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Abstract

Here the lateral damping (two dampers) is optimized and investigated with respect to safety and
comfort for an eight degree of freedom model of a train bogie. The train bogie model is nonlinear
due to the excitations caused by the irregularities and the wheel–track interface forces. Train run-
ning at different speeds will have different optima and optimal damping parameters with respect to
both comfort and safety. The aim is to optimize the dynamic behavior for a wide range of forward
service speeds up to 300 km/h. A multiobjective optimization routine is used and the results are
presented in terms of Pareto fronts. To optimize the behavior semi–active functional components
are required. A scheme to control semi–active lateral damping components with respect to forward
speed is suggested. This can significantly improve the dynamic behavior with simultaneously re-
spect to safety and comfort. Finally, we investigate the use of two lateral damping components
with the possibility to change behavior at a certain switch time. At least for some service speeds
these semi-active damping components are find to be able to improve the dynamic behavior. The
understanding of the influence of the design parameters is valuable in further improving the general
performance of a high speed train with respect to safety and comfort.

1 INTRODUCTION
It is known that utilization of semi-active or active functional components can significantly improve
the performance of ground vehicles. Development of semi-active and active suspension technologies
has been ongoing for the last decades, and many promising research results have been presented,
implemented, and tested, see, e.g., Goodall et al. [2, 6, 7] and references therein. However, ac-
tive suspensions are still relatively uncommon in commercial railway vehicles, mainly because of the
additional cost of implementation. Studies of semi-active and active suspensions in railway vehicle
dynamics, both theoretical and experimental, can be found in, e.g., [12–15]. Multidisciplinary meth-
ods for optimizing the design of a railway vehicle are starting to include evolutionary optimization
algorithms which are more effective than classical optimization in handling conflicting optimization
problems, see e.g., [8]. When considering the suspension system of a train vehicle, the main two
requirements on the system are safety and comfort, which are conflicting to some extent.

Here we will investigate the possibilities to optimize the lateral damping characteristics of a train
bogie with respect to safety and comfort for a wide range of service speeds in order to improve the
dynamic behavior of a bogie system running on a straight track. In such systems there are upper speed
limits to safely drive the vehicles without risk of derailment. We will investigate how the damping
characteristics influences these limit speeds and also how the comfort is affected. The results are
believed to be valuable for the design of semi-active or active functional components to be used in the
bogie system and for control algorithms of such systems. Moreover, the results are also potentially
useful for basic understanding of the behavior of the conventional bogie system.

An eight degree of freedom model of a conventional bogie system for a high speed train passenger
coach is formulated and implemented numerically. Within the model the vibrations of the bogie
system caused by excitations due to wheel-rail contact and track irregularities are calculated. For the
wheel-rail contact force we use the non-linear Vermeulen-Johnson model, which is an extension of
the Kalker linear theory. Objective functions for safety and comfort are formulated and discussed.
Finally the biobjective optimization problem with respect to lateral damping parameters is formulated
and solved using a multiobjective evolutionary optimization algorithm in Matlab.
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2 MODELING OF MECHANICAL SYSTEM
Based on previous work, [4, 6, 7, 9, 10, 14], we suggest the usage of models with varying complexity
in order to effectively study different stages/parts of the design procedure. It is important to study the
behavior of rather simplified models, especially for introduction of control systems in order to reduce
the complexibility. To derive a suitably simple bogie system model, we take the plane-view model
[14] and the Cooperrider model [10] as starting points. Model parameters valid for High Speed Trains
(HST) with service speeds up to 250 km/h are used.

2.1 Model of Bogie System
The present bogie system, (half vehicle model), consists of four bodies; two wheelsets, one bogie
frame and one carbody, which are connected with two types of suspensions. The bogie frame is
connected to the cart through the secondary suspension and the wheels are connected with the bogie
frame with the primary suspension, see Figure 1.

