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ABSTRACT
Janne Koskimäki

INTRACRANIAL NIMODIPINE IMPLANT: FEASIBILITY AND IMPLICATIONS FOR 
THE TREATMENT OF SUBARACHNOID HEMORRHAGE – A PRE-CLINICAL STUDY

From University of Turku, Faculty of Medicine, Department of Clinical Medicine, Surgery, Neurosur-
gical Unit, Doctoral Programme of Clinical Investigation, and University of Helsinki, Helsinki Neuro-
science Center 
Annales Universitas Turkuensis, Medica-Odontologica, 2015, Turku, Finland
Painosalama Oy – Turku, Finland, 2015

Intracranial aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition requiring 
immediate neurocritical care. A ruptured aneurysm must be isolated from arterial circulation to pre-
vent rebleeding. Open surgical clipping of the neck of the aneurysm or intra-arterial filling of the an-
eurysm sack with platinum coils are major treatment strategies in an acute phase. About 40% of the 
patients suffering from aSAH die within a year of the bleeding despite the intensive treatment.

After aSAH, the patient may develop a serious complication called vasospasm. Major risk for the 
vasospasm takes place at days 5–14 after the primary bleeding. In vasospasm, cerebral arteries contract 
uncontrollably causing brain ischemia that may lead to death. Nimodipine (NDP) is used to treat of 
vasospasm and it is administrated intravenously or orally every four hours for 21 days. NDP treatment 
has been scientifically proven to improve patients’ clinical outcome.

The therapeutic effect of L-type calcium channel blocker NDP is due to the ability to dilate cerebral 
arteries. In addition to vasodilatation, recent research has shown the pleiotropic effect of NDP such 
as inhibition of neuronal apoptosis and inhibition of microthrombi formation. Indeed, NDP inhibits 
cortical spreading ischemia. Knowledge of the pathophysiology of the vasospasm has evolved in recent 
years to a complex entity of early brain injury, secondary injuries and cortical spreading ischemia, in-
stead of being pure intracranial vessel spasm.

High NDP levels are beneficial since they protect neurons and inhibit the cortical spreading ischemia. 
One of the drawbacks of the intravenous or oral administration of NPD is systemic hypotension, which 
is harmful particularly when the brain is injured. Maximizing the beneficial effects and avoiding systemic 
hypotension of NDP, we developed a sustained release biodegradable NDP implant that was surgically po-
sitioned in the basal cistern of animal models (dog and pig). Higher concentrations were achieved locally 
and lower concentrations systemically. Using this treatment approach in humans, it may be possible to 
reduce incidence of harmful hypotension and potentiate beneficial effects of NDP on neurons. 

Intracellular calcium regulation has a pivotal role in brain plasticity. NDP blocks L-type calcium 
channels in neurons, substantially decreasing intracellular calcium levels. Thus, we were interested in 
how NDP affects brain plasticity and tested the hypothesis in a mouse model. We found that NDP 
activates Brain-derived neurotrophic factor (BDNF) receptor TrkB and its downstream signaling in a 
reminiscent of antidepressant drugs. In contrast to antidepressant drugs, NDP activates Akt, a major 
survival-promoting factor. Our group’s previous findings demonstrate that long-term antidepressant 
treatment reactivates developmental-type of plasticity mechanisms in the adult brain, which allows 
the remodeling of neuronal networks if combined with appropriate rehabilitation. It seems that NDP 
has antidepressant-like properties and it is able to induce neuronal plasticity. In general, drug induced 
neuronal plasticity has a huge potential in neurorehabilitation and more studies are warranted.

Keywords: delayed cerebral ischemia, implant, neurosurgery, nimodipine, plasticity, rehabilitation, 
subarachnoid hemorrhage, vasospasm
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TIIVISTELMÄ
Janne Koskimäki

KALLONSISÄINEN NIMODIPIINI-IMPLANTTI: SOVELTUVUUS JA VAIKUTUK-
SET SUBARAKNOIDAALIVUODON HOIDOSSA – PREKLIININEN TUTKIMUS

Turun yliopisto, Lääketieteellinen tiedekunta, Kliinen laitos, Kirurgian oppiaine, Neurokirurgian yk-
sikkö, Turun kliininen tohtoriohjelma sekä Helsingin yliopisto, Neurotieteden tutkimuskeskus
Annales Universitas Turkuensis, Medica-Odontologica, 2015, Turku, Finland
Painosalama Oy – Turku, Finland, 2015

Kallonsisäinen aneurysmaattinen subaraknoidaalivuoto (aSAV) on henkeä uhkaava tilanne, joka vaati 
välitöntä neurotehohoitoa. Puhjennut aneurysma on suljettava pikaisesti verenkierrosta uusintavuo-
don ehkäisemiseksi, joko kraniotomian kautta kirurgisesti sulkemalla aneurysman kaula klipsillä tai 
verisuonen sisäisesti täyttämällä aneurysma platinakoilein. Noin 40 % aSAV potilaista kuolee vuoden 
kuluessa hoidoista huolimatta.

aSAV:n jälkeen potilaalle voi kehittyä henkeä uhkaava komplikaatio, vasospasmi. Suurin spasmiris-
ki ajoittuu 5–14 vuorokauden sisään primaarivuodosta. Vasospasmissa aivovaltimot supistuvat hallit-
semattomasti aiheuttaen vakavan aivokudoksen hapenpuutteen, joka voi johtaa kuolemaan. Hoitona 
vasospasmiin käytetään nimodipiinia (NDP), jota annostellaan laskimonsisäisesti jatkuvana infuusio-
na tai suun kautta neljän tunnin välein 21 vuorokauden ajan. NDP -hoidon on tieteellisesti osoitettu 
parantavan potilaan ennustetta. 

L-tyypin kalsiumkanavan salpaajana NDP:n vaikutus perustuu aivovaltimoiden relaksoitumiseen, 
jolloin valtimot laajenevat. Nykytutkimukset ovat kuitenkin osoittaneet, että NDP:llä on edellä mai-
nitun ominaisuuden lisäksi muitakin edullisia vaikutuksia, kuten hermosolujen apoptoosin esto, mi-
krotromboosien kehittymisen esto sekä patologisten aivosähköpurkausten vähäisempi ilmaantuminen 
vuodon jälkeen. Lisääntyneen tutkimuksen ansiosta vasopasmin patofysiologiaa on alettu ymmärtää 
monimuotoisena aivosairautena eikä vain pelkkänä verisuonten supistustilana. 

Korkeiden NDP-pitoisuuksien on osoitettu olevan edullisia erityisesti hermosolujen suojaamisessa 
sekä patologisten aivosähköpurkausten estämisessä. Erityisenä ongelmana oraalisesti tai laskimonsi-
säisesti annosteltu NDP voi aiheuttaa potilaalla voimakkaan verenpaineen laskun, mikä on erityisen 
haitallista, kun aivot ovat vaurioituneet.

Kehitimme biohajoavan NDP-implantin, joka asennettiin kirurgisesti koe-eläinmallien (koira ja 
maatiaissika) basaalisiin likvortiloihin. Implanttihoidolla saavutettiin korkeampi NDP-pitoisuus lik-
vorissa sekä matalampi pitoisuus systeemisesti kuin perinteisellä hoidolla. Tällä tavoin pystyttäisiin 
välttämään potilailla haitallinen verenpaineen lasku sekä tehostamaan NDP:n edullisia vaikutuksia 
hermosoluihin. Hoitoannoksella implanttihoidosta ei ollut osoitettavissa haittavaikutuksia koe-eläin-
malleissa.

Koska hermosolun sisäisellä kalsiumin pitoisuuden säätelyllä on tärkeä rooli aivojen plastisuudes-
sa, tutkimme NDP:n vaikutusta aivojen plastisuuteen hiirimallissa. NDP aktivoi voimakkaasti aivope-
räisen hermokasvutekijän (BDNF) reseptoria TrkB:tä ja sen signalointireittejä samaan tapaan kuin 
masennuslääkkeet. Masennuslääkkeistä poikkeavasti neuroprotektioon liitetty Akt-signalointireitti 
aktivoitui voimakkaasti. Ryhmämme on aiemmin osoittanut, että TrkB:n aktivaatio liitettynä kuntou-
tukseen muokkaa tehokkaasti hermoverkkoja. Tällä indusoidulla plastisuudella on todennäköisesti 
erittäin edullisia vaikutuksia aivosairauksista kuntoutuessa. 

Hakusanat: implantti, kuntoutus, lukinkalvonalainen verenvuoto, neurokirurgia, nimodipiini, plasti-
suus, subaraknoidaalivuoto, vasospasmi
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ABBREVIATIONS AND TERMINOLOGY
ADP	 Adenosine diphosphate
Akt	 Protein kinase B
aSAH	 Aneurysmal subarachnoid hemorrhage
BDNF	 Brain-derived neurotrophic factor
CBF	 Cerebral blood flow
CPP	 Cerebral perfusion pressure
CREB	 cAMP response element-binding protein
CRST	 Clinical research services Turku
CSDz	 Cortical spreading depolarization
CSDs	 Cortical spreading depression
CSF	 Cerebrospinal fluid
CSI	 Cortical spreading ischemia
CT	 Computed tomography
DCI	 Delayed cerebral ischemia
ELISA	 Enzyme-linked immunosorbent assay
GAPDH	 Glyseraldehyde 3-phosphate dehydrogenase
GDC	 Guglielmi detachable coil
HC	 Hippocampus
H&H	 Hunt & Hess grade
IA	 Intracranial aneurysm
ICP	 Intracranial pressure
IP3	 Inositol trisphosphate
IVH	 Intraventricular hemorrhage
LC-MS	 Liquid chromatography–mass spectrometry
LTP	 Long-term potentiation
LTD	 Long-term depression
NDP	 Nimodipine
PDGF	 Platelet-derived growth factor
PFC	 Prefrontal cortex
PI3K	 Phosphoinositide 3-kinase 
PLGA	 Poly D,L-lactide coglycolide
SDDS	 Sustained drug delivery system
SiO2	 Silica oxide
SSRI	 Selective serotonin reuptake inhibitor
TrkB	 Receptor for BDNF

Biomaterial:	 Material intended to interface with biological systems to evaluate, treat, aug-
ment or replace any tissue, organ or function of the body

CSDz: 	 Cortical neuronal depolarization wave, which is associated with a total increase 
in cations and H20 influx. It is seen in injured brain that cannot respond to an 
increased energy demand

CSDs:	 Cortical spreading depression wave, as above but the brain is not injured and 
can respond to an increased energy demand
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DCI:	 Cerebral ischemia propagated by all pathophysiological cascades occurred after 
aSAH with peak incidence after seven days of initial bleeding

Dissolution:	 Solute (in this context implant) that forms a solution by dissolving in the solvent 
(in this context CSF)

Foreign body reaction:	 Variation in normal tissue behavior caused by the presence of foreign material

Homeostatic plasticity:	Structural or functional plastic changes that maintain the balance between exci-
tation and inhibition

Implant:	 Medical device made from one or more biomaterials that are intentionally 
placed within the body either totally or partially

Induced plasticity:	 Form of plasticity in which any inductor (e.g. a drug) re-establishes the critical 
or sensitive periods in the brain and further enables effective remodeling of 
neural networks with proper input

Long-term depression:	 Long-lasting decrease in synaptic strength

Long-term potentiation:	Long-lasting postsynaptic signaling enhancement after high-frequency stimu-
lus. Increase synaptic strength

Neuroplasticity:	 A strengthening in synaptic connections or alterations in the neuron soma, 
dendrites or axons so that neuronal synaptic or nonsynaptic behavior is altered

Synapse:	 Connection between neurons that relay the communications via neurotrans-
mitters or an electrical stimulus
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1.	 INTRODUCTION
Hippocrates (c. 460 – c. 370 BC) once stated: 
“When persons in good health are suddenly seized 
with pains in the head, and straightway are laid 
down speechless, and breathe with stertor, they 
die in seven days, unless fever comes on.” (Hippo-
crates: The Genuine Works of Hippocrates. 1925 
William Wood & Co New York). The aphorism is 
undoubtedly one of the first descriptions of an-
eurysmal subarachnoid hemorrhage (aSAH) and 
reminds us of the severity of its natural history.

aSAH occurs when an intracranial aneurysm 
(IA) is ruptured and the blood rapidly flows into 
the subarachnoid space. IAs are usually pouch-
like formations at bifurcations of intracranial 
arteries. These kinds of aneurysms are called 
saccular. In rare cases the IA is a dilatation of 
the intracranial artery and is therefore called 
fusiform.

After bleeding, the mortality rate inreases 
up to 50% even with prompt aneurysm closure 
and rigorous neurocritical care (Sarti et al. 1991; 
Fogelholm et al. 1993). The natural history of 
aSAH is presented in an unselected series of 363 
patients with ruptured IAs, there having been 
15% mortality before admission and 60% mortal-
ity after 6 months (Pakarinen 1967). Rebleeding 
of the ruptured IA significantly increases mor-
tality. The risk of rebleeding with conservative 
treatment is high, 4% on the first day, and the 
risk remains constant at a rate of 1% to 2% per 
day during the following two weeks (Kassell and 
Torner 1983). When the IAs were not eliminated 
from the arterial circulation, the mortality was 
64% at the first recurrence and 86% at the second 
recurrence (Pakarinen 1967). Thus the primary 
aim of treating IAs is to prevent rebleeding by iso-
lating the IAs from the arterial circulation while 
preserving the blood flow in the parent artery and 
arterial branches. 

Currently, the main treatment strategies used 
to occlude IAs are clipping and coiling. Clipping 
is performed surgically through the use of a cra-
niotomy, during which a titanium clip is applied 
across the neck of the aneurysm. Coiling is a 
less invasive method, in which a platinum coil 
is intra-arterially inserted into the pouch of the 

aneurysm, thereby occluding the aneurysm and 
isolating it from arterial circulation. Since aSAH 
is a very complex and life-threatening disease, 
eliminating the aneurysm from circulation is not 
sufficient. aSAH patients require intensive neuro-
critical care, which is extremely important if the 
best results are to be achieved for the patients. 

Dr. Viktor Horsley (1857–1916) was the first 
who surgically treated an intracranial aneurysm 
by ligation of the carotid artery in 1885 (Kretzer 
et al. 2010). The method is known as Hunterian 
ligation, named after Dr. John Hunter who intro-
duced proximal femoral artery ligation for popli-
teal aneurysms instead of an amputation (Hunter 
1835). The first planned operation on an intra-
cranial aneurysm was performed on April 22th, 
1931 by Dr. Norman Dott (1897–1973) (Dott 
1933). Dr. Dott used a method called wrapping, 
a technique which he had probably adopted from 
Dr. Harvey Cushing (1869–1939) during his resi-
dency training in 1923–1924 (Kretzer et al. 2010). 
Before the World War II on March 27th, 1937, Dr. 
Walter E. Dandy (1886–1946) operated ruptured 
right sided internal carotid artery aneurysm and 
introduced the method called clipping (Dandy 
1938; Kretzer et al. 2010). The clipping technique 
is currently one of the most important treatment 
strategies for treating intracranial aneurysms and 
became safer since the 1960’s when an operating 
microscope was introduced.

Started in 1970s, a new less invasive endovas-
cular method for occluding IAs was developed. 
The revolution in neuroendovascular treatment 
of IAs took place after Dr. Guido Guglielmi had 
developed detachable platinum coils (Guglielmi 
detachable coil, GDC) which were approved in 
clinical use by Food and Drug Administration 
(FDA, K951256) on September 1995 (Guglielmi 
et al. 1991; Guglielmi et al. 1992). 

Currently, surgical and endovascular an-
eurysm occlusion therapies can be considered 
equally effective and safe (Koivisto et al. 2000; 
Molyneux et al. 2005). Both approaches have pros 
and cons, thus a selection of the best treatment 
strategy for the patient require a highly experi-
enced vascular neurosurgeon.
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A new paradigm shift has already occurred in 
endovascular treatment. Flow diverters close the 
parent artery causing endoluminal reconstruc-
tion rather than saccular filling. This technique is 
effective in treating non-ruptured incurable wide 
neck, dissecting or giant aneurysms (Alderazi 
et al. 2014). Flow diverters seem to be safe, but 
especially the indications of flow diverters need 
to be confirmed in further studies to avoid com-
plications that could be prevented with surgical 
clipping. (Berge et al. 2012; Cohen et al. 2014; 
Briganti et al. 2014; Britz).

Despite the technical development of aneu-
rysm occlusion therapies, mortality rates are high 
after aSAH. A devastating complication, called 
vasospasm, occurs in about 30% of patients after 
aSAH, the peak incidence being reached seven 
days after the initial bleeding (Dorsch and King 
1994; Macdonald 2014). Vasospasm is an intra-
cranial arterial spasm with complicated and part-
ly unknown pathophysiology that may lead local 
or even global brain ischemia. Clinically the state 
is observed as a delayed neurological deteriora-
tion (Macdonald 2014).

In late 1980s, L-type calcium channel block-
er nimodipine (NDP) was introduced for treat-
ing vasospasm. In clinical trials, 60 mg of NDP 
orally every four hours improved patients’ out-
come (Laursen et al. 1988; Pickard et al. 1989). 
The mechanism of action of NDP was originally 
postulated to reduce angiographic vasospasm via 
dilatation intracranial blood vessels. However, 
angiographic vasospasm and outcome do not 
seem to correlate and the exact mechanism is still 
mainly obscure (Dorsch 2011; Woitzik et al. 2012; 
Etminan et al. 2013).

NDP has been shown to have favorable pleio-
tropic effects for neuronal survival, e.g. inhibition 
of neuronal apoptosis and excitotoxicity, inhibi-
tion of cortical spreading ischemia and reducing 
the number of microthombosis (Zornow and 
Prough 1996; Dreier et al. 2002; Vergouwen et 
al. 2008). On the other hand, NDP can decrease 
systemic blood pressure, which may restrict the 
NDP treatment after aSAH.

NDP binds to L-type calcium channels of neu-
rons and alters intracellular calcium concentration. 
Calcium signaling has a major role in neuronal 

homeostasis. Activity-dependent calcium influxes 
via L-type calcium channels regulate several intra-
cellular signaling pathways that modulate short- 
and long-term alterations in gene expression and 
synaptic plasticity in neurons (Park and Poo 2013; 
Bading 2013; Frank 2014). The density of L-type 
calcium channels are significantly higher in neu-
rons than corresponding cerebral blood vessels 
(Ricci et al. 2002). However, excessive activation 
of L-type calcium channels leads to compromised 
plasticity, excitotoxicity and neurodegeneration 
(Choi 1994; Mattson 2007).

Drug-induced plasticity for enabling rehabili-
tation was introduced by Dr. Maya Vetencourt to-
gether with Prof. Castrén and Prof. Maffei in 2008 
(Maya Vetencourt et al. 2008). Amblyopia was 
cured on an animal model using antidepressant 
drug fluoxetine. Fluoxetine restored so-called 
juvenile-like plasticity by opening the new time 
window for rehabilitation although the earlier 
developmental critical period had closed. Addi-
tionally, in clinical settings fluoxetine have shown 
to improve motor outcome in ischemic stroke pa-
tients (Chollet et al. 2011).

According to several studies, L-type calcium 
channel blockers have independent and poten-
tiating antidepressant properties (Mogilnicka et 
al. 1987; Czyrak et al. 1989; Czyrak et al. 1990; 
Dubovsky et al. 2001). Interestingly, fluoxetine 
blocks also L-type calcium channels, affecting 
calcium signaling of the neurons (Deák et al. 
2000; Kim et al. 2013).

Considering the above mentioned aspects, 
we developed an intracranial silica-based biode-
gradable NDP implant. The implant was tested in 
a healthy pig and dog model by surgically posi-
tioning the implant in the basal cisterns through 
frontotemporal craniotomy. Feasibility, tolerabil-
ity, degradation, histology and pharmacokinetic 
properties of the implant were widely studied and 
evaluated. Our aim was to produce higher NDP 
concentration in cerebrospinal fluid (CSF) than 
achieved orally for maximizing the positive pleio-
tropic effects of NDP. Furthermore, our aim was 
to decrease the systemic concentration of NDP to 
reduce clinically relevant NDP-induced hypoten-
sion, which compromise patients’ cerebral perfu-
sion pressure (CBF).
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The pivotal role of intracellular calcium sig-
naling in the regulation of plasticity led us to in-
vestigate whether NDP induces such molecular 
conditions that facilitate plastic changes in neu-

rons similarly as seen in antidepressant drugs. 
Lastly, we discuss the role of NDP after aSAH 
in a context of drug-induced plasticity and re-
habilitation.
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2.	 REVIEW OF THE LITERATURE
2.1.	 Intracranial Aneurysms

2.1.1.	 Prevalence
Intracranial aneurysm (IA) is saccular in a 98% 
of cases and usually forms at the branches of the 
intracranial blood vessels (Dashti et al. 2007). 
Multiple aneurysms are found in about one third 
of the patients with IAs (Inagawa 1990; Rinne et 
al. 1994; Ellamushi et al. 2001; Dashti et al. 2007). 
According to a recent meta-analysis, the overall 
prevalence of IAs reported for 83 study popu-
lations is 3.2%, and the prevalence is higher for 
females, their relative risk being 1.6. Smoking, 
hypertension and genetic factors increase the 
prevalence (Rinkel et al. 1998; Vlak et al. 2011). 

2.1.2.	 Pathobiology
Histology of normal intracranial arteries differs 
from extracranial arteries. The innermost layer 
is intima, which consists of epithelial cells that 
surrounds the endoluminal side in the direct con-
tact in blood. Between intima and media, a layer 
of elastic fibers is forming internal elastic lamina. 
The middle layer of the blood vessels is called 
media, and it consists mainly of smooth muscle 
cells and type III collagen (Canham et al. 1991). 
The outermost layer is adventitia, with the most 
complex structure consisting of type I collagen, 
nerves, fibroblasts, elastin and vasa vasorum 
(Smith et al. 1981; Finlay et al. 1995; Rowe et al. 
2003). In extracranial arteries, media and adventi-
tia are separated by external elastic lamina, which 
is not present in the structure of intracranial arter-
ies. Another special character in the intracranial 
vessels are strong tendon-like formations and gaps 
in the media at the apexes of bifurcations (Finlay 
et al. 1998; Futami et al. 1998). In the 1930’s, these 
discontinuities in the cerebral vessels were found 
and were considered to have pathologic nature 
(Forbus 1930). Further research revealed that 
these fibrous gaps and tendon-like formations are 
physiologic (Finlay et al. 1998; Rowe et al. 2003). 
However, the true physiological meaning of these 
structures, and the role in the pathogenesis of an-
eurysms, are still obscure.

A normal intracranial vessel has highly or-
ganized structure, which is compromised in the 
genesis of an aneurysm (Kim et al. 1993; Austin 
et al. 1993; van den Berg et al. 1997; Kondo et al. 
1998). Histopathological changes seen in the wall 
are a loss of internal elastic lamina, myointimal 
hyperplasia, hypocellularity and hyalinization 
(Frösen et al. 2012; Chalouhi et al. 2013; Frösen 
2014). The myointimal hyperplasia is a physio-
logical response to the increased hemodynamic 
demand or the mechanical injury of the blood 
vessel (Intengan and Schiffrin 2001). However, 
it is not known if myointimal hyperplasia in the 
wall of the aneurysm is an adaptive mechanism 
for increased stress or if it is contributing to the 
degeneration and weakening of the aneurysm 
wall (Frösen et al. 2004; Chalouhi et al. 2013). 

Organized vessel structure is resistant to the 
local hemodynamic stress. When the organiza-
tion is lost, the critical balance between arterial 
hemodynamic stress and the strength of the wall 
is disrupted, creating favorable conditions for 
aneurysm formation (Stehbens 1989; Inci and 
Spetzler 2000). Several mechanisms that initiate 
and maintain the wall degeneration have been 
identified. The activity and expression of matrix 
metalloproteinases 2 and 9 are increased, causing 
proteolysis of elastin and collagen and leading to 
loss of tensile strength (Bruno et al. 1998; Caird et 
al. 2006). Apoptosis is markedly increased in the 
wall of aneurysms (Pentimalli et al. 2004). The ep-
isodes that elicit apoptosis are indistinct. However, 
proinflammatory cytokine tumor necrosis factor a 
and c-Jun amino-terminal kinase have been pro-
posed to be the mechanisms in action (Takagi et 
al. 2002; Starke et al. 2014). Inflammation is exten-
sively present in the degenerative aneurysm walls 
(Tulamo et al. 2010a). Every main type of human 
immune cells are discovered in the wall as well as 
antibodies (Chyatte et al. 1999). Indeed, expression 
of a proinflammatory chemokine called monocyte 
chemoattractant protein-1 is upregulated (Cao 
et al. 2002; Aoki et al. 2009; Wang et al. 2014). 
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Complement activation and inflammatory cell 
infiltration is higher in the ruptured than in the 
unruptured aneurysms (Tulamo et al. 2006; Tula-
mo et al. 2010b). Interestingly, high hemodynamic 
stress i.e. hypertension, causes conditions in which 
all above-mentioned pathological mechanisms 
are seen (Stehbens 1989; Inci and Spetzler 2000). 
Lastly, atherosclerosis can contribute to the forma-
tion of aneurysms by increasing the inflammatory 
response, lipid accumulation and oxidation in the 
wall of the aneurysms (Frösen et al. 2013). Asso-
ciation of the pathobiological mechanisms behind 
the aneurysms and the clinical risk factors for an-
eurysms and aSAH are mainly logical. Still, major 
discrepancies, e.g. female gender predisposition, 
are observed.

2.1.3.	 Treatment of unruptured 
aneurysms

Unruptured aneurysms are found either inciden-
tally or in the screening for a familial background 
of aneurysms. As mentioned, the overall preva-
lence of IAs is 3.2% (Vlak et al. 2011). It means 
that in Finland alone, there are nearly 200 000 
people carrying an unruptured aneurysm. If an 
aneurysm stays unruptured it rarely causes any 
medical problems. 

The rupture rate is different between nations, 
being the highest in Finland and Japan (Linn et al. 
1996; Ohkuma et al. 2002; Korja et al. 2013; Suzuki 
and Izumi 2014). The ability to predict the rupture 
of the unruptured aneurysm would be the most 
effective way to evaluate the need of care. Unfortu-
nately, a lack of precise biomarkers is a current fact. 
However, encouraging results have been obtained 
for preventing the rupture of aneurysms and 
evaluating the risk of rupture. Vascular endothe-
lial growth factor and transforming growth factor 
beta receptors have been to be associated with an 
increased risk of the rupturing and remodeling of 
IAs, making them potential targets for biological 

drug therapy (Frösen et al. 2006). In addition, di-
agnostic and prognostic biomarkers for character-
izing the rupture risk of unruptrured IAs are under 
development (Sabatino et al. 2013).

When unruptured aneurysm is detected, a 
careful analysis of risk factors related to the pa-
tient and the aneurysm itself is required. An-
eurysm size, location and multiplicity are risk 
factors for rupture as well as earlier rupture and 
familial background (Kissela et al. 2002; Wie-
bers et al. 2003; Clarke et al. 2005; UCAS Japan 
Investigators et al. 2012). Smoking, hypertension 
and alcohol abuse are treatable risk factors that 
increase the risk of the rupture (Knekt et al. 1991; 
Longstreth et al. 1992; Juvela et al. 1993). 

Vast uncertainty for treating of small aneu-
rysm is evident. It seems that aneurysms under 
5 mm will rupture rarely (Brown and Broderick 
2014). However, certain populations may be sus-
ceptible to developing aSAH even when the an-
eurysm is small (Dashti et al. 2007; Wong et al. 
2013). In carefully selected cases, treatment of 
small aneurysms is rational.

A meticulous analysis of the afore-mentioned 
risk factors is critical when a decision is made 
concerning treatment or a follow-up strategy. If 
risk factors are clinically considered to be signif-
icant and the risk of aneurysm rupture is possi-
ble, an unruptured IA is eliminated from arterial 
circulation. The main treatment strategies are 
surgical clipping and endovascular coiling, as 
described earlier. However, in the treatment of 
complex unruptured IAs, new flow diverters offer 
a possible treatment option (see section 1). 

Clinical trials directly comparing the two an-
eurysm occlusion modalities surgical clipping and 
endovascular coiling are lacking. Whether the treat-
ment strategy is coiling or clipping, the selection is 
influenced by patient’s age, size, morphology and 
location of the aneurysm, institution and neurosur-
geon’s experience (Brown and Broderick 2014). 

2.2	 Subarachnoid hemorrhage

2.2.1. Incidence
Although the prevalence of IAs is at the same lev-
el in the different nations, incidence of the aSAH 

is significantly higher in Finland and Japan, 
reaching as high as 20 cases per 100 000 (Linn 
et al. 1996; Ohkuma et al. 2002; Korja et al. 2013; 
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Suzuki and Izumi 2014). In other populations, 
the incidence is 6–10 cases per 100 000 (van Gijn 
et al. 2007). Risk factors for aSAH are smoking, 
hypertension, heavy alcohol consumption, age, 
female gender, aneurysm size and location and 
genetic factors (Knekt et al. 1991; 1998; Clarke et 
al. 2005; Feigin et al. 2005; Sandvei et al. 2009). 
Genetic factors have a moderate effect to the in-
cidence of aSAH. However, in familial aSAH, the 
increased rupture rate is usually attributed to en-
vironmental risk factors (Korja et al. 2010).

2.2.2.	 Pathophysiology
Immediately after rupture of an aneurysm, sev-
eral pathophysiological cascades originate in the 
brain. Blood flows into the subarachnoid space 
with high pressure. Bleeding is stopped when the 
ruptured vessel is constricted and the local intra-
cranial pressure meets the systolic blood pressure 
(Nornes and Magnaes 1972). Bleeding itself can 
cause mechanical injury to the brain by flowing 
with high pressure in the parenchyma. 

Knowledge of the pathophysiology of the 
aSAH has evolved tremendously in recent years. 
Inflammation and microthrombosis play signif-
icant role in the light of latest studies. Impor-
tantly, understanding of the delayed cerebral 
ischemia (DCI) and the underlying vasospasm 
has developed in recent years to a complex en-
tity of early brain injury, secondary injuries and 
cortical spreading ischemia, instead of being pure 
intracranial vessel spasm (Macdonald 2014). The 
increased knowledge of the pathophysiology of 
aSAH provides the fundamental prerequisites for 
the development of more effective treatments.

2.2.2.1.	Early brain injury 
Early brain injury is a sequence of cascades that 
occurs during 72 hours of the initial bleeding 
and is initiated immediately after the rupture of 
an aneurysm. Mechanical injury and ionic and 
physiologic imbalance occur in seconds. Within 
an hour, ionic and physiologic imbalance proceed 
to cell death, inflammation, oxidative stress and 
vascular changes. During 72 hours, these cas-
cades persist lead to a permanent injury of the 
brain. (Cahill et al. 2006; Sehba et al. 2011; Caner 
et al. 2012; Fujii et al. 2013).

