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4 Abstract 

ABSTRACT

Pia Boström
PROGNOSTIC FACTORS IN BREAST CANCER 
With Special Reference to Cyclins A, B1, D1 and E, MMP-1 and Decorin 

Department of Pathology, University of Turku, Turku, Finland (2014)

Breast cancer is a highly heterogenous malignancy, which despite of the similar 
histological type shows different clinical behaviour and response to therapy. Prognostic 
factors are used to estimate the risk for recurrence and the likelihood of treatment 
effectiveness. Because breast cancer is one of the most common causes of cancer death 
in women worldwide, identification of new prognostic markers are needed to develop 
more specific and targeted therapies. 

Cancer is caused by uncontrolled cell proliferation. The cell cycle is controlled by specific 
proteins, which are known as cyclins. They function at important checkpoints by activating 
cyclin-dependent kinase enzymes. Overexpression of different cyclins has been linked to 
several cancer types and altered expression of cyclins A, B1, D1 and E has been associated 
with poor survival. Little is known about the combined expression of cyclins in relation to 
the tumour grade, breast cancer subtype and other known prognostic factors. In this study 
cyclins A, B1 and E were shown to correlate with histological grade, Ki-67 and HER2 
expression. Overexpression of cyclin D1 correlated with receptor status and non-basal 
breast cancer suggesting that cyclin D1 might be a marker of good prognosis.

Proteolysis in the surrounding tumour stroma is increased during cancer development. 
Matrix metalloproteinases (MMPs) are proteolytic enzymes that are capable of degrading 
extracellular matrix proteins. Increased expression and activation of several MMPs have 
been found in many cancers and MMPs appear to be important regulators of invasion and 
metastasis. In this study MMP-1 expression was analysed in breast cancer epithelial cells 
and in cancer associated stromal cells. MMP-1 expression by breast cancer epithelial 
cells was found to carry an independent prognostic value as did Ki-67 and bcl-2. The 
results suggest that in addition to stromal cells MMP-1 expression in tumour cells control 
breast cancer progression. 

Decorin is a small proteoglycan and an important component of the extracellular 
matrix. Decorin has been shown to inhibit growth of tumour cells and reduced decorin 
expression is associated with a poor prognosis in several cancer types. There has been 
some suspicion wheather different cancer cells express decorin. In this study decorin 
expression was shown to localize only in the cells of the original stroma, while breast 
cancer epithelial cells were negative for decorin expression. However, transduction of 
decorin in decorin-negative human breast cancer cells markedly modulated the growth 
pattern of these cells. This study provides evidence that targeted decorin transduction 
to breast cancer cells could be used as a novel adjuvant therapy in breast malignancies.

KEY WORDS: breast cancer, extracellular matrix, prognostic factor, MMP-1, decorin, 
cyclin A, B1, D1 and E 
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TIIVISTELMÄ

Pia Boström 
Rintasyövän ennusteelliset tekijät
– erityisesti sykliinit A, B1, D1 ja E, MMP-1 ja dekoriini 

Patologian oppiaine, Kliinis-teoreettinen laitos, Turun yliopisto, Turku (2014) 

Rintasyöpä, joka on naisten yleisin syöpä, on äärimmäisen monimuotoinen sairaus. Rin-
tasyövän on ymmärretty olevan joukko erilaisia kasvaimia, jotka poikkeavat toisistaan 
huomattavasti morfologialtaan, ennusteeltaan ja hoitoon reagoinniltaan. Rintasyövän klii-
nisen kulun ennustamisessa sekä hoitolinjojen valinnassa käytetään apuna prognostisia eli 
ennusteellisia tekijöitä. Käyttökelpoisten ennusteellisten tekijöiden löytäminen auttaa koh-
dentamaan aggressiivisemmat hoidot suuremman uusiutumisriskin omaaville potilaille.

