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Abstract

The cosmological standard view is based on the assumptions of homogene-
ity, isotropy and general relativistic gravitational interaction. These alone
are not sufficient for describing the current cosmological observations of
accelerated expansion of space. Although general relativity is extremely
accurately tested to describe the local gravitational phenomena, there is
a strong demand for modifying either the energy content of the universe
or the gravitational interaction itself to account for the accelerated expan-
sion. By adding a non-luminous matter component and a constant energy
component with negative pressure, the observations can be explained with
general relativity.

Gravitation, cosmological models and their observational phenomenol-
ogy are discussed in this thesis. Several classes of dark energy models that
are motivated by theories outside the standard formulation of physics were
studied with emphasis on the observational interpretation. All the cos-
mological models that seek to explain the cosmological observations, must
also conform to the local phenomena. This poses stringent conditions for
the physically viable cosmological models. Predictions from a supergravity
quintessence model was compared to Supernova la data and several met-
ric gravity models were studied with local experimental results. Polytropic
stellar configurations of solar, white dwarf and neutron stars were numeri-
cally studied with modified gravity models. The main interest was to study
the spacetime around the stars. The results shed light on the viability of
the studied cosmological models.






Tiivistelma

Kosmologian standardikuvaus perustuu oletuksille avaruuden homogeeni-
suudesta seké isotrooppisuudesta ja pohjana on yleisen suhteellisuusteorian
gravitaatioteoria. Namé eivit kuitenkaan yksin riitd kuvaamaan kosmolo-
gian nykyhavaintoja, joiden mukaan avaruus laajenee kiihtyvésti. Yleinen
suhteellisusteoria vastaa erittdin tarkasti havaintoja, jotka on mitattu au-
rinkokuntaa pienemmaéssé mittakaavassa. Nain ollen joko yleisen suhteel-
lisuusteorian materiasisaltod tai sen gravitaatiosektoria taytyy muokata,
jotta teoria voisi kuvata myos havaittua avaruuden kiihtyvia laajenemista.
Kun Einsteinin yhtéloihin lisdtdan ndkyméaton materiakomponentti seké
vakio arvoinen energiakomponentti, voidaan havainnot selittaé yleisen suh-
teellisuusteorian mukaisesti.

Téassé vaitoskirjassa on tarkasteltu gravitaatiota, kosmologisia malleja
sekd niihin kuuluvia ilmi6itd. Useita pimeén energian malleja, joiden mo-
tivaatio tulee fysiikan standardimallin ulkopuolelta, on tarkasteltu pai-
nottaen sen tulkintaa havaittavien ominaisuuksien kannalta. Kaikkien teo-
rioiden, jotka selittédvat kosmologiset havainnot, tulee myos patea paikalli-
sesti esimerkiksi aurinkokunnan skaalassa. Tamé& vaatimus asettaa tiukkoja
ehtoja fysikaalisesti hyviksyttaville kosmologisille malleille. Téssd vaitos-
kirjassa on verrattu mm. supergravitaatio-kvintessenssi -mallin ennustuk-
sia supernovahavaintoihin. Lisdksi useaa metristd gravitaatioteoriaa on
tutkittu tdhdistd mitattujen havaintotulosten kannalta. Auringon kaltaisia
tahtid, valkoisia k&&pioditd sekd neutronitdhtid mallintavia polytrooppisia
tdhtimalleja on tutkittu numeerisesti modifioiduissa gravitaatiomalleissa.
Péaiasiallisena kiinnostuksen kohteena on néiden tdhtien ympérilla oleva
aika-avaruus. Tulokset liittyvat mallien mahdollisuuksiin selittéda fysikaa-
lisia ilmi6ita.
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Chapter 1

Introduction

The marvels of the night sky have always intrigued mankind. In the field
of cosmology the pursue is not so much in the detail, but rather in the
overall behavior of the whole universe. In cosmology the averaged phenom-
ena on very large scales is thought to be much simpler and the theoretical
description is first aimed at grasping the essence of these phenomena. Cos-
mology regards the composition and the evolution of the universe. It tries
to encompass the particle physics phenomena of the very early universe,
the modern universe we live in and everything in between. A physical the-
ory of any kind would have no meaning if it couldn’t predict the physical
phenomena according to the observations. Cosmological observations are
the light beacons out in the dark waters of the universe. Specific events in
the course of history of the universe left signals to be detected and inter-
preted in the current era. Cosmological theories, although may arise purely
from mathematical beauty, need to have the power to encompass these ob-
servations. Cosmology, a subject as vast as the universe itself cannot be
encompassed by this thesis study. Although this thesis deals with very dif-
ferent cosmological models, it is concentrated on small phenomenological
details. All the natures laws are in use and sometimes modified in the at-
tempt to describe the observed phenomena correctly and consistently. If a
theory is consistent with the measurements within the errors allowed by the
experiment, the theory is considered a viable candidate for the description
of the measured phenomena.

The art of confronting theoretical models and observations is not usually
elegant or graceful, but rather detailed and dirty. There is, for example, no
representation-independent approach for generating a unique gravitational
theory in which abstract postulates could be turned into practical state-
ments. Therefore, there is no way to relate principles and experiments in a

13



14 Introduction

straightforward way. This has lead to the path of trial and error in trying to
find an observationally valid theory in cosmology. The theory needs to be
peeled layer by layer by making simplifications at each step. Starting from
theoretical principles, to modelling, phenomenology and finally to observ-
able parameters that can be measured. In the case of cosmology the variety
of observational phenomena is extensive. Cosmological theories or models
are usually regarded as models that firstly produce the observed large scale
evolution. In the small scales the natural phenomena need to conform to
the current physical view, that unfolds according to general relativity and
the Standard Model of particle physics.

The studied models do not belong to an unique model class, but rather
forms a collection of so called dark energy models that describe the large
scale expansion of space. So the unifying subject for the work represented
here is the confrontation of these cosmological models with observational
data. The extent of the phenomena covered by the studied models, how-
ever, inspired the writer to cover the subject of cosmological theories (by
scratching its surface) although the actual work was done by numerically
studying specific details. The main pursuit in this work has therefore been
the confrontation of phenomenological cosmological models with observed
quantities. In this thesis a number of dark energy models and derived ob-
servables are numerically studied to shed light on the applicability of the
considered theoretical model to describe the chosen observed phenomena.

In the very large scales, the assumptions of isotropy and homogeneity,
have lead to the very successful ACDM cosmological model and to the ex-
panding Big Bang paradigm. The success of these theories lean to the cur-
rent independent cosmological observations. Although the ACDM model
(with cold dark matter and the cosmological constant A) seems to describe
the observations well, there are still many questions left unanswered. By
trying to make the model match the observed and also to approach a con-
sistent theoretical construction, new attempts need to be made to find the
correct recipe for the state and evolution of the universe. The already well
described properties are incorporated into the new modified models, so that
at local scales the general relativistic and at large scales the ACDM behav-
ior is obtained. The common thing in trying to describe the dark energy
is to add new physics or by changing the composition of the gravitational
interaction. The modified gravity theories, although designed to explain
the large scale accelerated expansion, must agree with the local observa-
tions and deviate very little from general relativity in this limit. The bulk
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of the studied models consider modified gravity. Therefore gravitational
theories, their requirements and applications are in the center of examina-
tion in the following work. In this thesis the writer also wanted to shed
light on the ambiguity of dark energy models that is faced when the model
phenomenology is constrained with experiments. It is hard to make dis-
tinction between the different types of dark energy models, that can in one
representation modify the gravitational action and in another have extra
fields in the matter Lagrangian.

With numerical problem solving it is impossible to deal with abstract
theories and specific models need to be selected for study when observa-
tional results are treated. Although seemingly non-efficient, some progress
has been made in ruling out unviable cosmological model classes this way.
The work presented in this thesis is in essence studying the viability, al-
though the numerical results present phenomenological details. The results
of the studies [1I, 2, B, [4] are contemplated with this in mind. These stud-
ies deal with dark energy models basing on supergravity [5], metric f(R)
theories [6l, [7, 8] and O’Hanlon scalar-tensor gravity [9, [10].

The structure of this thesis is as follows: In Chapter [2] the standard
gravitational theory is constructed with the concepts needed to understand
the studied phenomena in mind. In Chapter [3|the observational foundation
of cosmology is surveyed. The observations that were used in the works [I],
2,13, 4] are again emphasized. Chapterintroduces the standard cosmology
and extrapolates to the modifications discussed in the nest Chapter. In
Chapter 5| the work represented in the research papers is discussed. This
structuring aims at bringing the reader closer to gravitational phenomena
and the nature of the dark energy models and tries to clarify the terminology
and concepts used later in the text and in the articles [11 2, 3] 4].

Notation

Natural units ¢ = h = 1 are used throughout this work and x = 87 G, where
G is the Newton’s gravitational constant. The metric signature is — 4 ++.
The Ricci tensor is defined as the trace of the Riemann curvature tensor

‘avp = Rap, where the Riemann tensor is R’;Vﬁ = &,F’fxﬂ — 0gl't,, +
I 1% 5 — TV, 5%, with a connection IY 5. The Ricci scalar is R = Ry =
g"" R, and the Einstein summation convention is used throughout the text.
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Chapter 2

Gravitational foundations

A consistent and a viable gravitational or cosmological theory must consider
matter and energy conditions, causality, initial conditions and stability is-
sues. These will be shortly viewed in the following Sections. The theory
is said to be well-formulated and well-posed mathematically if the above
is satisfied. All these aim at a physical and realistic description of the
gravitational phenomena, that essentially must describe the structure and
evolution of the universe as a whole. To really describe the universe we live
in, the laboratory measurements and observations must also be explained
by the theory. This, by no means, is easy to realize and a careful inves-
tigation of the mathematical properties of the theory need to be done to
arrive at a model that could represent a physical phenomena. Many lay-
ers of simplification are needed even to arrive at an acceptable spacetime.
Needless to say even more simplifying assumptions brings the theory close
to a phenomenology that accepts physical and measurable concepts and can
be tested. General relativity fulfills all these requirements and the general
relativistic conditions are shortly considered in the following.

2.1 Requirements for a gravitational theory

In all physical theories the conditions for matter and energy, and the ini-
tial values (Cauchy problem) need to be provided self-consistently for a
particular physical problem to be well-formulated. The energy conditions
concern the matter content and pose requirements for the theory to be
physically sound. In a well-formulated theory causality, realistic physical
sources and uniquely determined dynamical evolution of the system are
guaranteed [IT],[12]. The requirement of causality forces constraints for the

17



18 Gravitational foundations

particles to travel on timelike ds? < 0 curves. Massless particles like light
travels along geodesics or null curves for which ds?> = 0. The values of the
matter field must be uniquely determined by the values of the fields and
their derivatives in some prior time. This is a requirement posed by the
Cauchy problem for the matter fields and is thoroughly dealt with in [I1].

A well formulated Cauchy problem in general guarantees that the solu-
tions exist, are unique and depend continuously on the initial and boundary
data [I3]. A viable theory needs also to be stable. This requires the system
to be regular i.e. no initially small growing perturbations are allowed. The
perturbed system must stay close to the unperturbed system throughout
the considered evolution. For Einstein’s field equations and suitable mat-
ter the Cauchy problem is well formulated, theory is stable and fills the
causal requirements. The Bianchi identities ensure the causal structure is
preserved for the momentarily comoving reference frames (inertial frames
in special relativity) if the initial value problem is well posed [I3]. This is
not the case in all gravitational theories and care should be taken in the
correct formulation of the initial conditions.

Also other obstacles lurk in gravitational theory formulation. The dy-
namical equations must not possess unobserved short timescale or mat-
ter instabilities. These can occur in more complicated gravity theories
[9, 14, 15]. General relativity, however, avoids these.

2.1.1 Matter and energy

One essential component of a gravity theory is its non-gravitational energy
contents 7.e. the matter fields and radiation. These are not restricted by
the gravitational theory, so the following conditions are usually considered
in addition to the requirements of the previous Section.

