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Abstract

Almost every problem of design, planning and management in the technical
and organizational systems has several conflicting goals or interests. Nowadays,
multicriteria decision models represent a rapidly developing area of operation
research.

While solving practical optimization problems, it is necessary to take into
account various kinds of uncertainty due to lack of data, inadequacy of math-
ematical models to real-time processes, calculation errors, etc. In practice,
this uncertainty usually leads to undesirable outcomes where the solutions are
very sensitive to any changes in the input parameters. An example is the
investment managing.

Stability analysis of multicriteria discrete optimization problems investi-
gates how the found solutions behave in response to changes in the initial data
(input parameters).

This thesis is devoted to the stability analysis in the problem of select-
ing investment project portfolios, which are optimized by considering different
types of risk and efficiency of the investment projects. The stability analysis
is carried out in two approaches: qualitative and quantitative. The qualitative
approach describes the behavior of solutions in conditions with small pertur-
bations in the initial data. The stability of solutions is defined in terms of
existence a neighborhood in the initial data space. Any perturbed problem
from this neighborhood has stability with respect to the set of efficient so-
lutions of the initial problem. The other approach in the stability analysis
studies quantitative measures such as stability radius. This approach gives
information about the limits of perturbations in the input parameters, which
do not lead to changes in the set of efficient solutions.

In present thesis several results were obtained including attainable bounds
for the stability radii of Pareto optimal and lexicographically optimal portfolios
of the investment problem with Savage’s, Wald’s criteria and criteria of extreme
optimism. In addition, special classes of the problem when the stability radii
are expressed by the formulae were indicated. Investigations were completed
using different combinations of Chebyshev’s, Manhattan and Holder’s metrics,
which allowed monitoring input parameters perturbations differently.






Tiivistelma

Lahes kaikki reaalimaailman optimointiongelmat sisaltavat useita
ristiriitaisia tavoitteita. Monitavoitteiset paiatoksentekomallit ovatkin yksi
operaatiotutkimuksen nopeimmin kehittyvista osa-alueista. Reaalimaailman
optimointiongelmia  ratkaistaessa  taytyy ottaa  huomioon erilaisia
epavarmuustekijoita. Naita ovat esimerkiksi puutteellinen data, epatarkkuus

matemaattisessa mallissa seka laskuvirheet. Nama epavarmuustekijat
johtavat usein ei-haluttuihin lopputuloksiin, joissa saadut ratkaisut
ovat hyvin herkkia syottoparametrien suhteen. Hyva esimerkki

tallaisesta ongelmasta on sijoitustenhallintaongelma. Yleisesti diskreettien
monitavoiteoptimointiongelmien  herkkyysanalyysissa  tutkitaan,  miten
16ydetyt ratkaisut kayttaytyvét lahtotietojen (sydttoparametrit) muuttuessa.

Tama opinnaytetyo késittelee arvopaperisalkkujen hallinnointiongelman
(investointiportfolio-ongelman) herkkyysanalyysié. Portfolio-ongelmassa
optimoidaan erityypisia riskeja seka erilaisten investointien tehokkuutta.
Herkkyysanalyysin suorittamiseen voidaan valita kaksi eri lahestymistapaa:
kvalitatiivinen tai kvantitatiivinen. Kvalitatiivisessa lahestymistavassa
tutkitaan ratkaisun kayttaytymista, kun lahtotiedoissa on pienta héairiota.
Ratkaisujen herkkyys/stabiilisuus méaéaritelldén alkuperdisen datan pienen
ympaéariston olemassaolona ongelman parametriavaruudessa. Mika tahansa
héiritty ongelma, jonka lahtotiedot l0ytyvét tasta ymparistosta, on stabiili
alkuperaisen ongelman optimaalisten ratkaisujen suhteen.

Herkkyysanalyysin  kvantitatiivisessa  lahestymistavassa  puolestaan
tutkitaan maarallisia ~mittoja, kuten ongelman stabiilisuussadetta.
Stabiilisuussédteen avulla voidaan ilmoittaa ldhtotietojen hairion suuruudelle
rajat, joiden sisalla optimaalinen ratkaisu ei muutu.

Tassa tyossa esitetaan lukuisia tuloksia kuten esimerkiksi. saavutettavissa
olevat rajat stabiilisuussiteelle seka Pareto-optimaaliselle etta leksikografisesti
optimaaliselle portfoliolle kéayttaen Savagen, Waldin ja adrimmaisen
optimismin kriteereja. Lisaksi tyossa esitellian portfolio-ongelman
erityistapaukset, joissa stabiilisuusside voidaan esittda tietylla kaavalla.
Tutkimukset suoritettaan erilaisten metriikoiden yhdistelmina, jolloin
syottoparametrien hairioita voidaan seurata usealla eri tavalla.
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Chapter 1. Introduction

Every time we make a choice and try to implement this choice as well as
possible, we are choosing an optimal choice from the alternatives available for
us. Consequently, our life is a sequence of our decisions that we analyze during
decision making.

Decision analysis is the science and art of designing or choosing the best
alternatives depending on the decision maker’s goals and preferences. We
want to choose what best fits our goals, desires, lifestyle, values, etc. [104].
The difficulty lies when a conflict occurs between these various objectives and
goals. Despite the fact that majority of decisions and compromises are made on
the basis of intuition or chance, there are areas where mathematical modeling
and programming are needed [75].

The decision making process uses such tools as different kind of indicators,
ratios, weights, procedures, algorithms, etc. [77]. These tools tend to overload
the decision maker with large amounts of information and the number of in-
tervening variables. This makes the decision making process hard as regards
making a rational decision. Therefore, some strategy is required to organize,
classify, and evaluate this information, and also to analyze the results and
benefit from them. The models and methodologies help to obtain a ratio-
nal analysis. These models offer an outcome which could be analyzed by the
decision maker, adding or deleting concepts, objectives, alternatives, etc.

Usually, a decision making problem contains three components: decision
makers, who make the decisions; decision alternatives, from which the decision
maker can choose; and criteria that evaluate the alternatives [81]. We might
have only one decision maker who is responsible for deciding what to do, or
several people, or organizations being involved in the decision making process.
When there is more than one decision maker present, then they might all have
different preferences, goals, objectives and criteria. Frequently, there is no
decision which satisfies to every decision maker.

