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ABSTRACT

Traditional investment portfolio optimization aims at maximizing the expected

return and minimizing the variance of the portfolio. This approach generally

requires estimation of expected returns on assets, which has been a difficult task

in practice. Instead of estimates for expected returns, investors typically have

directional forecasts, that is, views on whether the price of an asset is going

to go up or down in the future. Incorporating directional views into portfolio

selection has not been explored rigorously before.

This dissertation introduces a new theoretical framework that allows incorpo-

rating directional views into mean-variance portfolio optimization. The impli-

cations of this model are explored analytically and with computer simulations.

Empirical studies and trading simulations contained in the dissertation are con-

ducted utilizing recent stock market data.

The developed model indicates that when directional forecasts are reliable,

investors prefer assets with high volatility for higher expected returns. Negative

correlation between asset returns is not preferred, assuming that it is linked to

correlated forecasts. In addition, correlation between absolute values of returns

matters explicitly for portfolio variance.

In addition to providing a solution to portfolio selection with directional fore-

casts, the developed framework can increase portfolio performance in terms of

Sharpe ratios compared to simpler alternative models. Care should be taken

when estimating the accuracies of the directional views, in order to benefit from

the model in practical investment management.

Keywords: portfolio choice, investment decisions, diversification, security mar-

kets, stock returns





TIIVISTELMÄ

Perinteinen sijoitusportfolion optimointi pyrkii maksimoimaan portfolion

odotetun tuoton ja minimoimaan tuoton varianssin. Tämä lähestymistapa vaatii

tyypillisesti sijoituskohteiden odotettujen tuottojen estimointia, mikä on osoit-

tautunut vaikeaksi tehtäväksi käytännössä. Sen sijaan, että sijoittajat esti-

moisivat tuottojen odotusarvoja, heillä on tyypillisesti näkemys sijoituskohtei-

den tuottojen suunnasta, eli siitä, nouseeko vai laskeeko sijoituskohteen hinta

tulevaisuudessa. Suuntanäkemysten sisällyttämistä portfolion valintaan ei ole

tutkittu aikaisemmin.

Tämä väitöskirja esittelee uuden teoreettisen mallin, joka mahdollistaa suun-

tanäkemysten käyttämisen odotusarvo-varianssi-pohjaisessa sijoitusportfolion

optimoinnissa. Mallin implikaatioita tarkastellaan analyyttisesti sekä tie-

tokoneella tehtävien simulaatioiden avulla. Väitöskirjan sisältämissä empiiri-

sissä tutkimuksissa sekä kaupankäyntisimulaatioissa käytetään viimeaikaisia

havaintoja osakemarkkinoilta.

Malli osoittaa, että luotettavien suuntaennusteiden tapauksessa korkean

volatiliteetin kohteita tulisi preferoida korkeamman odotetun tuoton saavut-

tamiseksi. Negatiivinen korrelaatio kohteiden tuottojen välillä ei ole hyödylli-

nen ominaisuus olettaen, että se on kytköksissä korreloituneisiin suuntaen-

nusteisiin. Lisäksi sijoituskohteiden itseisarvotuottojen välisellä korrelaatiolla

on suora vaikutus portfolion varianssiin.

Kehitetty malli tarjoaa ratkaisun portfolion muodostamiseen suuntaennustei-

den valossa, ja sen avulla voidaan saavuttaa muun muassa korkeampia Sharpen

suhdelukuja verrattuna vaihtoehtoisiin malleihin. Suuntanäkemysten tarkkuu-

den estimointi vaatii tulosten perusteella huolellisuutta, jotta mallista voidaan

hyötyä käytännön salkunhoidossa.

Asiasanat: sijoitusportfolion valinta, sijoituspäätökset, hajauttaminen, arvopa-

perimarkkinat, osaketuotot
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1 INTRODUCTION

1.1 Motivation

Modern investment portfolio optimization originates from the work of

Markowitz (1952, 1959), who introduced the concept of maximizing the ex-

pected return and minimizing the variance of a portfolio1. Tobin (1958) com-

plemented Markowitz by adding a riskless asset to arrive at the separation theo-

rem, i.e. that all investors should hold the risky assets in their portfolios in same

proportions regardless of their preferences. These concepts were major break-

throughs in the field of finance and have since attracted an enormous amount of

attention from both academic researchers and professionals working in the in-

dustry. Markowitz’s seminal paper about portfolio selection published in 1952

and the subsequent book published in 1959 are among the most cited2 works in

the history of financial research.

Nevertheless, the application of Markowitz’s framework in practice has not

been a major success, mainly due to its implicit requirements of accurate input

estimates. Estimation error in the inputs can potentially render the optimization

procedure infeasible, and simple equal-weighted portfolios can provide similar

performance, or even outperform mean-variance optimized portfolios (see e.g.

Michaud (1989), DeMiguel, Garlappi and Uppal (2009)). Specifically, estimat-

ing future mean returns – a key input class in the Markowitz model – is known

to be notoriously difficult in practice. To some extent, financial returns are pre-

dictable (for a recent review about stock return predictability, see Rapach and

Zhou (2013)), however, estimates of expected returns remain noisy and present

a problem for portfolio optimization in practice.

On the other hand, previous research has shown that the mere directions of

returns can be predicted out-of-sample, often with significant accuracy. No-

table recent studies documenting this directional predictability include Bekiros

(2010a), Nyberg (2011), and Chevapatrakul (2013). In essence, leaving out the

magnitude component from return estimates considerably simplifies the task of

the forecaster. Directional predictability can also be considered theoretically

sound amidst near unforecastable mean returns: Christoffersen and Diebold

(2006) show that conditional return signs can exhibit dependence even if the

mean returns are independent (i.e. not forecastable).

1 To be accurate, Roy (1952) introduced a similar concept, however, Markowitz is often recognized as

the father of modern portfolio theory.
2 Google Scholar gives a combined estimate of over 32 000 citations as of July 2015.
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Perhaps more importantly, the behavior of investors in practice resembles that

of making directional forecasts on asset returns. For example, simple buy/sell

recommendations are exceedingly common in analyst reports, and in general, it

appears that investors often have views only on the directions, and not the mean

returns3. There is evidence that when mean forecasts are provided by profes-

sionals, they may contain profitable information linked to directional accuracy,

however, by traditional measures such as the root-mean-squared error, their ac-

curacy can be poor (Leitch and Tanner (1991)). Estimating the mean return of

an asset can be considered a near impossible task, and therefore is often avoided.

The most prominent forecasts appear to be about the directions, or signs, of asset

returns.

The two premises introduced above – evidence of ouf-of-sample directional

predictability, and typical investor behavior in expressing views on future re-

turns – form the foundation for the research in this dissertation. While direc-

tional predictability cannot be directly compared to the forecastability of mean

returns, it could be said that directional forecasting is easier than forecasting the

mean returns, and the behavior of individuals and professionals in the industry

appears to support this view. Faced with these premises, it is natural to ask how

optimal portfolios should be formed when the investor has directional estimates

for future returns. An answer to this question has not been explored, to the

author’s knowledge, in the past.

A directional estimate approach is not only natural from the investor’s stand-

point, but also presents a possible solution to the aforementioned portfolio opti-

mization problem: Leaving out the direct estimation of mean returns and instead

focusing on the direction of future returns is a way of circumventing the main

problem present in expected return estimation that has been plaguing portfolio

optimization over the past decades.

1.2 Research objectives, methodology, and structure

The dissertation aims to provide a readily applicable solution to forming opti-

mal portfolios with directional return estimates, and to examine the implications

that follow. First, a framework to incorporate directional estimates into mean-

variance optimization needs to be developed. Second, the proposed solution will

affect the behavior of a rational investor and portfolio performance compared to

alternative solutions. These implications need to be explored, as is the case with

any new theoretical work. These are the two main research objectives of the

dissertation.

The research methodology employed can be divided into two parts: First,

3 An example of directional views among individual investors is the weekly sentiment survey of the

American Association of Individual Investors conducted since 1987.
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two out of the three essays in the dissertation contain a theoretical section where

results are derived by the way of analytical reasoning and mathematical notation.

Second, the implications of analytical results are examined in simulation studies,

utilizing both artificially generated data and authentic stock market data. This

combination of theory, simulation and empirical analysis is a natural way to

conduct the studies and to answer the research questions presented in each essay.

All computer simulations and empirical analyses are conducted using the pro-

gramming language R and several additional packages that are available for the

core program. Of these packages, the most heavily utilized and worth mention-

ing are the nloptr package by Jelmer Ypma, which facilitates nonlinear opti-

mization with constraints, and the doParallel package by Steve Weston & Rev-

olution Analytics, which employs parallel computation for faster problem solv-

ing. In addition, Wolfram Mathematica is employed for solving complicated

problems analytically.

The data in the empirical sections of the essays come from Thomson Reuters

Datastream. The main data in all studies are from the U.S. stock market during

the 21st century, in order cater for the widest audience and to focus on the recent

history of the financial markets. The use of data is described and reasoned in

more detail in each of the essays separately.

The dissertation is comprised of three essays. Each of these essays answers

a specific set of research questions and they are presented in chronological or-

der as the subsequent studies build on the results presented earlier. In the first

essay, a novel framework for portfolio optimization is introduced by decompos-

ing asset returns into three components. Utilizing this decomposition, analyti-

cal results for conditional mean, variance and covariance between asset returns

are derived. These results can readily be applied in portfolio optimization, and

the essay examines what types of assets are preferred by the investor under di-

rectional return predictability. The essay also compares portfolio performance

using the proposed framework against simpler alternatives.

The second essay of the dissertation examines correlation between the ab-

solute values of asset returns (hereafter, magnitude correlation). This term

emerges from the analytical results in the first essay and can have an impact

on conditional portfolio variance. Since this correlation is a relatively unknown

concept in financial research, the second essay aims to fill the gap in knowledge.

The essay establishes an analytical link between Pearson return correlation and

magnitude correlation under bivariate normality. The empirical properties of

magnitude correlation in the U.S. stock market are examined in a comprehen-

sive fashion, and an interpretation for magnitude correlation in financial context

is presented. Finally, the second essay explores methods for out-of-sample esti-

mation of this correlation from a portfolio management perspective.

The third essay aims to test the framework proposed in the first essay in out-

of-sample trading simulations. Moreover, the specific issue of estimating di-
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rectional accuracy is addressed. The third essay also asks whether the investor

would benefit from using noisy information about mean returns instead of sim-

ply extracting the mere signs of mean return forecasts for portfolio optimiza-

tion. This is evaluated by comparing the proposed framework against alternative

models utilizing mean return forecasts with varying accuracy.

The contribution of this synthesis is to collect the main findings of the essays

and place the information into proper context in the research field. In order

to accomplish this, related previous research is examined in more detail in the

second chapter. The main findings of the essays are summarized in chapter

three. Finally, chapter four highlights the key results of the essays, presents

future research opportunities, and offers concluding remarks.
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2 PREVIOUS RESEARCH AND POSITIONING OF
THE DISSERTATION

A significant contribution of the dissertation is to develop a new framework

for portfolio optimization in order to utilize directional return estimates as in-

puts. The concepts and research questions that follow are built on this proposed

framework, which is introduced in the first essay. As such, the dissertation steps

partly into new grounds with no immediate base of previous research. The study

builds on the ability to predict the directions of asset returns, and therefore, this

area and its notable previous studies are explored in more detail. Previous re-

search on traditional mean-variance optimization and some relevant extensions

are also briefly surveyed in order to position the dissertation in light of the port-

folio optimization literature.

2.1 Directional return predictability

Directional return predictability equates to an ability to forecast the direction, or

sign, of price changes with some accuracy. The direction can take only one of

the two discrete values: up (+1) or down (-1). As such, these type of forecasts

are by nature much simpler and arguably easier to make than providing forecasts

of future mean returns. Moreover, Christoffersen and Diebold (2006) show that

theoretically, even if conditional mean returns are independent (i.e. not fore-

castable), there can still be sign dependence in the returns. Thus, even if mean

returns could not be forecasted, it does not rule out directional predictability.

Christoffersen and Diebold (2006) focus on directional predictability arising

from the distribution itself. However, in reality, forecasts can be derived from

any source of information, not just the return distribution. Empirically, out-

of-sample directional accuracy of forecasts varies depending on the investment

horizon and the model used to produce forecasts. For monthly stock returns,

out-of-sample accuracy4 can range between 55% and 65% (e.g. Pesaran and

Timmermann (2002), Chevapatrakul (2013)), and for monthly market index re-

turns, correct sign forecasts up to 60% have been documented (e.g. Pesaran and

Timmermann (1995), Leung, Daouk and Chen (2000), and Nyberg (2011)).

For weekly market index returns, Bekiros and Georgoutsos (2008b) report

directional accuracies ranging between 52% and 59% (depending on the fore-

casting model). For daily stock returns, Skabar (2013) achieved a directional

4 The accuracy referred to is the percentage of time the forecasting model produces the correct sign.
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accuracy of over 52%. Finally, for daily index returns, a directional accuracy

close to 55% can be achieved (see e.g. Bekiros and Georgoutsos (2007), Bekiros

and Georgoutsos (2008a), Bekiros (2010a), Bekiros (2010b)). These figures are

notable and imply that the forecasting models could be used to generate eco-

nomically significant profits.

Stocks are not the only asset class to exhibit notable directional predictabil-

ity. Currency exchange rates have been shown to be directionally forecastable

as well: Elliott and Ito (1999) document monthly directional accuracy of nearly

55%. Evidence of forecastability in the daily interval is offered in Kuan and

Liu (1995). More recent studies about directional predictability of currency ex-

change rates worth mentioning are Chung and Hong (2007) and Preminger and

Franck (2007). The portfolio selection framework developed in this dissertation

can naturally be applied to investments in any asset class. Stock return pre-

dictability has the most research available, and therefore results in that area are

emphasized.

The dissertation does not attempt to take part in the discussion of which fore-

casting models work best in generating accurate forecasts. Instead, tools and

concepts for portfolio optimization are presented when the investor has direc-

tional estimates on future returns available – any type of directional forecasting

model can be used to arrive at this setting. Since profitable trading strategies

or forecasting models have a lot of their value basing on secrecy, it is reason-

able to expect that most working models are not published in academic research.

Therefore, the models and accuracies presented in the aforementioned studies

may well be just the tip of the iceberg. This gives even stronger motivation for

the research conducted in the dissertation.

The behavior of professional analysts or investment managers can tell some-

thing about the other side of the table: Investment professionals often express

directional views, such as buy/sell recommendations, instead of disclosing in-

formation about mean returns. It appears that estimating future mean returns is

a very difficult task, which many tend to avoid. Moreover, there is evidence that

return forecasts evaluated by standard error measurement tools such as the root-

mean-squared error can be relatively poor, whereas at the same time they can

be profitable, which can be linked to the directional accuracy of these forecasts

(Leitch and Tanner (1991)). Taylor (1980) has developed a model to forecast

the trend of price changes. His results indicate that even though the accuracy in

terms of mean squared error can be low, the directional accuracy of the forecasts

can be significant.

Womack (1996) and Barber, Lehavy, McNichols and Trueman (2001) have

examined analysts’ buy/sell recommendations and the following stock price de-

velopment. According to these studies, there appears to be value in the discrete

or directional forecasts made by analysts. These studies on the practical side

of the financial industry speak for directional accuracy of forecasts, although
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less directly than the aforementioned research that documents out-of-sample

predictability more concretely.

Overall, the combination of the documented out-of-sample accuracy and the

behavior of professionals in the field tend to indicate that directional estimates of

asset returns are the most prominent type of forecasts. Therefore, there should

be strong demand for a model that incorporates directional estimates into invest-

ment decision making in the form of portfolio optimization.

2.2 Portfolio optimization

Traditional investment portfolio optimization is based on a mean-variance trade-

off as introduced in Markowitz (1952). Tobin (1958) later complemented the re-

sult by adding a risk-free rate in the analysis, arriving at the separation theorem,

i.e. that all investors should hold risky assets in the same proportions in their

portfolio regardless of their preferences. However, portfolio optimization has

come a long way since then and new extensions have been produced at a steady

rate. For a recent review of some of the advancements in the field of portfolio

optimization, see Kolm, Tütüncü and Fabozzi (2014).

The portfolio optimization framework which this dissertation develops takes

the approach of Markowitz (1952) as the mainframe and examines portfolio

formation in the mean-variance universe. The proposed framework produces

conditional estimates for the expected return vector and the variance-covariance

matrix. These conditional estimates are derived by decomposing asset returns

into three components: the forecasted direction, the outcome of the directional

forecast, and the magnitude of the return. This makes it possible to bypass direct

estimation of the mean return and instead break down the estimation into simpler

parts. As a result, directional forecasts can be used as inputs in mean-variance

optimization. To the best knowledge of the author, this type of an approach in

portfolio selection is original.

Earlier research on related topics include the studies about market timing and

portfolio selection by Jensen (1972), Grant (1978), Pfeifer (1985), and, more

recently, Hallerbach (2014). Market timing generally deals with a simple set-

ting where the investor chooses between a risky investment and a riskless asset,

attempting to time the market. While this approach has an element of similarity

to the proposed framework in this dissertation, the latter is much more complex

and complete in the sense that it describes the conditional comovement between

different assets and allows portfolio optimization with any number of assets to

be performed.

Portfolio optimization literature in related areas also contains studies about

how predictable returns affect portfolio choice in general. For example, when a

regression model with predictive variables is utilized for stock returns, Kandel
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and Stambaugh (1996) provide solutions for asset allocation. Barberis (2000),

and Campbell, Chan and Viceira (2003) examine the implications of return pre-

dictability for investors with long investment horizons. Ait-Sahalia and Brandt

(2001) incorporate predictive variable effects into portfolio weights in a direct

fashion. Ang and Bekaert (2002), Guidolin and Timmermann (2007) and Tu

(2010) study portfolio selection in a regime switching environment. While these

approaches are loosely related to the topic of this dissertation and worth men-

tioning here, they are still very different from the approach taken in this disser-

tation.

Elton and Gruber (1987) study portfolio choice rules when assets are grouped

into expected return categories. Perhaps closest to the framework proposed in

the dissertation comes the work of Black and Litterman (1992), where views

(on a continuous scale) about asset returns are incorporated into portfolio op-

timization by blending them with a prior of the expected return vector. The

variance-covariance matrix is not addressed in Black and Litterman (1992), but

Qian and Gorman (2001) offer an extension for this. However, the portfolio

optimization framework presented in this dissertation is fundamentally different

as it focuses on directional views, and it does not base on any of the afore-

mentioned research. In essence, the proposed framework was developed from

scratch, in response to the need of utilizing simple, directional return estimates

in portfolio optimization.

2.3 Other related strands of research

A few additional areas of research are worth mentioning. First, the developed

portfolio selection framework is based on an idea that asset returns can be de-

composed into a sign component and a magnitude component. These types

of decompositions (although not exactly in the same format) have been pre-

sented in, for example, Rydberg and Shepard (2003), Christoffersen and Diebold

(2006), and Anatolyev and Gospodinov (2010). Their use of the decomposition

is in the context of forecasting returns, whereas in this dissertation, a similar

decomposition is utilized to derive analytical results for portfolio selection.

Second, the developed framework results in correlation between absolute val-

ues of asset returns affecting portfolio variance explicitly. The second essay of

the dissertation delves deeper into this matter, which seems to be a neglected

area in financial research. However, it should be noted that correlation of mag-

nitudes is not an unknown concept in general, as studies in, for example, medi-

cal physics have examined correlation between magnitudes of changes (see e.g.

Ashkenazy, Ivanov, Havlin, Peng, Goldberger and Stanley (2001) and Ashke-

nazy, Havlin, Ivanov, Peng, Schulte-Frohlinde and Stanley (2003)).

Third, the dissertation makes a minor methodological contribution to con-
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ducting trading simulations under directional predictability. The first essay

presents a method for generating multivariate random variables that are gov-

erned by directional accuracies in the form of probabilities. This makes it possi-

ble to run trading simulations with directional forecasts without specifying any

particular model for the generation of the forecasts. This approach is based on

Leisch, Weingessel and Hornik (1998), and by augmenting their method, pair-

wise dependent directional forecasts can be generated utilizing a multivariate

normal distribution.
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3 MAIN FINDINGS OF THE ESSAYS

3.1 New framework for portfolio selection

Estimation of expected returns is notoriously difficult. Instead, investors typi-

cally have views only on the directions of price changes. In the first essay of

the dissertation, a new framework for portfolio selection is developed to utilize

directional forecasts as inputs in optimization. The framework is based on an

idea that the return on asset i can be decomposed as follows:

ri = siDi|ri|, (1)

where si ∈ {−1,1} is the directional forecast, Di ∈ {−1,1} is a random variable

denoting whether the directional forecast is correct (+1) or not (-1), and |ri| is
the absolute value of the unconditional return on asset i. If the unconditional as-

set returns are assumed (or approximated) to be symmetrically distributed about

mean zero5, in which case it is plausible to assume that the outcomes of the

forecasts do not depend on return magnitudes, simple expressions for condi-

tional expected return, variance, and covariance between an asset pair can be

analytically derived, as is shown in the essay.

The equations for conditional mean, variance and covariance can be gener-

alized for any number of assets. The end result, readily applicable for mean-

variance optimization, is presented here: The conditional6 expected return vec-

tor

E[rrr|Ω] = sss� (2ζζζ −111)M, (2)

where sss is a column vector containing the directional forecasts, ζζζ denotes a vec-

tor of directional accuracies of the forecasts, and M ≡ diag(μμμabs), i.e. a diagonal

matrix containing the means of the unconditional absolute returns. The opera-

tor � denotes the element-wise (Hadamard) product. The conditional variance-

covariance matrix

ΣΣΣ|Ω = ss′ss′ss′ � ((2Zsim−J)�ΣΣΣabs+MΣDM) , (3)

5 This approximation can be justified by the general observation that empirical asset return distribu-

tions are fairly symmetrical, and, especially for short horizons (daily or weekly returns), their mean is

close to zero. For example, Brown and Warner (1985) report that the daily mean return for randomly

selected securities and dates is 0.06%. In addition, the investor discussed in this dissertation does

not have to invest in stocks; the investable assets can be, for example, currency pairs or commodities

without apparent risk premiums.
6 Conditional on the information set Ω, which contains the directional forecasts and their accuracies.
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where Zsim is a matrix containing joint pairwise forecast accuracies, J is a matrix

of ones, ΣΣΣabs is the variance-covariance matrix of the unconditional absolute

returns, and ΣD is the covariance matrix of the forecast outcomes (which can

also be expressed using the accuracy parameters). ΣΣΣ|Ω is positive-semidefinite

(PSD) by definition, as long as the individual components forming the matrix

are sensible.

This framework enables the investor to bypass direct estimation of mean re-

turns, and instead use the directional forecasts as inputs. A new parameter class

that requires estimation is comprised of the directional accuracies in ζζζ and Zsim.

These can be relatively easily estimated from data by backtesting the forecast-

ing model and measuring how often it predicts the sign correctly. The means of

absolute returns, μμμabs, are, in general, proportional to the volatility of the uncon-

ditional asset returns, and in fact, under normality, μabs,i = σi
√

2/π, where σi is

the unconditional return standard deviation, and π is the mathematical constant.

If the return volatility follows an ARCH/GARCH process, then the mean of ab-

solute returns can be forecasted to a degree, which would be beneficial for the

investor in this setting. In general, forecasting the expected absolute value or the

volatility of returns can be considered easier tasks than forecasting the mean.

The implications of this framework are multifaceted. First, assets with high

(idiosyncractic) volatility are preferred for higher expected returns7. Second,

high levels of positive or negative correlation are not preferred for low portfolio

variance, assuming that high level of correlation is linked to the investor being

correct or wrong on a pair of assets’ signs simultaneously. Third, correlation be-

tween the absolute values of returns has an explicit effect on portfolio variance.

These implications are examined in more detail in the essay.

The foundation for optimal portfolio construction with directional return esti-

mates as inputs is laid out with the analytical derivation in the first essay. To ex-

amine more complex situations, the essay conducts a simulation study to explore

optimal portfolio compositions under different optimization criteria. Moreover,

a performance analysis and a trading simulation show that when directional fore-

casts are available, the investor could benefit notably in terms of portfolio Sharpe

ratios and geometric means from using the proposed framework as opposed to

resorting to simpler alternatives.

An additional contribution of the first essay is to show, by augmenting the

method of Leisch et al. (1998), how directional forecasts can be simulated with

a multivariate normal distribution. This makes it possible to run trading simula-

tions under directional predictability without specifying any particular forecast-

ing model, thus making these trading simulations more general and applicable

to a wide variety of scenarios.