The mathematical model of this system, i.e., the equations of motions with initial states, can be
written as

Mq̈ + Cq̇ + Kq = F (t, q, q̇), (1)
q(0) = q0, q̇(0) = q̇0, (2)

where q is the vector of the generalized coordinates of the model, M , C, and K are the inertia,
damping and stiffness matrices, respectively, and F (t, q, q̇) is the vector of the external forces ap-
plied to the system due to excitation from the wheel-rail contact. The model has eight degrees of
freedom, describing the lateral behavior of the system, assuming it is uncoupled with the vertical be-
havior. The following degrees of freedom are included; lateral and yaw motions for the wheelset,
(yfw, θfw, yrw, θrw), lateral, yaw and roll motion for the bogie frame, (ybf, θbf, ϕbf), and lateral motion
for the carbody, (ycb). The nodal degree of freedom vector and the matrices in Eq. (1) then take the

(a) (b)

Figure 1: The mechanical model of the bogie system.
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form

q = [yfw, θfw, yrw, θrw, ybf, θbf, ϕbf, ycb]T,

M = diag([mw, Iw
z ,m

w, Iw
z ,m

bf, Ibf
z , I

bf
y ,m

cb]),

K =



k11 0 0 0 k15 k16 k17 0
0 k22 0 0 0 k26 0 0
0 0 k33 0 k35 k36 k37 0
0 0 0 k44 0 k46 0 0
k51 0 k53 0 k55 k56 k57 k58

k61 k62 k63 k64 k65 k66 k67 k68

k71 0 k73 0 k75 k76 k77 k78

0 0 0 0 k85 k86 k87 k88


and

C =



c11 0 0 0 c15 c16 c17 0
0 0 0 0 0 0 0 0
0 0 c33 0 c35 c36 c37 0
0 0 0 0 0 0 0 0
c51 0 c53 0 c55 c56 c57 c58
c61 0 c63 0 c56 c66 c67 c68
c71 0 c73 0 c75 c76 c77 c78
0 0 0 0 c85 c86 c87 c88


.

All simulations have been conducted with the parameter values of the bogie system representing a rail-
way vehicle in service, except the values for the damping parameters for the lateral primary dampers,
Cp
y , and for the lateral secondary dampers, Cs

y . The parameters Cp
y and Cs

y are subjected to optimiza-
tion.

2.2 Contact modeling
We adopt the non-linear creep-force contact model by Vermeulen-Johnson, which is based on Kalker’s
linear theory [1]. It is assumed that the contact patch is elliptic with semi-axis a and b, calculated ac-
cording to the Hertz theory. The contact forcesRx′ andRy′ are calculated from the linear counterparts

R∗x′ = −κ11ξx′ , R∗y′ = −κ22ξx′ (3)

where ξx′ and ξy′ are the creepage in the contact surface coordinates (x′, y′, z′) and κij are creep
coefficients related to the semi-axis of the contact surface. The norm of the linear creep force vector
is

R∗R =
√

(R∗x′)2 + (R∗y′)2. (4)

Now, the non-linear creep forces are calculated as

Rx′ = R∗x′
RR
R∗R

, Ry′ = R∗y′
RR
R∗R

, (5)

with

RR =

µRz′
[(

R∗R
µRz′

)
− 1

3

(
R∗R
µRz′

)2

+ 1
27

(
R∗R
µRz′

)3
]

R∗R
µRz′

< 3

µRz′
R∗R
µRz′

≥ 3,

where Rz′ is the normal force and µ is the kinematic coefficient of friction. The creep forces in Eq.
(5) are calculated for each wheel ( Rleft

wf , Rright
wf , Rleft

wr , Rright
wr , where subindexes wf and wr stand for

front wheelset and rear wheelset, respectively). Upon using this, the external force vector F (t, q, q̇)
in Eq. (1) is

F (t, q, q̇) =



Rleft
y,wf +Rright

y,wf

−G1R
left
x,wf −G1 sin (θwf)Rleft

y,wf +G1R
right
x,wf +G1 sin (θwf)Rright

y,wf

Rleft
y,wr +Rright

y,wr

−G1R
left
x,wr −G1 sin (θwr)Rleft

y,wr +G1R
right
x,wr +G1 sin (θwr)Rright

y,wr

0
0
0
0


, (6)
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were G1 is the half gauge distances, see Figure 1.
The wheels are assumed to have a profile with constant conicity and therefore the flanges of the

wheels are modeled with very stiff non-linear springs as in [9] (the expression is valid for both the
front and the rear wheelset)

Rflange
y =


Kflange(η − yw) yw > η

Kflange(η + yw) yw < η

0 otherwise,
(7)

where η = 9.1 mm is the free zone, yw is yfw or yrw and Kflange = 14.6 MN/m is the flange stiffness.
This is treated as an additional contact force and is added to F .