Syöpä johtuu kontrolloimattomasta solujen jakautumisesta. Solunjakautuminen tapahtuu 
solusyklissä, jota säätelevät erilaistuneet proteiinit. Solusyklissä on useita tarkastuspis-
teitä, joissa säätelyjärjestelmän pääkomponentteina toimivat sykliinit ja sykliiniriippu-
vaiset proteiinikinaasit. Sykliinien ilmentyminen on poikkeavaa syövässä. Sykliinien A, 
B1, D1 ja E:n esiintymistä verrattiin rintasyövän erilaistumisasteeseen, molekulaarisiin 
rintasyövän alatyyppeihin ja käytössä oleviin ennusteellisiin tekijöihin. Tutkimukses-
sa todettiin sykliinien A, B1 ja E:n korreloivan kasvainkudoksen erilaistumisasteeseen, 
jakaantumisnopeuteen Ki-67 ja HER2 positiivisuuteen eli rintasyövän huonompaan en-
nusteeseen. Sykliini D1 sen sijaan korreloi hormonireseptoristatukseen ja ns. ei- basaa-
lityypin rintasyöpään liittyen parempaan ennusteeseen. 

Soluväliaineen hajotus on lisääntynyt rintasyövässä. Matriksin metalloproteinaaseiksi 
(MMP) nimitetään entsyymiperhettä, joka osaltaan vastaa tästä solun ulkoisen väliai-
neen pilkkomisesta. Näiden proteolyyttisten entsyymien ilmentymisellä saattaa olla en-
nusteellista arvoa eri syövissä. MMP-entsyymeillä on perinteisesti ajateltu olevan osuut-
ta syöpäsolujen leviämisessä. Tässä tutkimuksessa analysoitiin MMP-1:n ilmentymistä 
sekä rintasyöpäsoluissa että niitä ympäröivien väliaineen soluissa. MMP-1:n ilmentymi-
nen syöpäsoluissa todettiin olevan uusi itsenäinen syövän uusiutumista ennustava tekijä 
kuten myös Ki-67 ja bcl-2. Tutkimustulokset osoittavat, että MMP-1 osallistuu syövän 
säätelyyn sekä tumatasolle että solun ulkopuolella.

Dekoriini on sidekudosväliaineessa esiintyvä proteoglykaani, jolla on kykyä säädellä 
solujen jakautumista. Pienentynyt dekoriini-ekspressio on liitetty huonoennusteisiin 
syöpiin. Dekoriinin ilmentymisestä erilaisissa syöpäkudoksissa ei kuitenkaan ole täyttä 
varmuutta ts. ekspressoivatko varsinaiset syöpäsolut sitä vai eivät. Tutkimuksessa rin-
tasyöpäsolujen ei todettu tuottavan dekoriinia. Dekoriinin saattaminen virusvälitteisesti 
dekoriini-negatiivisiin rintasyöpäsoluihin sai aikaan merkittäviä muutoksia syöpäsolu-
jen morfologiaan ja kasvunopeuteen. Tutkimustulosten perusteella dekoriinia voisi tule-
vaisuudessa mahdollisesti hyödyntää rintasyövän hoidossa. 

Avainsanat: rintasyöpä, solunulkoinen väliaine, ennustetekijä, matriksin metalloprotei-
naasi - 1, dekoriini, sykliini A, B1, D1 ja E 
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1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in women in Europe and it is the 
first cause of women´s cancer death in Europe. In Finland in 2011 about 4900 new breast 
cancers were found. The risk of breast cancer in women has increased continuously and 
the rate of cancer patients is growing further. The incidence of breast cancer is very 
low among women under 30 years, but the risk of developing cancer increases after 
45 years of age. One in nine women will have breast cancer at some point in her life 
and one in thirty will die from the disease. Even if the number of new breast cancer 
cases has multiplied during the past decades, breast cancer survival has improved over 
time possibly due to early diagnosis by effective screening programs and advances in 
treatment. 