In the case of multiple decision makers, we might consider the problem
as a multiobjective problem, where the objectives of the different decision
makers are considered as the objectives of the problem [104]. The multiplicity
of objectives is not the same as the plurality of decision makers. While one
decision maker can perform the multiple objectives evaluation, plural decision
makers may pursue only one objective in their decision problems [86]. Typical
multiobjective problems arise when a single decision maker considers several
objectives simultaneously. The decision maker faces different goals, objectives
or criteria. It is necessary to consider conflicting goals in decision making
processes in order to develop sustainable systems.

A multiobjective approach helps the decision maker to organize and syn-



thesize information in a way that leads them to feel comfortable and confident
about making a decision, and minimizing the potential for post-decision regret
by being satisfied that all the objectives or factors have properly been taken
into account [4]. There are two major approaches to multiobjective decision
making [86]. One is multiobjective optimization that has been developed for
single objective problems and later integrated into dealing with multiobjective
problems. This approach is useful for quantitative analysis of multiobjective
models that can be applied in the analytical phase. The other approach is mul-
tiobjective decision analysis, which is useful for treating the judgmental phase
with axiomatic and numerical representations. Multiobjective decision analy-
sis concerns the subjective phase setting cooperation with rational procedures
in decision processes. Each separate approach represents only one particular
phase of multiobjective decision making process. Both multiobjective opti-
mization and decision analysis should be combined with each other and as
analytical and judgmental phases are included in the multiobjective decision
analysis.

Later some tools for the decision maker are presented containing the mul-
tiobjective models, common methods for problem solving, and post-optimal
analysis of the solutions. The focus is placed on the conditions and constraints
in the behavior of found solutions of the multiobjective combinatorial problem
under changes or uncertainty in the initial information.

Chapter 2 deals with multiobjective combinatorial optimization and
widespread methods for the multiobjective problems with discrete variables.
The methods divided into two categories. In the first section, we considered
the multiobjective methods that were designed especially for problems with
a multiobjective character and that basically combine the multiple objectives
into one single objective. The second section describes the methods adapted
from single objective combinatorial optimization for treating problems with
multiple objectives.

Chapter 3 is devoted to combinatorial problem with many objectives such as
a problem of investing in different kind of securities or investment projects. In
addition to the classical Markowitz’s investment portfolio problem, the chapter
contains a modified version as the project portfolio problem. This version is
presented as a project portfolio problem that takes into account the different
kinds of risk and efficiencies of the projects.

In Chapter 4, the question of stability is considered. A survey of investiga-
tions in the field of post-optimal analysis is provided. The stability analysis
shows which kind of perturbations may occur in the initial data in order to
maintain the efficiency or inefficiency of the solutions. Quantitative and quali-
tative characteristics of stability are introduced for the multiobjective discrete
problems.



The main topic of this thesis is the quantitative characteristic of the stability
such as the stability radius. Additional attention is paid to this aspect in
Chapter 5. This chapter shows how many deviations in the initial data may
occur in order for some solutions to lose their preassigned properties. The
bounds and formulae obtained for the stability radii of the project portfolio
selection problem are shown. Additionally, Section 5.2 discusses approaches
for calculating the stability radius.






Chapter 2. Multicriteria combinatorial problems

The methods developed for solving multiobjective optimization problems
are mostly operated with continuous variables. However, it is well known that
most of real-world processes are discrete. Moreover, multiobjective problems
with discrete variables can have special difficulties which are different from
those with continuous variables. The discrete problems cannot be solved by
simply combining discrete programming methods and multiobjective program-
ming methods [99]. Combinatorial optimization provides a powerful tool for
modelling many real-world applications in operations research, engineering, bi-
ological sciences, and computer science. It allows optimization problems to be
solved over discrete structures by combining techniques from combinatorics,
mathematical programming, and the theory of algorithms [10]. Multiobjective
combinatorial optimization provides a real challenge for the future, namely
to introduce multiobjective approaches into the large class of combinatorial
optimization applications. In this chapter the basics of multiobjective opti-
mization are discussed and an introduction to some methods in multiobjective
combinatorial optimization is presented, including the definitions of efficient
(nondominated) solutions.

The general multiobjective combinatorial optimization problem is posed as
follows:

min  f(z) = (fi(x), fo(x), ..., fs(x)),

subject to x € X,

where s > 2 is the number of objective functions; x = (z1,2s,...,2,)7 €
X C Z", n € N, is the vector representing the decision variables; n is the
number of variables; X represents the feasible decision space; f(z) is a vector
of objective functions f(z), k = 1, s, which are also called objectives, criteria,
payoff functions, cost functions, or value functions.

Typically, in combinatorial optimization two types of objective functions
(criteria) are considered, namely the sum and the bottleneck objectives [15]:

Je(z) = Z cjrry, k=1,s, or

j=Ln
fe(r) =maxcjrz;, k=1,s,
j=1n
where cji, j = 1,n, are the elements of the k-th column of the matrix

C e R™.
This definition includes multiobjective versions of the shortest path, mini-
mum spanning tree, assignment, knapsack, travelling salesman problems [14].



In contrast to single objective optimization, a solution in a multiobjective
problem is more of a concept than a definition. Typically, there is no single
global solution because the objectives are usually in conflict. As a consequence,
other concepts must be established to define what an efficient solution is. The
predominant concept in defining an efficient solution is that of Pareto opti-
mality [80], where it is impossible to make any objective of the solution better
without making at least one objective of this solution worse. This is defined
as follows:

Definition 1. A solution x° € X is Pareto optimal if for any solution
v € X fu(x) = fr(z°) for each k = 1,s, or there exists k® = k°(z) such that
fro(@) > fro(2®).

Another approach is lexicographic, when the decision maker determines the
order in which the objectives have to be optimized according to their absolute
importance.

Definition 2. A solution 2 € X s lexicographically optimal if
fr(x) = fu(2®) for any k = 1,5, or for any solution v € X, fro(x) > fro(x°)
where k° = min{k = 1,5 : fi(z) # fu(2)}.

This ordering means that the most important objective is infinitely more
important than a less important objective. This implies that solutions are
ordered by first evaluating them based on the foremost objective. If a set of
solutions have comparable values in the foremost objective, the comparison
continues onto lower level objectives until the solutions can be distinguished.
If the most important objective has an alternative optima, it is then possible
to use the next most important objective. If the most important objective
function has a unique solution, the other objectives do not have any influence
on the solution. Thus, the less important objective functions might not be
taken into consideration at all. The main difficulty of this approach is to put
the objective functions into an absolute order of importance.