As stated, mechanical trauma plays a pivotal 
role in the pathological process. Bleeding pres-
sure may rupture the brain parenchyma causing 
direct damage. Directly after the rupture, intra-
cranial pressure may exceed the pressure over 160 
mmHg (Nornes and Magnaes 1972). The blood 
clot mechanically stretches blood vessels and 
promotes the vasoconstriction (Arutiunov et al. 
1974). 

ICP rises, compromising the cerebral per-
fusion pressure (CPP) and cerebral blood flow 
(CBF) (Brinker et al. 1992). However, decreased 
CPP alone does not explain the acute cerebral 
ischemia; direct vasoconstriction needs to be 
present (Bederson et al. 1995). Interestingly, two 
distinct patterns of ICP are distinguished and 
both have their unique mechanisms. The first pat-
tern forms a rapid peak in ICP but soon returns 
to near basal values. The amount of bleeding is 
small, but edema is already present. This condi-
tion is called ischemic-edematous lesion to dis-
tinguish it from hemorrhagic-compressive lesion 
in which ICP remains high due to the mass of the 
expanding hematoma or an acute hydrocephalus 
(Nornes and Magnaes 1972; Nornes 1973).

Ionic imbalance of sodium, potassium, calci-
um and magnesium occurs and leads to vascu-
lar and electrical instability. Disruption of the 
ion, energy and nitric oxide (NO) homeostasis, 
increased oxyhemoglobin, glutamate and en-
dothelin-1 are involved by producing measur-
able waves of cortical spreading depolarization 
(CSDz) (Dreier et al. 2002). In unfavorable con-
ditions, such as after aSAH, CSDz progress to a 
cortical spreading ischemia (CSI) (Dreier et al. 
2002; Dreier et al. 2009; Macdonald 2014).

Neuronal cell death via necrosis as well as 
apoptosis have been described and several cel-
lular pathways are involved (Dreier et al. 2000; 
Lee et al. 2009a; Zhao et al. 2014). Cellular death 
is highly active during the first week and is less 
active on day 11 (Nau et al. 2002; Prunell et al. 
2005). However, the time period of cellular death 
is unknown. After aSAH most patients suffer 
from cognitive and memory deficit. Interesting-
ly, in the hippocampus, long-term potentiation 
(LTP) formation is lost after experimental aSAH 
independently of global ischemia and neuronal 
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loss, but it is associated with a decrease in the 
number of synapses, which compromises the 
plasticity of the brain (Han et al. 2014). 

NO is a double-edged sword. Both increased 
and decreased levels of NO may be present after 
aSAH. NO levels decrease first, remaining low for 
three hours and then returning to the basal level 
(Sehba et al. 2000). After 24 hours, increased lev-
els are measured (Ng et al. 2001; Yatsushige et al. 
2006). Decreased levels cause vasoconstriction, 
platelet aggregation and decrease in CBF (Sehba 
et al. 2000; Sehba et al. 2005). Increased levels can 
cause damage to the cell membranes and mito-
chondria and may eventually lead to cell death 
(Szabó and Dawson 1998; Sehba and Bederson 
2011; Zhao et al. 2014). Also, increased endothe-
lin-1 is shown to be present when NO levels are 
low, generating conditions that favor vasospasm 
(Sehba et al. 2011).

2.2.2.2.	Inflammation
Complement activation, cytokines, leukocytes, 
neutrophils, macrophages and adhesion mole-
cules are behind the inflammation process after 
aSAH. E-selectin, vascular cell adhesion mol-
ecule-1 (VCAM-1) and intercellular adhesion 
molecule-1 (ICAM-1) are represented mainly on 
the luminal endothelial cells (Kasuya and Shi-
mizu 1989; Handa et al. 1995; Lin et al. 2005). 
These molecules are upregulated after aSAH and 
are required for inflammatory cell migration 
into the central nervous system maintaining the 
inflammation process (Lossinsky and Shivers 
2004). Interestingly, ICAM-1 is present not only 
on the endothelial layer but also in the medial lay-
er (Handa et al. 1995). Inhibition of the cell adhe-
sion molecules has been shown to improve out-
come after aSAH in animal models and increased 
concentration is associated with poor outcome in 
humans after aSAH (Handa et al. 1995; Mack et 
al. 2002; Lin et al. 2005).

Inflammatory cytokines interleukine-6, tumor 
necrosis factor a and interleukine-1 antagonist 
are increased and have been shown to elicit isch-
emic deficits, and are associated with poor out-
come (Mathiesen et al. 1997; Gruber et al. 2000). 
Activated complement proteins C3a and C5a are 
also upregulated rapidly after aSAH, mainly due 

to activated coagulation and thrombin formation 
(Kasuya and Shimizu 1989; Rittirsch et al. 2008). 
The inhibition of the complement system reduces 
the delayed vasospasm (German et al. 1996). 

Inflammation processes after aSAH are ex-
tremely complex. Current scientific evidence re-
fers to the substantial role of the inflammation 
in the pathophysiology of aSAH. These cascades 
may provide important drug targets against 
aSAH.

2.2.2.3.	Microthrombosis
Pathological cascades that occur during early brain 
injury promote the development of microthrom-
bosis in the blood vessels of the brain. After initial 
bleeding, platelet activation occurs in seconds and 
platelet aggregates are found in the arterioles after 
minutes in aSAH models and in humans after days 
in autopsy studies (Sehba et al. 2005; Stein et al. 
2006; Ishikawa et al. 2009). Platelet aggregates may 
produce the state called “no-reflow phenomenon” 
in which blood flow in arterioles is permanently 
compromised (Abumiya et al. 2000; Sehba et al. 
2011). Activated platelets release serotonin, ade-
nosine diphosphate (ADP) and platelet-derived 
growth factor (PDGF), and subsequent decrease 
in NO levels causes further constriction of the 
cerebral vessels (Friedrich et al. 2010b; Sabri et al. 
2012; Shiba et al. 2013). Activated complement 
protein C5a activates tissue factor and decreases 
plasmin levels via activating plasminogen inhibi-
tors -1 and -2, thus contributing to the clot forma-
tion (Rittirsch et al. 2008). In addition, ischemia 
causes a decrease in pH that further aggravates 
coagulation. Platelets have also a pathological role 
in causing inflammation response and increasing 
collagenase activity disrupting the matrix, espe-
cially collagen IV (Sehba et al. 2004; Friedrich et al. 
2010a). Lastly, the number of microthrombosis has 
been shown to correlate in neuronal cell death and 
severe DCI (Suzuki et al. 1990; Sabri et al. 2012; 
Andereggen et al. 2014).

In general, microthrombosis seems to be 
an inevitable consequence of aSAH. Complex 
pathophysiological cascades that start from ini-
tial bleeding generate the conditions in which 
clot formation occurs. Complexity of the patho-
physiology of microthrombosis favors multimod-
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al drug targeting, in which the clotting itself, but 
especially inflammation, may serve as a target.

2.2.2.4.	Cortical spreading ischemia and 
delayed cerebral ischemia

Cortical spreading ischemia (CSI) initiates from 
cortical spreading depolarization (CSDz) when 
brain homeostasis is severely disturbed by an inju-
ry. CSDz wave arises from a population of cortical 
neurons that depolarize together at the near-com-
plete level (Dreier 2011; Pietrobon and Moskow-
itz 2014). The wave spreads across the cortex with 
velocity of 2–5 mm/min (Ochs and Hunt 1960). 
CSDz induce reactive hyperemia in conditions 
where ionic and energy balance is sufficient (Lau-
ritzen 1994). The increase in the extracellular po-
tassium levels above critical value seems to act as a 
key factor for the initiation of the CSDz wave (Reid 
et al. 1988; Pietrobon and Moskowitz 2014). 

When brain is progressively damaged, CSDz 
leads to an inverse hemodynamic response via 
metabolic and vascular reactivity impairment 
that leads to neurovascular uncoupling (Wahl et 
al. 1987; Seitz et al. 2004; Piilgaard and Lauritzen 
2009; Lauritzen et al. 2011). Consequently, vaso-
constriction and hypoperfusion are measured, 
although neurometabolic coupling can remain 
unaffected (Piilgaard and Lauritzen 2009). The 
worst endpoint is anoxic depolarization (also 
known as terminal spreading depression) when 
metabolic disturbance is severe (Dreier 2011). 
In this condition, neurons do not repolarize and 
neuronal death is an inevitable consequence 
(Saito et al. 1997; Farkas et al. 2010; Dreier 2011).

Cortical spreading depolarization is not mea-
sured only after aSAH but also seen in traumat-
ic brain injury and ischemic stroke (Nakamura 
et al. 2010; Lauritzen et al. 2011; Hinzman et al. 
2014). In migraine, a cortical spreading depres-
sion (CSDs) wave is similarly propagated on 
the cortex at 2–5 mm/min in the difference that 
metabolic disturbance is minimal if present at all 
(Pietrobon and Moskowitz 2014; Cui et al. 2014). 
CSDs leads to the suppression of the spontaneous 
brain activity that leads shortly to reactive hyper-
emia (Leao 1947; Cui et al. 2003). 

In conclusion, early brain injury, secondary 
injuries, vasospasm and microthombosis togeth-

er induce the environment in which the cortical 
spreading depolarization waves are formed. These 
waves together with previously discussed patho-
physiological cascades generate a vicious cycle of 
cortical spreading ischemia, and that forms the 
delayed cerebral ischemia (DCI). Clinically, DCI 
is observed as a delayed neurological deteriora-
tion (see section 2.2.3.4).

2.2.3.	 Management and treatment of 
ruptured aneurysms

Sudden onset of explosive headache is a major 
indicator of aSAH, which is in the most of the 
cases followed by altered consciousness and fo-
cal neurological deficit. Typical patient is female 
over 50 years old with the medical history of hy-
pertension and smoking. The natural history of 
ruptured IAs makes an early treatment of these 
lesions mandatory. For a historical unselected 
series of 363 patients with ruptured IAs, Pakar-
inen reported 15% mortality before to hospital 
admission. Mortality was 32% at day one, 46% at 
week one, 56% at month one and 60% at month 
six (Pakarinen 1967). Rebleeding causes a signif-
icant increase in mortality, as described in the 
next section. Thus, the treatment goal is to pre-
vent rebleeding by occluding the ruptured aneu-
rysm. In general, the treatment must focus on the 
following four major aspects: rebleeding, perfect 
aneurysm closure, delayed cerebral ischemia, and 
other complications.

2.2.3.1.	Rebleeding
After a sudden explosive headache and neurolog-
ical deterioration, the patient is transported to a 
hospital for immediate computed tomography 
(CT) or CT-angiography (CTA). If aSAH is de-
tected, tranexamic acid is immediately infused to 
prevent rebleeding, and the process is repeated ev-
ery six hours until the aneurysm is closed or three 
days have elapsed since the primary bleeding 
(Nibbelink et al. 1975; Hillman et al. 2002; Larsen 
and Astrup 2013). Prospective, randomized and 
open-label study of ultra-early tranexamic acid 
after subarachnoid hemorrhage (ULTRA) is cur-
rently ongoing (Germans et al. 2013). The study is 
of importance, since 50%–90% of rebleeds occur 
in the first six hours (Larsen and Astrup 2013).
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Susceptibility for rebleeding is highest during 
the first 24 hours, being from three to seven per-
cent (Inagawa et al. 1987; Starke et al. 2011; Lars-
en and Astrup 2013). The cumulative frequency 
of rebleeding is as follows: 7%, 16%, 23%, and 
33% at week one, week two, week three and week 
four, respectively (Pakarinen 1967). Recently, cu-
mulative risk of rebleeding is reported to be as 
high as 23% (8–23%) (Larsen and Astrup 2013). 
Rebleeding is a severe complication; up to 60% 
of the patients who have suffered from rebleeding 
will die (Juvela 1989; Larsen and Astrup 2013). 
In Pakarinen’s series, the mortality at first recur-
rence was 64%, and it is 86% after a second re-
currence (Pakarinen 1967). Lastly, hypertension 
is the only another manageable risk factor for 
rebleeding, thus it is of great interest to control 
blood pressure (Tang et al. 2014). 

2.2.3.2.	Surgical clipping and endovascular 
coiling

After the patient’s ruptured aneurysm is con-
firmed with either CTA or cerebral angiography, 
rapid treatment by occluding the ruptured IA is 
necessary to prevent rebleeding. The two occlu-
sion therapies currently available are surgical 
clipping and endovascular coiling (see section 1). 
Early intervention by either means is effective in 
preventing rebleeding, thus decreasing the mor-
tality rate and also improving the patient’s quality 
of life and outcome (Fogelholm et al. 1993; Starke 
et al. 2011; Larsen and Astrup 2013; Zhou and 
Song 2014).

In the light of current research data, neither 
treatment strategy is superior to another. The 
choice depends on the location, size and mor-
phology of the aneurysm as well as the institute, 
patient’s age and the experience of the neurosur-
geon (Brown and Broderick 2014; Santiago-Diep-
pa et al. 2014). Currently, these two techniques 
supplement each other, and the vascular neuro-
surgeon is transforming into a hybrid mastering 
the both techniques (Peschillo and Delfini 2012; 
Sorkin et al. 2014). According to a study conduct-
ed before the endovascular treatment modality 
was available, early surgery with NDP reduces 
both the rebleeding rate and the emergence of 
DCI (Ohman and Heiskanen 1989).

Further, the patient is transferred to an operat-
ing room for microsurgical clipping or to an angi-
ography room for coiling. The result of coiling and 
clipping is confirmed by CTA or cerebral angiogra-
phy. Imperfection in ligation or coiling may lead in 
severe complications (Brisman et al. 2005; Bulters 
et al. 2011; Starke et al. 2013; Cho et al. 2014). After 
the closing of the aneurysm, the patient is relocated 
to a neurocritical care unit for monitoring.

2.2.3.3.	Delayed cerebral ischemia
Although the rebleeding rate decreases after a sur-
gical or endovascular procedure, there is another 
severe complication threatening the patient’s life. 
Angiographic vasospasm is monitored for 50% to 
90% of patients after aSAH, and it is defined as ar-
terial narrowing, which may lead to local or even 
global ischemia (Kassell et al. 1985; Dorsch and 
King 1994). A total of 35% of the patients develop 
symptoms such as fluctuation in body tempera-
ture, hypertensive periods and neurological dete-
rioration (Dorsch and King 1994; Dorsch 2011). 
These symptoms vary from mild to severe but 15% 
lead to death (Haley et al. 1992; Dorsch 2011). Sus-
ceptibility to developing a symptomatic vasospasm 
is highest after one week from the initial bleeding 
(Heros et al. 1983). Clinical biomarkers for pre-
dicting the incidence of vasospasm are presented 
in the table 1 (Conway and Tamargo 2001; Fron-
tera et al. 2006; Yin et al. 2011).

Table 1. Risk factors for vasospasm after aSAH. Modified Fisher 
grades are described as follows: 0 = no aSAH, no IVH, 1 = thin aSAH, no 
intraventricular hemorrhage (IVH), 2 = thin aSAH, IVH, 3 = thick aSAH, no 
IVH, 4 = Thick aSAH, IVH (Conway and Tamargo 2001; Frontera et al. 2006; 
Yin et al. 2011).

modified Fisher grade 0 No risk

modified Fisher grade 1 Low risk (24%)

modified Fisher grade 2 Moderate risk (33%)

modified Fisher grade 3 Moderate risk (33%)

modified Fisher grade 4 High risk (40%)

History of hypertension

Hunt-Hess grade on admission

Fever

Aneurysm location

Intraventricular blood

Smoking

Cocaine use
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For the prevention of DCI, the patient is usu-
ally treated with NDP. NDP is an L-type calcium 
channel blocker, which has been shown to im-
prove outcome after aSAH. (Laursen et al. 1988; 
Pickard et al. 1989). Mechanisms of its actions 
are mainly obscure, but pleiotropic effects such 
as inhibition of neuronal apoptosis, inhibition of 
microthrombi formation and inhibition of CSI 
are involved (Lazarewicz et al. 1990; Dreier et al. 
2002; Vergouwen et al. 2008; Pluta et al. 2009). 
Pure vasodilatation theory is mainly abandoned 
since the correlation between the angiographic 
vasospasm and outcome is in conflict (Woitzik et 
al. 2012; Etminan et al. 2013; Shen et al. 2013).

In severe symptomatic cases, triple-H (hyper-
tension, hemodilution, hypervolemia) therapy is 
used but the evidence of its benefits is controver-
sial (Lee et al. 2006; Muench et al. 2007; Treggiari 
and Deem 2009; Dabus and Nogueira 2013). The 
last option is a mechanical or pharmacological an-
gioplasty that in some cases saves the patient’s life 
(Sayama et al. 2006; Dabus and Nogueira 2013).

2.2.3.4.	Other complications after aSAH
Several additional complications can occur after 
aSAH. Markedly, 25% of patients develop acute 
hydrocephalus (Milhorat 1987; Mehta et al. 1996). 
In addition, expanding intracerebral hematomas 
and infarcts are seen in patients after aSAH. Oth-
er common complications are hyponatremia and 
seizures (Hart et al. 1981; O’Connor et al. 2014). 
Rare complications are cardiac arrhythmias and 
dysfunction, neurogenic pulmonary edema, he-
patic dysfunction, and renal dysfunction (Chen 
et al. 2014; Hannon et al. 2014; Kumar et al. 2014; 
Hubner et al. 2014). 

2.2.3.5.	Outcome
Subarachnoid hemorrhage is a fatal disease with 
about 45% mortality rate despite the decrease in the 
fatality rates in the last decades (Fogelholm et al. 
1993; Hop et al. 1997; Pobereskin 2001; Stegmayr et 
al. 2004; Koffijberg et al. 2008). Interestingly, the one 
explanation of observed decline in the mortality of 
aSAH was dependent on gender with the respect of 
decreased incidence for men and decreased case-fa-
tality for women (Stegmayr et al. 2004).

Factors that predict poor outcome are age, 
poor neurological condition on admission (Hunt 

& Hess), amount of blood on admission included 
intracerebral or intraventricular hemorrhage on 
CT (Fisher grade), and aneurysm location (Ros-
en and Macdonald 2005; Lindvall et al. 2009). 
Hunt & Hess grading has the greatest impact on 
outcome (table 2). Grades 1 and 2 favor good 
outcome (Kassell et al. 1990; Osawa et al. 2001). 
The turning point occurs when even a mild focal 
neurological deficit is present on admission that 
dramatically increases the risk of poor outcome 
(Hunt and Hess 1968; Säveland et al. 1992). Sec-
ond important factors are age and the rupture of 
posterior circulation aneurysm that are related to 
unfavorable outcome (Rosengart et al. 2007).

Table 2. Hunt & Hess grading (I–V) and mortality after aneurysmal 
subarachnoid hemorrhage (Hunt and Hess 1968).

Category Criteria Deaths %

Grade I Asymptomatic, or minimal headache and 
slight nuchal rigidity.

11

Grade II Moderate to severe headache, nuchal 
rigidity, no neurological deficit other than 
cranial nerve palsy.

26

Grade III Drowsiness, confusion, or mild focal deficit. 37

Grade IV Stupor, moderate to severe hemiparesis, 
possibly early decerebrate rigidity and 
vegetative disturbances.

71

Grade V Deep coma, decerebrate rigidity, moribund 
appearance.

100

Of those who survive from aSAH, only 25% 
have completely favorable outcome, but still they 
carry the increased risk to die earlier than their 
healthy compeers (Olafsson et al. 1997; Ronkainen 
et al. 2001; Wermer et al. 2007; Wermer et al. 2009; 
Huttunen et al. 2011; Nieuwkamp et al. 2014).

Outcome is measured usually using the mod-
ified Rankin scale (mRS) or Glasgow outcome 
scale (GOS) (Rankin 1957; Jennett and Bond 
1975). Currently in most of the studies seen in 
the literature, outcome is recorded using three 
or six months GOS or mRS (Lees et al. 2012). 
These categorized, relatively insensitive scales 
combined with selection bias make comparison 
of the different patient series difficult. In addi-
tion, variation in inter-rater reliability is a sig-
nificant factor (Wilson et al. 2005; Quinn et al. 
2009). However, the scales are simple, universal, 
easy and cost-effective to use (Banks and Marotta 
2007). It is evident, seen in both literature and 
clinical work, that recovery occurs far beyond six 
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month follow-up (Samra et al. 2007; Macdonald 
2013). One of the most important questions in 
any stroke study, but especially in neurorestor-
ative treatment studies, is how long the follow-up 
period should be (Macdonald 2013).

2.2.3.6.	Rehabilitation
Neuropsychological disorders are common after 
aSAH (Haug et al. 2007). They significantly cause 
morbidity for the patients that is seen e.g. as in-
creased number of divorces and unemployment 
(Wermer et al. 2007). Motor deficits tend to re-
cover in the first six months, but verbal memory 
takes a longer time (Haug et al. 2007). Especially, 
anterior circulation aSAH may cause a decrease 
in executive functions (Fontanella et al. 2003; 
Sheldon et al. 2012). Over 90% of patients with 
Hunt & Hess grade I and II on admission show a 
favorable (4 and 5) outcome classified on Glasgow 
Outcome Scale. However, 70% of patients show 
neuropsychological deficits (Bjeljac et al. 2002). 
Thus, it is of great importance to recognize these 
patients and provide the proper treatment.

Unfortunately, the pathophysiologies of neuro-
psychological disorders after aSAH are poorly un-
derstood. It is known that DCI increases the risk of 
neurological deficits over 6-folds (Stienen et al. 2014). 
Molecular alterations and compromised neuronal 
plasticity in the hippocampus are occurring after 
aSAH and may lead to the memory deficit and im-
paired executive functions (Han et al. 2014). Howev-
er, the long-term consequences of aSAH to the brain 
plasticity remain to be studied (Han et al. 2014).

There are only few studies for drug treatments. 
However, rivastigmine has shown promising 
preliminary results (Wong et al. 2009). For now, 
neuropsychologists provide rehabilitation using 
different training batteries depending on which 
brain function is impaired, and drugs for symp-
toms can be prescribed by a rehabilitation neurol-
ogist or psychiatrist.

A substantial number of patients with aSAH 
are suffering from a motor deficit. Physiotherapy 
is standard of care but must be intensive and re-
petitive in all phases of poststroke rehabilitation 
(Veerbeek et al. 2014). However, new rehabilita-
tion modalities are emerging. Robotics, stem cell 
therapies and brain-computer interfaces are fu-
ture options for stroke patients (Chang and Kim 
2013; Boninger et al. 2014). 

Drug treatments for improving the reha-
bilitation results have also been tested and the 
results have been encouraging (Chollet et al. 
2011). Some of these new treatment modalities 
are currently available (Mirbagheri et al. 2011; 
Sale et al. 2014). In clinical use, exercise robots 
are available for the patients. For example, with 
a walking robot, a paralyzed patient is able to 
take one-hour walking trips in the virtual park or 
train sensory-motor skills of the paralyzed hand 
with an assisting robot. This kind of training not 
only induces plastic changes in the brain but also 
increases self-esteem and relieves spasticity, limb 
edema and depression (Gómez-Pinilla et al. 2002; 
Kim et al. 2005; Griesbach et al. 2009; Mirbagh-
eri et al. 2011; Zabukovec et al. 2013; Trompetto 
et al. 2013; Bechara et al. 2013; Yang et al. 2014; 
Calabrò et al. 2014; Chisholm et al. 2014). Addi-
tionally, transcranial magnetic stimulation is cur-
rently under active research and has been shown 
to induce positive neuroplastic changes among 
stroke patients (Shah et al. 2013).

In conclusion, a substantial portion of aSAH 
patients has neuropsychological, psychiatric and 
motor disorders. Active recognition, treatment 
and rehabilitation are required for the best results. 
Treatment is multi-professional, where doctors, 
psychologists, occupational and physiotherapists 
and family are intensively present. In the future, 
neurorestorative therapies as well as robotics play 
a significant role for improving patients’ outcome 
measures and quality of life.

2.3.	 Intracranial treatments for vasospasm

2.3.1.	 Concept
The merciless nature of the complications caused 
by DCI has resulted in the search of new routes to 

administrate NDP for aSAH patients. Intra-arte-
rial, intrathecal, intraventricular and intracrani-
al routes have been described (Kawashima et al. 
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2000; Hänggi et al. 2008b; Hänggi et al. 2008a; 
Barth et al. 2011; Zhang et al. 2013). Dr. Kawashi-
ma and colleagues, using a dog model, first de-
scribed intracranial administration of nicardipine 
in 1998 and the first patient received intracrani-
al nicardipine implant therapy in October 1999 
(Kawashima et al. 1998; Kasuya et al. 2005). The 
idea of this concept is to obtain higher concen-
trations of NDP in the CSF and lower concentra-
tions in the peripheral blood (Macdonald et al. 
2012), thus reducing the risk of DCI and the in-
cidence of NDP-induced hypotension effectively. 
About 15% of aSAH patients suffer from NDP-in-
duced hypotension (Dorhout Mees et al. 2007). 
By achieving higher concentration of NDP in the 
CSF it may be possible to increase the pleiotropic 
effects of NDP in central nervous system.

2.3.2.	 Sustained release implants for 
intracranial treatment

For the intracranial drug treatment of aSAH, 
only poly-D,L-lactide coglycolide (PLGA) mi-
croparticles and ethylene-vinyl acetate copo-
lymers (EVAc) were described in the literature 
when our research with silica-based implants 
was published (table 3). Nicardipine and PLGA 
microparticles are the most studied combina-
tion. In one experimental study on rats, PLGA 
and NDP were mixed in situ with Tisseel® -fibrin 
sealant, which is often used in neurosurgery as a 
hemostat (Hänggi et al. 2012). EVAc formulation 
was used in only one study as well, in which the 
approach to the inhibition of the vasospasm was 
completely different compared to the traditional 
calcium channel blockers (Pradilla et al. 2005). 
Since ibuprofen has been shown to reduce in-
flammation response after aSAH by inhibiting 
ICAM-1, the local intracranial treatment was 
tested (Kapiotis et al. 1996). According to the 
study results, ibuprofen significantly reduced va-
sospasm (Pradilla et al. 2005).

In conclusion of the data shown in the table 
3, the intracranial treatment of vasospasm and 
delayed neurological deficits seem to significant-
ly reduce vasospasm and even improve outcome 
without adverse events or histological toxicity 
(Kawashima et al. 1998; Shiokawa et al. 1998; 
Kawashima et al. 2000; Sasahara et al. 2000; Ka-

suya et al. 2002; Kasuya et al. 2005; Pradilla et al. 
2005; Barth et al. 2007; Krischek et al. 2007; Barth 
et al. 2009; Schneider et al. 2011; Barth et al. 2011; 
Hänggi et al. 2012; Cook et al. 2012). However, 
larger trials are needed to verify these results and 
compare them with the conventional treatment. 
Lastly, novel tentative therapies are currently be-
ing actively researched for the treatment of aSAH 
in addition to intracranial therapies. For example, 
small interfering RNA molecules have success-
fully been used to inhibit early brain injury after 
aSAH in rats by silencing the CHOP gene that 
regulates importantly endoplasmic reticulum 
stress pathways (He et al. 2012).

2.3.3.	 Biomaterials for intracranial 
treatment

PLGA microparticles for intracranial therapy 
have been widely studied and safety has been 
validated in human use (Krischek et al. 2007). 
PLGA forms microspheres in which active drug 
is bound (Shive and Anderson 1997). Size of the 
particles is a few micrometers (Bege et al. 2013). 
In addition, nanoscale particles are developed 
(Mehta et al. 2007). Degradation of PLGA occurs 
through hydrolysis. Since PLGA is constituted of 
monomers of lactide and glycolide, only modest 
foreign body reactions are observed (Menei et al. 
1993). In formulation, lactide proportion relat-
ed to glycolide determines the properties of the 
PLGA matrix such as degradation time and vis-
cosity (Paakinaho et al. 2011).

Silica-based biodegradable implant or gel 
can be formed using the sol-gel method. In this 
method, alkoxysilanes such as tetraethoxsysilane 
(TEOS) are hydrolyzed using water and thereby 
forming a polymer in which the active compound 
is bound (Kortesuo et al. 2001; Quintanar-Guer-
rero et al. 2009). Silica-based sustained drug 
delivery system (SDDS) dissolves in the human 
body in the presence of water. 

Calcium channel blockers formulated in the 
silicate matrix for testing intracranial dissolving 
properties have not been described in the litera-
ture. Currently silica is under active research due 
to its extensive scale of applications for drug de-
livery. Silica-based SDDS are competent for pure 
sustained release systems but can be functional-
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ized to respond to changes in pH, redox potential, 
temperature, biomolecules, or even magnetism 
and luminescence (Simovic et al. 2011; Yang et al. 

2012). Silica-based SDDS can be formulated into 
a solid implant as well as gel with different viscos-
ity (Quintanar-Guerrero et al. 2009). 

2.4.	 Neuroplasticity

2.4.1.	 Evolution of the brain
Evolution depends on alteration in gene struc-
tures, mutations, that lead to a new phenotype 
(Gilbert et al. 2005; Olson-Manning et al. 2012; 
Paaby and Rockman 2014). Evolution of the 
human brain can be tracked as far as 400 mil-
lion years past (Kaas 2005). A significant epoch 
occurred about 200 million years ago when ear-
ly mammals evolved neocortex (Northcutt and 

Kaas 1995; Kaas 2005; Kaas 2013). Current ev-
idence suggests that the neocortex of mammals 
has developed from the primitive thin dorsal cor-
tex of reptiles (Aboitiz et al. 2003; Kaas 2005; Kaas 
2013). The main theories for neocortical develop-
ment are the protomap and protocortex theories 
(Aboitiz et al. 2003; Puelles 2011). The protomap 
theory is composed of the radial and concentra-
tion-dependent component, whereas the proto-

Table 3. Published intracranial implant or gel treatment studies for DCI in the literature.