Throughout this work the term non-gravitational is used to mean en-
ergy sources that are defined in the absence of gravity and therefore live on
spacetime as opposed to gravitation representing the spacetime curvature
itself. Describing all the matter fields and their dynamics explicitly would
be extremely complicated or even impossible, so a general tensor is cho-
sen to describe the energy and momentum involved. In general relativity
the energy-momentum tensor 7}, represents the distribution of energy and
momentum of all the non-gravitational fields, i.e. matter and radiation. It
contains their energy, pressures, stresses and momenta and all these act as
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sources for the gravitational field [16], [17]

2 0/—gLm
T, = ——— Y _2=m 2.1
H /_g 59“” ( )

An often used simplified example in cosmology is the perfect fluid ap-
proximation. A perfect fluid is completely described by its density, pressure
and its velocity field. In this work only sources of perfect fluid type have
been considered. This simple realization of the stress-energy tensor 7T}, is
characterized by the energy density p and pressure p as

T;w = (p + p)u,uuu + PGuv- (2'2)

The quantities p and p are bound together with the equation of state
that defines the properties of this energy component. For a stationary
observer in Minkowski flat space g,, = 1, the four-velocity of the fluid is
u, = (1,0,0,0) and 7, utu” = —1. For a more general metric g,, with
gravitation, the timelike four-velocity tangent vector u* can be obtained
in a momentarily comoving reference frame (MCRF) by demanding them
to be perpendicular to the spatial section by the requirement of isotropy.
Now the Minkowskian metric 7,,, needs to be replaced in by the gen-
eral metric tensor g,,. Also in the presence of gravitation g, utu” = —1
needs to hold. The components can then be written in the MCRF with the
metric tensor as u* = ((—goo)~/2,0,0,0) for stationary fluid in hydrostatic
equilibrium [16].

If the source is not explicitly known one can consult the energy condi-
tions to keep the matter content S, physical. The energy conditions are
formed from the eigenvalues and eigenvectors of the energy momentum ten-
sor. The conditions that need to be fulfilled, are inequalities concerning the
components of the energy-momentum tensor. These restrict the properties
of energy and matter to hold true with the observed phenomena. Two
conditions are mentioned here, the weak energy condition (WEC) and the
strong energy condition (SEC). The WEC states that no negative energy
densities are observed T}, ufu” > 0, for timelike observers moving with a
four-velocity u = w*é, [11} 12]. With perfect fluid matter this becomes
p=>0,p+p >0 SEC demands R, u'u” > 0 to hold for all timelike
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vectors u”. With perfect fluid matter SEC reads
p+p>0 A p+3p>0. (2.3)

This condition holds for ordinary matter, but not for the dark energy. Note
that the strong energy condition is essentially a geometric statement in GR.
Now the matter Lagrangian L,,[g.uv,¥m]| depends only on the metric and
the matter fields 15; and does not couple to other gravitational fields. Also,
the freely falling particles will move along metric geodesics as in a metric
gravitational theory.

In an isolated system, the total energy and the total momentum need
to be conserved. The covariant conservation law for stress-energy is written
as

v, T = 0. (2.4)

2.2 General relativity

Einstein’s general relativity (GR) is founded on the Einstein’s equivalence
principle (EEP), that conforms to the three requirements that concern all
matter and energy: weak equivalence principle (WEP), local Lorentz in-
variance (LLI) and local position invariance (LPI). The WEP embodies
the equivalence between inertial mass and gravitational mass and LLI and
LPI makes general relativity a universal law that holds everywhere in the
curved spacetime for all matter fields follow special relativity. In other
words, the effects of gravity must be equivalent to the effects of living in
a curved spacetime with Minkowskian local neighborhoods for every point
p € M (and M is a semi-Riemannian manifold).

The LLI states that the outcome on a non-gravitational experiment at
p should not depend on the velocity of the frame and according to LPI
this should hold for all p in M. Also, according to the LPI, there is no
preferred background metric defined but the dynamical equations are gen-
erally covariant, 7.e. true in all coordinate systems if true in one system.
A conformal scaling freedom is left for the metric tensor field so that all
metrics, conformally related to the Minkowski metric, are equally valid. A
theory of gravity that embodies EEP by possessing a metric and a connec-
tion that give the paths for a freely falling test body to be the geodesics of
the metric, is said to be a metric theory of gravity. This subject is thor-
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oughly discussed in the texts [7, I8, [19]. An even more stringent condition
on a gravitational theory can be posed by demanding that also gravita-
tional tests hold between different Lorentz frames and that this is valid for
all p € M. This condition is called the Strong Equivalence Principle (SEP)
and is valid only in GR.

In general relativity, gravitation is therefore a curved spacetime phe-
nomenon and is based on semi-Riemannian geometry with a metric tensor
g which defines the inner products g,,v*u” of tangent vectors v(p), u(p)
at each point p € M. This brings about concepts of length of a curve,
angle between vectors, area and volume. Because, the metric of general
relativity locally reduces to Minkowski metric 7,, in every freely-falling
frame, all the frames have the same Lorentz invariant field equations. The
local position invariance now guarantees that the laws of physics are the
same everywhere. Generally, the metric tensor is a covariant symmetric
non-degenerate tensor and it defines the invariant line element ds as

ds?* = g datdx”. (2.5)

Gravitation can, in the weak field limit and for a class of algebraically
special metrics, be comprehended as a deformation of the flat Minkowski
metric 7,

gNV(x)\) = Nuv + h/u/(xA) (26)
-1 0 0 0
1 00

v = 2.7

e 01 0 (27)
0 01

The metric tensor also allows the computation of proper time for each
observer with four-velocity v*, determines the shortest distance between
two points and determines causality with the speed of light ¢. The metric
and the derived Levi-Civita connection are the dynamical quantities that
determine the local acceleration and give the gravitational field and poten-
tial over the manifold. In GR the unique connection I'},, of a symmetric
metric g, defines the notion of parallel transport and the covariant deriva-
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tive on a Riemannian manifold. The covariant derivative V,, can therefore
be defined for a contravariant vector field V¥ as

V.V =8,V LTV, (2.8)

The covariant derivative makes differentiation a valid tensor operation un-
der a general coordinate transformation in a curved spacetime. This needs
to be so, because the only invariant relations on a manifold are tensor re-
lations. By changing partial derivatives to covariant derivatives in the field
equations, the laws of physics take the same form in all coordinate systems.

The connection of metric theories of gravity, including GR, is the Levi-
Civita connection derived from the metric tensor (the Christoffel symbols)

1
I, = 590“; (Ougvs + Ovgus — OsGuw) 5 (2.9)

that is symmetric in its lower indices I'j, = I'), and the spacetime is tor-
sion free. Note that, for the Minkowski metric in Cartesian coordinates the
Christoffel symbol vanishes and covariant derivative reduces to the ordi-
nary partial derivative. By stating that the connection of the spacetime is
given by the Levi-Civita connection the metric stays invariant. The metric

compatibility is given by
Vaguu =0 (210)

These theories have a symmetric metric, that gives the trajectories of test
bodies as geodesics and conform to special relativity for non-gravitational
physics [18].

General relativity arises from two founding postulates that conform to
the SEP. The first postulate requires the Lagrangian density for gravity to
take the Einstein-Hilbert (EH) form

1

= oV IIR — 2A]. (2.11)

LEn
The A term is not included in the original formulation of Einstein’s general
relativity, but adding a constant into the action can be accepted and still
have second order field equations for the gravitational interaction. This is
required, because, a quantity that transforms like a scalar (here R) under
Lorentz transformations leaves the action S = [ Lepd*z invariant under
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variation with respect to the metric. The second postulate states that
the metric g,,, must couple to the matter fields of the Standard Model of
particle physics (SM) [20] universally and minimally. This means that in

the matter term ([2.1])
Sy = /,Cm\/—gd4x (2.12)

all couplings to Minkowski metric 7, are everywhere replaced by couplings
to guv. Universal coupling entitles the metric therefore a special status as
being considered a property of spacetime rather than a field on spacetime.
Minimal coupling requirement restricts the gravitational field g not to cou-
ple to any other gravitational fields in the action.

The Einstein-Hilbert action leads to the GR field equations in
the case of A = 0:

1
Guw = Ry — iRgW = KT}, (2.13)

where G, is the Einstein tensor, R, is the Ricci tensor and T}, is the
energy-momentum tensor of the matter fields. The Riemann curvature
tensor that is the fundamental embodiment of curvature in Riemannian
geometry and Ricci tensor R, and the Ricci scalar R encapsulate the cur-
vature effects in the Einstein’s equations. Einstein arrived at this form by
requiring the gravitational part of the theory to resemble the gravitational
Poisson equation of the Newtonian gravity V2® = 47Gp. The Einstein
tensor G, is the only divergence-free function of the g,, and its deriva-
tives of at most second order that is tensorial [2I]. Therefore, Einstein field
equations generalize the Poisson equation, apply to all coordinate systems
and guarantees the local covariant conservation of the energy-momentum
tensor [17]. For a correctly formulated initial value problem, the resulting
dynamical evolution is unique and agrees with the causal requirement that
signals can only be sent between points that can be joined by a curve that
is either a timelike ds? < 0 or a null curve ds?> = 0. From the Einstein
equation it can also be seen that the matter-energy content dictates the
causal and geodesic structures of spacetime.

Einstein’s equations allow physical solutions that preserve causality for
matter sources that obey one of the energy conditions discussed in Section
[2.1] Since the field equations are very complex only solutions for very sim-
ple matter content can be analytically found. Only cases of empty space
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(vacuum) and perfect fluid matter have been considered in this work. How-
ever, although not realistic, the simple solutions give an idea how the sys-
tem behaves qualitatively and therefore reveal possible properties of more
complex solutions. Some exact solutions for the Einstein-Hilbert equations
with the cosmological constant A

G = KT — Agu (2.14)

that are used in the text are briefly listed here. Three maximally symmetric
solutions of with no matter (vacuum solutions) are the Minkowski
flat spacetime (with A = 0) , the expanding de Sitter space with pos-
itive A included and the anti-de Sitter space with constant negative cur-
vature (A < 0). Maximal symmetry guarantees homogeneity and isotropy
which are currently observed from the largest scales and from the early uni-
verse. Around a spherically symmetric mass distribution with no vacuum
energy, the gravitational field is described by the Schwarzschild solution.
The Robertson-Walker solution describes an expanding or contracting ho-
mogeneous and isotropic universe and is the metric that is used in the
cosmological standard model. The following Subsections shed light on the
special solutions that have been utilized in the articles [2] [3] [4].

2.2.1 Spherically symmetric solutions

Spherically symmetric spacetimes allow a natural coordinate system for the
study of stellar objects

The Einstein-Hilbert field equations have an unique solution for a spher-
ically symmetric vacuum with A, the de Sitter solution, and with spheri-
cally symmetric matter bodies, the Schwarzchild-de-Sitter (SdS) solution.
The SdS solution describes the spacetime in the vicinity of a non-rotating
spherically symmetric object. To note, the Newtonian equivalent for the
Schwarzschild solution would be the gravitational field of a point particle
at infinity.

In a spherically symmetric spacetime all metric components are un-
changed under any transformation § — —6 or ¢ — —p. The metric com-
ponents are independent of the time coordinate if the spacetime is static and
the geometry is unchanged under time-reversal. The most general static,
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spherically symmetric metric can be written as
ds® = —B(r)dt* + A(r)dr? + r?(d6* + sin? Odp?) (2.15)

and the Schwarzchild metric coefficients read

ey = (1 20m)
A(r) = (1 - 2€m>1. (2.16)

The spherically symmetric vacuum solution, the de Sitter solution contains
a term with the cosmological constant

B(r) = 1—%7’2
1
i) = (1—%72) (2.17)

All the major classical tests of GR are based on the spherically sym-
metric Schwarzchild solution [18], which will be very useful when studying
static spherically symmetric spacetimes in more general gravity theories.