7 These assets are not necessarily held long in the portfolio; the directional view determines whether

the asset is held long or short. Volatility is valuable for expected return because it presents an opportu-

nity for larger profits.
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3.2 Correlation in the magnitude of returns

The second essay focuses on an overlooked concept in financial research: cor-

relation between absolute values of asset returns. In the portfolio optimization

framework proposed in the first essay, this correlation emerged as an explicit

factor affecting the conditional variance of the portfolio. Even though correla-

tion in the absolute values, or magnitudes (hereafter: magnitude correlation), is

not an unknown concept in general, it appears to be largely neglected in financial

research.

In addition to affecting the conditional portfolio variance when directional

return forecasts are present, magnitude correlation affects the shape of the port-

folio return distribution in the case of no predictability as well. Perhaps surpris-

ingly, not much is known about the theoretical or empirical properties of mag-

nitude correlation in the financial context, and the second essay aims to fill this

gap in knowledge. It is worth noting that in the univariate case, autocorrelation

in absolute returns can arise from a process with autoregressive conditional het-

eroskedasticity (ARCH). In the same fashion, magnitude correlation could arise

from multivariate ARCH or GARCH processes (for more information about

these processes, see e.g. Tsay (2010)).

The essay explains in detail how magnitude correlation can affect portfolio

return distribution. Moreover, in the bivariate normal case with zero means, it

is shown that the link between Pearson correlation and magnitude correlation is

fixed:

Corr
[
|ri|, |r j|

]
=

2
( √

1−ρ2+ρArcSin(ρ)−1
)

π−2
, (4)

where ρ denotes the Pearson correlation coefficient, and π is the mathematical

constant. In the bivariate normal case, magnitude correlation can never be neg-

ative. However, in practice, returns are often not jointly normal and this link

is broken. This is why examining the levels empirically is of particular interest

and can present opportunities from a portfolio manager’s perspective.

The essay conducts a comprehensive examination of magnitude correlation

levels in the U.S. stock market (the data are the S&P500 stock returns for daily,

weekly, and monthly intervals) during the 21st century. The results show that

the observed pairwise levels of magnitude correlation vary widely between dif-

ferent sample periods and intervals. Especially for longer horizon (monthly)

returns, magnitude correlation between a pair of stocks can range from being

significantly negative (close to -0.5) all the way up to near perfect positive cor-

relation (0.9). Such variety in the observed levels is intriguing from a portfolio

management standpoint. Importantly, the observed levels do not appear to be

strongly linked to the corresponding Pearson correlation coefficient and the ob-

served values can deviate widely from the implied values derived from Equation
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4. This implies that there can be benefits for choosing assets in the portfolio by

looking at magnitude correlation and Pearson correlation separately.

The levels of observed magnitude correlation differ widely between the earli-

est subsample (2003–2006, i.e. the time before the recent financial crisis) and in

the later subsamples (the time during and after the crisis, 2007–2014). Overall,

a general tendency of increased levels of magnitude correlation is observed in

the data. Moreover, the average pairwise, or marketwide, magnitude correlation

appears to be time-varying. Importantly, magnitude correlation for individual

assets does not necessarily develop in sync with Pearson correlation, as is illus-

trated in the essay.

High positive level of magnitude correlation between two assets implies that

when the return on the first asset is large in magnitude, the second asset’s price

is also likely to react strongly (in either direction). Moreover, when the return

on the first asset is small in magnitude, the reaction of the second asset is also

likely to be small. This kind of a situation for the whole market represents a

scenario where markets are anxious, waiting for big news quietly, and when the

news arrives, the reaction is strong for all or most assets. Since there is already a

commonly used measure for market anxiety, namely, the VIX index measuring

the implied volatility of stock options, the second essay compares the observed

levels of abnormal8 magnitude correlation to the VIX index.

The major spikes in the VIX index and in historical abnormal magnitude cor-

relation appear to coincide, and in general, there appears to be a tendency for

abnormal magnitude correlation to be high when the VIX is high, and vice versa.

However, the strength of this link depends on the estimation method for magni-

tude correlation. While historical volatility portrays the VIX index in a lagged

fashion, the abnormal magnitude correlation appears to react at roughly the same

time as the VIX index. Overall, magnitude correlation can be interpreted as mar-

ket anxiety and may serve as another proxy for it. The possibility of magnitude

correlation arising from a multivariate ARCH/GARCH process seems to be sup-

ported by this view. It should be noted that the measured magnitude correlation

is based on historical data, whereas the VIX index is a forward-looking measure.

Finally, the second essay evaluates out-of-sample forecasting methods for

magnitude correlation. This aspect is important from a portfolio manager’s

standpoint, as more accurate estimates can lead to improved portfolio perfor-

mance. The results show that long estimation windows or EWMA models with

a low value for the gamma parameter appear to produce the most accurate fore-

casts of future levels of magnitude correlation.

8 Abnormal in this case means the gap between the observed level and the theoretical level implied by

the measured Pearson correlation coefficient, as in Equation 4.
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3.3 Return forecasts and portfolio performance in practice

The third essay of the dissertation examines the application of the portfolio se-

lection framework proposed in the first essay in practice. The simulation results

in the first essay showed that notable performance increase can be achieved

over simpler alternatives, however, the directional forecasts were generated in a

relatively simple manner and parameter estimation error was not present in the

directional accuracies. The third essay aims to take the analysis a step further by

evaluating portfolio performance in a realistic setting with directional forecasts

available, and furthermore, includes whole return forecasts (on a continuous

scale) as an alternative to mere directional forecasts.

Whole return forecasts contain more information, however, if the informa-

tion is noisy, its practical value may be negligible. Leitch and Tanner (1991)

found that professional forecasts evaluated with traditional measures, such as

the root-mean-squared error, can often be judged as poor, while at the same

time the forecasts might be profitable, which can be connected to their direc-

tional accuracy. This kind of a view gets support in the study of Taylor (1980)

as well. In portfolio optimization, even small errors in the mean return inputs

can matter profoundly for the results, and thus using noisy return estimates can

be detrimental.

In essence, the third essay attempts to answer two research questions: 1)

When directional return forcasts are available, does it matter for out-of-sample

portfolio performance which optimization framework is utilized? 2) If whole

return forecasts are available, would the investor do better by extracting only

the signs of these forecasts and using them as inputs in portfolio optimization,

as opposed to using noisy return estimates directly as expected return inputs?

To provide answers to these questions, the third essay conducts out-of-sample

trading simulations and evaluates the performance of optimized portfolios. In a

broader sense, the research questions are posed in order to find out whether the

framework proposed in the first essay can be valuable for asset management in

practice.

In order to produce robust results, the out-of-sample trading simulations do

not utilize specific forecasting models but instead, a more general approach is

used. The return forecasts in the study are generated by calibrating a large num-

ber of models in-sample, however, parameter estimation is done with only past

data, and hence the use of these models is comparable to an out-of-sample eval-

uation. By taking this approach, it is certain that the models have true predictive

power, but the investor does not know the values of the parameters needed for

optimization. Instead, these will be estimated by observing the models’ perfor-

mance in past data, whereas the performance of optimal portfolios is evaluated

on out-of-sample data.

In addition, since estimation methods for directional forecast accuracy ap-
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pear to not have been examined comprehensively in previous research, the third

essay conducts an evaluation of simple methods for out-of-sample estimation.

The results indicate that constant or shrinkage estimation models produce good

performance. The performance of the proposed framework appears to depend

strongly on the method utilized for estimating the directional accuracies, and

hence, its importance should not be underestimated.

The results of the out-of-sample trading simulation indicate that when only

directional return estimates are available, or when magnitude components for

the whole return estimates are pure noise, the investor can achieve higher Sharpe

ratios and geometric means by using only the directional estimates as inputs. If

the whole return estimates contain accurate information about the magnitudes,

the investor can still be equally well or better off in the case of maximum Sharpe

ratio criterion by using only the extracted signs of the forecasts as inputs in

optimization. For maximum geometric mean portfolios, accurate information

about the magnitudes contained in the whole return forecasts can produce better

performance compared to using the mere signs as inputs.

It should be noticed that the level of accuracy present in the whole return

forecasts in the simulation study may not be available in practice. Therefore,

the advantage produced by the proposed framework when the magnitude com-

ponents in whole return estimates contain purely (or mostly) noise could be

achieved in practice as well. However, the estimation of the directional accura-

cies needs to be done carefully in order to achieve good performance. Overall,

the results indicate that the usage of the proposed framework could be advocated

for portfolio management in practice.
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4 CONCLUSION

The main contribution of this dissertation is to develop a novel framework for

portfolio selection in order to utilize directional return estimates as inputs in op-

timization. This bypasses the difficult, direct estimation of mean returns, which

has been a long-standing problem for portfolio optimization in practice. In ad-

dition, the dissertation examines the implications of the developed framework

and studies the feasibility of the approach from a practical investment manage-

ment perspective. Previously documented out-of-sample directional return pre-

dictability and common investor behavior in practice are used as starting points

and motivation for the research conducted. By developing a new framework, the

dissertation steps partly into new grounds, producing research objectives that are

addressed in the three essays comprising the dissertation.

When returns exhibit directional predictability, the developed framework im-

plies that volatile assets are preferred for higher expected returns, negative return

correlation is disliked by a rational investor assuming that it is linked to corre-

lated outcomes of forecasts, and the correlation between the absolute values of

returns affects portfolio variance explicitly. The developed portfolio selection

framework is shown to be capable of producing notably higher Sharpe ratios

and higher geometric means compared to simpler alternatives that the investor

might resort to without the availability of the proposed framework.

The dissertation conducts a comprehensive study on the properties of corre-

lation between absolute returns, or magnitude correlation, which has been an

overlooked concept in financial research. The study shows that this correlation

appears to be time-varying and that a wide range of pairwise levels have been

observable in the U.S. stock market, presenting opportunities from a portfolio

management perspective. Moreover, high levels of magnitude correlation can

be interpreted as market anxiety and the observed abnormal levels appear to be

loosely linked to the VIX index measuring the implied volatility of stock op-

tions.

Finally, the dissertation shows that the developed portfolio selection frame-

work gives promising results in trading simulations compared to alternative

frameworks that utilize directional return estimates in portfolio optimization.

The estimation of directional accuracy of the forecasts needs to be paid close

attention to in order for the proposed framework to provide good performance

out-of-sample.

While the dissertation answers the proposed research questions and explores

the implications of the developed portfolio selection framework, some questions
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could not be addressed here. For example, future research could take higher

moments into account in portfolio optimization due to asymmetry of the condi-

tional return distribution under the developed framework. It would be rewarding

to derive the full distributional properties of the conditional returns in this kind

of a setting. For estimating magnitude correlation, more sophisticated mea-

surement could be utilized as the model used inevitably has an effect on the

observed levels. Moreover, a class of copula functions could be developed that

produce desired levels of magnitude correlation in an explicit fashion, and the

role of multivariate ARCH/GARCH processes in generating magnitude correla-

tion could be examined. Finally, to conduct further testing with the developed

portfolio optimization framework, specific forecasting models could be utilized

instead of the more general approach taken in the third essay. This would sacri-

fice generality but at the same time increase the authenticity of the study. While

these ideas are intriguing, they could not be undertaken in the scope of this

dissertation, and therefore, remain as possible goals for future research.
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Portfolio Selection with
Directional Return Estimates

Joonas Hämäläinen∗

Abstract

Expected returns of assets are notoriously difficult to estimate. In-
stead, investors typically have views on the mere directions of re-
turns. This paper develops a novel framework for portfolio opti-
mization to use directional forecasts as inputs. We show that in this
setting, the investor prefers volatile assets for higher expected re-
turns, dislikes negative return correlation, and that the covariance
between absolute values of returns matters explicitly for portfo-
lio variance. The developed framework can produce substantially
higher Sharpe ratios and geometric means compared to simpler al-
ternatives.

1 INTRODUCTION

Traditional investment portfolio optimization has its roots in the seminal work

of Markowitz (1952, 1959), who presented the concept of maximizing the ex-

pected return and minimizing the variance of a portfolio. Tobin (1958) showed

that when a risk-free asset is available, the risky asset portfolio composition

is the same for all investors. These concepts were major breakthroughs in the

field of finance. However, Markowitz’s approach has not triumphed in prac-

tice, mainly due to errors in parameter estimation (see, e.g. Michaud (1989),

DeMiguel, Garlappi and Uppal (2009)). Especially the estimation of expected

returns has proven to be difficult. Still, returns are known to exhibit some degree
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of predictability (for a recent review on stock return predictability, see Rapach

and Zhou (2013)).

Research on directional predictability of returns has been relatively active

over the past decade. There is a considerable amount of evidence that the di-

rections of stock returns can be predicted out-of-sample, often with surpris-

ingly high accuracy – notable recent studies include Bekiros (2010), Nyberg

(2011), Chevapatrakul (2013), and Skabar (2013). Moreover, Christoffersen and

Diebold (2006) have shown that theoretically, even if conditional mean returns

are independent (i.e. not forecastable), there can be directional dependence.

Thus, it is possible that return signs can be predicted even if mean returns are

not forecastable.

In practice, analysts or investment managers often do not report continuous

estimates for expected returns. Instead, it appears that most investors have dis-

crete views of an asset’s price either going up or down in the near future1. There

is evidence that when forecasts on a continuous scale are made by profession-

als, their performance evaluated by traditional measures (such as the root-mean-

square error) can be poor whereas their profitability, connected to directional

accuracy, can be notable (Leitch and Tanner (1991)). Forecasting the mean re-

turn accurately is a near impossible task, which many simply avoid. Therefore,

the most prominent forecasts of asset returns appear to be the directions, or

signs, of returns.

This paper is built on the two premises discussed above: i) evidence that re-

turn directions are predictable; ii) common type of views expressed by investors

estimating the future performance of financial assets2. The natural question to

ask is: how should optimal portfolios be formed in this kind of setting? The

contribution of this paper is to develop and examine a new framework for port-

folio selection – an answer to the question. The inputs for portfolio selection

in this framework are based on the investor’s directional views on future returns

and the directional accuracies with which the views are assumed to be correct

(which can be estimated, for example, by backtesting a forecasting model). This

approach bypasses the difficult, direct estimation of mean returns and facilitates

the use of directional return estimates in portfolio optimization.

The implications are intriguing and unconventional. For example, as opposed

to the traditional mean-variance framework, large negative correlation between

asset returns is not preferred because it presents the possibility of the investor

being either right or wrong on both assets’ directions simultaneously, thus actu-

ally increasing the variance of the entire portfolio. Moreover, it is clearly shown

that investors seeking to maximize expected return should pick assets exhibiting

1 Buy/sell recommendations being an example of the typical directional views produced by analysts.

These types of forecasts have been shown to contain predictive power (see, e.g. Womack (1996),

Barber, Lehavy, McNichols and Trueman (2001)).
2 The investable assets dealt with in this paper need not be stocks, but can be members of any asset

class such as commodities or currency pairs.
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high (idiosyncratic) volatility. Third, an explicit role is played by the covari-

ance of absolute values of returns, which appears to be a largely neglected area

in financial literature. Finally, a performance analysis and a trading simulation

show that the investor could benefit notably from using the proposed framework

as opposed to simpler alternatives to form maximum Sharpe ratio or maximum

geometric mean portfolios.

To the best knowledge of the author, this framework is original. Some ear-

lier research in related areas include the studies about market timing and port-

folio selection by Jensen (1972), Grant (1978), Pfeifer (1985), and more re-

cently, Hallerbach (2014). Elton and Gruber (1987) examine portfolio decision

rules when assets are grouped into categories based on expected returns. More-

over, when stock returns are forecastable using a regression model with predic-

tive variables, Kandel and Stambaugh (1996) offer solutions for asset alloca-

tion. Barberis (2000) and Campbell, Chan and Viceira (2003) examine return

predictability implications for the long-term investor. Ait-Sahalia and Brandt

(2001) incorporate the effect of predictive variables on portfolio weights in a

direct fashion. Finally, Ang and Bekaert (2002), Guidolin and Timmermann

(2007) and Tu (2010) examine portfolio choice in a regime switching environ-

ment. Perhaps closest to the framework introduced in this paper comes the work

of Black and Litterman (1992) and Qian and Gorman (2001), where views (on

a continuous scale) about asset returns are incorporated into portfolio optimiza-

tion. However, the approach presented here is fundamentally different, focusing

on directional estimates for several assets, and does not base on the aforemen-

tioned studies.

An additional contribution of this paper is to show (in Appendix B), by aug-

menting the method of Leisch, Weingessel and Hornik (1998), how pairwise

dependent directional forecasts can be generated utilizing a multivariate normal

distribution. This allows trading simulations with directional predictability to

be run without specifying any particular forecasting model.

The paper proceeds as follows. In Section 2, a new framework for portfolio

selection, which takes directional estimates of returns as inputs, is developed.

The end-product of the analytical examination is a conditional form for the ex-

pected return vector and the variance-covariance matrix. In the third section, it

is examined what types of assets are preferred in this framework under different

optimization criteria. In the fourth section, the theoretical performance of the

framework is compared to simpler alternatives available to the investor. In the

fifth section, the framework is examined in a trading simulation with authentic

stock market data. Finally, the sixth section offers concluding remarks.
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2 NEW THEORETICAL FRAMEWORK

2.1 Mean and variance under directional forecasts

Let ri denote the one-period unconditional net return on asset i. The investor

is assumed to have a view si ∈ {−1,1} on the direction, or sign, of the return.

Moreover, let ζi ∈ [0.5,1] denote the probability with which this view is correct.

For simplicity, the probability ζi can be assumed to be independent of the actual

return. Logically, the minimum value for ζi is 0.5, implying that the investor

possesses no predictive power and the direction of the return is a coin flip. For

practical applications, an estimate of this probability can be obtained, for ex-

ample, by backtesting a predictive model and measuring how often it produces

the correct sign. If the measured ζi were less than 0.5, a rational investor would

simply reverse her strategy, thus achieving a higher probability of being correct.

In this setting, the return on asset i can be decomposed as follows3:

ri = siDi|ri|, (1)

where Di is a random variable denoting whether the directional forecast is cor-

rect or not:

Di =

⎧⎪⎪⎨⎪⎪⎩1 with probability ζi

−1 with probability (1− ζi).
(2)

This holds for any distributional assumption for the unconditional returns. Uti-

lizing this decomposition, implications for portfolio optimization with direc-

tional forecasts are derived in what follows.

In order to make the approach analytically more tractable, the unconditional

returns ri are assumed to be symmetrically distributed around mean zero. This

fairly well approximates financial returns, especially when the investment hori-

zon is sufficiently short4. Notice that the zero-mean assumption does not rule out

directional predictability as in Christoffersen and Diebold (2006), because the

power of the forecasts can come from any source other than the unconditional

distribution itself. It is also important to notice that the conditional distribution

does not have a mean zero if ζi > 0.5.

It is now possible to derive a simple expression for the conditional expected

return and variance, as the value of the absolute return is independent of the pre-

dicted sign si and the outcome Di is assumed to be independent of the magnitude

3 Similar decompositions of returns into a directional component and a size component have been

utilized (in different context) in Rydberg and Shepard (2003), Christoffersen and Diebold (2006), and

Anatolyev and Gospodinov (2010).
4 In general, empirical stock return distributions are fairly symmetrical. Moreover, the investable as-

sets need to be stocks offering a risk premium, but can be, for example, currency pairs or commodities.

The zero-mean assumption is a sufficient condition that simplifies things without sacrificing too much

in return.
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of the return (i.e. the investor cannot forecast the directions of large returns bet-

ter than the directions of small returns, or vice versa). In what follows, the

conditioning information set, Ω, is understood to contain the forecasted signs

si and the probabilities governing the accuracy of these forecasts. Utilizing the

decomposition in Equation 1, the investor’s conditional expected return

E[ri|Ω] = siζiE[|ri|]− si(1− ζi)E[|ri|] = si(2ζi−1)μabs,i, (3)

where μabs,i ≡ E[|ri|]. Note that if ζi = 0.5, meaning that the sign of the return is

a coin flip, the investor is expected to make a zero profit based on the directional

forecast because there is no predictive power. The value of μabs,i is proportional

to the unconditional volatility of the return, and hence its estimation can be com-

pared to estimating the volatility5. In the special case of a normal distribution,

this actually reduces exactly to estimating just the volatility of the unconditional

distribution, as will be shown later.

The conditional variance

Var[ri|Ω] = E
[
(siDi|ri|)2|Ω

]
− (si(2ζi−1)μabs,i

)2
= E
[
r2

i

]
− (2ζi−1)2μ2

abs,i

= σ2
i − (2ζi−1)2μ2

abs,i,

(4)

where σ2
i is the unconditional variance of ri.

If the unconditional distribution for ri is normal6, it is possible to write μabs,i

in terms of the unconditional volatility: The probability distribution function of

the absolute value of a normal random variable with mean μ and variance σ2 is

known to be

f (x) =
1

σ
√

2π
exp

(
−(x−μ)2

2σ2

)
+

1

σ
√

2π
exp

(
−(x+μ)2

2σ2

)
, (x ≥ 0). (5)

This is known as the folded normal distribution (Leone, Nelson and Nottingham

(1961)). Subsequently, the expected value of |ri| for a zero-mean distribution,

E[|ri|] = 2

∫ ∞
0

|ri|
σi
√

2π
e
− |ri|2

2σ2
i d|ri| = σi

√
2/π, (6)

where π is the mathematical constant. In this case, the conditional expected

return7

E[ri|Ω] = si(2ζi−1)σi
√

2/π (7)

5 The expected value of the absolute return can be conditional on the information set Ω if the di-

rectional forecasts contain information about the joint distribution of unconditional returns. This can

be the case if directional forecasts are derived from true returns, which is addressed in Section 2.5.

However, conditioning the absolute value on the information set here would be an unnecessary drag

and likely to cause more confusion than clarity. Therefore, expectations of the absolute or squared

unconditional returns are thought of as being independent of Ω.
6 The returns for several assets need not be multivariate normal.
7 In a simple market timing context (the investor has only one risky asset available for investment) and

under normality, Hallerbach (2014) has recently arrived at similar solutions.
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and the conditional variance

Var[ri|Ω] = σ2
i − (2ζi−1)2σ2

i (2/π). (8)

Immediately from these results it is evident that an investor maximizing the

conditional expected return will prefer assets that exhibit high (idiosyncratic)

volatility and whose return directions can be predicted with a high accuracy. It

needs to be emphasized that these assets are not necessarily held long in the

portfolio – the forecasted direction determines whether the asset is held long or

short. Volatility is valuable in this context because it presents an opportunity

for greater profits. Additionally, it can be seen that high unconditional volatility

increases the conditional variance, whereas a higher probability of being correct

will decrease the variance, as is intuitive to expect.

In these results, conditional expected return is broken down into parts which

include either the mean absolute return or the unconditional volatility (depend-

ing on whether normality is imposed). The estimation of these variables may be

much easier than forecasting mean returns, especially if the return volatility fol-

lows an ARCH/GARCH process, which are known to be descriptive of financial

return behavior. This is of course beneficial from the investor’s point of view,

and can be considered an advantage of the framework. An important feature of

this framework is to break down the mean return into simpler parts that can be

estimated more easily.

It is worth mentioning that the conditional distribution is a piecewise dis-

tribution. The conditional return directions can be thought of as being drawn

separately from the return magnitudes, and for forecastable asset returns this re-

sults in a slightly skewed conditional distribution, weighing the positive values

more. In case the probability ζi = 0.5, the resulting conditional distribution is

exactly symmetrical and if the unconditional returns are normally distributed,

then the conditional distribution is exactly normal. While it is possible to take

into account higher moments in portfolio optimization8, this option is left for

future research. Restricting to examine only the first two moments in this paper

is justified for simplification purposes, and to compare the framework against

alternatives using traditional mean-variance optimization criteria.

