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ABSTRACT

Polyketides are a diverse group of natural products produced in many bacteria, fungi 
and plants. These metabolites have diverse biological activities and several members 
of this group are in clinical use as antibiotics, anticancer agents, antifungals and 
immunosuppressants. The different polyketides are produced by polyketide synthases, 
which catalyze the condensation of extender units into various polyketide scaffolds. 
After the biosynthesis of the polyketide backbone, more versatility is created to the 
molecule by tailoring enzymes catalyzing for instance hydroxylations, methylations and 
glycosylations. 

Flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/
reductases (SDR) are two enzyme families that catalyze unusual tailoring reactions in the 
biosynthesis of natural products. In the experimental section, functions of homologous 
FPMO and SDR tailoring enzymes from five different angucycline pathways were 
studied in vitro. The results revealed how different angucyclinones are produced from 
a common intermediate and that FPMO JadH and SDR LanV are responsible for the 
divergence of jadomycins and landomycins, respectively, from other angucyclines. 

Structural studies of these tailoring enzymes revealed differences between homologous 
enzymes and enabled the use of structure-based protein engineering. Mutagenesis 
experiments gave important information about the enzymes behind the evolution of 
distinct angucycline metabolites. These experiments revealed a correlation between 
the substrate inhibition and bi-functionality in JadH homologue PgaE. In the case 
of LanV, analysis of mutagenesis results revealed that the difference between the 
stereospecificities of LanV and its homologues CabV and UrdMred is unexpectedly 
related to the conformation of the substrate rather than to the structure of the enzyme.

Altogether, the results presented here have improved our knowledge about different steps 
of angucycline biosynthesis and the reaction mechanisms used by the tailoring enzymes 
behind these steps. This information can hopefully be used to modify these enzymes to 
produce novel metabolites, which have new biological targets or possess novel modes-
of-action. The understanding of these unusual enzyme mechanisms is also interesting to 
enzymologists outside the field of natural product research.

Keywords: angucycline, biosynthesis, protein engineering
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TIIVISTELMÄ

Polyketidit ovat luonnossa esiintyviä yhdisteitä, joita tuottavat useat eri bakteerit, sienet 
ja kasvit. Näillä yhdisteillä on monenlaisia biologisia aktiivisuuksia ja useita polyke-
tidejä on kliinisessä käytössä antibiootteina, syöpälääkkeinä, sienilääkkeinä sekä im-
munosupressantteina. Näiden yhdisteiden hiilirunko muodostuu polyketidisyntaasien 
katalysoimien reaktioiden aikana. Muodostumisen jälkeen muokkausentsyymit lisäävät 
hiilirungon monimuotoisuutta katalysoimalla esimerkiksi hydroksylaatio-, metylaatio- 
ja glykosylaatioreaktioita.

Flavoproteiinimono-oksygenaasit (FPMO) ja lyhytketjuiset alkoholidehydrogenaasi/
reduktaasi -entsyymit (SDR) ovat entsyymiperheitä, joiden jäseniä osallistuu muok-
kausreaktioiden katalysointiin luonnonyhdisteiden biosynteesissä. Kokeellisessa osassa 
selvitettiin viidestä eri angusykliinibiosynteesitiestä olevien homologisten FPMO- ja 
SDR-entsyymien funktioita. Nämä tulokset osoittivat kuinka samankaltaiset entsyymit 
saavat muutettua yhden yhteisen välituotteen eri angusykliineiksi. Samalla saatiin myös 
selville, että FPMO JadH ja SDR-entsyymi LanV katalysoivat reaktioita, joiden seu-
rauksena jadomysiinit ja landomysiinit eroavat muista angusykliineistä.

Entsyymien rakennetutkimusten avulla saatiin selvitettyä miten homologisten entsyy-
mien aktiiviset keskukset eroavat toisistaan. Mutageneesitutkimukset tuottivat mielen-
kiintoista informaatiota entsyymeistä, jotka ovat eri angusykliiniyhdisteiden evoluution 
takana. JadH:lle homologisen PgaE:n katalysoimista kahdesta peräkkäisestä hydrok-
sylaatiosta huomattiin, että toisen hydroksylaation olemassaolo aiheuttaa substraatti-in-
hibition ensimmäisessä hydroksylaatioreaktiossa. LanV:n ja tämän homologin CabV:n 
välillä tehdyissä mutageneesitutkimuksissa taas huomattiin näiden entsyymien erilaisten 
stereospesifisyyksien johtuvan niiden käyttämien substraattien eroavista konformaati-
oista. 

Tämän väitöskirjan tulokset selittävät eroavaisuuksia eri angusykliinien biosynteesien 
välillä sekä antavat uutta tietoa näiden entsyymien käyttämistä reaktiomekanismeista. 
Näitä uusia tietoja pystytään toivottavasti käyttämään näiden entsyymien muokkaukseen 
niin, että ne tuottavat uusia, biologisesti aktiivisia angusykliinejä. Lisäksi tässä väitös-
kirjassa selvitetyt entsyymien epätavalliset ominaisuudet kiinnostavat varmasti entsyy-
mitutkijoita myös luonnonyhdistetutkimuksen ulkopuolella.

Asiasanat: angusykliinit, biosynteesi, proteiinimuokkaus
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ABBREVIATIONS

ACP	 acyl carrier protein

AT	 acyl transferase

BIQ	 benzoisochromanequinones

CoA	 coenzyme A

CPA	 chromopyrrolic acid

DFT	 density functional theory

DH	 dehydratase

DNPA	 4-dihydro-9-hydroxy-1-methyl-10-oxo-3-H-naphtho[2,3-c]pyran-3-
acetic acid

dTDP 	 thymidine diphosphate

EAC	 escape from adaptive conflict

ECD  	 electronic circular dichroism 

ER	 enoyl reductase

ESI 	 electrospray ionization

ESI-HRMS  	 electrospray ionization-high-resolution mass spectrometry 

FAD  	 flavin adenine dinucleotide

FMN	 flavin mononucleotide

FPMO	 flavoprotein monooxygenases

GALE 	 UDP-galactose-4-epimerase

GDP 	 guanosine diphosphate

GFS	 GDP-fucose synthase

GME	 GDP-mannose-3’,5’-epimerase

HPLC 	 high-performance liquid chromatography

KR  	 ketoreductase

KS	 ketosynthase
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LC-MS  	 liquid chromatography-mass spectrometry 

MCoA  	 malonyl-CoA

MIC	 minimum inhibitory concentration

minPKS	 minimal polyketide synthase

mMCoA 	 methylmalonyl-CoA

NAD+  	 nicotinamide adenine dinucleotide

NADH  	 reduced form of nicotinamide adenine dinucleotide

NADP+  	 nicotinamide adenine dinucleotide phosphate

NADPH  	 reduced form of nicotinamide adenine dinucleotide phosphate

NDP 	 nucleoside diphosphate

ORF	 open reading frame

PCR 	 polymerase chain reaction

PDB  	 Protein Data Bank

PKS  	 polyketide synthase

PHBH	 para-hydroxybenzoate hydroxylase

PHHY  	 phenol hydroxylase 

rmsd	 root-mean-square deviation

RP-HPLC  	 reverse-phase high-performance liquid chromatography

SDR  	 short-chain alcohol dehydrogenase/reductase

SDS-PAGE	 sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SPE  	 solid phase extraction

UDP 	 uridine diphosphate

UV-vis	 ultraviolet-visible 
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ABBREVIATIONS OF THE AMINO ACID RESIDUES

A	 Ala	 Alanine	

C	 Cys	 Cysteine	

D	 Asp	 Aspartic acid	

E	 Glu	 Glutamic acid	

F	 Phe	 Phenylalanine	

G	 Gly	 Glycine	

H	 His	 Histidine	

I	 Ile		  Isoleucine	

K	 Lys	 Lysine	

L	 Leu	 Leucine	

M	 Met	 Methionine	

N	 Asp	 Asparagine	

P	 Pro	 Proline	

Q	 Gln	 Glutamine	

R	 Arg	 Arginine	

S	 Ser		 Serine	

T	 Thr	 Threonine	

V	 Val		 Valine

W	 Trp	 Tryptophan	

Y	 Tyr		 Tyrosine

X	 Any amino acid
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1.	 INTRODUCTION

1.1	 Biosynthesis of polyketide natural products

Natural products are the largest source of new scaffolds for drug molecules in the world, 
since 39% of all approved drugs between the years 1981 and 2010 were natural products 
or their synthetic derivatives. In the case of antibacterial drugs, this percentage was even 
higher, rising to 66% (Newman and Cragg, 2012). This highlights the importance of 
natural products in drug development, especially in the case of antibacterials, but also 
medicines in general. Despite the focus of drug industry on large libraries of synthetic 
molecules, natural products have remained a main source of new chemical entities in 
drugs, as in 2010, 50% of all approved drugs were natural products or their synthetic 
derivatives (Newman and Cragg, 2012, Wright, 2014).   

Polyketides are one of the largest and most diverse groups of natural products, and 
they are produced by different species of bacteria, fungi and plants (Hertweck, 
2009). These secondary metabolites are well known for their biological activities, 
and they are in clinical use as antibiotics (tetracycline, erythromycin A, rifamycin S), 
anticancer agents (doxorubicin, epothilones), antifungals (amphotericin B, nystatin) and 
immunosuppressants (rapamycin, ascomycin) (Figure 1). Besides these examples of 
polyketides used as medicines, several other polyketide metabolites outside the clinical 
use, have been shown to exhibit various biological activities with different modes-of-
action (Lombo et al., 2006, Korynevska, et al., 2007, Kharel et al., 2010, Osmanova et 
al., 2010)

The polyketide metabolites are produced by different polyketide synthases (PKS) that 
catalyze consecutive Claisen condensations of different small organic acids into long 
polyketide chains (Khosla et al., 2014, Hertweck, et al., 2007, Stewart et al., 2013). 
Type I PKS are large modular multidomain enzymes in which each module catalyzes 
one condensation reaction followed by the transfer of the growing polyketide chain to 
the next module. These modules are comprised of ketosynthase (KS), acyl transferase 
(AT) and acyl carrier protein (ACP) domains together with optional ketoreductase (KR), 
dehydratase (DH) and enoyl reductase (ER) domains. The KR, DH and ER domains are 
present in different combinations and are responsible for the processing of the β-keto 
groups (Figure 2A) (Hertweck, 2009, Khosla et al., 2014). 
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Figure 1: Chemical structures of polyketide natural products tetracycline, erythromycin A, 
rifamycin S, doxorubicin, epothilone A, ascomycin, amphotericin B, nystatin and rapamycin.

In contrast to type I PKS, type II PKS are multienzyme complexes in which distinct 
enzymes are translated from individual genes. The polyketide scaffold in type II PKS 
is produced by a so-called minimal PKS complex (minPKS), which consists of two 
ketosynthases, KSα and KSβ (KSβ is also known as a chain length factor), and an ACP. After 
the formation of the polyketide chain, cyclases, aromatases and KR enzymes catalyze 
reactions that define the final folding pattern of these metabolites (Figure 2B) (Hertweck, 
et al., 2007, Hertweck, 2009). For example in the case of decaketides produced by type 
II PKS, specific cyclases that close the fourth ring in an angular position are responsible 
for the formation of an angucycline-type scaffold instead of the linear four-ring structure 
present in tetracyclines and anthracyclines (Metsä-Ketelä et al., 2003, Hertweck et al., 
2007).
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Figure 2: Reactions catalyzed by (A) type I, (B) type II and (C) type III polyketide synthases 
as exemplified by deoxyerythronolide-B-synthase, angucycline type-synthase and chalcone 
synthase, respectively. KR0 in module 3 of deoxyerythronolide-B-synthase is ketoreductase- 
inactive but is involved in the epimerization of α-methyl group (Garg et al., 2014). mMCoA = 
methylmalonyl-CoA, MCoA = malonyl-CoA. Figure adapted from Khosla et al., 2007, Hertweck, 
2009 and Kang et al., 2014.
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The simplest PKS are represented by type III PKS, which are homodimers that catalyze 
all the reactions necessary for the formation of the polyketide backbone in one catalytic 
center (Figure 2C). In contrast to all other PKS, they have no ACP but use coenzyme A 
(CoA) tethered substrates in thioester exchange reactions (Stewart et al., 2013, Hertweck, 
2009). 

In all polyketide types, the backbone chain produced by the PKS is further modified 
by tailoring enzymes. These enzymes, which catalyze reactions like hydroxylations, 
ketoreductions, methylations and glycosylations, create more versatility in the already 
large pool of natural product backbones and are one of the major factors behind the vast 
structural diversity of polyketide metabolites (Rix et al., 2002, Hertweck et al., 2007).

Because of the constant increase in the number of multi-antibiotic-resistance pathogens 
and drug-resistant tumor cells, we have a growing need for new antibiotics (Wright, 
2014). One possible way to create new antibiotics is pathway engineering. The general 
idea of pathway engineering is to modify the properties of a known pathway or combine 
features from different pathways to produce novel metabolites. However, in order to 
modify the biosynthetic pathways of polyketides, we have to understand how the different 
steps in their biosynthesis are catalyzed (Walsh, 2002). Another possibility to generate 
novel natural products is protein engineering, where biosynthetic enzymes are modified 
to catalyze novel reactions. A thorough understanding of the enzyme mechanism and 
structure is vital for the success of this kind of approach (Zabala et al., 2012a).

Both flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/
reductases (SDR) are found as tailoring enzymes in several different natural product 
pathways. Members of these protein families catalyze a wide range of different tailoring 
reactions to various different substrates. Since these enzymes are crucial for the diversity 
of natural products, they are among the most potent tools for the generation of modified 
natural product pathways, which are not normally found from nature (Thibodeaux et al., 
2008, Wang et al., 2012a).

1.2	 Flavoprotein monooxygenases in the biosynthesis of natural products

One large group of tailoring enzymes involved in the biosynthesis of natural products 
are the flavoprotein monooxygenases, which use a flavin cofactor to activate molecular 
oxygen and incorporate one oxygen atom into the target substrate while the second 
oxygen is reduced to water. These enzymes are involved in several types of oxygenation 
reactions in the biosynthesis of natural products, including aromatic polyketides. Tailoring 
reactions catalyzed by the FPMOs include, for instance, hydroxylations, epoxidations, 
and Bayer-Villiger reactions (Crozier-Reabe and Moran, 2012). 

The catalytic cycle of oxygen incorporation by FPMOs begins with the reduction of 
the flavin cofactor, which is required for the activation of molecular oxygen. Most of 
the FPMOs are so-called external FPMOs, which use the reduced form of nicotinamide 
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adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) 
to reduce flavin. Internal FPMOs are an exceptional subclass of FPMOs as they use their 
own substrate in the reduction of the flavin cofactor (van Berkel et al., 2006). 