2.2.2 Birkhofl’s theorem

The Birkhoff’s theorem of GR states that any 7}, = 0 solution of Ein-
stein’s equations with continuous first and second derivatives which is spher-
ically symmetric must be static and of the Schwarzchild form with
r > 2GM |22, 11]. With the A term the solution is the Schwarzchild-
de Sitter solution. This theorem is not generally true for other gravity
theories. It does not hold for example in metric f(R) theories and for
scalar-tensor theories it is not generally valid [23, 24]. Ideally one hopes for
global solutions, but in many cases only local solution is possible. There-
fore, a carefully considered, initial value or boundary value problem may
give valuable information on the underlying theory. With this theorem the
boundary conditions at the surface for a static spherically symmetric body
can be determined. Birkhoff’s theorem is broken in higher order theories
of gravitation and this condition has been used in the works [2} 3], [4].
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2.2.3 Polytropic stars

In thermodynamics the state of a matter system, in the absence of chemi-
cal reactions, is completely described by three quantities: pressure p, tem-
perature T and the rest mass density (or mass per volume). This state
is described by the equation of state p = p(p,T). With the polytropic
equation of state (EOS) one can describe a spherical body of non-uniform
matter distribution. In a spherically symmetric case the density p is a
monotonic decreasing function of the radius r and the surface can be found
at p(rs) = p(rs) = 0.

The relationship between the star’s internal pressure and density is con-
trolled by the energy transport. This is generally a very complicated process
and when carefully derived it arises from the nuclear reactions occurring
deep within the stellar core. The nuclear densities for the studied stellar
objects have been approximated based on nuclear physics by Wakano and
Wheeler [I7]. By approximating stellar matter with polytropic EOS, that
describe the adiabatic processes, the problem is simplified enormously with
little lost in the precision of finding realistic masses and radii with physical
central densities. The polytropic equation of state reads

p(r) = Kp(r) = Kp(r) /", (218)

here 7 = (n+ 1)/n is the adiabatic index and n is the polytropic index. K
is a constant that depends on the configuration. Adiabatic processes occur
without the exchange of thermal energy with the outside of the system.

For numerical purposes it is useful to use the scaled variables of Lane
and Emden [10]

1
p(r) = pob(r)G=D
r = lx

— KA /Gl — 1)p P, (2.19)

Here 0(r) and = are the scaled density and radius of the Lane-Emden con-
figuration. This parametrization was used also in our studies of the local
effects of modified gravity in the papers [2] [3, [4].

Stars may be approximated by these processes when the radiation does
not carry thermal energy out efficiently enough. However, the surface layers
of a realistic star deviate some from the polytropic approximation because
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Figure 2.1: The Newtonian Eddington sun (n = 3 polytrope) and the
Standard Solar Model [25] show a remarkable similarity. The densities
deviate in the central core and on the outer layers, where the convection
layer is not well described by the Eddington polytropic parameters.

the outer layers no longer conform to the adiabatic approximation. The
polytropic model of the Sun with n = 3 is called the Eddington model.
With Eddington model parameter values fairly good fit for the Standard
Solar Model (SSM) is obtained [25]. This can be seen in the Figure

Only in the convective regions near the solar surface and in the central
core does the polytropic model deviate from the SSM. Therefore, despite
its simplicity, the Eddington model does a remarkably good job for de-
scribing the sun. Eddington Sun is usually solved for Newtonian gravity,
but the parametrization is easily upgraded to GR with Tolman-
Oppenheimer-Volkoff (TOV) equations and is a valid model for studying
the phenomenology of gravitational models. The TOV equation describes
the structure of a spherically symmetric body in static gravitational equi-
librium.

47r3p(r)
M(r)

r

— % (r) = GM(r)p(r) {1 + ?] ll + {1 + M] h ;

(2.20)
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where M is the integrated mass

Ts

M(r) = 47T/ p(r)ridr.

0

Now with the polytropic equation of state and central density for the
Eddington sun, mass and the radius can be solved. Perfect-fluid matter
with polytropic EOS was utilized in the works [2, B, 4] for modelling the
stellar solutions for various gravity theories. With polytropic equation of
state, also white dwarf and neutron star properties can be modelled. Poly-
tropic equations of state offers a powerful tool to describe these compact
objects and for example neutron star matter density can be constructed
from several layers of polytropic envelopes allowing the separate layers e.g.
hyperon or quark matter core under the tightly packed neutrons.

2.2.4 The weak-field limit and PPN

Weak field phenomena concern slow motion and weak gravitational poten-
tial like in the solar system. In weak-field limit the metric g replaces the
Newtonian gravitational field. In this limit, it is sufficient to approximate
the gravitational field with the parametrized Post-Newtonian formalism
(PPN). With this perturbative approximation theories of gravity where the
matter responds only to the metric can be compared with each other in
terms of dimensionless potentials and their scalar coefficients [18].

In the PPN, gravity is again described by a tensor field g, written in
terms of the dimensionless gravitational potentials (e.g., U in the spatial
part) in flat spacetime. The potentials are constructed from the matter
variables like the Newtonian potential [I8]. For example, the spatial part
of the PPN metric reads to second order

9ij = 5ij+2’7PPNUij7

(x —2)i(z — ),
Uy = G/ P Ld3a. (2.21)

The parameter vppy can be solved by fitting the general spherically sym-
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metric metric to the PPN Schwarzchild solution (2.16[). Now

B(r
_ 2.22
VPPN = 5y - (2.22)

rA’(r)

This parameter measures the spatial curvature produced by a unit mass and
can be measured very accurately around the sun. It gives the difference in
the potential 2GM /r when comparing the goo and g;; terms, and is equal
to unity for general relativity but not for all gravitational theories.
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Chapter 3

Observations and
phenomenology

With the precision measurements of today, the experiments play a cru-
sial role in guiding and constraining developement in the gravity theory
building. There is a multitude of observational constraints a gravity theory
must accommodate [I8, [9]. Gravitational interaction of general relativity
has been tested on scales ranging from 10 um to a few astronomical units
and the gravitational action with the cosmological constant on cos-
mological scales [20]. The gravitational theory of the whole universe needs
to accommodate the phenomena of all scales, these are the cosmological
theories that are introduced in Chapter |4 The large scale observed phe-
nomena can not be described by the GR with Standard Model matter alone,
but needs to be explained either by the Einstein’s cosmological constant or
some other agent. It might be that the universe we live in still posseses
strange new features unexplained by the non-standard theory. In this the-
sis the studied cosmological models and their phenomena are tested against
local and supernovae observations.

3.1 Local gravitational measurements

The foundations of GR have been tested in detail. Local Lorentz covari-
ance has been tested to hold true extremely precisely starting from the
Michelson-Morley experiment of 1887. The success of LLI is also embod-
ied in the relativistic quantum theories. The Dirac equation and quantum
electrodynamics are a staggering example of the power of special relativ-
ity. The weak equivalence principle has also been challenged over many
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Mission Measured constraints for the PPN-parameters
Cassini yppN —1=(2.142.3) x 107
VLBI yepN —1=(—24+4)x 1074
LLR 4B8ppN — PPN — 3 = (4.4 +4.5) x 1074
Mercury perihelion 12vppN — Bppn — 1] <3 x 1073

Table 3.1: Observational constraints from solar system missions: Cassini
spacecraft mission [27], Very Long Baseline Interferometry (VLBI) [2§],
Lunar Laser Ranging (LLR) tests of general relativity [29] and the Mercury
perihelion shift measurements [30].

centuries with the results always being in accordance with WEP.

Local gravitational tests include the laboratory, earth-moon and solar
system scale experiments. In the laboratory gravitation has been tested
with gravitational redshift, free-fall, rotation and with torsion balances.
Also the effects from extra dimensions on gravity have been searched in the
Large Hadron Collider [26]. In solar system Mercury perihelion advance,
bending of light and the Shapiro time delay effects have been observed
and are explained with GR. With earth moon laser ranging experiment,
Finstein’s theory of gravity has been found to align with observations with
high precision.

With these convincing arguments on behalf of GR, it is evident that
if Einstein’s gravitational theory is not the description of the gravitational
phenomena on large scales, the cosmological theory must approach GR
on local scales. The post-Newtonian parametrization (PPN) provides an
arena for testing modifications to GR. There already exists a wealth of
solar system experiments that have provided accurate measures on how
much a theory can deviate from GR [I8]. In the Table a few of the
most accurate parameter values deduced from observations, are shown. The

most precise measurement for the Shapiro time delay with PPN parameters
is the Cassini mission experiment [27]. This mission provided the O(107°)
accuracy measurement for the yppy -parameter, which was used as the
reference value in the works [3] [4].
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3.1.1 Astronomical observations

General relativity has also been contested with compact objects, such as
white dwarf and binary pulsar systems [31]. Also, in these strong-field en-
vironments GR is very successful. Binary pulsar systems are composed of a
pulsating neutron star and a compact companion. Neutron star masses can
be detected by studying these systems. The radii of neutron stars are still
a highly model dependent property, but the current radius determinations
agree well with each other [32].

3.2 Cosmological observations

It seems natural to postulate that we are not living in a special position in
the universe. This is the Copernican principle, that affects cosmology in
a similar fashion than the idea of Copernicus that the sun (not the earth)
was the center of the solar system. The idea of thinking of Earth, solar
system, and Milky Way galaxy, not sitting in a special point in the uni-
verse is guaranteed if the space is isotropic and homogeneous. The current
status of the cosmic microwave background, large scale galaxy surveys and
the distribution of quasars all agree with the universe being isotropic and
homogeneous on very large scales (roughly more than 100 Mpc).

The observations on Hubble’s law around 1930 started the quantitative
observational testing of cosmological theories. In the 1990’s this endeavor
resulted in an unexpected interpretation of accelerated expansion of the
universe by two teams studying distant supernovae [35]. Spatial volume of
the observable universe therefore seems to be expanding according to the
Hubble law in megaparsec scales and the current expansion rate seems to be
accelerated according to the distant Type Ia supernova experiments. This
interpretation fits into the general relativistic picture with a dark compo-
nent that does not cluster with matter, generally called dark energy. The
implications of dark energy are so profound, that complementary tests are
needed to find out about the nature of the cause of the accelerated ex-
pansion. The supernova observations have been confirmed with different
systematic errors and different parameter degeneracies today by many cos-
mological probes already. The main observational probes confirming dark
energy include the very distant supernovae measurements (Snela) [35], cos-
mic microwave background (CMB) observations [37, [38], the age estimates
of the universe ty ~ H ! [38, B9], the baryon acoustic oscillation mea-
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Parameter Best Fit | 1 o standard deviation
Qph? 0.022032 0.02205+0.00028
Qarh? 0.12038 0.11994-0.0027

Qp 0.6817 0.6851001%
Hy=100h? | 67.04 67.3+1.2
Age/Gyr 13.8242 13.817+0.048

Table 3.2: Planck 2013 data release of Best fit parameters for the bary-
onic, matter and vacuum energy density contrasts (€2, Q37 and €2,) in the
ACDM model [3§].

surements (BAO) [40] and the large scale structure experiments (LSST)
[411 142].

The current observational value for the Hubble parameter Hy must con-
form to the age estimates of the oldest known stellar populations, the globu-
lar clusters. The theoretical model for the Type Ia supernovae suggest them
to be exploding white dwarf stars in a binary system, where the mass accre-
tion from the companion has caused the white dwarf to collapse. All Type
Ta supernovae have, according to this theory, identical luminosities there-
fore making them useful as astronomical standard candles for cosmological
observations. This is, also, believed to be the most common supernova type
in the universe. With the Type Ia model assumptions the absolute magni-
tude of the explosion can be modelled and distances to Snela explosions be
evaluated from the apparent luminosity. Measurements from the luminos-
ity distance Hydp(z) of Snela suggest constraints for a time-independent
equation of state parameter to be in accordance with wpg = —1 (with 1o
confidence interval).

The H(z) or Snela data alone do not constrain the cosmological pa-
rameters significantly, this is why combination of independent data sets
needs to be used when choosing a good parameter value for a theoretical
model. Baryon acoustic oscillations formed before the photons recombined
from the baryons and thus reveal the pre-recombination density fluctua-
tions being imprinted on the baryon distribution. BAO data constrain the
cosmological parameter space in an orthogonal direction with respect to
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Figure 3.1: The independent combined cosmological data show remark-
able consistency. Left: Credits to Supernova Cosmology Project, Right:
Copyright Max Tegmark [36].

H(z) data forcing the cosmological parameters to be rather tightly bound.

The current observations of the cosmic microwave background is in
agreement with other independent cosmological observations that are Snela,
H(z) and BAO. The combined data set very stringently pins down a den-
sity parameter area that accepts the WMAP [37] and Planck best fit results
[38] for the cosmological constant and the total matter energy; Qa warap =
0.7185 and QA,Planck = 0.6711 and QM,WMAP = 0.2814 and QM,Planck =
0.3175.