2.2 Covariance of returns under directional forecasts

To characterize the conditional joint distribution of asset returns from a mean-

variance perspective, it is necessary to determine the conditional covariance

between returns. As in the univariate case, the outcomes of the forecasts

Di,D j are assumed to be independent of the unconditional return magni-

tudes. The conditional covariance involving assets i and j, Cov[ri,r j|Ω] =

8 Preference for higher moments has been explored in e.g. Scott and Horvath (1980).
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sis jE[DiD j|Ω]E[|ri||r j|]−E[ri|Ω]E[r j|Ω]. For the first part of this equation, con-

sider the following definition:

DiD j =

⎧⎪⎪⎨⎪⎪⎩1 with probability ζi j

−1 with probability (1− ζi j).
(9)

The first alternative realizes if both views are simultaneously correct or wrong,

so that ζi j ≡ P(Di = D j) ∈ [0,1], which can be estimated from data, for exam-

ple, by backtesting a forecasting model. The second alternative takes place

if one of the views is correct and the other one is not. Under this defi-

nition, E[DiD j|Ω]E[|ri||r j|] = ζi jE[|ri||r j|] − (1 − ζi j)E[|ri||r j|]. Moreover, since

E[|ri||r j|] = Cov[|ri|, |r j|]+E[|ri|]E[|r j|], we get the following, simplified form:

E[rir j|Ω] = sis j(2ζi j−1)
(
Cov[|ri|, |r j|]+μabs,iμabs, j

)
, (10)

and subsequently,

Cov[ri,r j|Ω] =sis j
(
(2ζi j−1)Cov[|ri|, |r j|]+ [(2ζi j−1)− (2ζi−1)(2ζ j−1)]μi,absμ j,abs

)
.

(11)

When i = j, ζi j is equal to one, and the above equation converges to the variance

formula presented in Equation 4. Notice that (2ζi j − 1)− (2ζi − 1)(2ζ j − 1) is

actually equal to Cov[Di,D j], so that we can write

Cov[ri,r j|Ω] = sis j
[
(2ζi j−1)Cov[|ri|, |r j|]+Cov[Di,D j]μabs,iμabs, j

]
. (12)

If the unconditional marginal distributions are normal with mean zero, then

the above equation takes the following form:

Cov[ri,r j|Ω] = sis j

[
(2ζi j−1)Cov[|ri|, |r j|]+Cov[Di,D j]

2σiσ j

π

]
. (13)

Furthermore, in the normal case,

Cov[|ri|, |r j|] = Corr[|ri|, |r j|]σiσ j

(
1− 2

π

)
, (14)

as Var[|ri|] = σ2
i (1−2/π), a property of the folded normal distribution with zero

mean.

From Equation 12, several intriguing features emerge under the assumption

that the investor prefers low, or even negative, values for covariance. This is

the case when the portfolio weights for all assets are in the same direction as

the forecasts, i.e. the investor does not bet against the forecasted directions. In

this case, the forecasted directions si and s j in Equations 12 and 13 need not

be included, and the two terms inside the brackets remain. The first of these

terms is non-negative if ζi j ∈ [0.5,1]. The covariance between absolute returns,

Cov[|ri|, |r j|], is of special interest here. If the covariance, or correlation, between
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absolute returns is negative, the value of the entire first term is lower, which is

preferable to an investor following the directional forecasts. It is important to

note that a high level of correlation between the absolute values of returns does

not necessarily imply high correlation between the unconditional returns, or vice

versa. Assets with zero (Pearson) return correlation can very well exhibit high

correlation between the absolute values of the returns when the form of the joint

distribution is not restricted.

The correlation between absolute returns appears to be an overlooked concept

in financial literature. However, it plays an explicit part in forming optimal

portfolios in this kind of a setting. High positive correlation between absolute

returns implies that when asset i provides a small return (positive or negative),

asset j is also likely to have a return close to zero, and vice versa, large returns

tend to go hand in hand as well. Large negative absolute correlation implies that

when asset i exhibits a relatively large return (positive or negative), the return

on asset j is likely to be close to zero, and vice versa.

In essence, asset pairs with negative absolute return correlation "smooth" the

overall portfolio return if the joint probability ζi j is high. There is a nonlinear

relationship between the conditional return covariance and absolute correlation

of the unconditional returns. Figure 1 illustrates this relationship in the normal

case when σi =σ j = 0.1 and ζi = ζ j = 0.6 (Equation 13 multiplied by the product

of forecasted signs, sis j).

Figure 1: Conditional covariance under normally distributed unconditional returns

with the investor following the directional forecasts; darker color indicates

lower conditional covariance
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From Figure 1, it is evident that the conditional covariance term is the largest

when ζi j = 1 and correlation of absolute returns is equal to 1 (the white area in

the upper right hand corner). In this case, both directional forecasts are always

correct or wrong at the same time, and the return magnitudes go hand in hand,

creating a very variable outcome. To decrease the conditional covariance when

ζi j ≥ 0.5, one moves down and left in the diagram — this corresponds to hav-

ing lower correlation between absolute returns and also a lower value of ζi j. If

ζi j < 0.5, indicating that the directional forecasts being simultaneously correct

or wrong is a more rare event, positive correlation between absolute returns be-

comes desirable and one moves up and left in the diagram for lower conditional

covariance. In practice, it may be difficult to find a pair of assets that exhibit

a low ζi j due to correlated asset returns and, presumably, correlated forecasts.

Therefore, as a general guideline, low positive or highly negative absolute return

correlation is preferred.

2.3 Properties of ζi j

The value of ζi j can be estimated by backtesting a predictive model on a pair

of assets, however, its theoretical properties are also of interest. Naturally, there

is an imposed structure: the joint probabilities are dependent on the individual

probabilities ζi and ζ j. If there is no dependence between the outcomes of two

predictions, it is the case that ζi j = ζiζ j+ (1− ζi)(1− ζ j), which is always greater

than or equal to 0.5. It seems fair to assume that the value of ζi j is higher if there

is dependence between the signs of unconditional returns ri and r j. In this case,

forecasts for these assets’ return directions are likely to go hand in hand, at least

if the forecasting model is sensible and takes into account relevant information.

For example, assume that two assets have a Pearson correlation coefficient

of 0.8 for their unconditional returns. Asset 1 is predicted to go up in value in

the next period. A sensible forecasting model will also predict Asset 2 to go

up in value a majority of the time, unless some other factors in the model tilt

the view. Therefore, an investor is likely to take the same directional positions

on highly positively correlated assets, and to take opposite positions on highly

negatively correlated assets. This, in turn, will make ζi j go up, since, if forecast

for Asset 1 is correct, then there is a greater chance that the forecast for Asset 2

is also correct. Ultimately, if two assets have a correlation coefficient of ±1, one

should be simultaneously correct or wrong on both directional forecasts 100%

of the time. In this case, ζi j would be equal to one. It is logical to assume

that any correlation deviating from zero, be it positive or negative, increases the

value of ζi j. Naturally, there are also other factors besides unconditional return

correlation affecting predictions and the outcomes.

Based on the above reasoning, it is useful to define the theoretical value of ζi j
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as a function of return correlation as follows:

ζi j ≡ ζiζ j+ (1− ζi)(1− ζ j)+ f
(
|Corr(sgn(ri),sgn(r j))|

)
+ηi j, (15)

where f (·) is a monotonic function that gives the absolute value of sign correla-

tion an appropriate weight, and ηi j is a term representing unknown factors that

can take either positive or negative values. Substituting Equation 15 into Equa-

tion 12 and assuming that the investor follows the directional forecasts when

forming a portfolio (multiplying ri by si is a way of expressing this) yields

Cov[siri, s jr j|Ω] =
(
(2ζi−1)(2ζ j−1)+2 f (xi j)+2ηi j

)
Cov[|ri|, |r j|]

+ (2 f (xi j)+2ηi j)μabs,iμabs, j,
(16)

where xi j ≡ |Corr(sgn(ri),sgn(r j))|. Taking the derivative with respect to xi j, we

get

∂Cov[siri, s jr j|Ω]

∂xi j
= 2 f ′(xi j)Cov[|ri|, |r j|]+2 f ′(xi j)μabs,iμabs, j

= 2 f ′(xi j)E[|ri||r j|] ≥ 0

(17)

for any monotonic function f (·). Therefore, higher return correlation (positive

or negative) never decreases the conditional covariance and the total variance

of the portfolio, assuming that the investor does not go against the directional

forecasts. Optimally, the unconditional returns should have zero correlation.

2.4 Generalization to N assets

The equations presented for conditional mean, variance and covariance are eas-

ily generalized for any number of assets. The conditional mean return vector

E[rrr|Ω] = sss� (2ζζζ −111)M, (18)

where ζζζ denotes the vector of directional accuracies, and M ≡ diag(μμμabs), i.e.

a diagonal matrix containing the means of the unconditional absolute returns.

The operator � denotes the element-wise (Hadamard) product. Analogous to

Equation 12, the conditional variance-covariance matrix

ΣΣΣ|Ω = ss′ss′ss′ � [(2Zsim−J)�ΣΣΣabs+MΣDM] , (19)

where Zsim is a matrix containing the joint probabilities ζi j, J is a matrix of

ones, ΣΣΣabs is the covariance matrix of the absolute values of unconditional re-

turns, and ΣD is the covariance matrix of the forecast outcomes, which can also

be expressed with the probabilities in ζζζ and Zsim. ΣΣΣ|Ω is positive-semidefinite

(PSD) by definition, as long as all the individual components are well defined.
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2.5 Endogeneity of sign forecasts

The developed framework does not require explicit information about the cor-

relation structure of the unconditional asset returns, although the joint proba-

bilities can be viewed as proxying the pairwise correlations. If the sign fore-

casts, sss, are viewed as exogenous and the unconditional return signs are formed

as sgn(rrr) ≡ sss�D, then the correlation structure of the unconditional asset re-

turns is a result of this process (see Appendix A for a more detailed explana-

tion). If, on the other hand, the sign predictions are viewed as endogenous,

i.e. sss ≡ D� sgn(rrr), then the unconditional correlation structure is exogenous

and the forecasts sss contain additional information about the distribution of the

conditional returns rrr|Ω. The expected values of the random variables in D and

hence also the probabilities ζi and ζi j, would be affected by the assets’ uncon-

ditional correlation structure. For example, assume that the investor observed

sign forecasts that are +1 for all assets. If the unconditional correlation were

highly positive across all asset pairs, then the +1 vector of directional forecasts

is quite plausible, whereas if the correlation structure were roughly zero across

all assets, all the positive forecasts realizing simultaneously is highly unlikely.

The theoretical framework developed in this paper is compatible with both

of the aforementioned interpretations. With the first case (sign forecasts are

exogenous, correlation structure of the unconditional returns follows), the prob-

abilities in ζζζ and ZZZsim do not depend on the observed sign forecasts. In the

second case, the probabilities can be interpreted as conditional on the observed

forecasts (i.e. ζζζ |sss) if we assume the unconditional return correlation structure

to be known. It would then be possible to take into account the effect of the

observed forecasts and determine the conditional probabilities (see Appendix A

for an illustration of this). However, it is equally possible to assume that the

unconditional correlation structure is unknown (as is the case in practice), and

thus treat the probabilities as unconditional.

Moreover, in the framework presented above, the expected value of the ab-

solute or squared returns were assumed to be independent of the information

contained in Ω. This is of course a simplification, as the unconditional correla-

tion structure could provide information on the unconditional absolute returns.

Again, the model is compatible with this view as well, but in reality we do not

know the true correlation structure of the unconditional returns and hence at-

tempting to condition the expectations of absolute values or squared returns on

Ω is likely to be an unnecessary effort in practice if the unconditional returns are

near symmetrical around mean zero.
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2.6 Summary of theoretical findings

The main findings arising from this theoretical framework are summarized in

the following key propositions, where forecasting accuracy (ζi) is held constant

and the investor follows the directional forecasts.

Proposition 1: Assets with high (idiosyncractic) return volatility are preferred

for higher expected portfolio return.

Proposition 2: Low positive or large negative correlation between absolute re-

turns of assets is preferred for lower variance of the portfolio if the probability

of being simultaneously correct or wrong is higher than 50%. The opposite is

true if the probability is lower than 50%.

Proposition 3: High correlation between asset returns, be it positive or negative,

is not preferred assuming that it is linked to correlated forecast outcomes.

3 COMPOSITION OF OPTIMAL PORTFOLIOS

3.1 Setup

Analytical examination of the developed framework gives a preliminary under-

standing to how assets should be picked in simple situations. Next, it is exam-

ined how portfolios are formed in more complex scenarios utilizing directional

return estimates. The aim is to find out how optimal portfolio weights, on av-

erage, are distributed in the asset universe under different optimization criteria.

This is carried out as a simulation study, generating assets with different proper-

ties regarding their unconditional volatility, probabilistic accuracy of forecasts,

and the pairwise correlations of absolute returns – i.e. the factors found to be of

importance in Section 2.

Portfolios in the study are optimized using three common criteria: mini-

mum variance, maximum reward-to-risk (Sharpe ratio), and maximum geomet-

ric mean. The optimization procedure is repeated for a large number of times,

the observations are categorized (by quintiles) and the average optimal weights

for each category are calculated. This gives insight into what types of assets are

preferred by the different optimization criteria.

The simulation is carried out by generating 40 assets which are different for

each simulation run, assigning them random ζζζ,ZZZsim,M, andΣΣΣabs. Unconditional

returns are assumed to be normally distributed for simplicity and hence M is

derived from the unconditional volatilities. The range of forecast accuracies

in ζζζ is based on studies documenting directional predictability out-of-sample.
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For example, for monthly returns, directional accuracies between 55% and 65%

(and even higher) have been reported (e.g. Leung, Daouk and Chen (2000),

Pesaran and Timmermann (2002), Nyberg (2011), and Chevapatrakul (2013)).

The lower bound is set equal to 0.5 to take into account assets with (close to) no

directional forecastability9.

For ZZZsim, the construct in Equation 15 is adopted, selecting a random value

to represent the combined effect of the latter two terms in the equation10. This

rarely results in a positive-semidefinite (PSD) ΣD, and hence an algorithm based

on Higham (2002) is utilized to find the nearest PSD matrix, keeping diagonal

values intact. What this does is, it leaves the actual probabilities ζi unchanged,

but alters the joint probabilities so that the structure is plausible. After a PSD

matrix ΣD has been obtained, new joint probabilities ZZZsim are recovered from

this matrix. For generating ΣΣΣabs, first a random PSD correlation matrix is gen-

erated, and it is multiplied by the standard deviations of the absolute returns,

which are derived from the unconditional volatilities in the case of normality.

Once these components have been generated, E[rrr|Ω] and ΣΣΣ|Ω can be computed.

At this point it is assumed that the investor does not go against the forecasted

views, and thus the forecasted signs need not be taken into account in the sim-

ulation. This is a means of simplifying the procedure, as we do not need to

separate assets into those that are predicted to go up and those predicted to go

down in value. For assets that are sold short, this approach corresponds to a sit-

uation where the investor is required to retain the value invested short and count

it toward the portfolio weights summing up to one. In the performance analysis

that follows in Section 4, this simplification is removed to take the signs of the

forecasts explicitly into account.

3.2 Minimum variance portfolios

Directional forecasts not only affect the conditional expected return vector, but

also the conditional variance-covariance matrix. Thus, the composition of the

global minimum variance portfolio is influenced by the directional forecasts as

well. The minimum variance optimization problem is defined as follows:

min
www

w′Σww′Σww′Σw

s.t. w′1w′1w′1 = 1,
(20)

where ΣΣΣ is the variance-covariance matrix, and www denotes a column vector of

portfolio weights. As mentioned earlier, the portfolio weights are assumed to

9 The specifications for the simulation are: ζi ∼U(0.5,0.65);ζi j =min{ζiζ j+(1−ζi)(1−ζ j)+ei j,1},ei j ∼
U(0,0.5);σi ∼ U(0.02,0.2);Corr[|ri|, |r j|] ∼ U(−1,1).

10 This random value is non-negative and hence ζi j ≥ 0.5, which is likely to be the case in practice as

well.
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be in the direction of the forecasts. This is equivalent to limiting the weights

wi to be non-negative in the optimization and multiplying the conditional esti-

mate for ΣΣΣ, ΣΣΣ|Ω according to Equation 19, element-wise by ssssss′. In essence, this

simplifies the procedure by restricting that all the weights are in the direction

of the forecasts (or zero) and hence, the simulation study does not differentiate

between the assets that are predicted to go up and those predicted to go down in

value.

After 100,000 simulation runs, the assets are categorized according to their

characteristics to form bins based on quintiles. The average weight for the assets

in each bin is then computed to find out about the preference relations of assets

under the minimum variance criterion.

In Figure 2, the assets are categorized based on the forecast accuracy ζi, the

unconditional standard deviation, the weighted average joint probability of be-

ing correct/wrong simultaneously, ζi j, and the weighted average absolute cor-

relation between asset pairs. The weighted averages are formed by weighing

the values of ζi j with the corresponding optimal portfolio weights, so that only

the joint probabilities across assets included in the portfolio matter. The same

approach is used in the case of the absolute correlations. The figure displays

the average optimal portfolio weight in each of the 25 bins as a circle with a

diameter related to the average portfolio weight. The larger the circle is, the

more weight, on average, is given to the assets in the corresponding category.

The numbers above the columns and next to the rows indicate the upper bound

for the corresponding category.

Figure 2: Preference relations under the minimum variance criterion

From the left diagram in Figure 2, it is clear that the minimum variance cri-

terion strongly prefers assets with low unconditional standard deviation, as the

circles are the largest on the leftmost column in the diagram, whereas other
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columns do not get much weight at all. Vertically, there is not much difference

between the circle diameters, indicating that forecast accuracy ζi does not re-

ally matter for minimum portfolio variance compared to the importance of the

unconditional volatility.

As is evident from the theoretical construction in Section 2, asset pairs with

low ζi j are valued for lower portfolio variance. The importance of ζi j can be

seen in the right diagram of Figure 2, where the assets are categorized based

on the weighted averages of absolute return correlation and ζi j. The circles get

progressively larger as we move up in the diagram, indicating that low ζi j assets

get more weight on average assigned to them. As shown in Figure 1, when

the value of ζi j > 0.5, low (negative) absolute return correlation is preferred.

Figure 2 also demonstrates this, as there is a tendency for the circles to get

progressively larger as we move left in diagram. From Figure 1, it is evident that

ζi j is the dominant factor affecting conditional covariance over absolute return

correlation, and this can be seen in Figure 2 as well, as moving vertically in the

right diagram has a larger effect on the average weight than moving horizontally

does.

More diagrams like the ones in Figure 2 can be produced for other prefer-

ence relations, and they are in line with the theoretical findings in the earlier

section. Here only two illustrative cases are presented due to limited space. Re-

garding relations between the other asset characteristics, it can be mentioned

that unconditional standard deviation also dominates ζi j, and it appears to be the

most important parameter in selecting assets in the global minimum variance

portfolio, as is intuitive to expect.

3.3 Maximum reward-to-risk (Sharpe ratio) portfolios

The maximum expected return-to-risk, or the Sharpe ratio (Sharpe (1966)) omit-

ting a risk-free rate, criterion balances portfolio expected return relative to risk

measured by the standard deviation of the portfolio return. In this case, the

optimization problem is:

max
www

w′w′w′μμμ√
w′Σww′Σww′Σw

s.t. w
′
1w
′
1w
′
1 = 1,

(21)

where μμμ denotes the expected return vector. As in the case of the minimum vari-

ance criterion, the investor is not allowed to go against the directional forecasts,

which is equivalent to adding a non-negativity constraint for the weights and

multiplying the estimate for μμμ element-wise by sss, and multiplying the estimate

for ΣΣΣ element-wise by ssssss′.
The optimal weights from 100,000 simulation runs are collected. The assets
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are sorted into bins according to their characteristics, and the average weights

for each bin are calculated. Figure 3 displays the results for assets catego-

rized based on the forecast accuracy ζi, unconditional standard deviation, and

the weighted average joint probability ζi j. As opposed to the global minimum

variance portfolios, high values for the probability of being correct, ζi, are now

valued critically. Low standard deviation is still preferred, but forecast accu-

racy is clearly the dominating factor, which is evident from the left diagram in

Figure 3. In the proposed framework, high unconditional standard deviation is

favored for higher conditional expected return, but at the same time it increases

the conditional variance of the portfolio. For the maximum Sharpe ratio crite-

rion, the gain in conditional expected return appears to be offset by the increase

in conditional portfolio return volatility.

Figure 3: Preference relations under the maximum reward-to-risk criterion

The diagram on the right in Figure 3 shows that forecast accuracy is also

more important than the pairwise joint probability ζi j for maximum Sharpe ratio

portfolios, as moving vertically in the diagram has a larger effect on the circle

diameters compared to moving horizontally. More diagrams like the ones in

Figure 3 can be produced, and they are in line with the findings in the theoret-

ical section of this paper. For example, low or negative absolute correlation is

preferred due to ζi j being greater than 0.5. Overall, the maximum Sharpe ratio

criterion appears to pay the most attention to the forecast accuracy ζi.

3.4 Maximum geometric mean portfolios

The so-called maximum geometric mean (MGM) criterion has received recent

attention by Estrada (2010), who advocates its use. As the name indicates, the

criterion seeks to maximize the geometric mean of the portfolio return, which is
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in line with maximizing the terminal wealth of the portfolio. Following Estrada

(2010), this goal can be achieved by solving the following optimization problem:

max
www

[
ln(1+w′w′w′μμμ)− w′Σww′Σww′Σw

2(1+w′w′w′μμμ)2

]
s.t. w′1w′1w′1 = 1.

(22)

As before, the investor is assumed to follow the directional views and hence

a non-negativity constraint for the weights is in place and the input estimates are

modified accordingly. The assets picked in the MGM portfolios have quite dif-

ferent characteristics compared to those preferred by the previous two optimiza-

tion criteria. As is evident from Figure 4, a combination of high unconditional

standard deviation and forecasting accuracy, ζi, is preferred. This is intuitive to

expect, since according to the theoretical framework in Section 2, those are the

two components affecting the conditional expected return of the portfolio.

Figure 4: Preference relations under the maximum geometric mean criterion

From the left diagram in Figure 4, it appears that forecasting accuracy ζi and

the unconditional standard deviation have an equally important role in the MGM

portfolios. High standard deviation is not preferred unless the particular asset is

accompanied by a high probability of getting the sign of the return correct. In

this sense, the MGM criterion is quite selective about the assets it includes in

the portfolio.

On the right diagram in Figure 4, assets are sorted based on forecasting ac-

curacy, ζi, and the weighted average correlation between the absolute returns. It

is clear that ζi is the more important factor here, but lower values for the corre-

lation are still clearly preferred to larger ones. This indicates that low portfolio

variance is still preferred by the MGM criterion, even though high conditional

expected return appears to be the main priority.
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4 PORTFOLIO PERFORMANCE AGAINST
SIMPLER ALTERNATIVES

4.1 Construct of the analysis

Having found out what types of assets are preferred under different optimiza-

tion criteria, the next step is to evaluate what kind of a performance increase can

be achieved by using the proposed framework compared to simpler alternatives.

The investor obtains directional forecasts and is faced with a portfolio selection

problem according to the three criteria presented earlier (minimum variance,

maximum reward-to-risk, and maximum geometric mean). All of the parame-

ters required in the construction of optimal portfolios are assumed to be known

in this section, and thus the analysis conducted is essentially an examination of

theoretical performance differences.

The performance of three alternative methods for portfolio construction are

compared to that of the proposed framework. These alternatives are simple

methods that the investor would likely use if she did not have the proposed

framework available. The first alternative assumes that the investor constructs

the expected return vector by multiplying the directional forecasts by a simple

magnitude estimate; the mean of the individual assets’ absolute returns, which

under normality is simply σ̄
√

2/π. For the variance-covariance matrix estimate,

the (known) unconditional covariance matrix is used in the optimization.

The second alternative constructs the expected return vector by multiplying

the directional forecasts with noise generated from independent uniform distri-

butions extending from zero to the mean of all assets’ standard deviations, σ̄.

This mimicks a procedure where the investor will try to incorporate noisy esti-

mates of the return magnitudes in order to perform mean-variance optimization.

The unconditional covariance matrix is used as an estimate for the covariance

matrix in the optimization.

The third alternative seeks to test whether the construct of the covariance

matrix estimate matters if the expected return vector is formed as in the proposed

framework. The purpose is to test how much worse off the investor will be if she

instead opts to use the known unconditional covariance matrix together with the

proposed framework’s conditional expected return vector, thereby only utilizing

"half" of the framework.

As opposed to the previous section where optimal portfolio composition was

examined, here the investor is allowed to go against the directional forecasts.

For example, if there is an asset combination that would be favorable for port-

folio variance if an opposite position to the directional forecast was taken, the

investor may do so by sacrificing expected return for lower variance. A con-

straint is imposed on the absolute values of portfolio weights summing up to
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one, i.e. no additional funds are obtained by short selling an asset. This pre-

vents the optimization from resulting in combinations where leverage is enor-

mous. Moreover, this type of an approach is applicable to other asset classes as

well, not just stocks.

