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Abstract                                                                                                                             
In this paper the methodology and the numerical algorithm are proposed such as suitable 
both for the dynamic simulation of a human gait and for solving of the design problems of 
the lower limb prostheses. The methodology is based on the combination of the optimal 
control theory and the mathematical modeling with broad utilization of the data obtained 
from the biomechanical experiments. A special procedure is used for converting the initial 
optimal control problems for the highly nonlinear and complex bipedal locomotion system 
into the standard nonlinear programming problems. It is made by approximation of the 
independent variable functions using the combination of a spline and the Fourier series 
and the solution of the semi-inverse dynamics problem. The key feature of the algorithm 
proposed is its high numerical effectiveness and the possibility to satisfy many restrictions 
imposed on the phase coordinates of the system automatically and accurately. The 
proposed methodology is illustrated by the computer simulation of a human gait and the 
numerical results of solution of the design problems of the energy-optimal above-knee 
prostheses with several types of the structure of the knee mechanisms. 

INTRODUCTION 
The complexity of the structure and the dynamical instability of a gait of a human 

locomotor apparatus (HLA) make it very difficult to understand the main features and 
principles of its control system that provides the goal-directed stable motion. 
Traditionally, studies of a motion of the HLA have been concentrated on providing a basic 
information that can be used in different applied areas. For instance, in synthesis of 
artificial bipedal gait in order to design an active exoskeleton (Vukobratovic', 1975), 
walking robots (Larin, 1980; Formal'sky, 1982; Beletskii, 1984; Berbyuk, 1989; Morecki, 
1997; Pfeiffer et al., 1997; Waldron, 1997; Berbyuk et al., 1998), lower limb prostheses 
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(Winter and Sienko, 1988; Winter, 1991; Berbyuk, 1994). 
The experimental data (Diandelo et al., 1989; Johansson et al., 1993; Öberg et al., 1994) 

and the theoretical studies (Capozzo et al., 1976; Berbyuk, 1994, 1996) show that the 
kinematics and the dynamics of the HLA are strongly sensitive to the constructive 
parameters of a prosthesis (massinertial, elastic, viscoelastic, etc.) and to the parameters of 
a human gait (cadence, velocity, duration of the leg activity, etc.).  

To study the effect of prosthesis design on the kinematic, dynamic and other 
characteristics of an amputee's locomotion and to improve and create new efficient lower 
limb prostheses it is expedient to use the mathematical modeling of a human walk process 
and the dynamic optimization technique. 

Many different models of the HLA were proposed in the last decades. Among them the 
3-D human musculoskeletal models (Dietrich et al., 1997; Hatze, 1980), the 
biomechanical model of a human body that is suitable for crashworthiness applications 
(Ambrósio and Pereira, 1997). The simplest walking models (Garcia et al., 1998) are also 
very important in trying to understand stability and control principles of the HLA. 

Most researchers investigate the dynamic behavior and the control laws of the HLA 
using the inverse, the semi-inverse or the direct dynamics approach. In recent years the 
interest in optimal processes of the HLA has increased remarkably (Nuber and Contini, 
1961; Beckett and Chang, 1968; Chow and Jacobson, 1971; Hatze, 1976; Larin, 1980; 
Pandy et al., 1992; Berbyuk, 1997; Berbyuk and Lytwyn, 1998). 

In this paper the mathematical model of the HLA, the methodology and the numerical 
algorithm are proposed that suitable both for the dynamic simulation of a human gait and 
for solving the design problems of the above-knee prostheses. The HLA is simulated by a 
plane controlled mechanical system of rigid masses with nine degrees of freedom. The 
methodology is based on the combination of the optimal control theory and the 
mathematical modeling with broad utilization of the kinematic and dynamic data obtained 
from biomechanical experiments.  