Excitations by Geometrical Track Irregularities

We study the effect of track irregularities with the use a non-linear contact model in order to account
for displacements of the contact point. The irregularities are modeled with a stationary stochastic
process and described by a one-sided density function as in [3]

Φ(Ω) = A
Ω2
c

(Ω2
r + Ω)(Ω2

c + Ω)
, (8)

with parameter values

Ωc = 0.8246 rad/m, and Ωr = 0.0206 rad/m, (9)

where Ω is the distribution factor and A is the scaling factor that is used to specify the level of the
irregularities. We use the following values Alow = 0.59233 · 10−6m, Amid = 0.7930 · 10−6m and
Ahigh = 1.58610 ·10−6m. A sample of the stochastic excitation profile can now be calculated with the
spectral representation method as

ζi(x) =
√

2
N−1∑
n=0

an cos(Ωnx+ ϕn), (10)

where ϕn are uniformly distributed phase angles in the range [0, 2π], Ωn = n∆Ω, ∆Ω = Ωu/N , for
n = 0, 1, . . . , N − 1, and Ωu is the highest frequency while the coefficients an are

a0 = 0, a1 =

√(
Φ(∆Ω)

2π
+

Φ(0)
3π

)
∆Ω, a2 =

√(
Φ(2∆Ω)

2π
+

Φ(0)
12π

)
∆Ω, and

an =

√
Φ(Ωn)

2π
∆Ω, for n = 3, 4, . . . , N − 1.

A set of three samples is calculated, one for each level of irregularity, with Ωu = 13.57 rad/s, andN =
3540. The subindex i specifies which level of irregularities the sample has. Here i ∈ {low, mid, high}.
The data is then used as input to the bogie model. The displacements of the contact point for the left
and right wheel are yr = yl = ζi(x), where x is the traveled distance.

2.3 First Order Formulation
We now rewrite the model to a system of first order differential equations in state space form with
x = [ qT, q̇T]T. Formally the governing equations can be written as

ẋ = f(t, x, d, p, s, u, V ), x(0) = x0, t ∈ [t0, tf], (11)

where d = [d1, d2]T = [Cp
y, Cs

y]T is the vector of design parameters, i.e., the damping constants,
p = [p1, p2, . . . , pNp

] is the vector of system structural parameters which includes the stiffens, mass,
inertia parameters and the other damping parameters and s = [s1, s2, . . . , sNs

] is the vector of system
dynamics parameters including parameters such as coefficient of friction, contact model parameters,
and geometrical parameters of track and wheel while u(t, V ) = ζi(tV ) is the vector of excitations,
and V is the constant speed of the train. The initial states x0 are limited to ensure realistic conditions.
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3 VIBRATION DYNAMICS OF BOGIE SYSTEM
The solution to Eq. (11) is now obtained and studied. The vehicle travels 500 m on a straight track
and the structural and the dynamical parameters are taken to be constant. The initial value x0 is taken
as the final state of a 1000 m run with u0(t, V ) = ζ2(tV ), V = 200 km/h and x0 = 0. The solution
is given as the dynamical response,

x = x(t, x0, d0, p0, s0, u0(t, V ), V ) for t ∈ [t0, tf],
d0 ∈ X j , for j ∈ {1, 2}, p0, and s0 are constant,
u0(t, V ) = ζi(tV ), for i ∈ {low, mid, high} and V ∈ [150, 300] km/h,

(12)

where X j the design parameter space. In the first part of the study the design parameter space is time
independent

X 1 =
{

d(t)
∣∣ d(t) = d ∈ R2, t0 ≤ t ≤ tf

}
(13)

and in the second part the design parameter space is piecewise time-constant

X 2 =

[
d(t)