Based on their biochemical properties, sequences and structures, external FPMOs are 
divided into several subclasses. Members of the Class A and B are encoded by one 
gene and contain a tightly bound flavin adenine dinucleotide (FAD), which is reduced 
by NAD(P)H (Class A) or NADPH (Class B). FPMOs from Class C–E are mostly two-
component systems, which utilize an NAD(P)H of a reductase component to reduce 
flavin mononucleotide (FMN) (Class C) or FAD (Class D-F) (van Berkel et al., 2006, 
Crozier-Reabe and Moran, 2012). Members of the Class F are exceptional among FPMOs 
since they catalyze halogenations instead of oxygen additions (Huijbers et al., 2014).

All of the Class A FPMOs have two common domains: an FAD binding domain and 
an N-terminal domain that forms the other side of the substrate binding pocket. The 
active site of the enzyme resides between these two domains (Crozier-Reabe and Moran, 
2012). Enzymes of this class have one glutathione reductase type Rossmann fold, which 
is used to bind FAD, but no binding site for NAD(P)H has been recognized (van Berkel 
et al., 2006, Huijbers et al., 2014). Some FPMOs, like phenol hydroxylase (PHHY), 
PgaE and RebC, also have a third, C-terminal domain, but the function of this domain 
is not known (Crozier-Reabe and Moran, 2012). Discussion in this thesis focuses on the 
Class A FPMOs because angucycline monooxygenases PgaE and CabE discussed in the 
experimental section are also members of this subclass. 

1.2.1	 Reaction mechanism of the Class A flavoprotein monooxygenases

Although oxygen is found in a plethora of metabolites in nature, the insertion of oxygen 
into an organic substrate is extremely difficult. To catalyze this spin-forbidden reaction 
between oxygen and carbon, the enzyme has to activate molecular oxygen (van Berkel et 
al., 2006). The reaction mechanism used by the Class A FPMOs to activate oxygen and 
catalyze its insertion into organic compounds has been extensively studied, mainly with 
the enzymes para-hydroxybenzoate hydroxylase (PHBH) (Entsch et al., 1976, Wierenga 
et al., 1979, Entsch and van Berkel, 1995) and PHHY (Enroth et al., 1998, Enroth, 2003). 
The reductive half reaction starts from the resting state of the enzyme in which the 
isoalloxazine ring of the FAD is in so-called OPEN/IN conformation, enabling the entry 
of the substrate into the active site (Wang et al., 2002, Crozier-Reabe and Moran, 2012). 
The binding of the substrate has been shown to increase the ability of the enzyme to 
reduce FAD with NADPH by 140,000-fold (Husain and Massey, 1979). The substrate 
binding followed by the binding of NAD(P)H causes a conformational change in the 
FAD from IN to OUT, which presents the re-face of the isoalloxazine to the NAD(P)H, 
enabling the reduction of the cofactor FAD (Figure 3, step 1). After the reduction of 
FAD, NAD(P)+ is slowly released from the active site, and the positive electrostatic 
environment of the active site attracts the negatively charged isoalloxazine ring back to 
the IN conformation (Crozier-Reabe and Moran, 2012).
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Figure 3: The redox cycle of FAD during the catalysis in Class A FPMOs. Steps 1–5 are explained 
in the main text. The substrate S consumed in step 4 is bound to the active site of the enzyme 
prior to step 1 and the oxygenated product SO is released during step 4. Steps 4 and 5 occur 
simultaneously. The shading used in this and following figures indicates the part of the molecule, 
which has changed during the previous reaction step. R in FAD consists of a ribityl phosphate 
moiety connected to adenosine monophosphate; the ribityl moiety is connected to isoalloxazine 
ring.  

The oxidative half reaction of the Class A FPMOs starts from a situation where the substrate 
is in the active site of the enzyme, the reduced FAD is back in the IN conformation and 
dioxygen lies next to the C-4a of the isoalloxazine ring in the solvent-free environment. 
The following electron transfer from the reduced flavin to the molecular oxygen creates 
two radical species: a superoxide anion and a flavin semiquinone. The second electron 
transfer from the flavin radical to the superoxide takes place through spin inversion 
followed by the recombination of the two radicals (Figure 3, step 2). The formed C-4a-
peroxyflavin is stabilized by the enzyme and protonated into a hydroperoxy form (Figure 
3, step 3) before it is attacked by the substrate in an electrophilic oxygenation, which 
results in an incorporation of one oxygen atom into the substrate (Figure 3, step 4). At 
the same time, the other oxygen atom is reduced to a water molecule (Figure 3, step 5) 
(Crozier-Reabe and Moran, 2012). 

1.2.2	 Hydroxylation reactions in the biosynthesis of natural products

Several different FPMOs are involved in the hydroxylation reactions of natural products. 
These reactions typically follow the canonical mechanism for the FPMOs using FAD to 
hydroxylate their aromatic substrates. Some examples of classical hydroxylases in the 
biosynthesis of natural products are the aklavinone-11-hydroxylase RdmE (Niemi et al., 
1999), VioC and VioD from violacein pathway (Balibar and Walsh, 2006), and SibG 
involved in the biosynthesis of sibiromycin (Giessen et al., 2011). The hydroxylases 
reviewed in the following sections show some characteristics that extend beyond this 
basic hydroxylation paradigm (Huijbers et al., 2014). 
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1.2.2.1	OxyS catalyzes hydroxylations in oxytetracycline biosynthesis
Tetracyclines are a group of aromatic type II polyketides with a four-ring carbon scaffold 
and a broad-spectrum of antibiotic activities. Several different tetracycline derivatives 
are in clinical use as antibiotics, but the emergence of tetracycline resistant bacterial 
strains has reduced their efficacy in clinical applications. The biosynthesis of tetracycline 
in Streptomyces aureofaciens (Darken et al., 1960) and oxytetracycline in S. rimosus 
(Finlay et al., 1950) are known to have a common late intermediate, anhydrotetracycline, 
(Zhang et al., 2008, Pickens and Tang, 2010). One of the main differences between the 
biosynthesis of these two compounds is the C-5 hydroxyl group, which is present in 
oxytetracycline but missing from tetracycline (Figure 4). 

Figure 4: The biosynthesis of tetracycline and oxytetracycline from anhydrotetracycline by the 
action of flavoprotein monooxygenase OxyS and F420-dependent reductase OxyR. OxyS and OxyR 
homologues Cts8 and CtcR, respectively, consume 7-chlorinated substrates in chlortetracycline 
biosynthesis. R is H in tetracycline and Cl in chlortetracycline. Figure adapted from Wang et al., 
2013.

A flavoprotein monooxygenase OxyS from S. rimosus and its homologue Cts8 from S. 
aureofaciens have been shown to catalyze the 6-hydroxylation of anhydrotetracycline 
(Peric-Concha et al., 2005, Wang et al., 2012b, Vancurova et al., 1988). The recent 
in vitro studies by the group of Prof. Tang have shown that OxyS is also responsible 
for the 5-hydroxylation step in the biosynthesis of oxytetracycline. The incubation of 
anhydrotetracycline with OxyS and OxyR, an F420-dependent 5a,11a-reductase, in the 
presence of reduced coenzyme F420 and NADPH, yielded both oxytetracycline and 
tetracycline (Figure 4) (Wang et al., 2013). 

The 6-hydroxylation of anhydrotetracycline is expected to take place through the 
canonical reaction mechanism of FPMOs by using O2 and NADPH as co-substrates 
and FAD as a co-factor. After this hydroxylation, the product is released from the 
active site and bound again for the 5-hydroxylation to take place. This release is 
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one of the key factors behind the differences between oxytetracycline, tetracycline 
and chlorotetracycline. The absence of a C-5 hydroxyl group in tetracycline and 
chlortetracycline can be explained by the differences in the substrate affinities of 
OxyR and its homologue CtcR from S. aureofaciens toward the 6-hydroxylated 
anhydrotetracycline (Wang et al., 2013, Ryan, 1999). In vitro results show that compared 
to OxyR, CtcR has a higher affinity toward this product than OxyS, a difference 
which could steer the biosynthesis from oxytetracycline to chlorotetracycline. At the 
same time, the lower affinity of OxyR toward the 6-hydroxylated anhydrotetracycline 
enables the production of both tetracycline and oxytetracycline by OxyS (Figure 4) 
(Wang et al., 2013).

The product of the 6-hydroxylation has an equilibrium between keto and enol forms 
around carbons C-11, C-11a, C-5a and C-5, and the enol form is the expected substrate 
for the 5-hydroxylation of OxyS. The extraction of the proton from the C-11 hydroxyl of 
the enol form by a catalytic base can cause the formation of C-5 carbanion which can then 
attack the hydroperoxyflavin in the active site of OxyS. The opposite stereochemistries 
of C-5 and C-6 hydroxyl groups in oxytetracycline can be explained by changes in the 
conformation of the active site cavity that tilt the substrates, anhydrotetracycline and the 
6-hydroxy-anhydrotetracycline, to facilitate the attack of the FAD from opposite sides 
(Wang et al., 2013).

The 2.6 Å resolution crystal structure of OxyS in complex with oxidized FAD (Protein 
Data Bank (PDB) code 4K2X) revealed an overall structure that is very similar to 
other FPMOs like aklavinone 11-hydroxylase RdmE and prejadomycin hydroxylases 
PgaE and CabE. The modeling of anhydrotetracycline to the structure of OxyS using 
RdmE co-crystallized with aklavinone as a template revealed two amino acids, His-47 
and Phe-215, that appear to have close contacts with the ligand. These residues are 
facing the ligand from the opposite sides positioning the ligand between them. The 
mutation of these to alanine and isoleucine, respectively, led to changes in the ratio of 
the produced tetracycline and oxytetracycline, indicating that these residues affect the 
correct alignment of the substrates for C-5 and C-6 hydroxylation reactions (Wang et 
al. 2013). 

1.2.2.2	AzaH affects to the pyran-ring formation in azaphilones
Azaphilones are a group of fungal metabolites that are characterized by a highly oxidized 
bicyclic pyranone-quinone core (Figure 5A) (Osmanova et al., 2010). Azanigerones 
A–F are azaphilones produced by the silent aza gene cluster from Aspergillus niger 
ATCC1015, where the polyketide scaffold is generated by both highly reducing PKS 
(azaB) and non-reducing PKS (azaA) (Zabala et al., 2012b). 
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Figure 5: (A) Examples of azaphilone metabolites isolated from different fungi. Citrinin is an 
inhibitor of the cholesterol synthesis isolated i.a. from Monascus sp., sassafrin D is a broad-
spectrum antibiotic from Creosphaeria sassafras and falconensin E has anti-inflammatory activity 
and is isolated from Emericella falconensis (Osmanova et al., 2010). (B) The hydroxylation 
reaction catalyzed by AzaH and the consequent pyran-ring formation in the biosynthesis of 
azanigerones. FK17-P2a is the proposed product of the putative ketoreductase AzaE. Panel B 
adapted from Zabala et al., 2012b.

The reaction catalyzed by AzaH, a flavoprotein monooxygenase from the aza gene 
cluster, was confirmed by in vitro experiments using an intermediate of the azanigerone 
biosynthesis, FK17-P2a, as a substrate. FK17-P2a is an early culture product that is 
detectable only in the early days of the activated A. niger T1 culture and is suggested to 
be the reaction product of the putative ketoreductase AzaE. The in vitro analysis showed 
that AzaH alone is sufficient to convert FK17-P2a to a bicyclic product, azanigerone E, 
which has gone through the hydroxylation of C-4, pyran-ring formation and the loss of 
hydroxyl group from C-9 (Figure 5B). This analysis confirmed that the AzaH catalyzed 
hydroxylation is required for the consequent pyran-ring formation in the azanigerone 
biosynthesis (Zabala et al., 2012b).

1.2.2.3	TetX confers resistance to tetracycline antibiotics
One of the many biological functions of the FPMOs is the degradation of xenobiotics 
(Entsch and van Berkel, 1995, Ballou et al., 2005, Alfieri et al., 2008). The first FMPO 
that has been shown to catalyze the inactivation of antibiotics is the product of gene tetX 
(Yang et al., 2004). The gene tetX, as well as its orthologues tetX1 (66% amino acid 
sequence identity) and tetX2 (99% identity), have been found from the transposons of 
different Bacteroides species (Speer and Salyers, 1988, Park and Levy, 1988, Whittle et 
al., 2001). The transformation of Escherichia coli W3110 with a plasmid containing the 
tetX or tetX2 gene conferred resistance to tetracycline, but the N-terminally truncated 
version tetX1 was unable to confer resistance (Yang et al., 2004).

TetX2 is an FPMO that has been shown to catalyze the inactivation of tetracycline 
and its derivatives oxytetracycline, chlortetracycline, demeclocycline, doxycycline, 
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and minocycline while TetX has been shown to inactivate tigecycline (Figures 4 and 
6A). The analysis of the TetX2 and TetX inactivation products of oxytetracycline and 
tigecycline revealed 11a-hydroxylated compounds P1 and 11a-hydroxytigecycline, 
respectively (Yang et al., 2004, Moore et al., 2005). The P1 product was found to be very 
unstable under the reaction conditions (pH 8.5), and degradation was prevented only at 
very acidic conditions (pH 1). A time-course high-performance liquid chromatography 
(HPLC) analysis of the TetX2 reaction with oxytetracycline showed consumption of 
the substrate, production of the P1 product and conversion of P1 to P2 product. The 
molecular mass of P2 corresponds to a loss of water molecule from P1, and the compound 
was found to be unstable (Yang et al., 2004). The 11a-hydroxytigecycline, on the other 
hand, was found to be stable under the reaction conditions (Moore et al., 2005).  

The activities of tigecycline and 11a-hydroxytigecycline were tested against E. coli W3110 
strain. The minimum inhibitory concentration (MIC) value of 11a-hydroxytigecycline 
was shown to be 64 µg/ml whereas the MIC for tigecycline was only 0.5 µg/ml. However, 
the MIC value of the tigecycline against E. coli W3110 strain harbouring the tetX gene 
was only 2 µg/ml, showing that, although TetX can use tigecycline as a substrate, this 
third generation tetracycline can still be active against tetX-positive strains (Moore et 
al., 2005).

