all interfaces and abstract methods were counted too.

Now it is possible to calculate results for the single class OO metrics with the above

considerations and with the intermediate results from the Table 6-3.

52

6.3.3 Analysis using the multiclass metrics

The intermediate calculation results of the multiclass OO metrics are presented in a sim-

ilar way to the single class OO metrics. There are fewer remarks in this section, since the

multiclass metrics are much simpler to collect relative to the single class metrics. Table

6-4 explains the equation terms used in the intermediate results.

Table 6-4: Multiclass OO metrics’ equation terms

TERM EXPLANATION

CP Composed-part critical classes (subclasses with CA)

CC Critical classes (classes with CA)

cCA Amount of the classes, which interact with classified attributes

CA Classified attributes

C Classes

ECC Extensible (non-final) critical classes

ECM Extensible (non-final) classified methods

CM Classified methods

CSC Critical superclasses (top level classes)

nCSC Amount of the classes that may inherit from the critical superclass

MI Classified methods that could be inherited

AI Classified attributes that could be inherited

Table 6-5 presents the results of the intermediate calculation with which it is possible to

calculate results for the multiclass OO metrics.

53

Table 6-5: Multiclass OO metrics intermediate calculation results

6.3.4 Analysis using the attack surface metric

The attack surface metric uses quite different terms in the calculations than the object-

oriented metrics. Table 6-6 explains the terms used in the intermediate calculations. In

the following tables, some steps of the attack surface calculation (see Table 5-1) are pre-

sented together for better clarity.

Table 6-6: Attack surface calculation terminology

TERM EXPLANATION

INPUT PARAM Method receives or sends data as input parameter

EXT STORE
Method receives or sends data to external data source (Java IO

commands)

OTHER SYST Method receives or sends data to other systems in the environment

PUBLIC Method is in public interface (other access rights)

INTERNAL Method is in internal interface (access right private)

CHANNEL COUNT The number of channels

VERSION

C
P

C
C

cC
A

C
A

C

E
C

C

E
C

M

C
M

C
S

C

n
C

S
C

M
I

A
I

2.1.0 0 1 16 3 143 1 28 28 1 2 28 3

2.1.1 0 1 16 3 140 1 28 28 1 2 28 3

2.1.2 0 1 16 3 140 1 28 28 1 2 28 3

2.1.3 0 1 16 3 140 1 28 28 1 2 28 3

2.2.0 0 2 19 5 222 2 34 34 2 4 34 5

2.3.0 0 2 19 5 263 2 37 37 2 4 37 5

2.3.1 0 2 19 5 263 2 37 37 2 4 37 5

2.3.2 0 2 19 5 263 2 37 37 2 4 37 5

2.3.2.1 0 2 19 5 264 2 38 38 2 4 38 5

54

There are a few things to consider when calculating the number of methods, channels and

data items, despite much fewer ambiguities than in the previous set of metrics.

Firstly, the process of counting the direct entry points (DEP) included the following:

 DEP, type 1: The number of methods from the OO metrics’ results excluding the

methods without parameters. Separate the private methods from this amount.

 DEP, type 2: James does not invoke other system’s methods, which means there

are no values of this type.

 DEP, type 3: Finds methods that use java.io read type methods from Java call

graph.

Second, the process of counting the direct exit points (DExP) was the following:

 DExP, type 1: The number of methods from the OO metrics’ results excluding the

methods with no return value. Separate the private methods from this amount.

 DExP, type 2: James does not invoke other system’s methods, which means there

are no values of this type.

 DExP, type 3: Finds methods that use java.io write type methods from Java call

graph.

Manadhata does not define exactly what methods are considered to be read- or write-type

in the Java IO libraries [38]. In this analysis any function type from the IO library that is

clearly reading or writing is accounted for, such as ‘print’ or ‘get’ methods. Methods that

were parts of IO operations were not taken into account, such as ‘flush’ or ‘close’ meth-

ods.

The number of channels was determined by running the program with the default settings.

There were some issues in trying to run some of the James versions. Versions 2.1.0 to

2.2.0 will not run with the modern Java runtime environments and the old runtime envi-

ronments will not install properly in modern Windows. However, considering the stability

of the channel count in other versions, there is no reason to believe the count would be

any different in earlier James versions.

The data item count was calculated by inspecting the running program. James does not

access any files in the default configuration. With the user file repository configured, the

55

situation might be different, but this would require configuration for the program. Since

there were no data items accessed, the data item count was disregarded from the calcula-

tions, which is what Manadhata did in his examples [38].

Table 6-7 shows the results of the identification phase (phase 1) and the estimation steps

of the phase 2. The columns contain two numbers added together. The first term of the

summation is the number of DEPs and the second term of the summation is the number

of DExPs. After this phase, only the result of the summation is used, rather than separate

values.

Table 6-7: Attack surface calculations phase 1 and partial phase 2 results

VERSION

IN
P

U
T

 P
A

R
A

M
,

P
U

B
L

IC

IN
P

U
T

 P
A

R
A

M
,

IN
T

E
R

N
A

L

E
X

T
 S

T
O

R
E

,

P
U

B
L

IC

E
X

T
 S

T
O

R
E

,

IN
T

E
R

N
A

L

O
T

H
E

R
 S

Y
S

T
,

P
U

B
L

IC

O
T

H
E

R
 S

Y
S

T
,

IN
T

E
R

N
A

L

C
H

A
N

N
E

L

C
O

U
N

T

2.1.0 527+451 108+52 33+173 19+10 0 0 x

2.1.1 533+447 111+55 36+124 8+57 0 0 x

2.1.2 536+449 110+55 37+128 8+57 0 0 x

2.1.3 539+450 114+55 37+128 8+57 0 0 x

2.2.0 572+598 160+115 44+127 10+50 0 0 x

2.3.0 749+751 197+136 59+135 8+92 0 0 4

2.3.1 749+751 197+136 59+135 8+92 0 0 4

2.3.2 746+756 198+137 59+133 8+92 0 0 4

2.3.2.1 753+754 198+137 59+133 8+92 0 0 4

Table 6-8 presents the rest of phase 2, which includes organizing the potentials and ef-

forts, along with assigning numeric values for them.

56

Table 6-8: Attack surface calculations phase 2 end results

METHODS

POTENTIAL VALUE EFFORT VALUE

INPUT PARAM 5 PUBLIC 5

OTHER SYST 3 INTERNAL 1

EXT STORE 1

CHANNELS

POTENTIAL VALUE EFFORT VALUE

TCP 1 USER 5

Manadhata does not define the situation when one should perform calculations for a run-

ning program, causing uncertainties for both channel and data item calculations. Does the

program have to be fully configured or is a freshly installed program adequate? In this

analysis, James was run as freshly installed program without any configuration.