Study Model (no.) Implant Follow-up Results

Kawashima et al 1998 Dog (12), direct clot placement via 
craniotomy PLGA + nicardipine 7d

Reduction in vasospasm, no 
adverse effects, no signs of 
meningoencephalitis

Shiokawa et al 1998 Dog (32), direct clot placement via 
craniotomy PLGA + papaverine 7d Reduction in vasospasm, only high 

dose implants

Kawashima et al 2000 Dog (18), direct clot placement via 
craniotomy PLGA + nicardipine 14d Reduction in vasospasm even at a low 

dose

Sasahara et al 2000 Dog (10), double hemorrhage 
model PLGA + nicardipine 7d Reduction in vasospasm, no histological 

toxicity

Kasuya et al 2002 Human (20) PLGA + nicardipine 7-12d Reduction in vasospasm, no short term 
adverse effects

Kasuya et al 2005 Human (97), mainly Fisher 3 PLGA + nicardipine 7 and 12d Reduction in delayed neurological 
deficits, no adverse effects

Pradilla et al 2005 Monkey (5+14) EVAc + ibuprofen 3m + 7d Reduction in vasospasm, no histological 
toxicity

Krischek et al 2007
Human (100), mainly Fisher 3 
(same patient cohort as Kasuya et 
al 2005)

PLGA + nicardipine 3m GOS Outcome improvement?

Barth et al 2007
Human (32), mainly Fisher 3, 
prospective, randomized, double-
blind

PLGA + nicardipine 15m mRS
Outcome improvement (control group 
did not receive any calcium antagonist 
treatment)

Barth et al 2009 Human (18), the same cohort as 
Barth et al 2007 PLGA + nicardipine 10-20m No improvement in quality of life

Schneider et al 2011 Human (81), case-control study PLGA + nicardipine 1y mRS Superior to endovascular coiling

Barth et al 2011 Human (17 clipped + 14 coiled, 
intraventricular administration) PLGA + nicardipine 1w Reduction in vasospasm only in clipped 

patients, no increase in shunting

Cook et al 2012
Dog & Monkey (6+13), double 
hemorrhage in dogs and direct 
clot placement in monkeys

PLGA + NDP (dog) 
or nicardipine 
(monkey)

7 and 14d
Reduced angiographic vasospasm, no 
reduction in microthrombi, sustained 
release profile

Hänggi et al 2012 Rat, double hemorrhage model PLGA + NDP + 
Tisseel® (gel) 5d Reduction in vasospasm, no adverse 

effects or toxicity

mRs = modified Rankin Scale, GOS = Glasgow Outcome Scale, y = year, m = months, w = week, d = day, no. = number of subjects
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cortex theory is uprising from the importance 
of the arriving thalamocortical ascending fibers 
during the development (Aboitiz et al. 2003; Mal-
lamaci and Stoykova 2006; Puelles 2011).

The neocortex has six distinct layers and cov-
ers 80–90% of the brain surface area (Fatterpekar 
et al. 2002; Alfano and Studer 2013; Arai and Pier-
ani 2014). During the development of the neo-
cortex, different areas are formed with different 
functions and cellular architecture. The process is 
called arealization and, areas are usually referred 
to as the Brodmann areas according to the cytoar-
chitecture (Zilles and Amunts 2010). Arealization 
is regulated by genes but also by environment 
(Arai and Pierani 2014). Most interestingly, in the 
perspective of modulating neuronal plasticity in 
adults, the relative size of cortical areas can vary 
during an individual’s lifetime (Larsen and Kru-
bitzer 2008).

Comparing the neocortical areas between dif-
ferent mammals refers to highly conserve genetic 
mechanisms underlying the neocortical arealiza-
tion (Bayatti et al. 2008; Alfano and Studer 2013; 
Arai and Pierani 2014). Interestingly, the impres-
sive ability of the neocortex to rewire and reor-
ganize the cortical areas and structures infers to 
more complex mechanisms (Alfano and Studer 
2013). 

The other cortical areas are the allocortex and 
mesocortex (Reep 1984). The allocortex is divid-
ed into three subgroups, called the periallocortex, 
the paleocortex, and the archicortex (Reep 1984; 
Smart 1984; Braak and Braak 1985; Granger et al. 
1995). These cortexes have three to five distinct 
neuronal layers and are represented in the regions 
such as entorhinal cortex, hippocampus, para-
hippocampus, olfactory system and parts of the 
insula (Cordero et al. 1982; Granger et al. 1995; 
Olafsson et al. 1997; Vyas et al. 2003; Nieuwen-
huys 2012).

2.4.2.	 Neuronal plasticity
Hebbian plasticity is the most fundamental theo-
ry of brain plasticity. The theory is reduced to the 
widely known phrase “neurons that fire together, 
wire together” and vice versa “neurons that fire 
apart, wire apart” (Hebb DO 1949). Of course, 
this phrase should not be interpreted literally.

Neuronal plasticity is traditionally divided in 
synaptic and nonsynaptic plasticity (Cotman and 
Nieto-Sampedro 1984; Bliss and Collingridge 
1993; Kato et al. 2009). Synaptic plasticity refers 
directly to a synaptic connection and firing rate, 
whereas nonsynaptic plasticity refers to modifi-
cations in the perikaryon and dendrites as well 
as axons that alter neuronal synaptic behavior 
(Abraham and Williams 2003; Kato et al. 2009; 
Mozzachiodi and Byrne 2010). Interestingly, and 
often depreciated, glial cells are important in reg-
ulating neuronal functions but also in rewiring 
and synaptic plasticity (Vernadakis 1996; Perea 
and Araque 2010; Ota et al. 2013; Benarroch 
2013; Morris et al. 2013; Pirttimaki and Parri 
2013; Bernardinelli et al. 2014).

Overall, neuronal networks are constantly 
under active remodeling (Katz and Shatz 1996). 
During development, immature neurons are 
overproducing neuronal structures that increase 
adaptation even if the total number of structures is 
not increased (Castrén and Hen 2013). This is due 
to a simultaneous structural elimination (Chan-
geux and Danchin 1976). In adult neurons, the 
optimized function of neural network is strength-
ened by learning, and can be further remodeled 
by plasticity (Katz and Shatz 1996; Castrén and 
Hen 2013). Plastic changes of neurons occur by 
several different mechanisms and at different lev-
els. Neurogenesis, axonal and dendritic sprouting, 
synaptic strengthening and genomic plasticity are 
the main mechanisms that promote plastic chang-
es in the neuronal networks (Alsina et al. 2001; 
Lisman 2003; Hua and Smith 2004; Borrelli et al. 
2008; Ming and Song 2011; West and Greenberg 
2011). Notably, functional changes in the neuro-
nal networks always require structural changes 
at some level. Consequently, allocation structural 
and functional plasticity in different categories is 
factitious (Castrén and Hen 2013). 

2.4.2.1.	Role of TrkB and BDNF in neuronal 
plasticity

Neurotrophin receptors consist of four different 
receptors; TrkA, TrkB, TrkC and p75NTR (Lew-
in and Barde 1996). Trk receptors (Tropomyosin 
related kinase) belong to a tyrosine kinase re-
ceptor family whereas p75NTR is interestingly a 
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member of tumor necrosis factor (TNF) receptor 
super family (Lewin and Barde 1996; Park and 
Poo 2013). Ligands of the receptors, the neuro-
trophins, are brain-derived neurotrophic factor 
(BDNF), nerve growth factor (NGF), neurotro-
phin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). 
BDNF and also NT-4/5 are the main ligands for 
TrkB (Barbacid 1994; Lewin and Barde 1996). 

Activation of TrkB by its primary ligand 
BDNF regulates multiple forms of neuronal 

plasticity. Main signaling cascades and neuro-
nal functions after TrkB activation is present-
ed in the figure 1. After ligand binding, specific 
intracellular tyrosine residues within TrkB are 
phosphorylated, which leads to the activation 
of intracellular signaling pathways implicated in 
neuronal survival (e.g. Akt, protein kinase B), 
neuronal differentiation (e.g. ERK, extracellular 
regulated kinase), synaptic plasticity (e.g. CREB, 
cAMP related element binding protein) and syn-
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FIGURE 1. The signaling cascades in the neurons after TrkB activation by its primary ligand BDNF. TrkBY705/6, TrkBY816 and Shc binding 
domain TrkBY515 sites are phosphorylated after BDNF binding further activating phospholipase Cγ1 (PLCγ1) pathway, mitogen-activated protein 
kinase (MAPK) pathway and phosphoinositide 3-kinase (PI3K) pathway. PLCγ1 induces degradation of phospholipid phosphaditylinositol 4,5 
bisphosphate (PIP2, not shown) to diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates protein kinase C (PKC) pathway that is 
further capable of increasing synaptic plasticity. IP3 binds to receptors on the surface of endoplasmic reticulum (ER) releasing calcium (Ca2+) to the 
intracellular space. Increased Ca2+ concentration activates different forms of CAMKs and Akt. MAPK further activates extracellular regulated kinase 
(ERK), consequently leading to the signaling of neuronal survival, differentiation and growth. In addition, phosphorylation of the Shc binding 
domain TrkBY515 enables the activation of PI3K that is capable of activating Akt signaling. These changes further lead to the phosphorylation of 
cAMP response element-binding protein (CREB), which critically regulates transcription of the genes that are implicated in plasticity, LTP formation 
and neuroprotection. BDNF = Brain derived neurotrophic factor, Bcl-2 = B-cell CLL/lymphoma 2. (Modified from Minichiello 2009)
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apse formation (e.g. mTor, mammalian target of 
rapamycin; p70S6k) (Huang and Reichardt 2001; 
Minichiello 2009; Gómez-Palacio-Schjetnan and 
Escobar 2013; Park and Poo 2013).

The actions of neurotrophins are not always 
trophic. Pro-isoforms of neurotrophins, pro-
NTs, have an important role for activating Trk or 
p75NTR receptors. One of the most intriguing 
aspects is that pro-NTs can activate p75NTR re-
ceptor that may lead to apoptosis of neurons (Lee 
et al. 2001; Teng et al. 2005; Dicou 2007). More-
over, pro-NTs have higher biochemical affinity to 
bind p75NTR receptors than mature NTs (Lee et 
al. 2001). The cleavage of the pro-NTs to NTs is 
regulated most importantly by tissue plasmino-
gen activator and matrix metalloproteinases (Lee 
et al. 2001). Thus, intracellular as well as extra-
cellular proteinase activity regulates the function 
of NTs, neuronal spine formation and sprouting, 
and eventually can determine the fate of neurons. 
Notably, when these structural brakes of matrix 
are off, brain plasticity is enhanced in adults (Bav-
elier et al. 2010).

Protease activity regulates also functional out-
come of the neurons. Cleavage of pro-BDNF to 
mature BDNF is required for long-term potentia-
tion (LTP) whereas pro-BDNF induces long-term 
depression (LTD) in the synapse (Pang et al. 2004; 
Woo et al. 2005). However, the eventual biological 
and pathological consequences of LTP and LTD on 
plasticity are extremely complex (Castrén and Hen 
2013; Hulme et al. 2013; Creed and Lüscher 2013; 
Toyoizumi et al. 2013; Hensch 2014).

2.4.2.2.	L-type calcium channels
L-type calcium channels are allocated in four 
subgroups (CaV1.1-CaV1.4.) (Calin-Jageman 
and Lee 2008). The major isoforms CaV1.2 and 
CaV1.3 are expressed throughout the brain both 
presynaptically and postsynaptically (Hell et al. 
1993; Lipscombe et al. 2004). Furthermore, wide-
ly expressed in neuronal tissue CaV1.2 consti-
tutes of four different subgroups (Hofmann et al. 
2014). Activity-dependent calcium entry to the 
intracellular space through these complex chan-
nels regulates numerous important intracellular 
signaling pathways that modulate short- and 
long-term alterations in gene expression, synap-

tic plasticity and homeostasis in neurons (Bhat et 
al. 2012; Bading 2013; Park and Poo 2013; Frank 
2014). Interestingly, calcium channels can regu-
late their own function via calcium by facilitat-
ing calcium dependent inactivation or activation 
(Hofmann et al. 2014). However, excess activa-
tion of L-type calcium channels may lead to com-
promised plasticity, excitotoxicity or even neuro-
degeneration (Choi 1994; Mattson 2007). 

2.4.2.3.	Role of calcium in neuronal plasticity
Intracellular calcium signaling in the neurons has 
important effects in neuronal functions. None-
theless, excess amount of intracellular calcium 
is toxic and may facilitate neuronal death (Choi 
1994; Mattson 2007). Thus, intracellular calcium 
concentration is strictly controlled. 

Calcium influx through NMDA and AMPA 
receptors with consequent phosphorylation of 
calcium/calmodulin-dependent protein kinase II 
(CaMKII) provides the basic mechanism for LTP 
formation (Bloodgood and Sabatini 2007; Asrar 
et al. 2009; Lisman et al. 2012; Nicoll and Roche 
2013). CaMKII further activates Rho GTPases 
which have an abundant role in plasticity (Mura-
koshi et al. 2011). Interestingly, CaMKII interacts 
also with L-type calcium channels and activation 
of the channels can phosphorylate CaMKII spe-
cifically in dendritic spines (Hudmon et al. 2005; 
Lee et al. 2009b). Indeed, activation of L-type 
calcium channels is an important modulator in 
the formation of LTP (Magee and Johnston 1997; 
Remy and Spruston 2007; Lee et al. 2009b).

2.4.2.4.	Critical periods
Critical periods are time windows during neuro-
nal development that require different environ-
mental and intrinsic inputs for proper maturation 
of a particular neuronal network, or otherwise 
the function is thought to be permanently com-
promised (Hensch and Bilimoria 2012). Typical 
critical periods are seen in the development of 
vision, hearing, language and also higher cog-
nitive functions (Hensch and Bilimoria 2012). 
For example, the critical period for developing 
normal sense of hearing closes during the third 
year of life (Cardon et al. 2012). Thus, for chil-
dren suffering from congenital deafness, cochlear 
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implantation is performed before the time period 
of maximal plasticity is lost (Cardon et al. 2012). 
However, since the critical period is not always 
“critical” and further neuronal network remodel-
ing can occur after the critical period is closed, it 
is sometimes more appropriate to speak of sensi-
tive periods (Maya Vetencourt et al. 2008). This 
is undoubtedly true especially when the human 
brain is discussed, due to the neuronal network 
complexity and higher cognitive functions.

In early development, neuronal connections 
are mainly excitatory. During maturation of the 
brain, an increase in the inhibitory transmission 
occurs, activating the critical period plasticity 
(Hensch and Bilimoria 2012). Much of the exact 
mechanisms for opening critical periods are not 
known, but inhibitory interneurons called parval-
bumin-positive basket cells (PV cells) and meth-
yl-CpG-binding protein 2 (MeCP2) expression in 
the PV cells seem to have important role (Hensch 
2005; He et al. 2014; Hensch 2014). Interesting-
ly, the GABAergic diazepam infusion can restore 
the critical period plasticity if the maturation of 
inhibitory circuits is genetically prevented (Fagi-
olini and Hensch 2000; He et al. 2014).

2.4.3.	 Induced plasticity
Induced plasticity may refer to any kind of in-
crease in neuronal plasticity or learning abili-
ty, but usually it is referred to as reopening the 
critical or sensitive periods in mature brain in-
duced by different stimuli. The term “iPlasticity” 
is launched referring to the latter (Castrén 2013).

Opening of the critical periods can be induced 
in animal models by exercise, environmental en-
richment and nutritional deprivation as well as 
different drug treatments (Sale et al. 2007; Blu-
menthal et al. 2007; Maya Vetencourt et al. 2008; 
Morishita et al. 2010; Spolidoro et al. 2011). The 
connection, or rather communication, between 
plastic processes of LTP formation in learning 
and reopening the critical windows is absolute-
ly intriguing. Underlying control mechanisms 
are referring to a PV cell controlled adjustment 
of excitation/inhibition ratio (Tao et al. 2014). 
However, open questions remain. Interestingly, 
nutritional deprivation reopens the critical peri-
od plasticity, probably due to the increase in cor-

tisone level. However, cortisone inhibits LTP for-
mation in the hippocampus (Pavlides et al. 1993; 
Spolidoro et al. 2011; Hensch and Bilimoria 2012; 
Fa et al. 2014).

2.4.3.1.	Drug-induced plasticity
Fluoxetine, a traditional selective serotonin re-
uptake inhibitor (SSRI), was the first drug demon-
strated to open a critical period. Fluoxetine re-
stored the critical period of primary visual cortex 
by opening ocular dominance plasticity that had 
previously been thought to be impossible to re-
open (Maya Vetencourt et al. 2008), leading to 
recovery of visual acuity of an amblyopic eye. The 
mechanism of fluoxetine-induced plasticity is not 
known, but alteration of balance between inhibi-
tion and excitation in favor of inhibition is sug-
gested as well as increase in BDNF synthesis and 
spine density of interneurons (Huang et al. 1999; 
Maya Vetencourt et al. 2008; Castrén and Rantam-
äki 2010; Hensch and Bilimoria 2012; Guirado et 
al. 2014). In addition, fluoxetine has been shown 
to open the critical period in amygdala during fear 
extinction training (Karpova et al. 2011). 

The acetylcholinesterase inhibitor physostig-
mine has also been studied in the context of am-
blyopia (Morishita et al. 2010). Physostigmine 
treatment in wild-type mice reopened the visual 
cortex plasticity and normal function of the am-
blyopic eye was recovered. Lynx1, endogenous 
inhibitor of nicotinic acetylcholine receptor, is 
a molecular cholinergic inhibitor that restricts 
plasticity in the mature visual cortex (Morishi-
ta et al. 2010), whereas physostigmine is able to 
override the inhibition. Interestingly, Lynx1 defi-
cient mice spontaneously recover from amblyopia 
merely by reopening the closed eye (Morishita et 
al. 2010). In addition, clinically used acetylcho-
linesterase inhibitors galantamine and donepezil 
activate TrkB receptor and downstream signaling 
that may partially lie behind the opening of the 
critical period (Autio et al. 2011).

2.4.4.	 Induced plasticity for 
neurorehabilitation – Current 
progress

The most recent hard evidence of the benefits of 
drug-induced plasticity was published in 2011. 
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In a randomized placebo-controlled setting, 
fluoxetine was demonstrated to improve motor 
outcome after ischemic stroke in humans (Chol-
let et al. 2011). Furthermore, fluoxetine is under 
research for rehabilitation after intracerebral he-
matoma (Marquez-Romero et al. 2013). For cur-
ing residual amblyopia with donepezil, a clinical 
drug trial is ongoing in Massachusetts Children’s 
Hospital (Trial number: NCT01584076, http://
clinicaltrials.gov/ct2/show/NCT01584076).

It is shown that an increase in BDNF-TrkB 
signaling improves the clinical outcome in differ-
ent brain pathologies (Nagahara and Tuszynski 
2011). Pharmacologically diverse antidepressant 
drugs such as fluoxetine induce TrkB signaling 
and further increase in BDNF levels in the brain 
(Saarelainen et al., 2003; Rantamäki et al., 2007). 
These effects may underlie antidepressant-in-
duced neuroplastic effects that are beneficial 

against numerous nervous system conditions 
such as neuropsychiatric and neurodegenerative 
disorders, e. g. Alzheimer, Parkinson, ALS and 
depression as well as stroke and spinal cord in-
jury (Castrén and Rantamäki 2010; Chollet et al. 
2011; Castrén et al. 2012; Castrén 2013; Castrén 
and Hen 2013; Nagahara and Tuszynski 2011). 

Importantly, active rehabilitation should be 
part of the treatment strategy (Maya Vetencourt 
et al. 2008; Castrén and Hen 2013; Castrén 2013). 
Certain drugs may reopen the critical or sensi-
tive periods but external, or internal, stimulus 
is required for the active neuronal network re-
modeling and rewiring. Shortly, the drug enables 
the neurorehabilitation, but does not perform it. 
However, additional studies are required for un-
derstanding the mechanisms and consequences 
of the induced plasticity thus securing the current 
progress in the field of neurorehabilitation. 
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3.	 AIMS OF THE STUDY
Intracranial implant study started as a clini-
cian-initiated project for the fact that current 
treatment strategies against DCI are relatively 
ineffective. The implant study was performed 
in a successful collaboration with Orion Corpo-
ration and Delsitech Ltd. Discrepancy between 
angiographic vasospasm and outcome included 
with evidence of pleiotropic actions of NDP led 
to the intriguing idea that the calcium chan-
nel blocker NDP may induce plastic changes 
in the brain. Current evidence has shown that 
antidepressants induce juvenile-like plasticity 
by activating BDNF receptor TrkB. In addition, 
antidepressants such as fluoxetine inhibit L-type 
calcium channels in neurons. Not forgetting the 
fact that intracellular calcium signaling plays an 
important role in mediating neuronal plasticity, 
it was evident that the effects of NDP on TrkB 
signaling needed to be studied. 

Consequently, the aims of the presented work 
were set as follows:
1.	 To develop a new sustained release biode-

gradable silica-based NDP implant.
2.	 To test the surgical feasibility of the NDP im-

plants through pterional craniotomy in pig 
and dog models.

3.	 To evaluate histological effects of the NDP im-
plants on brain parenchyma and meninges.

4.	 To follow and measure the degradation of the 
NDP implants into the subarachnoid space in 
dogs and pigs using computed tomography.

5.	 To measure pharmacokinetics of oral and 
intravenous NDP in healthy beagle dogs as 
comparative data for implant-treated dogs. 

6.	 To measure pharmacokinetics in the plasma 
and CSF of the surgically placed NDP im-
plants in the dog and pig models.

7.	 To evaluate effects of NDP treatment on neu-
roplastic and neuroprotective signaling in a 
healthy mouse model.
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4.	 MATERIALS
4.1.	 Implants

4.1.1.	 Material
Implants were prepared from silica oxide (SiO2). 
SiO2 has the ability to form micropores where the 
active drug NDP was embedded to form the active 
implants. Inactive ingredient glucose was similarly 
embedded in the SiO2 matrix to form the placebo 
implants. Image of the silica-based biodegradable 
NDP implant is presented in the publication I.

4.1.2.	 Drug concentration
The concentrations of NDP in the implants were 
10 weight (wt) % (Implant A, implanted to pigs) 
and 15 wt % (Implant B, implanted to dogs) cor-
responding to the amount of SiO2. Total absolute 
quantity of NDP in implants was 5 mg in implant 
A and 8.5 mg in implant B. Each placebo implant 
contained 25 mg of glucose.

4.2.	 Animal models

4.2.1.	 Dog and pig models
Implant studies were performed using a domes-
tic landrace pig and a Beagle dog model. In total, 
nine animals were included in both groups. The 
Beagle dogs were bred by Harlan-Winkelmann 
GmbH Hundezucht, Germany. The pigs were 
purchased from a local farm following a strict 
health monitoring program. 

The dog was selected because of the possibility 
of being the species for safety evaluation studies. 
In the field of aSAH and DCI research, pig mod-
els are rarely established. New landrace pig model 
was tested considering the ethical and economi-
cal aspects. All procedures were made according 
to European Community Guidelines for the use 
of experimental animals and approved by Finnish 
National Animal Experiment Board (licenses ES-
AVI/2246/2011 and ESAVI/2643/2012). 

Pharmacokinetic study was performed using 
six beagle dogs (age four years, weight 12 ± 1.0 
kg). The dogs were bred by Harlan-Winkelmann 
GmbH Hundezucht, Germany as well. All proce-

dures were made according to European Commu-
nity Guidelines for the use of experimental animals 
and approved by Finnish National Animal Exper-
iment Board (license ESLH-2009-08809/Ym-23). 

4.2.2.	 Mouse model
Neuroplastic effects of NDP were studied using 
totally 18 healthy male adult C57BL/6J mice (8 
weeks of age, Harlan, The Netherlands). A mouse 
model was selected because our laboratory had 
extensive experience for research plasticity in a 
mouse model. Mouse is also relatively inexpen-
sive and ethical issues are widely approved. All 
experiments were conducted according to the 
guidelines of the European Communities Coun-
cil Directive (86/609/EEC) and were approved 
by the County Administrative board of Southern 
Finland. These guidelines comply with the guide-
lines established in the Guide for the Care and 
Use of Laboratory Animals (Institute for Labora-
tory Animal Research, national Research council. 
Washington, DC: National Academy Press, 1996).

4.3.	 Drugs

4.3.1.	 Nimodipine
The formulations used in the pharmacokinetic 
study of dogs were Nimotop® (Bayer Schering 
Pharma) 30 mg tablets and Nimotop® (Bayer 
Schering Pharma) infusion 0.2  mg/ml solution. 

In the formulation of implants, NDP from Shan-
dong Xinhua Pharmaceutical Co., Ltd., Batch: 
1109161 was used. Lastly, for the mice we used 
NDP from Santa Cruz Biotechnology (SCB), CA, 
USA.



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / Methods

32	 Janne Koskimäki

5.	 METHODS
5.1.	 Pharmacokinetics of nimodipine in healthy beagle dogs

5.1.1.	 Study treatment
NDP doses were determined as described in pub-
lication II. The selected doses were not expected 
to cause any toxic or overt cardiovascular effects. 
The treatment groups and sampling are presented 
in a table 4. Sampling intervals after the dosing 
were determined to be very frequent due to the 
rapid kinetic of NDP. The concentration of NDP 
in the CSF was measured after one hour of ad-
ministration of two 30 mg NDP tablets, exactly 
the same single dose as used in humans.

5.1.2.	 Blood and CSF sampling 
Blood and cerebrospinal fluid samples were col-
lected for determining NDP concentrations. 
Blood samples were collected from the jugular 
vein and CSF samples were taken from cisterna 
magna through atlanto-occipital space. The ex-
act sampling time points were recorded and are 
presented in table 4. Anesthesia for CSF sampling 
was inducted using dexmedetomidine 20 µg/kg 
i.v. and a slow propofol bolus 3 mg/kg i.v.

Dexmedetomidine is an alpha-2 agonist with 
sedative and possible neuroprotective properties, 
developed by Orion Pharma. Dexmedetomidine 
has been used in dogs since the 1970’s and the drug 
received a centralized marketing authorization 
from European Commission in September 2011 
for human use. In human patients, dexmedeto-
midine is used for mild to moderate sedation after 

different types of brain injury. Propofol is the most 
used sedative after different types of brain injuries. 
It is cost-effective and all side effects are known. 
Propofol does not increase intracranial pressure. 
After i.v bolus, the clinical effect is short because of 
the rapid distribution to peripheral tissues.

5.1.3.	 Sample handling
Blood samples of 3 ml were taken into pre-cooled 
K2-EDTA tubes and kept on ice. Samples were 
protected from light until centrifugation (1500 
g, 10 min, at +4°C). 700 µl of the separated plas-
ma was used as primary sample stored in an 
amber-colored polypropylene tube (Eppendorf® 
Safe-Lock® microcentrifuge tubes volume 1.5 ml 
amber) and the rest was stored as a spare sample. 

Cerebrospinal fluid samples (~1500 µl) were 
let to drop freely from a sterile cerebrospinal fluid 
needle into a sterile amber-colored polypropylene 
collection tube (Eppendorf® Safe-Lock® tubes vol-
ume 2.0 ml). Cerebrospinal fluid samples were kept 
protected from light, until the separation of superna-
tant by centrifugation (1500 g, 10 min, at +4°C). The 
separated CSF was divided into two amber-colored 
polypropylene tubes. 700 µl was taken to NDP anal-
ysis and any excess CSF was stored as a spare sample.

Since NDP is very photosensitive, all samples 
were handled so that exposure to light was min-
imized. The samples were stored frozen at -80°C 
until shipping to the laboratory

Table 4. Treatment and sampling for the kinetic study (Koskimäki et al II).

Treatment Animal 
no

Dosing 
route

Dose 
mg/dog Formulation Blood sampling 

time post dose
Cerebrospinal fluid 

sampling time

1
Nimotop®
infusion 

0.2mg/ml
1–3 i.v. 0.72 

(3.6ml)

Slow i.v. bolus (in 30 seconds, 
with covered syringes due to light 

sensitivity)

predose, 10, 20, 30, 
45, 60 & 90 min, 2h, 

3h, 5h, 7h & 24h
-

2 Nimotop® 
30mg tablet 1–3 p.o. 30 1x 30 mg tablet

predose, 20, 40, 60 
& 90 min, 2h, 3h, 5h, 

7h & 24h
-

3 Nimotop® 
30mg tablet 4–6 p.o. 60 2x 30 mg tablet 1h 1h

4 Nimotop® 
30mg tablet 4–6 p.o. 60 2x 30 mg tablet

predose, 20, 40, 60 
& 90 min, 2h, 3h, 5h, 

7h & 24h
-
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5.1.4.	 Nimodipine analysis 
Liquid chromatography mass spectrometric (LC-
MS) method was used for determination of NDP 
concentration in dog plasma and CSF samples 
(II). Sample preparation was performed by liq-
uid-liquid extraction. The extracts were analyzed 
using reverse-phase chromatography followed by 
mass spectrometry. The lower limit of quantifica-
tion (LLOQ) of the method was 0.01 ng/ml for 
both sample matrices.

5.1.5.	 Pharmacokinetic analysis	
The pharmacokinetics of NDP was character-
ized by using non-compartmental methods for 
oral administration and two-compartmental 

model for i.v. administration. Pharmacokinetic 
analysis was performed using the WinNonlin 
5.0.1 program (Pharsight Corporation, Moun-
tain View, CA, USA). The apparent maximum 
concentration of NDP in plasma (Cmax) and time 
to apparent maximum plasma concentration of 
NDP in plasma (Tmax) were obtained directly 
from the observed data. The areas under the 
NDP plasma concentration-time curves (AUC) 
were estimated by using the trapezoidal meth-
od. The parameters estimated in the two-com-
partmental analysis included systemic clearance 
(Cl), steady state volume of distribution (Vss), 
distributional half-life (t1/2α) and elimination 
half-life (t1/2β). 

5.2.	 Nimodipine implant study treatment and follow-up 

5.2.1.	 Preparation of silica-based 
implants

The silica implants were prepared from tetrae-
thoxy silane (TEOS 98%, Sigma-Aldrich, USA), 
deionized water (Millipore, Milli-Q® >17.5 MΩ 
cm), ethanol (EtOH, Etax AA 99.5%, Altia, Fin-
land) and hydrochloric acid (HCl, Merck, USA) 
as catalyst using the sol-gel method (Ciriminna et 
al. 2013). The molar H2O/TEOS ratio was 2 and 
the molar EtOH/TEOS ratio was 1. After hydroly-
sis, the sols were aged at 60˚C temperature. After 
ageing of the sols, the NDP (or glucose) was dis-
solved into the sols. The pH of the sols was adjust-
ed by sodium hydroxide solution (NaOH, Mer-
ck, USA). The final pH of the sols was 5.5. Sols 
were sterile filtered (WhatmanTM, 0.22µm) and 
cast into polytetrafluoroethylene molds. The sols 
were gelled for 6 days at room temperature (RT). 
Formed implants were dried in a desiccator at RT. 