The spatial flatness is currently constrained to deviate less than a per-
cent from Q = 0 [38]. Also, the current most precise measurement made
on the CMB, the Planck Mission data [38], is well described by the spatially
flat six-parameter A Cold Dark Matter (ACDM ) model with adiabatic per-
turbations. The current precision observations all suggest DE and are well
described by the ACDM model. This model has been so successful that it
has been standardized as the concordance model of cosmology. This model
needs the dark matter component in order to produce the large overdense
regions in the universe. With only baryonic matter the observed structures
could not have formed. A simulation of the ACDM model with dark matter
particles [43] show remarkably similar structures that are observed in the
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large scales. The Millennium run traces the matter evolution in a simu-
lation of more than 10 billion CDM particles set in a cubic region of the
universe that is 2 billion light years a side over a time span that corresponds
to more than 13 Gyr. The Figure [3.2] at z = 0 nicely shows the hierarchy
of structure on different scales.
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Figure 3.2: Shown is a snapshot of the current universe z = 0, with gradu-
ally smaller scales in zoomed images [43].
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Chapter 4

Cosmological models

The properties of the universe at the largest scales are studied in cosmol-
ogy. The cosmological scales concerned are even larger than the galaxy
superclusters that still span structures around voids, regions of very little
matter. At these scales gravitation is the sole effective force. The uni-
verse is treated with bulk properties as a homogeneous body composed
of different fluid-like components. According to the standard cosmological
model, the current variety of cosmological observations coherently point to
a composition of energy and matter to be the following. About 70% of the
energy budget should be filled with a fluid called dark energy (DE) that
is responsible for the exponential acceleration of the spacetime. Almost
all the rest of the energy content, about 27%, should be filled with grav-
itationally interacting matter-type energy, cold dark matter (CDM) and
a few percent with that familiar baryonic matter. With this composition
the ACDM model is able to produce the observed structure growth and to
explain the current era of accelerated expansion. A variety of rival cosmo-
logical models seeking also to realize the observed large scale phenomena
include new forms of energy and matter or modifications to the Einstein’s
gravitational theory. Dark energy can therefore refer to modified gravity
theories that can also give rise to the accelerated expansion.

4.1 The standard cosmology

The standard way to describe the universe is to consider the dynamics to
be governed by Einstein’s general relativity in spatially homogeneous and
isotropic spacetime. The dynamical equations of motion are derived from
the Einstein-Hilbert action (2.11)) with a cosmological constant A, matter,
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radiation and cold dark matter. The Einstein-Hilbert field equations with
the cosmological constant read
1
R, — §gWR = KT — Aguw. (4.1)
If the A term is written on the “matter side” of the field equations it
is interpreted as the energy of the vacuum. This is the case within the
ACDM model, that is the standard cosmological parametrization of the
Big Bang paradigm. In this text GR refers to the above action without the
A-term and ACDM to the full Einstein-Hilbert action. The ACDM model
explains well the following observational signatures: the CMB, the large
scale galaxy structures, the abundances of the lightest elements and the
accelerating expansion of the universe. It also provides an acceptable fit

with the observation through the cosmological parameters represented in
the Table

The energy content of the universe in the standard cosmology is de-
scribed by several interacting perfect fluids. These include radiation p,
(neutrinos and electrons), matter pys (baryons and CDM) and dark energy
pa- The densities of the energy species are usually denoted by the den-
sity parameters that represent their density divided by the critical density
pe =~ 5 nucleons m~3. For the matter and radiation species and for the

vacuum energy the density contrasts read:

Qi:&a QA:p_AE A

. 4.2
Pe Pec 871'Gpc ( )

The dark matter sector was initially hypothesized, because apparently
there was not enough luminous and observed matter to account for the
galactic structures and for the structure formation process within the cos-
mological general relativistic theory. Also the huge gravitational lenses and
colliding galaxies show DM in effect. The viable dark matter particle can-
didates that are able to address structure formation are thought to have
been non-relativistic at the time of recombination and are named cold dark
matter (CDM). Many CDM simulations are able to produce many large
scales and galactic phenomena well [43], [44].

Dark matter has never been directly observed and there are many pos-
sible explanations for it. Several particle physics experiments are making
a serious effort in finding the DM particle [45]. The name explains two of
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the main properties of this energy species. It does not significantly inter-
act with the electromagnetic radiation, so its effects on other matter are
only seen through gravitational interaction. The currently dominant mod-
els concern non-standard particles, 7.e. particles that are not described by
the Standard Model of particle physics. Other CDM candidates include
dark baryonic matter bodies (like dead cold stars, brown dwarf stars, mini
black holes) and several varieties of hypothetical non-baryonic particles like
weakly interacting massive particles (WIMPs) [46]. Baryonic matter sec-
tor, however cannot fill but little of the dark matter energy budget, so in
addition also a non-luminous massive CDM particle is required within the
ACDM . The ACDM model with CDM has had a lot of problems that might
be explined by baryonic physics [47].

Conservation of energy gives the first law of thermodynamics that dic-
tates how the energy density and pressure evolve over time. This can be
represented for the three cosmological fluids p,, par and pp with the equa-
tion of state p; = w;p;. This is for radiation w, = 1/3, for matter wy; = 0
and for the vacuum energy wy = —1. For the ordinary matter and radiation
the strong energy condition is fulfilled, but for the dark energy component
the SEC condition p 4 3p < 0 does not hold.

The expanding spacetime paradigm complemented with the early uni-
verse particle physics is generally called the Big Bang theory [48] (see also
article 21 in [20]). The spacetime expansion observed in largest scales there-
fore points to a very hot beginning. The Big Bang scenario explains the
isotropic 2.7 K microwave radiation background. The thermal history, ac-
cording to this theory, further incorporates the evolution of the observed
hierarchical structures of galaxies with initially hot homogeneous plasma
being cooled down. This sufficiently cooled plasma then formed gravitation-
ally bound structures in all the observed scales from galaxy super clusters
to stellar phenomena. The Big Bang theory includes GR with isotropic
and homogeneous spacetime as the gravitational framework and the stan-
dard model of particle physics [20] to describe the particle interactions and
how the known particles were formed. The very hot beginning additionally
needs a period when the spacetime was “initialized” to the state of homo-
geneity and isotropy. This can be carried out by a period called inflation
that occurred in the energy scale of 10'6GeV according to the most popular
models. This corresponds to time t ~ 107345 after the beginning. The idea
is that an initially small smooth and causally coherent patch of the universe
was exponentially expanded to fill the comoving volume and this became
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the entire observable universe today. The curvature radius of the universe
is therefore exponentially expanding during the inflation while the energy
density remains constant. There is no satisfactory model for inflation avail-
able yet, but most inflationary models consider a scalar field called inflaton
to source the exponential expansion [48], [49].

4.1.1 The Friedmann model

Although, there is no preferred frame of reference in theories of spacetime
that follow the Einstein’s Equivalence Principle, some coordinates make
the equations of motion easier to deal with. One such choice in cosmology
is comoving-coordinates for isotropic solutions. Comoving observers will
perceive the cosmic microwave background to be isotropic because they are
moving along with the Hubble flow (which is the expansion of the spa-
tial volume of the observable universe). Galaxies, for example, are almost
freely-falling and therefore are almost comoving bodies due to their low
peculiar velocities.

To explain, what the expansion of the universe means, we can take a
look at the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological
model that is behind all the standard observational interpretations. The
FLRW metric describes curved isotropic and homogeneous spacetimes

2
1 — kr?

ds® = —dt* + a(t) ( +7r?(d6? + sin® 9d¢2)> : (4.3)

It describes an expanding or a contracting universe and is an exact solution
to Einstein’s equations. The spatial curvature k£ and the relative expansion
a(t) define the geometry and evolution of the universe. If £ = 0 the metric
reduces to the Minkowski’s flat universe of special relativity. Space that is
isotropic in every point is homogeneous and therefore maximally symmet-
ric. FLRW is the most general non-vacuum spacetime metric that has a 3
dimensional maximally symmetric subspace.

The FLRW solution with the FLRW metric is therefore a solution of
the Einstein’s equations that describes a homogeneous and isotropic
space with perfect fluid source. The time-time Goy = 87GTyy and
the space-space G1; = 87GT11 components of the Einstein’s equations give
the first Friedmann equation while the second equation is derived by
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using the trace equation Gl; = 87GT}'.

a\? 8tGp kA
H2E (5> = 3 +¥+§. (4.4)
4G A
p = B (p+3p) + 3 (4.5)

In these equations k is the curvature parameter for constant spatial curva-
ture and a = a(t) is the scale parameter of the FLRW metric.

The expansion rate of the universe is determined by the Hubble param-
eter H(t) = a(t)/a(t). The Hubble constant Hj is the preset value of the
expansion rate and is related to the critical density p. of a flat (kK = 0)
universe by

9 _ 81Gp,

H; 3 Hy =100 hkms ™ *Mpc ™!, (4.6)

where h is called the scaled Hubble constant. The Hubble parameter Hj is
not a constant but varies as t ! and the timescale for the age of the universe
is given by the Hubble time H; L. The observations are in good agreement
that the universe is flat [37, B8] and, therefore, the total energy density is
the critical density. Also, inflationary models within the Big Bang scenario
generate negligible spatial curvature early in the history of the universe
[48].

Now the history of the homogeneous and isotropic universe can be traced
back with the Friedmann’s equations if the values of the cosmological pa-
rameters are known. The energy content of the universe dictates the dy-
namics of the universe and the evolution of the energy species sets some
requirements for the cosmological models. In the Figure the time line
of the structure evolution of the initially homogeneous matter field into the
currently observed matter structures is illustrated.

The continuity equation ([2.4)) realize the conservation of energy for per-
fect fluids also in general relativity as

v, " =0 = V,G" =0. 4.7
2 ju

Now we can write the energy conservation for a perfect fluid p; = w;p; to
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Figure 4.1: Time line of the universe from Big Bang to the current time.
Credits to NASA/WMAP Science Team.

get the evolution of an energy species as
p(t); o< a(t)30Fwi), (4.8)

Here the DE sector with the cosmological constant A describes a smooth
energy component uncoupled to matter. Generally, the condition w < —1/3
for the equation of state parameter, requires a fluid with large negative
pressure that can give rise to accelerated expansion.

With the FLRW model it is easy to see how the energy budget has been
evolving through the history of the universe. One important piece of any
cosmological model is to get the cosmological eras correct to produce suffi-
cient matter structures and to arrive to a situation where the matter and
DE energy densities are comparable. The ACDM evolution and composi-
tion are depicted in the Figure [£.2l The radiation energy density evolves
as p, ~ a~* and the cold dark matter component as py; ~ a2, and only
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Figure 4.2: Left: Evolution of the energy species according to the FLRW
model [50]. Right: Two snapshots of the energy contents, at t ~ 10° years
and at t,0, ~ 100 years, credits to NASA/WMAP Science Team.

recently has the dark energy with constant density become the dominant
component that drives the cosmic expansion. The Friedmann equations
provide a way to describe the evolution of the universe, particularly by
studying the evolution of the scale factor during different cosmic eras. If
the w; are independent of time, the scale factor evolution can be solved for
a single species from the flat Friedmann equation for the dominant fluid

with
a(t) o 3057 (4.9)

In a radiation dominated universe, the scale factor would grow as a(t)
t'/2 under matter domination as a(t) o t*/% and if the vacuum energy dom-
inates as a(t) «x eV A/3t The matter energy fraction is currently comparable

to the DE component, so the DE energy domination, and the accelerated
expansion, has only recently begun.
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4.1.2 The de Sitter universe

The de Sitter solution with no matter fields is the vacuum FLRW solution.
De Sitter space is a maximally symmetric, exact solution of Einstein’s field
equations with A and no source. Let’s consider a ACDM scenario when
the expansion of the universe has diluted the matter density to a negligible
value. Now the vacuum energy totally dictates the energy budget and the
Friedmann equation can be written as

81Gpa
=—=a

3 (t)? — k. (4.10)

a(t)?
Now if we assume the curvature term is also diluted away with time and the
energy density of the vacuum remains constant, an exponentially expanding
solution is found:
8¢
a(t) ~ et H? = TA. (4.11)
For models of inflationary cosmology, a de Sitter phase of exponential ex-
pansion can therefore provide a mechanism that generates the homogeneous
conditions observed in the CMB. The universe cannot at all times be in a
de Sitter phase, but under certain conditions this mechanism could give
rise to exponential expansion. This has been anticipated to occur during
inflation and possibly we are approaching this scenario with the currently
observed accelerated expansion also.