Portfolio optimization is performed utilizing the proposed framework and

each of the three alternatives described above. Optimal weights according to the

different optimization criteria are solved and they are used to compute the con-
ditional expected return and variance of the portfolio according to the proposed

framework. That is, even though simpler estimates are used for the alternatives

during optimization, the resulting portfolio performance is evaluated assuming

that the conditional views of the proposed framework are accurate. In essence,

what this does is it evaluates the loss incurring by using a simpler model when

the "true" model is available.

4.2 Generating the investment environment

In order for the simulation study to cover as wide and general situations as pos-

sible, the characteristics of investable assets are created randomly following a

specific set of guidelines that mimicks the characteristics of real world assets.

In addition, directional forecasts are generated according to a simple principle

explained in what follows.

For each simulation run, all parameters required in the optimization are ran-

domly generated in the same fashion as in the portfolio composition study

in chapter 3. In order to test the effect of different scenarios and to make

the study more robust, two separate values for the upper limit of ζi (55%

and 60%, which are in line with a number of recent out-of-sample studies

on directional predictability, such as Bekiros and Georgoutsos (2008), Nyberg

(2011), and Chevapatrakul (2013)) are included, and two ranges for the un-

conditional sign correlations are specified (Corr[sgn(ri),sgn(r j)] ∈ [−1,1] and

Corr[sgn(ri),sgn(r j)] ∈ [0.5,1]). Absolute return correlation is set to range be-

tween 0 and 1.

The unconditional returns are assumed to have marginal normal distributions

with zero means for simplicity. A random unconditional sign correlation matrix

RRRsgn is generated and made PSD by utilizing an algorithm based on Higham

(2002). An absolute return correlation matrix is generated in a similar fashion,

from which the absolute return covariance matrix can be derived under normal-

ity. These are then combined to form the unconditional covariance matrix ΣΣΣ.

This is accomplished by assuming that the zero-mean return signs are indepen-
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dent of the magnitudes11, in which case

Cov[ri,r j] = E[sgn(ri)sgn(r j)]E[|ri||r j|]
= Corr[sgn(ri),sgn(r j)](Cov[|ri|, |r j|]+E[|ri|]E[|r j|]).

(23)

Under zero-mean normality, the expected absolute values can be expressed in

terms of unconditional standard deviations (as demonstrated in the theoretical

section). This is easy to generalize to matrix form, and thus the unconditional

covariance matrix can be formed.

The joint probabilities ζi j are generated for each simulation run by assuming

the form presented in Equation 15, as was done in Section 3. However, now that

there is a generated sign correlation matrix available, the joint probabilities are

formed accordingly by assuming that f (x) = x/2, which leads to highly corre-

lated assets having their forecast outcomes also correlated. The additional term

in Equation 15, ηi j ∼ U(−0.1,0.1). These ranges and values should be fairly

realistic and cover a wide variety of scenarios.

The directional forecasts are generated by simulating from a multivariate nor-

mal distribution with a covariance matrix equal to the generated sign correlation

matrix RRRsgn. The directional forecasts, sss ≡ sgn(yyy), where yyy ∼ N(000,RRRsgn). This

procedure has a tendency to generate directional forecasts that are less corre-

lated than indicated by the sign correlation matrix, however, this could also be

expected from forecasting models in practice, since their accuracy can be low,

and they could be influenced by other factors than just correlations between the

asset returns. Moreover, the correlation between the generated sign changes for

each simulation run and is not expected to make a noticeable difference in the

results.

4.3 Results

The results for the global minimum variance portfolios with 40 investable assets

in 1000 different scenarios (simulation runs) are presented in Table 1. The table

shows the average portfolio mean, average standard deviation, diversification

measure (DI)12, and weights against the directional forecasts (WA) for the pro-

posed framework and the alternative which uses the unconditional covariance

matrix in optimization. Naturally, the results are identical for the other two al-

ternatives in the case of the global minimum variance portfolios and hence they

are omitted here.

11 The assumption is made in order to separate the generation of sign correlation matrix and the ab-

solute correlation matrix. It should not have an effect on the results as the version of the theoretical

framework utilized does not take into account possible dependency between the absolute returns and

return signs.
12 The average maximum absolute weight in the portfolio divided by the average number of assets

with more than 5% absolute weight. The lower this ratio is, the more diversified the portfolio can be

considered to be.
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Table 1: Simulated performance of global minimum variance portfolios

As is to be expected, the average mean returns of the portfolios are virtually

zero for all cases. It is evident that the proposed framework produces signif-

icantly lower portfolio standard deviations than the simpler alternative which

uses the unconditional covariance matrix in optimization. The average portfolio

standard deviation produced by the proposed framework is less than half of that

produced by the alternative (0.003 vs. 0.007 or 0.008) in the case of high pos-

itive unconditional sign correlations. When the unconditional correlations are

spread wider (between -1 and 1), the performance difference is still large (0.005

vs. 0.010). Also important to notice is that the range of the forecast accuracy

ζi does not appear to have any effect on the achieved performance (the small

difference that the alternative framework produces in the case of high positive

sign correlation is due to randomness included in the simulation). This is in line

with the results of Section 3, where it was demonstrated that ζi does not have a

significant influence on the composition of global minimum variance portfolios.

From Table 1, it can be observed that the values of the diversification mea-

sure (DI) are similar for both frameworks in all evaluated scenarios, indicating

that the portfolios are in general equally well diversified. The average weight

against the forecasted views is close to 50% for both models, indicating that for

about half of the assets included in the portfolio, the position taken is against the

forecasted direction. For the alternative that uses the unconditional covariance

matrix in optimization, the forecasts do not affect the estimate for the covariance

matrix, and so it is expected that the WA number be close to 50%. For the pro-

posed framework, the result indicates that when low portfolio variance is first

priority, it is not rare to go against the forecasted directions.

Perhaps surprisingly, the average standard deviation for the portfolios is lower

in the case of high positive unconditional sign correlations, as opposed to the

case where the range is wider for sign correlations. This can be explained by the

fact that when going against the forecasted direction, the investor’s preference

for low ζi j switches to preference for high ζi j, which are found with highly

correlated assets in the simulation. For the unconditional alternative, having
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highly positively correlated assets presents the opportunity of shorting a stock

for lower covariance. Since the absolute weights of the portfolio are constrained

to sum up to one, this does not increase the total variance of the portfolio because

no additional funds are obtained by short selling a stock.

For the maximum Sharpe ratio portfolios, the results are presented in Ta-

ble 2. In addition to reporting the average mean and standard deviation of the

portfolios, the average mean-to-standard deviation ratio (Sharpe ratio without a

risk-free rate) is presented. For 40 investable assets, the proposed framework

produces Sharpe ratios that are nearly twice the amount of those produced by

the best alternative in all scenarios, and the difference is in many cases even

larger than that. For example, in the case of high positive correlations and ζi
ranging between 0.5 and 0.6, the average Sharpe ratio of the proposed frame-

work is 0.756 compared to that produced by the best alternative (Alternative 1

in Table 2, where the proposed conditional expected return vector is utilized, but

the covariance matrix estimate is unconditional), 0.275.

Table 2: Simulated performance of maximum reward-to-risk portfolios

From Table 2, it is evident that alternative 1 (utilizing the "true" conditional

expected return vector, but lacking the correct covariance matrix) fairs better

than the simpler alternatives 2 and 3, but still notably worse than the proposed

framework. This indicates that it is important to use the correct conditional

covariance matrix estimate with the proposed expected return vector. Moreover,

Table 2 shows that the range of ζi matters substantially for performance, as the

produced Sharpe ratios are notably higher for the case where the range for ζi
extends to 60%. This is different from the case of the global minimum variance
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criterion, where the range of forecast accuracy did not matter for performance.

Moreover, the portfolios generated by using the proposed framework appear to

be about equally well diversified as those generated by using alternative 1, and

notably better diversified as those generated by alternatives 2 and 3.

Table 2 shows that the proposed framework leads to going against the fore-

casted directions very often (nearly 50% of the portfolio weight for all evalu-

ated scenarios). In the scenario where the unconditional sign correlations have

a wider range (between -1 and 1), going against the directional forecasts is not

as common as when the correlations are high and positive. This can be ex-

plained by the fact that high correlations lead to higher ζi j, which in turn can

make it worth taking a position against the forecasted direction. The proposed

framework appears to sacrifice quite a lot of expected return in order to reduce

portfolio variance.

Table 3 presents the results for maximum geometric mean (MGM) portfolios.

In addition to the average mean and standard deviation, the average geometric

mean return is presented and used as the main performance indicator to com-

pare the proposed framework against the different alternatives. The proposed

framework produces substantially higher average geometric means than the two

simpler alternatives (2 and 3). Against Alternative 1, which uses the "true" con-

ditional expected return vector, the performance increase is relatively small, but

still notable especially when the range for forecast accuracy ζi extends to just

0.55. This is presumably the case because for the MGM portfolios, generating

a high positive expected return is a first priority, and the variance of the portfo-

lio appears to matter less when directional accuracies for the forecasts are high.

Thus, the estimate for the covariance matrix does not play as big a role and it

may suffice to use the unconditional estimate instead.

From Table 3, it can also be observed that the level of forecast accuracy ζi
has a large impact on portfolio performance in all presented scenarios. Interest-

ingly, weight against the forecasted directions is close to 0% for all cases, in-

dicating that the optimization criterion very rarely sacrifices expected return of

the portfolio for a decrease in portfolio variance by going against the directional

forecasts. A slight exception to this is the case when sign correlations are highly

positive and the forecast accuracy is relatively low. In this case, the proposed

framework leads to about 7.5% of the weights being against the forecasts. This

is a situation (lower directional accuracies, higher ζi j) where portfolio variance

is given more attention, and lower variance can be achieved by going against the

forecasted directions.

Finally, the average geometric means are higher when the unconditional sign

correlations range between -1 and 1 compared to the case of high positive cor-

relation. This is an opposite finding to earlier in the case of minimum variance

or maximum Sharpe ratio portfolios, and makes sense because with the MGM

portfolios, weights against the forecasted directions are not common, meaning
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Table 3: Simulated performance of maximum geometric mean portfolios

that high values for ζi j are not useful for reducing portfolio variance (by going

against the forecasts).

Overall, the results of this section indicate that the performance increase from

using the proposed framework can be very significant compared to using sim-

pler alternatives that the investor has available for utilizing directional forecasts

in mean-variance optimization. Using the correct form for just the expected

return estimate and not the covariance matrix produces better results than the

other two alternatives, however, the performance increase from using the whole

proposed framework is much larger, especially in the case of maximum Sharpe

ratio portfolios.

5 TRADING SIMULATION

To relax the assumptions about normal or symmetric returns with mean zero, a

trading simulation with authentic stock market data is conducted. The purpose

is to see how well the proposed framework does against a simple alternative

when the distributional assumptions behind the model do not accurately hold.
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5.1 Construct of the study

In the trading simulation, U.S. stock market data provide an authentic invest-

ment environment. Directional return forecasts for the available stocks are

generated and portfolio wealth development utilizing the new framework is ob-

served, comparing the results against a simpler alternative. The experiment is

conducted using weekly closing levels of total return indices for the S&P100

stocks from December 2002 to December 201413. The weekly interval is cho-

sen as it provides more observations than using monthly returns, and the pre-

dictability of daily returns can be assumed to be relatively weak – the weekly

interval finds a balance between these two.

A vector of net percentage returns, rrrt, is computed for each week. The same

data are utilized multiple times in the simulation, each time changing the pa-

rameters that govern the directional forecasts. This way the scenario changes

on each simulation run. Alternatively, one could think of this setting as having

a large number of investment managers, each with a unique forecasting model

for the return signs. Additionally, only 40 stocks are chosen as investable assets

for each simulation run, so that not only the parameters governing the forecasts

change, but also the assets themselves are different from one run to the other.

The end result is a simulated stochastic investment world based on authentic

stock market data.

The generation of directional forecasts is explained in more detail in the next

section. As before, we need to generate a probability vector ζζζ14, and a matrix of

joint probabilities ζi j, ZZZsim. This is done as previously in the simulation study

in Section 4, taking into account the sample-based sign correlations between

asset returns and incorporating their effect into ζi j according to Equation 1515.

The covariance matrix of D can then be computed as previously, again utiliz-

ing an algorithm based on Higham (2002), keeping the diagonals unchanged,

to ensure positive-semidefiniteness (PSD). Once a PSD matrix is obtained, the

corresponding probabilities ZZZsim are recovered from the PSD ΣD. These joint

probabilities are the values that are then used to generate directional forecasts.

All other parameters are obtained directly from the past market data, rolling

the estimation window forward as new observations become available to the

investor.

Once the directional forecasts have been generated, optimal portfolio weights

are computed for each trading period utilizing both, the proposed framework,

13 Only those stocks in the index that have data available since the beginning of the sample period are

included – this results in a total of 92 stocks in the dataset. Survivorship bias is not an issue in this

study, as the purpose is to compare portfolio selection models against each other.
14 For each simulation run, ζi ∼ U(0.5,0.6) for all i, which can be justified, for example, by the study

of Bekiros and Georgoutsos (2008) for weekly market index returns.
15 The function f is set to equal xi j/2 in this simulation. In addition, some randomness is introduced

through ηi j ∼ U(−0.1,0.1).
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and a simpler alternative. For this alternative model, which is something that

the investor might resort to when directional forecasts are available, the covari-

ance matrix input is the historical unconditional estimate (based on past data).

The expected return vector estimate is formed by multiplying the forecasted

directions by the average of the mean historical magnitudes of the available

assets. Thus, both models utilize the same directional forecasts – the differ-

ence being that the proposed framework utilizes the directional accuracies and

deals with the information more efficiently. Optimal portfolio weights are com-

puted utilizing the same three criteria as before (minimum variance, maximum

reward-to-risk, and maximum geometric mean), and the investor is allowed to

go against the directional forecasts. To avoid extremely large weights, the port-

folio weights are constrainted in two alternative ways. The first alternative is

to set −0.2 ≤ wi ≤ 0.2,∀i. The second alternative is to set the sum of absolute

weights equal to one, i.e.
∑

i |wi| = 1. Results are reported separately in the case

of each of these constraints.

5.2 Generating directional forecasts

While it would be possible to utilize a few well-known forecasting models to

generated directional forecasts, this approach would be too limited for the pur-

pose of this study, which should cover as wide a range of situations as possible.

Specifying a set of directional forecasting models would create ambiguity, and

therefore a different, more general approach is adopted: The directional fore-

casts are generated artificially, conforming to the specified directional accura-

cies so that it appears as if they have been generated by a model defined by

these parameters.

A straightforward way to generate directional forecasts in a simulation study

such as this is to derive them from the actual stock returns by setting ssst ≡ Dt �
sgn(rrrt). This approach makes the directional forecasts endogenous as explained

in the theoretical section of this paper. To simulate the outcomes of the forecasts,

Dt, governed by the probabilities in ζζζ and ZZZsim, the method of Leisch et al.

(1998) is modified as explained in Appendix B. This approach allows generating

directional forecasts utilizing a multivariate normal distribution.

The convenient property of this approach is that there is no need to concern

with what the actual forecasting model is – the directional predictions are simply

simulated according to the given probabilities and real stock market data. This

is a way to obtain directional forecasts as if they came from a forecasting model

governed by the probabilities in ζζζ and ZZZsim, which vary between the simulation

runs. The trading simulation for portfolio performance evaluation is run out-

of-sample (i.e. all market parameters are estimated from past data), but the

probabilities with which the directional forecasts are correct are known to the
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investor. The probabilities do not take into account the additional information in

the unconditional correlation matrix (as explained in Appendix A), and so they

could be made more accurate, but we elect not to do so in order to keep things

more explicit in this simulation study.

5.3 Results

The trading period contains 522 out-of-sample weeks with an estimation win-

dow of two years (104 weeks). The simulation was run 100 times with differ-

ent forecasting accuracies and investable assets each time, yielding a total of

52,200 investment decisions or periods for each optimization criterion. The av-

erage performance indicators corresponding to each criterion were calculated

and Table 4 presents these figures.

Table 4: Trading simulation results

For the minimum variance portfolios, the average standard deviation using

the proposed framework under the first constraint is 1.7%, slightly lower than

that produced by the alternative, 1.9%. Notice that for the case of global min-

imum variance portfolios, the alternative framework uses the unconditional co-

variance matrix as an input in the optimization and hence does not take into ac-

count the predicted signs. Since the estimation window is relatively long (104)

weeks, the estimate for the unconditional covariance matrix changes quite little

from period to period, and hence the optimal weights tend to change less, lead-

ing to less trading being done which shows up in the average turnover amounts

in Table 4. On the contrary, with the proposed framework, the directional fore-

casts are taken into account in the conditional covariance matrix according to

Equation 19, and hence, more trading takes place each period.
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In the case of the second constraint (i.e. sum of absolute weights is equal to

one), the alternative framework produces significantly lower average standard

deviation, 0.4% compared to 0.9% produced by the proposed framework. How-

ever, it should be noted that when using the proposed framework, the covariance

matrix estimate depends on the directional forecasts, and hence the optimal port-

folios can change radically from period to period. This also makes it possible

for the mean of the portfolio to change from period to period. Therefore, ex-

amining the out-of-sample standard deviation of the portfolio may not tell much

about the true conditional volatility of the portfolio returns each period.

For the maximum reward-to-risk portfolios, the average Sharpe ratio pro-

duced by the proposed framework under the first constraint, 0.242, is substan-

tially higher than the corresponding average Sharpe ratio for the alternative

model, 0.163. For the second constraint, this performance difference is even

larger (0.342 versus 0.150). It should be noted that in the case of maximum

Sharpe ratio portfolios, the alternative framework also takes into account the

forecasted directions in the expected return vector. As explained in detail above,

the scenario changes for each simulation run: for a concrete illustration, Figure

5 shows simulated wealth development for the maximum Sharpe ratio portfolios

under the second constraint (absolute weights summing up to one) in three dif-

ferent scenarios where the forecast accuracies and investable assets are different.

In each scenario, the optimization problem is solved using both the proposed

framework (solid curves in the figure) and the alternative (dashed gray curves).

Figure 5: Simulated wealth development of maximum Sharpe ratio portfolios (with

absolute portfolio weights summing up to one)

The horizontal axis in Figure 5 denotes the out-of-sample trading period in

weeks, and the vertical axis shows the level of wealth relative to starting wealth
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(equal to one) in log scale. It is evident that in each scenario, the proposed

framework produces a more stable wealth development with higher terminal

wealth (i.e. higher Sharpe ratio) than what is produced by the alternative. The

figure shows just three scenarios for clarity, but the experiment can be repeated

for any number of times, and the graph would have a similar appearance.

From Table 4, it can also be observed that the average turnover amount for the

Sharpe ratio portfolios is notably lower for the proposed framework than for the

alternative under both constraints. This indicates that in addition to providing

better performance, the usage of the proposed framework can lead to less trading

taking place, and thus, lower transaction costs.

Finally, for the maximum geometric mean portfolios, Table 4 shows that the

average geometric mean utilizing the proposed framework under constraint 1 is

1.30% – significantly higher than that produced by the alternative, 0.93%. As

is the case with the maximum Sharpe ratio criterion, the performance difference

becomes even larger when constraint 2 is in place (0.58% versus 0.14%). This

latter performance difference between the two frameworks is illustrated graph-

ically in Figure 6, where the wealth development for three scenarios is plotted

utilizing both the proposed framework and the alternative. It should be noted

that the terminal wealths produced are unrealistically high due to no trading

costs included in the simulation, however, the figure serves the purpose as the

objective is to compare the performance of the two frameworks.

Figure 6: Simulated wealth development of maximum geometric mean portfolios

(with absolute portfolio weights summing up to one)

As is evident from Table 4, for the maximum geometric mean portfolios, the

average turnover amount for the proposed framework is slightly higher than for
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the alternative when constraint 1 is in place, however, with the second constraint,

the trading incurred in the case of the proposed framework is significantly lower

than in the case of the alternative framework.

Overall, the trading simulation shows that notable performance increase for

maximum Sharpe ratio and geometric mean portfolios over a simple alternative

is possible to achieve by using the proposed framework when directional fore-

casts are available. Specifically, the simulation has demonstrated that even with

the simplifying assumptions behind the proposed framework (most importantly,

symmetric unconditional returns with mean zero) not necessarily holding, the

performance can still be high compared to a simpler alternative. In other words,

applying the proposed model in a trading experiment conducted with authentic

stock market data shows that it can be valuable in practice as well.

It should be kept in mind that in this simulation study, the directional ac-

curacies are assumed to be known to the investor. In reality, the performance

increase is not expected to be this high as the accuracy estimates contain some

error. This is a topic that would be interesting to address in future research

by applying specific forecasting models and measuring their accuracy from past

data. The approach chosen here is more general and encompasses all directional

forecasting models with one setting.

6 CONCLUSION

A novel framework is developed for mean-variance portfolio optimization in

order to use directional return estimates as inputs. This makes it possible to by-

pass the difficult, direct estimation of mean returns. When return directions are

forecastable, the analytical results in this paper give rise to three propositions:

1) Assets with high (idiosyncratic) return volatility are preferred for higher ex-

pected portfolio returns; 2) Correlation between absolute returns affects portfo-

lio variance explicitly; 3) High levels of correlation between asset returns, be

it positive or negative, is not preferred assuming that it is linked to correlated

outcomes of the directional forecasts.

In simulation studies including a wide variety of scenarios, the developed

framework is shown to be capable of producing a substantial performance in-

crease compared to simpler alternatives under three optimization criteria (mini-

mum variance, maximum Sharpe ratio, maximum geometric mean). Moreover,

a trading simulation with authentic stock market data demonstrates that even if

the simplifying assumptions behind the developed model may not hold accu-

rately, employing the model can still provide substantially higher Sharpe ratios

or geometric means compared to a simpler alternative.
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It should be noted that due to the generalized setting of the trading simula-

tion, the increase in performance relative to alternative models is not likely to be

as high in practice as the directional accuracies of the forecasts need to be esti-

mated. Future research could focus on methods for their estimation and conduct

a performance analysis utilizing specific forecasting models that are known to

have predictive power out-of-sample. Another topic for future research is the

concept of absolute return correlation, which emerges as a parameter explicitly

affecting conditional portfolio variance in this setting. Finally, the developed

framework does not consider higher moments (asymmetry of the conditional

distribution), and a possible extension to the model could be derived in order to

take this aspect into account.
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APPENDIX A

The directional forecasts can be viewed either as exogenous, with the uncondi-

tional return correlation structure following (sgn(rrr) ≡ sss�D), or as endogenous

(sss ≡ sgn(rrr)�D), in which case the unconditional correlation structure contains

additional information about the conditional returns, and especially the forecast

accuracies. The framework presented in the paper is compatible with both of

these interpretations. In the latter case, which is adopted in the trading sim-
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ulation study in this paper, it would be possible to denote the probabilities ζi
and ζi j as conditional on the observed directional forecasts sss. This is because if

sss ≡ sgn(rrr)�D, and we knew the correlation structure of sgn(rrr), the forecast vec-

tor sss contains information about the outcome Di for asset i, affecting its expected

value and hence, the probabilities ζi and ζi j.

For example, if every directional forecast in sss were +1 and the unconditional

correlation structure were highly positive for all asset pairs, it is more likely that

the forecasts for a pair of assets are simultaneously correct or wrong than in the

case where the correlation structure is 0 across the asset pairs. If the forecasted

directions are endogenous and the unconditional return correlation structure is

assumed to be known, then, in general, E[D|sss] � E[D] = (2ζζζ −111). The same

applies for the joint probabilities in ZZZsim. To take this into account, it would

be possible to define the probabilities as being conditional on the directional

forecast vector sss.

For several assets, deriving the explicit form of these conditional probabili-

ties from the unconditional parameters analytically would not be a feasible task,

but one could resort to simulating their values. In practice, the true levels of the

conditional expected values or probabilities are not known because we cannot

know the exact distribution of stock returns. However, one very simple alterna-

tive to make the probabilities more accurate is to define two separate cases – one

for the case when the asset is predicted to go up in value, and one for the case

when the value is forecasted to drop. A similar approach can be adopted for

the joint probabilities: one for the case when both assets are predicted to move

in the same direction, and one for the case when they are predicted to move in

different directions. Instead of determining merely ζi j, we could find a value

separately for ζ+i j (for when predicted directions are the same) and ζ−i j (predicted

directions are not the same). This idea can be extended further by making a dif-

ference between the case where si = 1, s j = 1 and the case where si =−1, s j =−1,

and so forth. This approach should be relatively easily applicable in practice as

well.