5.2.2.	 Dissolution of implants in vitro 
Degradation of silica matrices was measured 
in 50 mM TRIS (Trisma® -pre-set crystals, Sig-
ma-Aldrich) + 0.1% (wt/wt) sodium dodecyl 
sulfate (SDS, Merck) buffered at pH 7.4 (37 ˚C). 
SiO2 concentrations in the dissolution medium 
were kept below 30 ppm to ensure in sink condi-
tion (free dissolution of the SiO2 matrix). If need-
ed, the whole dissolution medium was changed 

to fresh medium in order to keep SiO2 concen-
trations < 30 ppm. Degradation of silica matrix 
was also measured with flow-through dissolution 
method. In the flow-through dissolution meth-
od, one implant was moved into a sample con-
tainer with 150 ml dissolution medium and the 
dissolution medium was changed continuously 
by pumping dissolution medium through sample 
container at 347 µl/min (c.a. 500 ml/day). Pur-
pose of the flow-through method was to mimic 
CSF dynamics in the human brain for estimating 
the dissolution rate of the implant in vivo. 

The silica concentrations were measured with 
UV/VIS spectrophotometer (V-560, Jasco) ana-
lyzing the molybdenum blue complex absorbance 
at λ = 820 nm (Koch and Koch-Dedic 1974). Re-
lease of NDP from the SiO2 matrices was ana-
lyzed with high-pressure liquid chromatography 
(HPLC-UV) by CRST in Turku. The chromato-
graphic separation was obtained on a Gemini 5µ 
C18 110A, 150 x 2.0 mm (Phenomenex) analyt-
ical HPLC column. The mobile phase consisted 
of a mixture of acetonitrile and 15 mM hydrogen 
phosphate buffer (60:40 volume/volume).

5.2.3.	 Allocation of the treatment 
groups and follow-up

Nine eight-weeks-old male pigs, weighing 
18.6–26.1 kg, and nine four-year-old male dogs, 
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weighing 10.0–14.0 kg, were randomly selected 
for the operation. Board-certified neurosurgeons 
were blinded for the content of the implants in 
all surgeries. Five implants were determined to 
be the number of implants for testing toxicity 
of the NDP silica implant (Active 1). The group 
receiving one implant was considered as a regu-
lar treatment group at expected pharmacological 
dose and any adverse effects were not expected 
(Active 2). Schedule of the study and allocation to 
treatment groups are presented in table 5 for the 
pigs and table 6 for the dogs. Day 1 indicates the 
operation day.

5.2.4.	 Anesthesia and analgesia 
At day 1, pigs and dogs were sedated, anesthe-
tized, intubated and connected to a ventilator for 
surgery. Pigs were sedated with midazolam 1 mg/
kg i.m. and xylazine 3 mg/kg i.m. and anesthesia 
was maintained with propofol infusion 10 mg/
kg/h i.v. Dogs were sedated using dexmedetomi-
dine 20 µg/kg i.v., anesthesia was induced with 

slow propofol bolus 3 mg/kg i.v. and maintained 
with a propofol infusion 9 mg/kg/h i.v. Heart 
rate, oxygen saturation and rectal temperature 
were observed and recorded throughout the pro-
cedure. As a prophylactic antibiotic, cefuroxime 
was administered before operation 250 mg i.v. 
for dogs and 750 mg i.v. for pigs. For analgesia, 
fentanyl was administered to pigs intraoperative-
ly 8–13 µg/kg i.v. and 3–7 days postoperatively 
using a 50 µg/h transdermal patch. For the dogs, 
fentanyl was administered intraoperatively 3 µg/
kg i.v. and 3 days postoperatively using a 50 µg/h 
transdermal patch.

Pigs were sedated for blood and CSF sampling 
with midazolam 1 mg/kg i.m. and xylazine 3 mg/
kg i.m. For CSF sampling, anesthesia was induced 
with propofol bolus 3 mg/kg i.v. for pigs. Sedation 
of dogs for CSF sampling was done using dex-
medetomidine 20 µg/kg i.v. and a slow propofol 
bolus 3 mg/kg i.v. Sedation or anesthesia was not 
required for dogs when only venous blood sam-
ples were collected.

Table 5. Allocation of treatment groups and schedule of the pig study (Koskimäki et al I).

Group Procedure Parenchyma implant Animals per group Animal IDs

Sham Sham operation No implant 3 22A, 22B, 23C

Placebo Placebo implant 25mg glucose x1 Placebo implant 3 22C, 23A, 23F

Active Nimodipine implant 5mg x1 Placebo implant 3 23B, 23D, 23E

Samples Day 1 Day 4 Day 51 Day7

Plasma (Ear vein) x x

Plasma (Vena jugularis) x x x x

Cerebrospinal fluid x x

CT x x2

1Day 6 on animals 22A, 22B and 22C.
2Only animal 23A and 23D underwent CT-imaging.

Table 6. Allocation of treatment groups and schedule of the dog study (Koskimäki et al I). 

Group Procedure Parenchyma implant Animals per group Animal IDs

Active 1 Nimodipine implant 8.5mg x 5 
(total 42.5 mg)

NA 3 1, 2, 3

Active 2 Nimodipine implant 8.5mg x 1 NA 3 4, 5, 6

Sham Sham operation NA 3 7, 8, 9

Samples Day 1 Day 5 Day 7 Day 14 Day 21

Plasma (Vena jugularis) 1h, 1.5h, 2.5h, 4h, 6h and 22h (on 
Day 2)

x x x x

Cerebrospinal fluid 1h x x x

CT x x x

*NA = Not applicable
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Pigs were sedated for CT imaging procedures 
with midazolam 1−2 mg/kg i.m., xylazine 3−6 
mg/kg i.m. and anesthesia was maintained with 
propofol 8−15 mg/kg/h i.v. infusion. For the 
dogs, dexmedetomidine 20 µg/kg i.v. was used 
for the sedation and anesthesia induced with slow 
propofol bolus 3−5 mg/kg i.v. and maintained as 
needed with propofol boluses during CT imag-
ing.

5.2.5.	 Surgery
During the surgical procedures, the heart rate, 
the rectal temperature and the oxygen satura-
tion were recorded every fifteen minutes. Similar 
pterional surgical approach was used for both 
species. The animals were positioned in a later-
al-prone gesture, and a longitudinal incision was 
made between the left eye and ipsilateral ear. The 
scalp was retracted away from the zygomatic 
arch. The temporal muscle was cut vertically and 
retracted to expose the lateral frontotemporal 
bone at the level of the anteromedial skull base. A 
lateral frontotemporal craniotomy, approximately 
3 cm in diameter, was made using a trephine and 
a craniotome in order to reach the anterior and 
middle skull base. The dura was opened and basal 
cisterns were exposed under the operating mi-
croscope. In the pigs, one placebo implant, which 
contained 25 mg glucose, or one NDP implant, 
which contained 5 mg NDP was placed towards 
the scull base in the basal cisterns. One placebo 
implant with glucose was placed into the brain 
parenchyma in the temporal lobe in the Place-
bo and Active groups. Among the dogs, group 
Active 1 was treated with five implants contain-
ing 8.5 mg of NDP and group Active 2 with one 
implant containing 8.5 mg of NDP. For both pig 
and dog study, a sham group was included, where 
exactly the same procedure was performed in-
cluding opening the arachnoid membrane and 
visualization of the optic chiasm but no implant 
was placed. In all groups, dura was closed using 
artificial graft (TachoSil®, Baxter, USA, Deerfield, 
IL 60015-4625) and fibrin tissue glue (TISSEEL, 
Baxter, USA, Deerfield, IL 60015-4625). The soft 
tissues and wound were closed in layers. After the 
surgery, viability of the animals was recorded at 
least twice a day. During the recovery period of 

7 days for pigs and 21 days for dogs, the animals 
were observed daily. Body weight, food and water 
consumption were recorded once a day. Clinical 
signs and rectal temperature were recorded at 
least twice a day.

5.2.6.	 Sampling
Plasma and CSF samples were collected for de-
termining NDP concentration. Schedules for the 
sampling are presented for the pigs in table 5, and 
for the dogs in table 6. Blood samples were col-
lected from the external jugular vein into K2-ED-
TA tubes. In pigs, the samples were collected also 
from ear vein. CSF samples were collected from 
cisterna magna through the atlanto-occipital 
space. The samples were centrifuged (1200 G, 10 
min, RT) and plasma was separated. CSF samples 
were centrifuged as well and supernatant was col-
lected. Since NDP is very photosensitive, all sam-
ples were handled with minimal light exposure. 
The samples were stored frozen at -80°C nominal 
until transferred for analysis. 

Liquid chromatography mass spectrometric 
(LC-MS) method was used for determination of 
NDP in dog and pig plasma and CSF samples. 
Sample preparation was performed by liquid-liq-
uid extraction. The extracts were analyzed us-
ing reverse-phase chromatography followed by 
mass spectrometry. Lower limit of quantification 
(LLOQ) of the method was 0.01 ng/ml for both 
sample matrices.

5.2.7.	 Computed tomography
The schedule for CT imaging is shown in table 
5 for pigs and table 6 for dogs. CT studies were 
performed with Discovery STE PET/CT scanner 
(General Electric Medical Systems, Milwaukee, 
WI, USA) operated in a helical mode. 

Cerebral CT imaging was performed using an 
ultrafast CT protocol (335 mA, 100 kVp). Vox-
el size was 0.625 mm × 0.625 mm × 0.625 mm. 
The volume of interest (VOI) was drawn for the 
implant(s). A calibration phantom (13002 Model 
3 CT Calibration Phantom, Mindways Software, 
Inc, San Francisco, CA, United States) was used 
prior to CT imaging and densities of the implants 
were calculated and corrected using the phantom 
data. CT image analysis was done with Carimas 
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2.5 software (Turku PET Centre, Turku, Finland; 
http://www.turkupetcentre.fi/carimas). Density 
and volume of the implant were defined using ce-
rebral CT imaging and implant degradation was 
evaluated. Implant degradation was calculated as 
the change in density and volume of the implant 
at different time points (for pigs days 1 and 7, for 
dogs days 7, 14 and 21). 

5.2.8.	 Histological analyses
At the end of the study period, the pigs were se-
dated with midazolam 1 mg/kg i.m., xylazine 3 
mg/kg i.m. and euthanized with propofol i.v. 
overdose and exsanguinated. Dogs were sedated 
with dexmedetomidine 20 µg/kg i.v. and eutha-
nized with pentobarbital i.v. overdose and exsan-
guinated.

The cranium of the animals was opened to ex-
pose the operation site. Meninges and brain tis-
sue were observed for any macroscopic changes 

and the presence of implants was evaluated. For 
the histopathological examination, samples from 
the meninges and brain tissue were taken from 
the vicinity of the implant site and from corre-
sponding area on the opposite hemisphere. All 
samples were fixed in a buffered 4% formalde-
hyde solution. The tissue samples were embedded 
in paraffin, cut to a thickness of approximately 4 
μm and stained with hematoxylin & eosin (HE) 
for histopathology. All slides were examined by 
a pathologist and histopathological changes were 
recorded and scored with a 5-step scale from 
minimal to severe.

5.2.9.	 Statistical analyses
All the results are presented as means±SD. Mixed 
model for repeated measurements was applied 
to the implant volume and density data (SAS 
9.2 SAS Institute Inc., Cary, NC, USA). P-values 
<0.05 were considered statistically significant.

5.3.	 Nimodipine-induced plasticity in mice

5.3.1.	 Drug treatment and tissue 
sampling

For the drug treatments, animals were gently 
immobilized and injected subcutaneously (s.c.) 
with either NDP (10 mg/kg, Santa Cruz Bio-
technology (SCB), CA, USA) or vehicle (0.5% 
Tween-40 in saline) (N=6 per group) into the 
neck pouch. All the animals were injected on 
the same day by the same researcher using a 
5-minute interval between each animal. All the 
animals were sacrificed after 90 minutes of in-
jection. This is shown to be a lag period that cor-
responds to TrkB phosphorylation induced by 
pharmacologically diverse antidepressant drugs 
(Rantamäki et al. 2007). Mice were stunned with 
carbon dioxide and sacrificed with rapid cer-
vical dislocation. Next, the hippocampus and 
medial prefrontal cortex were isolated for ex-
traction of protein and total RNA. Samples for 
total RNA were frozen immediately with dry ice 
and stored at -80˚C. For protein extractions, the 
hippocampus and medial prefrontal cortex were 
collected on a cooled dish and homogenized 
in lysis buffer (137 mM NaCl, 20 mM Tris, 1% 

NP-40, 10% glycerol, 48 mM NaF, 2X Complete 
inhibitor mix (Roche Diagnostics, Hertforshire, 
UK) and 2 mM Na3VO4). After incubation on 
ice for 15 min, samples were centrifuged (16100 
g, 15 min, +4˚C) and the supernatant collected 
for further analysis.

5.3.2.	 Western blot
The exact description is presented in the publi-
cation III. Shortly, sample protein concentrations 
were measured using a commercial kit (Bio-Rad 
DC protein assay) and next, the total protein was 
separated in a SDS-PAGE under reducing con-
ditions and transferred onto a PDVF membrane 
(300 mA for 1 h at 4˚C). The membranes were 
blocked with 3% bovine serum albumin (1 h, 
room temperature) and incubated with the se-
lected primary antibodies that were anti-p-Trk-
BY816, anti-p-TrkAY490/TrkBY515, anti-Trk, anti-p-
CREBS133, anti-CREB, anti-p-AktT308, anti-AKT, 
anti-p-44/42 MAPKT202/Y204, anti-p44/42 MAPK, 
anti-p-mTORS2481, anti-mTOR, anti-p-p70S6 ki-
naseT421/S424, anti-p70S6 kinase and anti-GAPDH. 
After washing, the membranes were incubated in 
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HRP-conjugated secondary antibody (1:10000, 
BIO-RAD; 1 h, room temperature) followed by 
visualization with an enhanced chemilumines-
cence kit (ECL+, Amersham Biosciences) and the 
detection of luminescence with Fuji LAS-3000 
camera. Phosphoprotein detection was always 
conducted first after which the filter was stripped 
and probed with the corresponding total protein 
antibody. GAPDH immunoblotting was used to 
control equal loading and for the quantification 
of TrkB protein expression. 

5.3.3.	 BDNF ELISA
Mature BDNF protein levels were assessed using 
ELISA method as previously described (Kar-
pova et al. 2010). The assay shows no cross-re-
activity with other neurotrophins (Karpova et 
al. 2010) and has been further validated using 
tissues obtained from BDNF+/- mice (~50% ex-
pression) and conditional BDNF-/- mice (un-
detected). That was the reason why we selected 
ELISA method for mature BDNF detection. 
Shortly, transient acidified brain lysates, BDNF 
standards (7.8–1000 pg/ml in Hanks; Prome-
ga), and POD-conjugated secondary BDNF 
antibody were transferred to pre-blocked (300 
µl; Hanks buffer, 2% BSA, 0.1% Triton X-100, 2 
h, RT) Maxisorb® ELISA plates that were previ-
ously coated with the primary BDNF antibody. 
The following day the plates were washed with 
PBS-T and the POD substrate was added to the 
wells according to manufacturer’s instructions 
(BM Blue; Roche). The colorimetric reaction 
was stopped within 20 min with 1 N H2SO4 (50 
µl), and absorbance was immediately measured 
at 490 nm. BDNF protein was normalized to to-
tal protein levels. The r2 for the standard curve 
was ≥0.99 in all experiments. 

5.3.4.	 BDNF qPCR
We conducted RNA extraction followed by re-
al-time quantitative PCR as previously described 
(Uutela et al. 2014). Total RNA was extracted from 
frozen tissues by using QIAzol (Qiagen, Valencia, 
CA) and treated with DNaseI (Thermo Fisher Sci-
entific Inc, Rockford, IL) according to the manu-
facturer’s instruction. cDNA was synthesized with 
1 µg of total RNA by using the Maxima First Strand 
cDNA Synthesis Kit (Thermo Fisher Scientific Inc, 
Rockford, IL). Real-time quantitative PCR was 
performed using the Maxima SYBR Green qPCR 
Master Mix (Thermo Fisher Scientific Inc, Rock-
ford, IL) and the CFX96 TouchTM detection system 
(Bio-Rad, Hercules, CA). The primers described 
previously (Karpova et al. 2011) were used to am-
plify specific cDNA regions of transcripts. The 
coding region in the exon IX of the Bdnf gene for 
the total Bdnf mRNA and a housekeeping control 
gene are precisely described in the publication III. 
Ct and quantitative values were calculated from 
each sample using CFX Manager™ software (Bio-
Rad, Hercules, CA) and the quantitative values 
were normalized to the control Gapdh levels.

5.3.5.	 Data processing and statistical 
analyses

Protein bands were quantified using ImageJ pro-
gram (NIH, National Institutes of Health). Phos-
pho-protein band intensities were divided by cor-
responding total protein band intensities. Final 
values were divided by the control group average 
and multiplied by 100. All the data are expressed 
as mean ± SEM (Standard Error of Mean; standard 
deviation divided by the square root of sample size) 
and as percentage of control. Statistical tests were 
performed using the two-tailed Student t-test. The 
criterion for significance was set to p < 0.05.
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6.	 RESULTS
6.1.	 Pharmacokinetics of nimodipine in healthy beagle dogs

6.1.1.	 Individual kinetic profiles
Individual kinetic profiles of NDP in plasma af-
ter i.v. and oral administration are presented in 
the publication II. Kinetic profile of NDP in bea-
gle dogs follows the kinetics seen in humans as 
expected. A typical rapid increase in the NDP 
concentration is seen that is followed by a steep 
decrease in few hours. Thus, oral administration 
of NDP requires several dosing times per day for 
achieving sufficient concentration.

6.1.2.	 Pharmacokinetic parameters
The individual and mean ±SD pharmacokinetic 
parameters for NDP in dog plasma after a single 
intravenous dose are presented in table 7 and af-
ter oral administration in table 8. During NDP 
treatment, no adverse effects were observed in 
dogs. 
The mean terminal elimination half-life of NDP 
after i.v. bolus dose 0.72 mg was 1.8 h and mean 
plasma clearance was 40.3 l/h and 3.4 l/h/kg. 

After oral administration of 60 mg NDP, the 
mean terminal elimination half-life was 0.89 h. 
The absolute bioavailability (calculated for the 
animals dosed intravenously and orally) was 
22%. Dose proportionality was evaluated by 
comparing the exposure parameters Cmax and 
AUC0-24 at oral doses of 30 mg and 60 mg. Cmax 
and AUC0-24 increased in a dose-proportional 
manner. The same individuals were not used in 
the groups tested at oral doses of 30 mg and 60 
mg. Individual variation in the kinetic profile of 
NDP was measured. 

6.1.3.	 CSF concentrations of 
nimodipine

At one hour after oral administration, NDP can 
be measured in the CSF in concentrations of 
about 1-2% of the measured plasma concentra-
tions. Plasma and CSF concentrations of NDP 
after oral dosing of 60 mg are presented in table 
9.

Table 7. Mean pharmacokinetic parameters of NDP after i.v. bolus dosing of 0.72 mg (Koskimäki et al II).

Animal no AUC (h*ng/ml) t1/2α (min) t1/2β (h) Cl (l/h) Vss (l)

1 22.7 11 1.4 31.7 37.6 

2 13.3 9 1.6 54.0 98.8

3 20.4 10 2.5 35.3 58.9 

Mean 18.8 10 1.8 40.3 65.1 

SD 4.9 0.02 0.6 12.0 31.1 

Table 8. Mean pharmacokinetic parameters of NDP after oral dosing of 30 mg or 60 mg (Koskimäki et al II).

Dose (mg) Animal no Cmax (ng/ml) tmax (h) AUC24h (h*ng/ml)

30 1 46.8 0.67 104.9

30 2 212.4 0.67 342.0

30 3 50.7 1.00 123.3

Mean 103.3 0.78 190.0

SD 94.5 0.19 131.9

60 4 238.8 1.00 486.8

60 5 81.2 1.00 273.2

60 6 345.0 0.67 569.9

Mean 221.7 0.89 443.3

SD 132.8 0.19 153.1
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Table 9. Plasma and CSF concentrations of NDP after oral dosing of 60 mg (Koskimäki et al II).

Animal no Time (h) Matrix Conc. (ng/ml) CSF/plasma -ratio

4
1 CSF 1.37

0.0134
1 Plasma 102

5
1 CSF 0.68

0.0125
1 Plasma 54.6

6
1 CSF 0.97

0.0132
1 Plasma 73.4

6.2.	 Nimodipine implant treatment and follow-up

6.2.1.	 Dissolution of the implant in vitro
Degradation rates of the silica implant formula-
tion were measured from three parallel samples. 
The implant formulations were totally degraded 
after 3.5–4 days in sink dissolution and 24 days in 
flow-through dissolution. The cumulative release 
profiles of NDP were measured from the same 
sample solutions (pH = 7.4 at 37˚C) as used for 
the SiO2 degradations measurements. NDP was 
mainly released from the implant formulations 
by degradation of silica matrices. According to 
dissolution results there were 5.0 mg and 8.5 mg 
of NDP in implant A and implant B, respectively. 
Degradation of the implant in 24 days in flow-
through dissolution was in line with the clinical 
treatment period of NDP.

6.2.2.	 Surgery and recovery period
During the surgery, heart rate, oxygen saturation 
and rectal temperature were within the normal 

range, except for one dog (No. 3), which suffered 
from a decrease in oxygen saturation (down 
to 70%). This persisted for three minutes at the 
end of the operation due to a malfunction of the 
ventilator. Postoperatively, signs of systemic in-
fection were not manifested and rectal tempera-
tures were within a normal range throughout the 
recovery period. All clinical findings of the dogs 
during the 21-day recovery period are presented 
in table 10. During the 7-day recovery period of 
the pigs, no clinical signs of morbidity or changed 
behavior were noted. Body weights of the dogs 
were slightly decreased in each group: on aver-
age, in group Active 1 a decrease of 7% (n=2) 
was seen, in Active 2, a decrease of 4% and, in 
the sham group a decrease of 2% was noted. Food 
consumption in all dog groups remained normal 
during the 21-day recovery period. In pigs, body 
weight gain was 7%–18% and can be considered 
normal growth rate in each group. 

Table 10. Summary of the clinical signs of the dogs during the 21-day recovery period (Koskimäki et al I).

Group Dog number Epileptic seizure Other/notice:

Active 1

1 No -

2 Yes
Epileptiformic seizure on day 4. Treated with phenobarbital medication 2.5mg/kg 
twice a day on days 4-12. The medication was reduced to 2.5mg/kg once a day on day 
13 and ended on day 20. 

3 Yes
Epileptiformic seizure 6 hours post-operatively. Epileptiformic seizures were refractory 
to phenobarbital medication. The animal had to be euthanized on day 3 according to 
the protocol. It was not replaced.

Active 2

4 No 24 h post-operatively conjunctivitis.

5 No 24 h post-operatively vomiting x 1. 

6 No 24 h post-operatively conjunctivitis.

Sham

7 No -

8 No 24 h post-operatively conjunctivitis.

9 No -
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One animal deceased during the non-clinical 
experiment. Animal number 3 (dog) from group 
Active 1 developed refractory complex partial ep-
ilepsy and had to be euthanized on day 3. Anoth-
er dog from the same group (No. 2) had epileptic 
seizures on Day 4 and was treated with pheno-
barbital medication. The dog responded well to 
the treatment. Post-operative eye infections were 
treated with local ophthalmic ointment contain-
ing fusidic acid and the infections responded well 
to the treatment.

6.2.3.	 Histology of brain and meninges
In the macroscopic examination of the pigs, no 
abnormalities were detected at the implantation 
area. In dogs, local attachment of meninges to 
the implant site was seen, which prevented the 

evaluation of actual implants. This lesion was not 
seen in the Sham group. In the figure 2, micro-
scopic histology of the sham group and the im-
plant group is presented (Koskimäki et al, unpub-
lished).

Summary of the histopathological examina-
tion is shown in table 11. Dog number 3 (Ac-
tive 1) was sacrificed on day 3 and therefore ex-
cluded from these results. In histopathological 
examination of the operation site, local inflam-
matory reaction characterized by infiltration of 
mononuclear and granulocytic cell was seen in 
the meninges of both species. In pigs, there was 
an eosinophilic component whereas in dogs the 
inflammation was more neutrophilic. Multinu-
cleated giant cells indicating foreign body re-
action and foreign implant material were seen 

 

FIGURE 2. Histological findings of operated dogs (Koskimäki et al, unpublished). A. The leptomeninges from non-operated area. The 
meninges are thin and few small intracranial blood vessels are detected with sparse inflammatory cells. Sham operated (Dog 7), magnification 
x50, HE stain. B and C. On the operation site the leptomeninges are heavily infiltrated by mononuclear inflammatory cells and a few 
polymorphonuclear cells. Importantly, the inflammation is not extending to the brain parenchyma. No clear difference can be detected between 
implanted (B; Dog 6) and sham operated (C; Dog 8) dogs. Magnification x50, HE stain.
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mainly in dogs receiving five implants. Addi-
tional findings were mild to moderate fibrosis, 
vascular regeneration and mild hemorrhage 
on the meninges in all groups. In general, the 
changes were more frequent and severe in the 
dogs, but no clear differences in the severity of 
changes could be seen between sham groups 
and implanted groups. Furthermore, there was 
no difference in changes between the two im-
plant types (glucose versus NDP as active in-
gredient). In all groups, the underlying brain 
parenchyma was only mildly affected by peri-
vascular mononuclear cuffing or spreading of 
inflammatory infiltrate from the meninges. In 
dogs, a single dog in the Sham group and in the 
Active 1 group showed focal degeneration and 
gliosis in the deeper parenchyma with no direct 
connection to implant site. No significant ab-
normalities were observed in the samples from 
opposite hemisphere.

The implant site located in the brain paren-
chyma was present in the samples from two pigs 
(Nos. 23D and 23F). The local changes around 
the parenchymal implant site did not show major 
signs of foreign body reactions. There was local 

inflammatory reaction with foamy macrophages 
and minimal to marked degeneration in the sur-
rounding parenchyma, but not more that could 
be expected from the procedure itself and intra-
parenchymal implantation. 

6.2.4.	 Nimodipine concentrations
In pigs, calculated CSF/peripheral venous plasma 
ratio was at day 5 1.31 ± 1.34 and at day 7 0.886 
± 0.255. Correspondingly in dogs receiving active 
implant, after one hour in 5x 8.5 mg NDP group 
the CSF/jugular plasma ratio was 0.002 ± 0.0005 
and in 8.5 mg NDP group 0.149 ± 0.174. The sus-
tained release profile of NDP in CSF was achieved 
for 21 days in dogs and 7 days in pigs (table 12). 

The best achieved CSF/plasma ratios and the 
highest CSF concentrations after the dosing with 
the 60 mg tablet and the 8.5 mg implant after one 
hour of administration in our study are presented 
in table 13. The CSF/plasma ratio was 25 times 
higher after the implant treatment. In addition, 
the systemic concentration after the implant 
treatment was 12 times lower and achieved CSF 
concentration was over two times higher com-
pared to the traditional treatment. 

Table 11. Summary of histopathological findings and severity in pigs and dogs in each group (Koskimäki et al I). Number of affected animals in 
each group is shown. Severity score indicates the recorded minimum and maximum severity in each group. Only one score is shown if all animals 
had same severity or only one animal was affected. N=3 in each group.

Lesion Pigs Dogs

Sham Placebo Active Sham Active 1* Active 2

Infiltration of mononuclear cells (meninges) 1 3 3 3 2 3

Severity score, min/max^ ++++ ++/+++ +/++++ ++++ ++++ +++/++++

Infiltration of granulocytes (meninges) 1 1 1 3 2 3

Severity score, min/max ++++ + ++ +/+++ +++ +/++

Multinucleated giant cells and foreign material 
(meninges) 0 0 0 0 2 1

Severity score, min/max - - - - ++ ++

Fibrosis (meninges) 1 3 1 3 2 3

Severity score, min/max ++ + ++ ++/+++ +++/++++ ++/++++

Vascular regeneration (meninges) 0 2 0 3 1 3

Severity score, min/max - +++ - ++ ++ ++

Hemorrhage +/- hemosiderophages (meninges) 1 2 1 2 1 3

Severity score, min/max + +/+++ ++++ ++ ++ ++

Perivascular cuffing (parenchyma) 0 0 1 3 2 3

Severity score, min/max - - + +/+++ ++ +/++

*In this group, n = 2. Animal number 3 was excluded due to preterminal sacrifice.
^ + minimal, ++ slight, +++ moderate, ++++ marked, - not present
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Table 12. Concentrations of NDP at different time points after surgery in dogs and pigs (ng/ml) (Koskimäki et al I).

1h Day 7 Day 14 Day 21

Jugularis CSF Jugularis CSF Jugularis CSF Jugularis CSF

Nimodipine  
8.5 mg implant  
in dogs

17.79 ± 15.17 2.19 ± 1.90 6.13 ± 4.66 0.025 ± 0.009 11.51 ± 3.77 0.030 ± 0.008 3.05 ± 1.53 0.013 ± 0.004

Nimodipine  
5x 8.5 mg implant 
in dogs

63.9 ± 18.7 0.110 ± 0.005 37.8 ± 15.8 0.095 ± 0.008 36.5 ± 9.97 0.083 ± 0.009 32.9 ± 8.77 0.034 ± 0.004

Day 5 Day 7

Jugularis Ear CSF Jugularis Ear CSF

Nimodipine 5 mg 
implant in pigs 0.045 ± 0.008 0.027 ± 0.005 0.027 ± 0.022 0.054 ± 0.006 0.045 ± 0.020 0.038 ± 0.017

Table 13. The best achieved CSF/plasma ratios and the highest CSF concentrations after the dosing with the 60 mg tablet and the 8.5 mg 
implant after one hour of administration. (Modified from I and II)

Route Matrix Conc. (ng/ml) CSF/plasma -ratio

Oral
CSF 1.37

0.0134
Plasma 102

Implanted
CSF 2.94

0.341
Plasma 8.62

6.2.5.	 Computed tomography
Clinical analyses of the CT data showed the 
location and degradation of the implants in 
the subarachnoid space in pigs and dogs. The 
implants were correctly placed at the base of 
the cranium in the Sylvian fissure in the sub-
arachnoid space in all pigs. This was noted in 
the dogs as well except for dogs number 2 and 
3 in group Active 1. Dog number 3 had to be 
euthanized at day 3 and CT imaging was there-
fore not performed. CT imaging of dog number 
2 showed a too rostral positioning of the im-

plants, and five implants had formed a pile-like 
formation protruding 6.5 mm into the paren-
chyma (I). Further evaluation of radiographic 
data indicated the importance of the location 
of the craniotomy in order that the required 
space and location was reached without in-
creasing the risk of complication. 