The Schwarzchild-de-Sitter solution describes the gravitational field far
enough from a spherical mass distribution. The SdS metric components in

(2.15)) read:

A(r) = (1 - 2GTM — %7“2) _1,
B(r) = (1 - QiM - %ﬁ) . (4.12)

With this solution the exterior field can be thought to be independent
on the gravitational potentials of the surrounding bodies (or their effect
is completely negligible because the realistic distances between stars are
sufficiently large) and the field far away is considered to be the de Sitter
space. The interior solution of a spherical static star therefore obtains the
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SdS solution outside in the standard cosmology.

4.1.3 The ACDM model problems

The current standard model of cosmology with dark matter and dark energy
gives a good account for the cosmological observations. This model however
has several conceptual problems [50, 51, 52]. The biggest problem in the
dark energy interpretation is that we don’t understand it at the fundamen-
tal physical level. Maybe the biggest problem considered today concerns
the size of the cosmological constant. If dark energy is described as the zero
point energy of the vacuum, its magnitude is problematic to explain. No
reasonable explanation for the small observational value, py ~ 7 x 10730g
ecm ™3 ~ (1073eV)*, The approximation for the vacuum energy offered by
high energy physics, namely the Planck density, is over 120 orders of mag-
nitude higher [53]. And why is it very small but not exactly zero? There
are no other well motivated alternative explanations to the nature of the
constant A available, unless the anthropic arguments are considered [54].
The naturalness of the cosmological constant, can also be treated from the
viewpoint of quantum consistency The treatment of Dvali and Gomez [55]
shifts the smallness question into: “Is cosmological constant a quantum-
mechanically-consistent notion?” These views are the major reason why
dark energy has been tried to be explained by non-standard physical theo-
ries like rolling scalar fields, higher dimensional or supersymmetric theories
[56, 67, BY].

Another puzzling fact concerns the era the universe is observed today.
Why do we happen to view the universe at a period when the energy den-
sities of the CDM and vacuum energy are comparable? The large scale
structures that we observe set an upper limit to the fraction of the en-
ergy densities of DE and CDM. Were it bigger, the structures would not
have enough time to grow to the observed state. Were it a few orders
of magnitude smaller, it would already be undetectably small. Also some
observations are problematic with the CDM+A model [59].

Other fundamental concerns arise within the Big Bang theory [48]. Why
is the space flat and py ~ p.? Why is spacetime homogeneous and isotropic
as described by the CMB and the large scale data. CMB states that
the universe was smooth at the time of recombination with temperature
anisotropies from 2.74 K of the order §T/T ~ 10~°. Causal effects couldn’t
have generated the smoothness, because the universe consisted of about 10°
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causally disconnected regions at that time. How does the initially smooth
universe grow structures like stars, galaxies, galaxy groups, clusters, voids
and the Great Wall?

As already mentioned, an inflationary era within the standard Big Bang
scenario can hand an answer to some of these problems. It can smooth out
the space to align with the CMB and large scale observations. It also gener-
ates structures into the flat background via quantum fluctuations that are
“inflated” to become classical density fluctuations that will evolve through
gravitational collapse.

Displeased with the cosmological constant as an explanation of some
70% of the energy density in the modern universe, a plethora of models have
been considered among theorists. One approach is to consider the gravity to
arise from general relativity and the dark energy component to be composed
of some fantastic new energy with negative pressure wpgp < —1/3. The
observational constraint suggest that the alternative model still produces
the equation of state quite close to the wy case, see Table 3.2l Another
approach considers standard matter fields, but changes the gravitational
theory such that the current accelerated expansion can be accounted for.
For the modified gravity theories only some metric gravity alternatives are
studied here although many alternatives can be found in the literature.

Any physical and stable cosmological model needs to provide an ex-
planation for the cosmological and local observations. As the minimum
requirement homogeneity, isotropy and the evolution of the energy species
is to be correctly included. A complete cosmological model should also
include a description of deviations from homogeneity. Some cosmological
models that provide the exponential acceleration may also be used in the
early universe to describe the inflationary phase. Usually, however, a cos-
mological model is considered only to provide the late time acceleration and
the Big Bang scenario is considered to provide the early universe behavior.
With today’s precision measurements of GR in the weak field, there is not
much room to deviate from general relativity locally. So, the viable of cos-
mological gravity modifications, that make the expansion of the spacetime
accelerate, need to have GR as the local scale approximation. Another line
of thought for providing the accelerated expansion without dark energy is
called backreaction [60]. It provides the effect of DE via the formation of
nonlinear structures. This model is only mentioned in this work and was
not studied in the thesis publications.
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4.2 Deviations from standard cosmology

If ACDM is not the correct way to describe the universe, the currently
standardized theories either of spacetime or of the energy content of our
universe must radically change. (Although, radical thinking is required
already in understanding the CDM and vacuum energy.) Here quintessence
dark energy models are briefly considered and the focus is more on gravity
modifications. With this distinction, the jungle of cosmological models is
not a clear cut case. Gravity sector modifications are usually considered
by means of curvature as opposed to having extra fields on spacetime.
Here, however, all the models that are able to produce the accelerated
expansion are called dark energy models. This can be done because with
the Einstein’s field equations one can in most cases write the field equations
of the cosmological model as

G =k (T 4TI ), (4.13)
where T e“fo denotes all non-GR components, effectively making the theory
look like GR with DE-fluid in appropriate frame [12].

What also makes a tight DE-model classification vague, is the fact that
some of the theory classes can also be described by another formalism.
One such example are the f(R) theories that can be described with the
Brans-Dicke scalar-tensor gravity formalism and interpreted as chameleon
quintessence to describe the local scale phenomena. The discussion on non-
standard cosmological models is therefore incomplete in this thesis and tries
to provide the reader tools to understand only the models that were studied
in the presented papers. Standard cosmology provides an evolutionary
history with a coherent interpretation of the observations. This needs to
be fulfilled also by any viable cosmological deviation from ACDM . All the
models should therefore accept early inflation (whether produced by the
cosmological model or some additional mechanism), radiation domination
(when the hot universe cools down), structure formation era (leading to the
observed structures) and the current exponentially accelerated era. This
is usually achieved with the FLRW solution deviating only little from the
ACDM model. Another discriminator is the growth of the cosmological
perturbations seen in the CMB and observed in the large scale structures
of galaxy clusters [61].

Although the distinction, between having an extra energy species in the
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action and modifying the gravitational theory, is extremely vague (because
these regimes get easily mixed when the theory is represented in another
formulation), the cosmological models are divided into these two classes.
The first case is therefore discussed as an extra non-gravitational field in the
theory (lamely labeled as dark energy models) and the other as modification
to Einstein’s general relativity.

4.2.1 Dark energy models

Based on the previous Section, let’s now take a look at other alternatives
that can provide the equation of state wpr =~ —1 that may have varied
through times and only now act as A. In the light of cosmological obser-
vations and FLRW cosmology, the unexplained form of energy that pushes
the spacetime to expand faster than the Hubble rate needs an explanation.
The cosmological constant is hard to justify, so other explanations have
been sought for. Sometimes it is useful to include into the theory, in addi-
tion to the experimentally observed fields, yet unobserved fields that aid the
theory to explain the puzzling features. Theories with fundamental scalar
fields include nonlinear theories of gravity, Kaluza-Klein theories, dilatons
in superstring theories, models involving varying Newton’s constant and the
inflationary scenario. Also other higher rank fields, such as vector, tensor
or fields of even higher rank could be postulated in gravitational theories.
Adding a scalar field is however the simplest alternative and it allows many
exact phenomenological solutions to be found. In particle physics scalar
fields have for a very long time been used to describe for example the spin
0 particles and, especially, the recently observed Higgs field, that gives the
mass to all massive particles. The effects of dark energy (essentially the
equation of state wpgp ~ —1) can be produced if the scalar field action
meets certain requirements with a dominant potential term (quintessence,
phantom fields with negative kinetic term) or with a special kinetic term
(K-essence). For an introductory review on quintessence, K-essence, ghost
condensates, tachyonic and dilatonic dark energy see [58] and [62] for phan-
tom models and time varying dark energy equation of state.

Cosmological observations are only currently entering a phase, where
the different DE-model classes may be distinguishable [63] 9] [64]. Before
we get there, the precision observations at the local scales can provide
information of the theory phenomenology or even to rule out some model
classes as unviable.
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Quintessence

Quintessential scalar fields are considered as homogeneous and dynamical
non-gravitational fields that do not effectively couple to matter [56, 65 66].
These act as non-luminous special fluid that can resist the gravitational
collapse over large distances. Note that, in this work for quintessential
regime GR is assumed to be the theory of gravitation. The quintessential
field is here denoted as 1 for which the action is written as

So = [ dey=g |5ou0m b0 s~ V(). (4.14)

Now the equation of motion for the field ¢ = v (¢) on a FLRW background
is given by the Klein-Gordon equation

Y+ 3H)+ V' () =0, (4.15)

where dot represents derivation with respect to time and ’ is the derivative
with respect to the argument. Furthermore, its energy density and pressure
can be written as

po = 507 + V()
Py = %1/52 - V(v) (4.16)

and give wy, = py/py ~ —1 in the limit 1> << V/(¢). This obviously occurs
only if the field moves sufficiently slowly. In the slow roll approximation
also the 1) term is considered negligible and the potential can be considered
to fulfill

3H ~ =V'(1)).

Therefore, this slow roll condition, natural in a flat potential plateau, can
account for the accelerated expansion of the universe and possibly also
produce inflation in the high energy range.

A class of quintessence potentials V' (¢)) possess a nice feature called
tracking [67, [68, 69]. A tracking field has an attractor-like solution that
traces the cosmic evolution of the background equation of state wg (i.e.
wp = wg for radiation domination and wy; for matter domination) up to
present times and for a wide range of initial conditions. For wg < wp the
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tracking condition can be stated as
r=v"v/vh>1 (4.17)

and I' is nearly constant.

Some examples from particle physics have also been studied within the
quintessential scenario. One such class is based on effective supergravity
(SUGRA) [70] model that suggests sufficiently flat potential for a com-
plex quintessential field to realize the slow-roll regime. For a more general
discussion on supergravity inspired models see for example [58].

4.2.2 Modified theories of gravity

Gravitation is the dominant force determining the evolution of the struc-
tures in the universe during the matter domination epoch and dictating
the current expansion. Could the theory of gravitation itself be modified
such that the observed evolution of the universe with no dark energy is
reproduced? Einstein’s gravity is reasonably well tested in scales smaller
than the solar system, so large deviations from GR must occur in the large
scales only. This fact is called the infrared modification of GR and it is a
design criteria for all viable modified gravity theories. Also, because CMB,
nucleosynthesis and the structure formation with dark matter are all in
good agreement with the GR, the modification should only be effective at
late times. There are numerous ways to deviate from general relativity.
Two often considered ways have been studied here, namely the nonlinear
f(R) gravity and the scalar-tensor theory. Other models considered in
the literature (see e.g. [9, [71] for extensive reviews on extended gravity
theories) include general higher order gravity theories, bimetric theories,
Einstein- Ether, TeVeS [72], ghost condensates, DGP (Dvali-Gabadadze-
Porrati) gravity [73] extended dimension Braneworld models [74] and other
gravitational extensions arising from higher dimensional theories (e.g. from
Kaluza-Klein theories).