0

0

Lexicographic methods are not so commonly used by themselfs in engineer-
ing design, but used jointly with other techniques, such as in goal programming
or as a part of a selection mechanism in genetic algorithms [75].

The following discusses the complexity of solving multiobjective combina-
torial optimization problems. The book [37] has an in-depth introduction to
computational complexity.

Computational complexity theory provides information about the difficulty
of solving a decision problem, with the answers “yes“ or “no“, and also provides
the number of operations in an algorithm for obtaining these answers in the
worst cases [13].

Definition 3. A decision problem belongs to the class P of problems, if
there exists a deterministic algorithm that answers the decision problem and
performs O(p(n)) operations, where p is a polynomial of n, and n is the length



of the string representing the input.

Definition 4. An algorithm is called polynomial time algorithm if there is
a polynomial p, such that the running time of the algorithm is O(p(n)).

It is worth noting, that algorithms for solving multiobjective combinatorial
optimization problems are often non-polynomial.

A nondeterministic algorithm is an algorithm that, even for the same input,
can exhibit different behaviors on different runs, as opposed to a deterministic
algorithm.

Definition 5. A decision problem belongs to the class NP if there is a
nondeterministic polynomial time algorithm that solves the decision problem.

An algorithm that solves a problem in nondeterministic polynomial time
can run in polynomial time or exponential time depending on the choices it
makes during execution.

With each decision problem there is also the counting problem, which counts
“yes‘ answers.

Definition 6. A counting problem belongs to the class #P if there exists a
nondeterministic algorithm that find the answer to the counting problem and
such that the longest computation that confirms a “yes“ answer is bounded by
a polynomaial in the size of the instance.

Definition 7. A decision problem is NP (#P )-complete if this problem
belongs to the class NP (#P) and every problem from the class NP (#P) can
be reduced to this decision problem in polynomial time.

It transpires that multiobjective combinatorial optimization problems in
the sense of finding or counting efficient solutions, in general, are N P- and
# P-complete, respectively. Moreover, the number of efficient solutions can be
exponential as regards the size of the problem. This makes it difficult to find
algorithms that run in a reasonable (polynomial) time, even when in the single
objective case the problem has an efficient algorithm [12]. Consequently, such
problems are called intractable.

For lexicographic optimization, it is known that a lexicographically optimal
solution is always efficient. Lexicographic optimization can also be viewed as
a special case of algebraic optimization [105].

Solving a multiobjective problem means finding the set of Pareto optimal
solutions, also known as the Pareto set, the nondominated set, and the set of
efficient or nondominated solutions. Generating Pareto optimal solutions is an
important part of multiobjective optimization, but it is only the first phase in
the decision making process. After finding the Pareto set the decision maker
depending on his or her preferences chooses the right solution. The Pareto
optimal solution must satisfy the decision maker’s preference structure. This
choice requires knowledge about the problem being treated and the factors
related to it [3].



It is not necessary that the optimization phase and the analytical phase be
consecutive. Depending on the situation in the decision process, there might
be three forms of the cooperation between the problem solver and the (final)
decision maker, as was mentioned in [14].

In a priori form, at the beginning of the decision making process all the
preferences are known and used as parameters in the model. For example,
goal-programming methods are based on this technique.

In a posteriori form, the set of all efficient solutions is first generated and
then analyzed according to the decision maker’s preferences. At the end of the
process, one solution is chosen from among the set of solutions provided by
the solver.

In an interactive form the decision maker and the solver cooperate all the
time throughout the process. In addition, the decision maker introduces the
preferences during the resolution process and uses the knowledge, obtained
during the problem resolution, in the next preferences. Practical problems are
often solved according to the interactive mode.

Further, several examples are presented of the exact methods for solving
multiobjective combinatorial optimization. These methods are divided into
two groups. The first group contains methods such as the scalarization, the
compromise solution method, goal programming that was designed especially
for solving problems with multiobjective character, and were effective for small
sized problems. The second group consists of the dynamic programming, the
branch and bound and the two phases methods. They were originally designed
for single objective combinatorial problems and then adapted for multiobjec-
tive problems.

2.1. Multicriteria methods

One of the most popular exact methods to solve multiobjective combinato-
rial optimization problems is scalarization. In scalarization, all the objectives
are combined into one single objective. In this way, the new problem has a real-
valued objective function, possibly depending on some parameters. After the
multiobjective optimization problem has been scalarized, the widely developed
theory and methods for single objective optimization can be used [75].

Different multiobjective optimization methods apply various scalarizing
functions differently. In [76] several widely-known scalarizing functions were
discussed and their modifications together with some variations introduced
more recently. The scalarization may be performed once or repeatedly as a
part of an iterative process. When methods are introduced in the literature,

10



the optimality of the results produced is usually proved. On the other hand,
it is not so common to justify why some specific form of scalarization is used.

Another method in multiobjective optimization is the compromise solution
method which minimizes the distance between the potential Pareto optimal
solution and an ideal solution f! or utopian solution fY which are defined
according to the individual minima of each objective as follows:

Al =min fyw), k=15

fU=f—eu, u=(1,1,...,1) € R*, > 0.

In general, ideal or utopia solution is unattainable. The next best thing is a
solution that is as close as possible to the utopia solution. Such a solution is
called a compromise solution and is Pareto optimal. A difficulty with the idea
of a compromise solution is the definition of closeness. The term close usually
implies that one minimizes the Chebyshev or Euclidean distances, which are
respectively defined as follows:

max | fi(x) — fi (2)],

k=1,s

The 3rd alternative, goal programming, is one of the first methods expressly
created for multiobjective optimization. In goal programming the decision
maker specifies a goal for the objective functions and any deviations from
these goals are minimized. The goal of the objective function fi(x) will be
denoted by by, kK = 1,s. So, for minimization problems, goals are of the form
fr(z) < b, k = 1,s. Then, the total deviation from the goals > |dy] is

k=1,s
minimized, where dj, is the deviation from the goal b, for the k-th objective.
To model the absolute values, dj is split into positive and negative parts such
that d, = df —d,, with d} > 0, d; > 0, and d;d, = 0. Consequently,
x|l = |dif +d;;|, df and d;; represent underachievement and overachievement,
respectively, where achievement implies that a goal has been reached. The

11



optimization problem is formulated as follows:

min Z (df +dp),
k=T,
subject to  fy(z) +df —d, =bx, k=1,s,
df, d; 20, k=T,

dzd; =0, k=1,s,
e X.