Table 6-9 includes the results of calculation phase 3, excluding the channel calculations

from the attack surface results because they have no meaningful effect on the outcome.

There are six groups present in the table corresponding to the possible combinations from

the Table 6-8 (3 * 2 = 6). The groups are the following:

 Group 1: input parameter, public

 Group 2: input parameter, internal

 Group 3: external store, public

 Group 4: external store, internal

 Group 5: other system public

 Group 6: other system, internal

The attack surface is single number instead of a triple in this calculation. This notation

seems to be possible since Manadhata uses it in an example as well [38]. The reason for

57

this notation is clarity, since displaying the two other values that are constants of zero, is

pointless.

Table 6-9: Attack surface calculations phase 3 results

VERSION

G
R

O
U

P
 1

G
R

O
U

P
 2

G
R

O
U

P
 3

G
R

O
U

P
 4

G
R

O
U

P
 5

G
R

O
U

P
 6

ATTACK

SURFACE

2.1.0 978 800 41,2 29 0 0 1848,2

2.1.1 980 830 32 65 0 0 1907

2.1.2 985 825 33 65 0 0 1908

2.1.3 989 845 33 65 0 0 1932

2.2.0 1170 1375 34,20 60 0 0 2639,2

2.3.0 1500 1665 38,8 100 0 0 3303,8

2.3.1 1500 1665 38,8 100 0 0 3303,8

2.3.2 1502 1675 38,4 100 0 0 3315,4

2.3.2.1 1507 1675 38,40 100 0 0 3320,4

58

7 RESULTS OF THE CASE STUDY ANALYSIS

This chapter contains the results of the metrics’ calculations for Apache James. The final

results for the metrics use the intermediate calculation term results from Section 6.3. This

chapter also provides answers to RQ3 through analysis of the combined data from Chap-

ter 6 and the appendices. After each metric has its results presented and analyzed sepa-

rately in its own section, all metrics are analyzed together.

7.1 Results of the single class metrics

Table 7-1 shows the final calculation results based on the intermediate results from Table

6-3.

Table 7-1: Single class OO metrics’ results

VERSION

C
ID

A

C
C

D
A

C
O

A

C
M

A
I

C
A

A
I

C
A

IW

C
M

W

2.1.0 0 0 0,964 0,024 0,236 0,026 0,026

2.1.1 0 0 0,964 0,024 0,236 0,026 0,026

2.1.2 0 0 0,964 0,024 0,236 0,025 0,026

2.1.3 0 0 0,964 0,024 0,236 0,025 0,025

2.2.0 0 0 0,971 0,026 0,069 0,024 0,021

2.3.0 0 0 0,973 0,026 0,080 0,023 0,019

2.3.1 0 0 0,973 0,026 0,080 0,023 0,019

2.3.2 0 0 0,973 0,026 0,080 0,023 0,019

2.3.2.1 0 0 0,974 0,026 0,081 0,024 0,019

Since the results are not really self-evident, Figure 7-1 provides some helpful guidance

for what the meanings of each value. It is important to recollect that values closer to zero

are better in Alshammari’s metrics.

59

A first point to make regarding the results is that many values are consistently the same

or strikingly similar. The only metric with substantial change is the CAAI, but the change

is the result of adding Accessor Methods with new functionality in version 2.2.0 [Appen-

dix B]. It is quite evident from the formula for CAAI [Table 4-8] that the shift towards

more secure state is only spurious. The results seem to indicate that the confidential data

is protected and that it interacts very little with anything else. However, the operations

interacting with confidential data are open.

Figure 7-1: Guidance for interpreting the Single class OO metrics’ results

The results were affected by any changes close to the data marked confidential, exempli-

fied in the situation with CAAI. Other changes, such as the addition of a large number of

methods or attributes, appear to have very small effects on the results. This is evident

when looking at differences in results for versions 2.2.0 and 2.3.0, which exhibit major

functionality changes.

The COA value strikes out as being bad. Alshammari’s description says that COA “helps

protect classified internal operations from direct access”. COA is the ratio of non-private

60

CMs to private CMs and since all of the operations on CAs are public, the COA value is

high. The COA result raises the question that what kind of class design would have all

CMs private (the ideal situation according to COA) since accessing CAs requires non-

private CMs.

Alshammari’s metrics have a scale ranging from zero (good) to one (bad). However, Al-

shammari does not provide any instructions on whether the scale should be interpreted as

linear or exponential. The connection to the security design principles allows the user to

derive general interpretations from the results, but detecting individual security flaws

seems to be out of the question.

Alshammari used also Apache James as a target in his work, so for a comparison Table

7-2 shows the results he presented [35] for James v2.1.0 to v2.1.3. Table 7-2 has two

additional columns indicating the number of Classified Attributes and Classified Methods

used in Alshammari’s study.

Table 7-2: Alshammari’s results [35] for single class OO metrics

At first glance, Alshammari’s values appear different from those in this study. However,

in his results there are 11 CAs for version 2.1.0. He mentions an increase in CAs, but

increasing the amount of CAs should not be possible without new annotations for confi-

dential data (which he does not do according to his annotation descriptions).

Even with the relaxed interpretation of Classified Methods, the number of CMs in the

results of this study are lower than Alshammari’s values. The other differences in values

likely reflect different definitions of which methods and attributes are counted in each

step.

VERSION

C
A

C
M

C
ID

A

C
C

D
A

C
O

A

C
M

A
I

C
A

A
I

C
A

IW

C
M

W

2.1.0 11 57 0,091 0 0,509 0,009 0,010 0,041 0,041

2.1.1 11 57 0,091 0 0,509 0,009 0,009 0,040 0,040

2.1.2 11 57 0,091 0 0,509 0,009 0,010 0,040 0,040

2.1.3 9 37 0,111 0 0,811 0,006 0,004 0,017 0,026

61

With this in mind, a different picture emerges from the comparison when the differences

in CAs and CMs are excluded and the results from James version 2.1.3 are compared side

by side. Figure 7-2 does just this, and by comparing the numbers and neglecting scale

issues, the results are actually quite close to each other. So based on the results the case

study in this thesis has been conducted similarly to the author of the metric. It is trouble-

some that big visible differences are lacking in the quantitative results despite the CA and

CM amounts being different.