The structural analysis of TetX in complex with different tetracycline derivatives 
has revealed the basis of the wide substrate specificity exhibited by this tetracycline 
inactivating enzyme. The structures of TetX with bound FAD in the IN conformation 
and tetracyclines 7-iodtetracycline (PDB code 2Y6Q), 7-chlortetracycline (2Y6R), 
minocycline (4A99) and tigecycline (4A6N) show that all tetracyclines are bound by 
TetX in a similar manner; FAD stabilizes the substrate binding, and the hydrophobic 
(substituents at C-5–C-9) and hydrophilic (C-1–C-4 and C-10–C-12) parts of the 
tetracyclines are in contact with the hydrophobic and hydrophilic regions of the active 
site, respectively (Figure 6A and 6B). The most conserved interactions in the different 
TetX structures are the hydrogen bonds between O-4 and N-5 atoms of the FAD and 
C-12 and C-12a hydroxyl groups of the different tetracycline ligands, the hydrogen bond 
from Arg-213 to O-1 atom of the FAD and the hydrogen bonds between the Gln-192 and 
the substituents in the A-ring of tetracyclines (Figure 6C). In all of the structures, the 
distance between the C-4a of FAD and the C-11a hydroxylation site of tetracyclines is 
appropriate for a hydroxylation reaction to take place (5.9–6.0 Å). Also, all the structures 
show that the D-ring and substituents in it are exposed to bulk solvent (Volkers et al., 
2011, Volkers, et al., 2013).
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Figure 6: (A) Structures of the different tetracyclines in which 11a-hydroxylation is catalyzed 
by TetX or TetX2. The hydrophobic and hydrophilic parts of tetracyclines are highlighted with 
grey line on oxytetracycline. (B) An overlay of TetX bound 7-iodtetracycline (green) (PDB code 
2Y6Q), 7-chlortetracycline (magenta) (2Y6R), minocycline (light blue) (4A99) and tigecycline 
(salmon) (4A6N). (C) The FAD and 7-iodtetracycline in the active site of TetX. Dashed black 
lines represent (B) the distance between C-4a of FAD and C-11a of different tetracyclines or (C) 
the most conserved interactions between TetX and different tetracyclines. 

All the most important interactions between the tetracycline substrates and TetX are on the 
regions that are conserved in all the different tetracycline antibiotics. The modifications 
in the D-ring, like the 9-tert-butylglycylamido group at the C-9 of tigecycline, are 
exposed to solvent and hence will not affect the ability of TetX to bind these tetracyclines. 
Since oxygens at positions C-11 and C-12 of tetracyclines are involved in the Mg2+ ion 
coordination, which is important for the biological activity, only modifications in the 
A-ring could be used to generate fourth generation tetracyclines, which would overcome 
all currently known tetracycline resistance mechanisms (Brodersen et al., 2000, Volkers 
et al., 2011, Volkers, et al., 2013). 

1.2.3	 RebC and StaC in the branching point of indolocarbazoles

Rebeccamycin, a DNA-topoisomerase I inhibitor, and staurosporine, a protein kinase 
inhibitor, are members of an indolocarbazole class of natural products (Bailly et al., 
1997, Rüegg and Burgess, 1989) (Figure 7A). The central indolo[2,3-a]pyrrole[4,3-c]
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carbazole ring system is derived from two tryptophan residues by the enzymes 
RebODPC from Lechevalieria aerocolonigenes and StaODPC from Streptomyces sp. 
TP-A0274. RebO and StaO are amino acid oxidases, RebD and StaD chromopyrrolic 
acid synthases, RebP and StaP cytochrome P450 enzymes and RebC and StaC FPMOs 
(Pearce et al., 1988, Meksuriyen and Cordell, 1988, Sanchez et al., 2005, Howard-
Jones and Walsh, 2006).

RebC and StaC both have all three structural motifs typical to flavoprotein hydroxylases 
(see chapter 1.2) and are involved in the formation of the differently oxygenated 
aglycones of indolocarbazoles rebeccamycin and staurosporine, respectively. RebC 
and StaC work together with RepP or StaP to convert chromopyrrolic acid (CPA) into 
arcyriaflavin A and K252c, respectively (Figure 7B). In vitro experiments have shown 
that StaP with NADH, spinach ferredoxin and E. coli flavodoxin NADP+-reductase 
converts CPA into three products: K252c, 7-hydroxy-K252c and arcyriaflavin A in 
a 1:7:1 ratio. The addition of RebC or StaC into this reaction mixture yielded only 
arcyriaflavin A or K252c, respectively. These results show that, although the K252c 
and arcyriaflavin A can be produced by StaP alone, StaC and RebC can clearly mediate 
the efficient catalysis of the net 4-electron and 8-electron oxidations, which are 
required for the formation of K252c and arcyriaflavin A, respectively (Howard-Jones 
and Walsh, 2006).

Protein X-ray crystallography experiments with RebC and RebC-10x (RebC mutant 
where 10 amino acids have been changed to corresponding StaC residues and which 
catalyzes the formation a K252c) have given insights into the catalytic mechanisms of 
RebC and StaC (Ryan et al., 2007, Ryan et al., 2008, Goldman et al., 2012). Under 
aerobic conditions in room temperature, CPA has been shown to partially degrade into 
K252c, 7-hydroxy-K252c and arcyriaflavin A and some minor products like 7-carboxy-
K252c (Figure 7B). This same degradation is also seen during the long soaking of RebC 
and RebC-10x crystals with CPA, as both of these enzymes were able to selectively bind 
the 7-carboxy-K252c from the mixture of the degradation products. The modeling of 
CPA degradation products into the electron densities found in the active sites suggested 
that RebC can most likely bind both keto and enol forms of 7-carboxy-K252c whereas 
the keto form is best fitted to the electron density in the active site of RebC-10x (Ryan 
et al., 2007, Goldman et al., 2012). Crystal structures of RebC have revealed that the 
isoalloxazine moiety of FAD goes through similar movements as in the well-studied 
PHBH; in the native structure of RebC, the isoalloxazine ring is in the OUT position and 
the binding of the substrate induces a conformational change of FAD into IN position 
(Figure 8A) (Ryan et al., 2007). Also, the reduction of FAD causes the isoalloxazine 
moiety to move from OUT to IN position (Ryan et al., 2008). However, the binding of 
the K252c, which lacks the carboxy at C-7, does not induce the conformational OUT 
to IN change in RebC, suggesting that this is not a true substrate for RebC (Ryan et al., 
2007). 
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Figure 7: (A) Structures of indolocarbazoles rebeccamycin and staurosporine. (B) The reactions 
catalyzed by RebC and StaC in the biosynthesis of rebeccamycin and staurosporine, respectively. 
Panel B adapted from Goldman et al., 2012. 

The structures of RebC and RebC-10x with their expected substrates showed some 
interesting differences in the interactions between FAD, the substrate and the enzymes 
(Ryan et al., 2007, Goldman et al., 2012). In RebC, arginines Arg-239 and Arg-230 are 
within hydrogen bonding distance from one of the oxygens in the carboxyl moiety of 
the ligand. At the same time, the C-4a carbon of FAD is 5.1 Å away from the C-7 of 
the ligand, which resembles the distance between C-4a and the site of hydroxylation in 
PHHY and its substrate (5.3 Å) (Enroth 2003, Ryan et al., 2007). In RebC-10x, the Arg-
239 has been replaced with the corresponding StaC amino acid asparagine, and because 
of the changes G48S and F216V the Arg-230 adopts a “lower” position (Figure 8B). 
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These changes appear to prefer the binding of the keto tautomer of 7-carboxy-K252c 
instead of the enol form (Goldman et al., 2012). 

Figure 8: (A) Close-up view of the active site of RebC with bound FAD and 7-carboxy-
K252c (green) (PDB code 2R0G), K252c (violet) (2R0P) and no ligand (cyan) (2R0C). The 
FAD can be seen in both IN (green) and OUT (violet and cyan) conformations. (B) Close-up 
view of the active sites of RebC with bound FAD and keto form of 7-carboxy-K252c (green) 
(2R0G) and RebC-10x with bound enol form of 7-carboxy-K252c (4EIQ). Arg-230 residues 
in RebC and RebC-10x are shown in green and violet, respectively, and the ordered water 
molecule in the active site of RebC-10x as a red sphere.The interactions between this water 
molecule, C-7 position of 7-carboxy-K252c and the nitrogens of Arg-230 are shown as black 
dashed lines.

Based on the functional and structural information gained from the different experiments 
conducted with RebC, StaC and their mutant versions, reaction mechanisms have 
been suggested to RebC and StaC by the Drennan group (Goldman et al., 2012). 
The observation that RebC and StaC have the same substrate but it binds in different 
tautomeric forms suggests that differences in these tautomers could mediate the 
formation of two different products. The sp3 hybridized C-7 in the keto tautomer could 
accept electrons from the spontaneous decarboxylation of 7-carboxy-K252c while 
spontaneous decarboxylation is not possible in the enol tautomer because of the sp2 
hybridized C-7 (Figure 7B). The modeling of FAD into the active site of RebC-10x in 
the IN conformation reveals that the 7-carboxy group and the pyrrole-ring of the ligand 
clash with the isoalloxazine of FAD. The steric and electrostatic effects caused by this 
clash when the FAD conformation is changed from OUT to IN during the substrate 
binding could be the driving force behind the spontaneous decarboxylation in the StaC-
like enzymes. After the decarboxylation, C-7 needs to be protonated by a general acid 
in order to produce the StaC product K252c. This protonation could be achieved by 
the ordered water molecule, which is present in the RebC-10x crystal structure in the 
space created by the lower position of the Arg-230 (Figure 8B). In the case of RebC, 
the hybridization state of the C-7 would change from sp2 to sp3 upon hydroxylation 
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through the canonical FAD-dependent monooxygenase mechanism, after which the 
spontaneous decarboxylation could generate the RebC product arcyriaflavin A (Figure 
7B) (Goldman et al., 2012).

1.2.4	 Lsd18 catalyzes epoxidation reactions in the lasalocid biosynthesis

Ionophore polyethers, like lasalocids and monensin, which are active against Gram-
positive bacteria, are polyketides that have a polycyclic ether skeleton with several 
stereocenters (Dutton et al., 1995, Rutkowski and Brzezinski, 2013) (Figure 9A). 
The structural diversity of these polyethers is derived from the number and size 
of the ether rings that are formed by the stereoselective epoxidation of the linear 
polyene intermediate followed by the regioselective cyclization. Epoxide hydrolase 
Lsd19 from the lasalocid biosynthetic pathway has been determined to catalyze the 
formation of the ether rings by anti-Baldwin cyclization (Shichijo et al., 2008, Hotta 
et al., 2012).

Before the formation of the ether rings, the polyene intermediate has to be epoxidized. 
This function in the lasalocid pathway has been assigned to FPMO Lsd18 by in vivo and 
in vitro experiments with substrate analogues. The biotransformation experiments with 
Rhodococcus eryhropolis L-88 carrying an expression vector of the lsd18 gene showed 
that Lsd18 was able to stereoselectively epoxidate several different substrate analogues 
(Figure 9B and 9C) (Minami et al., 2012).

The in vitro experiments with heterologously expressed and purified Lsd18, in the 
presence of NAD(P)H, FAD and flavin reductase Fre, showed the conversion of 
the C-12–C-24 diene mimic into monoepoxidated product (Figure 9D). Also, the 
isolasalocid ketone, which forms during acid treatment of the bisepoxide product, 
was detected from the reaction mixture, indicating that Lsd18 has catalyzed two 
consequtive epoxidations. The presence of FAD and Fre were not required for the 
formation of the monoepoxidated product, but they were shown to enhance the 
efficiency of the reaction. The addition of Lsd19 to the reaction mixture yielded both 
the monoepoxidated product and the lasalocid ketone, which has the same modification 
pattern as lasalocid A. Altogether the results from the biotransformation and in vitro 
experiments demonstrate the ability of the FPMO Lsd18 to catalyze two sequential 
and enantioselective epoxidation reactions in the biosynthesis of the lasalocid group of 
polyethers by using the 4a-hydroperoxyflavin in the oxidative half-reaction (Minami 
et al., 2012).
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Figure 9: (A) Structures of ionophore polyethers lasalocid A and monensin. (B, C) The 
epoxidation reactions catalyzed by Lsd18 for different substrate analogues in biotransformation 
experiments and (D) the sequential epoxidations by Lsd18 and the following ether ring formation 
by Lsd19 in the conversion of the substrate analogue to lasalocid ketone in vitro. Panels B, C and 
D adapted from Minami et al., 2012.

1.3	 Short-chain alcohol dehydrogenases/reductases

Short-chain alcohol dehydrogenases/reductases are a large superfamily of proteins 
catalyzing several different types of reactions, including oxidoreductions and 
epimerisations. Members of this superfamily can be recognized by specific amino acid 
sequences and a similar catalytic mechanism (Kavanagh et al., 2008). These enzymes 
typically have amino acid sequence identities of only 15–30%, but they are structurally 
very similar (Jörnvall et al., 1995, Kallberg et al., 2002a). The structure of SDR enzymes 
is built around a Rossmann fold, which is typical in dinucleotide cofactor binding 
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enzymes. This fold consists of 6–7 seven β-strands, which makes up the central parallel 
β-sheet. The β-sheet is flanked by 3–4 α-helices from each side forming the nucleotide 
binding cavity (Figure 1A in IV and 2A in V). Members of this superfamily have been 
found in all branches of life and have been shown to be involved for instance in lipid, 
amino acid, hormone and xenobiotic metabolism (Kavanagh et al., 2008). 

The SDR enzymes are divided to six different subfamilies based on their size, conserved 
amino acid sequences and similar reaction mechanism (Kallberg et al., 2002b, Persson 
et al, 2009). Two most common subfamilies of SDR enzymes are classical and extended 
SDR enzymes, which are ~250 and ~350 amino acids long, respectively. The extra ~100 
amino acid residues of extended SDR enzymes are located in the C-terminal end of these 
enzymes and are usually involved in the substrate binding (Kavanagh et al., 2008, Allard 
et al., 2001a). Three other SDR subfamilies, intermediate, divergent and complex SDR 
enzymes, are recognized based on specific amino acid sequences, which differ from 
classical and extended SDR enzymes. Besides amino acid differences, complex SDR 
enzymes are also parts of large multidomain enzymes (Kallberg et al., 2002b). The sixth 
SDR subfamily is called atypical and members of this subfamily often are missing the 
amino acids of the catalytic tetrad. They also have various other sequence differences 
compared to other SDR enzymes but retain the topology typical for the SDR enzymes 
(Persson et al., 2009, Link et al., 2012, Buysschaert et al., 2013). 

The SDR enzymes involved in the biosynthesis of natural products belong mostly to 
classical, extended and complex subfamilies. Angucyclinone tailoring enzymes discussed 
in the experimental section are classical SDR enzymes whereas SDR enzymes involved 
in the sugar biosynthesis belong to the subfamily of extended SDR enzymes (Allard et 
al., 2001a, IV). Since the KR domains from the type I PKS are part of large multidomain 
enzymes, they are classified as complex SDR enzymes (Kavanagh et al., 2008). 

1.3.1	 Reaction mechanism of the SDR enzymes

The reaction mechanism of the oxidations and reductions of the hydroxyl and keto 
groups of substrates, respectively, by SDR enzymes has been extensively studied. The 
canonical reaction mechanism of the classical SDR enzymes has mainly been deduced 
from kinetic studies with Drosophila alcohol dehydrogenase, but also other members 
of this enzyme family have been shown to follow the same mechanism. The catalytic 
triad of the SDR enzymes consists of amino acids Ser-Tyr-Lys, where tyrosine is the 
most conserved amino acid in this enzyme superfamily. In some cases an additional 
Asn residue is included in this triad, formulating the catalytic tetrad Asn- Ser-Tyr-Lys  
(Filling et al., 2002). 