GR is an example of a well-formulated theory once the Cauchy prob-
lem and the sourcing fluids are considered carefully. With the alternative
theories of gravity these may present problems because the initial value
problem may not be well formulated or some of the sourcing terms might
not be realistic [I2]. A feature that sometimes makes the phenomenology
of a modified gravity theory easier or at other times harder to interpret,
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is the fact that the procedure of generalizing the E-H action leaves the
theorist with a freedom of introducing auxiliary fields, making conformal
transformations, performing renormalizations or even redefining fields for
convenience. Furthermore, sometimes different formulations may actually
be dynamically equivalent. Dynamically equivalent theories give exactly
the same results [6]. As an example the mathematical equivalence of met-
ric f(R) theories to a Brans-Dicke type scalar-tensor theory with a potential
[75] is considered in this thesis .

Although the current gravity modification scenarios have been studied
for a long time, no theory has clearly risen above the others, so all of them
ought to be considered as toy models for examining the deviation from
GR, or its robustness. The viable modifications to GR have currently gone
through a multitude of selection criteria and still many models persist.
Currently there are some gravitational experiments and observations that
may be used to distinguish metric theories of gravity [9, [76]. The standard
theoretical selection criteria must concern unwanted instabilities that higher
order gravity modifications may contain. These include ghosts fields [77]
with negative energy states (like in the Ostrogradski instability [78] 15]),
curvature singularities [79] or matter instabilities (of Dolgov and Kawasaki
[14]). Also in the local scales problems may occur. It is actually very
hard to modify GR and not to affect the small and intermediate scales via
extra forces [80, [9]. One way to mend this is to introduce a mechanism
that suppresses the effects of the extra scalar degree of freedom in the local
scales.

A screening mechanism solves the fifth force problem by e.g. making
the field very massive or shielding the local scales from detection with an
effective thin-shell. Also other screening mechanisms have been introduced
see [81] for a review on screening mechanisms. The best place to measure
the effects of a screening mechanism locally would be in space, because the
suggested suppression of the fifth force occurring on Earth [9].

Some of the general features of scalar-tensor gravitation theories (like
the “physical equivalence /non-equivalence” of the Jordan and Einstein fra-
mes, or chameleon screening with the thin-shell mechanism) are not ad-
dressed in the included papers at all, because only Jordan frame representa-
tion was studied in our phenomenological numerical work. The observables
can be straightforwardly used in the code because in the Jordan frame the
coupling of the scalar field with matter is minimal. In scalar-tensor gravity
weak means no coupling at all between the scalar and the matter fields. In
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some cases the analytic treatment of the problem is easier in the Einstein
frame or one specifically studies phenomena that emerge in the Einstein
frame. The choice of the reference frame is not relevant if the frame is not
transformed.

In metric theories of gravity [82] i) the equations of motion concerning
matter involve the metric tensor g,, to describe the gravitation as cur-
vature on a Riemannian manifold and ¢i) respond to all matter and non-
gravitational fields in accordance with V,T"” = 0. The metric, however,
can be generated in addition to the matter content by other gravitational
fields (such as a gravitational scalar field ¢ that responds to the metric via
the field equations). The matter action Sy, = [/—gLmd*z in the metric
theories include the matter fields of the particle physical model and the
metric g, that is used to contract the indices. Therefore, the matter fields
cannot directly feel the possible auxiliary long-range gravitational fields
that define the curvature in metric theories of gravity and the geodesics
are determined by the metric tensor alone. Not all theories of gravity are
metric theories like GR. Other formulations can involve curvature where
the fundamental gravitational entity is no longer the metric alone [83, 9].
Two non-metric theories include the metric-affine formalism [6] and bimet-
ric theories [84) 85].

Note also, that in many gravity modifications SEC and EEP are violated
[86, 12]. Einstein’s general relativity conforms to SEP. One other known
theory that also conforms to SEP is the Nordstrém’s scalar theory of gravity
[87]. Also, the Birkhoff’s theorem is not satisfied in higher order gravity
theories without additional constraints on the scalar curvature and on the
extra degrees of freedom [23], [88]. This ambiguity has been utilized in the
works [2, 3, 4] when several modified gravity models have been numerically
studied around a static spherically symmetric solution.

The work presented in this thesis concerns some of the already tested
models and provides additional or independent tests for the viability of
the studied models. The focus of the research has been on the modified
gravity models and the local observational parameters, especially on the
solar vppn -parameter and the observed masses of the sun, white dwarfs
and neutron stars. The status of these model with respect to mentioned
observables is discussed in the articles [2, [3, [4].
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f(R) gravity

This class of gravity modifications provide a fruitful arena for testing the
effects deviating from GR. Each f(R) function introduces a class of toy the-
ories for which the gravity formulation is a straightforward generalization
of Einstein’s gravity f(R) = R. A nonlinear function of the Ricci scalar,
f(R), is introduced into the gravity Lagrangian

Sg = / i\/—_g f(R) d*z. (4.18)

Although the motivation for higher order invariants (like R, R*” or ROR)
in the gravitational Lagrangian come from high energy physics [89], it is
still a guiding line that motivates the study of these theories [6]. Another
nice feature of this class of gravity theories is the absence of new physics
with respect to the Big Bang scenario. Now the gravitational phenomena
is fully explained by the familiar geometrical concepts. This very general
class of theories allows a rich cosmological phenomenology to occur. Some
f(R) functions can indeed account for the effects of dark energy in the
current universe, because it is easy to come up with a term that leaves the
action effectively ACDM
a9 aq R2 R3

f(R) +R2+R 20+R+52+63—|—... (4.19)
here o and § scale the term to be close to the vacuum value and have the
correct dimensions and C denotes the constant term in the Laurent expan-
sion (the constant term is not generally used in f(R) gravity models). The
polynomial expansion has not provided a viable model that would be stable
enough a theory and that can also produce the local phenomena according
to the observations. The stability criteria described in the previous Section
has proved to rule out several f(R) models [14} [15], while some still persist
as viable [90} 911, 02, [93]. These more complicated functions of R can even
stand for the solar system constraints [75] 94] 95, [96] 114} [97] and the evo-
lution of large scale perturbations [98|, [99) 10T, [61} 100, 102]. These criteria
are vital when the viability of a f(R) function class is tested. Especially, the
solar system experiments offer a good testing ground for any modification of
general relativity with the PPN formalism [104] [105] (106, 107} 108]. These
f(R) functions effectively reduce to R+ C, where C vanishes completely in
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the high curvature regime, but acts as A when R — 0.

The Ostrogradski instability is avoided in f(R) theories [I5, O] and de
Sitter space can be found for functions f’(Rp) > 0 [I09]. This is a spe-
cial feature of these theories. Also the Dolgov-Kawasaki instability can
be avoided if f”(R) > 0, R >> Ry. These properties make f(R) models
a special class among gravity modifications and is a good motivation for
their study. Many of the functions do not, of course, fulfill all the observa-
tional requirements and even the ones that do must still be considered as
toy models that survey the possibilities of deviating from GR. Two simple
models are discussed: f(R) = R+ a1/R (CDTT) [I10] and R + apR? [TT1]
and models that are designed to to behave like ACDM , namely the models
of Hu & Sawicki [90] and Starobinsky [91]. These models will be discussed
in the next Chapter. Many other trial models can be found in the literature
(e.g. f(R)— R=eM or f(R) — R =In(\R) [[12] and other designer f(R)
models like f/(R) = 1/2[1+ tanh(aR —b)] [92] and [93] have been studied).
The simplest models are cast out by the viability criteria due to unstable
solutions within the theory or because the model cannot accommodate the
solar system tests. The CDTT model for example possesses the matter
instability and does not fulfill the observational requirements of the solar
system [113, 114, 2], namely vppy = 1/2 making in an unviable candidate.
In the designer f(R) models the function is specifically tuned to represent
GR in the high curvature regime and to approach ACDM in large scales
with vanishing R. Also inflationary era may be possible to explain with
f(R) modification [115].

Variation of the action with respect to the metric gives the field
equations

f,(R)RW - %f(R)g;w - Vyvuf/(R) + g#ny/(R) = kT (4.20)

where differentiation is with respect to the argument and O denotes the co-
variant d’Alembertian The matter part 7}, represents the standard matter
. Consider a function f(R) being any nonlinear function of the Ricci
scalar. Even in the linear case, i.e. the Einstein-Hilbert case , the
resulting field equations are nonlinear and of the second order with respect
to the metric tensor. For the nonlinear f(R) the field equation obtains
additional second order covariant derivatives of R resulting in fourth order
partial differential equations of the metric. In these fourth order gravity
theories there exist an additional dynamical degree of freedom, that in the
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f(R) gravity case is the field f’(R). More generally the differential order of
the field equations relates to the number of scalar fields needed to describe
the system. For every further two orders one needs to introduce one scalar
[116, 117]. This family of gravitational theories admits therefore more solu-
tions than in GR. Even the familiar notion in GR of vanishing of the scalar
curvature in the vacuum 7' = T}’ = 0, with

R = -87GT,

does not hold. This can be seen from the trace equation of the field equa-
tions

f'(R)R —2f(R) + 30f'(R) = 8xGT. (4.21)

Also, when considering a boundary problem in a f(R) theory, the Birkhoff’s
theorem does not generally hold due to the additional dependence on the
new dynamical degree of freedom in the metric [23]. If the metric is matched
to the SAS metric at the boundary, more constraints are needed than in GR
[118]. Therefore, for a large class of f(R) models, the SdS metric is an exact
solution of the field equations (4.20). These solutions can be found for a
set of f(R) functions that satisfy

Rof'(Ro) —2f(Ro) = 0 (4.22)

with a constant Ry = —4A. Furthermore, the metric components inside
the matter configuration depend the distribution inside making the outside
solution matching non-unique [119, 120]. The reason behind this is the
higher differential order of the f(R) theory when compared to GR. Also
Minkowski, for R =0 in , and anti-de Sitter vacuum, for Ry < 0, so-
lutions exist in f(R) theories as maximally symmetric vacuum solutions.A
criterion for the linear stability of a f(R) model, with the de Sitter back-
ground Ry, is derived in [6] and reads for fo = f(Rp) as

(f6)* = 2fofd >

o

Also the equation of continuity is automatically satisfied [I121] in f(R) grav-
ity, so no additional information is gained on top of the field equations.

0. (4.23)

In this work only the metric formalism of f(R) theories of gravity has
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been studied and used. In the metric (or second order) formalism, the Levi-
Civita connection that defines the notion of parallel transport in Riemann
geometry, is uniquely associated to the metric and is given by the Christoffel
symbol . In the Palatini formalism, the metric and the connection
are taken to be independent. Variation of the action is therefore done in
non-standard way with respect to both of the variables and result in two
field equations. In the metric-affine formalism the connection is allowed
to depend on the metric, but the variation is done the Palatini way. The
interested reader may educate oneself for example with the reviews [6] 9]
122] and with references therein.

Scalar-tensor gravity

Scalar-tensor gravitation is one of the most established way to modify GR.
The initial value problem is well posed and a number of exact solutions
can be found. Scalar-tensor gravity obtains its name from the fact that the
gravitational sector does not consist only of the metric g,,,, but there is an
additional scalar degree of freedom ¢ involved. Overall, the distinction be-
tween a gravitational and non-gravitational auxiliary field is ambiguous and
is used only to distinguish matter and gravitational type energy or behavior
[116]. In this work all matter related fields arise from the matter action
S, alone, since all our calculations have been done in the Jordan frame in
which the coupling between the auxiliary field and matter is minimal. The
studied scalar field ¢ is therefore said to belong to the gravitational sec-
tor. In the Einstein frame the matter-gravitational distinction is confised
because the scalar field couples to the matter sector. If the scalar field is
non-minimally coupled to the matter sector the energy conditions for ¢ are
also violated [7].