Figure 7-2: Comparison of James 2.1.3 case study results with Alshammari’s results for

Single class OO metrics

Alshammari suggests using a radar chart for graphical representations of the results, but

this seems unjustified given the small differences between the versions of James. There

seem to be no correlation between the metrics’ values and the security flaws [Appendix

A] or the major feature changes seen in Figure 7-1.

The single class metrics appear sensitive to the number of CAs and methods accessing

them. If they remain constant, this means almost no changes will occur in the metrics’

results. The single class metrics are also sensitive to changes in the access right levels in

methods, but most of the methods in James are public and have remained thus in new

additions. Without change to the access rights, there will be no changes to the results.

62

7.2 Results of the multiclass metrics

The multiclass metrics are examined in a similar order to the single class metrics from

the previous section, with results presented first, which are then compared to Alsham-

mari’s results before some concluding remarks. Table 7-3 shows the results for the mul-

ticlass metrics.

Table 7-3: Multiclass OO metrics’ results

Although there is very little to interpret, Figure 7-3 provides guidance for interpreting the

results, which remain almost entirely unchanged. The bad values are for metrics related

to the attack surface security design principle (i.e. CPCC, CCE, CME, CSP, CMI and

CAI), meaning that objects (or classes) handing the confidential data are accessible. The

CPCC is bad because there are no inner classes in the James class structure. The CCE,

CME, CSP, CMI and CAI are bad because all of the CCs can be inherited, they are at the

top of inheritance hierarchy, and all of the CMs and CAs can be inherited. The lack of

use of object-oriented design principles in James is quite evident from these results but

whether it actually signifies any security related conclusions is not so evident. The confi-

dential data seems to be protected since the metrics related to the security design principle

of least privilege have good values.

VERSION

C
P

C
C

C
C

C

C
C

E

C
M

E

C
S

P

C
S

I

C
M

I

C
A

I

C
D

P

2.1.0 1 0,038 1 1 1 0,014 1 1 0,007

2.1.1 1 0,038 1 1 1 0,014 1 1 0,007

2.1.2 1 0,038 1 1 1 0,014 1 1 0,007

2.1.3 1 0,038 1 1 1 0,014 1 1 0,007

2.2.0 1 0,017 1 1 1 0,009 1 1 0,009

2.3.0 1 0,015 1 1 1 0,008 1 1 0,008

2.3.1 1 0,015 1 1 1 0,008 1 1 0,008

2.3.2 1 0,015 1 1 1 0,008 1 1 0,008

2.3.2.1 1 0,014 1 1 1 0,008 1 1 0,008

63

A closer look at the intermediate calculation results from Table 6-5 and the formulas for

multiclass metrics (see Table 4-9) reveal that the changes in the numeric values are the

result of more classes being added to James. Because no changes are made to class struc-

ture around the confidential data, the metrics’ results remain unchanged through the ver-

sions.

Figure 7-3: Guidance for interpreting the Multiclass OO metrics’ results

For comparison, Table 7-4 presents Alshammari’s results for the multiclass metrics for

James versions 2.1.0 to 2.1.3. The first column in Table 7-4 shows the number of Critical

Classes that Alshammari used, which is higher than that used in this case study. The rea-

son for the higher count in Alshammari’s work is the inclusion of more CAs (see discus-

sion in Section 7-1).

64

Table 7-4: Alshammari’s results [35] for multiclass OO metrics

The changes in values for CSP and CMI metrics in Table 7-4 between versions 2.1.2 and

2.1.3 are the result of an increase in the amount of CCs. It is interesting to notice that the

CAI metric result, which is zero in Alshammari’s results and one in the results of this

case study. Alshammari’s result would indicate no CAs could be inherited, but by reading

the code of the classes, there seems to be no way to account for this interpretation.

Presenting a radar chart for the results of the multiclass metrics would be useless due to

the unchanging nature of the values. The multiclass metrics seem unable to detect any

security flaws or newly added functionalities. In fact, the multiclass metrics seem to have

very little to give for software like James, which does not use features of object oriented

programming in any large scale.

7.3 Results of the attack surface metric

The attack surface metric’s results are a bit different from the OO metrics, since they can

be presented in a form suggested by the metric author. Figure 7-4 presents the results in

a bar chart form.

VERSION

C
C

C
P

C
C

C
C

C

C
C

E

C
M

E

C
S

P

C
S

I

C
M

I

C
A

I

C
D

P

2.1.0 4 1 0,007 1 1 1 0,005 1 0 0,020

2.1.1 4 1 0,007 1 1 1 0,005 1 0 0,020

2.1.2 4 1 0,007 1 1 1 0,005 1 0 0,020

2.1.3 5 1 0,008 1 1 0,5 0,003 0,7 0 0,025

65

Figure 7-4: Results of the attack surface metric

The bar chart shows the increase in the attack surface clearly. However, the connection

to security flaws or new functionality is not apparent. Figure 7-5 depicts how the security

flaws and major functionality introductions relate to the attack surface results.

Figure 7-5: The security flaws and new functionality introductions highlighted in the at-

tack surface metric’s results

1848 1907 1908 1932

2639

3303 3303 3315 3320

0

500

1000

1500

2000

2500

3000

3500

Attack surface

2.1.0 2.1.1 2.1.2 2.1.3 2.2.0 2.3.0 2.3.1 2.3.2 2.3.2.1

66

The results of the attack surface metric do not include values for channels or data items

(unlike in Table 5-4), since those were absent in the calculations for James. This means

that the attack surface value directly measures the number of methods and access rights

for these methods.

It is obvious from Figure 7-5 that the metric does not detect the security flaws. The new

feature introductions are clearly visible, since they are closely related to the number of

methods. The usefulness of the attack surface metric for Java programs like James is

questionable, since similar results can be obtained with much simpler/easier metrics as

shown in Figure 7-6.

Results of the attack surface metric are compared with Lines of Code (LOC) metric in

Figure 7-6. The LOC metric is defined as the amount of lines that have code in James

excluding comment and blank lines from the source code files. The comparison of these

two metrics shows that in its current form, the attack surface metric is quite redundant.

Figure 7-6: Attack surface metric results versus Lines of Code in James

7.4 Examining all results together

Single and Multiclass OO metrics both follow the confidential data closely, which means

that a poor initial choice for the annotations has a huge effect on the final results. Fine-

0

5000

10000

15000

20000

25000

30000

35000

0

500

1000

1500

2000

2500

3000

3500

2.1.0 2.1.1 2.1.2 2.1.3 2.2.0 2.3.0 2.3.1 2.3.2 2.3.2.1

Li
n

es
 o

f
C

o
d

e

A
tt

ac
k

su
rf

ac
e

Attack surface Lines of Code

67

tuning the metrics (i.e. changing the confidential data marking from attributes other at-

tributes) is quite troublesome since calculating results requires somewhat large effort.