In dogs, implant size and density were de-
creased between weeks 1 and 3. Degradation 
was very linear as presented in the publication I. 
Based on slopes of the degradation curves, den-
sity was decreased faster than volume.

6.3.	 Nimodipine-induced neuroplasticity

6.3.1.	 Nimodipine activates TrkB in the 
brain

Signaling cascades after NDP treatment are 
concluded in the figure 3. The first and essen-
tial post-translational modification is autophos-
phorylation of the TrkB autocatalytic domain 

(TrkBY705/6) that activates the kinase activity of 
TrkB (Segal et al. 1996). Indeed, we saw auto-
phosphorylation of the TrkBY705/6 after a single 
NDP treatment. Phospho-TrkBY705/6 levels were 
significantly increased in the prefrontal cortex 
(PFC) and hippocampus (HC) 90 minutes af-
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ter injection. Nonetheless, the phosphorylation 
state of the Shc binding domain (TrkBY515) re-
mained unaltered after the treatment. The Shc 
binding domain is not phosphorylated after tra-
ditional antidepressant treatment. However, Shc 
site of TrkB is phosphorylated by its endogenous 
ligand BDNF. Lastly and the most importantly, 
the phosphorylation status of the PLCgl-binding 
tyrosine within TrkB (TrkBY816) was significant-
ly increased after NDP treatment. Interestingly, 
these NDP-induced changes on TrkB receptor 
activation resemble those produced by antide-

pressant drugs (Saarelainen et al. 2003; Rantam-
äki et al. 2007). 

6.3.2.	 Nimodipine induces 
neuroplasticity in the brain

The phosphorylation of TrkBY515 serves as a 
docking site for Shc adaptor proteins that fur-
ther regulate the phosphorylation and activity 
of downstream signaling molecules implicated 
in neuronal apoptosis and survival (Akt) and 
neuronal differentiation (ERK1/2) (Huang and 
Reichardt 2001; Ahn 2014). In line with the 
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FIGURE 3. The signaling cascades in hippocampus and prefrontal cortex after NDP treatment. TrkBY705/6 and TrkBY816 sites are 
phosphorylated further activating PLCγ1. PLCγ1 induces degradation of phospholipid phosphatidylinositol 4,5 bisphosphate (PIP2, not shown) 
to diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates protein kinase C (PKC) pathway that is further capable of increase 
synaptic plasticity. IP3 binds to receptors on the surface of endoplasmic reticulum (ER) releasing calcium (Ca2+) to the intracellular space. Increased 
Ca2+ concentration activates different forms of CAMKs and Akt signaling. These changes further lead to the phosphorylation of cAMP response 
element-binding protein (CREB), which critically regulates transcription of the genes that are implicated in plasticity and LTP formation. BDNF = 
Brain derived neurotrophic factor, Bcl-2 = B-cell CLL/lymphoma 2.
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unaltered levels of phospho-TrkBY515, phos-
phorylation levels of ERK1/2 in the HC and the 
PFC were indistinguishable in the control and 
NDP-treated animals. However, even though 
the phosphorylation of TrkBY515 is important 
for activating neuroprotective Akt signaling, 
there is evidence that IP3 pathway and further 
increase in the intracellular calcium concen-
tration, particularly released from intracellular 
stores, regulates Akt signaling possibly through 
phosphoinositide 3-kinase (PI3K) (Zheng et al. 
2008).

Phosphorylation of TrkBY816 leads to the acti-
vation PLCg1 that consequently increases intra-
cellular calcium mobilization from intracellular 
calcium stores via IP3 signaling (Huang and 
Reichardt 2001). This signaling event has been 
tightly associated with the phosphorylation and 
activation of CREB, a transcription factor that 
critically regulates the transcription of genes 
implicated in synaptic plasticity (e.g. long-term 
potentiation) (Minichiello 2009). In line with 
observed changes in phospho-TrkBY816 levels, 
the phosphorylation levels of CREB were signifi-
cantly increased after NDP in both brain areas 
investigated.

6.3.3.	 Nimodipine induces neuropro-
tective signaling in the brain

NDP treatment increased the phosphorylation lev-
els of Akt in the PFC and a trend was also seen in 
the HC (p=0.055). Apart from regulating neuronal 
apoptosis and survival, Akt has also been linked 
with the activation of mTor-p70S6k pathway that is 
implicated in dendritic spine formation and mor-
phology (Kumar et al. 2005). However, the phos-
phorylation levels of mTor and its downstream 
target kinase remained unaltered after acute NDP 
administration. The activation of Akt signaling by 
NDP treatment is most probably conveyed via IP3 
signaling and increased mobilization of calcium 
from intracellular calcium stores (Zheng et al. 2008).

6.3.4.	 Levels of BDNF protein and 
mRNA after acute treatment

The levels of the BDNF protein and total mRNA 
remained at the normal level in the medial PFC 
and HC after a single dose of NDP. This finding is 
in line with results seen after acute antidepressant 
drug treatment (Rantamäki et al. 2011). However, 
it is not known whether chronic NDP adminis-
tration induces translation of BDNF mRNA and 
further expression of BDNF protein.
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7.	 DISCUSSION
7.1.	 Nimodipine implant treatment for vasospasm
We formulated a new silica-based intracranial 
NDP implant. The implant is feasible for surgi-
cal application in the subarachnoid space, and no 
major histological foreign body reactions were 
observed. Most importantly, with the use of the 
new implant treatment, it was possible to achieve 
significantly lower systemic concentrations, high-
er CSF concentrations, and higher CSF/plasma 
ratios of NDP than when the conventional oral 
NDP treatment is administrated. A sustained 
realease profile of the NDP implants was mea-
sured, in vivo as well as in vitro. In addition, CT 
imaging was feasible for monitoring the degrada-
tion of the implants in vivo.

Intracranial treatment for DCI is an emerging 
treatment modality (Kasuya et al. 2002; Kasuya 
et al. 2005; Krischek et al. 2007). PLGA implants 
have been studied the most, and the results have 
thus far been encouraging (Kasuya et al. 2005; 
Schneider et al. 2011; Cook et al. 2012). Calcium 
channel blockers are interesting candidates for 
intracranial treatment because of proven pleio-
tropic effects (Nuglisch et al. 1990; Zornow and 
Prough 1996; Kobayashi and Mori 1998; Dreier 
et al. 2000; Liu et al. 2004; Vergouwen et al. 2008; 
Cook et al. 2012; Scheller and Scheller 2012; Mac-
donald 2014). Higher concentrations of NDP in 
the CSF can be achieved with intracranial thera-
py, and these higher concentrations can be more 
beneficial for inhibiting the pathological cascades 
occurring after aSAH (Dreier 2011; Cook et al. 
2012; Macdonald 2014). With intracranial thera-
py, lower systemic drug concentration is achieved, 
as our study also proved (Macdonald et al. 2012; 
Cook et al. 2012). This is of interest in the case of 
inhibiting NDP-induced hypotension but can be 
extremely beneficial for other drugs as well.

The sol-gel method was used in the formula-
tion of the new implant, and NDP was the drug of 
choice as the most convincing evidence for treat-
ing DCI (Laursen et al. 1988; Pickard et al. 1989; 
Kortesuo et al. 2001; Dorhout Mees et al. 2007; 
Ciriminna et al. 2013). As stated, NDP is a calcium 
channel blocker with high specificity to intracra-

nial blood vessels, but interestingly, neurons pos-
sess L-type calcium channels with higher density 
(Langley and Sorkin 1989; Ricci et al. 2002). Un-
disputedly, dilatation of cerebral vessels is not the 
only method by which NDP improves patients’ 
outcome. Indeed, we demonstrated the new po-
tential neuroplastic mechanism behind the thera-
peutic effects of nimodipine (see the next section). 

We met our aim to deliver the NDP biode-
gradable silica-based implants into the subarach-
noid space through pterional craniotomy in pigs 
and dogs. The recovery periods went without 
any complications in pigs. In the dogs, epileptic 
seizures were present in the group of five im-
plants. It was evident already by the time of the 
surgery that five implants may cause morbidity 
since the space of basal cistern was too limited 
for numerous implants, even though an operative 
microscope was used. One of the dogs had to be 
euthanized due to refractory epileptic seizures, 
whereas the other responded well to the pheno-
barbital treatment and the medication could be 
terminated. However, one dog that received five 
implants did not show any distress. In the CT 
imaging, the dog that received phenobarbital 
medication with good response showed improp-
er placement of implants and protrusion of the 
implants into parenchyma, which most probably 
caused the seizures. In histological examination 
of this dog focal parenchymal degeneration was 
seen as well, caused probably by the protrusion of 
implants in the parenchyma. 

In histopathological examination of dogs and 
pigs, no major differences were distinguished 
between groups in spite of the presence of im-
plants. Most of the findings were present also in 
the sham-operated animals, demonstrating that 
these findings were related to the procedure it-
self. Foreign body type reaction was mainly seen 
in dogs receiving five implants, which can be 
directly related to the larger amount of implant 
material or compression of the brain parenchy-
ma. However, the implantation directly into the 
brain parenchyma of pigs did not produce wide-
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spread tissue damage around the implant. There-
fore silica-based biodegradable materials can be 
considered for use in the release of the therapeu-
tic agents for an intracranial treatment of DCI. 
Compared to histopathological studies for PLGA 
implants, similar minimal foreign body type re-
action profile is observed as well (Menei et al. 
1993; Shive and Anderson 1997).

According to the NDP concentrations in 
the CSF, a sustained release profile of NDP was 
achieved for 21 days in dogs and for 7 days in 
pigs. After the dosing with the 60 mg tablet and 
the 8.5 mg implant, the CSF/plasma ratio was 25 
times higher after the implant treatment, and the 
systemic concentration was 12 times lower. In ad-
dition the achieved CSF concentration was over 
two times higher than with the traditional treat-
ment (table 13). Thus, significantly higher concen-
trations can be achieved in the CSF with the use 
of the intracranial delivery system. A significant 
reduction in the systemic concentration of NDP 
was also achieved in our study, and may inhibit 
NDP-induced hypotension after aSAH (table 13).

Interestingly, despite the intracisternal loca-
tion of the implants, the increase of NDP con-
centration in CSF was modest. The samples 
were taken through atlanto-occipital space from 
cisterna magna and therefore the low concentra-
tions could be due to a net flow of CSF towards 
arachnoid villi and sinuses, resulting in a lower 
concentration in CSF located extracranially or 
cisterna magna. In addition, in our dog study, the 
plasma samples were taken from the external jug-
ular vein, not from a peripheral vein, which may 

result in a higher measured NDP concentration 
since the NDP is not totally distributed. Our data 
in pigs suggests that after five and seven days, the 
external jugular plasma and peripheral plasma 
ratio is about two. However, the early data from 
the CSF kinetics is lacking and cannot be directly 
extrapolated to the different species.

Specific features in the implant or formulated 
NDP amount can cause a decrease in dissolution 
rates. For example, Cook et al. reported significant-
ly lower NDP concentration in CSF when used 30 
mg loaded NDP PLGA microparticles compared 
to 10 mg loaded PLGA microparticles (Cook et al. 
2012). However, according to the NDP implant in 
vitro dissolution curves presented in our study, it 
seems that the implant itself is not culpable. The 
reason of relatively low CSF concentration and 
high plasma concentration is unclear.

The physical degradation of the silica implant 
and prediction of the implant behavior in vivo 
was feasible to follow using CT imaging. High 
dissolution rates in the basal cisterns can be in-
duced by increased circulation of spinal fluid. Of 
course, after aSAH, early hydrocephalus is a con-
siderable problem for patients, but also consider-
ing the dissolution of the implant (Milhorat 1987; 
Germanwala et al. 2010). Thus, the dissolution 
profile needs to be studied also when CSF kinet-
ics is pathologically altered. A quick decrease of 
the density is in line with the physical properties 
of the implant matrix. The degradation of silica 
matrix occurs constantly throughout the implant 
and therefore the implant size decreases slower 
than its density. 

7.2.	 Nimodipine induces neuronal plasticity
For the first time, our study showed that acute 
nimodipine treatment activates BDNF receptor 
TrkB sites TrkBY705/6 and TrkBY816, leaving the 
Shc site unaltered (figure 3). Phosphorylation of 
TrkBY816 leads to the activation of PLCg1, which 
was activated in the HC and PFC. In addition, the 
phosphororylation status of Akt and CREB was 
significantly increased without any alteration in 
the BDNF mRNA and protein levels.

The ability of NDP to improve the clinical out-
come after aSAH was established already in 1988 

(Laursen et al. 1988; Pickard et al. 1989; Dorhout 
Mees et al. 2007). However, the exact mecha-
nisms of actions of calcium channel blocker NDP 
remain obscure.

Pathophysiology of aSAH is a complex combi-
nation of early brain injury, vasospasm, secondary 
injuries, inflammation and cortical spreading isch-
emia (Macdonald 2014). Nonetheless, the thera-
peutic actions of NDP have been considered to be 
principally arbitrated by its vasoactive properties, 
while clinical data, as well as pre-clinical data, indi-
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cate that also additional mechanisms are involved 
(Etminan et al. 2011; Macdonald 2014).

NDP holds extensive neuroprotective proper-
ties by reducing neuronal and glial apoptosis, in-
creasing fibrinolysis of microthrombosis and in-
hibiting cortical spreading ischemia (Lazarewicz 
et al. 1990; Dreier et al. 2002; Dreier et al. 2009; 
Pluta et al. 2009; Etminan et al. 2011; Vergouwen 
et al. 2011; Hashioka et al. 2012; Sehba et al. 2012; 
Woitzik et al. 2012). Chronic administration of 
NDP has also been reported to induce synapto-
genesis (de Jong et al. 1992).

As an L-type calcium channel blocker, NDP 
effectively affects intracellular calcium signaling. 
NDP binds to CaV1.2 and CaV1.3 that are the ma-
jor isoforms expressed in the nervous system both 
presynaptically and postsynaptically (Langley and 
Sorkin 1989; Hell et al. 1993; Lipscombe et al. 2004; 
Frank 2014). Thus, NDP partially inhibits activi-
ty-dependent calcium influx that is mainly con-
veyed thorough activation of NMDA and AMPA 
receptors (Abraham and Williams 2003; Asrar et 
al. 2009). In physiological conditions, calcium in-
flux seems to have a role of strong modulator that 
has local (neurotransmission, LTP) but also broad-
ranged (gene transcription, synaptic plasticity, ho-
meostatic plasticity) effects (Magee and Johnston 
1997; Hudmon et al. 2005; Remy and Spruston 
2007; Lee et al. 2009b; Frank 2014).

Under pathophysiological conditions, neuro-
nal membrane and energy homeostasis are dis-
rupted, leading to broad-range alterations in syn-
aptic and neuronal functions (Choi 1994). Due 
to the membrane disruption and energy failure, 
excess calcium enters to the cells causing excito-
toxicity and eventually leading to neuronal death 
via a variety of mechanisms (Choi 1994; Gepdire-
men et al. 1997; Hashioka et al. 2012).

NDP inhibits L-type calcium channels by re-
ducing the intracellular calcium concentration 
(Choi 1994; Gepdiremen et al. 1997). Further-
more, NDP also increases the expression of an an-
tiapoptotic factor Bcl-2, and as our study showed, 
increased activation of neuroprotective Akt signal-
ing (Liu et al. 2004). Due to the lipophilic nature 
of NDP it easily passes through cell membrane 
(Langley and Sorkin 1989). However, its direct 
actions in the intracellular space are not known. 

Indeed, on the surface of reticular formation in 
neurons, different types of calcium channels are 
expressed (Hasan and Venkiteswaran 2010).

How do calcium channels and signaling mod-
ulate synaptic plasticity, spine formation, or how 
can they open plastic periods in adult brain? 
Understanding these mechanisms requires de-
tailed information of plastic processes and broad-
ranged integration of available data, thus the 
main aspects are discussed.

Homeostatic plasticity is partly regulated 
through calcium channels. Chronic inhibition of 
CaV.1 channels in the neurons increases the pro-
fusion of NMDA receptor, and intriguingly, de-
creases the abundance of inhibitory receptors in 
gabaergic synapses (Kilman et al. 2002; Swanwick 
et al. 2006; Saliba et al. 2007; Frank 2014). This is 
intuitive due to the fact that activity-dependent 
excitation and inhibition are essentially in balance 
for preventing immoderate silencing or generating 
epileptiformic activity. In this context, it is nec-
essary to understand that TrkB activation mod-
ulates independently gabaergic transmission via 
IP3 pathway by releasing calcium for intracellular 
stores (Tanaka et al. 1997). Furthermore, BDNF 
blocks the activity of deprivation-induced de-
crease in the gabaergic neurotransmission in inter-
neurons, thus shifting the balance of the particular 
neural network to more inhibitory (Rutherford et 
al. 1997). Intriguingly, the maturation of inhibitory 
interneurons reactivates the juvenile-like plasticity 
by opening critical periods (Hensch 2005; Bavelier 
et al. 2010; Hensch and Bilimoria 2012). Acute flu-
oxetine and NDP treatment rapidly activates TrkB 
receptor and its downstream signaling leading to 
the increased release of intracellular calcium. 

Intracellular calcium release from endoplas-
mic reticulum is an interesting step in the path-
way. Pathway is suggested to control metaplas-
ticity, which is a form of plasticity controlling 
the direction of plasticity in an integrative and 
temporal manner (Abraham and Bear 1996). Im-
portantly, it seems that in controlling of the plas-
tic changes, intracellular release of calcium is the 
critical step, not the total increase of intracellular 
calcium (Zheng et al. 2008; Maggio and Vlachos 
2014). However, albeit NDP treatment decreases 
the extracellular calcium influx, NDP as well as 
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fluoxetine increases the release of intracellular 
calcium that is clearly dependent of phosphoryla-
tion of PLCg1 and further activation IP3-pathway. 
Additionally, PV neurons and VIP (vasoactive 
intestinal peptide) neurons importantly regulate 
the experience-dependent plasticity, however, the 
relations in extracellular and intracellular calci-
um signaling are not well understood (Donato et 
al. 2013).

Considering the fact that BDNF and its re-
ceptor TrkB regulate neuroprotection and neu-
roplastic changes in the healthy brain and un-
der pathological conditions, it was an extremely 
interesting question whether NDP might also 
regulate TrkB receptor signaling. Intriguing-
ly as stated, systemic administration of NDP 
induces the autophosphorylation of TrkB and 
the activation of downstream signaling that is 
seen in neuronal survival (Akt) and plasticity 
(CREB). Furthermore, the NDP-induced chang-
es on TrkB phosphorylation closely resemble 
those previously seen after antidepressant drug 
treatment (Rantamäki et al. 2007; Di Lieto et 
al. 2012). Both NDP and antidepressant drugs 
specifically induce the phosphorylation of TrkB 
autocatalytic domain and the PLCg1 phosphor-
ylation status of the Shc site unaltered. Addi-
tionally, the levels of total BDNF mRNA and 
mature BDNF protein remained unaltered after 
acute NDP treatment. This observation is sug-
gesting that NDP does not induce rapid changes 
in BDNF synthesis. Similarly, although a single 
antidepressant drug treatment is sufficient to ac-
tivate TrkB (Rantamäki et al. 2007; Rantamäki et 
al. 2011), the levels of BDNF mRNA and BDNF 
protein are augmented only after weeks of con-
tinuous treatment (Nibuya et al. 1995). 

Our findings indicate that common molec-
ular mechanisms mediate TrkB activation after 
acute NDP and antidepressant drug treatments. 
Interestingly, conventional antidepressant 
drugs, such as fluoxetine, block L-type calci-

um channels and suppress intracellular calci-
um spikes (Deák et al. 2000; Kim et al. 2013). 
Moreover, L-type calcium channel antagonists 
facilitate antidepressant effects of conventional 
medication, and even show independent anti-
depressant effects in rodents that appear to be 
dependent on the CaV1.2 channel (Mogilnic-
ka et al. 1987; Czyrak et al. 1989; Czyrak et al. 
1990; Cohen et al. 1997; Dubovsky et al. 2001; 
Taragano et al. 2001; Sinnegger-Brauns et al. 
2004; Taragano et al. 2005). Furthermore, al-
though L-type calcium channel blockers have 
been shown to block activity-dependent BDNF 
synthesis, our recent data support a BDNF-in-
dependent mechanism underlying rapid anti-
depressant-induced TrkB activation. (Zafra et 
al. 1990; Poulsen et al. 2004; Rantamäki et al. 
2011). In contrast to antidepressant drugs, how-
ever, NDP activates Akt, a major survival-pro-
moting factor (Ahn 2014). The mechanisms 
behind the differential effects of NDP and anti-
depressants on Akt remain unknown, but these 
findings may suggest stronger neuroprotective 
properties for NDP than for antidepressant 
drugs (Zhao et al. 2006; Ahn 2014). 

This molecular study provides good basis to 
investigate the role of TrkB behind the neuropro-
tective effects of NDP in translationally relevant 
animal models of brain trauma and compromised 
plasticity. Current findings also suggest that NDP 
may activate synaptic plasticity in a manner rem-
iniscent to that induced by antidepressant drugs. 
Our previous findings demonstrate that long-
term antidepressant treatment reactivates devel-
opmental-type of plasticity mechanisms in the 
adult brain, which allows the remodeling of syn-
aptic connectivity if combined with appropriate 
rehabilitation (Maya Vetencourt et al. 2008; Kar-
pova et al. 2011). In addition, sustained antide-
pressant treatment after ischemic stroke improves 
motor function when combined with physiother-
apy (Chollet et al. 2011). 

7.3.	 Limitations and strengths of the research
Significant limitation in the implant study was 
lack of aSAH modeling (Study I). However, 
studies with healthy animals provided import-

ant data of the new silica-based biodegradable 
implant. Especially the histological data in-
dicated the feasibility of the implant material 
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that would be rather hard to interpret by us-
ing an aSAH model. The mortality after aSAH 
induction would have required significantly 
larger animal cohort and would have aroused 
ethical issues. Furthermore, dissolution of the 
silica-based implant in the CSF has never been 
described before. Consequently, dissolution of 
the implant during normal CSF dynamics was 
important to evaluate. Dissolution of the im-
plant requires at least partial flow of the CSF. 
It is known that hydrocephalus after aSAH is 
compromising about 25% of patients (Milhorat 
1987; Germanwala et al. 2010). Acute hydro-
cephalus is treated with temporal drainage or 
shunting recovering the CSF flow. Thus, disso-
lution of the implant is not inhibited. Howev-
er, dissolution of the implant may be disturbed 
and this issue remains to be studied by using 
an aSAH model. The total number of treated 
animals was 18. Further evaluation of the safe-
ty of the implants requires a larger sample size. 
However, the study provided important expe-
rience for intracranial surgery of dog and pig 
models.

Pharmacokinetics of NDP was evaluated 
also with traditional oral administration in dogs 
(Study II). Thus, conclusions between implant 
and oral treatment modalities were able to be 
made accurately.

Effects of NDP on TrkB signaling were stud-
ied by using a healthy mouse model (Study III). 
We clearly demonstrate the antidepressant-like 
activation of TrkB and downstream signaling 
and additional activation of neuroprotective sig-
naling after acute NDP treatment. BDNF protein 
and mRNA levels were quantitatively analyzed to 
confirm rapid TrkB activation independently of 
BDNF. We did not study effects of chronic NDP 
administration. As discussed above, the evidence 
of independent antidepressant action of NDP 
treatment is already described in the literature. 
However, effects of chronic NDP treatment on 
BDNF levels need to be studied. In a pathological 
point of view, the major restriction in our study 
was a lack of aSAH model. Consequently, direct 
conclusions about the effects of NDP on TrkB sig-
naling or induced plasticity after aSAH cannot be 
made. 

7.4.	 Future views
Silica-based formulation is a feasible candidate 
for an intracranial drug delivery system. How-
ever, further formulation of the implant to a gel 
is of interest since a rigid implant material is po-
tentially hazardous and could cause compression 
of the brain parenchyma or even intracranial ves-
sels. The treatment study needs to be performed 
with an aSAH model for further analysis of safety 
and efficacy. PLGA implants are already proven 
to be safe in human trials. However, the clinical 
use of PLGA nicardipine implants is extremely 
limited. It is interesting to see if implant or gel 
treatments will take its place in the treatment of 
DCI. In addition, since pathological mechanisms 
are extremely complex after aSAH, multitarget 
therapy with different drug combinations can be 
beneficial. Further studies are needed to deter-
mine how different combinations of drugs act in 
intracranial therapy. In addition, more studies are 
needed to understand the pharmacokinetics of 
intracranial NDP delivery systems especially af-

ter pathologically altered CSF kinetics, e.g. aSAH 
model.

Drug-induced plasticity is of great interest 
among neurorehabilitation researchers. Induc-
ing plasticity by reopening sensitive periods 
and enhancing neuronal network remodeling 
including appropriate rehabilitation can open 
new doors for neurorehabilitation. Enabling 
the development of new effective treatment 
strategies requires diligent basic research and 
active translation in the clinical settings. Fur-
thermore, as showed in our studies, rapid 
TrkB activation and downstream signaling af-
ter NDP treatment is reminiscent to the con-
ventional antidepressant treatment whereby it 
may have beneficial effect in remodeling in-
jured neural network. However, the effects of 
chronic NDP administration need to be stud-
ied. The questions by which mechanisms NDP 
or fluoxetine induce phosphorylation of TrkB 
are interesting ones and remain to be further 
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studied as well. Whether the therapeutic effects 
of NDP, in aSAH and other nervous system 
conditions that benefit from induced plastici-
ty and neuroprotection, can be facilitated by 
more prolonged administration and active re-
habilitation remains to be studied in different 

relevant animal models, e.g. aSAH model and 
compromised plasticity. 

Lastly, our results arise one hypothetical ques-
tion. May aSAH patients benefit from more pro-
longed administration of NDP than the tradition-
al 21 days?
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8.	 CONCLUSIONS
On the basis of presented pre-clinical experi-
ments, the following conclusions can be made:
1. 	 The new silica-based biodegradable implant 

was developed and surgical feasibility was suc-
cessfully confirmed in pig and dog model (I).

2. 	 In vitro dissolution modeling of the implants 
was a feasible method for predicting the dis-
solution properties in vivo (I). In vivo dissolu-
tion of the implants can be followed by using 
CT (I).

3. 	 Silica-based nimodipine implant treatment 
does not induce any major histological foreign 
body reaction in the brain or meninges (I).

4. 	 Higher nimodipine concentration in the 
CSF and lower systemic nimodipine con-
centration is achieved by using the implant 
treatment compared to the traditional oral 
nimodipine treatment (I and II).

5. 	 Nimodipine rapidly activates BDNF receptor 
TrkB and downstream signaling reminiscent 
to antidepressants independently without the 
increase in BDNF protein and mRNA levels 
(III).

6. 	 Nimodipine activates neuroprotective Akt 
signaling that differs from the actions of an-
tidepressants (III)



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / Acknowledgements

52	 Janne Koskimäki

ACKNOWLEDGEMENTS
This work was carried out at the University 
of Turku, Faculty of Medicine, Department of 
Clinical Medicine, Clinic of Surgery, Neuro-
surgical Unit and University of Helsinki, Hel-
sinki Neuroscience Center during the years 
2011–2015. Implant studies were conducted 
in collaboration with Orion Pharma and Del-
sitech.

I want to express my deepest gratitude to my 
supervisors. Neurosurgeon Janek Frantzén has 
guided me since my story in the medical school 
began. His open-minded attitude towards ju-
nior researchers made me able to start my own 
studies very early. It has been a privilege to learn 
from Janek’s everyday work. He is extreme-
ly skilled, humane and always willing to help. 
Without Janek, this thesis has not been possible. 
Professor Eero Castrén is the wisest man I have 
met. His work with neuroplasticity is unequaled. 
I sincerely appreciate his encouragement and in-
teresting discussions over these few years, and I 
hope successful collaboration in future. Associ-
ate Professor Olli Tenovuo has also supervised 
me from the beginning. Olli provided excellent 
facilities and materials to do research among 
traumatic brain injury (TBI) patients. Even 
though a subject of my thesis became eventually 
aSAH, these TBI studies are soon bearing fruit. 
I am grateful for Olli’s expertice on neurological 
rehabilitation.

I gratefully acknowledge Timo Koivisto and 
Daniel Strbian, the official reviewers of this the-
sis. Their contribution, constructive critisism 
and valuable advises markedly improved my 
thesis.

Associate Professor Tomi Rantamäki, I owe 
you my deepest gratitude. Your enthusiasm on 
neurobiology and continuous development and 
learning is admirable. I am truly grateful for our 
projects and everything you have taught me start-
ing from scientific writing. Indeed, my friend, I 
wish that we would start new projects (or contin-
ue old ones) in near future.

I wish to thank Professor Jaakko Rinne, the 
Head of the Turku Neurosurgery, for unequaled 
arrangements for my dissertation.

Associate Professor Aki Laakso was iniating 
the implant studies. I am truly grateful that I got 
the possibility to work on this project. In ad-
dition, I want to thank you for mentoring me 
at the Helsinki Neurosurgical Department. You 
were always willing to help and support when 
needed. Furthermore, I would like to thank all 
the staff from the Helsinki Neurosurgery who 
has taught and supported me in the clinical 
path.

I would like to express my gratitude to all 
research group members from Orion Pharma. 
Especially I want to thank Tuula Ahtola-Sätilä 
and Lasse Saloranta. Their continuous support, 
teaching and reviewing was extremely valuable. 
I would also like to thank animal caregivers; it 
was a privilege to work with you. In addition, 
I want thank to Ari-Pekka Forsback from Del-
sitech for the excellent expertise in the field of 
biomaterial.

I wish to thank you Miikka Tarkia for your 
expertise on imaging and pig models that were 
crusial for our studies.

Nobuaki Matsui and Juzoh Umemori are both 
extremely talented neurobiologists. I owe you my 
sincere gratitude. Without your guidance and help, 
the labworks would have taken me years to per-
form. The payback time is when I come to visit in 
Japan.

I want to thank my medical school class Cur-
sus Pestis (suom. kulkutauti) for these interesting 
and rather long six years. Finally we all deserve to 
graduate. I wish you all the very best luck in life 
and as medical doctors.

There is also life beyond the work. I want to 
thank my old friends Hyrrä, Timppa, Saipa and 
Hannu for keeping me on the ground and alive 
(read Himos). I would also like to thank my col-
leagues and friends Joonas, Otto and Lauri for all 
the support, and all the great things we have done 
together.

Finally, my deepest and sincere gratitude 
goes to my family. My parents Terttu and Ris-
to, I am so grateful for your endless support 
and love. What ever I have done, you have been 
always there for me. My little brother Pete and 



INTRACRANIAL NIMODIPINE IMPLANT

Acknowledgements / Thesis / 

Janne Koskimäki	 53

his beautiful son Oskari owe my deepest grati-
tude. Maarit and Marjut, I want to thank you for 
your support and organization, you have made 
some impossibilities possible. Lastly, I want to 
sincerely thank my love Fredrika for everlasting 
support. Without you this thesis would not have 
been possible.