APPENDIX B

Generating a vector of discrete random variables, D, with P(Di = 1) = ζi, P(Di =

−1) = (1− ζi) and P(Di = D j) = ζi j is done by modifying the method of Leisch

et al. (1998), who generate multivariate binary data where P(Di = D j = 1) is

known.

The idea is to find a mean vector and a covariance matrix for a random vector

R with a multivariate normal distribution, which will generate values such that
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P(sgn(Ri) = 1) = ζi, P(sgn(Ri) = −1) = (1− ζi) and P(sgn(Ri) = sgn(R j)) = ζi j.

Simulating from a multivariate normal distribution is then possible with any sta-

tistical programming language, and D ≡ sgn(R) will have the desired properties.

Following Leisch et al. (1998), the appropriate mean vector μμμ is generated

by setting μi = Φ
−1(ζi), where Φ is the standard normal cumulative distribution

function. The variance of Ri,∀i is set to equal one, so that the generated covari-

ance matrix is also the correlation matrix of R. By denoting R̃i ≡ Ri − μi and

R̃ j ≡ R j−μ j, the joint probability

ζi j = P(Ri > 0,R j > 0)+P(Ri < 0,R j < 0)

= P(R̃i > −μi, R̃ j > −μ j)+P(R̃i < −μi, R̃ j < −μ j).
(24)

Since R̃i and R̃ j have a standard bivariate normal distribution, the correlation

coefficients ρi j can be obtained from the following equation

ζi j =

∫ ∞
−μ j

∫ ∞
−μi

φ(ri,r j;ρi j)dridr j+

∫ −μ j

−∞

∫ −μi

−∞
φ(ri,r j;ρi j)dridr j, (25)

where φ(ri,r j;ρi j) is the standard bivariate normal pdf with correlation ρi j.

Solving this equation analytically is not feasible, so what is done instead is

that the values of the right hand side of the equation are numerically simulated

for specific values of ζi, ζ j, and ρi j. This creates a table for a range of values.

The exact values of ζi, ζ j are then rounded to the nearest value used in the simu-

lation, and the corresponding row is selected from the table of simulated values.

Finally, the value for ρi j is obtained by linear interpolation of the simulated

values, so that the exact value of ζi j is closely matched.

Once the correlation coefficients have been generated for each pair of assets,

a covariance matrix is formed. An algorithm based on Higham (2002) is then

utilized to find the nearest PSD matrix, keeping diagonal values intact. Now D
governed by ζi and ζi j can be generated by simulating values from a multivariate

normal distribution with the corresponding mean vector and covariance matrix,

and by obtaining the signs of the resulting values.



74



75

ESSAY 2

Hämäläinen, Joonas

Correlation in the magnitude of financial returns
Preprint



76



77

Correlation in the Magnitude of Financial Returns

Joonas Hämäläinen∗

Abstract

Correlation between the magnitudes of asset returns is an over-
looked concept in financial research. It affects portfolio return vari-
ance explicitly when the directions of returns are predictable. This
paper presents a link from Pearson correlation to magnitude cor-
relation and examines its empirical levels in the U.S. stock mar-
ket. Magnitude correlation is time-varying and has increased mar-
ketwide since the recent financial crisis. Abnormally high levels can
be interpreted as market anxiety and can be linked to the VIX index
measuring implied volatility of stock options.

1 INTRODUCTION

Expected returns of financial assets are notoriously difficult to estimate. How-

ever, previous research has provided evidence that the mere directions of returns

can be forecasted out-of-sample, often with significant accuracy (for recent ev-

idence, see e.g. Bekiros (2010), Nyberg (2011), Chevapatrakul (2013), and

Skabar (2013)). Theoretically, even if conditional mean returns are independent

and hence not forecastable, there can still be dependency in the directions of

returns (Christoffersen and Diebold (2006)).

Investment managers and analysts commonly voice directional views such as

buy/sell recommendations, which can contain predictive power (e.g. Womack

(1996), Barber, Lehavy, McNichols and Trueman (2001)), but it is often not

reported by how much an asset’s value is going to change. It appears that mean

returns are typically too difficult to forecast and the task is often simply avoided.

Moreover, errors in mean return estimates can render important applications

∗ University of Turku, Department of Accounting and Finance, Rehtorinpellonkatu 3, 20500 Turku,

Finland. Part of the research has been conducted during the author’s visit to Princeton University in

2013/2014. The author is grateful for the comments of Luis Alvarez, Stelios Bekiros, Hannu Kahra,

Johan Knif, Shanqui Li, and the participants at the 2014 Paris Financial Management Conference.
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such as portfolio optimization unusable in practice (see, e.g. Michaud (1989),

DeMiguel, Garlappi and Uppal (2009)).

Essay 1 introduced a portfolio selection framework for utilizing directional

return forecasts without having to estimate mean returns directly. This frame-

work adds more dimensions to the traditional mean-variance optimization prob-

lem: for example, correlation between the absolute values, or magnitudes, of

asset returns matters explicitly for conditional portfolio variance.

Although correlation of magnitudes is not an unknown concept in general1,

it appears to be a neglected concept in financial research2. Its theoretical or

empirical properties have not, to the author’s knowledge, been documented to

the extent of this paper before. Perhaps closest to the topic at hand comes the

notion of tail dependency and certain classes of copula functions. A compre-

hensive review of dependence measures can be found in, for example, Nelsen

(2006).

The contribution of this paper is multifaceted: First, it is explored in detail

how magnitude correlation should be interpreted in portfolio selection context.

A preliminary part of these results have been obtained in Essay 1 – this paper

takes the analysis further. Second, an analytical link between standard (Pearson)

correlation and magnitude correlation is derived in the case of bivariate nor-

mality. This allows comparisons between observed magnitude correlation and

normality-induced magnitude correlation. Third, it is examined what levels of

magnitude correlation are found in U.S. stock market data for different intervals

and time periods. The empirical link between Pearson return correlation and the

correlation in the magnitudes is examined as well, and an interpretation for high

levels of magnitude correlation is presented. Finally, for portfolio optimization

purposes, methods for out-of-sample forecasting of magnitude correlation are

evaluated.

It should be noted that even in the unconditional case (i.e. directions of re-

turns not predictable), magnitude correlation affects portfolio returns implicitly

through Pearson correlation under joint normality: in this case, the link between

Pearson correlation and magnitude correlation is fixed, as is shown in this paper.

However, when returns are not multivariate normal, magnitude correlation is not

tied to Pearson correlation, and the setting becomes more interesting.

The empirical results in this paper show that for the S&P500 stocks, average

pairwise magnitude correlation has shifted to higher positive levels in 2007–

2010 and 2011–2014, compared to 2003–2006. Moreover, pairwise levels of

magnitude correlation in the later time periods are, in general, more widely dis-

tributed compared to the earlier timeframe (2003–2006). The magnitude corre-

1 Studies in, for example, the field of medical physics have examined correlation between magnitudes

of changes (see e.g. Ashkenazy, Ivanov, Havlin, Peng, Goldberger and Stanley (2001) and Ashkenazy,

Havlin, Ivanov, Peng, Schulte-Frohlinde and Stanley (2003)).
2 Only one recent study about financial returns that mentions correlation of absolute values was found

by the author, namely, Ivanov, Yuen, Podobnik and Lee (2004).
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lation coefficients are on average lower for monthly returns compared to weekly

or daily returns. For daily returns, pairwise magnitude correlation levels are

considerably higher than that implied by their Pearson correlation under bivari-

ate normality. For monthly returns, magnitude correlation is more in line with

the implied, normality-induced correlation.

The average pairwise level of magnitude correlation for the S&P500 stocks

does not appear to move in sync with the normality-induced Pearson correlation,

and leaves a gap between the two, which we call the abnormal level of magni-

tude correlation in this paper. The marketwide abnormal level for weekly returns

is found to be loosely linked to the levels of the VIX index measuring implied

volatility of stock options. In general, high levels of magnitude correlation can

be interpreted as market anxiety.

The paper proceeds as follows: Section 2 explains what magnitude correla-

tion is and examines how it affects portfolio return distributions. A link from

Pearson correlation to magnitude correlation is presented under bivariate nor-

mality. Section 3 conducts a comprehensive examination on the empirical levels

of magnitude correlation in the U.S. stock market. Section 4 evaluates methods

for estimating magnitude correlation out-of-sample for portfolio management

purposes. Section 5 summarizes the findings and suggests topics for future re-

search.

2 THEORETICAL PROPERTIES

2.1 Definition of magnitude correlation

In the traditional mean-variance approach of Markowitz (1952, 1959), correla-

tion between asset returns is a crucial element determining the diversification

gains for a portfolio of assets. Specifically, correlation affects portfolio return

variance directly. If returns are multivariate normal, (Pearson) correlation com-

pletely describes the dependency relation between the individual asset returns.

When directional forecasts are available for asset returns, Essay 1 shows that

conditional portfolio variance is explicitly affected by the absolute return co-

variance between each asset pair,

Cov[|ri|, |r j|] = Corr[|ri|, |r j|]
√

Var[|ri|]Var[|r j|]. (1)

The variances of absolute values are proportional to the variances of the re-

turns; the magnitude correlation term, Corr[|ri|, |r j|], is what this paper focuses

on. When the directions of asset returns are predictable, this correlation either

smooths the return series of the portfolio, or makes it vary more, depending



80

on the value of Corr[|ri|, |r j|] and the joint pairwise accuracy of the directional

forecasts3, denoted here by ζi j.

Figure 1: Simulated asset returns exhibiting different levels of magnitude correlation

In practice, negative magnitude correlation between two assets implies that

when the relative magnitude of the return on one asset is large, the other asset’s

return tends to be close to zero, and vice versa. By relative magnitude, we

mean the deviation from the expected magnitude E[|ri|], which is proportional

to the volatility of the asset return. Positive magnitude correlation, on the other

hand, implies that when the return on one asset deviates largely from its mean

3 The joint accuracy ζi j is the probability of being simultaneously either correct or wrong on both

assets’ directions.
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magnitude, the return on the other asset is likely to be large in relative terms

as well. Figure 1 illustrates this by showing simulated returns on two normally

distributed zero-mean assets with a) highly positive magnitude correlation, b)

zero magnitude correlation, and c) highly negative magnitude correlation.

The directions of returns (positive or negative) in Figure 1 are irrelevant; the

standard (Pearson) correlation, and hence the sign correlation, for these simu-

lated returns is zero (see Appendix A for details on the simulated return gener-

ation). However, it is clear that in the uppermost panel, both assets tend to have

large returns in either direction simultaneously. Similarly, small returns tend to

go hand in hand. This is a simplified example of positive magnitude correlation.

In the middle panel, the return magnitudes are not correlated, and hence appear

random. In the lowermost panel, the tendency is that when one asset exhibits

a large return in either direction, the other asset has a small return (positive or

negative), and vice versa – an example of negative magnitude correlation.

It should be noted that in the univariate case, autocorrelation in absolute re-

turns can be caused by an autoregressive conditional heteroskedastic (ARCH or

GARCH) process and time-varying volatility (for details about ARCH/GARCH

processes, see Engle (1982) and Bollerslev (1986)). In a similar manner,

magnitude correlation in the multivariate case can arise from a multivariate

ARCH/GARCH process. For more information on the multivariate processes,

see e.g. Tsay (2010). The focus of this paper is on the properties of the cor-

relation itself, and hence possible connections to these econometric models is

outside its scope – this would be a potential area for future research.

To construct an analytical framework for portfolio optimization when direc-

tional forecasts are available, Essay 1 makes the assumption that unconditional

asset returns are symmetrically distributed around mean zero. This assump-

tion/approximation fairly well describes empirical asset returns, especially when

the investment horizon is short. In order to keep the analysis comparable to the

earlier work, the same assumption is adopted in this paper. This is also conve-

nient for analytical tractability.

2.2 Link to Pearson correlation

An interesting question to follow is: What kind of levels of magnitude corre-

lation can normally distributed (marginal) returns exhibit, i.e. does the joint

distribution set limitations?4 For bivariate normal random variables, magnitude

correlation is defined by the Pearson correlation between the random variables

alone. However, multivariate normal returns is a strong assumption5 for finan-

4 Ultimately, this question could be answered by deriving a suitable class of copula functions, however,

this approach is not in the scope of the paper.
5 In fact, there is only one copula function that produces a jointly normal multivariate distribution,

namely, the Gaussian copula.
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cial returns, and in practice, wide variation can be expected. Nevertheless, the

bivariate normal case serves as a good reference point.

The covariance between the absolute values of two bivariate normal random

variables with zero means can be determined by first computing the expectation

E[|rir j|] =
�

rir j≥0

rir j f (ri,r j)dridr j−
�

rir j<0

rir j f (ri,r j)dridr j, (2)

where

f (ri,r j) =
1

2πσiσ j
√

1−ρ2
exp

⎛⎜⎜⎜⎜⎜⎜⎝r
2
i /σ

2
i −2ρrir j/σiσ j+ r2

j/σ
2
j

2(ρ2−1)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
i.e. the probability density function of a bivariate normal distribution with zero

means; ρ denotes the correlation coefficient between ri and r j. Solving the inte-

grals in Equation 2 yields

E[|rir j|] =
2σiσ j

( √
1−ρ2+ρArcSin(ρ)

)
π

. (3)

From Appendix B, we know that E[|ri|] = σi
√

2/π, and therefore,

Cov[|ri|, |r j|] =
2σiσ j

( √
1−ρ2+ρArcSin(ρ)−1

)
π

. (4)

Finally, since Corr[|ri|, |r j|] = Cov[|ri|, |r j|]/(σiσ j(1−2/π)), it follows that

Corr[|ri|, |r j|] =
2
( √

1−ρ2+ρArcSin(ρ)−1
)

π−2
(5)

for bivariate normal variables with zero means. Figure 2 illustrates this depen-

dency graphically. It is evident that in the bivariate normal case, magnitude

correlation can never be negative.

The probability distribution function for the absolute value of a normal vari-

able is known as the folded normal distribution (Leone, Nelson and Nottingham

(1961)). The bivariate folded normal distribution has been explored in Psarakis

and Panaretos (2000). However, the above type of link between magnitude cor-

relation and Pearson correlation has not, to the author’s knowledge, been ex-

pressed elsewhere.

When we relax the assumption of bivariate normality, magnitude correlation

becomes more interesting. Specifically, negative values become plausible. The

values depend on the copula function joining the two marginal distributions to-

gether. To the best of the author’s knowledge, copula functions creating this type

of magnitude dependence explicitly have not been developed. A close alterna-

tive to this could be the concept of tail dependence (for a review of dependence
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Figure 2: Relationship between Pearson correlation and magnitude correlation for

bivariate normal variables with zero means

measures, the reader is referred to Nelsen (2006)). In what follows, a few sim-

plistic examples of some extreme cases of magnitude correlation are given when

marginal distributions are normal.

Consider a return for asset i, ri ∼N(0,1), and define r j ≡ sgn(ri)|e|,e∼N(0,1),

where e is independent of ri (standard deviations are set to equal 1 here for sim-

plicity, even though they are not realistic values for asset returns). The Pearson

correlation between ri and r j is high, 2/π to be exact6. However, their magnitude

correlation is zero because the magnitudes are drawn from normal distributions

that are independent. To examine another extreme situation in the form of an

example, let rk ≡ sgn(e)|ri|. Now the Pearson (and sign) correlation between ri

and rk is clearly zero, however, the magnitude correlation is clearly equal to one.

This and the above case are both clear examples of bivariate non-normality with

normal margins.

Finally, can marginally normally distributed returns exhibit negative magni-

tude correlation? At first, it would seem that one distribution would need to have

more mass in the tails of the distribution for this to be possible. On the other

hand, observed financial returns are exactly like that, i.e. leptokurtic. However,

this feature is also plausible for normal returns. While it is difficult to come

up with a simplistic example as in the above cases, consider ri ∼ N(0,1) and

r j ∼ N(0,1), indepedent of each other. Then arrange the values of ri by their

absolute values, ascending, and do the same for the values of r j descending. If

we now compute the Pearson correlation between these two returns, it should

be approximately zero, while the magnitude correlation is highly negative. Fur-

6 Corr[ri,r j] = E[riSgn(ri)|e|] = E[sgn(ri)
2|ri|]E[|e|] = √2/π

√
2/π = 2/π.
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thermore, if the signs of r j were transformed to match those of ri, we would

have sign correlation equal to one, and thus a high Pearson correlation coeffi-

cient between the returns, yet, the magnitude correlation would stay the same

(i.e. highly negative). Therefore, normal distributions as margins do not set

strict limitations on the values of magnitude correlation when the form of the

joint distribution is not restricted.

As a final note, it is presumed that the correlation between absolute values

cannot be perfectly negative (i.e. equal to -1), because the absolute values of

normally distributed variables with (approximately) zero mean have skewed dis-

tributions to the right. If there is more mass on the left sides of the means (values

close to zero) compared to the right sides, it would appear that magnitude corre-

lation cannot be perfectly negative. The rank correlation, however, can clearly

be equal to -1. In simulations, the Pearson correlation coefficient for absolute

values can reach values smaller than -0.8, so this limitation is likely to not have

much practical importance.

2.3 Effect on portfolio variance and higher moments

When returns have a multivariate normal distribution, Pearson correlation gives

a complete description of the dependency between the individual returns. The

shape of a portfolio return distribution is normal as well in this case. However,

when the assumption of joint normality is relaxed, and the fixed link between

Pearson correlation and magnitude correlation is broken, the shape of the port-

folio return distribution is affected explicitly by correlation in the magnitudes of

returns. To see this in effect, consider simple equal-weighted two-asset portfolio

return distributions depicted in Figure 3 (each asset has a 5% standard deviation,

and zero Pearson or sign correlation between the returns).

Figure 3: Unconditional two-asset (equal-weighted) portfolio return distributions
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In Figure 3, the effect of magnitude correlation on the shape of the portfolio

return distribution can be seen. In the histogram on the left, magnitude correla-

tion is strongly negative (-0.7), and portfolio return distribution has two peaks,

with its excess kurtosis being negative (-1.17). On the contrary, when magni-

tude correlation is large and positive (0.7), the portfolio return distribution is

clearly leptokurtic with excess kurtosis value of 1.95. However, the variance of

portfolio returns is not affected by magnitude correlation.

Also noteworthy is that the distribution on the left has two peaks, i.e. it is

bimodal. The distribution is more "uniformly" shaped than the distribution on

the right where magnitude correlation is high and positive. This implies that the

density of portfolio returns on the left distribution is relatively high for a wide

variety of returns, whereas in the case of the latter distribution, the density is

concentrated at zero but at the same time the range appears to be wider. This

means that the majority of returns tend to be close to zero, but extreme events

are more likely than in the case of negative magnitude correlation.

When directional forecasts for asset returns are available, it can be the case

that magnitude correlation affects portfolio variance explicitly: Essay 1 presents

a framework for portfolio selection to use directional forecasts as inputs in port-

folio optimization. In this framework, conditional portfolio variance is affected

by the probability of the directional forecasts for each asset pair being simulta-

neously either correct or wrong, denoted by ζi j. If this probability is high (close

to one) and the investor follows the views generated by the forecasting model,

then negative magnitude correlation between assets is to be preferred, and vice

versa7. To be exact, the conditional covariance8 of returns on a pair of assets i
and j,

Covi j|Ω = (2ζi j−1)Cov[|ri|, |r j|]+ [(2ζi j−1)− (2ζi−1)(2ζ j−1)]μabs,iμabs, j, (6)

where ζi denotes the probability of the directional prediction being correct for

asset i, and μabs,i ≡ E[|ri|].
In essence, for two assets that have a high joint probability ζi j indicating that

the investor is simultaneously correct or wrong on the directions of these assets’

returns, negative magnitude correlation "smooths" the portfolio return, thus de-

creasing its variance. In this case, for minimal variance, one would prefer highly

negatively correlated absolute returns since going from being wrong on both as-

sets directions to the case where the investor is correct on both directions is

smoothed by negative magnitude correlation. If the correlation were large and

positive, then the returns for the portfolio would vary more wildly from large

and negative to large and positive. In practice, ζi j can be assumed to have values

greater than 0.5 due to asset returns being correlated, and hence negative mag-

7 See Essay 1, Figure 1, for illustration of the nonlinear relationship that magnitude correlation and

joint probability have in affecting conditional pairwise covariance.
8 Conditional on forecasted directions and directional accuracies, contained in the information set Ω.
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nitude correlation is preferred for lower portfolio variance. Figure 4 captures

conditional two-asset portfolio return distributions for high values of ζi j.

Figure 4: Conditional two-asset (equal-weighted) portfolio return distributions

The portfolio return distributions in Figure 4 are for equal-weighted portfo-

lios of two assets (each with a 5% standard deviation, zero Pearson and sign

correlation between the unconditional returns), investing 50% in asset 1 and

50% in asset 2 according to directional predictions, which are simulated for

each period (see Essay 1, Appendix B for the method of generating directional

forecasts governed by the probabilities ζi and ζi j). That is, the investor goes ei-

ther long or short on the asset based on the directional view. In this simulation,

the probability of being correct, ζi, is set equal to 55%, which is a relatively

modest and plausible accuracy for a directional forecasting model.

The left histogram in Figure 4 depicts a case of highly negative (-0.7) mag-

nitude correlation combined with a high probability of being simultaneously

correct on both assets’ directions (0.9). First, from the figure it is apparent that

the shape of the distribution is affected by the negative magnitude correlation

– the distribution has negative excess kurtosis. The distribution is also slightly

negatively skewed. More importantly, the standard deviation of this portfolio

return is about 4.0%. On the right histogram in Figure 4, the scenario with

high positive magnitude correlation (0.7) is illustrated. This produces a higher

standard deviation for the portfolio return (about 4.6%), and there appears to be

close to no excess kurtosis for this distribution. As was the case with uncon-

ditional returns in Figure 3, the distribution on the left is bimodal, whereas the

distribution on the right is not.

Negative magnitude correlation produces asset returns that can smooth the

conditional portfolio return, producing lower portfolio standard deviation com-

pared to the case where magnitude correlation is highly positive. The portfolio

optimization framework introduced in Essay 1 is simplistic in the sense that it

does not take into account higher moments. Without delving into utility theory
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at this point, it is useful to mention that previous research has shown that pos-

itive skewness in portfolio returns is preferred to negative skewness, and low

kurtosis is preferred to high kurtosis (see e.g. Scott and Horvath (1980)). The

scenario producing the lowest standard deviation, i.e. negative magnitude cor-

relation, also produces negative excess kurtosis. Notice that in both of the cases,

the mean portfolio return stays the same, as is to be expected since the mean

depends only on the accuracy of the individual forecasts, set equal to 55% in

this simulation.

As was seen in Figure 3, even in the unconditional case (i.e. returns not fore-

castable) the shape of the portfolio return distribution changes according to the

magnitude correlation level. If returns are bivariate normal, then the magni-

tude correlation is linked to Pearson correlation and there is no deviation from

a normal distribution for the unconditional portfolio returns. However, when

joint normality is not present, magnitude correlation becomes an explicit factor.

Therefore, it is important to characterize its empirical properties even if returns

do not exhibit directional predictability.

3 EMPIRICAL LEVELS OF MAGNITUDE
CORRELATION

3.1 Data and setup

In this section, it is examined what kind of levels of magnitude correlation are

found in the U.S. stock market returns. Naturally, we cannot know the true

disributions of asset returns at any given point in time, and hence they have to

be estimated. As a starting point, we examine time series of data and compute

the sample absolute correlation as follows:

̂Corr[|ri|, |r j|] =
∑T

k=1(|ri,k| − μ̂abs,i)(|r j,k| − μ̂abs, j)√∑T
k=1(|ri,k| − μ̂abs,i)2

∑T
k=1(|r j,k| − μ̂abs, j)2

(7)

where T denotes the length of the time series, and μ̂abs,i denotes the sample

mean of |ri|.
The data are closing levels for total return indices of S&P500 stocks from

December 31, 2002 to December 31, 2014. Only those stocks in the index that

have a history extending throughout this timeframe are included in the analysis

– this results in a total of 443 individual stocks. The daily, weekly, and monthly

closing levels are each examined separately. In addition, magnitude correla-

tion levels are examined for three indices of stock and commodity markets (the

S&P500 index, the FTSE100 index, and the London Metal Exchange index).
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From the closing levels, simple net returns for daily, weekly, and monthly data

are computed.