The constraints of the problem can be regarded as a subset of the goals
that have the same form.

Let us present widespread approaches for goal programming. In the
weighted approach a subclass of goal programming is composed, in which
weights are assigned to the deviation of each objective from its perspective
goal [9]. This approach is closely related to the method of weighted met-
rics or compromise programming. In the lexicographic approach, the decision
maker must specify a lexicographic order for the goals, so that the deviations
|di.| = df +d;, for the objectives are ordered in terms of priority and minimized
lexicographically. The weighted and lexicographic approaches provide Pareto
optimal solutions if the goals form a Pareto optimal point or if all deviation
variables, d; for functions being increased and d,, for functions being reduced,
have positive values at the optimum [75]. The latter condition suggests that
all of the goals must be unattainable.

2.2. Combinatorial methods

Most of the multiobjective combinatorial methods are based on scalarizing
the general multiobjective problem to a single objective optimization problem.
Scalarization of the problem provides a possibility to solve multiobjective prob-
lems using the algorithms for single objective optimization problems. When
solving a scalarized problem the decision maker obtains one Pareto optimal
solution that is preferred for him or her in a single run. However, there exist
algorithms that can solve multiobjective problem directly without scalarizing
the problem. Now the algorithms adapted from single objective combinatorial
optimization are briefly reviewed.

Multiobjective dynamic programming is an extension of the scalar dynamic
programming to handle multiple objectives. The survey of developed algo-
rithms for dynamic programming is given in [38].

12



The purpose of multiobjective dynamic programming is to identify the non-
dominated set of variables that lead to a set of nondominated solutions to the
multiobjective optimization problem [5]. From all of the objectives, one is
chosen as the objective function to be optimized while each of the others is
taken as a state variable. Decisions are being ranked made in stages. Thus,
the standard dynamic programming algorithm can be adopted and the entire
nondominated set can be obtained from one solution of the problem.

Another method, adapted for multiobjective approach, is the branch and
bound method [103], modified in order to handle multiple objectives and to
yield the whole set of efficient solutions. Unlike the single objective case, the
multiobjective branch and bound algorithm is not directly applicable with
general integer variables. These have to be transformed into a sum of 0-1
variables (see, e.g., [36,73]).

As it was described in [74], the combinatorial tree in the branch and bound
method is traversed as in the single objective case, setting a priority list for
the binary variables and using depth first search. The procedure is adapted for
the multiple objective character of the problem. The optimum is calculated
for each objective function at each intermediate node for formatting the ideal
vector. At the final or terminating nodes the multiobjective problems are
being solved for generating temporal efficient points which stored in the list.
At each final node the list is updated after comparing new temporal efficient
points with those already stored in the list. This list is called incumbent
in accordance with the incumbent solution in the single objective case. The
incumbent list after the completion of searching of the combinatorial tree is
the set of efficient solutions.

The multiobjective case of the branch and bound method is much more
complicated than the single objective case. It requires more computationally
intensive and multiple optimizations at each intermediate node.

The two-phase method is applied mostly for bi-objective problems [100]. The
decision making process is divided into two phases. The first phase generates
the set of efficient solutions using scalarization technique and/or solving a
sequence of single objective problems. In the second phase the decision maker
searches for the most preferred efficient solution among the efficient solutions
using a branch and bound [101] or ranking algorithms [50, 51].

The two-phase decision making approach allows to reduce the load of infor-
mation to the decision maker reducing the number of candidates for being an
efficient solution gradually focus on the most preferred solution [73,93].

13






Chapter 3. Investment problems

A problem of allocation investment capital for maximizing profit is a com-
mon problem with multiple approaches. In this chapter, we describe a problem
concerning of investment portfolio selection that requires a technique of mul-
tiobjective combinatorial optimization.

The decision maker, who is an investor in this case, is faced with a choice
from among a large number of projects or assets. Usually, the funding is not
sufficient to choose all the available securities. The problem is how to select
securities to acquire the maximum benefit. The problem is to find securities
for investments with high expected return and low risk. Generally, securities
have low risk with a low rate of return. However, if a high rate of return is
required, then it is necessary to tolerate a high risk [87].

Funding can be switched from one investment to another which has the
same expected return but less risk, or one, which has the same risk but a
higher return, or one that has both higher return and less risk. Each time the
investors want to move as far as possible in the direction of increasing return
and as far as possible in the direction of decreasing risk. The investor does
not hold single assets [49]. The investor holds groups or portfolios of assets,
because any separate investment asset has a higher risk than the portfolio of
those assets. The investor tries to choose the most profitable subset of assets,
one which does not exceed the budget and has the leas risk for the portfolio [11].
Creating the portfolio by diversification and mixing of a variety of investments
the investor reduces the riskiness of the portfolio.

First model of the investment portfolio selection was proposed by Markowitz
in [71]. Following Markowitz’s investment theory, the investor must increase
the expected profit for a given level of risk, or choose a portfolio with the lowest
level of risk for a given expected profit [72]. In this model risk is measured
by the variance of its return and the efficient set of portfolios is chosen using
optimization methods.

There are some difference between investing in securities and projects. We
can buy and sell securities in any quantities. In the case of investment projects
we invest or do not invest in a project and the projects’ decision variables are
binary.

In this thesis, we formulated the model of the project portfolio selection
using Savage’s criteria, taking into account different types of risk such as scope
risk, schedule risk, resource risk, technology risk, etc. [62]. In the case where
the level of risk is fixed, the model uses Wald’s criteria to consider the various
types of portfolio efficiency [84].
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3.1. Markowitz’s portfolio problem

Markowitz provided investors with a model to optimize the risk and return
of their portfolios of assets. In the model, the risk and return of single assets
were not viewed separately, but they were considered only in their portfolio
context. In addition, the investor needs to consider both expected return
and risk, which means a variability of return. Following Markowitz’s theory,
the main goal for an investor is to find a nondominated portfolio with an
optimal trade-off between the expected return and the risk of the investment.
Markowitz’s model can be formulated in bi-criterion format [95] as

min z'Vz variance,

max e’z expected return,

subject to z € X,

where V' is a covariance matrix, e is a vector of mean returns of the assets, x
is a vector, which contains the proportions or the weight of each asset, and X
is the set of feasible portfolios x.