The reaction catalyzed by the SDR enzymes starts with the binding of the coenzyme 
NAD(P)H in an extended conformation, followed by the binding of the substrate. The 
next steps of the catalytic cycle are a proton transfer between the side-chain hydroxyl of 
tyrosine and the hydroxyl/keto group of the substrate and the following 4-pro-S hydride 
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transfer between the nicotinamide ring of the NAD(P)(H) and the carbon atom of the 
substrate where the hydroxyl/keto group is attached (Figure 10). After the reaction, the 
oxidized or reduced product dissociates from the active site prior to the release of the 
reduced or oxidized coenzyme, respectively (Filling et al., 2002).

Figure 10: The general reduction and oxidation reactions catalyzed by the SDR enzymes. The 
proton from the tyrosine in the ketoreduction is transferred to proton relay system, which often 
involves the 2’-OH of the ribose in NAD(P)H, the side chain of lysine from catalytic triad and 
water molecule coordinated by the asparagine from the catalytic tetrad. The general keto/hydroxyl 
substrates are shown in black, NAD(P)H and catalytic tyrosine in grey.

The roles of the different catalytic amino acids are also well known. As described above, 
the Tyr residue acts as a general acid or base in donating or abstracting a proton to or 
from the substrate, respectively. The role of the Lys residue adjacent to Tyr is to lower 
the pKa value of the Tyr in order to facilitate the action of Tyr as a catalytic acid or base. 
The Ser residue of the catalytic tetrad is involved in the stabilization and polarization 
of the substrate hydroxyl/keto group and the Asn residue is important for the formation 
of the proton relay system between the active site residues and the surrounding solvent 
molecules (Filling et al., 2002).

1.3.2	 Ketoreductases determine the stereochemistry in type I polyketides

One of the most thorough functional and structural characterizations of SDR enzymes 
involved in the natural product biosynthesis has been done with the KR domains of 
the modular type I PKSs (Figure 2A) (Caffrey, 2003, Keatinge-Clay, 2007, Whicher 
et al., 2014). These KRs are responsible for the formation of stereocenters in type I 
polyketides by catalyzing the reduction of the keto groups into hydroxyl groups with 
specific stereochemistries during polyketide synthesis. The main goal in the study of 
these KRs has been in understanding how the stereospecificity of these ketoreductions is 
controlled. The KRs can be divided into different types based on the stereochemistry of 
the formed hydroxyl group and their ability to epimerize the growing polyketide chain 
(Caffrey, 2003, Keatinge-Clay, 2007). 

A1-type KRs catalyze the formation of a β-hydroxyl group with an S stereochemistry 
whereas B1-type KRs are responsible for the formation of R-β-hydroxyl groups (Figure 
2A). A2- and B2-type KRs catalyze the formation of a hydroxyl group with the same 
stereochemistry as A1- and B1-type KRs, respectively, but they also catalyze the 
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α-epimerization of the growing polyketide chain. C1-type KRs lack the catalytic tyrosine 
and are nonfunctional whereas C2-type KRs are ketoreductase-inactive but involved in 
the epimerization of the α-position (Caffrey, 2003, Keatinge-Clay, 2007). The amino acid 
residues behind the different stereochemistries of ketoreductions catalyzed by these KRs 
have been identified as W and LDD motifs in type A and B KRs, respectively. These motifs 
are responsible for guiding the ACP-tethered polyketide chain into the active site from 
opposite sides causing the formation of hydroxyl groups with opposite stereochemistries 
(Caffrey, 2003, Keatinge-Clay and Stroud, 2006, Keatinge-Clay, 2007, Zheng et al., 2010).

1.3.3	 The SDR enzymes in the modification of monosaccharides

The SDR enzymes are involved in several different steps in the biosynthesis of the 
monosaccharide moieties present in natural products. Some of the reactions catalyzed by 
the SDR enzymes are dehydration, epimerization and ketoreduction (Field and Naismith, 
2003). These enzymes are involved in the reaction cascades that typically convert 
NDP-sugars (NDP = nucleoside diphosphate) into various sugar nucleosides before 
their attachement to aglycones (Thibodeaux et al., 2008). Most of the sugar moieties 
observed in natural products are deoxysugars like d-olivose and l-rhodinose present in 
landomycins and urdamycins, l-daunosamine found in daunorubicin and doxorubicin and 
d-oliose and d-mycarose present in mithramycins. These sugars are most often derived 
from the glycolytic intermediates glucose-6-phosphate and fructose-6-phosphate. The 
first common step in many deoxysugar biosynthetic pathways is the conversion of a 
sugar-1-phosphate into NDP-sugar, which is then further modified to different sugar 
nucleosides (Trefzer et al., 1999, Thibodeaux et al., 2008). In the following sections, 
mechanisms of the different sugar modifying enzymes will be discussed in order to give 
an overview how various different sugar moieties found in natural products are formed.

1.3.3.1	4,6-dehydratases produces NDP-4-keto-6-deoxy-d-glucose 
The first modification reaction of the sugar moiety in most biosynthetic pathways is 
the conversion of NDP-sugar into the corresponding NDP-4-keto-6-deoxy-sugar. This 
reaction is a requisite to all downstream modification reactions as the formed 4-keto 
group activates the C-3’ and C-5’ protons by lowering their pKa values. Many of the 
modification reactions also appear directly at the site of the 4-keto group (Thibodeaux 
et al., 2008). One of the best studied enzymes to catalyze this conversion is the dTDP-
d-glucose (dTDP = thymidine diphosphate) 4,6-dehydratase RmlB from the l-rhamnose 
biosynthetic pathway (Figure 11). The crystal structures of RmlB from Salmonella 
enterica serovar Typhimurium in complex with NAD+ (PDB code 1G1A), NAD+ + 
dTDP (1KEW) and NAD+ + dTDP-d-glucose (1KEU) and from Streptococcus suis in 
complex with NAD+ + dTDP (1KET), NAD+ + dTDP-d-glucose (1KER) and NADH + 
dTDP-xylose (1KEP) have given insights into the reaction mechanism of this enzyme 
(Allard et al., 2001b, Allard et al., 2002).
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The reaction catalyzed by RmlB (and also other 4,6-dehydratases) is a three-step 
process, which involves the oxidation of the hydroxyl group at C-4’, dehydration 
from C-5’ and C-6’ and the reduction of the double bond between carbons C-5’ 
and C-6’ (Figure 11) (Glaser, 1963, Allard et al., 2002). The first oxidation step 
is catalyzed according to the canonical reaction mechanism of the SDR enzymes 
involving the catalytic tyrosine residue as a general base and the hydride transfer 
from substrate to NAD+. The dehydration of the 4-ketoglucose intermediate is 
catalyzed by Glu and Asp residues in the active site of the RmlB. The Glu residue 
acts as a base in abstracting a proton from C-5’, and the Asp residue is an acid that 
protonates the leaving hydroxyl group at C-6’ causing the loss of a water molecule. 
This reaction mechanism has been verified by the structural and mutational analysis of 
the 4,6-dehydratase DesIV involved in the desosamine biosynthesis in S. venezuelae 
(Allard et al., 2004).

Figure 11: The conversion of dTDP-d-glucose to dTDP-4-keto-6-deoxy-d-glucose by 
4,6-dehydratase RmlB from the l-rhamnose biosynthetic pathway. Figure adapted from Allard 
et al., 2002 and 2004.

The last step in this reaction cascade, which results in the formation of the NDP-4-keto-
6-deoxy-d-glucose, utilizes either the catalytical Tyr or the Glu residue involved in the 
dehydration reaction as an acid to protonate C-5’ and NADH to donate a hydride to C-6’ 
(Allard et al., 2002, Allard et al., 2004). The modeling of dTDP-4-keto-5,6-glucosene 
intermediate to the structure of DesIV positions the catalytic Tyr and Thr-127 within 
hydrogen bonding distance from 4’-keto group whereas Glu-129 (corresponds to Glu-
135 in RmlB) is in cloce vicinity of C-5’. This vicinity is required for the proton transfer 
reaction to occur. This modeling suggests that the Glu residue involved in the dehydration 
reaction is also involved in the last reduction step of this reaction cascade (Allard et al., 
2004). In order to correctly position the dehydrated substrate for the reduction step, 
conformational changes bringing the C-6’ of the substrate into vicinity of the NADH are 
required. These changes have been proposed to occur due to a steric hindrance between 
the C-6’ and the water molecule resulting from the dehydration reaction (Allard et al., 
2002, Allard et al., 2004) This hypothesis is supported by the finding of coordinated 
water molecule at the position of the glucosyl 6’-hydroxyl group in the structure of 
S. suis RmlB in complex with NADH and dTDP-xylose. This shows that the water 
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molecule lost during the dehydration reaction can be trapped within the active site to 
enable the conformational changes in the substrate, which are required for the reduction 
reaction to occur (Allard et al., 2002).  

1.3.3.2	Ketoreductions generate hydroxyl groups in sugar nucleotides
SDR enzymes involved in sugar biosynthesis are also involved in generating hydroxyl 
groups by catalyzing ketoreductions of different positions. One of the possible reasons 
for the high number of ketoreductases observed in deoxysugar biosynthesis may be 
the need to stabilize the NDP-sugars after necessary modifications by reducing the 
activating C-4’ keto groups from the structures (Figure 12) (Thibodeaux et al., 2008). 
The reduction of the activating keto into a hydroxyl group reduces the activity of the 
sugar by lowering the acidity of the protons at positions C-3’ and C-5’ and hence lowers 
the reactivity of positions C-3’, C-5’ and C-6’ (Blankenfeldt et al. 2002, Thibodeaux 
et al., 2008).

Figure 12: The 4-ketoreduction of dTDP-6-deoxy-l-lyxo-4-hexulose to dTDP-l-rhamnose by 
RmlD from the l-rhamnose biosynthetic pathway. Figure adapted from Blankenfeldt et al., 2002.

The reaction mechanism of the ketoreductions follows the canonical reaction mechanism 
of the SDR enzymes. One well-studied example is from the biosynthesis of l-rhamnose, 
where RmlD catalyzes the last step of the pathway: the conversion of dTDP-6-deoxy-
l-lyxo-4-hexulose to dTDP-l-rhamnose (Figure 12) (Graninger et al., 1999). The 
4-ketoreduction in l-rhamnose formation requires a proton transfer between the hydroxyl 
group of the active site tyrosine and the keto group of the substrate as well as a hydride 
transfer from the NADPH to the C-4’ carbon of the sugar moiety. These distances in the 
crystal structure of RmlD in complex with NADPH + dTDP-l-rhamnose (PDB code 
1KC3) are 3.9 and 3.1 Å, respectively, indicating that proton and hydride transfers are 
possible. 

The biggest difference between RmlD and many other SDR enzymes is that, instead 
of serine, there is threonine residue as part of the catalytic triad in the active site. The 
conserved nature of Ser to Thr change still enables the hydrogen bonding between the 
Thr residue and the carbonyl group of the substrate. This interaction is important for the 
lowering of the pKa value of the carbonyl moiety, which is required for the activity of the 
SDR enzymes (Blankenfeldt et al., 2002).
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1.3.3.3	Epimerases act in different positions on the sugar nucleotides
The purpose of epimerases is to create versatility into the sugar moieties by changing 
the stereochemistry of the carbon atoms. Epimerases can catalyze the epimerization of 
one or two carbons at the same time, and epimerization activities can be coupled to 
reductions or oxidations of the keto or hydroxyl groups, respectively (Figures 13 and 
14) (Thibodeaux et al., 2008). These oxidation and reduction reactions in epimerases
follow the canonical mechanism of the SDR enzymes (Allard et al., 2001a, Thibodeaux, 
et al., 2008). 

Figure 13: (A) The conversion of UDP-galactose into UDP-glucose in the epimerization 
reaction catalyzed by GALE. The ring flip of the UDP-4-ketopyranose intermediate changes 
the orientation of the C-4’ between Tyr-167 and NAD(H) to enable the proton and hydride 
transfer from opposite sides of UDP-d-galactose and UDP-d-glucose during the epimerization. 
Figure adapted from Thoden and Holden, 1998 and Frey and Hegeman, 2013. (B) A close-up 
views from the active site of E. coli GALE Y149F/S124A variant in complex with NADH + 
UDP-galactose (violet) (PDB code 1A9Z) and NADH + UDP-glucose (green) (1A9Y). NADH 
(yellow) and Phe-149 (violet) from complex structure with UDP-galactose are shown as stick 
models and their possible connections with 4’-hydroxyl of UDP-galactose as black dashed 
lines.

The epimerization of UDP-galactose (UDP = uridine diphosphate) into UDP-glucose by 
UDP-galactose-4-epimerase (GALE) takes place through oxidation of the 4’-hydroxyl 
group followed by a ring flip, which makes it possible for the NADH to donate the 
4-pro-S hydride to the opposite side of the sugar ring than where it was removed 
from during the oxidation (Figure 13A) (Frey and Hegeman, 2013). The changes in 
the conformation of the sugar can be seen from the crystal structures of the inactive 
E. coli GALE Y149F/S124A variant in complex with NADH + UDP-galactose (PDB 
code 1A9Z) and NADH + UDP-glucose (1A9Y) (Figure 13B). These structures show 



Introduction 33

that the differences in the conformation of UDP-galactose and UDP-glucose start from 
the β-phosphorus atom and result in a flip of the sugar ring. This flip positions the 
4’-hydroxyl groups with different stereochemistries into the same position, indicating 
that it is possible to reduce the keto groups into either one of the epimers (Thoden and 
Holden, 1998).

Epimerization reactions catalyzed by GDP-fucose (GDP = guanosine diphosphate) 
synthase (GFS) and GDP-mannose-3’,5’-epimerase (GME) involve a more complex 
reaction mechanism than the one utilized by GALE (see above). GFS catalyzes the 
epimerization of C-3’ and C-5’ positions followed by the reduction of C-4’ (Figure 
14A) (Lau and Tanner, 2008). In contrast, GME converts GDP-d-mannose into GDP-l-
galactose and GDP-l-gulose by catalyzing oxidation of C-4’ followed by epimerization 
of both C-3’ and C-5’ or just C-3’, respectively (Figure 14B) (Major et al., 2005). The 
final step in both routes is reduction of C-4’ back to a hydroxyl group (Major et al., 2005, 
Lau and Tanner, 2008). The substrate for GME is GDP-d-mannose whereas the substrate 
for GFS is GDP-6-deoxy-4-keto-d-mannose, the product of the GDP-d-mannose-4,6-
dehydratase (catalyzes similar reaction as RmlB in section 1.3.3.1) (Major et al., 2005, 
Lau and Tanner, 2008).

The reaction cascade catalyzed by GFS starts with the deprotonation of C-3’ by the 
catalytic base Cys-109 followed by the protonation C-3’ by the catalytic acid His-179 
from the opposite side of the substrate (Figure 14A). The formed GDP-6-deoxy-4-keto-
altrose is deprotonated and protonated from position C-5’ by the same residues leading 
to the formation of GDP-6-deoxy-4-keto-l-galactose, which is then reduced into GDP-
l-fucose (Lau and Tanner, 2008). 