To begin with, a simple analysis of magnitude correlation is performed by

dividing the total sample into three subsamples of equal length (2003–2006,

2007–2010, and 2011–2014). This division is motivated by the fact that levels

of magnitude correlation may differ in different economic conditions, and espe-

cially the middle subsample is known for turbulent times in the stock market.

Furthermore, we compare the magnitude correlations in the total sample to the

observed levels of standard (Pearson) return correlation. This is motivated by

the proposition made in Essay 1, that high positive or negative sign correlation in

asset returns is likely to give rise to higher levels of joint probability ζi j. Hence,

it would be interesting to see if asset pairs with high standard correlation with

close to zero or negative magnitude correlation can be found. Moreover, a look

at rolling (simple moving average and exponentially weighted) correlations is

offered to examine the evolvement of magnitude correlation over time. Finally,

the gap between the observed and normality-induced magnitude correlation is

examined.

3.2 Sample magnitude correlations

Sample magnitude correlations are estimated according to Equation 7 for the

three subsamples in the case of daily, weekly, and monthly returns. The different

subsamples represent different times and economic conditions in the market,

and hence, different levels of pairwise magnitude correlations can be expected.

Figure 5 presents the histograms of all pairwise magnitude correlations along

with simple descriptive statistics.

From Figure 5, it is evident that the average pairwise correlation between

the absolute values of returns varies between the different subsamples and time

intervals. Most notably, the mean level of magnitude correlation appears to

be larger for daily returns compared to the weekly or monthly return inter-

vals. Moreover, the first subsample (2003–2006) features lower average pair-

wise magnitude correlations than the two later subsamples. It appears that dur-

ing the turbulent times in the market, in 2007–2010, mean level of magnitude

correlation was the highest out of the three subsamples. Still, after this turbulent

time, in the latest subsample (2011–2014), average magnitude correlation has

remained in relatively high levels compared to the first subsample (2003–2006).

It can also be observed from Figure 5 that the distributions are significantly

wider in the lower frequency cases, which is quantified by the higher standard

deviation of the distributions. However, one must notice that monthly returns

contain less observations, therefore presenting less accurate estimates of these

correlations, so part of the increased variation may be due to that.
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Figure 5: Histograms of pairwise magnitude correlations for S&P500 stocks

From a portfolio management perspective, it is interesting to note that

monthly returns present a minimum level of magnitude correlation at -0.527

(in the latest subsample), considerably lower than that exhibited for the lowest

case for daily returns, -0.075 (in the first subsample), or weekly returns, -0.235

(in the latest subsample). The significant negative magnitude correlations may

present some useful opportunities to a portfolio manager with directional return

forecasts, as described earlier in Section 2.
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3.3 Relationship to Pearson correlation of returns

In the theoretical section of this paper, a formula for the magnitude correla-

tion value as a function of standard (Pearson) correlation in the bivariate normal

case was derived (Equation 5). It is interesting to see what the relationships

are like empirically. Additionally, a portfolio manager utilizing the directional

optimization framework developed in Essay 1 is in general interested in finding

assets that exhibit near zero Pearson correlation and/or negative values for mag-

nitude correlation. With jointly normally distributed variables, this case would

not be plausible, as zero Pearson correlation implies zero magnitude correlation

as well.

Figure 6: Relationship between standard correlation and magnitude correlation for

the S&P500 stocks in the full sample

Figure 6 plots all pairwise magnitude correlations and standard return (Pear-

son) correlations for the 443 stocks’ daily, weekly, and monthly returns. In each

plot, the gray curve depicts the theoretical values implied by the bivariate nor-

mal distribution (i.e. it plots the function in Equation 5). A clear dependency

structure can be observed as is to be expected – higher standard correlation im-

plies higher magnitude correlation in general. Interestingly, however, for daily

returns, all values of magnitude correlation lie above the reference curve. Based

on this, we could reject bivariate normality and focus on picking assets with de-

sirable properties from a portfolio management perspective, as described earlier.

For weekly returns, there is a bit more dispersion and part of the observations

are actually below the curve depicting the bivariate normal case. This presents

more possibilities for portfolio optimization, and even more so in the case of

monthly returns, where the lowest values of magnitude correlation are below

-0.2. For subsamples, there are even lower negative values as is evident from

Figure 5 above. For monthly returns, variation around the reference curve is

large, giving more reason to examine magnitude correlation from a portfolio

management perspective. However, also notice that the monthly correlations

appear to be more in line with bivariate normality (the shape of the plotted values

resembles the reference curve).
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3.4 Time-varying correlations

Since the sample magnitude correlation values appear to be significantly dif-

ferent between the subsamples, it is reasonable to assume that they are time-

varying. As a simple way to examine the evolvement of magnitude correlation

in time, we compute rolling correlations for the entire time series between each

asset pair, and then average these out to get a marketwide representation. Ad-

ditionally, the same procedure is applied to Pearson correlations to see if they

move in sync with the magnitude correlations. For daily returns, two estimation

window lengths are considered: 60 days and 250 days (corresponding roughly

to one quarter and one year in trading days). For weekly returns, the estimation

windows are 52 weeks and 208 weeks. For monthly returns, only one estimation

window length is considered, 48 months. Figure 7 presents the resulting graphs.

Figure 7: Average pairwise rolling correlations for S&P500 stocks in the full sample

(black curve = magnitude correlation, gray curve = standard correlation)

First, it is evident that magnitude correlation, like standard correlation, does

not appear to be time invariant. Second, from Figure 7 it can be seen that the av-

erage (marketwide) pairwise magnitude correlation moves closely in sync with

the average pairwise standard correlation – this is the case for daily, weekly, and

monthly returns with all tested estimation windows. In general, the level for

magnitude correlation and standard correlation has been lower in the beginning
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of the sample, then increasing in the mid-part of the sample and appearing to

fluctuate more wildly, and then again decreasing in the late sample. This could

of course be partly due to a few extreme observations during the recent financial

crisis.

It is important to notice that the curves presented in Figure 7 are formed of

average pairwise correlations – they do not tell the whole story about individ-

ual assets. As an example, a few assets are selected for comparison. Figure

8 presents examples of rolling correlations for unique asset pairs and market

indices.

Figure 8: Pairwise rolling correlations for selected stocks and indices (black curve =

magnitude correlation, gray curve = standard correlation)

In the upper left hand corner of Figure 8, the rolling magnitude correlation

and standard correlation are presented for the daily returns of the S&P500 index

and the FTSE100 index. It is interesting to note that there are points in time

when the standard correlation and magnitude correlation seem to be at almost

equal levels, but also time periods when there is a notable gap between the

two. Another interesting case in Figure 8 is the lower left hand corner, where

rolling correlations for two individual stocks’ (New York Stock Exchange ticker

symbols MMM and GAS) weekly returns are presented. As with the previous

example, there are times when the magnitude correlation and standard return

correlation appear to be nearly equal, and other times when there is a large gap

between the two. The variation over time seems to be particularly large, with

magnitude correlation being close to zero in the early part of the sample, and

then rising to levels close to 0.5 after mid-sample, only to drop back to zero at

the end of the sample.

The upper right hand corner in Figure 8 presents a slightly more stable, yet

still fluctuating case with two indices (S&P500 and LMEX). Interestingly, the
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magnitude correlation between the two appears to exceed the standard return

correlation level in several points in time during the first half of the sample. The

two correlations do not really appear to move closely in sync, however, this may

be due to the relatively long estimation window (250 days). These examples

in Figure 8 illustrate that it is likely that different asset pairs present different

relationships between their standard correlation and magnitude correlation, thus

giving rise to more options from a portfolio management perspective.

Finally, as the simple rolling correlation measure, or the moving average

(MA) model, gives equal weight to all observations in the estimation window,

a slightly more sophisticated way of estimating the correlations is applied by

using an exponentially weighted moving average (EWMA) model, defined as

̂CorEW(|ri|, |r j|) =
∑T

k=1γ(1−γ)k−1(|ri,k| − μ̂abs,i)(|r j,k| − μ̂abs, j)√∑T
k=1γ(1−γ)k−1(|ri,k| − μ̂abs,i)2

∑T
k=1γ(1−γ)k−1(|r j,k| − μ̂abs, j)2

,

(8)

where γ denotes the smoothing weight, set equal to 0.1 (slightly higher than

the 0.06 of RiskMetrics, in order to facilitate the use of a shorter estimation

window) in this section. We perform an analogous EWMA estimation for the

standard correlation between asset returns, and plot the two in Figure 9 for av-

erage pairwise correlations for the weekly and monthly S&P500 stock returns.

Figure 9: Average pairwise EWMA correlations for S&P500 stocks (black curve =

magnitude correlation, gray curve = standard correlation in the top two

graphs)

Figure 9 also includes two additional graphs depicting a measure called

"Gap"; this is the gap between the observed and implied theoretical magnitude

correlation in the bivariate normal case. It follows straightforwardly from Equa-
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tion 5, and is computed as follows:

Gap ≡ ̂Corr[|ri|, |r j|]−
2
( √

1− (̂ρ)2+ ρ̂ArcSin(̂ρ)−1
)

π−2
, (9)

where ρ̂ is the sample estimate of the Pearson correlation coefficient. In Figure

9, the gap measures are averaged out for all stocks to get a marketwide repre-

sentation.

From Figure 9 it is evident that the spikes or shocks in the measured cor-

relations do not persist as long as in the simple MA case, which is natural to

expect due to the EWMA model emphasizing recent observations more. The

separate gap graphs in Figure 9 highlight "odd" times in the market, when the

levels of magnitude correlation have been out of sync compared to normality-

implied magnitude correlation. For example, for the weekly returns, there is a

clear jump up near the end of 2008, which is also evident in the upper graph de-

picting the measured correlations – in this case, magnitude correlation jumped

up much more than expected by the theoretical relationship implied by bivariate

normality. A different scenario takes place close to the end of the year 2011

when the gap drops significantly – this is explained in the upper graph by the

fact that standard correlation jumps up while magnitude correlation remains at

the same level or even declines slightly. Naturally, the length of the estimation

window and the level of γ in the EWMA model affect the measured levels of

correlation and the raggedness of the graphs.

For monthly returns, Figure 9 shows a clear jump in the gap near the be-

ginning of the sample (close to the end of the year 2008), and the upper graph

indicates that this is caused by the magnitude correlation level rising exception-

ally high relative to the corresponding standard correlation. The gap then slowly

returns close to zero, as the magnitude correlation declines faster than the stan-

dard correlation does. It is important to notice that the gap measure does not

depict the actual gap between the observed magnitude correlation and standard

correlation, but the gap between the observed magnitude correlation and the

level implied by the observed standard (Pearson) correlation.

3.5 What do abnormal levels of magnitude correlation signal?

So far nothing has been said about the possible interpretations of high mag-

nitude correlation in asset returns. Here an explanation is offered and we see

whether it can be backed up by the data. In the case of high positive magni-

tude correlation, the returns of two assets tend to be simultaneously either large

or small in magnitude relative to their corresponding mean magnitudes. If the

average magnitude correlation in the market is abnormally high, it resembles

a time when markets are edgy, even panicking, indicated by prices that react
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with larger than normal movements – there is strong marketwide reaction to any

kind of news, but markets are relatively quiet on no news. In essence, high mar-

ketwide magnitude correlation would appear to signal that the market is paying

close attention to big news that affect the market as a whole, and do not react

strongly to small news about individual sectors or stocks. Based on this reason-

ing, one could draw the conclusion that high abnormal magnitude correlation

might be a sign of anxiety in the market.

As mentioned earlier, magnitude correlation could be linked to multivari-

ate ARCH/GARCH processes and time-varying volatility. Return volatilities

could be dependent across assets: there can be an economic force that drives

the volatility of several assets’ returns up simultaneously, which would manifest

as positive magnitude correlation. This force could be, for example, a specific

risk factor of a certain sector of companies. If the marketwide average magni-

tude correlation is high, this could imply that several assets are experiencing an

increase or decrease in their return volatility simultaneously.

Figure 10: Weekly VIX index compared to different correlation measures and aver-

age volatility (dashed gray curve depicts the weekly VIX index values)

A common measure for market anxiety is the VIX index, which tracks the

implied volatility of the S&P500 index options. It seems reasonable to compare

the movements of the VIX index and that of the gap between observed and the-

oretically implied magnitude correlation, i.e. abormal magnitude correlation.

Figure 10 plots the weekly VIX values and the marketwide abnormal magni-

tude correlation estimated using a MA52 model (i.e. computing the average gap

over the past 52 weeks). For comparison, depicted are also the historical av-

erage pairwise standard correlation, the historical average pairwise magnitude
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correlation, and the average asset return volatility based on the past 52 weeks.

From Figure 10, it appears that the VIX index and abnormal magnitude cor-

relation (i.e. the gap) tend to be high simultaneously and vice versa, low levels

also tend to coincide, which can be thought of as giving support to the earlier

interpretation of market anxiety. Especially the spike coinciding with the VIX

near mid-sample and then quickly declining fits the picture well. Although the

other measures also follow the levels of the VIX to some extent, they appear to

be less accurately tracking the VIX compared to the gap measure. For exam-

ple, average historical volatility appears to track the VIX with a lag, as is to be

expected. The standard correlation and magnitude correlation appear to remain

too high after the mid-sample spike compared to the VIX or the gap. However,

it should be noted that the choice of estimation window length has an effect on

the fit, and, for example, a longer estimation window does not produce graphs

which line up with the VIX this well.

The augmented Dickey-Fuller test indicates that neither the VIX index nor

the abnormal magnitude correlation (i.e. the gap) is stationary, so the first dif-

ferences of the VIX and the abnormal magnitude correlation are taken. The

correlation coefficient of the first differences is 0.102 between the VIX and the

abnormal magnitude correlation, indicating that the changes do not appear to be

strongly correlated. Overall, based on Figure 10, it appears that magnitude cor-

relation raises to exceptionally high levels with anxiety in the market as proxied

by the VIX. However, the two appear to be only loosely linked, and there might

be other factors at play. Interestingly, the abnormal level of magnitude corre-

lation appears to be rising steeply at the end of the sample, while VIX stays at

a relatively low level. This could tell about another type of market anxiety, to

which the expected (implied) volatility in the market does not react. This is a

potential topic for further research.

4 EVALUATION OF OUT-OF-SAMPLE
FORECASTS

As illustrated above, magnitude correlation can have an effect on the shape of

the portfolio return distribution in the unconditional case, and explicitly affect

the conditional portfolio return variance when the directions of returns are pre-

dictable. For portfolio optimization, more accurate estimates of parameter val-

ues are important. If one can obtain information about the future values of the

parameters required as inputs, the resulting portfolio performance is expected

to be enhanced. In this section, the aim is to evaluate a few simple methods for

estimating magnitude correlation out-of-sample.
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Since it is impossible to know the true levels of stock market correlations at

any given time period, direct evaluation of forecast quality is not a plausible

method. However, we know from above that under the framework introduced

in Essay 1, magnitude correlation affects portfolio variance directly. For this

reason, we can test different estimation models for magnitude correlation and

compare resulting out-of-sample optimal portfolio variances to find out which

of the methods produces the most accurate forecasts. This kind of an indirect

evaluation, as described in Patton and Sheppard (2009), is useful for practical

portfolio management purposes.

The earlier introduced dataset of S&P500 stocks is used in this study as well.

The idea is to estimate the weekly9 one-period ahead covariance matrix, solve

the global minimum variance portfolio weights, and then measure the "realized"

standard deviation of the portfolio,

σ̂p,t =

√
www∗′t rrrtrrr′twww∗t , (10)

where www∗t denotes the vector of optimal portfolio weights, and rrrt is the return

vector at time t. If one estimation method consistently produces lower values for

Equation 10, it can be considered the more accurate estimation method (Patton

and Sheppard (2009)). Notice that we cannot simply compute the realized port-

folio standard deviation over the entire time frame, because the mean return of

the optimal portfolios changes at each time period due to (likely) time-variation

in return distributions. The realized standard deviation must be computed at

each time period separately, and then the mean of these values can be used as an

indicator of the performance of the evaluated estimation model.

In order to evaluate magnitude correlation forecasts, a trading simulation

study is conducted where the directions of stock returns are predictable as in

the directional optimization framework of Essay 1. In this case, magnitude cor-

relation (i.e. the correlation of absolute values of returns) affects the conditional

covariance matrix of the returns. Specifically, Equation 6 can be generalized

into matrix form, resulting in the conditional covariance matrix (in the case of

marginal normal distributions with zero means for the unconditional returns)10:

Σ̂ΣΣt|Ω = ssstsss′t �
(
(2ZZZsim−J)� (1− (2/π))ŜR̂abs,tŜ+

2

π
ŜΣDŜ

)
, (11)

where ssst denotes the vector of predicted signs, ZZZsim is a matrix of the joint prob-

abilities ζi j, J denotes a matrix of ones, Ŝ denotes a diagonal matrix containing

the sample-based standard deviaton estimates, and R̂abs,t is the estimated mag-

nitude correlation matrix. ΣD is the covariance matrix of the forecast outcomes,

and it can be expressed with the probabilities ζi and ζi j.

9 We choose the weekly interval here as it represents a middle-ground between the daily and monthly

returns.
10 For a detailed explanation of the model, see Essay 1.
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Notice that the factors affecting the covariance matrix, and hence the global

minimum variance portfolio, are the magnitude correlations, standard devia-

tions of asset returns, and the directional forecast probabilities. To give as much

weight to magnitude correlation as possible, we need to eliminate the effect

of standard deviations and forecast probabilities. Fortunately, this is relatively

easily achieved by i) setting the probabilities ζi = 0.5 for all i (implying no pre-

dictability) and setting ζi j as high as possible, i.e. equal to one, ii) examining

assets in groups exhibiting near equal sample standard deviations and setting the

values exactly equal for the estimates.

Part i above implies that all forecast outcomes are perfectly correlated, but

there is no real power in the forecasts. The framework can accomodate this, and

the term 2ZZZsim − J now becomes simply a matrix of ones, as does ΣD. Hence,

the covariance matrix in Equation 11 is simplified to

Σ̂ΣΣt|Ω = ssstsss′t �
(
(1− (2/π))ŜR̂abs,tŜ+

2

π
ŜJŜ
)
. (12)

Since ζi j = 1 for each asset pair, this means that the directional forecasts ssst are

simultaneously either correct or wrong for all assets. For this reason, in the sim-

ulation, the directional forecasts can be generated by setting ssst = sgn(Xt)sgn(rrrt),

where Xt ∼ U(−1,1). Finally, to eliminate the effect of return standard devi-

ations, and to give emphasis on magnitude correlation estimation, the stocks

are grouped into 88 categories based on their sample standard deviations (the

full sample contains 443 stocks of which the remainder in the division by 5 is

left out, i.e. three stocks are not included in the study). Each group consisting

of 5 stocks is treated separately in the simulation, and the values for standard

deviation estimates are set equal to the group’s mean. This way, the standard de-

viations play no part in optimization, and the actual volatility of the asset returns

should be relatively similar.

A start-up estimation window of 200 weeks is chosen, leaving over 400 weeks

for the out-of-sample evaluation. This is repeated for the 88 groups of 5 stocks,

so in total there are over 35,000 observations for global minimum variance port-

folios that are used for evaluating magnitude correlation forecasts. The global

minimum variance portfolio is solved for each time period using past data,

rolling the estimation window forward when progressing through the dataset.

The portfolio optimization problem utilizes a weight constraint −1 ≤ wi ≤ 1 for

each asset i in order to avoid irrationally large weights.

For each group of stocks, we average out the realized volatilities which are

computed as in Equation 10. Finally, these average values are averaged out for

the 88 different volatility groups. The tested models for the magnitude corre-

lation estimation are the MA and EWMA models with three different window

lengths and values for γ, as listed in Table 1. In addition, since it is known

that shrinkage estimation methods can provide improved portfolio performance
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(see, e.g. Ledoit and Wolf (2003)), two simple shrinkage methods are utilized

for each of the MA and EWMA estimation models: one where 50% weight is

given to the actual magnitude correlation estimate, and 50% weight to the mean

of these estimates; essentially, this is a shrinkage estimation toward the mean.

The extreme case of using purely the average value as an estimate for each pair-

wise correlation is also examined (100% shrinkage).

Table 1: Evaluation of out-of-sample magnitude correlation estimation

The results are reported in Table 1. It is evident that longer estimation win-

dows for the MA models produce better portfolio performance, and hence can

be considered to be providing better forecasts of magnitude correlation. For the

EWMA models, a lower value of gamma is better (implying that less weight

is given on more recent observations). With gamma equal to 0.02, the EWMA

model produces, on average, a realized standard deviation of 1.991%, which

is slightly better than that produced by the MA200 model. The differences are

small in absolute terms, however, in relative terms they can be considered mean-

ingful as they are averaged out over a large pool of observations, and the only

parameter affecting the results is magnitude correlation (by the design of the

simulation).

From Table 1, it is evident that the shrinkage models produced, on average,

the worst performance of all the evaluated models. This is perhaps slightly sur-

prising, as for traditional (unconditional) portfolio optimization, shrinkage mod-

els can provide improved performance. It would be intriguing to try out more

sophisticated models for the estimation of magnitude correlation and compare

the results to the ones obtained above. For example, the dynamic conditional

correlation (DCC) framework of Engle (2002) is one potential candidate. On

the other hand, the innovations in absolute return generating process can be as-

sumed to be strongly non-normal, possibly requiring modifications to the stan-

dard DCC model. This is something that could be considered in future research.
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5 CONCLUSION

This paper examines a largely neglected parameter in financial literature – the

correlation between absolute values, or magnitudes, of asset returns. Previous

research has shown that this correlation plays an explicit part in forming op-

timal portfolios when return directions are predictable. Moreover, magnitude

correlation plays an indirect part in portfolio returns through joint distributions

of asset returns even without return predictability. If the joint distribution of

returns is not normal, magnitude correlation affects the shape of the portfolio

return distribution explicitly.

The paper established a link relating magnitude correlation to standard Pear-

son correlation in the bivariate normal case with zero means. When the joint

distribution form is not restricted, it appears that nearly all types of combina-

tions of magnitude correlation and standard (Pearson) correlation are possible

when the marginal distributions are normal. Future research in this area could

focus on determining specific copula functions for expressing the link between

magnitude correlation and standard return correlation in a more rigorous fash-

ion. In addition, magnitude correlation can be thought of arising from multi-

variate ARCH/GARCH processes and this could be explored in detail in future

research.

Empirical properties and observed market levels of magnitude correlation are

intriguing and vary widely between subsamples and return intervals. For daily

S& P500 stock returns, pairwise sample magnitude correlations have been rel-

atively high and positive during the 21st century, with clear differences in the

sample before the recent financial crisis (2007) and during/after the crisis. For

weekly returns, the values of magnitude correlation are in general lower than

for daily returns, being closer to zero with a few negative values observed. For

monthly returns, the distribution of pairwise magnitude correlations is wider,

with its mean close to zero and the distribution containing negative values.

Additionally, the empirical values of magnitude correlation deviate widely

from the theoretical values implied by the observed Pearson correlation under

bivariate normality. In essence, asset returns do not appear to follow a multivari-

ate normal distribution, and this presents more opportunities from a portfolio

management perspective. High and abnormal levels of magnitude correlation,

i.e. the difference between the observed and theoretically implied values, can

be interpreted as market anxiety, and the empirical levels appear to be loosely

linked to the VIX index.

Finally, the accuracy of out-of-sample forecasts of magnitude correlations

was evaluated by employing an indirect method measuring realized optimal

portfolio variances. The results indicate that longer estimation windows are

better for estimating future levels of magnitude correlation. Simple shrinkage
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models, on the other hand, did not fair well in the evaluation. Future research

could evaluate more sophisticated models for estimating magnitude correlation.
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APPENDIX A

The asset returns in Figures 1, 3, and 4 are generated as follows. Let r1 ≡
sgn(n1) ·m1 and r2 ≡ sgn(n2) ·m2, where n1 ∼ N(0,1), n2 ∼ N(0,1) are indepen-

dent (this implies zero sign correlation, and hence, zero Pearson correlation co-

efficient between the generated returns). m1 ≡ dabs(pN(e1)), m2 ≡ dabs(pN(e2)),

where pN(·) is a function returning the percentile in the standard normal distri-

bution, dabs(·) is a function returning the value in the folded normal distribution

(Leone et al. (1961)) with mean zero, and e1 and e2 are standard normal vari-

ables whose correlation coefficient determines the correlation between the mag-

nitudes m1 and m2. The correlation of the magnitudes is not directly equal to the



103

correlation of e1 and e2, but closely mimics it. For the illustrative examples, the

values of the function dabs are simulated.