This work was financially supported by the 
University of Turku, Prof. Castrén’s laboratory 

at Helsinki Neuroscience Center, Maire Taponen 
Foundation, National Technology Agency (TE-
KES), Orion Pharma and Delsitech.

Turku, February 2015

Janne Koskimäki



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

54	 Janne Koskimäki

REFERENCES
Aboitiz F, Morales D, Montiel J (2003) The 

evolutionary origin of the mammalian 
isocortex: towards an integrated devel-
opmental and functional approach. Be-
hav Brain Sci 26:535–552; discussion 
552–585.

Abraham WC, Bear MF (1996) Metaplas-
ticity: the plasticity of synaptic plastic-
ity. Trends Neurosci 19:126–130.

Abraham WC, Williams JM (2003) Prop-
erties and mechanisms of LTP mainte-
nance. Neurosci Rev J Bringing Neuro-
biol Neurol Psychiatry 9:463–474.

Abumiya T, Fitridge R, Mazur C, et al 
(2000) Integrin alpha(IIb)beta(3) in-
hibitor preserves microvascular paten-
cy in experimental acute focal cerebral 
ischemia. Stroke J Cereb Circ 31:1402–
1409; discussion 1409–1410.

Ahn J-Y (2014) Neuroprotection signal-
ing of nuclear akt in neuronal cells. Exp 
Neurobiol 23:200–206.

Alderazi YJ, Shastri D, Kass-Hout T, et 
al (2014) Flow Diverters for Intrac-
ranial Aneurysms. Stroke Res Treat 
2014:e415653.

Alfano C, Studer M (2013) Neocortical 
arealization: evolution, mechanisms, 
and open questions. Dev Neurobiol 
73:411–447.

Alsina B, Vu T, Cohen-Cory S (2001) Vis-
ualizing synapse formation in arboriz-
ing optic axons in vivo: dynamics and 
modulation by BDNF. Nat Neurosci 
4:1093–1101. 

Andereggen L, Neuschmelting V, von 
Gunten M, et al (2014) The role of 
microclot formation in an acute suba-
rachnoid hemorrhage model in the 
rabbit. BioMed Res Int 2014:161702.

Aoki T, Kataoka H, Ishibashi R, et al 
(2009) Impact of monocyte chemoat-
tractant protein-1 deficiency on cer-
ebral aneurysm formation. Stroke J 
Cereb Circ 40:942–951.

Arai Y, Pierani A (2014) Development and 
evolution of cortical fields. Neurosci 
Res.

Arutiunov AI, Baron MA, Majorova NA 
(1974) The role of mechanical factors 
in the pathogenesis of short-term and 

prolonged spasm of the cerebral arter-
ies. J Neurosurg 40:459–472.

Asrar S, Zhou Z, Ren W, Jia Z (2009) 
Ca(2+) permeable AMPA receptor in-
duced long-term potentiation requires 
PI3/MAP kinases but not Ca/CaM-
dependent kinase II. PloS One 4:e4339.

Austin G, Fisher S, Dickson D, et al (1993) 
The significance of the extracellular 
matrix in intracranial aneurysms. Ann 
Clin Lab Sci 23:97–105.

Autio H, Mätlik K, Rantamäki T, et al 
(2011) Acetylcholinesterase inhibi-
tors rapidly activate Trk neurotrophin 
receptors in the mouse hippocampus. 
Neuropharmacology 61:1291–1296.

Bading H (2013) Nuclear calcium signal-
ling in the regulation of brain function. 
Nat Rev Neurosci 14:593–608.

Banks JL, Marotta CA (2007) Outcomes 
validity and reliability of the modified 
Rankin scale: implications for stroke 
clinical trials: a literature review and 
synthesis. Stroke J Cereb Circ 38:1091–
1096.

Barbacid M (1994) The Trk family of 
neurotrophin receptors. J Neurobiol 
25:1386–1403.

Barth M, Capelle H-H, Weidauer S, et al 
(2007) Effect of nicardipine prolonged-
release implants on cerebral vasospasm 
and clinical outcome after severe an-
eurysmal subarachnoid hemorrhage: a 
prospective, randomized, double-blind 
phase IIa study. Stroke J Cereb Circ 
38:330–336.

Barth M, Pena P, Seiz M, et al (2011) Fea-
sibility of intraventricular nicardipine 
prolonged release implants in patients 
following aneurysmal subarachnoid 
haemorrhage. Br J Neurosurg 25:677–
683.

Barth M, Thomé C, Schmiedek P, et al 
(2009) Characterization of functional 
outcome and quality of life following 
subarachnoid hemorrhage in patients 
treated with and without nicardipine 
prolonged-release implants. J Neuro-
surg 110:955–960.

Bavelier D, Levi DM, Li RW, et al (2010) 
Removing brakes on adult brain plas-
ticity: from molecular to behavioral 

interventions. J Neurosci Off J Soc 
Neurosci 30:14964–14971.

Bayatti N, Sarma S, Shaw C, et al (2008) 
Progressive loss of PAX6, TBR2, NEU-
ROD and TBR1 mRNA gradients cor-
relates with translocation of EMX2 
to the cortical plate during human 
cortical development. Eur J Neurosci 
28:1449–1456.

Bechara RG, Lyne R, Kelly AM (2013) BD-
NF-stimulated intracellular signalling 
mechanisms underlie exercise-induced 
improvement in spatial memory in the 
male Wistar rat. Behav Brain Res.

Bederson JB, Germano IM, Guarino L 
(1995) Cortical blood flow and cerebral 
perfusion pressure in a new noncrani-
otomy model of subarachnoid hemor-
rhage in the rat. Stroke J Cereb Circ 
26:1086–1091; discussion 1091–1092.

Bege N, Renette T, Endres T, et al (2013) 
In situ forming nimodipine depot sys-
tem based on microparticles for the 
treatment of posthemorrhagic cerebral 
vasospasm. Eur J Pharm Biopharm Off 
J Arbeitsgemeinschaft Für Pharm Ver-
fahrenstechnik EV 84:99–105.

Benarroch EE (2013) Microglia: Multiple 
roles in surveillance, circuit shaping, 
and response to injury. Neurology 
81:1079–1088.

Berge J, Biondi A, Machi P, et al (2012) 
Flow-diverter silk stent for the treat-
ment of intracranial aneurysms: 1-year 
follow-up in a multicenter study. AJNR 
Am J Neuroradiol 33:1150–1155.

Bernardinelli Y, Muller D, Nikonenko I 
(2014) Astrocyte-synapse structural 
plasticity. Neural Plast 2014:232105.

Bhat S, Dao DT, Terrillion CE, et al (2012) 
CACNA1C (Cav1.2) in the patho-
physiology of psychiatric disease. Prog 
Neurobiol 99:1–14.

Bjeljac M, Keller E, Regard M, Yonekawa 
Y (2002) Neurological and neuropsy-
chological outcome after SAH. Acta 
Neurochir Suppl 82:83–85.

Bliss TV, Collingridge GL (1993) A syn-
aptic model of memory: long-term po-
tentiation in the hippocampus. Nature 
361:31–39.



INTRACRANIAL NIMODIPINE IMPLANT

References / Thesis / 

Janne Koskimäki	 55

Bloodgood BL, Sabatini BL (2007) Ca(2+) 
signaling in dendritic spines. Curr 
Opin Neurobiol 17:345–351.

Blumenthal JA, Babyak MA, Doraiswamy 
PM, et al (2007) Exercise and pharma-
cotherapy in the treatment of major 
depressive disorder. Psychosom Med 
69:587–596.

Boninger ML, Wechsler LR, Stein J (2014) 
Robotics, stem cells, and brain-com-
puter interfaces in rehabilitation and 
recovery from stroke: updates and ad-
vances. Am J Phys Med Rehabil Assoc 
Acad Physiatr 93:S145–154.

Borrelli E, Nestler EJ, Allis CD, Sassone-
Corsi P (2008) Decoding the epigenetic 
language of neuronal plasticity. Neuron 
60:961–974.

Braak H, Braak E (1985) On areas of 
transition between entorhinal allocor-
tex and temporal isocortex in the hu-
man brain. Normal morphology and 
lamina-specific pathology in Alzhei-
mer’s disease. Acta Neuropathol (Berl) 
68:325–332.

Briganti F, Napoli M, Leone G, et al (2014) 
Treatment of intracranial aneurysms 
by flow diverter devices: long-term re-
sults from a single center. Eur J Radiol 
83:1683–1690.

Brinker T, Seifert V, Dietz H (1992) Cer-
ebral blood flow and intracranial pres-
sure during experimental subarach-
noid haemorrhage. Acta Neurochir 
(Wien) 115:47–52.

Brisman JL, Niimi Y, Song JK, Berenstein 
A (2005) Aneurysmal rupture during 
coiling: low incidence and good out-
comes at a single large volume center. 
Neurosurgery 57:1103–1109; discus-
sion 1103–1109.

Britz GW Flow Diversion Is Not Yet the 
Complete Package. World Neurosurg.

Brown RD, Broderick JP (2014) Unrup-
tured intracranial aneurysms: epide-
miology, natural history, management 
options, and familial screening. Lancet 
Neurol 13:393–404.

Bruno G, Todor R, Lewis I, Chyatte D 
(1998) Vascular extracellular matrix 
remodeling in cerebral aneurysms. J 
Neurosurg 89:431–440.

Bulters DO, Santarius T, Chia HL, et al 
(2011) Causes of neurological deficits 
following clipping of 200 consecutive 

ruptured aneurysms in patients with 
good-grade aneurysmal subarachnoid 
haemorrhage. Acta Neurochir (Wien) 
153:295–303.

Cahill J, Cahill WJ, Calvert JW, et al (2006) 
Mechanisms of early brain injury after 
subarachnoid hemorrhage. J Cereb 
Blood Flow Metab Off J Int Soc Cereb 
Blood Flow Metab 26:1341–1353.

Caird J, Napoli C, Taggart C, et al (2006) 
Matrix metalloproteinases 2 and 9 
in human atherosclerotic and non-
atherosclerotic cerebral aneurysms. 
Eur J Neurol Off J Eur Fed Neurol Soc 
13:1098–1105.

Calabrò RS, Reitano S, Leo A, et al (2014) 
Can robot-assisted movement train-
ing (Lokomat) improve functional 
recovery and psychological well-being 
in chronic stroke? Promising find-
ings from a case study. Funct Neurol 
29:139–141.

Calin-Jageman I, Lee A (2008) Ca(v)1 L-
type Ca2+ channel signaling complexes 
in neurons. J Neurochem 105:573–583.

Caner B, Hou J, Altay O, et al (2012) Tran-
sition of research focus from vasos-
pasm to early brain injury after suba-
rachnoid hemorrhage. J Neurochem 
123 Suppl 2:12–21.

Canham PB, Talman EA, Finlay HM, Dix-
on JG (1991) Medial collagen organiza-
tion in human arteries of the heart and 
brain by polarized light microscopy. 
Connect Tissue Res 26:121–134.

Cao Y, Zhao J, Wang S, et al (2002) Mono-
cyte chemoattractant protein-1 mRNA 
in human intracranial aneurysm walls. 
Zhonghua Yu Fang Yi Xue Za Zhi 
36:519–521.

Cardon G, Campbell J, Sharma A (2012) 
Plasticity in the developing auditory 
cortex: evidence from children with 
sensorineural hearing loss and audi-
tory neuropathy spectrum disorder. J 
Am Acad Audiol 23:396–411; quiz 495.

Castrén E (2013) Neuronal network plas-
ticity and recovery from depression. 
JAMA Psychiatry 70:983–989.

Castrén E, Elgersma Y, Maffei L, Hager-
man R (2012) Treatment of neurode-
velopmental disorders in adulthood. J 
Neurosci Off J Soc Neurosci 32:14074–
14079.

Castrén E, Hen R (2013) Neuronal plastic-
ity and antidepressant actions. Trends 
Neurosci 36:259–267.

Castrén E, Rantamäki T (2010) The role of 
BDNF and its receptors in depression 
and antidepressant drug action: Reacti-
vation of developmental plasticity. Dev 
Neurobiol 70:289–297.

Chalouhi N, Hoh BL, Hasan D (2013) 
Review of Cerebral Aneurysm For-
mation, Growth, and Rupture. Stroke 
44:3613–3622.

Changeux JP, Danchin A (1976) Selective 
stabilisation of developing synapses as 
a mechanism for the specification of 
neuronal networks. Nature 264:705–
712.

Chang WH, Kim Y-H (2013) Robot-as-
sisted Therapy in Stroke Rehabilitation. 
J Stroke 15:174–181.

Chen S, Li Q, Wu H, et al (2014) The 
harmful effects of subarachnoid hem-
orrhage on extracerebral organs. Bi-
oMed Res Int 2014:858496.

Chisholm AE, Peters S, Borich MR, et al 
(2014) Short-term Cortical Plastic-
ity Associated With Feedback-Error 
Learning After Locomotor Training in 
an Individual With Incomplete Spinal 
Cord Injury. Phys Ther.

Choi DW (1994) Calcium and excitotoxic 
neuronal injury. Ann N Y Acad Sci 
747:162–171.

Cho J-H, Kang D-H, Kim Y-W, et al (2014) 
Microembolic signal monitoring and 
the prediction of thromboembolic 
events following coil embolization of 
unruptured intracranial aneurysms: 
diffusion-weighted imaging correla-
tion. Neuroradiology.

Chollet F, Tardy J, Albucher J-F, et al 
(2011) Fluoxetine for motor recovery 
after acute ischaemic stroke (FLAME): 
a randomised placebo-controlled trial. 
Lancet Neurol 10:123–130.

Chyatte D, Bruno G, Desai S, Todor DR 
(1999) Inflammation and intracranial 
aneurysms. Neurosurgery 45:1137–
1146; discussion 1146–1147.

Ciriminna R, Fidalgo A, Pandarus V, et al 
(2013) The sol-gel route to advanced 
silica-based materials and recent ap-
plications. Chem Rev 113:6592–6620.



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

56	 Janne Koskimäki

Clarke G, Mendelow AD, Mitchell P 
(2005) Predicting the risk of rupture 
of intracranial aneurysms based on 
anatomical location. Acta Neurochir 
(Wien) 147:259–263; discussion 263.

Cohen C, Perrault G, Sanger DJ (1997) 
Assessment of the antidepressant-like 
effects of L-type voltage-dependent 
channel modulators. Behav Pharmacol 
8:629–638.

Cohen JE, Gomori JM, Moscovici S, et 
al (2014) Delayed complications after 
flow-diverter stenting: reactive in-stent 
stenosis and creeping stents. J Clin 
Neurosci Off J Neurosurg Soc Austra-
las 21:1116–1122.

Conway JE, Tamargo RJ (2001) Cocaine 
use is an independent risk factor for 
cerebral vasospasm after aneurysmal 
subarachnoid hemorrhage. Stroke J 
Cereb Circ 32:2338–2343.

Cook DJ, Kan S, Ai J, et al (2012) Cisternal 
sustained release dihydropyridines for 
subarachnoid hemorrhage. Curr Neu-
rovasc Res 9:139–148.

Cordero ME, Zvaighaft A, Muzzo S, Brun-
ser O (1982) Histological maturation 
of astroglial cells in the archicortex of 
early malnourished rats. Pediatr Res 
16:187–191.

Cotman CW, Nieto-Sampedro M (1984) 
Cell biology of synaptic plasticity. Sci-
ence 225:1287–1294.

Creed MC, Lüscher C (2013) Drug-
evoked synaptic plasticity: beyond 
metaplasticity. Curr Opin Neurobiol 
23:553–558.

Cui Y, Kataoka Y, Li QH, et al (2003) 
Targeted tissue oxidation in the cer-
ebral cortex induces local prolonged 
depolarization and cortical spreading 
depression in the rat brain. Biochem 
Biophys Res Commun 300:631–636.

Cui Y, Kataoka Y, Watanabe Y (2014) Role 
of cortical spreading depression in the 
pathophysiology of migraine. Neurosci 
Bull 30:812–822.

Czyrak A, Mogilnicka E, Maj J (1989) 
Dihydropyridine calcium channel an-
tagonists as antidepressant drugs in 
mice and rats. Neuropharmacology 
28:229–233.

Czyrak A, Mogilnicka E, Siwanowicz J, 
Maj J (1990) Some behavioral effects 
of repeated administration of calcium 

channel antagonists. Pharmacol Bio-
chem Behav 35:557–560.

Dabus G, Nogueira RG (2013) Current 
options for the management of aneu-
rysmal subarachnoid hemorrhage-in-
duced cerebral vasospasm: a compre-
hensive review of the literature. Interv 
Neurol 2:30–51.

Dandy WE (1938) Intracranial aneurysm 
of the internal carotid artery: Cured by 
operation. Ann Surg 107:654–659.

Dashti R, Hernesniemi J, Niemelä M, et 
al (2007) Microneurosurgical man-
agement of middle cerebral artery 
bifurcation aneurysms. Surg Neurol 
67:441–456.

Deák F, Lasztóczi B, Pacher P, et al (2000) 
Inhibition of voltage-gated calcium 
channels by fluoxetine in rat hip-
pocampal pyramidal cells. Neurophar-
macology 39:1029–1036.

De Jong GI, Buwalda B, Schuurman T, 
Luiten PG (1992) Synaptic plasticity in 
the dentate gyrus of aged rats is altered 
after chronic nimodipine application. 
Brain Res 596:345–348.

Dicou E (2007) Peptides other than the 
neurotrophins that can be cleaved from 
proneurotrophins: a neglected story. 
Arch Physiol Biochem 113:228–233.

Di Lieto A, Rantamäki T, Vesa L, et al 
(2012) The responsiveness of TrkB to 
BDNF and antidepressant drugs is dif-
ferentially regulated during mouse de-
velopment. PloS One 7:e32869.

Donato F, Rompani SB, Caroni P (2013) 
Parvalbumin-expressing basket-cell 
network plasticity induced by experi-
ence regulates adult learning. Nature 
504:272–276.

Dorhout Mees SM, Rinkel GJE, Feigin 
VL, et al (2007) Calcium antagonists 
for aneurysmal subarachnoid haem-
orrhage. Cochrane Database Syst Rev 
CD000277.

Dorsch N (2011) A clinical review of cer-
ebral vasospasm and delayed ischae-
mia following aneurysm rupture. Acta 
Neurochir Suppl 110:5–6.

Dorsch NW, King MT (1994) A review 
of cerebral vasospasm in aneurysmal 
subarachnoid haemorrhage Part I: In-
cidence and effects. J Clin Neurosci Off 
J Neurosurg Soc Australas 1:19–26.

Dott, N. M. (1933). Intracrainal aneu-
rysms: cerebral arterio-radiography: 
surgical treatment. Edinb. Med. J. 40, 
219–234.

Dreier JP (2011) The role of spreading 
depression, spreading depolarization 
and spreading ischemia in neurological 
disease. Nat Med 17:439–447.

Dreier JP, Ebert N, Priller J, et al (2000) 
Products of hemolysis in the suba-
rachnoid space inducing spreading 
ischemia in the cortex and focal ne-
crosis in rats: a model for delayed is-
chemic neurological deficits after suba-
rachnoid hemorrhage? J Neurosurg 
93:658–666.

Dreier JP, Major S, Manning A, et al 
(2009) Cortical spreading ischaemia is 
a novel process involved in ischaemic 
damage in patients with aneurysmal 
subarachnoid haemorrhage. Brain J 
Neurol 132:1866–1881.

Dreier JP, Windmüller O, Petzold G, et al 
(2002) Ischemia triggered by red blood 
cell products in the subarachnoid space 
is inhibited by nimodipine administra-
tion or moderate volume expansion/
hemodilution in rats. Neurosurgery 
51:1457–1465; discussion 1465–1467.

Dubovsky SL, Buzan R, Thomas M, et al 
(2001) Nicardipine improves the anti-
depressant action of ECT but does not 
improve cognition. J ECT 17:3–10.

Ellamushi HE, Grieve JP, Jäger HR, Kitch-
en ND (2001) Risk factors for the for-
mation of multiple intracranial aneu-
rysms. J Neurosurg 94:728–732.

Etminan N, Vergouwen MDI, Ilodigwe D, 
Macdonald RL (2011) Effect of phar-
maceutical treatment on vasospasm, 
delayed cerebral ischemia, and clinical 
outcome in patients with aneurysmal 
subarachnoid hemorrhage: a system-
atic review and meta-analysis. J Cereb 
Blood Flow Metab Off J Int Soc Cereb 
Blood Flow Metab 31:1443–1451.

Etminan N, Vergouwen MDI, Macdonald 
RL (2013) Angiographic vasospasm 
versus cerebral infarction as outcome 
measures after aneurysmal subarach-
noid hemorrhage. Acta Neurochir 
Suppl 115:33–40.

Fa M, Xia L, Anunu R, et al (2014) Stress 
modulation of hippocampal activity-
-spotlight on the dentate gyrus. Neuro-
biol Learn Mem 112:53–60.



INTRACRANIAL NIMODIPINE IMPLANT

References / Thesis / 

Janne Koskimäki	 57

Fagiolini M, Hensch TK (2000) Inhibitory 
threshold for critical-period activa-
tion in primary visual cortex. Nature 
404:183–186.

Farkas E, Bari F, Obrenovitch TP (2010) 
Multi-modal imaging of anoxic depo-
larization and hemodynamic changes 
induced by cardiac arrest in the rat cer-
ebral cortex. NeuroImage 51:734–742.

Fatterpekar GM, Naidich TP, Delman BN, 
et al (2002) Cytoarchitecture of the hu-
man cerebral cortex: MR microscopy 
of excised specimens at 9.4 Tesla. AJNR 
Am J Neuroradiol 23:1313–1321.

Feigin VL, Rinkel GJE, Lawes CMM, et al 
(2005) Risk factors for subarachnoid 
hemorrhage: an updated systematic re-
view of epidemiological studies. Stroke 
J Cereb Circ 36:2773–2780.

Finlay HM, McCullough L, Canham PB 
(1995) Three-dimensional collagen 
organization of human brain arteries at 
different transmural pressures. J Vasc 
Res 32:301–312.

Finlay HM, Whittaker P, Canham PB 
(1998) Collagen organization in the 
branching region of human brain arter-
ies. Stroke J Cereb Circ 29:1595–1601.

Fogelholm R, Hernesniemi J, Vapalahti 
M (1993) Impact of early surgery on 
outcome after aneurysmal subarach-
noid hemorrhage. A population-based 
study. Stroke J Cereb Circ 24:1649–
1654.

Fontanella M, Perozzo P, Ursone R, et al 
(2003) Neuropsychological assess-
ment after microsurgical clipping or 
endovascular treatment for anterior 
communicating artery aneurysm. Acta 
Neurochir (Wien) 145:867–872; dis-
cussion 872.

Forbus W: On the origin of miliary aneu-
rysms of the superficial cerebral arter-
ies. Bull Johns Hopkins Hosp. 47:239 
1930

Frank CA (2014) How voltage-gated calci-
um channels gate forms of homeostatic 
synaptic plasticity. Front Cell Neurosci 
8:40.

Friedrich V, Flores R, Muller A, Sehba FA 
(2010a) Escape of intraluminal plate-
lets into brain parenchyma after suba-
rachnoid hemorrhage. Neuroscience 
165:968–975.

Friedrich V, Flores R, Muller A, Sehba FA 
(2010b) Luminal platelet aggregates in 
functional deficits in parenchymal ves-
sels after subarachnoid hemorrhage. 
Brain Res 1354:179–187.

Frontera JA, Claassen J, Schmidt JM, et 
al (2006) Prediction of symptomatic 
vasospasm after subarachnoid hemor-
rhage: the modified fisher scale. Neu-
rosurgery 59:21–27; discussion 21–27.

Frösen J (2014) Smooth muscle cells and 
the formation, degeneration, and rup-
ture of saccular intracranial aneurysm 
wall--a review of current pathophysi-
ological knowledge. Transl Stroke Res 
5:347–356.

Frösen J, Piippo A, Paetau A, et al (2004) 
Remodeling of saccular cerebral artery 
aneurysm wall is associated with rup-
ture: histological analysis of 24 unrup-
tured and 42 ruptured cases. Stroke J 
Cereb Circ 35:2287–2293.

Frösen J, Piippo A, Paetau A, et al (2006) 
Growth factor receptor expression and 
remodeling of saccular cerebral ar-
tery aneurysm walls: implications for 
biological therapy preventing rupture. 
Neurosurgery 58:534–541; discussion 
534–541.

Frösen J, Tulamo R, Heikura T, et al (2013) 
Lipid accumulation, lipid oxidation, 
and low plasma levels of acquired anti-
bodies against oxidized lipids associate 
with degeneration and rupture of the 
intracranial aneurysm wall. Acta Neu-
ropathol Commun 1:71.

Frösen J, Tulamo R, Paetau A, et al (2012) 
Saccular intracranial aneurysm: pa-
thology and mechanisms. Acta Neuro-
pathol (Berl) 123:773–786.

Fujii M, Yan J, Rolland WB, et al (2013) 
Early brain injury, an evolving frontier 
in subarachnoid hemorrhage research. 
Transl Stroke Res 4:432–446.

Futami K, Yamashita J, Higashi S (1998) 
Do cerebral aneurysms originate at 
the site of medial defects? Microscopic 
examinations of experimental aneu-
rysms at the fenestration of the ante-
rior cerebral artery in rats. Surg Neurol 
50:141–146.

Gepdiremen A, Sönmez S, Batat I, et al 
(1997) Nimodipine improves kainic 
acid induced neurotoxicity in cerebel-
lar granular cell culture: a double-blind 

dose-response study. Fundam Clin 
Pharmacol 11:117–120.

German JW, Gross CE, Giclas P, et al 
(1996) Systemic complement deple-
tion inhibits experimental cerebral 
vasospasm. Neurosurgery 39:141–145; 
discussion 145–146.

Germans MR, Post R, Coert BA, et al 
(2013) Ultra-early tranexamic acid 
after subarachnoid hemorrhage (UL-
TRA): study protocol for a randomized 
controlled trial. Trials 14:143.

Germanwala AV, Huang J, Tamargo RJ 
(2010) Hydrocephalus after aneurys-
mal subarachnoid hemorrhage. Neuro-
surg Clin N Am 21:263–270.

Gilbert SL, Dobyns WB, Lahn BT (2005) 
Genetic links between brain develop-
ment and brain evolution. Nat Rev 
Genet 6:581–590.

Gómez-Palacio-Schjetnan A, Escobar ML 
(2013) Neurotrophins and synaptic 
plasticity. Curr Top Behav Neurosci 
15:117–136.

Gómez-Pinilla F, Ying Z, Roy RR, et al 
(2002) Voluntary exercise induces a 
BDNF-mediated mechanism that pro-
motes neuroplasticity. J Neurophysiol 
88:2187–2195.

Granger B, Tekaia F, Le Sourd AM, et al 
(1995) Tempo of neurogenesis and 
synaptogenesis in the primate cingulate 
mesocortex: comparison with the neo-
cortex. J Comp Neurol 360:363–376.

Griesbach GS, Hovda DA, Gomez-Pinilla 
F (2009) Exercise-induced improve-
ment in cognitive performance after 
traumatic brain injury in rats is de-
pendent on BDNF activation. Brain 
Res 1288:105–115.

Gruber A, Rössler K, Graninger W, et al 
(2000) Ventricular cerebrospinal fluid 
and serum concentrations of sTNFR-I, 
IL-1ra, and IL-6 after aneurysmal sub-
arachnoid hemorrhage. J Neurosurg 
Anesthesiol 12:297–306.

Guglielmi G, Viñuela F, Duckwiler G, et al 
(1992) Endovascular treatment of pos-
terior circulation aneurysms by elec-
trothrombosis using electrically de-
tachable coils. J Neurosurg 77:515–524.

Guglielmi G, Viñuela F, Sepetka I, Macel-
lari V (1991) Electrothrombosis of sac-
cular aneurysms via endovascular ap-
proach. Part 1: Electrochemical basis, 



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

58	 Janne Koskimäki

technique, and experimental results. J 
Neurosurg 75:1–7.

Guirado R, Perez-Rando M, Sanchez-
Matarredona D, et al (2014) Chronic 
fluoxetine treatment alters the struc-
ture, connectivity and plasticity of cor-
tical interneurons. Int J Neuropsychop-
harmacol Off Sci J Coll Int Neuropsy-
chopharmacol CINP 17:1635–1646.

Haley EC, Kassell NF, Torner JC (1992) 
The International Cooperative Study 
on the Timing of Aneurysm Surgery. 
The North American experience. 
Stroke J Cereb Circ 23:205–214.

Handa Y, Kubota T, Kaneko M, et al 
(1995) Expression of intercellular ad-
hesion molecule 1 (ICAM-1) on the 
cerebral artery following subarachnoid 
haemorrhage in rats. Acta Neurochir 
(Wien) 132:92–97.

Hänggi D, Beseoglu K, Turowski B, Steiger 
H-J (2008a) Feasibility and safety of 
intrathecal nimodipine on posthaem-
orrhagic cerebral vasospasm refractory 
to medical and endovascular therapy. 
Clin Neurol Neurosurg 110:784–790.

Hänggi D, Perrin J, Eicker S, et al (2012) 
Local delivery of nimodipine by pro-
longed-release microparticles-feasibili-
ty, effectiveness and dose-finding in ex-
perimental subarachnoid hemorrhage. 
PloS One 7:e42597.

Hänggi D, Turowski B, Beseoglu K, et al 
(2008b) Intra-arterial nimodipine for 
severe cerebral vasospasm after aneu-
rysmal subarachnoid hemorrhage: in-
fluence on clinical course and cerebral 
perfusion. AJNR Am J Neuroradiol 
29:1053–1060.

Hannon MJ, Behan LA, O’Brien MMC, 
et al (2014) Hyponatremia following 
mild/moderate subarachnoid hemor-
rhage is due to SIAD and glucocorti-
coid deficiency and not cerebral salt 
wasting. J Clin Endocrinol Metab 
99:291–298.

Han SM, Wan H, Kudo G, et al (2014) Mo-
lecular alterations in the hippocampus 
after experimental subarachnoid hem-
orrhage. J Cereb Blood Flow Metab 
Off J Int Soc Cereb Blood Flow Metab 
34:108–117.

Hart RG, Byer JA, Slaughter JR, et al 
(1981) Occurrence and implications of 
seizures in subarachnoid hemorrhage 

due to ruptured intracranial aneu-
rysms. Neurosurgery 8:417–421.