A highly similar reaction cascade catalyzed by GME starts with the oxidation of 
4’-hydroxyl and is followed by deprotonation and protonation of position C-5’ by 
the catalytic amino acid residues Cys-145 and Lys-217, respectively, corresponding 
to residues Cys-109 and His-179 in GFS, respectively (Figure 14B). These reactions 
are followed by a ring flip, similar to the one in the GALE reaction, and produce an 
intermediate product GDP-4-keto-l-gulose. This intermediate is then reduced into GDP-
l-gulose or converted into GDP-l-galactose. The conversion into galactose requires a 
change in the conformation of the sugar ring either by a ring flip similar to the one 
above or by movement of the C-4’. The most likely explanation is the movement of 
C-4’, which transfers GDP-4-keto-glucose to a boat conformation by moving the C-4’ 
through the plane of the ring. After this conformational change, the deprotonation and 
protonation of position C-3’ by Cys-145 and Lys-217, respectively, produces an half 
chair intermediate, which changes back to the previous conformation. The final step of 
the reaction cascade is the reduction of position C-4’ into the hydroxyl group present in 
GDP-l-galactose (Major et al., 2005).
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Figure 14: (A) The conversion of GDP-4-keto-6-deoxy-d-mannose to GDP-l-fucose by GFS and 
(B) the conversion of the GDP-d-mannose into GDP-l-galactose and GDP-l-gulose by GME. 
The oxidation and reduction reactions in panel B are catalyzed with the canonical SDR reaction 
mechanism using Tyr-174 and NAD(H). In order to simplify the figure, only protons involved 
in the catalytical steps are shown. Panel A adapted from Lau and Tanner, 2008 and panel B from 
Major et al., 2005.

1.3.4	 Srm26 catalyzes ketoreduction in the biosynthesis of spiramycin

One of the several different SDR enzymes suggested to catalyze ketoreductions in the 
biosynthesis of natural products is Srm26. In vivo experiments have shown that this 
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enzyme is involved in the generation of the hydroxyl group at C-9 of the spiramycin 
macrolactone ring. The inactivation of the srm26 gene from the spiramycin producer 
Streptomyces ambofaciens OSC2 resulted in the accumulation of platenolide I, a 
metabolite bearing a keto group at position C-9 (Figure 15). The production of spiramycins 
I, II and III in srm26-deficient S. ambofaciens could be restored by introducing a plasmid 
containing the srm26 gene into the strain. These results show that Srm26, a potential 
member of the atypical SDR enzyme family, catalyzes a ketoreduction reaction typical 
to SDR enzymes (Nguyen et al., 2013).

Figure 15: The 9-ketoreduction of platenolide I catalyzed by Srm26 and the structures spiramycins 
I, II and III. R = H in spiramycin I, COCH3 in spiramycin II and COCH2CH3 in spiramycin III. 
Figure adapted from Nguyen et al., 2013.

1.3.5	 Gra-ORF6 acts in the branching point of benzoisochromanequinones 

Benzoisochromanequinones (BIQ) are aromatic type II polyketides that are built 
around a three-ring system composed of pyran, quinone and benzene rings. The 
biosynthesis of these metabolites proceeds through a common bicyclic intermediate 
after which different tailoring enzymes catalyze the reactions responsible for the 
formation of distinct BIQ scaffolds (Taguchi et al., 2001, Metsä-Ketelä et al., 2013). 
In the biosynthetic pathways of actinorhodin and granaticin, the bicyclic intermediate 
is converted to the first chiral intermediate, 4-dihydro-9-hydroxy-1-methyl-10-oxo-3-
H-naphtho[2,3-c]pyran-3-acetic acid (DNPA), with either S or R stereochemistry at 
C-3 position, respectively (Figure 16). The differing stereochemistries at this position 
are due to the different strereochemistries of the 3-hydroxyl groups in the preceding 
intermediate, which goes through cyclization into the hemiketal form followed by 
dehydration into DNPA (Taguchi et al., 2004).

In actinorhodin biosynthesis, ActVI-ORF1 (ORF = open reading frame) has been shown 
to catalyze the 3-ketoreduction of the bicyclic intermediate by in vivo experiments. 
The expression of the actVI-ORF1 gene together with the actinorhodin minimal PKS, 
aromatase, cyclase and 9-ketoreductase genes resulted in the production of (S)-DNPA 
(Ichinose et al., 1999). In similar experiments with genes from the granaticin pathway, 
gra-ORF5 was enough to complement actinorhodin 9-ketoreductase actIII. The 
production of (R)-DNPA in high amounts required translational coupling of gra-ORF5 
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and gra-ORF6 genes in the production plasmid. These genes are translationally coupled 
also in the granaticin producing strain Streptomyces violaceoruber Tü22 (Taguchi et al., 
2001, Sherman et al., 1989).

Figure 16: The conversion of the bicyclic BIQ intermediate to either (S)- or (R)-DNPA by ActVI-
ORF1 and Gra-ORF6 from the actinorhodin and granaticin biosynthetic pathways, respectively. 
The 9-ketoreduction of the linear octaketide produced by the minPKS is catalyzed by ActIII or 
Gra-ORF5 and the bicyclic intermediate is formed after aromatization and cyclization reactions. 
Figure adapted from Taguchi et al., 2001 and Taguchi et al., 2004.

Although ActVI-ORF1 and Gra-ORF6 catalyze the same reaction with opposite 
stereochemistry for the same substrate, based on the sequences they belong to different 
enzyme families; ActVI-ORF1 is a 3-hydroxyacyl-CoA dehydrogenase whereas Gra-
ORF6 is an SDR enzyme (Taguchi et al., 2001). The homology model structure of 
Gra-ORF6 in complex with NADPH has shown that all the amino acids of a classical 
catalytic triad of the SDR enzymes are present in the active site of Gra-ORF6 and are 
in the vicinity of NADPH, which is positioned correctly to donate the 4-pro-S hydride 
to the bicyclic substrate (Taguchi et al., 2004). These results suggest that Gra-ORF6 
is a classical SDR enzyme catalyzing a stereospecific 3-ketoreduction of the bicyclic 
intermediate and is responsible for the diversion of the granaticin pathway from other 
BIQ pathways. 
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2. AIMS OF THE STUDY

The aim of this PhD project was to study the mechanisms behind the functional 
differentiation of angucyclinone tailoring enzymes. These enzymes are responsible for 
the production of different angucycline metabolites in jadomycin (jad), landomycin 
(lan), urdamycin (urd) and gaudimycin (pga and cab) pathways. The first goal was to 
find out enzymes responsible for the biosynthetic steps behind the evolution of these 
metabolites. The second goal of this study was to use protein X-ray crystallography and 
mutagenesis to analyze these homologous enzymes more carefully and to pinpoint the 
exact amino acid residues behind their different functions. Overall, the aim of this study 
was to gain more information about the biosynthesis of angucyclines and to improve our 
possibilities to use these biosynthetic enzymes as tools for producing novel angucycline 
metabolites.

The specific aims of this study were:

• To produce and purify the angucycline tailoring enzymes and study their
reactions

• To solve the crystal structures of tailoring enzymes behind the differentiation
of angucycline biosynthetic pathways

• To analyse structure-based sequence alignment in order to find out which
amino acids are different between these homologous tailoring enzymes

• To find out amino acid regions responsible for the different activities of
angucycline tailoring enzymes by analyzing the properties of chimeric enzymes 
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3. SUMMARY OF THE MATERIALS AND METHODS

3.1	 Cloning and mutagenesis of the biosynthetic genes

The biosynthetic genes used in this study were amplified with Phusion DNA 
polymerase using chromosomal DNA of Streptomyces sp. H021 (Palmu and 
Kunnari, 2002) (cabV) (I) and S. fradiae AO (Trefzer et al., 2001) (urdE, urdM, 
urdMox and urdMred) (II) or cosmid H2-26 (Westrich et al., 1999) (lanE and lanV) 
(II) as a template. For the heterologous production of the biosynthetic enzymes, 
the amplified genes were subcloned into the pBHBΔ plasmid (Kallio et al., 2006) 
as BglII/HindIII fragments, and the constructs were verified by analytical digestion 
and sequencing (Eurofins MWG Operon) (I, II). The revised nucleic acid sequences 
of lanE and urdM were deposited to GenBank under accession numbers JQ782417 
and JQ782418. The mutagenesis of the biosynthetic genes was carried out using a 
modified four-primer overhang extension polymerase chain reaction (PCR) method 
(Ho et al., 1989), and the mutated genes were subcloned to pBHBΔ and verified as 
above (III–V).

3.2	 Production and purification of the enzymes

To study the activities of these biosynthetic enzymes, they were heterologously 
produced in Escherichia coli TOP10 strain as polyhistidine-tagged proteins. The 
purified proteins carried an N-terminal (M)AHHHHHHHRS-sequence derived from 
the expression plasmid, and the purification was carried out using Ni2+- or Co2+-affinity 
chromatography using imidazole to elute the resin bound proteins (I-V). For the 
crystallization trials, enzymes were desalted or further purified with a PD-10 column 
(GE Healthcare) or by size exclusion chromatography on a HiLoad Superdex200 
26/600 preparative grade column (GE Healthcare), respectively. The proteins were 
concentrated with Centriprep and Amicon Ultra devices (Millipore) (III–V). The 
purity of the enzymes was confirmed with sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE), and the protein concentration was estimated using 
the Bradford dye method (Bradford 1976) (I–V), NanoOrange Protein Quantitation 
Kit (Invitrogen) (I) or NanoDrop 2000 (Thermo Scientific) at 280 nm (IV, V). To 
analyze the oligomerization of the enzymes, gel filtration analysis was performed by 
HPLC (Shimadzu VP series chromatography system with a diode array detector, SPD-
M10Avp, Tosoh Biosciences TSKgel SuperSW2000/4.0 µm column, isocratic run 
with 100 mM potassium phosphate buffer, pH 7.6, flow rate 0.16 ml/min) (IV). The 
enzymes purified and used in this study were JadH, LanE, UrdE, PgaE, CabE, LanV, 
CabV, LanM2, UrdM and UrdMred (the reductase domain of UrdM produced and 
purified separately from the oxygenase domain).
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3.3	 Production and purification of substrates

The substrate prejadomycin for the in vitro reactions was obtained from cultures of 
Streptomyces lividans TK24/pMC6BD strain (Metsä-Ketelä et al., 2003) grown at +30 
°C for 7 days in shaking in E1 media with 20 g/l XAD-7 resin as an absorbent and 10 
µg/ml thiostrepton. The XAD-7 resin was collected from the culture broth by decanting 
and water washes. The bound metabolites were extracted with methanol, followed by 
chloroform extraction in acidic conditions and several repeated washes with water. The 
compounds were resolubilized in methanol and purified using preparative scale reverse-
phase HPLC (RP-HPLC). The main fractions were collected, extracted with chloroform 
and further purified with selective crystallization from methanol. The purified substrate 
was redissolved in methanol for storage and use in the in vitro reactions (I–V). 

The substrate 12-hydroxy-prejadomycin was produced in vitro from prejadomycin 
in the presence of PgaE and NADPH. The reaction was carried out with NADPH 
concentration sufficient for PgaE to 12-hydroxylate all prejadomycin but not to catalyze 
the 12b-hydroxylation. Reaction products were bound to a pre-equilibrated solid-phase 
extraction (SPE) column (Discovery DSC-18, Supelco), eluted with methanol and used 
immediately as a substrate for the enzymatic in vitro reactions (I–III).

3.4	 Analysis of enzymatic reactions

Enzymatic reactions were carried out in 100 mM potassium phosphate buffer pH 7.6 at 
room temperature. The volumes ranged from 200 µL to 1 mL depending on the application. 
The consumption of NADPH in the reactions was detected as a decrease of fluorescence 
(excitation 355nm / emission 460nm) (I, II). The consumption of the substrates 
prejadomycin or 12-hydroxy-prejadomycin was detected spectrophotometrically at 406 
nm or 510 nm, respectively (I–III). The reaction products were extracted with repeated 
chloroform extractions or analytical scale SPE columns and resolubilized or eluted, 
respectively, in methanol for RP-HPLC analysis (Kallio et al., 2008a). The RP-HPLC 
analysis of the extracted reaction products was conducted with C-18 RP-HPLC column 
using gradient from 15% acetonitrile + 0.1% formic acid to 100% acetonitrile (I–V).

The liquid chromatography-mass spectrometry (LC-MS) analysis of the substrate and 
products was conducted with a Micromass Quattro Premier tandem quadropole mass 
spectrometer (Waters Corp.) using positive electrospray ionization (ESI) connected to 
an equivalent RP-HPLC system as used above (I, IV). The high-resolution mass analysis 
was conducted with a micrOTOF-Q mass spectrometer (Bruker Daltonics) using negative 
ESI connected to a RP-HPLC system equivalent to the one used above (II).

The anaerobic conditions required to study the oxygen dependence of FPMOs were 
achieved using a Thunberg cuvette connected to a vacuum and a nitrogen source, 
aided by brief ultrasound bath treatments or a glucose oxidase/catalase treatment 
(Fabian, 1965) (I, II). The incorporation of 18O to the products from molecular oxygen 
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or water was achieved by addition of 99% 18O2 or 50–75% (v/v) H2
18O, respectively, 

to the reaction mixture in Thunberg cuvette (I). To study the use of NADPH in the 
LanV reaction, coupled reactions of PgaE and LanV using prejadomycin as a substrate 
were conducted with deuterium-labeled NADPH. The 4-pro-S labeled NADP2H was 
prepared in vitro with glucose dehydrogenase from Bacillus megaterium (Podschun et 
al., 1993) (IV).

3.5	 Kinetic analysis of the PgaE variants

The kinetic analysis of the different PgaE variants was carried out by following 
the consumption of the substrates prejadomycin and 12-hydroxy-prejadomycin 
spectrophotometrically at 406 nm and 510 nm, respectively, in the presence of the enzyme 
and NADPH. Prejadomycin was used as a substrate for studying the C-12 hydroxylation 
and 12-hydroxy-prejadomycin to study the C-12b hydroxylation (III). 

Because of the uncertainty in initial rates (~1 min reaction time) of prejadomycin 
consumption by PgaE, nonlinear parts of the conversion curves (10–15 min reaction 
time) were fitted to various rate models using numerical integration capabilities of 
Scientist 2.01 (Micromath, St. Louis, USA). Although these models were consistent 
with the obtained data, inaccurate reaction rate determination below 10 µM substrate 
concentration caused considerable flexibility in parameter values. The use of structural 
and experimental considerations allowed us to fit the parameters on the basis of the 
following assumptions: (i) one monomer of the PgaE dimer is unlikely to have more 
than one active site and (ii) mutagenesis experiments revealed amino acids affecting 
substrate inhibition in the active site and in the dimerization interface. These suggest that 
the substrate inhibition effect is caused by allosteric interactions between the active sites 
within the PgaE dimer. Based on these considerations, the obtained kinetic data were 
analyzed with a model that assumes the independent binding of prejadomycin to the 
active sites of the monomers within the dimer and VSE2 (reaction rate when prejadomycin 
is present in both monomers) being lower than VES (reaction rate when prejadomycin is 
present only in one monomer) (III). 