Perhaps choosing some other data as ‘confidential’ for James would have revealed some-

thing different about the software. The metric author did not provide instructions on de-

ciding what should be considered ‘confidential’. Changes in other parts of the program

barely showed up in the numeric values provided by the metric.

The attack surface metric did not suffer from annotation issues, but it had multiple issues

in the practical application of the metric. Firstly, two out of the three values were unused,

while the last remaining value seemed to follow the number of methods closely. The

method access right level had an effect on the attack surface calculation result, but in the

case of James, most methods are public. Therefore, the metric could simply be replaced

by counting lines of code from the program.

All three metrics have their merits and weaknesses, but in general they are not good de-

sign time metrics based on multiple factors. The metrics are not applied easily, nor are

their results presented in a clear manner, making it difficult to determine strong and weak

points in the software design. The metrics do not even work with design time artifacts,

but require source code.

Use of source code highlights another problem: it is quite hard to see if the design of

software has changed just based on the source code. It is common practice in software

engineering to visualize design changes in UML or other graphical charts. Analyzing

James source code points to the direction that the design of James remained unchanged

in some areas (e.g. user handling) and changed in other areas (e.g. database handling)

through the versions analyzed in this thesis, but there are no definite documentation avail-

able to verify this observation or the scale of the design changes.

The metrics start with the assumption that they can give quantitative values as results.

This idealistic starting point is disturbed by the fact that the metrics require multiple sub-

jective decisions (i.e. qualitative knowledge) before they can be applied in practice. All

of the metrics are also relative, meaning that any absolute value is only good for compar-

ing it with another version of the same software.

68

Finally, the metrics do not really provide instructions on how to interpret the results and

the metrics’ connection to the security design principles is a bit abstract. Because security

is a quality attribute, it would be quite important to understand how to assess this quality

attribute in context of numeric results.

69

8 CONCLUSIONS

This chapter combines and analyzes the results obtained for the three research questions

for this thesis. First, Section 8.1 recollects the research outcomes from previous chapters

and presents them in order of the research questions. Subsequently, Section 8.2 analyzes

and evaluates this work before discussing some future research directions.

8.1 Research outcomes

RQ1: How can we measure the security of software?

The computer security field is full of terminology that have differing definitions across

the researchers and many aspects of security. In this thesis a distinction between software-

and application-security was made to divide security into separate concepts and focus on

the software aspect. Software security was defined as the security for software before it

was built (i.e. when it is being developed). Application security was defined as the secu-

rity for software after it had been built and deployed (i.e. when it is in use).

Another important definition is the concept of ‘security’ within the realm of software.

Security was defined as a quality attribute (i.e. a non-functional requirement) of software,

similar to usability or speed. This led us to conclude that a security defect, flaw or bug

signifies that the quality attribute of ‘security’ is not met.

Verification of software security revolves around the concepts of evaluation and assur-

ance. Evaluation was defined as judgements by actors (other than the creators of the soft-

ware) regarding the security of the software. Assurance was defined as the activity where

creators of the software ensure that their software is secure. The activity of assurance was

the focus of this thesis due to the scope targeting those software engineers who are creat-

ing software.

When attempting to measure ‘assurance’ activity, this work utilized the measurement the-

ory and tried to find suitable metrics for creating a theoretical and practical framework

for the assurance activities.

70

RQ2: What metrics are available for measuring software security?

A total of 34 different software security metrics were found, of which, five were evalua-

tion metrics and 29 of them were assurance metrics. The quality of the metrics varied

greatly with many of the metrics being concepts without a theoretical basis or practical

instructions for applications. Some of the metrics were not concepts, but rather, discus-

sion papers which ended up suggesting useless procedures for measuring security. How-

ever, by categorizing the metrics and inspecting their properties, three design level assur-

ance metrics were found and deemed suitable for further inspection.

The three metrics found were within PhD dissertations and fulfilled an inspection criteria

based on measurement theory. They were therefore studied in additional detail so that

they could be applied to a case study. Two of the metrics targeted object-oriented pro-

gramming concepts while the other metric defined software as a mathematical model.

Closer study of the metrics, both in theory and practice, revealed some issues with the

metrics. Theoretically, no metric was actually able to use design time artifacts in its meas-

urement process. In practice, this means that rather than using UML charts, one must use

source code. In the case of object-oriented metrics, the source code must have specific

annotations as well.

Another theoretical problem for all of the metrics is indirect referencing, which is a well-

known problem in object-oriented programming that is discussed widely across literature.

For example, when discussing aliasing [80] or the specific phenomenon called represen-

tational exposure [81]. A simple description of the problem for object-oriented program-

ming is that apart from directly referencing an object, there are ways of indirectly refer-

ring to them, thereby bypassing the restrictions set by the programmer.

One of the practical issues that the metrics face is a lack of clarity regarding what calcu-

lation values cause changes in the results of the metrics. This means that seemingly unre-

lated changes in metrics’ calculation values might affect a metric result value attempting

to describe a different phenomenon. This is especially apparent in object-oriented design

metrics, but also appears in the attack surface metric, which seems closely correlated with

the number of methods.

71

The other major practical issue with the metrics is the need for qualitative estimations and

subjective decisions in their practical applications. The metric authors downplay the ef-

fect of these decisions, but in reality they have a major impact on the metrics’ numeric

results and how the software is processed using the metrics’ instructions.

Based on the results of this thesis, the general state of assurance metrics is not good. This

thesis did not inspect the evaluation metrics, but evaluation metrics seemed to be much

more mature and are being used in the industry all the time. However, they are designed

for governmental or military use, making them troublesome and expensive to use in nor-

mal software engineering activities.

RQ3: What do the software security metrics reveal about the security of software?

This thesis conducted a case study research to test specifically chosen assurance metrics.

Based on the results, the metrics have large issues in providing any information about the

security of software.

The validity of the metric results is questionable because the metrics are relative. In this

context, ‘relativity’ means that the metrics provide meaningful results for only software

designs of similar type. It is unclear what characterizes ‘similar’ types of software was

and is thus not clear what would cause the status of a software to be classified as a ‘sim-

ilar’ or ‘different’ type. The attack surface metric also seemed to closely follow the source

code line count, which brings into question the usefulness of that particular metric.