∣∣∣∣∣ d(t) =

{
d1 ∈ R2, t0 ≤ t ≤ ts
d2 ∈ R2, ts < t ≤ tf

]
. (14)

3.1 Objectives of Safety and Comfort
In order to evaluate the performance of the bogie system the following vector of objective functions
representing safety and comfort are used

F = [F safety,F comfort]T (15)

to measure the properties of interest for performance of the bogie system. The safety measure F safety
relates to the forces applied on the wheels due to the wheel-rail contact, which have potential to
damage both rail and wheel and to cause derailment,

F safety = max
t∈[t0,tf]

{
max

(∣∣∣∣Ry,wf(t)
Rz,wf(t)

∣∣∣∣ , ∣∣∣∣Ry,wr(t)
Rz,wr(t)

∣∣∣∣)} . (16)

A low value of F safety corresponds to a high level of safety. The comfort measure F comfort is the RMS
of the acceleration of the carbody which holds the passengers

F comfort =

√
1

tf − t0

∫ tf

t0

|ÿcb(t)|2dt. (17)

where t0 is the starting time and tf is the final time. A low value of F comfort corresponds to a high
level of comfort. The safety objective function Eq. (16) is constrained by a given maximal value,
F limit

safety = 1.15, i.e., the objective is not allowed to exceed 1.15 due to risk of derailment. The value is
given by the Weinstock Limit, see [1].

3.2 Sensitivity Analysis
To investigate the possibilities for optimization of the damping constants with respect to the safety
and comfort objectives in Eqs. (16) and (17), we consider the sensitivity of objectives to the forward
speed and level of track irregularities as well as to the damping constants. The results are shown in
Figures 2 and 3. In Figures 2a and Figure 2b the damping constants are taken as the initial values. In
Figure 2a the irregularities are taken as u0(t, V ) = ζmid(tV ), while in Figure 2b the forward speed
is taken as V = 200 km/h. In Figures 3 the irregularities are taken as u0(t, V ) = ζmid(tV ) and the
forward speed is taken as V = 200 km/h.

As seen in Figure 2a, for speeds below 250 km/h the objectives are relatively constant and it seems
as the increase of speed has only minor effects on the objectives for lower speeds, but for speeds
above 250 km/h both objectives (in particular the safety objective) are significantly increased with
increased speed. Some changes in the dynamical behavior have occurred as the speed input increases.
One possible explanation for this is that the non-linear behavior of contact forces becomes dominant.
Also, for the speeds V > 275 km/h the safety objective becomes larger than the given maximal value
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(a) (b)

Figure 2: Left figure (a): Sensitivity of objectives versus forward speed V . Right figure (b): Sensitivity
of objectives versus level of irregularities.

F limit
safety. The safety objective is not monotonically increasing with the speed, which could have been

anticipated. However, because a change in speed will shift the frequency of the irregularities we
suggest that the changes of the safety objective between V ∈ [270, 300] km/h are due to the shift of
weight in excitation frequency. As seen in Figure 2b, the comfort objective is relatively independent
to increased level of irregularities, while the safety objective again is constant for low irregularities
and increases for the high level of irregularities. But as we only consider three different levels of
irregularities it is difficult to draw any further conclusions.

(a) (b)

Figure 3: Left figure (a): Sensitivity of objectives versus the lateral primary damping constant Cp
y

with Cs
y = 20 kNs/m. Right figure (b): Sensitivity of objectives versus the lateral secondary damping

constant Cs
y with Cp

y = 40 kNs/m.

In Figure 3a we observe that the safety objective has a minimum at approximately 60 kNs/m for the
primary damping constant, while the comfort objective is decreasing with increased primary damping
constant. Whereas, in Figure 3b we observe a minimum of the comfort objective at approximately 13
kNs/m for the secondary damping constant, while the safety objective is almost constant for increased
secondary damping constant. As we see in Figure 3a-3b, the system is much less sensitive to changes
in the damping constants than to the speed and level of irregularities. However, the damping still
has impact on the system as the relative change of the safety objective is ∼ 30% and for the comfort
objective the relative change is∼ 40%. Also, the two objectives have different minima for the damping
parameters. This means that for optimal safety, there will be a certain trade off due to compromised
comfort.