3.6	 Structure determination of the PgaE P78Q/I79F, LanV and UrdMred

To obtain more information about the biosynthetic enzymes, their crystal structures were 
solved. Enzymes were crystallized and the diffraction data for the crystals was collected 
at the European Synchrotron Radiation Facility (Grenoble, France). The structures were 
determined by molecular replacement (III–V). The crystallographic coordinates and 
structure factors of the complex structures PgaE P78Q/I79F + FAD (PDB code 4ICY), 
LanV + NADP+ (4KWH), LanV + NADP+ + 11-deoxylandomycinone (4KWI), LanV 
+ NADP+ + rabelomycin (4OSO) and UrdMred + NADP+ + rabelomycin (4OSP) have 
been deposited in the PDB.
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3.7	 Molecular modeling of the angucyclinones

In order to study the different conformations of angucyclines and their orientation in the 
active sites of the tailoring enzymes, their structures were modeled by density functional 
theory (DFT) quantum chemical calculations and geometry optimized using M06-2X 
hybrid meta-density functional theory with the 6-31G(d) basis set. The calculations were 
performed using Gaussian09 (version A.01) (Frisch et al., 2009) and analyzed with GUIs 
GaussView (version 3.07) or (version 5.0.8) (Dennington et al., 2009) and GaussSum 
(version 2.2) (O’Boyle et al., 2008). All the calculations were performed in the gas phase 
(II, V). 

3.8	 ECD spectroscopic measurements and calculation of the ECD spectra

The electronic circular dichroism (ECD) spectra of the compounds were measured in 
methanol with a 0.1 cm or 1.0 cm path-length cell. The measuring range was from 190 
nm or 200 nm to 650 nm at 23 °C or 25 °C, respectively. The ECD spectra were calculated 
for the molecular models at the same level of theory as they were modeled and by using 
24 excited states of the single molecule (II, V). The measured and calculated ECD spectra 
were used to determine the absolute stereochemistries of different angucyclinones (II). 
The measured ECD spectra were also used to distinguish between 6R- and 6S-11-
deoxylandomycinones, which cannot be separated by RP-HPLC analysis (V).

3.9	 Docking experiments with PgaE, LanV and UrdMred

To study the binding of ligands prejadomycin, 11-deoxylandomycinone and gaudimycin 
C into the active sites of PgaE, LanV and UrdMred, docking experiments were conducted 
with GOLD docking tool (Jones et al., 1997) within the Discovery Studio platform 
(Accelrys Software). Prior to docking, the ligand rabelomycin was removed from the 
complex structures of LanV and UrdMred with NADP+ and rabelomycin (PDB codes 
4OSO and 4OSP). To test the requirement of a coordinated water molecule between 
NADPH and Tyr-160 of LanV in the presence of 11-deoxylandomycinone, the water 
molecule was positioned in the active site as in the ternary structure of LanV in complex 
with NADPH and 11-deoxylandomycinone (4KWI). The used radius of the input-site 
sphere for the receptor-ligand interaction was 12 Å, which covers the entire active site. 
The used poses were chosen by the GOLD score values and, in the case of LanV and 
UrdMred, based on the alignment of the ligand with the catalytic Tyr-160 and NADP+. 
The ligand prejadomycin was modeled using PRODRG server (Schuttelkopf and van 
Alten, 2004) whereas the ligands 11-deoxylandomycinone and gaudimycin C were 
modeled as in section 3.7 (III, V). 
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4. RESULTS AND DISCUSSION

4.1	 Enzymatic reactions (original publications I–II)

The enzymes used in this study originate from five different angucycline pathways: 
jadomycin (jad) (Han et al., 1994, Chen et al., 2005), landomycin (lan) (Westrich et 
al., 1999), urdamycin (urd) (Decker & Haag 1995, Faust et al., 2000) and gaudimycin 
(pga and cab) (Palmu et al., 2007) pathways. These tailoring enzymes are NADPH-
dependent FPMOs (JadH, LanE, UrdE, PgaE and CabE), SDR enzymes (LanV and 
CabV) or fusion proteins with both two domains (LanM2, UrdM and PgaM). The 
proteins are highly conserved between different pathways in regards to the genetic 
organization and amino acid sequence (Figure 2 in II). Previously it has been shown that 
PgaE catalyzes the formation of an unstable reaction intermediate from prejadomycin 
in the presence of NADPH and molecular oxygen. Under the same conditions, a 
coupled reaction of PgaE and PgaM converts prejadomycin to a stable reaction product 
gaudimycin C in a cascade of reactions (Figure 17) (Kallio et al., 2008a). PgaM has 
been shown to be a two-domain FPMO/SDR enzyme with an internal start codon 
between the domains. The presence of the internal start codon results in the production 
of both full-length PgaM with both domains and the production of only the C-terminal 
SDR domain (Kallio et al., 2008b). The recovery of UrdMred from the production 
culture of UrdM and the sequence analysis of UrdM suggested that this enzyme is 
produced in a similar manner to PgaM, as a full-length protein and an independent 
SDR enzyme from an internal start codon (II). JadH has also been shown to utilize 
prejadomycin as a substrate in a reaction that produces CR 1 which spontaneously 
oxidizes to dehydrorabelomycin (Figure 17) (Chen et al., 2010). Prejadomycin has 
been suggested to result from the simultaneous release and dehydration of UWM6 
from ACP by LanM2, a two-domain FPMO/SDR enzyme from the landomycin 
pathway (Kharel et al., 2012). 



Results and Discussion 43

Figure 17: The proposed tailoring reactions in the pga, cab, lan, urd and jad pathways during 
the conversion of UWM6 to angucyclinones gaudimycin C, 11-deoxylandomycinone and 
dehydrorabelomycin. The functions of enzymes presented in bold have been deduced in this 
study in vitro using prejadomycin or 12-hydroxy-prejadomycin as a substrate.

4.1.1	 Reactions catalyzed by NADPH-dependent flavoprotein monooxygenases

The NADPH-dependent FPMOs LanE, UrdE, PgaE and CabE, which have been 
proposed to catalyze C-12 hydroxylation (Faust et al., 2000, Koskiniemi et al., 2007, 
Palmu et al., 2007), can all consume prejadomycin in the presence of NADPH and 
molecular oxygen. HPLC analysis shows that no stable product is formed in these 
reactions but only hydrophilic degradation products can be observed. The comparison 
of prejadomycin and NADPH consumption in these reactions revealed that NADPH 
consumption continued even after the depletion of prejadomycin. This observation 
suggested that the monooxygenases could catalyze two consecutive reactions, which 
both require the presence of NADPH. These two reactions can clearly be observed 
in the spectrophotometric analysis where a signal at 510 nm first increases during 
the consumption of prejadomycin but starts to decrease after prejadomycin depletion 
(Figures 1 and 2 in I, Figure S2 in II) (I, II).

The separation of these two consecutive reactions was achieved by titration of the 
NADPH concentration to an amount needed for the complete consumption of 
prejadomycin. The reactions conducted in limiting NADPH conditions stalled after 
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all prejadomycin was consumed and the reaction mixtures remained red, consistent 
with the increase of the 510 nm signal. The addition of NADPH restarted the reactions 
which then proceeded to completion. The red reaction intermediate could be extracted 
with C-18 SPE columns and eluted with methanol. After the elution, the extracted 
reaction product could be used as a substrate by all the monooxygenases LanE, UrdE, 
PgaE and CabE in the presence of NADPH and O2 (Figure 2 in I, Figure 5 in II) (I, II). 
Structural analysis of this extracted reaction intermediate was not possible due to the 
unstable nature of the compound as it readily degraded within minutes or hours and 
remained undetectable in RP-HPLC and LC-MS analysis. However, this product was 
shown to spontaneously convert to dehydrorabelomycin during the RP-HPLC analysis 
(Figure 1 in I) (I). 

The kinetic analysis of PgaE using prejadomycin as a substrate revealed that the 
consumption of prejadomycin by PgaE was affected by substrate inhibition. The results 
from the kinetic measurements with the extracted product of the PgaE reaction as a 
substrate were best fitted with a sigmoidal relationship (Figure 5 in I). These kinetic 
analyses revealed a clear difference between these two consecutive reactions catalyzed 
by PgaE as no signs of substrate inhibition were observed during the 12b-hydroxylation 
(see section 4.2 for details) (I, III).

4.1.2	 Reactions catalyzed by the SDR enzymes

The activities of the SDR enzymes CabV, UrdMred and LanV were tested in a coupled 
reaction with PgaE. The exchange of PgaM to CabV or UrdMred had no effect on 
the outcome of the reaction, but gaudimycin C was still produced (Figure 17). These 
results suggested that the oxygenase domains of PgaM or UrdM are not required for 
the conversion of prejadomycin to gaudimycin C. The formation of gaudimycin C was 
also achieved when PgaE was replaced with any of the other monooxygenases, LanE, 
UrdE or CabE. The extracted red reaction intermediate produced from prejadomycin by 
the monooxygenases could also be converted to gaudimycin C by any combination of 
the monooxygenases LanE, UrdE, PgaE or CabE and the reductases CabV or UrdMred 
(Figure 1 in I, Figures 3 and 5 in II) (I, II).

The coupled reactions of LanE, UrdE, PgaE or CabE and LanV converted 
prejadomycin into a previously unidentified product (Figure 3 in II) (II). The  
LC-MS and UV-vis (ultraviolet-visible) properties of this compound were identical 
with 11-deoxylandomycinone (Shaaban et al., 2011), a known intermediate from the 
landomycin pathway (Figure 17). The structure of this reaction product was confirmed as 
11-deoxylandomycinone by electrospray ionization-high-resolution mass spectrometry 
(ESI-HRMS) and by comparison to an authentic standard using HPLC and ECD 
spectroscopy (Figure S2 in II) (II). 

HPLC analysis of substrate consumption and product formation in the coupled reactions 
with the monooxygenases and CabV or UrdMred with different NADPH concentrations 
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revealed a clear separation of two reaction phases. The formation of gaudimycin C was 
not detected until almost all prejadomycin was consumed (Figure 3 in I, Figure 4 in II) (I, 
II). However, a similar analysis with monooxygenases and LanV showed no signs of this 
kind of temporal separation but the formation of 11-deoxylandomycinone was detected 
immediately after the start of the reaction (Figure 4 in II) (II).

4.1.3	 Differences between the biosynthesis of gaudimycin C and 
11-deoxylandomycinone

The structure of gaudimycin C suggests that the two reactions catalyzed by the 
monooxygenases LanE, UrdE, PgaE and CabE are hydroxylations at positions C-12 
and C-12b and that the reductases are responsible for 6-ketoreduction (Figure 17). In 
the biosynthesis of 11-deoxylandomycinone, 12-hydroxylation and 6-ketoreduction 
are catalyzed by the monooxygenases LanE, UrdE, PgaE and CabE and the reductase 
LanV, respectively. The exact enzyme catalyzing 4a,12b-dehydration has remained 
elusive since the separation of reactions catalyzed by LanV and the monooxygenases 
after 12-hydroxylation has not been successful and since enzymes belonging to both of 
these families have been shown to catalyze dehydration reactions: SDR enzymes in the 
biosynthesis of sugar nucleotides and monooxygenases like JadH in the biosynthesis of 
dehydrorabelomycin (see section 4.2 for other JadH homologues). The formation of the 
7,12-dihydroquinone structure present in both reaction products is generally thought to 
occur nonenzymatically (I, II).

These results suggest that the extracted red reaction intermediate would be 12-hydroxy-
prejadomycin, which is used as a substrate by the monooxygenases when catalyzing 
12b-hydroxylation (Figure 17). The hydroxylation of C-12 by the monooxygenases 
is very likely catalyzed according to the classical reaction mechanism for aromatic 
hydroxylases belonging to the family of FPMO (Figure 3) (Massey, 2000). However, 
the reaction mechanism utilized by the angucycline monooxygenases for the 
hydroxylation of position C-12b of 12-hydroxy-prejadomycin is uncertain. Recent 
activation experiments with Streptomyces sp. PGA64, which contains the silent 
pga gene cluster, showed that this cluster is capable of producing fridamycin-type 
metabolites. Based on this finding, the authors suggested that PgaE would act as 
Baeyer-Villiger monooxygenase and insert an oxygen atom between C-1 and C-12b 
of 12-hydroxy-prejadomycin, as suggested previously for UrdM in the biosynthesis 
of urdamycins (Guo et al, 2015, Rix et al., 2003). The Baeyer-Villiger oxygenation 
would be followed by a rearrangement reaction to produce 12b-hydroxylated product 
or dehydration to produce a fridamycin-type compound (Guo et al., 2015). However, 
in the absence of experimental proofs, neither of these reaction mechanisms for 
12b-hydroxylation can be verified.

The production of 11-deoxylandomycinone from 12-hydroxy-prejadomycin can 
only be achieved by the simultaneous presence of one of the monooxygenases LanE, 
UrdE, PgaE or CabE and the SDR enzyme LanV in the absence of molecular oxygen, 
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indicating that the monooxygenases are required for a reaction other than hydroxylation 
(II). One of the most significant differences between the biosynthesis of gaudimycin 
C and 11-deoxylandomycinone is the stereochemistry of 6-ketoreduction (Figure 
17). The stereochemistry of the C-6 hydroxyl group of 11-deoxylandomycinone is 
known to be R whereas the equivalent hydroxyl in gaudimycin C was assigned as S 
by comparison of the experimental and calculated ECD spectra (Figure S4 in II). This 
indicates that besides the different substrates for the ketoreduction, LanV and other 
6-ketoreductases also have different stereospecificities in 6-ketoreductions (Figure 
17) (II).

4.1.4	 Hidden activities of the modifying enzymes

Experiments with different substrates, reaction conditions and enzyme combinations 
showed that all of the angucyclinone tailoring enzymes contain latent context-dependent 
catalytic activities. Both of the hydroxylations, C-12 and C-12b, are expected to 
take place in the urdamycin and gaudimycin pathways, but the 12b-hydroxyl group 
is absent in landomycins and jadomycins. Despite the absence of 12b-hydroxyl 
groups in their natural pathways, LanE and JadH are both capable of catalyzing the 
12b-hydroxylation of 12-hydroxy-prejadomycin. In the case of LanE, this can be seen 
in a coupled reaction with LanE and CabV or UrdMred, which produces gaudimycin 
C from prejadomycin. In the case of JadH, 12b-hydroxylation activity can only be 
detected if extracted 12-hydroxy-prejadomycin is used as a substrate for a coupled 
reaction of JadH and any of the SDR enzymes as these reactions produce gaudimycin 
C (Figure 5 in II) (II). 