The field ¢ is a Lorentz scalar that can mediate a so called fifth force
if it couples to matter. This is a problem in solar system scales unless the
potential depends on the matter distribution in a correct way to be able to
screen itself and be undetected. When properly introduced in this context,
it can both explain the current exponentially accelerated expansion of the
spacetime, and be in coherence with the current accurate measurements in
the local neighborhood. The scalar field can also be slowly-rolling down its
potential at early history of the universe so it can act as an inflaton and
realize the exponential expansion to produce the inhomogenities that will
develop into the matter structures of the current universe.
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A physical system can sometimes be described with many different theo-
retical frameworks with a set of field equations that fully describes a system
in each frame. In some cases there is a mapping between these frames and
the theories can be considered to be dynamically equivalent. Conformal
mapping is one such transformation that gives a set of equivalent frames or
geometries. The causal structure is preserved in a conformal transforma-
tion. As an extreme example, the effect of conformal mapping can cause
flat spacetime to be bent in the other frame, as the mapping introduces a
scalar that couples non-minimally to matter. Therefore, the matter in this
transformed frame feels acceleration. The two frames often considered in
scalar-tensor theories are the Jordan frame, where the gravitational scalar
field couples with the Ricci scalar, but has no coupling to the matter La-
grangian. This way the WEP of GR is preserved, the covariant conservation
law for the stress-energy holds and the test particles follow geodesics.
In the other, Einstein frame, the scalar field does not couple to the Ricci
scalar in the Einstein-Hilbert action and the matter is instead cou-
pled to the scalar field with a metric g,,. The transformation from Jordan
frame to Einstein frame by reparametrization is

G = G = VG- (4.24)

Now the scalar field acts as a source for the Einstein frame metric tensor
and can be considered as a matter field [75]. Because of the coupling in
Einstein frame the two mathematically equivalent frames can be considered
physically different (see [75][123]). The two frames are said to be physically
equivalent at the classical level if also the units, derived in Jordan frame,
scale with appropriate powers of the conformal factor 2 in the Einstein
frame [124]. Now the confomally scaled spacetime g, possesses matter
couplings also for the field ¢. The scalar-tensor models in the Jordan frame,
where the matter Lagrangian £, depends only on the metric g,, and the
matter fields ¢/, the freely falling particles will move on geodesics of g,,,,
and the gravitational field ¢ is completely a geometric entity. The metric
of this spacetime is affected by the scalar field through the considered field
equations.

The most prominent and special scalar-tensor gravitational theory is
based on the work of Brans and Dicke [I125]. In the so called Brans-Dicke
theory (BD) there is one extra auxiliary gravitational field ¢ which is a
long range scalar field that is weakly coupled to the trace of the energy-
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momentum tensor. A general form of the gravitational action of scalar-
tensor theories in the Jordan frame can be parametrized by the BD param-
eter wpp, as

Sop = [ dav=g|oR - Lo~ V(). (429)

The metric and Palatini f(R) theories can be described with BD equa-
tions with wpp = 0 and wpp = —3/2 respectively and the corresponding
theories are said to be dynamically equivalent [6, 116]. These classes of
BD theories, on the other hand, provide a way to investigate the family of
scalar-tensor theories, that historically have been studied on other grounds.
In the work [4] BD gravity models with wpp = 0 were studied. This ac-
tion with vanishing kinetic term is also called the O’Hanlon action [126]
and is dynamically equivalent with metric f(R) theories if f”(R) # 0 and
¢ = f'(R) 6, 127). Horndeski’s theory [I128] describes the most general
second order scalar-tensor theory [129]. This theory has only recently re-
entered into the active study and has also proven to be Ostrogradski stable
[77, 130].

The model studied in [4] possesses a non-minimal coupling to the cur-
vature scalar R, a minimal coupling to the matter Lagrangian £,, and a
potential V(¢). The set of field equations in the Jordan frame are derived
from the action with wpp = 0 by variation, first with respect to g"
and then to ¢.

1 1
%Q;WV(QZ)) + §_b (vuvu¢ - guum¢) (4'26)

R = V'(¢). (4.27)

K
G/U/ - gTMV -

It can be seen here, that the x/¢ term in the Jordan frame can also be
interpreted as a varying gravitational coupling. The dynamics for the field
¢ is obtained from the trace equation of (4.26))

30¢ + 2V (¢) — ¢V'(¢) = KT. (4.28)

The expanding de Sitter vacuum solution is a stable attractor solution
for many scalar-tensor models, see [I31] for an extensive analysis on linear
stability in modified gravity theories. The theorem of Birkhoff is not gen-
erally valid in scalar-tensor theories although it may apply for some special
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cases like for the constant background field in the Einstein frame [88].
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Chapter 5

The phenomena studied in
the papers

Previously, cosmological models and particularly the puzzle of dark energy
were discussed. The solution to this open question has been approached
from two directions. From models that add a new energy component to
produce the observed accelerated evolution for the current universe, or by
changing the current scenario of how the existing matter behaves in the
spacetime, i.e. by changing the gravity. Usually confronting a general prin-
ciple with the observation demands a lot of simplification, up to a point
of non-realistic situation. Yet, only by finding the phenomena that can
be expressed by a theoretical construct and is suited for a concrete mea-
surement, can anything be said of its validity. A striving force behind the
research represented in this thesis has been the dialog between theoretical
phenomenology and measurable parameters inferred from the observations.
Our approach has been numerical throughout, so specific models needed
to be chosen under study. Because of the nature of the empirical method,
these models are now under the magnifying glass and to be judged by the
observations.

Numerical solutions for polytropic matter configurations in different
gravitational scenarios have been studied. Also a class of quintessence mod-
els was constrained with supernova observations in [I]. Polytropic stars,
although not fully realistic, provide a good venue to test modified gravity
models in local scales because of their importance in GR. All the consid-
ered cosmological models have at some point been studied as a potential
alternative description for the current evolution of the universe. The solar
system tests have proven to be important in casting out unviable mod-
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els. Therefore, new tests are needed for many of the remaining theories
seem indistinguishable from GR in the solar system. In [2] 3] solar system
measurements were used when the stellar f(R) gravity configurations were
studied.

In the article [4], current astronomical data was utilized in a test of a
modified gravity model. The potential of a scalar-tensor gravity model was
numerically generated for solar type stars, white dwarfs (WD) and neutron
stars (NS). The compact objects were modelled with perfect fluid polytropic
matter and the boundary values were required to reach physical conditions.
At the center the objects were required to be regular and the initial value
of the matter density to align with the standard Wakano-Harrison-Wheeler
equations of state [I7]. The white dwarf masses and radii and the neutron
star masses were bound in this work to the current observational values
133, [34].

Numerical methods

The work was done with self written numerical codes that utilize mainly
Mathematica, but also python and Fortran77. In this Section, the common
theoretical foundations for modified gravity models, used in the numerical
work of [2,[3,/4], is laid out. The results are viewed in the following Sections.

Three cosmological model classes were studied within realistic param-
eter ranges in the articles. In [I] a quintessence model was fitted to
supernovae data and model parameters were constrained as a result. In the
two articles [2], 3] specific f(R) gravity models were discussed in the context
of polytropic stellar models and solar system experimental constraints. And
finally in the article [4] the potential of scalar-tensor theories, equivalent
to the metric f(R) theories, was studied with solar-type, white dwarf and
neutron star polytropic equations of state.

A common theme in [2 [3, 4] was to study the behavior of the gravi-
tational field around a spherically symmetric object. The intuitive notion
for Newton’s gravitational field is the asymptotic flatness required for an
isolated object and this is always obtained for a static spherically symmet-
ric object in GR (Birkhoff’s theorem). When the modifications to the EH
action are small, also the stellar solution deviates only little from
the general relativistic TOV solution [II§]. The author has studied, in
these works, how the polytropic stellar configurations behave at the
boundary and whether the numerical solutions can come close to the gen-
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eral relativistic SdS solution within the studied gravitational models. This
was studied in the PPN formalism by numerically selecting solutions that
have yppy close enough to unity. In these studies the modified gravitational
equations in CDTT, HS and scalar-tensor models were considered.

The equations of motion are the field equations of f(R) (4.20)) (or scalar-
tensor gravity ), the trace equations (4.21)) (or (4.28)) and the conti-
nuity equation . For the f(R) gravity generally the energy continuity
is naturally satisfied and can be omitted if sufficient set of field equations
is chosen to solve the system. This equation is, however, used explicitly
in composing the independent set of equations in our works, because the
reparametrization with respect to the radius breaks the natural degeneracy.
The background is solved from the vacuum trace equation .

The configurations describe static spherically symmetric objects
of perfect fluid matter with the adiabatic equation of state . In
our configurations with the metric , the continuity equation takes the
form

/ B/
pr=—55+p) (5.1)

For numerical purposes, the energy density and radius are scaled for the
f(R) configuration like in the Newtonian Lane-Emden case as p =
000"/~ and r = lz. All the solutions are always separately contrasted
to the general relativistic TOV counterpart to be able to study the
differences of the gravitational models inside the configuration. This serves
only as a reference and the TOV equation is not used when the polytropic
configuration for the gravity modification is solved.

The higher order theory is more constrained in comparison to GR and
more boundary conditions need to be fixed. The amount of free parameters
depends on the formulation, see [118] for example, where also R” = Rj =0
and p"(rs) = 0 are fixed in f”(Rp) # 0 theories. The boundary conditions
were treated as follows. Regularity at the center is defined by searching an
analytic solution at the center. At the surface, the scalar curvature R = Ry
and its first derivative R’ = R{, = 0 can be fixed with the SdS metric. And
the surface is found at p(rs) = p'(rs) = 0, p(rs) = p'(rs) = 0 where the
metric is matched to the SdS solution by demanding |yppx — 1| to conform
to the Cassini limits.

In the work represented here, the vppyn -parameter is found di-
rectly from the Schwarzschild metric parameters with PPN parametriza-
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tion. This is used to test CDTT and HS gravity models and the results are
presented in the papers [2] [3].

5.1 SUGRA quintessence in the light of super-
novae data

In [I] we constrained a supergravity quintessence model with supernovae
data and found that the simplest models do not provide a very good fit
for this data. The model parameters that best fit the data were found on
a flat Friedmannian background. This model class is able to produce the
correct cosmological evolution for a wide range of initial conditions, so the
coincidence problem can be avoided and to arrive near wg ~ —1 in the
current universe. The studied potential contains a large class of potentials,
also including the ACDM model. This class takes the Planck scale physics
into consideration. It is a simple quintessence model in supergravity and is
dubbed in the literature as the SUGRA model

Vo(v) = Aﬁje(gw)ﬂ/g.

Here k = 817G, M is the energy scale and «, 8 are positive integers. The
ACDM is obtained with & = 8 = 0. Other well studied DE models belong
to this class as well. The inverse power model (8 = 0), the pure exponential
model (o = 0) and a special quintessence model of Brax and Martin (8 =
2,0 = 11) [70]. The potential is usually studied with a real scalar field, that
is a special choice. In our treatment the field ¥ = e is complex, as is
more natural in supergravity. The treatment is simplified by a constant of
motion L = 0¢2a® in the cosmological equation of motion and the dynamics
can be solved now for the real ¢ only.

The cosmological parameters are consistent with WMAP data [132] and
only flat enough models were considered. The parameters were fit to the
supernova data [35] with the likelihoods calculated by minimizing the x2.
The special models that were mentioned do not belong to the 1o area in
the general model parameter space. We conclude that the SUGRA model
with (f = 3,a = 4) fits the supernova data set better than ACDM (that
lies even outside the 30 contour). We also deduce the energy scale of the
potential to lie below M < 1TeV. These conclusions can be observed from
the Figure [5.1

(5.2)
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Figure 5.1: Left: The fit of the SUGRA model parameters a and 8 to the
Snela data set. Flat solutions with 1o (black dots), 20 (dark grey) and 3¢
(light grey) confidence levels are shown [I]. Right: Unless 8 = 3 and o > 4,
the Snela data favours energy scales for the potential that lie under 17eV

.