A portfolio is nondominated if it is either risk minimal for a given return
level or has the maximum return for a given level of risk. In order to find port-
folio with minimal risk we have quadratic optimization with linear constraints.
In the case of the portfolio with maximal return, the objective function is linear
and the constraints are quadratic [49)].

Markowitz’s model is generally solved by obtaining the nondominated set
using e-constraint method [47,96]. One of the objectives is converted to
constraints with e right-hand sides. Mostly it is an expected return. Now
Markowitz’s model transforms into single objective problem that minimize
risk for ¢ different levels of the expected returns:

min 2’ Vz variance,

. T
subject to e’z =¢, €€ {ammn,q2,...,0-1, Umax )

r € X,

where @i, is the minimum expected return value, ap., is the maximum
expected return value, which were calculated previously. The other a,
[ = 2,q— 1, are constructed at equally spaced dotted representation of the
nondominated frontier within the range [amin, Gmax]. It solves for every [ = 1,q,
and then computes its criterion vector.

The e-constraint method approach computes for each level of expected re-
turn the portfolio that minimizes risk. A further advantage of the approach is
that single objective problem is quadratic that requires a standard quadratic

programming solver.
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After solving the investor selects from the nondominated set an efficient
portfolio which fits best the preferences about the trade-off between risk and
return to the investor’s preferences.

Markowitz’s model as well as all the most theoretical models has been crit-
icized. The main criticism relates to the lack of possibility to adapt the model
for the additional criteria beyond risk and return. Based on Markowitz’s mean-
variance formulation many approaches using additional criteria have been pro-
posed [94]. However, despite such efforts, all of them have their drawbacks.

Proposed approaches for solving multicriteria problems of portfolio selection
can be divided into priori, interactive and posteriori methods. In a priori meth-
ods preferences of the investor is sought before and included into the model.
A required information can be unknown so early. Such methods produce only
single solutions and do not give a chance to the investor for alternatives to
choose more preferable form the nondominated set. The doubts arise that
some suitable solution have been missed.

For interactive methods computation and decision making process are going
at the same time. But the process requires a lot of iterations and the investor
does not have a look at the whole nondominated set of portfolios.

Methods in the posteriori category generate the whole nondominated set
and then the investor has possibility to select a most preferable portfolio and
to be sure that his or her desires were fully satisfied. However the posteriori
methods can overload the investor providing the huge volume of information
and raise some problems for computing the nondominated set.

3.2. Project portfolio problem

Markowitz’s investment model for portfolio selection deals with mean and
variance. In this context, risk is understood in terms of the standard deviation
of return. However, the investor may face different kinds of risk, e.g. risk due
to different market price fluctuations, changing trends and fashions, error in
sales forecasting, default on different types of financial obligation etc. [6]. Risk
is an immense subject covering many sources and types with different potential
impact. Thus risk may take place in different forms. A manager’s responsibility
is to identify the types of risk that involve the investment portfolio, measure
their impact and finally decide how to reduce them.

Inspired by Markowitz’s theory, we formulated the multicriteria model for
project portfolio selection. In this model we assumed that the investor prefers
some investment portfolios, which do not exit the budget. Each project is rated
by a number of the types of risk. The problem is to choose a portfolio with a
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minimal acceptable level of risk. The partial criterion for choosing portfolios
was the well-known Savage’s criterion [85]:

fio(®) = max Ryx, k=15,

i=1,m

where m is a number of expected states in the market,
R = (ritk, Tioks - - -, Tink), © = 1,m, is a row of the k-th cut R, € R™*™,
k = 1,s, of the risk matrix R = [ryx] € R™™; Ry is a total value of
k-th type of risk for the portfolio z = (z1,2s,...,2,)7 € E*, E = {0,1},
which is a Boolean vector, composed of components z;, j = 1,n, equal to 1 if
the investor chooses j-th projects and equal to 0 otherwise. In [7] there was
proposed the survey of different techniques for risk measurement.

Using Savage’s criteria, the investor chooses a portfolio with a minimum
level of risk in the worst scenario of a market situation. This approach is
inherent for the pessimistic expectation. It aims at achieving the guaranteed
result.

When the level of risk for the preferable portfolios is fixed and appropriated,
it is worth considering the efficiency of the portfolio that can be represented by
different indicators, e.g. net present value (NPV), net future value (NFV), net
uniform series (NUS) etc. [84]. When choosing the most preferable portfolio in
view of k-th indicator of project efficiency, the investor uses Wald’s criterion
[102]:

fie(x) = min Eyz, k=15
i=1,m
Here F;x is the total value of efficiency of the portfolio x, where
Eix = (€, €ioks - - - €ink), I = 1,m, is a row of the k-th cut Ej, € R™™,
k = 1,s, of the efficiency matrix E = [e;jx] € R™™**. Using this criterion,
the investor chooses the most efficient portfolio in the worst scenario at the
market state.

The criterion of extreme optimism

fr(x) = max Eyx, k=1,s,
i=1m

is used, when the investor chooses a portfolio, which would be the most efficient
in the most favorable market state.
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Chapter 4. Stability analysis

Stability analysis in multicriteria optimization is of great importance both
from the theoretical and practical point of view. A primary concern in stability
analysis is to verify how efficient solution values change when the data contain
errors or changes. This is preceded by some reasons such as the decision
maker having a lack of information in the initial data or deviations from the
theoretical model in the real world [75].

Multicriteria models under any changes in the initial data can behave un-
predictably. Even small changes in the initial data can have a huge influence
on the efficient solutions [98]. Stability analysis attempts to determine the sit-
uation and conditions when perturbations in the problem parameters produce
change in the efficient solutions to the problem. Any deviations in the initial
data, which are connected with implementation in the real world, are not ne-
glected. The decision maker is supported by stability analysis information, in
order to quantify the solution stability of the application problem.

Stability analysis is theoretically and practically important for multicrite-
ria optimization problems. It helps to find relationships between the initial
data and the efficient solution and to improve the judgmental process that
formulated the initial data.

The stability notions are inextricably linked with the methods for solving
multicriteria optimization problems. The procedures of stability analysis re-
main insufficiently developed and have been considered mostly for continuous
problems (see, e.g., [2,97]). Direct transformation of methods and results, ob-
tained for the stability analysis in linear or nonlinear programming (for exam-
ple, the results from [35,82]) to some discrete optimization problems provides
only very simple conclusions [91]. Such transformation does not consider the
combinatorial specific of the problem.