In the case of 6-ketoreductases, the latent activities could be detected by using different 
substrates in the reactions. The coupled reactions of the monooxygenases LanE, UrdE, 
PgaE or CabE and the ketoreductases CabV or UrdMred produced 11-deoxylandomycinone 
from 12-hydroxy-prejadomycin when the hydroxylation activity of the monooxygenases 
was inhibited by removing molecular oxygen from the reaction mixture (Figure S5 in II). 
In the presence of molecular oxygen, the monooxygenases and LanV can catalyze the 
conversion of 12-hydroxy-prejadomycin into gaudimycin C. These results demonstrate 
that all the ketoreductases in this study are able to catalyze ketoreductions with both 6R 
and 6S stereochemistries (Figure 5 in II) (II).

The most drastic example of the context-dependent activities of the angucyclinone 
tailoring enzymes can be seen in the formation of gaudimycin C from 12-hydroxy-
prejadomycin by JadH and LanV. In this reaction, both of the enzymes catalyze reactions 
unnecessary in their natural pathways: 12b-hydroxylation by JadH and ketoreduction 
with 6S stereochemistry by LanV (Figure 5 in II) (II).
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4.2	 Mutagenesis studies of PgaE (original publication III)

The analysis of the crystal structures of PgaE and CabE (Koskiniemi et al. 2007) 
and the structure-based sequence alignment of PgaE, LanE, CabE, UrdE, JadH, GilOI 
(gilvocarcin pathway) (Fischer et al., 2003), and AlpG (kinamycin pathway) (Pang 
et al., 2004) revealed four distinct regions that were different around the active site 
cavities of enzymes catalyzing two consecutive hydroxylations (PgaE, LanE, CabE, 
and UrdE) and enzymes catalyzing 12-hydroxylation together with 4a,12b-dehydration 
(JadH, AlpG, and GilOI) (Figure 18 and Figure S3 in III). The GilOI and AlpG are 
FPMOs orthologous to JadH, which have been shown to be involved in the conversion 
of prejadomycin into dehydrorabelomycin by in vitro experiments (Pahari et al., 2012) 
and phylogenetic analysis (Palmu et al. 2007), respectively. The four regions were 
targeted with mutagenesis experiments where regions of PgaE were replaced with 
JadH sequences using a modified four-primer overhang extension PCR method (see 
section 3.1).

4.2.1	 Effect of the different mutagenesis regions

The spectrophotometric analysis of different PgaE variant reactions revealed several 
different chimeric enzymes where the activity differed from the native PgaE. The 
β4–β5 region (residues 70–82 of PgaE) was found to have a dramatic effect on the 
12b-hydroxylation activity of PgaE; while the 12-hydroxylation activity of the PgaE 
β4–β5 variant was comparable to native PgaE, the 12b-hydroxylation activity was 
significantly lowered (Figure 3 in III). After this finding, we decided to test the effect 
of three additional regions, β6 (residues 92–94), β14 (residues 189 and 190), and β15–
β16 (residues 201–209), in combination with the β4–β5 region on the activity of PgaE 
(III). 

The change of regions β6 or β15–β16 together with region β4–β5 had no additional 
effect on the activity of PgaE, but the PgaE variant β4–β5/β14 surprisingly showed 
12b-hydroxylation activity close to the native PgaE. The change of the β6 region in 
addition to regions β4–β5 and β14 further increased the 12b-hydroxylation activity 
of the enzyme variant. Both other triple variants, as well as the quadruple variant, 
showed 12b-hydroxylation activity similar to the PgaE β4–β5. Despite the fact 
that, various mutagenesis regions had an effect on the 12b-hydroxylation activity, 
all different PgaE variants were able to catalyze the 12-hydroxylation reaction. 
This is expected, because JadH, which was used as a template, also catalyzes the 
hydroxylation of the C-12 position of prejadomycin. These results show that, 
although the β4–β5 region is clearly important for the 12b-hydroxylation activity 
of PgaE, other regions around the active site cavity can also have an effect on the 
activity of the enzyme (Figure 3 in III) (III).
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Figure 18: The crystal structure of PgaE in complex with FAD (shown in yellow) (PDB code 
2QA1). The four mutagenesis regions around the active site cavity of PgaE are shown in orange 
and labeled as β4–β5, β6, β14 and β15–β16. The amino acid residues His-73, Pro-78 and Ile-79 
discussed below are shown as sticks within the β4–β5 region. The substrate prejadomycin shown 
in cyan was docked into the active site.

4.2.2	 Dissection of the β4–β5 region 

As the β4–β5 area was found to be the most significant region in changing the activity 
of PgaE, this region was dissected to smaller subregions in order to find out the exact 
amino acids behind the changes. The region was first divided into two halves: strands 
β4 (amino acids 70–71) and β5 (77–82). The kinetic analysis of these variants clearly 
showed that the change of β4 had no effect on the PgaE activity whereas the PgaE 
β5 variant displayed dramatically decreased 12b-hydroxylation activity and lowered 
substrate inhibition (Figures S2 and S5 in III) (III). 

Further dissection of the β5 region by changing Pro-78 and Ile-79 to the corresponding 
JadH amino acids glutamine and phenylalanine, respectively, revealed an interesting 
correlation between these residues and 12b-hydroxylation activity. The PgaE variant 
P78Q showed about 2.5-fold increase in the efficiency of 12b-hydroxylation (kcat/S50 
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of 7.76 x 105 M-1s-1 vs. 2.99 x 105 M-1s-1) compared to the native PgaE whereas the 
change I79F generated a variant with only 14% of the 12b-hydroxylation activity left 
(kcat/S50 4.09 x 104 M-1s-1). The PgaE double variant P78Q/I79F also showed significantly 
lower 12b-hydroxylation activity than the native PgaE (kcat/S50 2.34 x 104 M-1s-1), but the 
substrate inhibition in 12-hydroxylation was comparable to the effect seen in the native 
enzyme (III).

The data acquired from spectrophotometric measurements with substrates 
prejadomycin and 12-hydroxy-prejadomycin were analyzed by fitting the data into 
various kinetic models which all indicated the presence of two substrate binding 
sites in one monomer of PgaE. Despite the considerable flexibility in the parameter 
values, all of the models used indicated that there was a clear correlation between the 
relaxation of substrate inhibition and the decreased 12b-hydroxylation activity. The 
results were, in most cases, inadequate to distinguish whether the alleviated substrate 
inhibition was due to changes in (i) the substrate affinity, (ii) the ratio of bisubstrate 
and monosubstrate complex activities or (iii) the ratio of the bisubstrate and 
monosubstrate complex dissociation constants (see section 3.5 and Supplementary 
Text of III) (III).

4.2.3	 Effect of a conserved histidine on the 12b-hydroxylation activity

One histidine residue (His-73 in PgaE) residing in the β4 sheet close to amino acids 
Pro-78 and Ile-79 is conserved in all known angucyclinone hydroxylases (Figure 
S3 in III). The role of this histidine as a potential catalytic base has been studied 
previously, and it was shown that the change of this residue to alanine has no effect 
on the 12-hydroxylation activity of PgaE (Koskiniemi et al., 2007). Our kinetic 
analysis revealed the fact that, while the PgaE H73A variant was able to catalyze the 
hydroxylation of prejadomycin at C-12, the 12b-hydroxylation activity of this variant 
was completely abolished and 12-hydroxy-prejadomycin was detected as the reaction 
product. Also, no substrate inhibition effect was observed in the 12-hydroxylation 
reaction catalyzed by PgaE H73A variant; a fact that further highlights the correlation 
between 12b-hydroxylation activity and substrate inhibition in 12-hydroxylation. The 
kinetic model used to fit the data from the measurements with PgaE H73A contained 
only one independent binding site and needed no cooperativity between the monomers 
(III). 

4.2.4	 Model for the hydroxylation activities of PgaE

Based on the kinetic analysis of the different PgaE variants and the structural information 
from the PgaE P78Q/I79F crystal structure, we were able to propose a model for the PgaE 
activity that would explain all of the unusual features of this enzyme: bifunctionality, 
temporal separation of 12- and 12b-hydroxylation and the substrate inhibition affecting 
the hydroxylation of C-12 position but not C-12b (III). 
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Our model proposes that there are two overlapping binding sites in the active site of PgaE: 
one for prejadomycin and one for 12-hydroxy-prejadomycin. The maximum activity of 
12-hydroxylation would be achieved when the prejadomycin binding site of only one 
monomer in the PgaE dimer is occupied. If prejadomycin is bound to the active sites of 
both monomers, lower enzymatic activity is observed due to allosteric effects caused by 
substrate binding. At the same time, prejadomycin is also able to bind to an overlapping 
binding site of 12-hydroxy-prejadomycin in a noncatalytic orientation. This binding also 
causes the same allosteric effects as the binding to the prejadomycin binding site and 
lowers the 12-hydroxylation activity of the other monomer. These features would explain 
the substrate inhibition effect observed in the 12-hydroxylation catalyzed by PgaE and 
the temporal separation of these two reaction phases, if the binding of prejadomycin 
to other monomer would prevent the binding of 12-hydroxy-prejadomycin to the other 
monomer as well (Figure 4 in III) (III).

In this model, 12-hydroxy-prejadomycin is able to bind only to the binding site intended 
for it, and the maximum activity is observed when binding sites of both monomers 
are occupied. The binding of 12-hydroxy-prejadomycin induces allosteric effects, 
which can be seen as a sigmoidal relationship in the kinetic data. Cooperative binding 
caused by the allosteric effects can further enhance the temporal separation of the 12- 
and 12b-hydroxylations as the 12b-hydroxylation activity is mainly derived from the 
bisubstrate complex, which is formed only under high concentrations of 12-hydroxy-
prejadomycin (Figure 4 in III) (III).

The structure of the PgaE P78Q/I79F variant (PDB code 4ICY) showed that the mutated 
amino acids are actually pointing away from the active site toward the α13 helix involved 
in the formation of the dimer interface. The His-73 residue, which points toward the active 
site cavity of PgaE, is most likely involved in the binding of angucycline substrates to 
the binding site intended for 12b-hydroxylation, as both 12b-hydroxylation activity and 
substrate inhibition in 12-hydroxylation reaction are completely inhibited in the PgaE 
H73A variant. The fact that residues His-73, Pro-78 and Ile-79 are all affecting both 
substrate inhibition and 12b-hydroxylation led us to speculate that these residues are 
involved in the formation of a network behind the allosteric effects. The His-73 residue 
would be important for the formation of the allosteric effects whereas residues Pro-78 
and Ile-79 would be required for the communication between the two subunits of the 
PgaE dimer (Figure 1 in III) (III). 

4.3	 Structures of LanV and UrdMred (original publications IV–V)

Crystal structures of LanV in complex with NADP+, NADP+ + 11-deoxylandomycinone 
and  NADP+ + rabelomycin and UrdMred in complex with NADP+ + rabelomycin were 
determined at 1.65 Å, 2.0 Å, 2.50 Å and 2.25 Å resolution, respectively. The structures 
revealed that these two enzymes are highly similar in structure and contain all the features 
typical for enzymes belonging to the SDR superfamily (IV, V). 
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4.3.1	 Overall structures of and differences between LanV and UrdMred

The overall structures of LanV and UrdMred both consist of a central seven-stranded 
parallel β-sheet surrounded by three parallel α-helices on each side, which is a classical 
Rossmann fold (Figure 2 in V). The characteristic N-terminal TGXXXGXG motif 
involved in the dinucleotide binding is also found in both enzymes (Figure 3 in V). 
Altogether the structures of LanV and UrdMred are very similar with the root-mean-
square deviation (rmsd) of 1.18 Å between the NADP+ + rabelomycin complex structures 
of these enzymes. The binding of the substrate in both enzymes takes place mainly 
through hydrophobic interactions with the amino acid residues around the substrate 
binding cavity (Figure 3 in IV, Figure 2 in V) (IV, V).

The biggest differences between LanV and UrdMred are found around the active site 
cavity. LanV binds the 2’-phosphate of NADP+ with the backbone amide groups of 
Ala-38–Gly-40 while Arg-16 participates in the coordination from the opposite side 
of Ala-38 (Figure 3 in IV). In UrdMred, a more bulky Ser-38 causes such a shift in 
the corresponding loop region that only the backbone amides of Ser-38 and Arg-16 
are involved in the coordination of the 2’-phosphate of NADP+. These results suggest 
that UrdMred is less optimized for NADPH binding than LanV. The second difference 
between these enzymes is the shape of the active site cavity; in UrdMred, the active 
site is in a more open conformation than in LanV resulting in a larger active site 
volume (Figures 2 and S2 in V). Another difference is found in the binding of the 
ligand rabelomycin. The planar anthraquinone part of the rabelomycin is tilted by 9° 
toward Leu-149 in UrdMred compared to LanV (Figure 2D in V). This tilt is partially 
caused by changes in the length of the side chain of residues Ser-192 and Ile-192 in 
LanV and UrdMred, respectively. The bulkier side chain of Ile-192 pushes the planar 
anthraquinone toward Leu-149 in UrdMred, causing the observed tilt in the position 
of rabelomycin (IV, V).

In the complex structure of LanV and NADP+ + 11-deoxylandomycinone, the 
ketoreduction has proceeded to reverse direction in the crystal as the electron density of 
the ligand fit best with 6-keto form of 11-deoxylandomycinone. This complex structure 
also shows a coordinated water molecule between Tyr-160 and the C-6-keto group of 
the ligand (Figure 3D in IV). This water molecule is not present in LanV and UrdMred 
complex structures with NADP+ + rabelomycin (IV,V).

4.3.2	 Comparison of LanV and UrdMred to other ketoreductases

The overall structures of most of the SDR enzymes involved in the biosynthesis of natural 
products are very close to the structures of LanV and UrdMred, as the Rossmann fold is 
one of the main features in the members of this enzyme superfamily. Major differences 
can be observed when LanV and UrdMred are compared to the enzymes involved in 
sugar biosynthesis. These enzymes belong to a group of extended SDR enzymes, which 
have an additional ~100 residue C-terminal domain compared to classical SDR enzymes 
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like LanV and UrdMred (Kavanagh et al., 2008). These C-terminal domains are involved 
in the correct positioning of the NDP-sugars (Allard et al., 2001a)

When comparing LanV and UrdMred with their closest homologues involved in natural 
product biosynthesis, the biggest differences are found in the α7 region. This flap-like 
structure is 11 amino acids longer in related polyketide reductases ActKR (Hadfield et al., 
2004, Korman et al., 2004) and HedKR (Javidpour et al., 2011) (Figure 2 in IV), which 
are involved in the biosynthesis of actinorhodins and hedamycins, respectively. These 
longer “lid” helices form an additional helix, which has been suggested to open and close 
the active site entrance during the catalytic cycle (Hadfield et al., 2004, Javidpour et al., 
2011, IV, V).