Hasan G, Venkiteswaran G (2010) The 
enigma of store-operated ca-entry in 
neurons: answers from the Drosophila 
flight circuit. Front Neural Circuits 
4:10.

Hashioka S, Klegeris A, McGeer PL (2012) 
Inhibition of human astrocyte and mi-
croglia neurotoxicity by calcium chan-
nel blockers. Neuropharmacology 
63:685–691.

Haug T, Sorteberg A, Sorteberg W, et al 
(2007) Cognitive outcome after an-
eurysmal subarachnoid hemorrhage: 
time course of recovery and relation-
ship to clinical, radiological, and man-
agement parameters. Neurosurgery 
60:649–656; discussion 656–657.

He L, Liu N, Cheng T, et al (2014) Con-
ditional deletion of Mecp2 in parval-
bumin-expressing GABAergic cells 
results in the absence of critical period 
plasticity. Nat Commun 5:5036.

He Z, Ostrowski RP, Sun X, et al (2012) 
Targeting C/EBP homologous protein 
with siRNA attenuates cerebral vasos-
pasm after experimental subarachnoid 
hemorrhage. Exp Neurol 238:218–224.

Hebb DO. 1949. The Organization of Be-
havior: A Neuropsychological Theory. 
New York: Wiley

Hell JW, Westenbroek RE, Warner C, et al 
(1993) Identification and differential 
subcellular localization of the neuronal 
class C and class D L-type calcium 
channel alpha 1 subunits. J Cell Biol 
123:949–962.

Hensch TK (2014) Bistable parvalbumin 
circuits pivotal for brain plasticity. Cell 
156:17–19.

Hensch TK (2005) Critical period plastic-
ity in local cortical circuits. Nat Rev 
Neurosci 6:877–888.

Hensch TK, Bilimoria PM (2012) Re-
opening Windows: Manipulating 
Critical Periods for Brain Develop-
ment. Cerebrum Dana Forum Brain 
Sci 2012:11.

Heros RC, Zervas NT, Varsos V (1983) 
Cerebral vasospasm after subarachnoid 
hemorrhage: an update. Ann Neurol 
14:599–608.

Hillman J, Fridriksson S, Nilsson O, et al 
(2002) Immediate administration of 
tranexamic acid and reduced incidence 
of early rebleeding after aneurysmal 
subarachnoid hemorrhage: a prospec-
tive randomized study. J Neurosurg 
97:771–778.

Hinzman JM, Andaluz N, Shutter LA, et al 
(2014) Inverse neurovascular coupling 
to cortical spreading depolarizations 
in severe brain trauma. Brain J Neurol.

Hippocrates: The Genuine Works of Hip-
pocrates. Translated from the Greek by 
Francis Adams with a preliminary dis-
course and annotations. 1925 William 
Wood & Co New York

Hofmann F, Flockerzi V, Kahl S, Wegener 
JW (2014) L-type CaV1.2 calcium 
channels: from in vitro findings to in 
vivo function. Physiol Rev 94:303–326.

Hop JW, Rinkel GJ, Algra A, van Gijn J 
(1997) Case-fatality rates and function-
al outcome after subarachnoid hemor-
rhage: a systematic review. Stroke J 
Cereb Circ 28:660–664.

Hua JY, Smith SJ (2004) Neural activity 
and the dynamics of central nervous 
system development. Nat Neurosci 
7:327–332.

Huang EJ, Reichardt LF (2001) Neurotro-
phins: roles in neuronal development 
and function. Annu Rev Neurosci 
24:677–736.

Huang ZJ, Kirkwood A, Pizzorusso T, et al 
(1999) BDNF regulates the maturation 
of inhibition and the critical period of 
plasticity in mouse visual cortex. Cell 
98:739–755.

Hubner P, Meron G, Kürkciyan I, et al 
(2014) Neurologic Causes of Cardiac 
Arrest and Outcomes. J Emerg Med.

Hudmon A, Schulman H, Kim J, et al 
(2005) CaMKII tethers to L-type Ca2+ 
channels, establishing a local and dedi-
cated integrator of Ca2+ signals for fa-
cilitation. J Cell Biol 171:537–547.

Hulme SR, Jones OD, Abraham WC 
(2013) Emerging roles of metaplastic-
ity in behaviour and disease. Trends 
Neurosci 36:353–362.

Hunt WE, Hess RM (1968) Surgical risk 
as related to time of intervention in 
the repair of intracranial aneurysms. J 
Neurosurg 28:14–20.



INTRACRANIAL NIMODIPINE IMPLANT

References / Thesis / 

Janne Koskimäki	 59

Hunter J. Works. London: Jas F. Palmer, 
1835.

Huttunen T, von und Zu Fraunberg M, 
Koivisto T, et al (2011) Long-term 
excess mortality of 244 familial and 
1502 sporadic one-year survivors of 
aneurysmal subarachnoid hemorrhage 
compared with a matched Eastern 
Finnish catchment population. Neuro-
surgery 68:20–27.

Inagawa T (1990) Multiple intracranial 
aneurysms in elderly patients. Acta 
Neurochir (Wien) 106:119–126.

Inagawa T, Kamiya K, Ogasawara H, Yano 
T (1987) Rebleeding of ruptured in-
tracranial aneurysms in the acute stage. 
Surg Neurol 28:93–99.

Inci S, Spetzler RF (2000) Intracranial 
aneurysms and arterial hypertension: 
a review and hypothesis. Surg Neurol 
53:530–540; discussion 540–542.

Intengan HD, Schiffrin EL (2001) Vascu-
lar remodeling in hypertension: roles 
of apoptosis, inflammation, and fibro-
sis. Hypertension 38:581–587.

Ishikawa M, Kusaka G, Yamaguchi N, et 
al (2009) Platelet and leukocyte adhe-
sion in the microvasculature at the cer-
ebral surface immediately after suba-
rachnoid hemorrhage. Neurosurgery 
64:546–553; discussion 553–554.

Jennett B, Bond M (1975) Assessment of 
outcome after severe brain damage. 
Lancet 1:480–484.

Juvela S (1989) Rebleeding from ruptured 
intracranial aneurysms. Surg Neurol 
32:323–326.

Juvela S, Hillbom M, Numminen H, Ko-
skinen P (1993) Cigarette smoking and 
alcohol consumption as risk factors 
for aneurysmal subarachnoid hemor-
rhage. Stroke J Cereb Circ 24:639–646.

Kaas JH (2005) From mice to men: the 
evolution of the large, complex human 
brain. J Biosci 30:155–165.

Kaas JH (2013) The Evolution of Brains 
from Early Mammals to Humans. 
Wiley Interdiscip Rev Cogn Sci 4:33–
45.

Kapiotis S, Sengoelge G, Sperr WR, et al 
(1996) Ibuprofen inhibits pyrogen-
dependent expression of VCAM-1 and 
ICAM-1 on human endothelial cells. 
Life Sci 58:2167–2181.

Karpova NN, Pickenhagen A, Lindholm 
J, et al (2011) Fear erasure in mice re-
quires synergy between antidepressant 
drugs and extinction training. Science 
334:1731–1734.

Karpova NN, Rantamäki T, Di Lieto A, et 
al (2010) Darkness reduces BDNF ex-
pression in the visual cortex and induc-
es repressive chromatin remodeling at 
the BDNF gene in both hippocampus 
and visual cortex. Cell Mol Neurobiol 
30:1117–1123.

Kassell NF, Sasaki T, Colohan AR, Nazar 
G (1985) Cerebral vasospasm follow-
ing aneurysmal subarachnoid hemor-
rhage. Stroke J Cereb Circ 16:562–572.

Kassell NF, Torner JC (1983) Aneurysmal 
rebleeding: a preliminary report from 
the Cooperative Aneurysm Study. 
Neurosurgery 13:479–481.

Kassell NF, Torner JC, Jane JA, et al (1990) 
The International Cooperative Study 
on the Timing of Aneurysm Surgery. 
Part 2: Surgical results. J Neurosurg 
73:37–47.

Kasuya H, Onda H, Sasahara A, et al 
(2005) Application of nicardipine pro-
longed-release implants: analysis of 97 
consecutive patients with acute suba-
rachnoid hemorrhage. Neurosurgery 
56:895–902; discussion 895–902.

Kasuya H, Onda H, Takeshita M, et al 
(2002) Efficacy and safety of nicardi-
pine prolonged-release implants for 
preventing vasospasm in humans. 
Stroke J Cereb Circ 33:1011–1015.

Kasuya H, Shimizu T (1989) Activated 
complement components C3a and C4a 
in cerebrospinal fluid and plasma fol-
lowing subarachnoid hemorrhage. J 
Neurosurg 71:741–746.

Kato HK, Watabe AM, Manabe T (2009) 
Non-Hebbian synaptic plasticity in-
duced by repetitive postsynaptic action 
potentials. J Neurosci Off J Soc Neuro-
sci 29:11153–11160.

Katz LC, Shatz CJ (1996) Synaptic activ-
ity and the construction of cortical cir-
cuits. Science 274:1133–1138.

Kawashima A, Kasuya H, Sasahara A, et 
al (2000) Prevention of cerebral va-
sospasm by nicardipine prolonged-
release implants in dogs. Neurol Res 
22:634–641.

Kawashima A, Kasuya H, Shiokawa K, 
et al (1998) [Efficacy of nicardipine 
prolonged-release pellet on cerebral 
vasospasm in dogs]. No Shinkei Geka 
26:37–43.

Kilman V, van Rossum MCW, Turrigiano 
GG (2002) Activity deprivation re-
duces miniature IPSC amplitude by 
decreasing the number of postsynaptic 
GABA(A) receptors clustered at neo-
cortical synapses. J Neurosci Off J Soc 
Neurosci 22:1328–1337.

Kim C, Cervós-Navarro J, Kikuchi H, et 
al (1993) Degenerative changes in the 
internal elastic lamina relating to the 
development of saccular cerebral aneu-
rysms in rats. Acta Neurochir (Wien) 
121:76–81.

Kim HJ, Kim TH, Choi SJ, et al (2013) 
Fluoxetine suppresses synaptically in-
duced [Ca2+]i spikes and excitotoxicity 
in cultured rat hippocampal neurons. 
Brain Res 1490:23–34.

Kim M-W, Bang M-S, Han T-R, et al 
(2005) Exercise increased BDNF and 
trkB in the contralateral hemisphere 
of the ischemic rat brain. Brain Res 
1052:16–21.

Kissela BM, Sauerbeck L, Woo D, et al 
(2002) Subarachnoid hemorrhage: 
a preventable disease with a herit-
able component. Stroke J Cereb Circ 
33:1321–1326.

Knekt P, Reunanen A, Aho K, et al (1991) 
Risk factors for subarachnoid hemor-
rhage in a longitudinal population 
study. J Clin Epidemiol 44:933–939.

Kobayashi T, Mori Y (1998) Ca2+ channel 
antagonists and neuroprotection from 
cerebral ischemia. Eur J Pharmacol 
363:1–15.

Koch OG and Koch-Dedic GA, Handbu-
ch der Spureanalyse, Springer, Berlin, 
Germany, 1974. 

Koffijberg H, Buskens E, Granath F, et al 
(2008) Subarachnoid haemorrhage in 
Sweden 1987-2002: regional incidence 
and case fatality rates. J Neurol Neuro-
surg Psychiatry 79:294–299.

Koivisto T, Vanninen R, Hurskainen H, et 
al (2000) Outcomes of early endovas-
cular versus surgical treatment of rup-
tured cerebral aneurysms. A prospec-
tive randomized study. Stroke J Cereb 
Circ 31:2369–2377.



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

60	 Janne Koskimäki

Kondo S, Hashimoto N, Kikuchi H, et al 
(1998) Apoptosis of medial smooth 
muscle cells in the development of 
saccular cerebral aneurysms in rats. 
Stroke J Cereb Circ 29:181–188; dis-
cussion 189.

Korja M, Silventoinen K, Laatikainen 
T, et al (2013) Risk factors and their 
combined effects on the incidence 
rate of subarachnoid hemorrhage--a 
population-based cohort study. PloS 
One 8:e73760.

Korja M, Silventoinen K, McCarron P, 
et al (2010) Genetic epidemiology of 
spontaneous subarachnoid hemor-
rhage: Nordic Twin Study. Stroke J 
Cereb Circ 41:2458–2462.

Kortesuo P, Ahola M, Kangas M, et al 
(2001) In vitro release of dexmedeto-
midine from silica xerogel monoliths: 
effect of sol-gel synthesis parameters. 
Int J Pharm 221:107–114.

Kretzer RM, Coon AL, Tamargo RJ (2010) 
Walter E. Dandy’s contributions to 
vascular neurosurgery. J Neurosurg 
112:1182–1191.

Krischek B, Kasuya H, Onda H, Hori T 
(2007) Nicardipine prolonged-release 
implants for preventing cerebral va-
sospasm after subarachnoid hemor-
rhage: effect and outcome in the first 
100 patients. Neurol Med Chir (Tokyo) 
47:389–394; discussion 394–396.

Kumar AB, Shi Y, Shotwell MS, et al (2014) 
Hypernatremia is a Significant Risk 
Factor for Acute Kidney Injury After 
Subarachnoid Hemorrhage: A Retro-
spective Analysis. Neurocrit Care.

Kumar V, Zhang M-X, Swank MW, et al 
(2005) Regulation of dendritic mor-
phogenesis by Ras-PI3K-Akt-mTOR 
and Ras-MAPK signaling pathways. J 
Neurosci Off J Soc Neurosci 25:11288–
11299.

Langley MS, Sorkin EM (1989) Nimodi-
pine. A review of its pharmacodynamic 
and pharmacokinetic properties, and 
therapeutic potential in cerebrovascu-
lar disease. Drugs 37:669–699.

Larsen CC, Astrup J (2013) Rebleeding 
after aneurysmal subarachnoid hemor-
rhage: a literature review. World Neu-
rosurg 79:307–312.

Larsen DD, Krubitzer L (2008) Genetic 
and epigenetic contributions to the 

cortical phenotype in mammals. Brain 
Res Bull 75:391–397.

Lauritzen M (1994) Pathophysiology of 
the migraine aura. The spreading de-
pression theory. Brain J Neurol 117 ( Pt 
1):199–210.

Lauritzen M, Dreier JP, Fabricius M, et 
al (2011) Clinical relevance of cortical 
spreading depression in neurological 
disorders: migraine, malignant stroke, 
subarachnoid and intracranial hem-
orrhage, and traumatic brain injury. J 
Cereb Blood Flow Metab Off J Int Soc 
Cereb Blood Flow Metab 31:17–35.

Laursen J, Jensen F, Mikkelsen E, Jakob-
sen P (1988) Nimodipine treatment of 
subarachnoid hemorrhage. Clin Neu-
rol Neurosurg 90:329–337.

Lazarewicz JW, Pluta R, Puka M, Salin-
ska E (1990) Diverse mechanisms of 
neuronal protection by nimodipine in 
experimental rabbit brain ischemia. 
Stroke J Cereb Circ 21:IV108–110.

Leao A a. P (1947) Further observations 
on the spreading depression of activity 
in the cerebral cortex. J Neurophysiol 
10:409–414.

Lee J-Y, He Y, Sagher O, et al (2009a) 
Activated autophagy pathway in ex-
perimental subarachnoid hemorrhage. 
Brain Res 1287:126–135.

Lee KH, Lukovits T, Friedman JA (2006) 
“Triple-H” therapy for cerebral vasos-
pasm following subarachnoid hemor-
rhage. Neurocrit Care 4:68–76.

Lee R, Kermani P, Teng KK, Hempstead 
BL (2001) Regulation of cell survival 
by secreted proneurotrophins. Science 
294:1945–1948.

Lee S-JR, Escobedo-Lozoya Y, Szatmari 
EM, Yasuda R (2009b) Activation of 
CaMKII in single dendritic spines 
during long-term potentiation. Nature 
458:299–304.

Lees KR, Bath PMW, Schellinger PD, et al 
(2012) Contemporary outcome meas-
ures in acute stroke research: choice 
of primary outcome measure. Stroke J 
Cereb Circ 43:1163–1170.

Lewin GR, Barde YA (1996) Physiology of 
the neurotrophins. Annu Rev Neurosci 
19:289–317.

Lin C-L, Dumont AS, Calisaneller T, et al 
(2005) Monoclonal antibody against E 

selectin attenuates subarachnoid hem-
orrhage-induced cerebral vasospasm. 
Surg Neurol 64:201–205; discussion 
205–206.

Lindvall P, Runnerstam M, Birgander 
R, Koskinen L-OD (2009) The Fisher 
grading correlated to outcome in pa-
tients with subarachnoid haemorrhage. 
Br J Neurosurg 23:188–192.

Linn FH, Rinkel GJ, Algra A, van Gijn 
J (1996) Incidence of subarachnoid 
hemorrhage: role of region, year, 
and rate of computed tomography: 
a meta-analysis. Stroke J Cereb Circ 
27:625–629.

Lipscombe D, Helton TD, Xu W (2004) L-
type calcium channels: the low down. J 
Neurophysiol 92:2633–2641.

Lisman J (2003) Long-term potentiation: 
outstanding questions and attempted 
synthesis. Philos Trans R Soc Lond B 
Biol Sci 358:829–842.

Lisman J, Yasuda R, Raghavachari S 
(2012) Mechanisms of CaMKII action 
in long-term potentiation. Nat Rev 
Neurosci 13:169–182.

Liu C, Zhou R, Sun S (2004) Nimodi-
pine modulates Bcl-2 and Bax mRNA 
expression after cerebral ischemia. 
J Huazhong Univ Sci Technol Med 
Sci Hua Zhong Ke Ji Xue Xue Bao Yi 
Xue Ying Wen Ban Huazhong Keji 
Daxue Xuebao Yixue Yingdewen Ban 
24:170–172.

Longstreth WT, Nelson LM, Koepsell TD, 
van Belle G (1992) Cigarette smoking, 
alcohol use, and subarachnoid hemor-
rhage. Stroke J Cereb Circ 23:1242–
1249.

Lossinsky AS, Shivers RR (2004) Struc-
tural pathways for macromolecular 
and cellular transport across the blood-
brain barrier during inflammatory 
conditions. Review. Histol Histopathol 
19:535–564.

Macdonald RL (2014) Delayed neuro-
logical deterioration after subarach-
noid haemorrhage. Nat Rev Neurol 
10:44–58.

Macdonald RL (2013) Subarachnoid hem-
orrhage and outcome. J Neurosurg 
119:603–604.

Macdonald RL, Leung M, Tice T (2012) 
Intracranial drug delivery for suba-



INTRACRANIAL NIMODIPINE IMPLANT

References / Thesis / 

Janne Koskimäki	 61

rachnoid hemorrhage. Ther Deliv 
3:91–103.

Mack WJ, Mocco J, Hoh DJ, et al (2002) 
Outcome prediction with serum in-
tercellular adhesion molecule-1 levels 
after aneurysmal subarachnoid hemor-
rhage. J Neurosurg 96:71–75.

Magee JC, Johnston D (1997) A synapti-
cally controlled, associative signal for 
Hebbian plasticity in hippocampal 
neurons. Science 275:209–213.

Maggio N, Vlachos A (2014) Synaptic 
plasticity at the interface of health and 
disease: New insights on the role of 
endoplasmic reticulum intracellular 
calcium stores. Neuroscience.

Mallamaci A, Stoykova A (2006) Gene 
networks controlling early cerebral 
cortex arealization. Eur J Neurosci 
23:847–856.

Marquez-Romero JM, Arauz A, Ruiz-
Sandoval JL, et al (2013) Fluoxetine 
for motor recovery after acute intrac-
erebral hemorrhage (FMRICH): study 
protocol for a randomized, double-
blind, placebo-controlled, multicenter 
trial. Trials 14:77.

Mathiesen T, Edner G, Ulfarsson E, An-
dersson B (1997) Cerebrospinal fluid 
interleukin-1 receptor antagonist and 
tumor necrosis factor-alpha following 
subarachnoid hemorrhage. J Neuro-
surg 87:215–220.

Mattson MP (2007) Calcium and neuro-
degeneration. Aging Cell 6:337–350.

Maya Vetencourt JF, Sale A, Viegi A, et al 
(2008) The antidepressant fluoxetine 
restores plasticity in the adult visual 
cortex. Science 320:385–388.

Mehta AK, Yadav KS, Sawant KK (2007) 
Nimodipine loaded PLGA nanoparti-
cles: formulation optimization using 
factorial design, characterization and 
in vitro evaluation. Curr Drug Deliv 
4:185–193.

Mehta V, Holness RO, Connolly K, et al 
(1996) Acute hydrocephalus follow-
ing aneurysmal subarachnoid hemor-
rhage. Can J Neurol Sci J Can Sci Neu-
rol 23:40–45.

Menei P, Daniel V, Montero-Menei C, et 
al (1993) Biodegradation and brain 
tissue reaction to poly(D,L-lactide-co-
glycolide) microspheres. Biomaterials 
14:470–478.

Milhorat TH (1987) Acute hydrocephalus 
after aneurysmal subarachnoid hemor-
rhage. Neurosurgery 20:15–20.

Ming G-L, Song H (2011) Adult neuro-
genesis in the mammalian brain: sig-
nificant answers and significant ques-
tions. Neuron 70:687–702.

Minichiello L (2009) TrkB signalling path-
ways in LTP and learning. Nat Rev 
Neurosci 10:850–860.

Mirbagheri MM, Ness LL, Patel C, et al 
(2011) The effects of Robotic-Assisted 
Locomotor training on spasticity and 
volitional control. IEEE Int Conf Reha-
bil Robot Proc 2011:5975443.

Mogilnicka E, Czyrak A, Maj J (1987) Di-
hydropyridine calcium channel antag-
onists reduce immobility in the mouse 
behavioral despair test; antidepressants 
facilitate nifedipine action. Eur J Phar-
macol 138:413–416.

Molyneux AJ, Kerr RSC, Yu L-M, et al 
(2005) International subarachnoid an-
eurysm trial (ISAT) of neurosurgical 
clipping versus endovascular coiling 
in 2143 patients with ruptured intrac-
ranial aneurysms: a randomised com-
parison of effects on survival, depend-
ency, seizures, rebleeding, subgroups, 
and aneurysm occlusion. Lancet 
366:809–817.

Morishita H, Miwa JM, Heintz N, Hensch 
TK (2010) Lynx1, a cholinergic brake, 
limits plasticity in adult visual cortex. 
Science 330:1238–1240.

Morris GP, Clark IA, Zinn R, Vissel 
B (2013) Microglia: a new frontier 
for synaptic plasticity, learning and 
memory, and neurodegenerative dis-
ease research. Neurobiol Learn Mem 
105:40–53.

Mozzachiodi R, Byrne JH (2010) More 
than synaptic plasticity: role of non-
synaptic plasticity in learning and 
memory. Trends Neurosci 33:17–26.

Muench E, Horn P, Bauhuf C, et al (2007) 
Effects of hypervolemia and hyperten-
sion on regional cerebral blood flow, 
intracranial pressure, and brain tissue 
oxygenation after subarachnoid hem-
orrhage. Crit Care Med 35:1844–1851; 
quiz 1852.

Murakoshi H, Wang H, Yasuda R (2011) 
Local, persistent activation of Rho GT-
Pases during plasticity of single den-
dritic spines. Nature 472:100–104.

Nagahara AH, Tuszynski MH (2011) Po-
tential therapeutic uses of BDNF in 
neurological and psychiatric disorders. 
Nat Rev Drug Discov 10:209–219.

Nakamura H, Strong AJ, Dohmen C, et al 
(2010) Spreading depolarizations cycle 
around and enlarge focal ischaemic 
brain lesions. Brain J Neurol 133:1994–
2006.

Nau R, Haase S, Bunkowski S, Brück W 
(2002) Neuronal apoptosis in the den-
tate gyrus in humans with subarach-
noid hemorrhage and cerebral hypoxia. 
Brain Pathol Zurich Switz 12:329–336.

Ng WH, Moochhala S, Yeo TT, et al (2001) 
Nitric oxide and subarachnoid hemor-
rhage: elevated level in cerebrospinal 
fluid and their implications. Neurosur-
gery 49:622–626; discussion 626–627.

Nibbelink DW, Torner JC, Henderson WG 
(1975) Intracranial aneurysms and 
subarachnoid hemorrhage. A coop-
erative study. Antifibrinolytic therapy 
in recent onset subarachnoid hemor-
rhage. Stroke J Cereb Circ 6:622–629.

Nibuya M, Morinobu S, Duman RS (1995) 
Regulation of BDNF and trkB mRNA 
in rat brain by chronic electroconvul-
sive seizure and antidepressant drug 
treatments. J Neurosci Off J Soc Neu-
rosci 15:7539–7547.

Nicoll RA, Roche KW (2013) Long-term 
potentiation: peeling the onion. Neu-
ropharmacology 74:18–22.

Nieuwenhuys R (2012) The insular cortex: 
a review. Prog Brain Res 195:123–163.

Nieuwkamp DJ, de Wilde A, Wermer 
MJH, et al (2014) Long-term outcome 
after aneurysmal subarachnoid hem-
orrhage-risks of vascular events, death 
from cancer and all-cause death. J Neu-
rol 261:309–315.

Nornes H (1973) The role of intracranial 
pressure in the arrest of hemorrhage in 
patients with ruptured intracranial an-
eurysm. J Neurosurg 39:226–234.

Nornes H, Magnaes B (1972) Intracranial 
pressure in patients with ruptured sac-
cular aneurysm. J Neurosurg 36:537–
547.

Northcutt RG, Kaas JH (1995) The emer-
gence and evolution of mammalian ne-
ocortex. Trends Neurosci 18:373–379.



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

62	 Janne Koskimäki

Nuglisch J, Karkoutly C, Mennel HD, et al 
(1990) Protective effect of nimodipine 
against ischemic neuronal damage in 
rat hippocampus without changing 
postischemic cerebral blood flow. J 
Cereb Blood Flow Metab Off J Int Soc 
Cereb Blood Flow Metab 10:654–659.

Ochs S, Hunt K (1960) Apical dendrites 
and propagation of spreading depres-
sion in cerebral cortex. J Neurophysiol 
23:432–444.

O’Connor KL, Westover MB, Phillips MT, 
et al (2014) High Risk for Seizures 
Following Subarachnoid Hemorrhage 
Regardless of Referral Bias. Neurocrit 
Care.

Ohkuma H, Fujita S, Suzuki S (2002) 
Incidence of aneurysmal subarach-
noid hemorrhage in Shimokita, Japan, 
from 1989 to 1998. Stroke J Cereb Circ 
33:195–199.

Ohman J, Heiskanen O (1989) Timing of 
operation for ruptured supratentorial 
aneurysms: a prospective randomized 
study. J Neurosurg 70:55–60.

Olafsson E, Hauser WA, Gudmundsson 
G (1997) A population-based study 
of prognosis of ruptured cerebral an-
eurysm: mortality and recurrence of 
subarachnoid hemorrhage. Neurology 
48:1191–1195.

Olson-Manning CF, Wagner MR, Mitch-
ell-Olds T (2012) Adaptive evolu-
tion: evaluating empirical support for 
theoretical predictions. Nat Rev Genet 
13:867–877.

Osawa M, Hongo K, Tanaka Y, et al (2001) 
Results of direct surgery for aneurys-
mal subarachnoid haemorrhage: out-
come of 2055 patients who underwent 
direct aneurysm surgery and profile of 
ruptured intracranial aneurysms. Acta 
Neurochir (Wien) 143:655–663; dis-
cussion 663–664.

Ota Y, Zanetti AT, Hallock RM (2013) The 
role of astrocytes in the regulation of 
synaptic plasticity and memory forma-
tion. Neural Plast 2013:185463.

Paaby AB, Rockman MV (2014) Cryptic 
genetic variation: evolution’s hidden 
substrate. Nat Rev Genet 15:247–258.

Paakinaho K, Heino H, Väisänen J, et 
al (2011) Effects of lactide mono-
mer on the hydrolytic degradation of 
poly(lactide-co-glycolide) 85L/15G. 

J Mech Behav Biomed Mater 4:1283–
1290.

Pakarinen S (1967) Incidence, aetiology, 
and prognosis of primary subarach-
noid haemorrhage. A study based on 
589 cases diagnosed in a defined urban 
population during a defined period. 
Acta Neurol Scand 43:Suppl 29:1–28.

Pang PT, Teng HK, Zaitsev E, et al (2004) 
Cleavage of proBDNF by tPA/plasmin 
is essential for long-term hippocampal 
plasticity. Science 306:487–491.

Park H, Poo M (2013) Neurotrophin 
regulation of neural circuit develop-
ment and function. Nat Rev Neurosci 
14:7–23.

Pavlides C, Watanabe Y, McEwen BS 
(1993) Effects of glucocorticoids on 
hippocampal long-term potentiation. 
Hippocampus 3:183–192.

Pentimalli L, Modesti A, Vignati A, et al 
(2004) Role of apoptosis in intracra-
nial aneurysm rupture. J Neurosurg 
101:1018–1025.

Perea G, Araque A (2010) GLIA modu-
lates synaptic transmission. Brain Res 
Rev 63:93–102.

Peschillo S, Delfini R (2012) Endovascular 
neurosurgery in Europe and in Italy: 
what is in the future? World Neurosurg 
77:248–251.

Pickard JD, Murray GD, Illingworth R, 
et al (1989) Effect of oral nimodipine 
on cerebral infarction and outcome 
after subarachnoid haemorrhage: Brit-
ish aneurysm nimodipine trial. BMJ 
298:636–642.

Pietrobon D, Moskowitz MA (2014) Cha-
os and commotion in the wake of cor-
tical spreading depression and spread-
ing depolarizations. Nat Rev Neurosci 
15:379–393.

Piilgaard H, Lauritzen M (2009) Persis-
tent increase in oxygen consumption 
and impaired neurovascular coupling 
after spreading depression in rat neo-
cortex. J Cereb Blood Flow Metab Off 
J Int Soc Cereb Blood Flow Metab 
29:1517–1527.

Pirttimaki TM, Parri HR (2013) Astrocyte 
plasticity: implications for synaptic 
and neuronal activity. Neurosci Rev J 
Bringing Neurobiol Neurol Psychiatry 
19:604–615.

Pluta RM, Hansen-Schwartz J, Dreier J, et 
al (2009) Cerebral vasospasm follow-
ing subarachnoid hemorrhage: time 
for a new world of thought. Neurol Res 
31:151–158.

Pobereskin LH (2001) Incidence and 
outcome of subarachnoid haemor-
rhage: a retrospective population based 
study. J Neurol Neurosurg Psychiatry 
70:340–343.