The nonlinear optimal control problems have been considered to provide insight into 
the interaction between kinematics, dynamics and control of the HLA. A special 
procedure has been proposed for converting the formulated optimal control problems for 
the highly nonlinear and complex bipedal locomotion system into the standard nonlinear 
programming problems. The computer simulation of a human gait and the numerical 
results of solution of the design problems of the energy-optimal above-knee prostheses 
illustrate the effectiveness of the proposed methodology. 

 

DYNAMIC SIMULATION OF A HUMAN GAIT 
Mathematical Model 

The HLA is simulated by a plane mechanical system of rigid masses (Fig. 1). This system 
comprises an inertial body G (trunk) and two legs. Each leg consists of three elements. The 
two elements with mass and rotator inertia model the thigh (link OKi) and the shank (link 
KiAi), while the third inertia-free element (links AiHiTi) models the foot. 
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In addition to the weights of the trunk, thighs and the shanks, the external forces acting on 
the HLA include the interaction forces between the feet and the ground, which are replaced by 
resultant forces Ri, (i=1,2). 

It is assumed that the control moments qi(t),ui(t),pi(t) acting at the hip (point O), knee 
(point Ki) and the ankle (point Ai) joints, respectively. 

Let the NXYZ be a fixed rectangular Cartesian coordinate system. It is assumed that the 
HLA moves in the NXY plane along the NX axis over a horizontal surface. 
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Fig. 1 Model of the Human Locomotor Apparatus 

The controlled motion of the HLA can be described by the Lagrange's equations of the 
second kind and the kineto-static balance conditions for the feet under the action of the ankle 
moment and the reaction of the support (Berbyuk, 1997): 
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M=m+ma1+ma2+mb1+mb2+mf1+mf2 , Ji=Jai+ai
2(mbi+mif), Jci=Jbi+bi

2mfi , 

Kai=mairai+ai(mbi+mfi), Kbi=mbirbi+bimfi , Kr=rm, (i=1,2). 

 
In equations (1): x and y are the Cartesian coordinates of the suspension point O of the 

legs; ψ α β γ, , ,i i i  are the angles that specify the position of the elements of the HLA (Fig. 1); m 
is the mass of the trunk; r is the distance from the suspension point of the legs to the center of 
mass of the trunk; J is the moment of inertia of the trunk relative to the Z axis at point O; mai 
is the mass of the thigh; ai is the distance from O to the point Ki; Jai is the moment of inertia 
of the thigh relative to the Z axis at O; rai is the distance from O to the center of mass of the 
thigh; mbi is the mass of the shank; bi is the distance from the knee joint to the point Ai; Jbi is 
the moment of inertia of the shank relative to the Z axis at the point Ki; rbi is the distance from 
Ki to the center of the mass of the shank; mfi is the mass of the foot located at the ankle joint 
Ai; Rix(t), Riy(t) are the horizontal and the vertical components of the force Ri; (xi , yi), (xRi , yRi 
) are the Cartesian coordinates of the ankle joint, and of the point of application of the vector 
Ri of the i-th leg, respectively; g is the acceleration due to gravity. 
 
Statement of the Problem 

 It is assumed that there are four phases of the leg action during a double step of a gait 
of the HLA ( t T∈ [ , ]0 ): the first double ( ],0[ 1tt ∈ ) and the single ( ],[ 21 ttt∈ ) support phases, 
and the second double ( ],[ 32 ttt∈ ) and the single ( ],[ 3 Ttt ∈ ) support phases (Winter, 1991). 
This rhythm of the double step of a gait leads to the following kinematic constraints: 
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Here Ttttxx TH ,,,,, 321
0

2
0

1  are given parameters (T is called a stride period (Winter, 1991)), l 
be the length of the foot, L be the length of the single step; ),(),,( TiTiHiHi yxyx  are the 
Cartesian coordinates of the heel and the toe of the i-th leg, respectively. These coordinates 
are determined by the expressions (Fig.1): 

)cos()( 1 ϕγ −−= iiHi lxtx , )sin()( 1 ϕγ −−= iiHi lyty , 
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)/tan( 21 lla=ϕ , .2/,, 21 π=∠== iiiiiii TAHTAlHAl  
 