4 OPTIMIZATION DUE TO OBJECTIVES OF SAFETY AND
COMFORT

4.1 Statement of Problem
Using the governing equation Eq. (12) and the objective functions Eqs. (15), (16) and (17) the
optimization problem can be formulated as follows;
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Problem 1. It is required to determine the solution of the variational equations

F i( x( dopt, p, s, u)) = min
d ∈ X

F i( x( d, p, s, u), i = 1, 2 (18)

subject to differential constraints

ẋ = f(t, x, d, p, s, u, V ),

given p = p0, s = s0 and u = u0, initial state x(t = 0) = x0 and algebraic constraints
d(t) ≤ [500, 500]TkNs/m d(t) ≥ [0, 0]TkNs/m.

Also, the safety objectives is constrained with F safety( x( dopt, p, s, u)) ≤ F limit
safety.

We consider two cases of Problem 1. First, Problem 1a with X = X 1 as in Eq. (13), were the
design parameters are taken to be constant for each optimization, thus this optimization problem has
two design parameters. Second, Problem 1b with X = X 2 as in Eq. (14), were each design param-
eters can switch values at a certain time, thus this optimization problem has five design parameters,
two primary damping constants, two secondary damping constants and the switching time.

Problem 1 is a biobjective optimization problem, as there is two objectives to simultaneously min-
imize. However, if the two objectives do not have the same optimal solution, a tradeoff between them
is required, this is called a conflict of the objectives. There exists several approaches to handle this
conflict. The most widely used approach is to simply reformulate the problem to a single objective
problem by weighting factors of the two objectives and thereafter use a classical optimization scheme
in order to obtain a pre-weighted optimization. Another approach is to use a multiobjective opti-
mization algorithm obtaining a set of Pareto optimized solutions, where the weighting are made in the
postprocessing. Here we have chosen the second approach. The advantages with this approach are that
we can study the set of optimized solutions rather than one optimal solution, gaining understanding of
the system and freedom to chose among the optimal solutions.

4.2 Optimization Algorithm
Problem 1 can be solved using the multi-objective optimization routine gamultiobj in Matlab. This
routine uses the genetic algorithm NSGA-II [5] for solving the following problem:

min
X

F ( X), subject to: AX ≤ b, and Aeq X = beq (19)

Bl ≤ X ≤ Bu,

were we for Problem 1a set X = [Cp
y, Cs

y]T, Bl = [0, 0]T kNs/m, Bu = [500, 500]T kNs/m, A =
Aeq = 0 and b = beq = 0. The chosen options for the algorithm are presented in Table 1. The

List of optimization options
Population size 80
Population Initialization Range [ Bl Bu]
Tolerance on fitness value (TolFun) 5 · 10−4

Stall generation Limit (StallGenLimit) 15
The fraction on non-dominated front (ParetoFraction) 0.5
All other options is set to ’default’ −−

Table 1: Input for the optimization simulations.

optimization routine ideally yields a set of non-dominated solutions in the design space. The design
parameters d∗ are non-dominated if F( d∗) ≤ F( d),∀ d ∈ X with at least one strict inequality.
Then F∗ = F( d∗) is a point on the Pareto front. The optimization is performed for seven different
speeds V = [150, 200, 250, 270, 275, 280, 300] km/h.

4.3 Results of Optimization
Table 2 shows the result of the solution of Problem 1a in terms of intervals for the design parameters
(primary and secondary damping constants) together with the extremes of the obtained Pareto fronts
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for the different forward speeds. The extremes of the objectives are the values corresponding to the
endpoints of the Pareto fronts, i.e., [minF safety,maxF comfort] and [maxF safety,minF comfort]. The
Pareto fronts of Problem 1a are presented in Figure 4.

Figure 4: Pareto fronts of the design parameters for different speeds. Each marker represents an
optimum.