The aim of breast cancer treatment is complete removal of tumour without damage to 
the rest of the body. Surgery is accomplished by radiotherapy and systemic treatment 
including adjuvant chemotherapy, hormone therapy and targeted therapy (sometimes 
called biological therapies). Treatment for breast cancer will depend on a number of 
factors including the size and the grade of the breast cancer, axillary lymph node status, 
hormone receptor status and HER2 status. Several well-established prognostic and 
predictive factors are used to guide the clinical management of breast cancer. Difficulties 
remain in identifying those patients who are likely to benefit the most from treatment.

Breast cancers are highly heterogenous tumours, which only happen to originate in the 
same anatomical site. Breast tumours of the similar histological type can show remarkably 
different clinical behaviour, response to the therapy and prognosis. A prognostic factor 
is a clinically or biologically measurable variable that correlates with the cancer disease 
in an untreated patient. A prognostic factor can be thought as a measure of the natural 
history of the disease.

Cyclins are proteins that function at important checkpoints in cell cycle. Several 
cancer types have abnormal cyclin expression stimulating the cells to divide too fast. 
The aim of this study was to analyse the expression of cyclins A, B1, D1 and E in 
breast cancer in relation to the well-known traditional prognostic factors. In addition, 
immunohistochemically detected expression of cyclins were correlated with the 
molecular subtypes of breast cancer. 

While stromal density of cancer tissue is known to be a breast cancer risk factor, the 
other aim was to study the stromal microenvironment. Matrix metalloproteinases are 
endopeptidases with the ability to cleave a wide range of extracellular matrix components. 
MMP-1 expression in both stromal and tumour epithelial cells was evaluated in breast 
cancer and the results were correlated with classical prognostic factors and long follow-
up time for cancer specific survival in different breast cancer subtypes.
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Decorin, a small leucine-rich proteoglycan, is an important multifunctional molecule of 
the extracellular matrix. Decorin has been shown to be present in various amounts in the 
stroma of different cancers. However, identification of the origin of decorin expression 
in cancers has remained open. In this study we studied decorin mRNA expression in 
benign breast lesions and various histological types of human breast cancers using in 
situ hybridization. One additional goal of this study was to evaluate the effect of decorin 
transduction on the behaviour of cultured human breast cancer MCF7 cells.
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2. REVIEW OF THE LITERATURE

2.1 Epidemiology and risk factors of breast cancer

Cancer is one of the leading causes of death worldwide. The main types of cancer are 
lung, prostate, colorectal and breast cancer (WHO, 2011), the last one being the most 
common cause of cancer mortality among women worldwide (Chodosh, 2011). The 
annual number of cancer cases in females is predicted to increase in Finland and breast 
cancer is responsible for one-third of this increase (Figure 1, Finnish Cancer Registry, 
2009).

Figure 1. The annual number of cancer cases in females in 2020 is predicted to increase by 
3150 cases in Finland. Breast cancer is responsible for one-third of this increase (Finnish Cancer 
Registry, 2009).

While the amount of new breast cancer cases has increased in many European countries 
during the past decades, breast cancer mortality has declined or remained stable possibly 
due to earlier diagnosis and/or improved treatments. Greater public awareness of breast 
cancer and the promotion of breast self-examination together with effective screening 
mammography have led the detection of the disease at earlier stages (OECD, 2010). 
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It has previously been shown that the outcome of breast cancer is significantly better 
in patients with mammography screen-detected tumours than in patients whose cancer 
has been found outside of screening (i.e. symptomatic tumours) (Sihto et al., 2008; 
Lehtimäki et al., 2011). In Finland, about nine women out of ten are alive five years after 
the diagnosis (Figure 2, Finnish Cancer Registry, 2009).

Figure 2. Age-adjusted mortality trends of common sites in Finland, with prediction, females 
(Finnish Cancer Registry, 2009).