All of the metrics connected their theory into the security design principles, but this con-

nection was quite abstract when trying to interpret the numeric results provided by the

metrics. None of the metrics could detect security flaws found in the target software, and

only the attack surface metric could detect new functionality added to the target software.

72

8.2 Discussion

What does all of the work done in this thesis mean?

As stated in [18] when it is unclear how to measure an attribute of software (e.g. security),

merely attempting to do so will increase understanding of the phenomenon in spite of

claims that say non-functional requirements of a software are not quantifiable [18].

The current generation of security metrics seems unsuitable for the development of secure

software. However, despite their flaws, the three metrics examined here provide a foun-

dation for future research in software security. Without this work, understanding benefits

and drawbacks of the metrics would be much harder. That said, in order to develop secure

software one has to use highly subjective and qualitative methods, which include expert

reviews such as STRIDE threat modeling [82].

Did the work succeed in its goals?

This work succeeded in the primary goals of discovering the current status of software

security metrics and establishing the level of current understanding of secure software,

even though the final results were not evaluations of the software security from a design

perspective. However, the case study could have used another product that was more se-

curity-oriented to provide additional insight into the metrics, but the search for a suitable

target was dropped due to time constrains.

One might also wonder if Apache James was a suitable target for the case study for the

reasons that it does not have many public security issues, the changelog isn’t clearly con-

nected to the source code, and developer documentation is scarce. Regardless of these

deficiencies, the case study found multiple areas of interest in the metrics and provided

meaningful interpretations from the results.

Limitations of this work

This thesis had only one target software in the case study. Having only a single target

limits the results of the case study to be insights. For more conclusive evidence more

targets and different targets should be examined.

73

The metrics had no instructions for practical applications that lead to numerous subjective

decisions in how to apply the metrics. These choices made in the details had a consider-

able role in the outcome of this work. Naturally anyone else attempting to use the metrics

will face the same obstacles and has to deal with them.

Possible directions for future work

Contemporary software security measurement seems to be in the hands of expert reviews

and code level tools. Further development of these expert review tools could provide

fruitful insights and allow for better measurement or assessment of the security of the

design. This would avoid some problems arising from quantifying quality attributes such

as security.

In order to further develop existing software design security metrics, a stronger connec-

tions must be made between the metric’s theory and fundamental concepts of software

design. The connection between theory and practice also needs to be revisited, as the

metrics seem unable to move from theoretical models into real world programming lan-

guages.

74

APPENDIX A: KNOWN VULNERABILITIES OF APACHE

JAMES

Table A-1: Details of CVE-2004-2650 (adapted from [83], [84] and [85])

CVE-2004-2650

Version affected James < 2.2.0

Vulnerability type Denial of Service

Description The Spooler component fails to check for error conditions

in a mail retrieval situation, causing a memory leak.

Exploitation An attacker could create multiple error conditions and

eventually consume the system’s resources.

End result Successful exploitation will ultimately crash the applica-

tion denying service to legitimate users.

Code example if (lock(s)) {
 MailImpl mail = null;
 try
 { mail = retrieve(s); }
 catch (javax.mail.MessagingException e)
 { ... }
 if (mail == null)
 { continue; }
}

If retrieve returns null or throws an exception, the
lock is kept, and we leak memory.

75

Table A-2: Details of CVE-2006-2806 (adapted from [86], [87] and [88])

CVE-2006-2806

Version affected James < 2.3.0

Vulnerability type Denial of Service

Description The SMTP component fails to process malformed SMTP

commands in a sensible manner, causing the program to

consume a great amount of CPU cycles.

Exploitation An attacker could use the standard network tools to con-

nect to the SMTP port and enter malformed commands,

causing a great CPU load.

End result A successful exploitation will ultimately cause the applica-

tion to be slow or unresponsive for legitimate users.

Code example $socket = IO::Socket::INET->new(Proto=>"tcp",
PeerAddr=>$host, PeerPort=>"25", Reuse=>1)

while ($i++) {
 print $socket "MAIL FROM:" . "fvclz" x 1000000 .
"\r\n" and
 print " -- sucking CPU resources at $host\n";
}

76

Table A-3: Details of CVE-2015-7611 (adapted from [89], [90] and [91])

CVE-2015-7611

Version affected James < 2.3.2

Vulnerability type Remote command execution

Description The user addition function fails to correctly process illegal

usernames thereby opening exploitation avenues in file

based user repositories.

Exploitation An attacker requires legitimate access to the remote admin-

istration tool. Within the tool an attacker can create a user

with the username of a file and afterwards send an email to

this particular "user" describing the contents of the file.

End result Successful exploitation will ultimately allow the attackers

to execute arbitrary system commands within the context

of the application.

Code example print "[+]Connecting to Remote Administratio Tool"
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

print "[+]Creating user"
s.send("adduser
../../../../../../../../etc/bash_completion.d ex-
ploit\n")

print "[+]Connecting to James SMTP server"
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.send("ehlo team@team.pl\r\n")

print "[+]Sending payload..."
s.send("mail from: <'@team.pl>\r\n")
s.send("rcpt to:
<../../../../../../../../etc/bash_comple-
tion.d>\r\n")
s.send("From: team@team.pl\r\n")
s.send("\r\n")
s.send("'\n")
s.send(payload + "\n")
s.send("\r\n.\r\n")
s.send("quit\r\n")

print "[+]Done! Payload will be executed once some-
body logs in."

77

APPENDIX B: MAJOR CHANGES BETWEEN APACHE

JAMES VERSIONS

Version 2.1.0 [92] 29 December 2002

 major SMTP feature updates

 fixes to POP3 message engine

 added NNTP support

Version 2.1.1 [92] 11 February 2003

 fixes synchronization issues

Version 2.1.2 [92] 21 February 2003

 fixes fatal connection errors and the bounce mechanism

Version 2.1.3 [92] 12 May 2003

 spooler fixes

 nntp fixes

Version 2.2.0 [92] 15 June 2004

 fixes CVE-2004-2650

 mailbox system created

 added support for mail redirecting

 added support for remote gateway email servers

 new Mailets

 some external library updates

Version 2.3.0 [93] 23 October 2006

 fixes CVE-2006-2806

 SMTP server functionality upgrades

 changes in the database engine

 new filters and Mailets

 many external library updates

78

Version 2.3.1 [93] 29 April 2007

 license information update

 bugfixes to external components, notably Sendmail plugin

Version 2.3.2 [94] 10 August 2009

 a few minor bug fixes and external library updates

Version 2.3.2.1 [95] 30 September 2015

 fixes CVE-2015-7611

79

REFERENCES

[1] M. Bishop, "What is computer security?," IEEE Security & Privacy, pp. 67-69, January

2003.