As can be seen in Figure 4 the obtained fronts lie close to each other, even though the sensitivity
analysis in Section 3.2 indicated that increased speed would significantly worsen the safety objective.
Even though the forward speed is varied from 150 to 300 km/h, all the optimized objective values lie
well within the maximal value given for the safety objectiveF limit

safety = 1.15; in fact the maximum value
of F safety is ∼ 5 − 10% of the safety limit. This represent a significantly decrease compared to the
safety objective function value at ∼ 150% of the safety limit for the initial configuration. The change
in damping constants effectively manages to raise the critical speed and thus increase the safety. This
suggests that changes in damping constants can be used to avoid unwanted instabilities or non-linear
behavior of the system. Also the comfort objective shows significantly improvements compared to the
initial configuration. F comfort is only increasing with ∼ 60% if the speed is increased from 150 to 300
km/h compared to a corresponding increase of ∼ 200% using the initial configuration.

Figure 5 illustrates how the optimized damping parameters vary for different speeds for solutions
of Problem 1a. In particular we notice that in general different speeds yield different optimized damp-
ing constants. Also, the behavior of the different optimized damping parameters change with the
speed. For the lower speeds the secondary damping constant is almost constant, while for the higher
speeds the primary damping constant varies very little. The initial sensitivity analysis of Section 3.2
is confirmed in the sense that the optimized damper constants lie within a fairly large subset of the

Speed, X opt , [kNs/m] Extremes of the Pareto fronts,
[km/h] [minF safety,maxF comfort] and

[maxF safety,minF comfort]
150 125 ≤ Cp

y ≤ 481, 21 ≤ Cs
y ≤ 25 [0.0788, 0.0764] and [0.1060, 0.0691]

200 102 ≤ Cp
y ≤ 450, 18 ≤ Cs

y ≤ 22 [0.0676, 0.0899] and [0.0973, 0.0777]
250 236 ≤ Cp

y ≤ 458, 14 ≤ Cs
y ≤ 25 [0.0788, 0.0993] and [0.0865, 0.0867]

270 293 ≤ Cp
y ≤ 463, 5 ≤ Cs

y ≤ 16 [0.0800, 0.1162] and [0.0831, 0.0940]
275 355 ≤ Cp

y ≤ 468, 9 ≤ Cs
y ≤ 17 [0.0810, 0.1057] and [0.0830, 0.0957]

280 403 ≤ Cp
y ≤ 477, 6 ≤ Cs

y ≤ 17 [0.0815, 0.1202] and [0.0822, 0.0974]
300 475 ≤ Cp

y ≤ 480, 6 ≤ Cs
y ≤ 17 [0.0868, 0.1296] and [0.0878, 0.1037]

Table 2: Results of optimization, Problem 1a.
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design parameter space. The effects of this is that for a semi-active device, there is a freedom to chose
parameters in a large domain, but it also suggests that a large change might be needed in order to affect
the system in the desired way.

Figures 6 illustrate how the behavior of the optimized objective functions for different speeds
are affected by the forward speed. The optimized damping constants representing the extremes of
the Pareto fronts (i.e., the values corresponding to the first and last points of the Pareto fronts) are
used for simulations and the safety and comfort objective versus speed is presented. Thus, Figures 6
can be used to formulate a simple strategy for changing the lateral damping constants in semi-active
dampers with respect to forward speed. An example of optimized damping parameters for primary
and secondary semi-active dampers is

dopt(V ) =


[102.3; 21.9]T kNs/m for V ∈ [150, 225] km/h
[235.7; 25.8]T kNs/m for V ∈ [225, 260] km/h
[450.3; 18.3]T kNs/m for V ∈ [260, 300] km/h.

(20)

This ensures that F safety ≤ 8% of F limit
safety, and F comfort ≤ 40% of the value for the initial configuration.

In principal as follows from Figure 5 the optimal values of primary damping parameter increases as
the speed increases.

Figure 5: Optimized damping constants for different speeds. For comparison the initial damping
constants are shown.
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(a) (b)

Figure 6: Left figure (a): Safety objective function versus speed for the extremes of the Patero fronts.
Right figure (b): Comfort objective function versus speed for the extremes of the Patero fronts. Solid
lines correspond to design parameters d = minF safety

{Xopt} while dashed lines correspond to
design parameters d = minF comfort

{Xopt} .