APPENDIX B

For normally distributed return ri with zero mean, Var[|ri|] = (1− 2/π)Var[ri].

This is because the probability distribution function of the absolute value of a

normal variable with mean μ and variance σ2 is:

f (x) =
1

σ
√

2π
exp

(
−(x−μ)2

2σ2

)
+

1

σ
√

2π
exp

(
−(x+μ)2

2σ2

)
, (x ≥ 0). (13)

This is known as the folded normal distribution (Leone et al. (1961)). Subse-

quently, the expected value of |ri| with μi = 0,

E[|ri|] = 2

∫ ∞
0

|ri|
σi
√

2π
e
− |ri|2

2σ2
i d|ri|

= σi
√

2/π.

Now, Var[|ri|] = E[r2
i ]−E[|ri|]2, which for a normally distributed variable with

mean zero is equal to Var[ri]− (2/π)Var[ri] = (1−2/π)Var[ri].
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Predictable Returns and Portfolio Optimization:
Directional versus Whole Return Forecasts as Inputs

Joonas Hämäläinen∗

Abstract

Estimation error in expected returns can render mean-variance opti-
mization unusable. Investors typically have views only on the direc-
tions of returns, and lack accurate estimates for whole returns. We
show that when return estimates are noisy but contain directional
forecasting power, notable performance increase can be achieved
out-of-sample by using mere directional estimates as inputs in port-
folio optimization. Even with accurate information about the magni-
tudes of returns available, the investor can still achieve competitive
portfolio Sharpe ratios by extracting the signs of return forecasts for
use in portfolio optimization.

1 INTRODUCTION

Investment portfolio optimization is traditionally built on the concept of min-

imizing variance and maximizing expected return, as introduced in Markowitz

(1952, 1959). The separation theorem of Tobin (1958) tells that investors should

hold risky assets in same proportions in the portfolio regardless of their prefer-

ences. However, for decades, academic research has tried to provide solutions to

the problems that mean-variance optimization suffers from in practice, most no-

tably parameter estimation error. This often renders practical application infea-

sible because estimation error in the optimization inputs can result in portfolio

weights that are far from the true optimal weights (see, e.g. Michaud (1989)).

In fact, a naive investment strategy that divides wealth evenly across assets can

∗ University of Turku, Department of Accounting and Finance, Rehtorinpellonkatu 3, 20500 Turku,

Finland. Part of the research has been conducted during the author’s visit to Princeton University in

2013/2014. The author is grateful for the comments of Matthijs Lof, Mika Hannula, Mika Vaihekoski,

Luis Alvarez, Hannu Schadewitz, Hannu Kahra, Johan Knif, and the seminar participants at GSF Win-

ter Workshop (Helsinki) and at University of Turku.
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often perform just as well out-of-sample as optimized portfolios (DeMiguel,

Garlappi and Uppal (2009)).

Especially the estimation of expected returns is known to be difficult in prac-

tice. Investment managers or analysts often do not express views on the mean

returns of assets, but instead disclose information about the mere directions of

future price movements. A prominent example is buy/sell recommendations,

which are known to have some predictive power on future stock returns (Wom-

ack (1996), Barber, Lehavy, McNichols and Trueman (2001)). These types of

directional forecasts appear to be exceedingly common in practice. Previous

research has also acknowledged the significance of separating mean return es-

timation and return direction, or sign, estimation: Christoffersen and Diebold

(2006) show that even if conditional mean returns are independent (i.e. unfore-

castable), the directions of returns can still exhibit dependence, thus making

them forecastable. Directional forecasting has also accumulated a considerable

amount of empirical evidence, the out-of-sample accuracy of these forecasts of-

ten being surprisingly high (see, e.g. Pesaran and Timmermann (2002), Bekiros

and Georgoutsos (2007), Bekiros and Georgoutsos (2008a), Bekiros (2010), Ny-

berg (2011), and Chevapatrakul (2013)).

Essay 1 in this dissertation introduced a framework for portfolio optimization

where directional forecasts are used as inputs (hereafter, DF framework). This

leaves out the direct, difficult estimation of mean returns and could potentially

provide enhanced portfolio performance relative to using simpler solutions to

utilize directional forecasts. It is not clear what the value of mean or whole re-

turn forecasts (on a continuous scale) is compared to mere directional forecasts

in portfolio optimization. Naturally, whole return forecasts contain more infor-

mation, but if this information is noisy, it may not be of much practical value.

For example, Leitch and Tanner (1991) have found that professional forecasts

may not be worth using when evaluated by traditional measures such as the root-

mean-squared error, while at the same time the profitability of these forecasts,

connected to directional accuracy, can be notable. This would seem to imply

that the value of professional forecasts may be mostly in the directional com-

ponent of the estimates. Especially in portfolio optimization, where even small

errors in inputs are magnified in the results, using noisy return estimates can be

detrimental.

While leaving out the direct estimation of mean returns, the DF framework

requires the estimation of directional forecast accuracy in the form of probabil-

ities. In a simulated environment, the model is shown to produce a substantial

performance increase over simpler alternatives (see Essay 1). However, the pre-

vious study does not take into account estimation error in the directional forecast

accuracies. Since estimation error plays a large role in portfolio optimization,

the estimation of directional accuracies needs to be paid more attention to. By

addressing this issue, this paper aims to find out whether using mere directional
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forecasts in portfolio optimization is feasible in practical asset management.

More specifically, the paper aims to answer the following two main research

questions: 1) When directional return forecasts are available, does it matter for

out-of-sample portfolio performance which optimization framework is utilized?

2) If whole return forecasts are available, is the investor better off by extracting

only the signs of these forecasts and using them as inputs in portfolio opti-

mization, as opposed to using noisy return estimates directly as expected return

inputs. To answer these questions, an out-of-sample trading simulation is con-

ducted to examine the performance of optimized portfolios.

For the out-of-sample study, specific forecasting models are not used, but in-

stead a more general and powerful method is employed. The return forecast

models used in the study are calibrated in-sample, however, parameter estima-

tion is done using only past data, so that the use of these models resembles an

out-of-sample investment setting. This way we can be sure from the outset that

the models exhibit true predictive power, but the investor will not know any of

the parameters of the model. Instead, they are estimated from past data, and the

performance of the constructed portfolios is then evaluated on out-of-sample

data.

The results of the trading simulation show that when only directional esti-

mates are available (or when the magnitude components of the return estimates

are pure noise) the investor can achieve significantly higher Sharpe ratios and

geometric means by utilizing only the directional forecasts and the estimated

directional accuracies. The choice of estimation method for the forecast accu-

racies matters for portfolio performance, and this should be taken into account

when utilizing directional forecasts in portfolio optimization. Interestingly, a

constant value for the individual accuracies appears to be the all-around best

solution, which simplifies the task of the investor. A simpler alternative which

does not take into account the accuracy of the forecasts does not fair as well as

the DF framework.

When return forecasts contain accurate information about the true magnitude

of returns, the investor is still equally well or better off in many cases by ex-

tracting the signs of these estimates and using only those as inputs in optimiza-

tion. Especially for maximum Sharpe ratio portfolios, the directional frame-

work produces better performance than nearly all evaluated forecasting models

that produce whole return estimates. For maximum geometric mean portfolios,

accuracy in the magnitude components of return estimates can make them more

profitable to use than merely extracting the signs of these forecasts.

Overall, the results indicate that using mere directional forecasts as inputs

in portfolio optimization can provide a significant performance increase as op-

posed to using traditional alternatives, including the popular model of Black and

Litterman (1992), when whole return forecasts are too noisy. Even if valuable

information about future returns in the magnitude estimates is available, the di-
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rectional approach can still be a competitive choice compared to the alternatives,

especially in the case of maximum Sharpe ratio portfolios.

The paper proceeds as follows: Section 2 briefly reviews the framework for

using directional return estimates as inputs in portfolio optimization. Section

3 goes through the construct of the empirical study, and evaluates estimation

methods for directional accuracy. Section 4 presents the results for the out-of-

sample trading simulation. Section 5 concludes the paper.

2 PORTFOLIO CHOICE WITH DIRECTIONAL
RETURN FORECASTS

Traditional mean-variance portfolio selection requires the mean return vector

and variance-covariance matrix estimates as inputs in the optimization proce-

dure. When mean return estimates are not available, but directional forecasts

are provided, Essay 1 establishes a theoretical framework for mean-variance

optimization. The framework is based on an idea that the investor’s return on

an asset i can be decomposed into the forecasted direction, an outcome compo-

nent for the forecast and a magnitude component: ri = siDi|ri|, where si ∈ {−1,1}
denotes the predicted sign, Di ∈ {−1,1} is a random variable denoting the out-

come of the directional forecast (+1 if it is correct, -1 if it is incorrect), and |ri| is
the absolute value of the asset’s unconditional return. Under a few simplifying

assumptions, it is shown in Essay 1 that the conditional1 expected return vector

E[rrr|Ω] = sss� (2ζζζ −111)M, (1)

where sss denotes a vector of predicted return signs, ζζζ denotes a vector of proba-

bilities with which the directional predictions are correct for each asset, and M
is a diagonal matrix containing the mean magnitudes of the asset returns, i.e.

M ≡ diag(μμμabs). The operator � denotes the element-wise (Hadamard) product.

The conditional variance-covariance matrix in this situation,

ΣΣΣ|Ω = ssss′s′s′ � ((2ZZZsim−J)�ΣΣΣabs+MΣDM) , (2)

where J denotes a matrix of ones, ZZZsim is a matrix of joint probabilities of be-

ing simultaneously correct or wrong on a pair of assets2, ΣΣΣabs is the covariance

matrix of the absolute values of unconditional returns, and ΣD is the covariance

matrix of the forecast outcomes D, which can also expressed using the proba-

bilities in ζζζ and ZZZsim.

1 Conditional on the information set Ω, which is understood to contain the directional forecasts and

probabilities governing the outcomes.
2 The elements of this matrix, ζi j = P(Di = D j).
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The framework implies that when return directions are forecastable, the in-

vestor should pick volatile assets for higher expected returns, and that the corre-

lation of absolute values of returns matters directly for portfolio variance. More-

over, if the forecast outcomes are linked to unconditional return correlations, the

investor should prefer asset pairs with zero correlation; negative correlation is

disliked because it presents the possibility of the investor being simultaneously

correct or wrong on a pair of assets (see Essay 1 for more details).

In this framework, the inputs for portfolio optimization do not require direct

estimation of mean returns. As opposed to traditional mean-variance optimiza-

tion, a new parameter class that needs to be estimated is the accuracy of the

forecasts in the form of probabilities ζi and ζi j. Since expected returns are no-

toriously difficult to estimate in practice, it is plausible that the reduction of

estimation into prediction accuracies might produce better results in portfolio

optimization. In the empirical section of this paper, it is examined whether this

is actually the case in an out-of-sample trading simulation.

Essay 1 shows, in a simulated environment, that the usage of the proposed

framework can make a substantial difference in portfolio performance compared

to simpler alternatives when directional forecasts are available. However, the

study does not include estimation error in the directional accuracy parameters

and its effect on the end result could be substantial (for the effect of parameter

estimation error on portfolio optimization, see, e.g. Michaud (1989)). In this

paper, the issue is addressed by assuming a situation where the investor has to

estimate all parameters from past data, and the performance of the portfolios is

measured on out-of-sample data.

The probabilities in ζζζ and ZZZsim can be estimated, for example, by evaluating

the directional accuracy of the forecasting model in the past, computing how

often it produces the correct sign. However, it is not clear what the best method

for achieving a good accuracy for these estimates would be – this is another

area that will be focused on in the empirical section of this paper. Additionally,

Essay 1 presents a hypothesis about the theoretical construct of the pairwise

joint probability ζi j:

ζi j ≡ ζiζ j+ (1− ζi)(1− ζ j)+ f
(
|Corr(sgn(ri),sgn(r j))|

)
+ηi j, (3)

where f (·) denotes a monotonic function that gives the absolute value of sign

correlation a proper weight. By examining empirical forecasts, this hypothesis

can be tested and the empirical part of the paper examines whether it is possible

to establish such a link between the sign correlation of asset returns and the joint

probability ζi j.
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3 EMPIRICAL STUDY

The empirical study attempts to answer the two main research questions: 1)

When directional return forecasts are available, does it matter for out-of-sample

portfolio performance which optimization framework is utilized? 2) If whole

return forecasts are available, is the investor better off by extracting only the

signs of these forecasts and using them as inputs in portfolio optimization, as

opposed to using noisy return estimates directly as expected return inputs. In

addition, the link between the joint probability ζi j and the sign correlation of

returns (presented in Equation 3) is examined, and estimation methods for the

forecast accuracies are evaluated.

3.1 Data and methodology

The study is conducted using the closing levels of weekly total return indices for

the S&P100 stocks3 from 12/31/2002 to 12/30/2014. The weekly interval is se-

lected for a number of reasons: First, the number of observations is greater than

when using monthly returns. Second, while daily returns would provide even

more observations, their forecastability can be considered weak. Third, weekly

returns are in general closer to the assumption of zero-mean returns, which is

made in the model of Essay 1 for analytical tractability, than monthly returns.

Finally, in practical asset management, daily portfolio rebalancing could be con-

sidered too costly due to transaction costs. In essence, weekly returns feature

characteristics that are a compromise between the good sides and drawbacks of

using monthly or daily returns. Simple net returns are calculated for each stock

based on the weekly closing levels of the corresponding total return indices.

There is considerable evidence of out-of-sample directional predictability in

recent academic research, such as the studies of Nyberg (2011) and Chevapa-

trakul (2013). While it would be ideal to use specific forecasting models, such

as binary logit or dynamic probit models employed in these studies, that kind of

a direct approach suffers from a significant problem: the number of forecasting

models with known or permanent out-of-sample predictability is limited and

would be based on previous research with no guarantee that the model works

with another set of data. This makes a general level portfolio performance eval-

uation with forecasts infeasible. The scope of this paper is not to create or find

profitable forecasting models or trading strategies, but simply to test if and how

much portfolio optimization can be enhanced in case returns are forecastable to

some extent.

3 Only those stocks in the index with data available from the beginning of the period are included; this

results in a total of 92 stocks in the dataset. Survivorship bias is not considered an issue here, as the

study compares different portfolios against each other.
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Instead of choosing a few specific forecasting models, a much more general

and powerful method is adopted: a variety of directional forecasts are generated

from autoregressive models that exhibit directional predictability in sample, but

we utilize these as if the investor does not know beforehand how well the models

will fair, i.e. the investor does not know the accuracy of the models nor the

probabilities required as inputs in the DF framework. This way, we have a

realistic set of forecasting models whose accuracy we do not know in advance,

but we can at the same time be sure that on a general level, forecastability is

there, making the study valid.

To generate the forecasts, a simple autoregressive modelling approach, de-

scribed in the following section, is utilized. The models need to be calibrated

before the trading simulation takes place, and is done in the full sample in ad-

vance, for each stock. In the trading simulation, these calibrated models are

used to generate one period ahead forecasts, which can then be used as inputs

in portfolio optimization. The generation of the forecasts is broken down into

two steps: first, the direction of the forecast is generated, then a magnitude esti-

mate is combined with the directional estimate. The DF framework will simply

extract the sign of each forecast, whereas the alternatives will use the whole

produced forecast as an estimate of the expected return.

The following two assumptions guide the generation of the forecasts: 1) A

forecasting model cannot predict the direction of large returns better than small
returns, or vice versa, i.e. the directional accuracy does not depend on the mag-

nitude of the return. 2) The forecasted magnitude does not contain information

about the directional accuracy, i.e. the magnitude value does not correlate with

the probability of being correct on the direction. These assumptions can be

considered fairly realistic, and considerably simplify the task at hand.

3.2 Properties of the forecasting models

A simple way to conform to the assumptions above is to deal with the directions

and the magnitudes of return forecasts separately. To generate the sign com-

ponent of a forecast, return signs are regressed on the one-period lagged return

signs of 5 randomly selected stocks4 in the dataset:

sgn(ri,t) = βββ
′
isgn(xxxt−1)+ εi,t, (4)

where xxxt−1 denotes a vector of 5 predictors (lagged returns). The regression

does not include an intercept to avoid introducing a baseline for the directional

forecasts. By changing the predictor variables xxxt−1, i.e. choosing a different set

of stocks as predictors, a different forecasting model is adopted. Repeating this

4 Using any other economic variables as predictors would suffice as well, but since applicable infor-

mation is contained in the present dataset, there is no reason to seek further.



114

procedure can create as many different forecasting models as there are groups

of 5 stocks in the dataset. Alternatively, a logistic regression could be used,

however, as the purpose is only to generate directional forecasts, the method

described above is sufficient.

For the magnitude part of the return forecasts, two different models are used.

The first, simpler method is to construct5 the magnitude estimates as follows:

m̂i,t = α|ri,t|+ (1−α)|εi,t|. (5)

where α ∈ {0,0.25,0.50} is the intensity and εi,t ∼ N(0, σ̄). Thus, the estimate

contains information about the true magnitude, but also simulated estimation

error, which is generated from a normal distribution6 with standard deviation

equal to the average of all sample standard deviations, σ̄. The standard deviation

of the error term is set equal for all stocks in order to avoid including information

about the relative magnitudes between the different stocks. When α = 0, the

magnitude estimate is pure noise. The sign and magnitude estimates are then

combined to generate return forecasts for each period:

r̂i,t = sgn(̂β̂β̂β
′
isgn(xxxt−1))m̂i,t. (6)

The above type of magnitude estimate is very elementary in the sense that

more accurate magnitude estimates are not necessarily closer to the true value of

the return if the directional accuracy is low. For example, even if the magnitude

estimate would contain no noise, a low accuracy for the directional component

would make this model to produce forecasts with high mean squared error. For

this reason, a more complex model is also considered:

m̂i,t =
∣∣∣oi,t+di,tsgn(ri,t−oi,t)gi,t|oi,t|

∣∣∣ , (7)

where oi,t ≡ sgn(̂β̂β̂β
′
isgn(xxxt−1))|εi,t| denotes a starting point for the forecast, which

is then given a nudge to the direction of di,tsgn(ri,t − oi,t), where di,t = sgn(ui,t),

and ui,t ∼U(−γ,1). The distance of the nudge is determined by the term gi,t|oi,t|,
where gi,t ∼ U(0,1).

What the above type of model for the magnitude estimate does is, it gives the

original return estimate a nudge toward the true return 1/(1+γ) of the time. The

smaller the value of γ, the more often the nudge is given toward the true value.

Otherwise, the nudge is given in the opposite direction, i.e. further away from

the true value. In the trading simulation, γ ∈ {0.8,0.9}. This type of a magnitude

estimation model should produce more accuracy for the whole return forecasts,

however, it can violate the second assumption made at the beginning (i.e. the

magnitude estimate does not contain information about the directional accuracy)

5 It is important to notice that this model is not estimated from the data, but is used to generate artificial,

noisy, magnitude forecasts based on the data.
6 The shape of the distribution is debatable, however, historical sample means for stock returns, for

example, tend to follow roughly a normal distribution.
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because if the directional forecast is wrong, it is more likely that the magnitude

estimate is given a nudge toward zero. In practice, some forecasting models

may possess this kind of a feature, and hence it is also included in this study.

The values for the parameters α and γ are rather arbitrary, since unfortu-

nately there are no guidelines for calibrating these kinds of magnitude models.

It is hoped that experimenting with these different values will give a rough idea

on how different portfolio selection models will perform in different situations.

Future research could attempt to include a few specific forecasting models for

mean returns. However, as mentioned before, that approach may quickly run

into other problems, namely, we cannot be sure if the forecasts possess any real

power, and furthermore, whether the power only exists in one particular dataset.

To examine what kind of directional accuracy the generated forecasts exhibit

in sample, we compute how often, on average, they produce the correct sign.

Naturally, this can be done without taking into account the magnitude estimates,

and thus only sign forecasts are generated to determine the average directional

accuracy. The results for 1000 different forecasting models are shown in the

form of a historgram in Figure 1.

Figure 1: Histogram of directional forecast accuracies for S&P100 stocks under 1000

different forecasting models

From Figure 1, it is evident that the forecasting models for each asset produce

reasonable, modest directional accuracy ranging between 47.7% and 60.6%, on

average 53.5%. This indicates that for some assets, there is no real forecasting

power, while for some assets there is a reasonably high accuracy of being cor-

rect. On average, the accuracy percentage is in line with out-of-sample empiri-

cal studies conducted about return sign predictability (for example, Bekiros and
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Georgoutsos (2008b) forecast the direction of weekly market index returns with

different models with directional accuracies ranging between 52% and 59%). In

the trading simulation that follows, the investor will not know these accuracies.

The calibrated models are used to generate the forecasts, but the accuracy will

have to be estimated from past performance, which introduces estimation error

in the trading simulation experiment.

To examine the directional accuracy of the forecasts in more detail, the sam-

ple is divided into two parts of equal length; the mean directional accuracy is

approximately the same for both subsamples. However, there are notable differ-

ences between the two periods for each asset under the same model. The average

absolute difference between the first subsample directional accuracy and second

subsample accuracy for each asset is 0.031, indicating that for one period, the

forecasting model can provide a reasonably high accuracy, which then disap-

pears in the other period, or vice versa. This is exactly how forecasting models

can often behave in the real world, exhibiting power during a stretch of time and

then losing that power in the following time period, possibly regaining it again

in the next stretch.

Figure 2: Directional forecast accuracy for the S&P100 stocks in the two subsamples

under 1000 different forecasting models

Figure 2 shows the directional accuracy in the two subsamples. As is evident

from the graph, there appears to be a tendency for the directional accuracy to

decline if it had been high to begin with, and increase if it had been low in

the first subsample. For example, a forecasting model that produced a 60%

directional accuracy for a stock in the first subsample can have a directional
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accuracy of 50% in the second subsample. This kind of a tendency makes out-

of-sample estimation of directional accuracy very difficult if the investor does

not know about the pattern.

The accuracy of the magnitude estimates can be measured by the average

correlation between the magnitude estimate and the true absolute return. For

one random forecasting model, this average correlation for α = 0.25 is 0.35, a

reasonably high value. In the second case, when α = 0.50, the mean correlation

level is 0.73, which is very high. It is doubtful that this kind of accuracy can be

achieved with any real forecasting model. However, for research purposes, it is

interesting to include this extreme case in the trading simulation experiment as

well.

It is important to notice that in portfolio optimization, mean-squared-error

type of accuracy of estimates does not necessarily matter if the ranking produced

for assets is accurate, resulting in the right assets being picked in the optimal

portfolio. Moreover, even if the magnitude estimates are accurate or rank assets

fairly well, they are of not much use if the directional forecasts are not accurate,

because the investor would be facing large estimates in the wrong direction,

misleading them to place a large weight in the wrong direction. The "nudge"

approach for the magnitude forecasts described above should address this issue

better.

3.3 Return correlation and ζi j

Equation 3 presents a hypothetical link between the pairwise joint probability

of being simultaneously right or wrong on the forecasted directions, ζi j, and

the sign correlation between the asset returns. Since we have now calibrated

forecasting models that generate directional predictions, and we know the true

return signs for each asset, it is possible to compute the joint probabilities for

each asset pair. For the 1000 different forecasting models, this renders a total

of 4 186 000 values, which are then averaged over the models, yielding 4 186

joint probability estimates. It is then examined how these joint probabilities

are related to the actual sample-based sign correlation coefficients between the

returns.

Figure 3 shows that there is a clear dependency structure between the average

measured joint probabilites and the level of pairwise sign correlations: When

correlation is high, the measured level of joint accuracy also tends to be high.

When correlation is close to zero, the measured joint probabilities are close to

0.5, which is expected based on Equation 3, as the individual probabilities ζi for

each asset are not large.

To further examine this relationship, simple regressions are run for the joint

probability values on absolute values of sign correlation and its powers up to
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Figure 3: Average pairwise joint probabilities (ζi j) for S&P100 stocks under 1000

different forecasting models

the 4th power. The model that produces the highest R2 is the third power (R2

value equal to 28.1%). The t-values for the intercept (0.515) and the regression

coefficient (0.551) are extremely high (>40). This fitted curve is depicted in

Figure 3 in gray color.