The problem of dynamic simulation of a gait of the HLA can be formulated as the 

following optimal control problem. 
Problem A. Let we are given the parameters of a gait 321 ,,,, tttTL , the angular coordinates 

],0[),(2/)()( 222 Ttttt a ∈Θ=−− πβγ , 

],0[),()()( 222 Ttttt k ∈Θ=− βα , 

2,1],,0[),()()( =∈Θ=− iTtttt hii ψα  

and the components of the ground reaction forces 
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It is required to determine the state vector  
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and the vector of the controlling stimuli  

{ }2,1,,,,,)( == iRRpuqtu iyixiii , 

which satisfy the equations of motion (1), the kinematic constraints (2)-(5), the boundary 
conditions 
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the restrictions on the phase coordinates and the controlling stimuli 
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and which minimize the functional: 
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Here the parameters 321 ,,,, tttTL  and the functions ,,,,, 2222
e

y
e
xhika RRΘΘΘ  (i=1,2) are 

given by the biomechanical experiments (Winter, 1991). The boundary conditions (6) reflect 
the periodic property of a human gait. The restrictions (8)-(10) are due to the requirements of 
the "non-suction-cup" and stability of a gait. 

The objective functional (11) is the integral over a double step of the sum of the absolute 
values of the mechanical power of all controlling stimuli acting at the joints of the HLA 
(Beckett and Chang, 1968; Beletskii, 1984; Berbyuk, 1989, 1996, 1997). 

 
Methodology 

The analysis of the equations (1) shows that the problem A has one independent variable 
function during the double support phases and three independent variable functions during the 
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single support phases. 
It is suitable to choose the functions: 

),(tx  ],[],0[ 321 tttt ∪∈ , 

)(),(),( 21 txttx Hγ , ],[ 21 ttt ∈ ,  (12) 

)(),(),( 11 txttx Hγ , ],[ 3 Ttt ∈  

as the independent variable ones. 
Every function (12) in the given interval ],[ 21 ττ∈t  was parameterized by the following 

way (Berbyuk, 1989; Nagurka and Yen, 1990): 
 

( ),sincos)(

,)()(),()()(

)(

1

5

0

∑

∑

=

=

+=

=+=

FN

n

F
n

F
nF

k

k
kFFF

tnbtnatG

tFCtPtGtPtF

ωω

   (13) 

)(),,,,(,
)(

2
211

12
FNxxxF HHγ

ττ
πω =
−

=  are the given numbers. 

 
The coefficients of the function )(tPF  are determined by the following conditions: 
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Considering (1), (12)-(14) we convert the problem A into the nonlinear programming 

problem (Berbyuk et al., 1997): 

,min)(
ξ

ξ →Q         ].,0[,0),(,0),( Tttgtf ∈≤= ξξ  (15) 

Here ξ  is a vector of the variable parameters; )(ξQ , ),(),,( ξξ tgtf  are the functions that 
determined by the equations (1) and the formulae (2)-(11), (13), (14). Note that the procedure 
of calculating the objective function )(ξQ  includes the solution of the inverse dynamics 
problem for the mechanical system modeled the HLA (Berbyuk et al., 1997). 

The numerical algorithm has been devised to solve the nonlinear programming problem 
(15) based on the Rozenbrock's method (Bazara and Shetty, 1979). 
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Numerical Results 
The methodology described above has been used to solve a number of variants of the 

problem A. In the model, a subject height of 1.76 m, mass of 73.2 kg, and the following 
parameters of the limbs have been considered:  

 
mai =7.08 kg,  ai=0.41 m,  Jai=0.082 kg m2,  

mbi+mfi=5.04 kg,  bi=0.5 m,  rai=0.16 m,  rbi=0.203 m,  Jbi=0.053 kg m2, (16)    

m=46.7 kg,  J=7.1 kg m2,  r= 0.39 m. 
 