Results for Problem 1b

Here we consider Problem 1b, i.e., a switch time at which the design parameters can change values
is introduced and the number of design parameters are increased to five. The same Matlab routine
and options as in Problem 1a are used with X = [Cp1

y , Cs1
y , ts, C

p2
y , Cs2

y ]T Bl = [0, 0, 0.01 s, 0, 0]T,
Bu = [500 kNs/m, 500 kNs/m, tf, 500 kNs/m, 500 kNs/m]T , A = Aeq = 0, and b = beq = 0.

In all simulations we use the mid irregularity, and the train is running 500 m on a straight track with a
forward speed in the interval V ∈ [150, 300] km/h.

Figure 7 shows the Pareto fronts for Problem 1b. We observe that the Pareto fronts in Figure 7
are similar to the ones corresponding to Problem 1a in Figure 4. However, in Figure 7 the fronts for
150, 200 and 280 km/h are somewhat transferred to the bottom left of the plot compared to to the
corresponding fronts in Figure 4, which indicate improvements in both safety and comfort.

Figure 8 shows the optimized normalized switch times, i.e. ts/tf, for different forward speeds
versus the population, while Table 3 presents the min and max normalized switch times together with
the optimized damping constants before and after the switching. As can be seen in Figure 8 and Table
3 the switch times are strongly dependent on forward speed. For 150 km/h the switch occurs in the
very beginning, while for 270-275 km/h the switch occurs in the very end of the run, indicating that
switches might be unnecessary for these speeds. On the other hand, for the rest of the speeds, the
results indicate that switches might be favorable for the safety and the comfort. As seen in Figure 8
for the speed 280 km/h a second switch might be useful.

Speed, Normalized Cp1
y Cs1

y Cp2
y Cs2

y

[km/h] switching times [kNs/m] [kNs/m] [kNs/m] [kNs/m]
150 0.03-0.09 0–201.08 2.93–3.92 54.20–191.18 12.42–19.76
200 0.60-0.67 97.01–305.77 16.42–17.89 183.23–244.15 24.31–27.23
250 0.48-0.66 246.21–418.54 11.75–25.10 187.64–234.36 19.94–28.55
270 0.99-1.00 312.70–334.99 11.67–13.70 133.93–145.20 70.87–174.82
275 0.98-1.00 363.78–404.80 11.43–14.82 249.77–282.01 87.75–102.05
280 0.27-0.64 397.89–427.29 5.23–11.40 180.95–260.71 22.04–63.50
300 0.64-0.66 476.48–479.57 6.14–13.26 321.83–335.18 48.58–50.44

Table 3: Results of optimization, Problem 1b.
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Figure 7: Pareto fronts for Problem 1b. Each marker represents an optimum.

Figure 8: Normalized switching times.

5 CONCLUSIONS AND OUTLOOK OF FUTURE WORK
We have calculated the dynamic response and optimized the lateral damping with respect to safety
and comfort for an eight degree of freedom model of a conventional train bogie. The results of the
biobjective optimization are presented as Pareto fronts, see Figures 4 and 7. Compared to the initial
configuration the safety objective can be decreased by approximately 90% at speeds ranging from
150 to 300 km/h. The comfort objective can be decreased by approximately 30%. We observe that
the optimized secondary damping constant is almost constant while the optimized primary damping
constant is dependent on forward speed. Higher speeds yield higher values of the primary damping
constant, this is particulary obvious if the safety objective is in focus. We have suggested a strategy
for changing damping constants with respect to forward speed.

An idea to enhance safety and comfort behavior is to introduce semi-active lateral damping com-
ponents. Here we introduce dampers with one switch at which the damping constant may change
values. The same switching time is imposed for both damper types. Preliminary results of the gain of
this extension are disagreeing. For example, for speeds V = 150 and 270–275 km/h switchers seem to
be superfluous, while for V = 200–250, 280–300 km/h switching can improve the safety and comfort.
To draw any firm conclusions further investigations are needed, e.g., studying parameter values and
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trends which fall outside of the scope of this study and will be investigated in upcoming studies.
The introduction of semi-active components need to be further explored. For future work we also

suggest further extending the design parameter space by introducing several switches. Moreover, the
study of different vehicle operations, for example curving, will give a more complete picture of the
possibilities to improve overall performance of a railway vehicle.
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