There exist several approaches for providing the stability analysis in the
multicriteria problems [45]. In this thesis, two main approaches for the post-
optimal analysis that provide quantitative and qualitative characteristics of
the stability of the multiobjective combinatorial problems are considered.

4.1. Qualitative approach

During post-optimal analysis of the efficient solution set a qualitative ap-
proach was used concentrating on obtaining specific analytical conditions.
These conditions should guarantee a certain pre-specified behavior of the set,
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characterizing the stability of the problem with small perturbations of the
initial data. The stability is considered as one of the classical properties of
continuous or semicontinuous (e.g., Hausdorff or Berger) point-to-set map-
ping, which associates a set of efficient solutions with each set of parameters
of the problem [55].

In [58] five of the most common types of stability were distinguished: strong
quasistability, strong stability, quasistability, stability and superstability of
the problem. Each type of stability describes a behavioral aspect of one or the
whole set of efficient solutions in conditions of small changes in the initial data.
The types of stability are defined in terms of the existence of a neighborhood of
the initial data, in the problem parameters space. In this space any perturbed
problem with the initial data from this neighborhood has a stability with
respect to the set of efficient solutions of the initial problem.

Let Opt°(A) be the set of efficient solutions in the initial problem;
Opt*(A + B) be the set of efficient solutions in the perturbed problem, where
B € Q(e) = {matrix B has the same dimention as matirx A : ||B|| < ¢} and
| B|| is a norm of the matrix B in the problem parameters space; and s be a
number of criteria in the problem.

The first type of stability reports the situation when at least one efficient
solution remains efficient in both initial and perturbed problems simultane-
ously. This type of stability is called the strong quasistability of the problem
and it is given by

Je>0 I eOpt(A) VBeQ() (2 € Opt’(A+ B)).
When the set of efficient solutions of the initial problem and the set of effi-

cient solutions of the problem with perturbed parameters have similar points.
We have so-called the strong stability of the problem. That is,

Je>0 VBeQe) (Opt’(A)NOpt°(A+ B) #0).

The type of stability is called quasistability of the problem when the set
of all efficient solutions remains efficient for small changes in the initial data.
Formally,

Je>0 VBeQEe) (Opt’(A) COpt’(A+ B)).

The stability of the problem characterizes the case when small perturbations
of the initial data do not lead to appearance of new efficient solutions

Je>0 VBeQE) (Opt(A+ B) C Opt(A)).

The superstability of the problem happens when any perturbations of the
initial data do not affect the set of efficient solutions

Je >0 VBeQ() (Opti(A) =Opt’(A+ B)).
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One of the first study of the qualitative approach have been conducted
in [57] for the problem of finding the Pareto set among integer points of a
convex polyhedron. Various types of stability of this multicriteria problem to
changes of the initial data under constraints were analyzed. Necessary and
sufficient conditions were obtained for different types of stability with respect
to constraints.

Several types of stability against perturbations of vector criterion coeffi-
cients were analyzed from the same point of view for a multicriteria integer
optimization problem with quadratic criterion functions in [58]. Necessary and
sufficient conditions were formulated and analyzed for each type of stability.
The topological structure of the sets of the initial data, on which some solution
remains efficient, was described.

The paper [60] deals with searching for a unified approach to studying differ-
ent types of stability of multicriteria integer optimization problems. Namely,
searching for concepts that could compose a general basis for the description
of various types of stability, and using these concepts for formulating necessary
and sufficient stability conditions.

In [54] it was studied the behavioural of the Pareto set under perturba-
tions of the parameters. Some conditions for stability by vector criterion were
derived for the mixed integer problem. Similar results were derived for multi-
criteria quadratic optimization problems [59].

The necessary and sufficient conditions of the stability for multicriteria com-
binatorial problems with nonlinear partial bottleneck criteria were presented
in [30] using terms of several types of binary relations given on a system of
subsets of a finite set. Similarly, five types of stability for the set of lexico-
graphically optimal solutions under small changes in the parameters of the
vector criterion were presented in [18] for the lexicographic integer optimiza-
tion problem with criteria, represented by absolute values of linear functions.
In [18] it was shown that the structure of the lexicographic set and the image
of this set in the criterion space are closely connected with the solvability of
some corresponding system of integer linear equations. In other words, each
element of such lexicographic set can be considered as an approximation in
the case of insolvability of such system or a solution otherwise. The research
was related to the behavior analysis of this kind of approximations (solutions)
under small changes of parameters.

For the multicriteria combinatorial problem with MINMIN criteria [25] and
for the multicriteria combinatorial median location problem [24] with Pareto
and lexicographic principles of optimality, necessary and at the same time
sufficient condition for each type of stability were found.

The necessary and sufficient conditions for stability and quasistability of
the multicriteria Boolean lexicographic problem were obtained in [46].
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4.2. Quantitative approach

Another approach to the stability analysis of the discrete optimization prob-
lems is associated with obtaining quantitative measures of the stability of the
problem under admissible variations of the parameters. One of the quantitative
characteristics of the stability is the stability radius. Along with the conditions
of existence, the above mentioned neighborhood of the stability in the initial
data, an approach was developed to find the bounds or formulae and also
the algorithms for calculating the stability radius of a discrete optimization
problem, which refers to the maximum radius of the stability sphere [91].

The need for such studies is primarily caused by the two following reasons.
First, to validate correctness of a specific optimization model: it is important
to know the limits of changes in the input parameters, which do not lead to
changes of the efficient solutions. Second, the design of algorithms for solving
discrete optimization problems can be based on the procedure of searching
for the stability radius. Such procedures may be useful, for example, in the
construction of algorithms that solve some groups of adjacent problems in
which input data vary slightly [44].

The concept of the stability radius was first introduced in [61] for the scalar
combinatorial problem. The particular definition of the stability radius con-
cept depends on chosen principles of optimality (if the problem is multicriteria),
uncertain data, and a type of distance metric used to measure the closeness
in problem parameters spaces. Various types of metrics allow us to consider a
specific of problem parameters perturbation. Therefore, in the case of Cheby-
shev’s metric [, only the maximal changes are taken into account in the initial
data that allow independence of the perturbations. In the case of Manhattan
metric [; every change of the initial data can be monitored in total. Holder’s
metric [,, 1 < p < oo, is the metric with the parameter and includes such ex-
treme cases as Chebyshev’s metric [, Manhattan metric [; and also Euclidean
metric ly. Thus, using Holder’s metric [, in order to obtain the stability radius
that depends on the properties of the initial data — the control of perturbations
can be varied. However, using Holder’s metric is not always justified. This
metric overloud investigations. Obtained qualitative characteristics are often
unable to provide information for the analytical use.