Poulsen FR, Lauterborn J, Zimmer J, Gall 
CM (2004) Differential expression 
of brain-derived neurotrophic factor 
transcripts after pilocarpine-induced 
seizure-like activity is related to mode 
of Ca2+ entry. Neuroscience 126:665–
676.

Pradilla G, Thai Q-A, Legnani FG, et al 
(2005) Local delivery of ibuprofen via 
controlled-release polymers prevents 
angiographic vasospasm in a monkey 
model of subarachnoid hemorrhage. 
Neurosurgery 57:184–190; discussion 
184–190.

Prunell GF, Svendgaard N-A, Alkass K, 
Mathiesen T (2005) Delayed cell death 
related to acute cerebral blood flow 
changes following subarachnoid hem-
orrhage in the rat brain. J Neurosurg 
102:1046–1054.

Puelles L (2011) Pallio-pallial tangential 
migrations and growth signaling: new 
scenario for cortical evolution? Brain 
Behav Evol 78:108–127.

Quinn TJ, Dawson J, Walters MR, Lees KR 
(2009) Exploring the reliability of the 
modified rankin scale. Stroke J Cereb 
Circ 40:762–766.

Quintanar-Guerrero D, Ganem-Quinta-
nar A, Nava-Arzaluz MG, Piñón-Seg-
undo E (2009) Silica xerogels as phar-
maceutical drug carriers. Expert Opin 
Drug Deliv 6:485–498.

Rankin J (1957) Cerebral vascular acci-
dents in patients over the age of 60. II. 
Prognosis. Scott Med J 2:200–215.

Rantamäki T, Hendolin P, Kankaanpää A, 
et al (2007) Pharmacologically diverse 
antidepressants rapidly activate brain-
derived neurotrophic factor recep-
tor TrkB and induce phospholipase-
Cgamma signaling pathways in mouse 
brain. Neuropsychopharmacol Off 
Publ Am Coll Neuropsychopharmacol 
32:2152–2162.



INTRACRANIAL NIMODIPINE IMPLANT

References / Thesis / 

Janne Koskimäki	 63

Rantamäki T, Vesa L, Antila H, et al 
(2011) Antidepressant drugs transac-
tivate TrkB neurotrophin receptors in 
the adult rodent brain independently 
of BDNF and monoamine transporter 
blockade. PloS One 6:e20567.

Reep R (1984) Relationship between pre-
frontal and limbic cortex: a compara-
tive anatomical review. Brain Behav 
Evol 25:5–80.

Reid KH, Marrannes R, Wauquier A 
(1988) Spreading depression and cen-
tral nervous system pharmacology. J 
Pharmacol Methods 19:1–21.

Remy S, Spruston N (2007) Dendritic 
spikes induce single-burst long-term 
potentiation. Proc Natl Acad Sci U S A 
104:17192–17197.

Ricci A, Sabbatini M, Tomassoni D, et al 
(2002) Neuronal populations of rat 
cerebral cortex and hippocampus ex-
pressed a higher density of L-type Ca 
2+ channel than corresponding cer-
ebral vessels. Clin Exp Hypertens N Y 
N 1993 24:715–726.

Rinkel GJ, Djibuti M, Algra A, van Gijn J 
(1998) Prevalence and risk of rupture 
of intracranial aneurysms: a systematic 
review. Stroke J Cereb Circ 29:251–256.

Rinne J, Hernesniemi J, Puranen M, 
Saari T (1994) Multiple intracranial 
aneurysms in a defined population: 
prospective angiographic and clinical 
study. Neurosurgery 35:803–808.

Rittirsch D, Flierl MA, Ward PA (2008) 
Harmful molecular mechanisms in 
sepsis. Nat Rev Immunol 8:776–787.

Ronkainen A, Niskanen M, Rinne J, et al 
(2001) Evidence for excess long-term 
mortality after treated subarachnoid 
hemorrhage. Stroke J Cereb Circ 
32:2850–2853.

Rosen DS, Macdonald RL (2005) Suba-
rachnoid hemorrhage grading scales: 
a systematic review. Neurocrit Care 
2:110–118.

Rosengart AJ, Schultheiss KE, Tolentino J, 
Macdonald RL (2007) Prognostic fac-
tors for outcome in patients with an-
eurysmal subarachnoid hemorrhage. 
Stroke J Cereb Circ 38:2315–2321.

Rowe AJ, Finlay HM, Canham PB (2003) 
Collagen biomechanics in cerebral 
arteries and bifurcations assessed by 

polarizing microscopy. J Vasc Res 
40:406–415.

Rutherford LC, DeWan A, Lauer HM, 
Turrigiano GG (1997) Brain-derived 
neurotrophic factor mediates the activ-
ity-dependent regulation of inhibition 
in neocortical cultures. J Neurosci Off 
J Soc Neurosci 17:4527–4535.

Saarelainen T, Hendolin P, Lucas G, et al 
(2003) Activation of the TrkB neuro-
trophin receptor is induced by anti-
depressant drugs and is required for 
antidepressant-induced behavioral 
effects. J Neurosci Off J Soc Neurosci 
23:349–357.

Sabatino G, Rigante L, Minella D, et al 
(2013) Transcriptional profile charac-
terization for the identification of pe-
ripheral blood biomarkers in patients 
with cerebral aneurysms. J Biol Regul 
Homeost Agents 27:729–738.

Sabri M, Ai J, Lakovic K, et al (2012) 
Mechanisms of microthrombi forma-
tion after experimental subarachnoid 
hemorrhage. Neuroscience 224:26–37.

Saito R, Graf R, Hübel K, et al (1997) 
Reduction of infarct volume by halo-
thane: effect on cerebral blood flow 
or perifocal spreading depression-like 
depolarizations. J Cereb Blood Flow 
Metab Off J Int Soc Cereb Blood Flow 
Metab 17:857–864.

Sale A, Maya Vetencourt JF, Medini P, et 
al (2007) Environmental enrichment in 
adulthood promotes amblyopia recov-
ery through a reduction of intracortical 
inhibition. Nat Neurosci 10:679–681.

Sale P, Mazzoleni S, Lombardi V, et al 
(2014) Recovery of hand function with 
robot-assisted therapy in acute stroke 
patients: a randomized-controlled trial. 
Int J Rehabil Res Int Z Für Rehabil Rev 
Int Rech Réadapt 37:236–242.

Saliba RS, Michels G, Jacob TC, et al 
(2007) Activity-dependent ubiquitina-
tion of GABA(A) receptors regulates 
their accumulation at synaptic sites. J 
Neurosci Off J Soc Neurosci 27:13341–
13351.

Samra SK, Giordani B, Caveney AF, et al 
(2007) Recovery of cognitive function 
after surgery for aneurysmal subarach-
noid hemorrhage. Stroke J Cereb Circ 
38:1864–1872.

Sandvei MS, Romundstad PR, Müller TB, 
et al (2009) Risk factors for aneurysmal 

subarachnoid hemorrhage in a pro-
spective population study: the HUNT 
study in Norway. Stroke J Cereb Circ 
40:1958–1962.

Santiago-Dieppa DR, Pannell JS, Khalessi 
AA (2014) Endovascular and Surgical 
Options for Ruptured Middle Cerebral 
Artery Aneurysms: Review of the Lit-
erature. Stroke Res Treat 2014:e315906.

Sarti C, Tuomilehto J, Salomaa V, et al 
(1991) Epidemiology of subarachnoid 
hemorrhage in Finland from 1983 to 
1985. Stroke J Cereb Circ 22:848–853.

Sasahara A, Kasuya H, Kawashima A, et 
al (2000) [The efficacy and safety of the 
nicardipine prolonged-release implant 
in a canine double hemorrhage model]. 
No Shinkei Geka 28:1071–1075.

Säveland H, Hillman J, Brandt L, et al 
(1992) Overall outcome in aneurysmal 
subarachnoid hemorrhage. A prospec-
tive study from neurosurgical units in 
Sweden during a 1-year period. J Neu-
rosurg 76:729–734.

Sayama CM, Liu JK, Couldwell WT 
(2006) Update on endovascular thera-
pies for cerebral vasospasm induced 
by aneurysmal subarachnoid hemor-
rhage. Neurosurg Focus 21:E12.

Scheller K, Scheller C (2012) Nimodipine 
promotes regeneration of peripheral 
facial nerve function after traumatic 
injury following maxillofacial surgery: 
an off label pilot-study. J Cranio-Maxil-
lo-fac Surg Off Publ Eur Assoc Cranio-
Maxillo-fac Surg 40:427–434.

Schneider UC, Dreher S, Hoffmann K-T, 
et al (2011) The use of nicardipine pro-
longed release implants (NPRI) in mi-
crosurgical clipping after aneurysmal 
subarachnoid haemorrhage: compari-
son with endovascular treatment. Acta 
Neurochir (Wien) 153:2119–2125.

Segal RA, Bhattacharyya A, Rua LA, et al 
(1996) Differential utilization of Trk 
autophosphorylation sites. J Biol Chem 
271:20175–20181.

Sehba FA, Bederson JB (2011) Nitric oxide 
in early brain injury after subarachnoid 
hemorrhage. Acta Neurochir Suppl 
110:99–103.

Sehba FA, Hou J, Pluta RM, Zhang JH 
(2012) The importance of early brain 
injury after subarachnoid hemorrhage. 
Prog Neurobiol 97:14–37.



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

64	 Janne Koskimäki

Sehba FA, Mostafa G, Friedrich V, Beder-
son JB (2005) Acute microvascular 
platelet aggregation after subarachnoid 
hemorrhage. J Neurosurg 102:1094–
1100.

Sehba FA, Mostafa G, Knopman J, et al 
(2004) Acute alterations in microvas-
cular basal lamina after subarachnoid 
hemorrhage. J Neurosurg 101:633–640.

Sehba FA, Pluta RM, Zhang JH (2011) 
Metamorphosis of subarachnoid hem-
orrhage research: from delayed vasos-
pasm to early brain injury. Mol Neuro-
biol 43:27–40.

Sehba FA, Schwartz AY, Chereshnev I, 
Bederson JB (2000) Acute decrease in 
cerebral nitric oxide levels after suba-
rachnoid hemorrhage. J Cereb Blood 
Flow Metab Off J Int Soc Cereb Blood 
Flow Metab 20:604–611.

Seitz I, Dirnagl U, Lindauer U (2004) Im-
paired vascular reactivity of isolated 
rat middle cerebral artery after cortical 
spreading depression in vivo. J Cereb 
Blood Flow Metab Off J Int Soc Cereb 
Blood Flow Metab 24:526–530.

Shah PP, Szaflarski JP, Allendorfer J, Ham-
ilton RH (2013) Induction of neuro-
plasticity and recovery in post-stroke 
aphasia by non-invasive brain stimula-
tion. Front Hum Neurosci 7:888.

Sheldon S, Macdonald RL, Schweizer TA 
(2012) Free recall memory perfor-
mance after aneurysmal subarachnoid 
hemorrhage. J Int Neuropsychol Soc 
JINS 18:334–342.

Shen J, Pan J-W, Fan Z-X, et al (2013) Dis-
sociation of vasospasm-related mor-
bidity and outcomes in patients with 
aneurysmal subarachnoid hemorrhage 
treated with clazosentan: a meta-anal-
ysis of randomized controlled trials. J 
Neurosurg 119:180–189.

Shiba M, Suzuki H, Fujimoto M, et al 
(2013) Role of platelet-derived growth 
factor in cerebral vasospasm after 
subarachnoid hemorrhage in rats. Acta 
Neurochir Suppl 115:219–223.

Shiokawa K, Kasuya H, Miyajima M, et al 
(1998) Prophylactic effect of papaver-
ine prolonged-release pellets on cer-
ebral vasospasm in dogs. Neurosurgery 
42:109–115; discussion 115–116.

Shive MS, Anderson JM (1997) Biodeg-
radation and biocompatibility of PLA 

and PLGA microspheres. Adv Drug 
Deliv Rev 28:5–24.

Simovic S, Ghouchi-Eskandar N, Sinn 
AM, et al (2011) Silica materials in 
drug delivery applications. Curr Drug 
Discov Technol 8:269–276.

Sinnegger-Brauns MJ, Hetzenauer A, Hu-
ber IG, et al (2004) Isoform-specific 
regulation of mood behavior and pan-
creatic beta cell and cardiovascular 
function by L-type Ca 2+ channels. J 
Clin Invest 113:1430–1439.

Smart IH (1984) Histogenesis of the mes-
ocortical area of the mouse telencepha-
lon. J Anat 138 ( Pt 3):537–552.

Smith JF, Canham PB, Starkey J (1981) 
Orientation of collagen in the tunica 
adventitia of the human cerebral ar-
tery measured with polarized light and 
the universal stage. J Ultrastruct Res 
77:133–145.

Sorkin GC, Dumont TM, Eller JL, et al 
(2014) Cerebrovascular neurosurgery 
in evolution: the endovascular para-
digm. Neurosurgery 74 Suppl 1:S191–
197.

Spolidoro M, Baroncelli L, Putignano E, 
et al (2011) Food restriction enhances 
visual cortex plasticity in adulthood. 
Nat Commun 2:320.

Starke RM, Chalouhi N, Ali MS, et al 
(2013) Endovascular treatment of very 
small ruptured intracranial aneurysms: 
complications, occlusion rates and pre-
diction of outcome. J Neurointerven-
tional Surg 5 Suppl 3:iii66–71.

Starke RM, Connolly ES, Participants in 
the International Multi-Disciplinary 
Consensus Conference on the Critical 
Care Management of Subarachnoid 
Hemorrhage (2011) Rebleeding after 
aneurysmal subarachnoid hemor-
rhage. Neurocrit Care 15:241–246.

Starke RM, Raper DMS, Ding D, et al 
(2014) Tumor necrosis factor-α modu-
lates cerebral aneurysm formation and 
rupture. Transl Stroke Res 5:269–277.

Stegmayr B, Eriksson M, Asplund K 
(2004) Declining mortality from 
subarachnoid hemorrhage: changes in 
incidence and case fatality from 1985 
through 2000. Stroke J Cereb Circ 
35:2059–2063.

Stehbens WE (1989) Etiology of intrac-
ranial berry aneurysms. J Neurosurg 
70:823–831.

Stein SC, Browne KD, Chen X-H, et al 
(2006) Thromboembolism and delayed 
cerebral ischemia after subarachnoid 
hemorrhage: an autopsy study. Neu-
rosurgery 59:781–787; discussion 
787–788.

Stienen MN, Smoll NR, Weisshaupt R, et 
al (2014) Delayed cerebral ischemia 
predicts neurocognitive impairment 
following aneurysmal subarachnoid 
hemorrhage. World Neurosurg.

Suzuki K, Izumi M (2014) The incidence 
of hemorrhagic stroke in Japan is twice 
compared with western countries: the 
Akita stroke registry. Neurol Sci Off J 
Ital Neurol Soc Ital Soc Clin Neuro-
physiol.

Suzuki S, Kimura M, Souma M, et al 
(1990) Cerebral microthrombosis in 
symptomatic cerebral vasospasm--a 
quantitative histological study in au-
topsy cases. Neurol Med Chir (Tokyo) 
30:309–316.

Swanwick CC, Murthy NR, Kapur J (2006) 
Activity-dependent scaling of GABAe-
rgic synapse strength is regulated by 
brain-derived neurotrophic factor. Mol 
Cell Neurosci 31:481–492.

Szabó C, Dawson VL (1998) Role of 
poly(ADP-ribose) synthetase in in-
flammation and ischaemia-reperfu-
sion. Trends Pharmacol Sci 19:287–
298.

Takagi Y, Ishikawa M, Nozaki K, et al 
(2002) Increased expression of phos-
phorylated c-Jun amino-terminal 
kinase and phosphorylated c-Jun in 
human cerebral aneurysms: role of the 
c-Jun amino-terminal kinase/c-Jun 
pathway in apoptosis of vascular walls. 
Neurosurgery 51:997–1002; discussion 
1002–1004.

Tanaka T, Saito H, Matsuki N (1997) In-
hibition of GABAA synaptic responses 
by brain-derived neurotrophic factor 
(BDNF) in rat hippocampus. J Neuro-
sci Off J Soc Neurosci 17:2959–2966.

Tang C, Zhang T-S, Zhou L-F (2014) Risk 
factors for rebleeding of aneurysmal 
subarachnoid hemorrhage: a meta-
analysis. PloS One 9:e99536.

Tao HW, Li Y-T, Zhang LI (2014) Forma-
tion of excitation-inhibition balance: 



INTRACRANIAL NIMODIPINE IMPLANT

References / Thesis / 

Janne Koskimäki	 65

inhibition listens and changes its tune. 
Trends Neurosci 37:528–530.

Taragano FE, Allegri R, Vicario A, et al 
(2001) A double blind, randomized 
clinical trial assessing the efficacy and 
safety of augmenting standard antide-
pressant therapy with nimodipine in 
the treatment of “vascular depression.” 
Int J Geriatr Psychiatry 16:254–260.

Taragano FE, Bagnatti P, Allegri RF (2005) 
A double-blind, randomized clinical 
trial to assess the augmentation with 
nimodipine of antidepressant therapy 
in the treatment of “vascular depres-
sion.” Int Psychogeriatr IPA 17:487–
498.

Teng HK, Teng KK, Lee R, et al (2005) 
ProBDNF induces neuronal apoptosis 
via activation of a receptor complex of 
p75NTR and sortilin. J Neurosci Off J 
Soc Neurosci 25:5455–5463.

Toyoizumi T, Miyamoto H, Yazaki-Sug-
iyama Y, et al (2013) A theory of the 
transition to critical period plasticity: 
inhibition selectively suppresses spon-
taneous activity. Neuron 80:51–63.

Treggiari MM, Deem S (2009) Which H is 
the most important in triple-H therapy 
for cerebral vasospasm? Curr Opin 
Crit Care 15:83–86.

Trompetto C, Marinelli L, Mori L, et 
al (2013) Postactivation depression 
changes after robotic-assisted gait 
training in hemiplegic stroke patients. 
Gait Posture 38:729–733.

Tulamo R, Frösen J, Hernesniemi J, Nie-
melä M (2010a) Inflammatory changes 
in the aneurysm wall: a review. J Neu-
rointerventional Surg 2:120–130.

Tulamo R, Frösen J, Junnikkala S, et al 
(2006) Complement activation associ-
ates with saccular cerebral artery an-
eurysm wall degeneration and rupture. 
Neurosurgery 59:1069–1076; discus-
sion 1076–1077.

Tulamo R, Frösen J, Junnikkala S, et al 
(2010b) Complement system becomes 
activated by the classical pathway in in-
tracranial aneurysm walls. Lab Investig 
J Tech Methods Pathol 90:168–179.

UCAS Japan Investigators, Morita A, Kiri-
no T, et al (2012) The natural course 
of unruptured cerebral aneurysms 
in a Japanese cohort. N Engl J Med 
366:2474–2482.

Uutela M, Lindholm J, Rantamäki T, et 
al (2014) Distinctive behavioral and 
cellular responses to fluoxetine in the 
mouse model for Fragile X syndrome. 
Front Cell Neurosci 8:150.

Van den Berg JS, Limburg M, Pals G, et 
al (1997) Some patients with intrac-
ranial aneurysms have a reduced type 
III/type I collagen ratio. A case-control 
study. Neurology 49:1546–1551.

Van Gijn J, Kerr RS, Rinkel GJE (2007) 
Subarachnoid haemorrhage. Lancet 
369:306–318.

Veerbeek JM, van Wegen E, van Peppen 
R, et al (2014) What is the evidence 
for physical therapy poststroke? A sys-
tematic review and meta-analysis. PloS 
One 9:e87987.

Vergouwen MDI, Etminan N, Ilodigwe 
D, Macdonald RL (2011) Lower inci-
dence of cerebral infarction correlates 
with improved functional outcome 
after aneurysmal subarachnoid hem-
orrhage. J Cereb Blood Flow Metab 
Off J Int Soc Cereb Blood Flow Metab 
31:1545–1553.

Vergouwen MDI, Vermeulen M, Coert 
BA, et al (2008) Microthrombosis af-
ter aneurysmal subarachnoid hemor-
rhage: an additional explanation for 
delayed cerebral ischemia. J Cereb 
Blood Flow Metab Off J Int Soc Cereb 
Blood Flow Metab 28:1761–1770.

Vernadakis A (1996) Glia-neuron inter-
communications and synaptic plastic-
ity. Prog Neurobiol 49:185–214.

Vlak MH, Algra A, Brandenburg R, Rin-
kel GJ (2011) Prevalence of unruptured 
intracranial aneurysms, with emphasis 
on sex, age, comorbidity, country, and 
time period: a systematic review and 
meta-analysis. Lancet Neurol 10:626–
636.

Vyas A, Saha B, Lai E, Tole S (2003) Pale-
ocortex is specified in mice in which 
dorsal telencephalic patterning is 
severely disrupted. J Comp Neurol 
466:545–553.

Wahl M, Lauritzen M, Schilling L (1987) 
Change of cerebrovascular reactivity 
after cortical spreading depression in 
cats and rats. Brain Res 411:72–80.

Wang Q, Ren J, Morgan S, et al (2014) 
Monocyte chemoattractant protein-1 
(MCP-1) regulates macrophage cyto-

toxicity in abdominal aortic aneurysm. 
PloS One 9:e92053.

Wermer MJH, Greebe P, Algra A, Rinkel 
GJE (2009) Long-term mortality and 
vascular event risk after aneurysmal 
subarachnoid haemorrhage. J Neurol 
Neurosurg Psychiatry 80:1399–1401.

Wermer MJH, Kool H, Albrecht KW, et 
al (2007) Subarachnoid hemorrhage 
treated with clipping: long-term ef-
fects on employment, relationships, 
personality, and mood. Neurosurgery 
60:91–97; discussion 97–98.

West AE, Greenberg ME (2011) Neuronal 
activity-regulated gene transcription 
in synapse development and cognitive 
function. Cold Spring Harb Perspect 
Biol.

Wiebers DO, Whisnant JP, Huston J, et 
al (2003) Unruptured intracranial 
aneurysms: natural history, clinical 
outcome, and risks of surgical and en-
dovascular treatment. Lancet 362:103–
110.

Wilson JTL, Hareendran A, Hendry A, 
et al (2005) Reliability of the modified 
Rankin Scale across multiple raters: 
benefits of a structured interview. 
Stroke J Cereb Circ 36:777–781.

Woitzik J, Dreier JP, Hecht N, et al (2012) 
Delayed cerebral ischemia and spread-
ing depolarization in absence of angio-
graphic vasospasm after subarachnoid 
hemorrhage. J Cereb Blood Flow Me-
tab Off J Int Soc Cereb Blood Flow Me-
tab 32:203–212.

Wong GKC, Teoh J, Chan EKY, et al (2013) 
Intracranial aneurysm size responsible 
for spontaneous subarachnoid haem-
orrhage. Br J Neurosurg 27:34–39.

Wong GK-C, Wong R, Mok V, et al (2009) 
Rivastigmine for cognitive impairment 
after spontaneous subarachnoid haem-
orrhage: a pilot study. J Clin Pharm 
Ther 34:657–663.

Woo NH, Teng HK, Siao C-J, et al (2005) 
Activation of p75NTR by proBDNF 
facilitates hippocampal long-term de-
pression. Nat Neurosci 8:1069–1077.

Yang J-L, Lin Y-T, Chuang P-C, et al 
(2014) BDNF and exercise enhance 
neuronal DNA repair by stimulating 
CREB-mediated production of apu-
rinic/apyrimidinic endonuclease 1. 
Neuromolecular Med 16:161–174.



INTRACRANIAL NIMODIPINE IMPLANT

/ Thesis / References

66	 Janne Koskimäki

Yang P, Gai S, Lin J (2012) Functionalized 
mesoporous silica materials for con-
trolled drug delivery. Chem Soc Rev 
41:3679–3698.

Yatsushige H, Calvert JW, Cahill J, Zhang 
JH (2006) Limited role of inducible ni-
tric oxide synthase in blood-brain bar-
rier function after experimental suba-
rachnoid hemorrhage. J Neurotrauma 
23:1874–1882.

Yin L, Ma CY, Li ZK, et al (2011) Predictors 
analysis of symptomatic cerebral vasos-
pasm after subarachnoid hemorrhage. 
Acta Neurochir Suppl 110:175–178.

Zabukovec JR, Boyd LA, Linsdell MA, 
Lam T (2013) Changes in corticospinal 
excitability following adaptive modi-
fication to human walking. Exp Brain 
Res 226:557–564.

Zafra F, Hengerer B, Leibrock J, et al 
(1990) Activity dependent regulation 
of BDNF and NGF mRNAs in the rat 

hippocampus is mediated by non-
NMDA glutamate receptors. EMBO J 
9:3545–3550.

Zhang YP, Shields LBE, Yao TL, et al 
(2013) Intrathecal treatment of cer-
ebral vasospasm. J Stroke Cerebrovasc 
Dis Off J Natl Stroke Assoc 22:1201–
1211.

Zhao D, Liu Q, Ji Y, et al (2014) Correla-
tion between nitric oxide and early 
brain injury after subarachnoid hem-
orrhage. Int J Neurosci.

Zhao H, Sapolsky RM, Steinberg GK 
(2006) Phosphoinositide-3-kinase/akt 
survival signal pathways are implicated 
in neuronal survival after stroke. Mol 
Neurobiol 34:249–270.

Zheng F, Soellner D, Nunez J, Wang H 
(2008) The basal level of intracellular 
calcium gates the activation of phos-
phoinositide 3-kinase-Akt signaling 
by brain-derived neurotrophic fac-

tor in cortical neurons. J Neurochem 
106:1259–1274.

Zhou G-S, Song L-J (2014) Influence of 
different surgical timing on outcome 
of patients with aneurysmal suba-
rachnoid hemorrhage and the surgical 
techniques during early surgery for 
ruptured intracranial aneurysms. Turk 
Neurosurg 24:202–207.

Zilles K, Amunts K (2010) Centenary of 
Brodmann’s map--conception and fate. 
Nat Rev Neurosci 11:139–145.

Zornow MH, Prough DS (1996) Neu-
roprotective properties of calcium-
channel blockers. New Horiz Baltim 
Md 4:107–114.

(1998) Unruptured intracranial aneu-
rysms--risk of rupture and risks of 
surgical intervention. International 
Study of Unruptured Intracranial An-
eurysms Investigators. N Engl J Med 
339:1725–1733.


	Abstract
	Tiivistelmä
	List of Original Publications
	Abbreviations and Terminology
	1.	Introduction
	2.	Review of the Literature
	2.1.	Intracranial Aneurysms
	2.1.1.	Prevalence
	2.1.2.	Pathobiology
	2.1.3.	Treatment of unruptured aneurysms

	2.2	Subarachnoid hemorrhage
	2.2.1. Incidence
	2.2.2.	Pathophysiology
	2.2.2.1.	Early brain injury 
	2.2.2.2.	Inflammation
	2.2.2.3.	Microthrombosis
	2.2.2.4.	Cortical spreading ischemia and delayed cerebral ischemia

	2.2.3.	Management and treatment of ruptured aneurysms
	2.2.3.1.	Rebleeding
	2.2.3.2.	Surgical clipping and endovascular coiling
	2.2.3.3.	Delayed cerebral ischemia
	2.2.3.4.	Other complications after aSAH
	2.2.3.5.	Outcome
	2.2.3.6.	Rehabilitation


	2.3.	Intracranial treatments for vasospasm
	2.3.1.	Concept
	2.3.2.	Sustained release implants for intracranial treatment
	2.3.3.	Biomaterials for intracranial treatment

	2.4.	Neuroplasticity
	2.4.1.	Evolution of the brain
	2.4.2.	Neuronal plasticity
	2.4.2.1.	Role of TrkB and BDNF in neuronal plasticity
	2.4.2.2.	L-type calcium channels
	2.4.2.3.	Role of calcium in neuronal plasticity
	2.4.2.4.	Critical periods

	2.4.3.	Induced plasticity
	2.4.3.1.	Drug-induced plasticity

	2.4.4.	Induced plasticity for neurorehabilitation – Current progress


	3.	Aims of the Study
	4.	Materials
	4.1.	Implants
	4.1.1.	Material
	4.1.2.	Drug concentration

	4.2.	Animal models
	4.2.1.	Dog and pig models
	4.2.2.	Mouse model

	4.3.	Drugs
	4.3.1.	Nimodipine


	5.	Methods
	5.1.	Pharmacokinetics of nimodipine in healthy beagle dogs
	5.1.1.	Study treatment
	5.1.2.	Blood and CSF sampling 
	5.1.3.	Sample handling
	5.1.4.	Nimodipine analysis 
	5.1.5.	Pharmacokinetic analysis	

	5.2.	Nimodipine implant study treatment and follow-up 
	5.2.1.	Preparation of silica-based implants
	5.2.2.	Dissolution of implants in vitro 
	5.2.3.	Allocation of the treatment groups and follow-up
	5.2.4.	Anesthesia and analgesia 
	5.2.5.	Surgery
	5.2.6.	Sampling
	5.2.7.	Computed tomography
	5.2.8.	Histological analyses
	5.2.9.	Statistical analyses

	5.3.	Nimodipine-induced plasticity in mice
	5.3.1.	Drug treatment and tissue sampling
	5.3.2.	Western blot
	5.3.3.	BDNF ELISA
	5.3.4.	BDNF qPCR
	5.3.5.	Data processing and statistical analyses


	6.	Results
	6.1.	Pharmacokinetics of nimodipine in healthy beagle dogs
	6.1.1.	Individual kinetic profiles
	6.1.2.	Pharmacokinetic parameters
	6.1.3.	CSF concentrations of nimodipine

	6.2.	Nimodipine implant treatment and follow-up
	6.2.1.	Dissolution of the implant in vitro
	6.2.2.	Surgery and recovery period
	6.2.3.	Histology of brain and meninges
	6.2.4.	Nimodipine concentrations
	6.2.5.	Computed tomography

	6.3.	Nimodipine-induced neuroplasticity
	6.3.1.	Nimodipine activates TrkB in the brain
	6.3.2.	Nimodipine induces neuroplasticity in the brain
	6.3.3.	Nimodipine induces neuroprotective signaling in the brain
	6.3.4.	Levels of BDNF protein and mRNA after acute treatment


	7.	Discussion
	7.1.	Nimodipine implant treatment for vasospasm
	7.2.	Nimodipine induces neuronal plasticity
	7.3.	Limitations and strengths of the research
	7.4.	Future views

	8.	Conclusions
	Acknowledgements
	References


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150206130427
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1091
     515
    
     None
     Left
     2.8346
     0.0000
            
                
         Both
         13
         AllDoc
         39
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0k
     Quite Imposing Plus 3
     1
      

        
     65
     66
     65
     66
      

   1
  

 HistoryList_V1
 qi2base