Many risk factors for breast cancer are well known. These include increasing age, 
family history, young age at menarche, late menopause, overweight after menopause, 
null parity or late age at first birth, breast density, long-term use of combined estrogen-
progestin hormone therapy after menopause, certain types of benign breast diseases and 
alcohol consumption (Table 1). However, only a small number of women that develop 
breast cancer carry the above mentioned risk factors (Antonova et al., 2011; Endogenous 
Hormones and Breast Cancer collaborative Group, 2011; Iwasaki and Tsugane, 2011; 
Stojadinovic et al., 2011). Evidence is growing that physical activity may reduce 
women´s risk of breast cancer by decreasing body fat and estrogen level (Wu et al., 
2013), although not all studies show this benefit (Borch et al., 2014). High saturated fat 
intake is reported to increase particularly the risk of hormone receptor-positive breast 
cancer (Sieri et al., 2014). Central body fat distribution has been associated with an 
increased risk of pre- and postmenopausal breast cancer compared to the risk associated 
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with a more peripheral distribution of body fat (Amadou et al., 2013). High saturated fat 
is also associated with greater risk of HER2 negative breast cancer (Sieri et al., 2014). 
While most risk factors seem to be common for both estrogen positive and negative 
tumours (Suba 2014), there are studies that support the hypothesis that breast cancer risk 
factors vary between the cancer subtypes (Yang et al., 2007). Moreover, the stronger the 
risk factor, the higher the association for poorly differentiated, steroid receptor-negative 
tumours, such as triple-negative breast cancers is observed (Suba 2014). The most 
important preventive strategy against breast cancer is suggested to be the strict control 
of hormonal stability for women during their whole lifetime (Suba 2014).

Table 1. Selected risk factors for invasive breast cancer. 

Moderate to high risk factors Effect on breast cancer risk
Ageing very strong increase in risk
Gender very strong increase in risk
Lobular carcinoma in situ 7-10 times greater
BRCA1 or BRCA2 gene mutation 5-14 times greater
Dense breast tissue 3-6 times greater
Family history of breast cancer

-two immediate family members with breast cancer 3-4 times greater
-mother diagnosed before age 60 2-3 times greater
-mother diagnosed after age 60 1 times greater

Personal history of cancer (including 2-6 times greater
breast cancer, DCIS, other cancers)
Benign breast condition (hyperplasia)

-atypical 2-4 times greater
-usual 1.5-2 times greater

Low risk factors Effect on breast cancer risk
Hormonal therapy use (current or recent use for 5 years)

-combined estrogen and progestin 1.5-2 times greater
Using oral contraceptives (current or recent use) 1-1.5 times greater
Not having children (compared with a woman who has her 
first child before 35)

1.5 times greater

Alcohol use (2-4 drinks/day) 1.5 times greater
High socio-economic status 1-2 times greater
Obesity 1-1.5 times greater
Not breastfeeding 1 times greater
Lack of exercise 1 times greater
High bone density 2 times greater
Age 55 or older at menopause 2 times greater
First period before age 12 1-1.5 times greater
Being tall 1 times greater
(Modified from Singletary 2003 and Canadian Breast Cancer Foundation webpages).
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About 5% to 10% of all breast cancer cases are estimated to be strongly hereditary 
(Thull and Vogel, 2004). Breast cancer genes 1 and 2 (BRCA1 and BRCA2) are the most 
commonly mutated genes, but additional genes associated with the hereditary breast 
cancer are appearing (Petrucelli et al., 2010) (Table 2). The risk of developing breast 
cancer of BRCA1 mutation carriers is around 80% and that of BRCA2 mutation carriers 
26% to 84% (Apostolou and Fostira, 2013). Five percent to 10% of men with BRCA2 
mutations (and a smaller proportion of those with BRCA1 mutations) develop breast 
cancer (Ruddy and Winer, 2013). BRCA1 and BRCA2 are responsible for approximately 
30% of hereditary breast cancer cases worldwide, but only for about 20% in Finland 
(Pylkäs et al, 2008). BRCA2 mutation has been found to be more common than BRCA1 
mutation in the Finnish population (Syrjäkoski et al, 2000). PALB2 that has an important 
function in the regulation and localization of BRCA2 has recently been identified as 
a breast cancer susceptibility gene (Haanpää et al., 2013). PALB2 c.1592delT founder 
mutation can be found in about 1% of Finnish breast cancer patients and these patients 
have been shown to have a 40% increased breast cancer risk by the age of 70 (Haanpää 
et al., 2013). This mutation increases the risk of breast cancer in a way comparable to 
BRCA2 mutations (Erkko et al., 2008). 