5.2 Polytropic configurations in the CDTT model

The solar system constraints as well as properties of polytropic stellar con-
figurations in the CDTT model f(R) = R — u*/R were studied. The
dynamical system for f(R) gravity with the polytropic equation of state
is provided by a highly nonlinear set of equations . Our study is
based on solving the system (p, B, A) for the given f(R) function numer-
ically with respect to the stellar radius r, and from these to draw values
for observational parameters. An additional independent condition on the
field F(r) = f'(R(r)) was posed in this paper to lower the differential or-
der of the set of equations. Now we can consider both f(R(r)) and F(r)
as independent functions of the radius r. This breaks the implicit energy
conservation in and therefore the continuity equation is also
used as an independent equation to assure the energy conservation. From
the above relation between the f(R) function and the field f’(R), the Ricci
scalar can the be algebraically solved for some f(R) models. As an example
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is the CDTT model, for which this relation is

(5.3)

Now the modified field equations, the continuity equation and the
relation f(R) = f(F') forms the set of independent equations, that are nu-
merically solved together with the polytropic equation of state on a static
spherically symmetric spacetime. The regularity condition (8) in [2] was
first analytically derived. Then the chosen polytropic configurations were
then numerically integrated to yield the density p(r) and the metric pa-
rameters B(r) and A(r). The stellar configuration was integrated from the
center on and some radii outside the star. We also integrated the config-
uration inwards starting from the boundary and found that the solutions
for the same parametrization of the polytropic configuration do not match
(see Figure Also, the value of the field f'(R) varies very little inside
the star and stays near the vacuum value —/3pu2. We also calculated the
~vppn -constraint for the model directly from the metric parameters
The solar yppy -constraint was straightforwardly found to be vppy = 1/2
till far outside the star, see Figure[5.2] This was the case also for the cho-
sen relativistic WD and non-relativistic NS polytropes in CDTT gravity.
The vppny = 1/2 solution holds out to distances where the cosmological
background becomes effective (see Figure . This result is aligned with
the previous studies [133, 114]. For f(R) = R — u*/R model the spacetime
outside the polytropic sun with regular origin is, therefore, incompatible
with the observations from the solar system.

The incompatibility of the model was further proved by starting the
integration from the correct SAS boundary value. As a result the numerical
solutions were seen to diverge at the origin, leading to an unacceptable
solution at the center. The effect of a regular center is of critical importance
to the behavior of the metric in these configurations and must be addressed
in studies concerning PPN formalism for stellar configurations.

By appropriate initial conditions (F(r9) = 4/3) one finds a solution
that reproduces the Lane-Emden solution very well. Furthermore, a simple
scaling relation was noted to be present in the radial coordinate for f(R)
theories that resemble GR very well within solar densities. The scaling
condition suggests that a Lane-Emden -like solution is generally obtainable
for such f(R) functions.
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Figure 5.2: Left: Evolution of vppy outside the sun in the CDTT model [2].
Right: Solar polytropic CDTT configuration with SdS boundary conditions

2.

5.3 Solar constraint on a chameleon model

By utilizing the recipe described in the Section [5] for the polytropic config-
urations of f(R) gravitational field equations, we derive the yppy solar sys-
tem constraint for a class of stable f(R)xs models in [3]. These models can
both account for the current large scale acceleration and locally behave like
general relativity with negligible scalar curvature. All the studied models
were constrained, with the field amplitude being | fro| = —ncy/c3/(41)" Tt €
[0.1,1077], to be able produce the observationally viable expansion histo-
ries. The Hu and Sawicki chameleon f(R) model [90] reads

: (5.4)

where @ > 0, ¢; and ¢y are dimensionless parameters and m? is the mass
scale of the vacuum today. This model also possesses a thin shell mechanism
[134] to suppress the local effects of the fifth force (brought about by the
extra degrees of freedom in the theory, the scalar field ¢ = f'(R)) [76].
Chameleon screening with a thin shell mechanism hides the effect of the
field outside the stellar object. In our work we tested the viability of the
f(R)gs model around a static stellar polytropic star to find out how well
the Cassini results were obtained near the surface by this theory.

With the static spherically symmetric metric and perfect fluid adiabatic
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matter, we solved the field equations

1f (R)guw — (VuVy — g 0) f(R) = 87GT, (5.5)

J'(R) Ry = 5

for the f(R)ms model to obtain the metric functions B(r) and A(r) inside
the configuration.

The chameleon phenomenology is not discussed here analytically nor
studied in detail, because the purpose of the work in [4] was to provide a
direct numerical result on vppy to be compared to the Cassini result. The
Cassini spacecraft [27] measured the frequency shift occurring at distance
< 10rg from the solar surface (and the signal peaks at the solar surface),
while the Hu and Sawicki [90] vppy result was given rather far in the solar
system (r > 1007¢ ~ 1 AU) where the thin-shell condition was satisfied.
We obtained our results at the surface of the polytrope (defined as p(rs) =
0). To verify the result, we arrived at the parameter yppy from another
angle, namely by numerically calculating the metric parameters B(r) and
A(r) as in [2]. The parameter had also been previously discussed for other
f(R) models in [I35, [I36] by approximating the yppx -parameter in the
chameleon f(R) theories from the metric parameters.

We find that although the model admirably arrive near the GR value
for most of the polytropic solutions, it does not always find the correct
observational yppy value (see Table near the surface. When we com-
pared the value of to the observed value (shown in Table , we
found out that the model value doesn’t always stay within the observational
bounds with the Eddington model when the central curvature is varied even
slightly. The curvature initial value at the center is not known so we chose
to present the unstable phenomena with more statistics. We solved some
ten thousand polytropes with also varying the central density around the
Eddington solution. We find that the effect on metric parameters outside,
due to the different initial curvature, is a generic feature in the gravita-
tional model and is not due to the polytropic equation of state. This is
seen in the right side Figure where the different initial curvature values
change the (yppy-1). By varying the initial curvature Ry we effectively
test here different initial slopes for the potential V'(¢) in the corresponding
BD-equivalent (wpp = 0,¢ = 1, (4.26)) in the Jordan frame.
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Figure 5.3: Left: Typical density profiles for a polytrope. The density p(r)
is reparametrized here as p(r) = p,0'/("~1) and the Lane-Emden solution
corresponds to the SUN [3]. Right: The f(R)gs polytropic solutions for
different central densities and initial curvatures. The observational Cassini
values are € [—0.000002,0.000044] and ACDM model gives yppy —1 =~
1078 [3].

5.4 Scalar-tensor polytropic stars

In the article [4] we studied a representation of a scalar-tensor theory com-
patible with the ACDM model and with the metric f(R) theories. We used
the O’Hanlon action

5= [d'av=gloR - V(@) (5.6)

and used only the Jordan frame representation (see the discussion of fra-
mes in Section . Rather than having the scalar-tensor potential fixed
beforehand, we derive the system by using a prior set of equations to first
set up the metric according to a ACDM / f(R) polytropic configuration and
later derive the potential V' (¢) numerically from this information.

As the prior equations, we used the general relativistic ACDM
or f(R)us , field equations and the energy continuity equation
with the static spherically symmetric metric . These give the
ACDM /f(R) polytropic configuration (p(r), B(r), A(r)). When search-
ing for the scalar-tensor potential V' (¢), we solve another set of equations
for the field ¢(r) and the potential V(r) by numerically including
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the ACDM /f(R) prior obtained above. The equations that give the field
and the potential can be written as

¢(r)Gin = kT — %911‘/(7") + V1Vig(r) — g110¢(r) (5.7)
RY'(r) = V'(r), (5.8)

where the second field equation is used in the in the reparametriza-
tion of the potential as V(r). The whole configuration then boils down
to a system of the variables (p,p, B, A,V, ¢,r), where the pressure degree
of freedom p(r) can already be reduced with the polytropic equation of
state . We also calculated for comparison the scalar-tensor potentials
V(¢)s: for the Starobinsky f(R)s; stellar profiles

(+7)
f(R)st = R+ ARy <1+ﬁ> -1, (5.9)
A

with n, A > 0 and Ry of the order of the cosmological constant [91]. There
does not exist an extensive amount of numerical studies on scalar-tensor
matter configurations. Individual models like rotating neutron stars have
been studied [I37]. In our study neutron stars were not solvable for neither
of the f(R) gravitational models.

The system is, therefore, confined to follow ACDM (or f(R)) gravity
inside the configuration. This gives the p(r), B(r) and A(r) as numerical so-
lutions inside the star with a regular center. The physical conditions for the
ACDM configuration were found by optimizing the polytropic parameters
to find physically acceptable configurations. The viable polytropic param-
eter space (po, I,v) in and shrinks essentially to a point when
the solutions are required to obtain physically viable masses and radii (e.g.
rs = R and ffe 47Gp(r)ridr in the case for the SUN) that correspond
to sensible central densities.

Finally the boundary of the configuration is confined with the SdS vac-
uum to recover general relativity as

B’ 4 , 9
V(p)=— <_E + E) ¢ + 6Hyo. (5.10)
Here the de Sitter vacuum condition G11 = —g11A = —3A(7‘)H§ was used.

Now the potential V(r) and the field ¢(r) can be integrated with appro-
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Figure 5.4: Potentials V' (¢) for the NS (red), WD (relativistic - blue, non-
relativistic - green, dashed) and SUN (black, dotted) polytropic configura-
tions with small ihitial field value [4]. The smaller image is a zoom to the
WDs and the SUN only.

priate initial conditions. Our solutions do not give a general description
of the potential V(¢), but find the special cases that satisfy the above
assumptions.

The potential is required to be initially tes the de Sitter vacuum
Vi(rs) = 2A = 6HZ which now constrains ¢} (5.10). This fully confines the
configuration td ofptain the typical shape for the polytropic star, shown in
the left Figure 5.4. The initial value ¢; = 1 + d¢; has affect on the field
range that is covered by the configuration, but not on the shape nor the
range covered by the potential V' (r). The whole potential can be “shifted”
towards smaller field values up to a saturation point d¢asry, that is un
per stellar class (SUN, WD, NS). This is depicted in the left Figure 5.4.
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Figure 5.5: Non-relativistic WD (green) and SUN (yellow) with high initial
field value.

The shape of the potential remains the same for different §¢;, but scales
according to the matter configuration. The more dense object class obtains
higher potential values Viys(¢) > Viyp(¢) > Vsun(¢) so that all the objects
cannot be represented by the same gravitational theory. Even if we choose
high a field value initially, the potentiall cajpnot describe all the objects.
This can be seen also in the right Figure 5.4.

5.5 Concluding remarks

All the studies carried out for this thesis have very general common factors,
namely cosmological dark energy models and observations. Common to all
these works was the pursuit of numerically studying physically meaningful
phenomena within potentially viable cosmological models. The aim was
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to utilize observational data for constraining the model parameters or vi-
ability of the model class under study. The author thérefbre refrains from
extrapolating the individual studies of the articles [1, 2, 3, 4] to one general
conclusion and briefly collects the main results here.

New aspects of the studied models were found. The SUGRA quintessence
model fits better to the Snela data than the ACDM model. The original
supergravity potential of Brax and Martin lies within the 20 area. Also,
small energy scales (< 1 TeV) are favoured unless the potential parameter
8 =3.

The three latter articles concentrate on models that are usually classi-
fied as modifications to the gravitational Lagrangean. These models were
compared to observations with polytropic matter configurations, and the
spacetime outside the configurations was studied. The CDTT model that
had already proved to be unstable was found to show the yppy = 1/2 be-
havior in the metric parameters when the initial conditions were properly
considered. Also, a scaling relation for the Newtonian/GR Lane-Emden
solution to yield the modified gravity model was found.

The HS f(R) gravity model was found to produce the GR star very
well, but a spacetime with |[yppy — 1| < 1075 was not reached for all con-
figurations corresponding to different Ry with the precision of the Cassini
mission.

We solved the scalar field potential for three different matter configu-
rations that are similar to the general relativistic counterparts, and found
that all the configurations lead to different theories. The procedure of nu-
merically deriving the potential V' (¢) has not previously been done - to our
knowledge - for stellar configurations in scalar-tensor gravity, and therefore
it is impossible to draw far reaching or definite conclusions on this result.
One can, however, speculate that if the configurations are all stable in this
formulation of scalar-tensor gravity, can it be that this theory is not com-
petent with physical systems. The underlying question is: why are the
potentials so different? (e.g. how can these configurations be produced by
a different scalar-tensor thédriyl”). Thig definitely calls for further study.

Clearly the models of [1, 3] and [4] deserve further investigation with
wider object class (e.g. red giants and rotating neutron stars) and for
different systems (e.g. larger structures and clusters in voids) to be able to
contemplate on their viability. The new observational initiatives, toward
pinning down the number of DE models (e.g. [64]) as well as numerical
N-body simulations$ that are gradually pushing towards more general DE



76 The phenomena studied in the papers

implementation [44], are vital in understanding the physical theory of dark
energy. Meanwhile, many less ambitious endeavors could help to classify
cosmological models to help reduce the number crunching needed in the
data reduction from the above massive project. So the way through trial
and error does not look futile at all, but can serve as light beacons in the
vastness of the cosmological dark energy models.
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