[2] G. McGraw, "Building Security In - Software Security," IEEE Security & Privacy, pp. 80-

83, April 2004.

[3] F. Nunes, A. Belchior and A. Albuquerque, "Security Engineering Approach to Support

Software Security," in 6th World Congress on Services, Miami, 2010.

[4] B. Alshammari, C. Fidge and D. Corney, "Security Metrics for Object-Oriented Class

Designs," in Proceeding of QSIC 2009 : Ninth International Conference on Quality

Software, Jeju, 2009.

[5] J. Zalewski, S. Drager and A. Kornecki, "Can We Measure Security and How?," in Seventh

Annual Workshop on Cyber Security and Information Intelligence Research, Oak Ridge,

2011.

[6] A. Jaquith, Security metrics, Upper Saddle River: Pearson Education Inc., 2007.

[7] B. Bruegge and A. Dutoit, Object-Oriented Software Engineering, Upper Saddle River:

Prentice Hall, 2010.

[8] M. Kainerstorfer, J. Sametinger and A. Wiesauer, "Software Security for Small

Development Teams - A Case Study," in Proceedings of the 13th International Conference

on Information Integration and Web-based Applications and Services, Ho Chi Minh City,

2011.

[9] Microsoft, Security Development Lifecycle Process Guidance Version 5.2, 2012.

[10] US National Institute of Standards and Technology, "The Economic Impacts of Inadequate

Infrastructure for Software Testing (NIST Planning Report 02-3)," 2002.

80

[11] T. Klein, "The myth of the cost of defect," 21 May 2015. [Online]. Available:

http://thklein.com/en_US/cost-of-defect/. [Accessed 22 October 2015].

[12] C. Jones, "A short history of the cost per defect metric," 5 May 2009. [Online]. Available:

http://blog.paluno.uni-due.de/semat.org/wp-

content/uploads/2012/03/a_short_history_of_the_cost_per_defect_metric.doc. [Accessed

22 October 2015].

[13] C. Jones and O. Bonsignour, The Economics of Software Quality, Boston: Pearson

Education, 2012.

[14] R. Anderson, Security Engineering, Second edition, Wiley, 2008.

[15] ISO/IEC, "Systems and software engineering - System life cycle processes (ISO/IEC/IEEE

15288:2008)," 2008.

[16] Common Criteria Recognition Arrangement, "Common Criteria for Information

Technology Security Evaluation, versio 3.1 release 4," 2012.

[17] J. Zalewski, S. Drager and A. Kornecki, "Measuring Security: A Challenge for the

Generation," in Position Papers of the 2014 Federated Conference on Computer Science

and Information Systems, Warsaw, 2014.

[18] N. E. Fenton and S. L. Pfleeger, Software Metrics - A Rigorous and Practical Approach,

Boston: PWS Publishing Company, 1997.

[19] T. Heyman, R. Scandariato, C. Huygens and W. Joosen, "Using security patterns to

combine security metrics," in Proceedings of the Third International Conference on

Availability, Security and Reliability, Barcelona, 2008.

[20] US National Institute of Standards and Technology, "Directions in Security Metrics

Research (NIST IR 7564)," 2009.

81

[21] D. Mellado, E. Fernández-Medina and M. Piattini, "A Comparison of Software Design

Security Metrics," in Proceedings of the Fourth European Conference on Software

Architecture: Companion Volume, Copenhagen, 2010.

[22] US Department of Defence, "Trusted Computer System Evaluation Criteria, DoD 5200.28-

STD," 1985.

[23] Commission of the European Communities Directorate XIII/F SOG-IS, "Information

Technology Security Evaluation Criteria (ITSEC)," 1991.

[24] S. Lipner, "The Birth and Death of the Orange Book," IEEE Annals of the History of

Computing, pp. 19-31, April-June 2015.

[25] US National Institute of Standards and Technology, "Performance Measurement Guide for

Information Security (NIST 800-55)," 2008.

[26] C. Du, X. Li, H. Shi, J. Hu, R. Feng and Z. Feng, "Architecture Security Evaluation Method

based on Security of the Components," in Software Engineering Conference (APSEC),

Bangkok, 2013.

[27] ISO/IEC, "Information security management - Measurement (ISO/IEC 27004:2009),"

2009.

[28] Swedish Defence Research Agency, "Design and Use of Information Security Metrics,"

Linköping, 2011.

[29] B. Rodes, J. Knight and K. Wasson, "A Security Metric Based on Security Arguments," in

WETSoM 2014: Proceedings of the 5th International Workshop on Emerging Trends in

Software Metrics, Hyderabad, 2014.

[30] ISO/IEC, "Systems Security Engineering - Capability Maturity Model (ISO/IEC

21827:2008)," 2014.

82

[31] K. Ferraiolo, "National Information Systems Security Conference," 2000. [Online].

Available: http://csrc.nist.gov/nissc/2000/proceedings/papers/916slide.pdf. [Accessed 8

October 2015].

[32] S. Khan and R. Khan, "Security assessment framework: a complexity perspective,"

Computer Fraud & Security, pp. 13-17, July 2014.

[33] S. Chandra, R. A. Khan and A. Agrawal, "Security Estimation Framework: Design Phase

Perspective," in ITNG '09: Sixth International Conference on Information Technology:

New Generations, Las Vegas, 2009.

[34] K. Sultan, A. En-Nouaary and A. Hamou-Lhadj, "Catalog of Metrics for Assessing

Security Risks of Software throughout the Software Development Life Cycle," in ISA

2008: International Conference on Information Security and Assurance, Busan, 2008.

[35] B. Alshammari, Quality Metrics for Assessing Security-Critical Computer Programs,

Queensland University of Technology, 2011.

[36] P. Manadhata, K. Tan, R. Maxion and J. Wing, "An Approach to Measuring a System's

Attack Surface," Carnegie Mellon University, Pittsburgh, 2007.

[37] S. Jajodia, A. Ghosh, V. Swarup, C. Wang and X. S. Wang, Moving Target Defense,

Springer, 2011.

[38] P. Manadhata, An Attack Surface Metric, Carnegie Mellon University, 2008.

[39] MITRE Corporation, "Common Weakness Enumeration FAQ," 25 July 2014. [Online].

Available: https://cwe.mitre.org/about/faq.html. [Accessed 9 October 2015].

[40] FIRST.Org Inc., "Common Vulnerability Scoring System, version 3.0," 2015.