Other inherited cancer genes that predispose to breast cancer include TP53 mutations in 
Li-Fraumeni syndrome, STK11 mutation in Peutz-Jeghers syndrome and PTEN mutations 
in Cowen syndrome (Apostolou and Fostira, 2013). Somatic (not-inherited) mutations 
in the PIK3CA oncogene are common in human breast cancer; mutations are observed 
in 20% to 40% of cases (Cizkova et al., 2012). While there is increasing evidence that 
different mutations play an important role in breast cancer tumourigenesis, most breast 
carcinomas occur in women with only two non-specific disease-associated risk factors, 
namely age and female gender (Stojadinovic et al., 2011). 

Table 2. The most important breast cancer associated genes and risk for breast cancer.

Gene Name Risk for mutation carriers for breast cancer %
BRCA1 breast cancer gene 1 80% (Apostolou and Fostira, 2013)
BRCA2 breast cancer gene 2 26-84% (Apostolou and Fostira, 2013)
TP53 tumour protein p53 49% (Masciari et al., 2012)
PTEN phosphatase and tensin gene 25% (Tan et al, 2012)
ATM ataxia-telangiectasia mutated gene 20-40% (Ripperger et al., 2009)
PALB2 partner and localizer of BRCA2 35% by 70 years of age (Antoniou et al., 2014)
CDH1 E-cadherin 39-52 % risk for lobular breast cancer (Schrader 

et al, 2011)
STK11 serine/threonine kinase 11 32-54% (Apostolou and Fostira, 2013)
CHEK2 checkpoint kinase 2 25% (Cybulski et al, 2011)
RAD50 RAD50 homolog a small risk in Finnish breast cancer families 

(Tommiska et al., 2006)
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2.2 Histopathological classification of breast cancer

Classification of breast tumours is based on histological appearance and growth pattern. 
According to the WHO classification of invasive breast cancers at least 18 distinct 
histologic types exist (Ellis et al., 2003) (Table 3). The most common type of invasive 
breast carcinoma (50% to 80%) is called invasive breast carcinoma of no special type 
(NST), commonly known as ductal carcinoma NST (Ellis et al., 2012a). This heterogenous 
group of adenocarcinoma does not have sufficient characteristics to achieve classification as 
a specific histological type, such as lobular or tubular carcinoma (Weigelt et al., 2010; Ellis 
et al., 2012b). Morphological features vary considerably from tumour to tumour showing 
malignant cells invading the stroma diffusely, in trabecular or tubular configurations with 
extremely variable stromal component in background (Brachtel, 2012). 

Table 3. Prevalence of histological types of invasive breast cancer.

Histological type Prevalence (%)
(Rosen, 2001)

Prevalence (%)
(Ellis et al., 2003)

Prevalence (%)
(Rakha et al., 2006)

Invasive ductal carcinoma (NST) 65-80 50-80 56.4
Carcinoma with osteoclastic giant cells 0.5-1-2
Invasive lobular carcinoma 5 5-15 8.2

Classical 7.4
Alveolar 0.1
Solid 0.3
Tubulo-lobular 0.4

Pure tubular carcinoma <2 <2 4.4
Invasive cribriform carcinoma <4 0.8-3.5 0.6
Medullary carcinoma <5-7 1-7 2.6