4.3.3	 Proposed mechanism for the activity of LanV

The catalytic mechanism of 6-ketoreduction catalyzed by LanV is very similar to other 
well studied classical SDR enzymes (Filling et al., 2002, Oppermann et al., 2003). Based 
on the sequence and structure of LanV in complex with NADP+ and the 6-keto form 
of 11-deoxylandomycinone, all the amino acids of the catalytic tetrad, Asn-121, Ser-
147, Tyr-160, and Lys-164, are present in the active site cavity (Figure 3 in IV). The 
coordinated water molecule found between Tyr-160 and the 6-keto group of the ligand 
may be involved in the proton transfer from tyrosine to the substrate. The Ser-147 also 
forms a hydrogen bond with the coordinated water molecule, and it is thus unlikely 
that this residue is involved in substrate polarization as suggested in the other SDR 
enzymes (Filling et al., 2002). The Asn-121 residue in LanV corresponds to Asn-111 
in 3β/17β-hydroxysteroid dehydrogenase, which has been shown to coordinate with a 
water molecule involved in the proton relay system of this SDR enzyme (Filling et al., 
2002). In the case of LanV, Asn-121 cannot be involved in this function as there are no 
coordinated water molecules present in the vicinity of the side chain carbonyl group 
(IV).

The mutation of Tyr-160 to alanine resulted in the complete loss of LanV activity in a 
coupled reaction with the monooxygenases LanE, UrdE, PgaE or CabE, indicating that 
Tyr-160 is important for the proton transfer involved in 6-ketoreduction (Figure 4 in 
IV). The second phase of the 6-ketoreduction catalyzed by LanV is the hydride transfer 
from NADPH to the C-6 of the substrate. This was shown to take place from the 4-pro-S 
side of the NADPH by using stereospecifically labeled NADP2H. The LC-MS-analysis 
of the 11-deoxylandomycinone from the coupled reaction of PgaE and LanV using the 
deuterium-labeled NADPH showed an increase of mass by 0.99 Da, consistent with the 
incorporation of one deuterium atom (Figure 5 in IV). Together with the structural and 
sequence information on the active site of LanV, these results confirm that the catalysis of 
the 6-ketoreduction in LanV takes place through a mechanism common for the enzymes 
of the SDR superfamily with some minor differences as mentioned above (Figure 6 in 
IV) (IV). 
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4.4	 Mutagenesis studies of LanV and CabV (original publication V)

The comparison of the crystal structures of LanV and UrdMred and the sequences of the 
orthologous SDR enzymes CabV and PgaMred revealed four regions around the active 
site cavities that differed between LanV and other angucyclinone 6-ketoreductases 
(Figures 17 and 19). These enzymes are all highly similar in amino acid sequences; in 
the case of LanV and CabV, the sequence identity is 68%. The idea of these mutagenesis 
studies was to interchange these four regions between LanV and CabV in all possible 
combinations in order to elucidate the regions of the active sites behind the different 
stereospecificities of these enzymes. Since the structures of the enzymes implicated that 
the overall hydrophobic shape of the active site instead of individual amino acids is the 
key to the substrate binding, the mutagenesis was carried out by changing large regions 
of the enzymes and not individual amino acids (V). Also, the mutagenesis studies with 
PgaE and JadH had given implications that the activity of the enzyme can be affected by 
several large regions on different positions around the active sites of the enzymes (III). 
The regions changed in this study were amino acids 102–118 (R1), 154–163 (R2), 192 
(Ser in LanV, Ile in CabV, R3) and 198–210 (R4) (V).

4.4.1	 Effect of the single mutagenesis regions

The R3 region was the only mutagenesis region that had a major effect on the activities 
of LanV and CabV alone, whereas all the other regions had only small effects on the 
functions of these enzymes. The native LanV produces only 11-deoxylandomycinone, 
while native CabV produces 11-deoxylandomycinone and gaudimycin C in a 1:11 
ratio. The exchange of R3 changed the activities of LanV and CabV to produce 
11-deoxylandomycinone and gaudimycin C in 3:2 and 2:3 ratios, respectively. The effect 
of R3 on the enzymatic activities can be partially explained by the structures of LanV 
and UrdMred in complex with NADP+ and rabelomycin; the difference between the side 
chains of serine and isoleucine in LanV and UrdMred (also CabV), respectively, causes 
the planar anthraquinone of rabelomycin to tilt by nine degrees toward leucine 149. This 
difference can have an effect on the positioning of the substrates in LanV and CabV and 
change the stereochemical outcome of 6-ketoreduction.

4.4.2	 Activities of the double, triple and quadruple variants

The importance of R3 was also highlighted in double variants of LanV and CabV, where 
LanV variants R2+R3 and R1+R3 and CabV variant R1+R3 had the largest effect on the 
stereochemistry of 6-ketoreduction. The regions R2+R3 in LanV and R1+R3 in CabV 
were important factors for the control of the stereochemistry also in LanV and CabV triple 
variants; both LanV variants R1+R2+R3 and R2+R3+R4 produce almost equal amounts 
of 11-deoxylandomycinone and gaudimycin C, and in the case of CabV, the R1+R3+R4 
variant produces these products in a 7:1 ratio. With both enzymes, the largest effect on 
the stereochemistry of 6-ketoreduction was observed with the quadruple variants. The 
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quadruple variant of LanV produced 11-deoxylandomycinone and gaudimycin C in 1:4 
ratio whereas the ratio of the products with CabV quadruple variant was 16:1 (Figure 4 
in V) (V). 

All of the generated enzyme variants, where the activity differed from the activity of 
the native enzyme, produced a mixture of 11-deoxylandomycinone and gaudimycin C 
in different ratios. There were no enzyme variants able to catalyze the formation of 
these products with reverse stereochemistries at C-6: 6S-11-deoxylandomycinone or 
6R-gaudimycin C, which is a known compound called gaudimycin B (Figure S3 in V) 
(Palmu et al., 2007). These results indicate that the stereospecificity of the ketoreduction 
is strongly related to the substrate specificity of the enzyme (V).

Figure 19: The structure of LanV in complex with NADP+ and 11-deoxylandomycinone (PDB 
code 4KWI). The mutagenesis regions around the active site of LanV are shown in orange, 
11-deoxylandomycinone in cyan and NADP+ in yellow. The catalytic amino acid residues Ser-147 
(dark grey), Tyr-160 (orange) and Lys-164 (dark grey) are shown as sticks and the coordinated 
water molecule between Tyr-160 and 11-deoxylandomycinone as a red sphere.
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4.4.3	 Factors behind the different stereochemistries of angucyclinone 
6-ketoreductions 

The docking studies performed with LanV and UrdMred and their products 
11-deoxylandomycinone and gaudimycin C, respectively, further highlighted 
the inherent relationship between the substrate specificity of the angucyclinone 
6-ketoreductases and the stereochemical outcome of these reactions. With both 
enzymes, the stereochemical outcome of the reaction could be explained based 
on the docking results. In the case of LanV, it seemed that the coordinated water 
molecule present in the crystal structure of LanV in complex with NADP+ and 
11-deoxylandomycinone was required for the relay of a proton from Tyr-160 to the 
C-6 carbonyl oxygen in the formation of the 6R stereochemistry (Figure 5 in V). The 
docking experiments with the unnatural products of LanV and UrdMred, gaudimycin 
C and 11-deoxylandomycinone, respectively, also showed the correct positioning of 
the catalytic amino acids, 4-pro-S hydride of the NADPH and the C-6 of the ligand for 
the formation of the C-6 stereochemistry observed in these metabolites (Figure S5 in 
V) (V). This is in agreement with the findings that both of these enzymes, as well as
CabV, are able to catalyze the formation of both 6R and 6S stereochemistry depending 
on whether the product of the reaction is 11-deoxylandomycinone or gaudimycin C 
(see section 4.1.4) (II). 

As a consequence of these findings, it seems probable that in order to change the 
stereochemistries of these angucycline 6-ketoreductases, amino acids not found in 
native LanV or CabV would have to be introduced to the active sites of these enzymes. 
Since the change in stereochemistry of the reaction is dependent on the conformation 
of the substrate, the overall shape of the active site has to be changed in order to create 
angucyclines with altered stereochemistries at C-6 hydroxyl groups. These mutations 
would have to change the shape of the active site to position the 6-keto groups of the 
potential substrates in opposite orientation between the catalytic tyrosine and 4-pro-S 
hydride of the NADPH.

4.5	 Evolution of the different pathways (original publications I–III, V)

The different reaction cascades that convert prejadomycin to three alternative products, 
dehydrorabelomycin, gaudimycin C and 11-deoxylandomycinone, gave insights into the 
evolution of the different angucycline pathways (Figure 17). The results of the coupled 
reactions with the monooxygenases and the reductases implicated that the outcome of 
these reactions depends solely on the SDR component present in the reaction mixture. 
In the presence of the monooxygenase and LanV, 11-deoxylandomycinone is formed 
while replacement of LanV with the other reductase components, CabV, UrdMred or 
PgaM, yields gaudimycin C. These findings indicated that the origin of the landomycin 
pathways was the evolution of LanV to act before the 12b-hydroxylation has taken place 
(I, II).
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The mutagenesis studies with LanV and CabV revealed that the stereochemical outcome 
of the ketoreductions catalyzed by these enzymes depends mostly on the conformation 
of the substrate used by the enzyme. The modeled structures of 11-deoxylandomycinone, 
gaudimycin C and other angucyclinones from the pathways involved in this study 
showed that 4a,12b-dehydration causes significant changes to the conformation of these 
metabolites (Figure S4 in V). The evolution of landomycins from other angucyclines 
can therefore be explained by the gained ability of LanV to catalyze 6-ketoreduction to 
the substrate which has gone through 4a,12b-dehydration. Whether this dehydration is 
catalyzed by LanE or LanV and how the 12b-hydroxylation reaction by LanE is inhibited 
remains elusive, since these steps cannot be separated from each other (V).

The different activity of JadH compared to the other monooxygenases in this study 
indicates that JadH is the key enzyme that differentiates the jadomycin pathway from 
the urdamycin, landomycin and gaudimycin pathways. The ability of JadH to convert 
prejadomycin to dehydrorabelomycin by catalyzing 12-hydroxylation and 4a,12b-
dehydration without the release of the intermediate product steers the biosynthesis 
toward jadomycins. The evolution behind this has been the change of the second catalytic 
activity of JadH from 12b-hydroxylation to 4a,12b-dehydration. This change may be a 
consequence of the increased affinity of JadH towards 12-hydroxy-prejadomycin, which 
prevents the dissociation of 12-hydroxy-prejadomycin after the first reaction and makes 
the catalysis of 4a,12b-dehydration possible (II, III). 

The mutagenesis experiments with PgaE revealed that the active site of PgaE is 
surprisingly flexible, and there are several possible scenarios to how the change of 
activities between PgaE and JadH could have occurred (Figure 3 in III). The minimum 
change to inhibit the 12b-hydroxylation activity in JadH has been the change of amino 
acids Pro-78 and Ile-79 to glutamine and phenylalanine, respectively. At the level of 
DNA, this requires a change of two nucleotides, ccgatc to cagttc. After the inhibition 
of the 12b-hydroxylation activity, JadH has improved its 4a,12b-dehdyration activity 
to produce dehydrorabelomycin. The exact changes that have occurred in the evolution 
of JadH to enable the production of jadomycins are not clear, since changing all the 
different amino acids around the active site of PgaE was not enough to generate a 
dehydrorabelomycin producing enzyme. However, the studies show that after the 
changes in the β4–β5 region, the changes in other regions could have taken place without 
affecting the ability of the enzyme to catalyze 12-hydroxylation and without restoring 
the 12b-hydroxylation activity (III).
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5. CONCLUDING REMARKS

In this study, it was shown that tailoring enzymes from different angucycline pathways 
can catalyze the conversion of a common intermediate, prejadomycin, into three 
different products, dehydrorabelomycin, 11-deoxylandomycinone and gaudimycin C. 
Dehydrorabelomycin and 11-deoxylandomycinone have been shown to be intermediates 
in the biosynthetic pathways of jadomycins and landomycins, respectively. This study 
also showed that all flavoprotein monooxygenases involved in these reactions are able 
to catalyze both 12- and 12b-hydroxylations as well as the 4a,12b-dehydration reaction. 
Also, the short-chain alcohol dehydrogenase/reductaces from these reaction cascades 
were shown to contain the ability to catalyze 6-ketoreduction with both possible 
stereospecificities. 

The clarification of the tailoring reactions taking place during the biosynthesis of 
different angucyclines revealed that the enzymes JadH and LanV present the branching 
points of the jadomycin and landomycin pathways, respectively, from the urdamycin and 
gaudimycin pathways. A closer analysis of these reactions by mutagenesis experiments 
revealed differences between homologous enzymes that are behind the different activities. 

The kinetic analysis of native PgaE and several variant enzymes revealed a correlation 
between the substrate inhibition in 12-hydroxylation and the ability to catalyze 
12b-hydroxylation. It seems that the substrate inhibition in PgaE is a consequence of 
the ability of the enzyme to catalyze two consecutive hydroxylations in the same active 
site. The analysis of the differences between LanV and CabV revealed that the different 
stereospecificities of these enzymes are actually due to the different conformations of 
their substrates. 

The results also showed that, even after the differentiation of the biosynthetic pathways 
to produce distinct metabolites, these enzymes still possess the ability to catalyze 
reactions, which are no longer required in their pathways. Also, enzymes from the urd, 
pga and cab pathways have the ability to catalyze reactions, which are not required in 
the biosynthesis of urdamycins and gaudimycins, but have evolved as the main functions 
for JadH and LanV. In the case of JadH, the mutations that have weakened the ability of 
the enzyme to catalyze the 12b-hydroxylation, have enabled the evolution of the 4a,12b-
dehydration into a primary function. However, in the case of LanV, the enzyme has gained 
affinity toward an earlier pathway intermediate, but simultaneously, the greatly different 
conformation of the substrate has forced the enzyme to change its stereospecificity.

These enzymes with latent context-dependent activities are excellent examples of how 
promiscuity is used to aid the enzyme evolution. The promiscuous activities of the 
enzymes are thought to serve as a starting point for the generation of novel functions. 
The emergence of new enzyme activities occurs most likely gradually through active 
“intermediate” enzymes (Khersonsky and Tawfik, 2010). This phenomenon is also seen 
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in the mutagenesis experiments conducted with enzyme pairs PgaE/JadH and LanV/
CabV. Especially in the case of LanV and CabV, several intermediate variants can be 
seen before the hidden activity evolves into the primary activity of the enzyme. 

One current model for enzyme evolution is the escape from adaptive conflict (EAC). 
In this model, two activities of one enzyme cannot specialize simultaneously, but the 
enzyme remains bi-functional. These two activities can only evolve to primary functions 
after gene duplication event (Conant and Wolfe, 2008). The EAC model is especially 
well suited for the case of PgaE and JadH. In both enzymes, either 12b-hydroxylation or 
4a,12b-dehydration has evolved to primary function while the other is still present as a 
secondary activity. This suggests that these enzymes have not yet become specialized but 
are still evolving. However, it is uncertain to what extend is this kind of specialization 
necessary for enzymes involved in the biosynthesis of secondary metabolites, as the 
promiscuity enables rapid evolution of new enzyme activities – a trait useful in the 
generation of new secondary metabolites.
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