Therefore, it is of great interest to study the stability radius of the problems
using different kinds of metrics, which allow the specifics of perturbation in the
parameters of the problem to be taken into account [41]. Using different metrics
during the investigations the formula for the stability radius of a scalar linear
combinatorial problem was obtained in the case of Chebyshev’s metric [61] and
for special classes of this problem in the case of Manhattan metric [42]. With
the same metric in [8,89] the stability was studied of an approximated solution
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of the scalar linear Boolean combinatorial problems.

Stability of scalar scheduling problems were studied in [56,88,90,92].

Note that in [43] it was proposed a general approach to obtain the formula
for the stability radius of the scalar combinatorial problem, based on reducing
the problem of finding the stability radius to the mathematical programming
problem of the special type.

Following is a brief overview of the multicriteria discrete problems for which
were obtained formulae or bounds of the stability radii.

In the paper [67] formulae for radii of three types of stability (stability,
quasistability and strong quasistability) were derived for the problem, which
criteria are functions of ¥-MINMAX and »-MINMIN.

The bounds for stability and quasistability radii of multicriteria combina-
torial problem with the transformed bottleneck criteria were found in [21].
Attainable bounds and formulae of various types of stability of multicriteria
integer linear programming problem [16,26-29,31,33], a multicriteria Boolean
problem [19,20,22,34] and multicriteria quadratic Boolean programming prob-
lem [17] were also obtained.

For finite cooperative game of several players with parametric principle of
optimality such that the relations between players in a coalition are based on
the Pareto maximum in [23] or lexicographic dominance relationship in [29]
a quantitative analysis of the stability was carried out of the game situation
which is optimal for the given partition method with respect to perturbations
of the parameters of the payoff functions in the space with different metrics.
The formulae were obtained for the stability radius for such situation.

The formulae for the stability radius of an efficient solution of the Boolean
optimization problem which partial criteria are the positive cuts of linear func-
tions to the non-negative semi-axis was presented in [32] in case of Manhattan
metric [; in the problem parameters space.

It is also important to note that sometimes the stability radius does not
provide us with complete information about the quality of a given solution in
the case when problem data are outside the stability region. Some attempts
to study a quality of the problem solution in this case are connected with
concepts of stability and accuracy functions. These functions were first intro-
duced in [63,64] for scalar combinatorial optimization problem. Later, in [68]
the results were extended to the multicriteria linear discrete optimization prob-
lem with Pareto and lexicographic optimality principles. Similar results were
obtained for Boolean linear programming [70] and game theory problem formu-
lations [78]. Moreover, as it was shown recently (see, e.g., [65,66]), calculating
stability and accuracy functions is closely related to analyzing problem robust-
ness. Robust optimization in that context is understood as a process aiming to
produce solutions that optimize an additionally constructed objective. The ob-

23



jective must assure that the efficient solution will remain feasible under worst
case realization of uncertain problem input parameters. Robust optimization
is also known as worst-case or minimax regret optimization, and efficient solu-
tions of worst case optimization are often referred to as robust solutions (see,

e.g., [1,53,79]).
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Chapter 5. Stability radius

In this chapter, the quantitative characteristic of the stability of multicri-
teria problems, such as the stability radius is considered in more detail. For
the stability radius, it is possible to use the same definitions for the types of
the stability (stability, quasistability, strong stability, strong quasistability and
superstability) as in the qualitative approach. However, mostly investigations
only search for two types: the stability of one efficient solution and the stabil-
ity of the problem. Commonly the researchers investigate the stability radius

of one efficient solution z°:

(2%, A) :{ sup = if

—_ =
It
==

[1] [1]

0 if

where

E1={e>0: VBeQe) (2°€ Opt’(A+ B))}.

This characteristic shows that in the perturbed problem with perturbations
less than p*(z%, A) the chosen efficient solution remains efficient. The stability
of one efficient solution can be considered as an analogue of the quasistability
of the problem.

Another way to find the quantitative characteristic of the problem stability
is to find the stability radius of the problem:

s sup =, if
p(A):{op C it

NN
[N
ss

(11 [1]

where

Sy =1{e>0: YBe Q) (Opt'(A+ B)C Opt(A))}.

During investigation the decision maker obtains such characteristic, which
shows that during perturbations not exceeding the stability radius p*(A), no
new efficient solution appears in the perturbed problem.

5.1. Formulae and bounds

Most of the results, related to obtaining the formulae or bounds for the
stability radius, were devoted to the multicriteria problems with linear criteria.
In this thesis we started the investigation of the stability radii for the problem
with the nonlinear criteria such as Savage’s, Wald’s criteria and criteria of
extreme optimism (see Section 3.2).
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Nonlinear criteria have another structure. They require another approaches
and methods [75]. In the most cases of linear criteria the formulae were derived
for the stability radii. These formulae were represented as the ratio of two
norms. There were the distance between the values of the functions for two
solutions in the numerator and the norm of the difference between these two
solutions in the denominator. The selection of solutions was depended from
the principle of optimality (lexicographical or Pareto).

In the case of nonlinear criteria the topology of solutions does not allow
deriving similar results. The formulae in the nonlinear case are cumbrous,
contain numerous cases and inconvenient to use. For these reasons, the bounds
for the stability radii of an efficient solution and the stability radii of the
problem were obtained. It was proved that the stability radii are not less the
lower bounds and not exceed the upper bounds. In some cased the stability
radii are equal to one of the bounds. In papers [I]-[VIII] there were introduced
the particular classes of the problem when the stability radii are expressed by
the formulae equal to lower or upper bounds. These facts allow to say the
obtained bounds for the stability radii are attainable. The investigations were
also provided with some different combinations of Chebyshev’s, Manhattan
and Holder’s metrics in the problem parameters spaces. It gave possibility to
monitor perturbations in different ways, described in Chapter 4.