Thus, there appears to be a strong link between the joint probabilities and as-

set return (sign) correlations, as was stated in the hypothesis earlier. This opens

up a possibility for using sign correlations as an indirect method for estimat-

ing the joint probabilities by utilizing the correlation estimates multiplied by a

constant coefficient such as the one obtained in the regression above.

3.4 Optimization criteria

The DF framework and alternative models employed in this study can be used

with any portfolio optimization criterion that utilizes a mean vector and a co-

variance matrix. In this study, two common criteria are utilized: maximum

reward-to-risk (i.e. Sharpe ratio, Sharpe (1966)) and maximum geometric mean
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(MGM). In the first case, the following optimization problem is solved:

max
www

www′μμμt√
www′ΣΣΣtwww

s.t. www′111 = 1,

(8)

where www denotes a column vector of portfolio weights, μμμt is an estimate for the

mean return vector for time period t, and ΣΣΣt is the variance-covariance matrix

estimate for time t. For the directional framework of Essay 1, the covariance ma-

trix estimate is formed as in Equation 2, with the individual estimates based on

past data. For alternative frameworks used in this study, the covariance matrix

is the sample-based estimate based on past data.

The geometric mean maximization problem is defined as (see, e.g. Estrada

(2010)):

max
www

[
ln(1+www′μμμt)− www′ΣΣΣtwww

2(1+www′μμμt)
2

]
s.t. www′111 = 1.

(9)

This portfolio criterion is consistent with maximizing terminal wealth. To limit

absurdly large weights, it is customary to include an inequality constraint in the

optimization problems. For both of the above criteria, we apply the constraint

|wi| ≤ 0.2, i.e. no asset can have a larger absolute weight than 20% of initial

wealth. In the empirical study, another type of a constraint is also tested for part

of the models: the absolute values of the portfolio weights summing up to one,

i.e.
∑

i |wi| = 1. In this case, no upper limit constraint for individual weights is

set.

3.5 Estimating out-of-sample directional accuracy

The probabilities ζi and ζi j, which the DF framework requires as inputs, will

be estimated using only previous data known to the investor before the current

investment decision. The author is not aware of previous research that delves

deeply into this kind of estimation, so the aim here is to proceed carefully and

utilize simple models that can be easily applied in practice.

To begin with, estimates of directional accuracy from past data are likely to

be noisy, especially if the forecasting model’s power fluctuates in the sample,

as is the case with this study. Especially the tendency for directional accuracy

to revert as time progresses (see Figure 2) makes the estimation difficult. The

estimation window length used in the study is 208 weeks (corresponding to 4

years). Based on a few test runs, the directional accuracy estimates vary con-

siderably and would likely benefit from a longer estimation window. However,

since data is limited and the performance of the forecasting models is subject
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to change at any given period, we instead opt to use simple shrinkage models,

where the idea is to "shrink" the estimate toward a more structured one, hence

reducing estimation error. Shrinkage estimators have been widely used in finan-

cial applications, such as in the estimation of the covariance matrix (see, e.g.

Ledoit and Wolf (2003)).

The actual estimation of the probabilities ζi and ζi j can be unconditional, or

conditional on the forecasted signs. The latter approach means that the probabil-

ities are estimated from past data by taking into account only those observations

where the forecasted sign matches the sign of the current forecast. For example,

ζ̂i|(si = 1) denotes an estimate of the probability when the predicted direction

is up (or +1). Similarly, an estimate for ζ̂i|(si = −1) can be obtained. These

two estimates are likely to differ if the forecasting model does a better job at

forecasting positive signs than negative signs, or vice versa.

For the joint probability ζi j, a similar approach can be used: The estimate can

either be unconditional, or take the forecasted directions into account as follows:

ζi j|(si = s j) and ζi j|(si � s j). This partitioning idea could be taken even further

by specifying conditional probabilities ζi j|(si = 1, s j = 1), ζi j|(si = 1, s j = −1),

and so on, not only taking into account the cases where the forecasted directions

are equal, but actually separating cases where asset i is forecasted to go up and

asset j forecasted to go down in value, and so forth.

In order to find out which methods are feasible to use in the estimation of

directional accuracies, we conduct a study where the performance of optimal

portfolios are evaluated using different estimation procedures for ζi and ζi j.

The two methods used for ζi are the unconditional and the conditional case

described above. The three methods for the joint probability ζi j are the uncon-

ditional, the conditional for equal/not equal signs, and the conditional method

which takes into account the forecasted signs explicitly. To reduce noise, all of

these estimates are average (or shrinked) toward the mean of the forecasts, i.e.

ζ̂ shrink
i = (̂ζi+ ζ̄)/2, where ζ̄ = (1/N)

∑
i ζ̂i. The same procedure is utilized for the

conditional case as well, shrinking the estimates toward the mean of the uncon-

ditional estimates ζ̄. Finally, for simplicity, the case where all estimates are set

equal to the mean estimate is included in the evaluation as well.

For ζi j, exactly the same kind of shrinkage procedure is used, i.e. the un-

conditional estimates are shrinked toward the mean of all unconditional ζi j’s.

The second method shrinks the conditional ζi j estimates toward the mean of un-

conditional estimates. The third method takes into account the forecasted signs

explicitly when conditioning ζi j, and once again shrinks the estimates toward

the mean of the unconditional estimates. Naturally, a variety of more sophisti-

cated methods could be developed, but this is not in the scope of this paper, and

hence is left for future research.

The earlier S&P100 dataset is used in this study as well. The dataset is run

through multiple times, each time using a different forecasing model, with di-
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rectional forecasts generated as explained previously. In addition, for each sim-

ulation run, only 40 stocks are selected as the investable assets as this greatly

reduces the time required for the simulation to run through without sacrificing

too much generality. In addition, this way the available stocks are different for

each simulation run to cover different scenarios. The estimation window length

is 208 weeks (corresponding to four years), which leaves well over 400 weeks

for out-of-sample evaluation. The procedure is repeated 50 times (for 50 differ-

ent forecasting models), creating in total over 20,000 investment periods. The

Sharpe ratios and geometric means are calculated for each simulation run, and

finally, these numbers are averaged out over the 50 forecasting models. Table 1

presents the average Sharpe ratios and geometric means achieved by using each

of the estimation methods for the directional probabilities.

Table 1: Evaluation of estimation methods for directional accuracy

From Table 1, it is evident that the choice of estimation method has a notable

effect on portfolio performance. For both portfolio optimization criteria, the us-

age of constant ζi estimates, i.e. setting the estimates equal to the mean of the

individual (unconditional) estimates, provides the best performance. Compared

to, for example, the conditional case for ζi, the difference in Sharpe ratios can

be substantial. Using the constant values for ζi’s appears to guarantee good per-

formance no matter which method is used for estimating the joint probabilities

ζi j.

The choice for the estimation method of ζi j affects portfolio performance as

well, especially in the case of maximum Sharpe ratio portfolios. From Table
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1, it can be seen that the highest Sharpe ratio, on average, is produced by us-

ing the Conditional 1 estimate, which means conditioning the estimation on the

forecasted pairwise directions being equal or not equal. Conditional 2 produces

nearly the same level of performance, but since the latter one is more compli-

cated to estimate, resorting to use Conditional 1 appears to be the best choice.

For the maximum geometric mean portfolios, the same kind of performance

effect can be observed as in the case of maximum Sharpe ratio portfolios, how-

ever, the choice of the estimation method for the joint probabilities does not

appear to make a big difference. This can be explained by the fact that the

MGM criterion places less emphasis on the variance of the portfolio than does

the maximum Sharpe ratio criterion, leading the estimates for ζi j not mattering

as much in portfolio optimization.

Overall, the most sensible combination that takes into account both criteria,

based on Table 1, is to combine constant ζi estimates with the conditional ζi j

estimates, shrinking the latter one toward the mean of the unconditional esti-

mates. This combination of estimation methods will be utilized in the trading

simulation that follows.

It should be emphasized that these methods of estimating directional accu-

racy are very elementary in nature. While it is possible to develop these ideas

further, the methods presented here serve as a starting point as no previous liter-

ature seems to examine the subject on a deep level. Developing the estimation

of directional accuracies further after obtaining the results from this study is a

potential topic for future research.

3.6 Alternative frameworks

Equipped with return forecasts for the next period, the investor has a number

of ways to utilize this information. The most simple method would be to use

the forecasted returns as inputs for the mean return vector, and this serves as

a natural benchmark choice. A more sophisticated and widely used method is

the framework of Black and Litterman (1992), which blends active views with

the market equilibrium expected returns, and is also employed in this study.

The traditional approach to the Black-Litterman framework is to use the Capital

Asset Pricing Model (CAPM, see e.g. Sharpe (1964)) to provide baseline views

for the investor, with which the tactical allocation views are then combined. In

this study, a vector of zeros is used as the baseline views, since each asset has

a forecast for its return in any case, and the resulting mean vector will always

include a view on each asset. In addition, the link between the CAPM beta

and cross-sectional returns has been shown to be weak, if not non-existent (e.g.

Fama and French (1992)), which also speaks for not using the CAPM as the

baseline model.
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In this case, the conditional mean vector in the Black-Litterman framework

becomes:

μμμBL = ((τΣΣΣ)−1+P
′
ΩΩΩ−1P)−1(P

′
ΩΩΩ−1q). (10)

where τ is a sensitivity parameter, P is a matrix signaling which assets the views

concern, ΩΩΩ is a matrix containing estimates for the error term variance, and q
is a vector containing the forecasted returns (i.e. active views). The covariance

matrix used in portfolio optimization will be the same as in the case of using a

traditional mean vector, i.e. the sample-based covariance matrix.

In the literature, there appears to be no clear consensus on what the value of τ

should be; generally, it ranges between 0 and 1. In the trading simulation, we ex-

plored the performance by setting τ= 1/208, i.e. one divided by the sample size.

This produced poor performance likely due to the fact that the Black-Litterman

estimates were extremely close to zero in that case, leading portfolio optimiza-

tion to be conducted mostly based on the variance of the portfolio. Setting τ = 1

produces significantly better performance, and therefore this setting is adopted

in this simulation study.

Since the forecast models provide an estimate for each stock’s future return,

the matrix P is simply the identity matrix, and the vector q contains the fore-

casted values. Thus, the Black-Litterman expected return vector is simplified

into

μμμBL = ((τΣΣΣ)−1+ΩΩΩ−1)−1(ΩΩΩ−1q). (11)

The ΩΩΩ matrix contains the variances of the error terms, often expressed as the

confidence levels on the forecasts – these are relatively easy to estimate by com-

puting them from historical forecasts and the realized returns. Since the ex-

pected value of the error term should be zero, the variance is simply equal to the

mean squared error of the forecasts. This is a nice way of solving the estimation

of the matrixΩΩΩ.

The framework of Essay 1 is much different in that it completely disregards

noisy information in whole return forecasts, and extracts only the predicted signs

from them. Alternatively, one does not even need whole return forecasts, but

simply directional views expressed by, for example, an investment manager. In

addition, the framework includes a conditional covariance matrix for optimiza-

tion, as introduced in Equation 2.

To examine if the actual framework makes a difference, or just the inputs (i.e.

using directional estimates versus whole return estimates), we use a simplistic

model to incorporate directional forecasts into mean-variance optimization by

defining the mean return vector as:

μμμsimplistic = ssŝμabs (12)
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where sss is a vector containing the forecasted directions, and μ̂abs is the average

absolute return of all available assets estimated using the data in the estimation

window. This simplistic model is used together with the sample-based covari-

ance matrix.

The comparison of these four methods (traditional mean-variance optimiza-

tion, the Black-Litterman framework, the DF framework, and the simplistic

method for incorporating directional forecasts) should help answer the research

questions posed in the introduction and offer guidance in choosing the best

model in the event that returns exhibit predictability.

In the trading simulation, the same dataset of S&P100 stocks is used repeat-

edly, each time randomly selecting 40 stocks as investable assets and generating

return forecasts for them. The forecasting model is also different for each time

(based on randomly selected 5 stocks in the full sample, as described earlier),

and thus the simulation process can be repeated an arbitrary number of times to

achieve robust results. In the trading simulation results that follow, the perfor-

mance is evaluated over 50 different forecasting models. The estimation win-

dow used to compute all parameter estimates is 208 weeks (corresponding to 4

years).

4 RESULTS OF OUT-OF-SAMPLE TRADING
SIMULATION

4.1 Directional inputs in optimization

To answer the first research question (i.e. When directional return forecasts

are available, does it matter how they are utilized for portfolio optimization?),

the trading simulation in this section looks at the out-of-sample performance of

optimal portfolios under the maximum Sharpe ratio and maximum geometric

mean criterion. In addition to answering the question above, the results also

shed light to the question whether the investor is better off by extracting only

the signs of return forecasts when the magnitude estimates are pure noise.

The return forecasts are generated as described in Section 3, choosing α = 0

in Equation 5. Thus, the directional forecasts are combined with a completely

random value drawn from a normal distribution. This resembles a situation

where the investor’s model has power in forecasting the directions, but the whole

return estimates are very noisy. While one cannot know for certain whether

forecasting models in practice exhibit this kind of a feature, there is evidence

that can be considered to support this kind of a setup: forecasting models in

practice may be profitable because of their directional accuracy, whereas by
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traditional measures (such as the mean squared error), their performance can be

poor (see, e.g. Taylor (1980), Leitch and Tanner (1991)).

Table 2 presents the results for the average performance of 40 asset portfolios,

the standard deviations of the performance indicator, and the average turnover

of the portfolio in order to monitor how much trading needs to take place to

keep the portfolio updated. The constraint |wi| ≤ 0.2 is in place for the portfolio

weights. It needs to be emphasized that these are out-of-sample results, i.e.

parameter estimation is done with data available prior to the investment decision

for each period. Thus, these results include parameter estimation error, which is

known to be a crucial factor affecting portfolio performance (see, e.g. Michaud

(1989)).

Table 2: Average performance of portfolios when the directions of returns are pre-

dictable, with pure noise as magnitude estimates

The average Sharpe ratios for optimal portfolios in Table 2 show that the best

performance is achieved using the DF framework, utilizing only the signs of the

return forecasts, which yields an average Sharpe ratio of 0.234. The second best

alternative is the simplistic framework, which combines the directional inputs

with a constant value for the magnitudes, producing an average Sharpe ratio of

0.201. This is notably lower than the value produced by the DF framework,

implying that it pays off to utilize the more sophisticated framework. However,

it should be kept in mind that the estimation method for ζi and ζi j (discussed in

Section 3) needs to be paid close attention to, or otherwise the performance of

the DF framework would likely be considerably worse.

From Table 2, it can be observed that the Black-Litterman model, using the
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whole return forecasts to form the conditional expected return vector, produced

on average a Sharpe ratio of 0.191, which is lower than that produced by either

the DF or the simplistic directional framework. The traditional model produced

the worst result, an average Sharpe ratio of 0.183, which demonstrates that com-

bining directional estimates with noise as magnitude estimates to utilize tradi-

tional mean-variance optimization is not a useful strategy.

In addition to providing superior performance in case of the maximum Sharpe

ratio portfolios, the DF framework also produces a lower variability of perfor-

mance compared to the simplistic directional framework, as the standard devi-

ation of Sharpe ratios is 0.037 compared to 0.046 for the simplistic framework.

Moreover, the average turnover for the DF framework was slightly lower (5.27)

compared to that of the simplistic framework (5.51), or either of the models

using whole return forecasts as inputs (5.75 and 5.71).

The average geometric means for the optimal portfolios in Table 2 indicate

that when directional forecasts are available, the investor is better off by utiliz-

ing the DF framework also in the case of the MGM criterion, as it produces an

average geometric mean of 0.88%. The second best result, 0.78%, is produced

by both the Black-Litterman and the traditional framework. The difference be-

tween these two values is notable, as the terminal wealth over a long period of

time (e.g. 10 years) provided by the DF framework can be nearly twice that pro-

duced by the alternatives. The worst alternative in the case of MGM portfolios

is the simplistic framework with an average geometric mean of 0.72%, how-

ever, it produces the least variable performance and also has the lowest turnover

amount of the four evaluated models.

Overall, from the results presented in Table 2, we can infer that if the mag-

nitudes for return estimates are pure noise (or close to being pure noise) as can

be the case in practice, it can be advisable to extract the signs of these estimates

and use them as inputs, either utilizing the simplistic framework, or better yet,

the DF framework. However, it should be kept in mind that in order to achieve

the performance illustrated in Table 2, the directional accuracy estimation needs

to be paid close attention to, as described earlier.

4.2 More accurate return forecasts

To answer the second question presented in the introduction (i.e. If accurate

whole return forecasts are available, is the investor still better off by extract-

ing the signs of these forecasts and using them as inputs in portfolio optimiza-

tion?), the trading simulation looks at the out-of-sample performance of portfo-

lios when return forecasts contain accurate information about the magnitudes of

the future returns, as described in Section 3.

The four alternatives for the magnitude forecasts are the 25:75 and 50:50
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ratios of true information vs. noise (setting α = 0.25 or α = 0.5 in Equation 5)

and the nudge forecasts (according to equation 7, where the starting point for the

magnitude estimate is pure noise) with γ-parameters of 0.9 and 0.8. This kind

of accuracy for magnitude estimates may not be possible to achieve in practice

considering how difficult it is to forecast mean returns, but they will serve the

purpose as it is useful to include slightly extreme scenarios. In essence, if the

investor is not sure about the accuracy of the return forecasts, he/she could resort

to following the guidance provided in the previous section when the magnitude

components of the return estimates are pure noise. If, on the other hand, the

investor is confident that there is true information in the magnitudes, then the

results in this section can act as a guideline.

Table 3: Average performance of optimal portfolios when the directions of returns

are predictable, with true information contained in magnitude estimates

Table 3 shows the average performance of 40-asset portfolios when magni-

tude estimates are accurate to the extent described earlier. The DF framework

simply extracts the signs of the return forecasts and performs optimization as

before, whereas the alternative frameworks utilize the whole forecasts as inputs.

For the case of maximum Sharpe ratio portfolios, even with accurate informa-
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tion about future magnitudes, the DF framework still produces a very compet-

itive average Sharpe ratio of 0.234, which is matched by the Black-Litterman

model using the nudge magnitude estimate with γ = 0.8. Moreover, the standard

deviation of the Sharpe ratios produced by the DF framework is reasonably low

(0.036) compared to the alternatives. In addition, the average turnover of the DF

framework is lower than that produced by any of the other models, indicating

that less trading is needed in order to keep the portfolio updated.

In the case of maximum geometric mean portfolios, the more accurate magni-

tude estimates help producing, on average, higher geometric means than simply

extracting the signs and using the DF framework. The latter produced an av-

erage geometric mean of 0.85%, whereas the best alternative is the traditional

framework when magnitude estimates are generated with the nudge method with

γ = 0.8, producing an average geometric mean of 0.97%. The difference is no-

table, however, it should be noted that this kind of accuracy in magnitude esti-

mates may not be possible to achieve in practice. If the accuracy of the infor-

mation is lower, there may not be much difference in the performance between

the DF framework and the alternatives.

The figures in the above tables are not to be taken too literally, as this is a sim-

ulation study with certain assumptions in place and randomness involved. The

results vary depending on which 40 assets are sampled as investable assets in

each simulation run. The most important take-away is the relative performance

between the different models: For Sharpe ratios, the directional framework ap-

pears to work well against all the alternative models tested, even with accurate

whole return forecasts. For the maximum geometric mean criterion, the DF

framework can produce competitive performance if the whole return forecasts

are not very accurate.

In the study above, the value for noisy magnitude estimates is drawn from

a normal distribution with a standard deviation equal to the average standard

deviation in the sample of weekly returns. This may produce rather large values

for the whole return forecasts (this is of course debatable, as some forecasting

models may produce very fluctuating values, whereas others constantly produce

a value close to zero). For this reason, we also experimented with smaller,

scaled values for the whole return forecasts, but this did not appear to have a

meaningful effect on the results.

Finally, one more test is run to see if the portfolio weight constraint plays

a part in the results. In the above results, the weight constraint |wi| ≤ 0.2 was

in place. Table 4 reports the average Sharpe ratios and geometric means when

there is no constraint set for the individual asset weights, but instead the sum of

absolute weights is set equal to one, i.e.
∑

i |wi| = 1.

Table 4 compares the performance of the overall best model, the Black-

Litterman method with the nudge approach with γ = 0.8, and that of the DF

framework. Under this portfolio weight constraint, there is no clear difference
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Table 4: Average performance of optimal portfolios with the constraint
∑

i |wi| = 1

between the performance of the two models under the Sharpe ratio criterion.

However, for the maximum geometric mean portfolios, the Black-Litterman

model utilizing the nudge forecasts still produces notably better performance

(0.35% versus 0.25%). It should be noted that the standard deviation of this

performance is considerably higher for the Black-Litterman model, or 0.27%

compared to that of the DF framework, 0.12%. Thus, utilizing this looser con-

straint causes the performance of the model using the whole return forecasts to

be very variable. In addition, the average turnover is considerably lower for the

DF framework.

Overall, based on the results presented in this section, the investor would be

approximately equally well or better off when forming maximum Sharpe ratio

portfolios by utilizing the framework of Essay 1 instead of using whole return

forecasts as inputs in optimization even when they contain some amount of true

information about the magnitudes. However, in order to reach this level of per-

formance, the estimation of directional accuracies in the DF framework needs to

be paid close attention to. If magnitude estimates contain enough useful infor-

mation, using the whole return forecasts can provide better performance in the

case of maximum geometric mean portfolios. However, it should be noted that

the level of accuracy in the magnitude estimates in practice can be questioned.
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5 CONCLUSION

Forecasting future asset returns is a notoriously difficult task and using noisy

return estimates in portfolio optimization often magnifies the problem. This

paper approaches the issue by asking whether it is more beneficial to use only

part of the information in these estimates, namely the signs, to achieve improved

portfolio performance out-of-sample.

Instead of choosing specific forecasting models, the empirical study is con-

ducted by generating directional forecasts that mimick the performance of com-

parable forecasting models in practice. For example, the generated models

present a level of directional accuracy that varies through time, which can be

expected to be the case in practice as well. The directional estimates are com-

bined with magnitude estimates, which can be either pure noise, or contain true

information about the returns. This type of an approach allows generating a

vast number of different forecasting models and evaluating the performance of

portfolios in a robust setting by providing a large number of observations. In

addition, the approach is not tied to a specific forecasting model, but the results

can apply on a general level to all models that share these qualities.

In the out-of-sample trading simulation conducted, it was found that when

the magnitude components of return forecasts are purely noise, the investor can

achieve a notable performance increase by using only the directions, or signs,

of the return forecasts instead of using the whole return forecasts as estimates

for expected returns. The directional inputs alone are not sufficient if they are

not utilized correctly: the framework of Essay 1 provides a solution to this. The

estimation of directional accuracies in this framework needs to be undertaken

carefully: this paper also evaluated methods for estimating directional accuracy,

and it appears that using constant or shrinkage estimates can produce good re-

sults.

When accurate information about the magnitudes is included in the return

forecasts, the directional framework using the mere signs as inputs still produces

high Sharpe ratios, on average, compared to the alternative models employed in

the study. For maximum geometric mean portfolios, the alternatives utilizing

the whole return forecasts fair better, on average, than extracting the mere sign

of these forecasts and using them as inputs in optimization.

Overall, extracting the signs of return forecasts and using them as inputs in-

stead of whole return forecasts appears to produce good performance in a wide

variety of settings. However, to achieve this performance, the estimation of di-

rectional accuracy needs to be paid close attention to. It is possible to develop

the idea further by incorporating more sophisticated estimates, which could pos-

sibly lead to better performance.

The power of this study, namely that return forecasts are generated artifically
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and they can be applied in a wide variety of settings, can also be seen as a limi-

tation: there is no way of knowing for certain how well the generated forecasts

represent reality. The directional accuracy generated in the study is in line with

some recent empirical out-of-sample performance. The accuracy of the mag-

nitude estimates is debatable, however, it can be assumed that greater accuracy

than that provided in this study would be hard to obtain in practice, and there-

fore, the results can be viewed as supporting the directional approach.

Future research could sacrifice some generality, and instead focus on a few

specific forecasting model and aim to find out whether the results in this paper

are supported by using forecasting models known to exhibit power in practice.

Moreover, the estimation of directional accuracy could be explored further by

including more sophisticated models and different lengths of estimation win-

dow. If a general level estimation method that produces good performance in

most situations can be found, it would be helpful for applying the directional

framework in practice.
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