[41] US National Institute of Standards and Technology, "The Common Misuse Scoring System

(CMSS): Metrics for Software Feature Misuse Vulnerabilities (NIST IR 7864)," 2012.

83

[42] J. A. Wang, H. Wang, M. Guo and M. Xia, "Security Metrics for Software Systems," in

Proceedings of the 47th Annual Southeast Regional Conference, Clemson, 2009.

[43] I. Chowdhury, B. Chan and M. Zulkernine, "Security Metrics for Source Code Structures,"

in Proceedings of the fourth international workshop on Software engineering for secure

systems, Leipzig, 2008.

[44] T. Heyman, A Formal Analysis Technique for Secure Software Architectures, KU Leuven,

2013.

[45] B. Berger, K. Sohr and R. Koschke, "Extracting and Analyzing the Implemented Security

Architecture of Business Applications," in CSMR: 17th European Conference on Software

Maintenance and Reengineering, Genova, 2013.

[46] K. Sohr and B. Berger, "Idea: Towards Architecture-Centric Security Analysis of

Software," in Second International Symposium ESSoS, Pisa, 2010.

[47] P. Carvalho, "Mapping the Software Error and Effects Analysis to ISO 26262 requirements

for software architecture analysis," in IEEE International Symposium on Software

Reliability Engineering Workshops, Naples, 2014.

[48] J. Fragola and J. Spahn, "The Software Error Effects Analysis - A Qualitative Design

Tool," in IEEE Symposium on Computer Software Reliability, New York, 1973.

[49] B. Alshammari, C. Fidge and D. Corney, "A Hierarchical Security Assessment Model for

Object-Oriented Programs," in Proceedings of the 11th International Conference on

Quality Software (QSIC 2011), Madrid, 2011.

[50] B. Alshammari, C. Fidge and D. Corney, "Security metrics for object-oriented designs," in

Proceedings of the 21st Australian Software Engineering Conference (ASWEC 2010),

Auckland, 2010.

[51] Y. Deng, J. Wang and J. Tsai, "Formal Analysis of Software Security System

Architectures," in 5th International Symposium on Autonomous Decentralized Systems,

Dallas, 2001.

84

[52] M. Almorsy, J. Grundy and A. Ibrahim, "Automated Software Architecture Security Risk

Analysis using Formalized Signatures," in ICSE '13: Proceedings of the 2013 International

Conference on Software Engineering, San Francisco, 2013.

[53] S. Halkidis, N. Tsantalis, A. Chatzigeorgiou and G. Stephanides, "Architectural Risk

Analysis of Software Systems Based on Security Patterns," IEEE Transactions on

Dependable and Secure Computing, pp. 129 - 142, July-September 2008.

[54] Y. Liu, I. Traore and A. Hoole, "A Service-Oriented Framework for Quantitative Security

Analysis of Software Architectures," in APSCC '08: Asia-Pacific Services Computing

Conference, Yilan, 2008.

[55] V. Sharma and K. Trivedi, "Architecture Based Analysis of Performance, Reliability and

Security of Software Systems," in WOSP '05: Proceedings of the 5th international

workshop on Software and performance, Palma de Mallorca, 2005.

[56] C. Gegick, Predicting Attack-prone Components with Source Code, North Carolina State

University, 2009.

[57] S.-T. Lai, "An Analyzer-based Software Security Measurement Model for Enhancing

Software System Security," in WCSE: Second World Congress on Software Engineering,

Wuhan, 2010.

[58] Y. Shin, A. Meneely, L. Williams and J. Osborne, "Evaluating Complexity, Code Churn,

and Developer Activity Metrics as Indicators of Software Vulnerabilities," IEEE

Transactions on Software Engineering, pp. 772 - 787, September 2010.

[59] J. Jürjens, Secure Systems Development with UML, Springer, 2005.

[60] J. Barnes, SPARK: The Proven Approach to High Integrity Software, Altran Praxis, 2012.

[61] AdaCore, "Applying SPARK in Practice," [Online]. Available:

http://docs.adacore.com/spark2014-docs/html/ug/usage_scenarios.html. [Accessed 15

November 2015].

85

[62] AdaCore, "Introduction to SPARK," [Online]. Available:

http://docs.adacore.com/spark2014-docs/html/ug/introduction.html. [Accessed 15

November 2015].

[63] Research Group: Software Engineering for Critical Systems, "UML Analysis Tools,"

Technical University Dortmund, [Online]. Available: https://www-secse.cs.tu-

dortmund.de/jj/umlsectool/index.html. [Accessed 15 November 2015].

[64] Research Group: Software Engineering for Critical Systems, "CARiSMA," Technical

University Dortmund, [Online]. Available: https://www-secse.cs.tu-

dortmund.de/carisma/index.shtml. [Accessed 15 November 2015].

[65] B. Alshammari, C. Fidge and D. Corney, "An Automated Tool for Assessing Security-

Critical Designs and Programs," in Proceedings of WIAR '2012; National Workshop on

Information Assurance Research, Riyadh, 2012.

[66] G. Gousios, "Java Call Graph Utilities," 16 April 2013. [Online]. Available:

https://github.com/gousiosg/java-callgraph. [Accessed 15 November 2015].

[67] M. Russinovich, "Process Monitor," Microsoft, 26 May 2015. [Online]. Available:

https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx. [Accessed 15

November 2015].

[68] M. Russinovich, "Process Explorer," Microsoft, 10 March 2015. [Online]. Available:

https://technet.microsoft.com/en-us/sysinternals/processexplorer. [Accessed 15 November

2015].

[69] P. Runeson, M. Höst, A. Rainer and B. Regnell, Case Study Research in Software

Engineering, New Jersey: John Wiley & Sons, 2012.

[70] The Apache Software Foundation, "James Project," [Online]. Available:

http://james.apache.org/. [Accessed 16 November 2015].

[71] The Apache Software Foundation, "Board of Directors Meeting Minutes, 22nd of January

2003," 22 January 2003. [Online]. Available:

86

http://www.apache.org/foundation/records/minutes/2003/board_minutes_2003_01_22.txt.

[Accessed 11 December 2015].

[72] C. Duguay, "Working with James, Part 1: An introduction to Apache's James enterprise e-

mail server," Capital Stream Inc., 10 June 2003. [Online]. Available:

http://www.ibm.com/developerworks/library/j-james1/. [Accessed 16 November 2015].

[73] The Apache Software Foundation, "Board of Directors Meeting Minutes extracts

concerning Apache James," [Online]. Available:

https://whimsy.apache.org/board/minutes/JAMES.html. [Accessed 11 December 2015].