In papers [IT] and [ITI] the attainable bounds for the stability radii of one
Pareto optimal portfolio (see Definition 1) of the project portfolio problem
with Savage’s criteria (see Section 3.2) were obtained. The problem param-
eters space was endowed by Manhattan metric in [II]. In paper [III] for the
investigation of the stability radius, the combination of Chebyshev’s and Man-
hattan metrics was used. The results were obtained in the case of Chebyshev’s
metric in the risk criteria space and Manhattan metric in the market state
space and in the portfolio space. There was also showed that, when the prob-
lem had only one supposed market state and Savage’s criterion transformed
into the linear criterion, the lower and upper bounds were equal to each other.
In this case, the stability radius is expressed by the formula, obtained earlier
in [26]. Manhattan metric was also used in paper [I] in every space of the
problem parameters for obtaining the stability radius of a lexicographically
optimal portfolio (see Definition 2) of the project portfolio selection problem
with Savage’s criteria. In [VI] attainable bounds for the stability radius of
one Pareto optimal portfolio of the bi-criteria problem were obtained. The
portfolios were evaluated using Savage’s criterion for risk and Wald’s criterion
for the efficiency of the portfolios. The market state space and the portfolio
space were endowed by Holder’s metric.

For the multicriteria problem with Savage’s criteria in [V], Wald’s criteria
in [VIII] and for the bi-criteria problem with Savage’s criterion and criterion
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of extreme optimism in [VII], there were obtained attainable bounds for the
stability radii of the problems. For the stability analysis there was used Cheby-
shev’s metric in every problem parameters space for the problem with Savage’s
criteria. For the problem with Wald’s criteria the quantitative characteristic of
the stability investigated in the case of Manhattan metric in the project and
market state spaces and Chebyshev’s metric in the efficiency criteria space.
In the bi-criteria case of the problem used Holder’s metric. Stability analysis
of a Pareto optimal portfolio of the project portfolio selection problem, using
three different combination Holder’s and Chebyshev’s metrics, was presented
in [IV]. The quantitative characteristics in the form of attainable bounds of
the stability of a Pareto optimal portfolio were derived.

5.2. Calculation of stability radius

When considering the formulae or bounds of the stability radius the normal
question raised is how to calculate that stability radius. Calculation of the
stability radius of efficient solutions can be harder than finding these efficient
solutions. For example, the results of the investigations in [39] claim that the
problem of finding the stability radius of the shortest path problem is N P-
complete. That is why many researchers were interested in finding regularity
between solving the problem and calculating the stability radius. In [40] the
complexity of solving the problem and the complexity of finding the stability
radius of found solutions were compared. The results of the experiments in
[40] showed that efforts involved in the algorithm for computing the stability
radius of the travelling salesman problem are comparable in complexity with
efforts involved in the algorithm for finding the efficient solution. It was also
claimed that the algorithm used for finding the stability radius could be used
as a component in devising an algorithm using a library of previously solved
problems. The survey and new investigations in the field of comparing the
complexity of the problems and its stability radius were released in [8,48]. It
was proposed that an algorithm runs in polynomial time if the optimization
problem itself is polynomially solvable. Some results in reducing complexity
of the stability radius computation were detected in [69].

An adaptation of the multiobjective evolutionary algorithm (NSGA-II) was
applied for the calculation of the stability radius of an efficient solution to the
shortest path problem in [52]. The behavior of the derived algorithm with
the known exact method in terms of solutions diversity and computational
complexity was also compared.

The paper [83] was addressed to the problem of computing the stability
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radius of an efficient solution in the context of multiobjective combinatorial
optimization. The stability radius of an efficient solution was modeled as a par-
ticular inverse optimization problem. The model was solved by an algorithm
which required only solving a logarithmic number of mixed integer programs.
It contains a linear number of constraints and variables compared with the
instance of the combinatorial optimization problem if its feasible set can be
defined by linear constraints.

28



Chapter 6. Conclusion

Most of the decision making problems have a multiple criteria structure
with conflicting objectives. It is necessary to consider conflicting goals in the
decision making processes in order to make the right decision.

Multicriteria combinatorial optimization models real-world processes over
discrete structures. The solving methods of multiobjective optimization can be
classified in many ways according to different criteria, and can be categorized
into two relatively distinct subsets: generating methods and preference-based
methods. In general, most of the methods for solving multiobjective com-
binatorial optimization problems are based on scalarization. Some methods
were designed for problems of the multiobjective type. Other methods were
adapted from single objective combinatorial optimization. In this thesis, we
discussed the basics of multiobjective combinatorial optimization, including
the definitions of efficient solutions, and introduced some methods for solving
such problems. One of the multiobjective problems particularly considered
here was the investment problem which was considered in two formulations:
Markowitz’s portfolio model and the project portfolio model.

Multicriteria models that undergo changes in the initial data can behave
unpredictably. Even small changes in the initial data can have an enormous
influence on the efficient solution. Stability analysis attempts to determine
the situation and conditions when perturbations in the problem parameters
produce a light change in its efficient solution.

In Chapter 2, the definitions of the multiobjective combinatorial problem
were given and the concepts of its efficient solutions represented. In this chap-
ter several methods for solving the problems were introduced. Some of these
methods were designed especially for problems with multiple objectives and
generally based on the scalarizing technique. Other methods were constructed
for problems with a combinatorial structure, which were adapted for the mul-
ticriteria case.

Chapter 3 discussed problems such as investment problems arising during
selecting different kind of securities or investment projects for funding which
have a multicriteria character. In the first section the formulation of the well-
known Markowitz’s portfolio investment problem was introduced and solving
it by the e-constraint method was described. An account was also given of
some of the drawbacks of these models.

In the second section, a new approach was proposed for the formulation of
the investment problems in the multicriteria case when the different types of
risk and efficiency of the investment projects are taken into account.

Stability analysis of the multiobjective combinatorial problems was consid-
ered in Chapter 4. The two major directions of investigation were described in
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this chapter: the quantitative and qualitative approaches. Five types of sta-
bility were described in detail and a survey of recent results was also proposed.

Chapter 5 was dedicated to the stability radius of the multicriteria prob-
lem, which represents the supreme level of perturbations in of the initial data,
where the solutions to the problems preserve their preassigned properties. In
this chapter the results obtained in this thesis were introduced. The attainable
bounds for the stability radii of the efficient solutions of the project portfolio se-
lection problem were described. The second section was devoted to approaches
for calculating the stability radius.
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