Lets describe some numerical results of the dynamic simulation of the human gait with 

natural cadence. The input parameters and functions of the problem A were given by the data 
of the biomechanical experiments corresponding to normal human gait (Winter, 1991). The 
stride period T=1.1396 s, the stride length L=0.755 m, the duration of the double and the 
single support phases are equal to 0.14T and 0.36T, respectively.  

Figure 2 (dashed curve) shows the way in which the knee angle )()()( 111 tttk βα −=Θ  of 
the leg changes in time over the double step of the HLA for the obtained energetically optimal 
law of motion. The way in which the specific horizontal component )(1 tR x /M of the support 
reaction varies (Fig. 3, dashed curve) indicates that in each single step the support leg 
successively executes two functions: deceleration of the HLA (time interval in which 

)(1 tR x /M<0) and separation (time interval in which )(1 tR x /M>0). The maximum value of the 
)(1 tR x  amounts to 20% of the entire weight of the HLA. The vertical component of the 

support reaction ( )(1 tR y /M, Fig. 4, dashed curve) exceeds the weight of the HLA by not more 

than 7%. Figures 5-6 (dashed curves) show the specific control torques MtpMtu ii /)(,/)(  
acting at the knee and at the ankle joint of the legs during the energy-optimal law of motion of 
the HLA. 
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Fig. 2 Knee Angle )(1 tkΘ , in degrees   Fig. 3 Horizontal Force )(1 tR x /M, in N/kg 
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Fig. 6 Ankle Torque ,/)( Mtpi  in Nm/kg 

For comparison purposes the domains of the values of the respective kinematic and the 
dynamic characteristics of a human normal gait that obtained by the biomechanical 
experiments (Winter, 1991) are shown in Figure 2-6 (the solid curves). The analysis of these 
data and all above mentioned indicate that the kinematic and the dynamic characteristics of 
the obtained energy-optimal law of motion of the HLA are within reasonable proximity to the 
corresponding characteristics of a human normal gait. 

DESIGN PROBLEMS OF THE LOWER LIMB PROSTHESES 
There is an important difference between the dynamics of an intact limb and a prosthetic 

limb of an amputee. In the paper the mathematical modeling of a human gait of an amputee 
with the above-knee prosthesis is considered based on a supposition that the force moments at 
the knee and at the ankle joints of the prosthetic leg are passive ones. The values of these 
moments depend not only on the gait pattern, but also on the prosthesis construction. 

The model of the amputee locomotor system (ALS) with the above-knee prosthesis is 
depicted in Fig. 7. It is assumed that the above-knee prosthesis comprises the linear-
viscoelastic ankle mechanism and the hydraulic or the pneumatic knee mechanism. 
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Fig. 7 Model of the Amputee Locomotor System with the Above-Knee Prosthesis 

During locomotion of the ALS with the above-knee prosthesis the control torques 
 

DKCtp +−++−= )()2/()( 11111 γβπγβ 
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are generated at the ankle and at the knee joints of the prosthetic leg, respectively. 
Here C, K are the torsion spring and the damping coefficients of the ankle mechanism; D is 

determined by the free angle of the spring and torsion spring coefficients; 21, PP are the 
chamber pressures of the hydraulic or the pneumatic actuator that can be calculated by using 
the equations of dynamics of the knee mechanism of the prosthesis (Berbyuk and Nishchenko, 
1998); pS  is the cylinder piston cross-area, 
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The controlled motions of the ALS with the above-knee prosthesis are described by the 
equations (1) and the formulae (17), (18). 

The design problem of the above-knee prosthesis can be formulated as the following 
optimal control problem with parameters for the nonlinear mechanical system modeling the 
ALS with the prosthetic leg (Fig. 7). 