[74] M. Nash, Java Frameworks and Components, Cambridge: Cambridge University Press,

2003.

[75] The Apache Software Foundation, "The Apache Avalon Project Closure Notice," 2004.

[Online]. Available: http://avalon.apache.org/closed.html. [Accessed 11 December 2015].

[76] D. Angus, "Apache James - The Complete Email Application Platform," 19 July 2010.

[Online]. Available: http://www.slideshare.net/Tess98/apache-james. [Accessed 11

December 2015].

[77] The Apache Software Foundation, "Apache James Download Repository," [Online].

Available: http://archive.apache.org/dist/james/server/. [Accessed 16 November 2015].

[78] The WinMerge project, "WinMerge," [Online]. Available: http://winmerge.org/.

[Accessed 14 December 2015].

[79] S. Küng, "grepWin," [Online]. Available:

http://stefanstools.sourceforge.net/grepWin.html. [Accessed 14 December 2015].

[80] J. Hogg, D. Lea, A. Wills, D. deChampeaux and R. Holt, "The Geneva convention on the

treatment of object aliasing," ACM SIGPLAN OOPS Messenger, pp. 11-16, 1 April 1992.

[81] D. G. Clarke, J. Noble and J. Potter, "Overcoming Representation Exposure," in

Proceedings of the Workshop on Object-Oriented Technology, 1999.

87

[82] S. Hernan, S. Lambert, T. Ostwald and A. Shostack, "Uncover Security Design Flaws

Using The STRIDE Approach," MSDN Magazine, November 2006.

[83] CVE Details, "CVE-2004-2650," [Online]. Available:

http://www.cvedetails.com/cve/CVE-2004-2650/. [Accessed 13 December 2015].

[84] The Apache Software Foundation, "Apache James bug JAMES-268," 22 April 2004.

[Online]. Available: https://issues.apache.org/jira/browse/JAMES-268. [Accessed 13

December 2015].

[85] Security Focus, "Apache James Spooler Memory Leak Denial of Service Vulnerability,"

[Online]. Available: http://www.securityfocus.com/bid/15765/. [Accessed 13 December

2015].

[86] CVE Details, "CVE-2006-2806," [Online]. Available:

http://www.cvedetails.com/cve/CVE-2006-2806/. [Accessed 13 December 2015].

[87] The Apache Software Foundation, "Apache James bug JAMES-535," 15 June 2006.

[Online]. Available: https://issues.apache.org/jira/browse/JAMES-535. [Accessed 13

December 2015].

[88] Security Focus, "Apache James SMTP Denial Of Service Vulnerability," [Online].

Available: http://www.securityfocus.com/bid/18138/. [Accessed 13 December 2015].

[89] Openwall, "Email exchange on oss-security mailing list," 1 October 2015. [Online].

Available: http://www.openwall.com/lists/oss-security/2015/10/01/2. [Accessed 13

December 2015].

[90] Security Focus, "Apache James Server Unspecified Command Execution Vulnerability,"

[Online]. Available: http://www.securityfocus.com/bid/76933/. [Accessed 13 December

2015].

[91] Exploit Database, "Apache James Server 2.3.2 Authenticated User Remote Command

Execution," [Online]. Available: https://www.exploit-db.com/exploits/35513/. [Accessed

13 December 2015].

88

[92] The Apache Software Foundation, "Apache James Changelogs, 0.9.5 - 2.2.0," 19

November 2009. [Online]. Available:

https://james.apache.org/server/2.2.0/changelog.html. [Accessed 13 December 2015].

[93] The Apache Software Foundation, "Apache James Changelogs, after 2.2.0 - 2.3.1," 30

April 2007. [Online]. Available: https://james.apache.org/server/2.3.1/changelog.html.

[Accessed 13 December 2015].

[94] The Apache Software Foundation, "Apache James Changelog, 2.3.2," 9 February 2009.

[Online]. Available: http://james.apache.org/server/2.3.2/release-notes.html. [Accessed 13

December 2015].

[95] The Apache Software Foundation, "Apache James Blog on 2.3.2.1," 30 September 2015.

[Online]. Available: https://blogs.apache.org/james/entry/apache_james_server_2_3.

[Accessed 13 December 2015].

	1 INTRODUCTION
	1.1 Motivation
	1.2 Scope
	1.3 Objectives and research questions
	1.4 Methods
	1.5 Contents

	2 WHAT IS SOFTWARE SECURITY?
	2.1 Defining security
	2.2 Viewpoints to software security
	2.3 Verifying the security of a software

	3 SOFTWARE SECURITY METRICS
	3.1 Metrics and measurement
	3.2 Categories of metrics
	3.2.1 Security engineering perspective
	3.2.2 Business perspective
	3.2.3 Security characteristics perspective
	3.2.4 Software system perspective

	3.3 Choosing the category and metrics for this study
	3.3.1 A look at potential categories from this thesis’ perspective
	3.3.2 Additional details of metrics from the chosen category
	3.3.3 Conducting a detailed examination of the chosen metrics

	4 ANALYSIS OF SECURITY CRITICAL INFORMATION FLOW
	4.1 Introduction to Alshammari’s four metrics
	4.2 Theoretical basis: object oriented design properties and data flow
	4.3 Practical method for single class analysis
	4.4 Practical method for multiclass design analysis
	4.5 Object oriented design metrics: In practice

	5 ANALYSIS OF THE SYSTEM ATTACK SURFACE
	5.1 Theoretical basis: Software system as an I/O automata model
	5.2 Practical method for analyzing a Java program attack surface
	5.3 Using the attack surface analysis in practice

	6 THE PRACTICAL ANALYSIS
	6.1 Brief theoretical background for the case study
	6.2 The case study target: Apache James mail server
	6.3 Executing the case study analysis
	6.3.1 General remarks about the analysis
	6.3.2 Analysis using single class metrics
	6.3.3 Analysis using the multiclass metrics
	6.3.4 Analysis using the attack surface metric

	7 RESULTS OF THE CASE STUDY ANALYSIS
	7.1 Results of the single class metrics
	7.2 Results of the multiclass metrics
	7.3 Results of the attack surface metric
	7.4 Examining all results together

	8 CONCLUSIONS
	8.1 Research outcomes
	8.2 Discussion

	APPENDIX A: KNOWN VULNERABILITIES OF APACHE JAMES
	APPENDIX B: MAJOR CHANGES BETWEEN APACHE JAMES VERSIONS
	REFERENCES