Problem B. Let we are given the parameters of a gait 321 ,,,, tttTL , the angular coordinates 
 

],0[),(2/)()( 222 Ttttt a ∈Θ=−− πβγ ,  

],0[),()()( 222 Ttttt k ∈Θ=− βα ,  (19) 

],,0[),()()( 22 Ttttt h ∈Θ=−ψα  

 
and the vertical component of the ground reaction forces 
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It is required to determine the state vector  
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the vector of the controlling stimuli of the ALS 

{ }2,1,,,,,)( == iRRpuqtu iyixiii , 

and the vector of the constructive parameters of the above-knee prosthesis 

),,,,,,,( 0021 SSlddDKCC pp =  

which satisfy the equations of motion (1), the kinematic constraints (2)-(5), the boundary 
conditions (6), the restrictions on the phase coordinates and the controlling stimuli (7)-(10), 
the dynamic constraints (17), and which minimize the functional: 
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Here the parameters 321 ,,,, tttTL  and the functions ,,,, 2222

e
yhka RΘΘΘ  are given by the 
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biomechanical experiments (Winter, 1991), 0S  is the cross-area of the hole of the cylinder 
piston. 

The objective functional (21) is used to estimate the energy expenditure per unit of 
distance traveling of the ALS. 

The same approach as described in paragraph 2.3 has been used to solve the problem B. 
We choose the following functions  

),(),( 1 ttx γ ],[],0[ 321 tttt ∪∈ , 

)(),( 21 txt Hγ , ],[ 21 ttt ∈ ,   

)(),(),( 11 txttx Hγ , ],[ 3 Ttt ∈  

as independently variable ones. 
Due to the dynamic constraints (17) the procedure of converting the problem B into the 

standard nonlinear programming problem includes the solution of the semi-inverse dynamics 
problems for the mechanical system that models the ALS with the above-knee prosthesis. It 
sufficiently increases the time consumption of the numerical algorithm for designing the 
energy-optimal above-knee prosthesis.  

The problem B has been solved numerically for two types of the prostheses: the above-
knee prosthesis with the hydraulic actuator at the knee, and the prosthesis with the pneumatic 
knee mechanism. We used the linear and mass inertial parameters of the ALS determining by 
the formulae (16) as input data. Rhythm parameters and functions (19), (20) have been chosen 
corresponding to the biomechanical experiments for the slow (Vs=0.998m/s), normal 
(Vn=1.325m/s) and the fast (Vf=1.685m/s) human gaits (Winter, 1991). 

Optimal values of some of the constructive parameters of the above-knee prostheses 
obtained by numerical solution of the problem B are presented in the Table (all values are 
given in SI units). Values 111 ,, DKC  correspond to the parameters of the ankle mechanism of 
the prosthesis (see formulae (17)) for the time of the gait ]01.0,0[ Ttt ∗∈  and values 

222 ,, DKC  - for the time ],01.0[ TTtt ∗∈ . 
Some kinematic and dynamic characteristics of the energy-optimal motion of the ALS with 

optimal structure of the above-knee prosthesis obtained by the numerical solution of the 
problem B for the gait with natural cadence are shown in Figures 8 - 11 (solid thin curves 
correspond to the prosthesis with the hydraulic actuator at the knee, dashed curves - to the 
prosthesis with the pneumatic knee mechanism). 

For the comparison purposes in Figures 8 - 11 the domains of the values of the respective 
kinematic and dynamic characteristics obtained by the biomechanical experiments for a 
human normal gait are depicted by heavy solid curves. 

 

 



Biomechanics Seminar, vol. 12, 1999 (ISSN 1100-2247) 

14 

Table. The Optimal Values of the Constructive Parameters of the Prostheses 

 Pneumatic Knee Mechanism Hydraulic Knee Mechanism 

Cp Vs Vn Vf Vs   Vn  Vf  
C1 6.967 6.412 5.971 5.341 4.341 4.217 
K1 0.213 0.131 0.099 0.083 0.062 0.054 
D1 0.359 0.291 0.247 0.433 0.427 0.379 
t* 38 36 36 40 40 38 
C2 4.031 3.582 3.328 2.013 1.517 1.323 
K2 0 0 0 0 0 0 
D2 0 0 0 0 0 0 
d1 0.202 0.185 0.173 0.141 0.133 0.124 
d2 0.216 0.202 0.217 0.201 0.205 0.213 
l0 0.110 0.078 0.085 0.058 0.060 0.062 
Sp 0.00001 0.00001 0.00001 0.00010 0.00017 0.00022 
Ep 117 104 147 103 96 125 
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Fig. 8 Knee Angle of the Prosthetic Leg, ( 11 βα − ), in degrees 
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Fig. 9 Hip Angle of the Prosthetic Leg, ( ψα −1 ), in degrees 
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Fig. 10 Hip Torque of the Prosthetic Leg, ( Mtq /)(1 ), in Nm/kg 
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Fig. 11 Knee Torque of the Healthy Leg, ( Mtu /)(2 ), in Nm/kg 

DISCUSSION AND CONCLUSION 
The central idea of the approach that proposed in this paper for the dynamic simulation of a 

human locomotion is to combine the optimal control theory, the mathematical modeling and 
the biomechanical experiments. We have formulated the optimal control problem (problem A) 
with free right-hand and left-hand ends of the phase trajectories, many constraints imposed 
both on the state variables and the controlling stimuli and with nondifferentiable objective 
function. 

The boundary conditions (6) and the constraints (2)-(5) provide the possibility to model the 
typical double step of a human gait with the given stride period and the stride length. The data 
of the biomechanical experiments were used to specify some of the limb's angles and ground 
reaction forces. It gives possibility to approach the model solution to the respective 
characteristics of actual human gait and to simplify the numerical procedure of solving the 
problem A. 

We proposed a parameter optimization approach to solve the highly nonlinear optimal 
control problem under the given boundary conditions, the restrictions on the phase 
coordinates and on the controlling stimuli (problem A). The approach is based on the special 
spline and Fourier approximation of the independently variable functions. The key feature of 
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the approach is its possibility to satisfy many constraints imposed on the considered system 
automatically and accurately. 

New prosthetic materials and designs have lead to many prostheses of lower limbs for 
amputees. As a result, it is becoming difficult for prosthetists and the physicians to choose 
which prosthesis is the best for the individual amputee. Presently, there is limited information 
about “optimal” alignment, and how the prosthesis performs dynamically in achieving 
optimally symmetrical gait for an amputee. Sensory feedback, better control systems, and 
more energy-efficient devices are strongly needed (Michael and Bowker, 1994). Gait studies, 
ambulatory physiological monitoring, mathematical modeling of a human controlled motion, 
and dynamic optimization techniques may be useful tools to improve and create new efficient 
lower limb prostheses. 

In the paper we describe the methodology for solving the design problems of lower limb 
prostheses. The same as for dynamic simulation of a human gait the methodology is based on 
utilization of the optimal control theory, the mathematical modeling and the biomechanical 
experiments. The essential constructive characteristics of the prostheses (stiffness, damping, 
cylinder piston cross-areas, length of the links, etc.) are used as the important variable 
parameters of the optimal control problem in question. 

In the framework of the considered mathematical model of the ALS wearing the above-
knee prosthesis the following conclusions have been drawn. 

1. The kinematic, dynamic, and energetic characteristics of controlled motion of the ALS 
are strongly sensitive to the essential prosthesis parameters. For a given individual and 
cadence of a gait there exist optimal values of the elasticity and viscoelasticity parameters of 
the prosthesis ankle mechanism and of the constructive parameters of the knee mechanism. 
These parameters give minimum energy expended per unit of distance traveled (See Table). 

2. The analysis of a number of numerical simulations shows that the natural cadence of the 
ALS gait gives a minimum to the energy expended per unit of distance traveled comparing to 
the amount of energy needed for the slow or fast gaits (See Table). 

3. The obtained kinematic and dynamic characteristics of the motion of the ALS with 
optimal above-knee prosthesis structures are within reasonable proximity to the respective 
characteristics of a human normal gait. 

To conclude, this work has demonstrated the effectiveness of the proposed methodology 
both for dynamic simulation of a human gait and for solving the design problems of the 
above-knee prostheses. 
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