Typical 0.3
Atypical 2.3

Mucinous carcinoma <2 2 1.4
Neuroendocrine carcinoma 2-5
Invasive papillary carcinoma 1-2 1-2 0.4
Invas. micropapill. carcinoma <2.7 <2
Apocrine carcinoma <1-4 <4
Metaplastic carcinoma <5 <1
Lipid-rich carcinoma <1 <1-6
Secretory carcinoma few cases <0.15
Oncocytic carcinoma few cases
Adenoid cystic carcinoma few cases 0.1
Acinic-cell carcinoma few cases
Glycogen-rich clear cell ca <1-3 1-3
Sebaceous carcinoma few cases
Mixed cases 25.9

NST and invasive lobular carcinoma 3.3
NST and special type 2.4
Invasive lobular mixed 3.4
Tubular carcinoma mixed 16.8
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Invasive lobular carcinoma (ILC) is the most common special type of breast cancer and 
the second most common type of all breast cancers representing 8% to 15% of all invasive 
cancers (Rakha et al., 2008b; Vandorpe et al., 2011). Infiltrating lobular carcinoma has 
a different pattern of metastatic spread with a tendency for unusual sites such as the 
retroperitoneum and serosal surfaces (Rakha et al., 2011). In its classical form, small 
non-cohesive tumour cells disperse through a fibrous stroma or infiltrate as individual 
rows of cells (Indian file pattern) (Brachtel, 2012; Lakhani et al., 2012a). The lack of cell 
cohesion or dissociated cell pattern occurs as a result of alterations in E-cadherin function 
(Faleiro-Rodrigues et al., 2004). In addition to the loss of membranous E-cadherin 
expression in ILC, simultaneous loss of α, β and γ catenin expression has been observed 
and it has been shown to be associated with cytoplasmic localization of p120 catenin (Yu 
et al., 2010; Rakha et al., 2010a; Brachtel, 2012; Lakhani et al., 2012a).

Other, relatively uncommon types of breast cancer, e.g., tubular carcinoma, cribriform 
carcinoma, carcinoma with medullary features, invasive micropapillary carcinoma, 
mucinous carcinoma, carcinoma with apocrine differentiation, carcinoma with signet-
ring-cell differentiation and metaplastic carcinoma of no special type have particular 
microscopic features of the tumour cells, growth pattern or extracellular material. Various 
subtypes of breast carcinoma may indicate the distinct behaviour of breast cancer and, in 
addition, some subtypes have a lower recurrence risk than would be suggested by their 
histological grade (Li, 2010a; Rakha and Ellis, 2011; Ellis et al., 2012b). 

Non-invasive cancer is called carcinoma in situ. It is a neoplastic proliferation 
characterized by the replacement of the native epithelial cells by atypical cells within the 
ducts (ductal carcinoma in situ) or lobules (lobular carcinoma in situ) without invasion 
through the basement membrane into the surrounding stroma. The cancer cells in situ 
carcinoma can have cytological atypia, different architectural features and a tendency 
for progression to invasive breast cancer (Schnitt et al., 2012). Ductal carcinoma in situ 
(DCIS) is more common than lobular carcinoma in situ (LCIS) and is divided into three 
grades on the basis of nuclear features: low, intermediate and high (Schnitt et al., 2012). 
According to architectural pattern DCIS is sub-classified into solid, cribriform, papillary 
and micropapillary subtypes (Virnig et al., 2010). In addition, the presence or absence of 
necrosis and the type of necrosis (punctuate, comedo) is often included in pathologists 
report (Schnitt et al., 2012). 

Lobular intraepithelial neoplasia (LIN) includes the entire spectrum of so-called atypical 
lobular hyperplasia (ALH) and LCIS (Lakhani et al., 2012b). ALH is diagnosed when 
fewer than 50% of the acini are involved by the luminal proliferation and no significant 
distension of the involved acini is noticed. LCIS is diagnosed when more than 50% of 
the acini of the affected lobular unit are distended and distorted by cellular proliferation 
(Malley 2010; Lakhani et al., 2012b). Several variants of LCIS have recently been 
recognized. These include pleomorphic LCIS, pleomorphic apocrine LCIS, LCIS with 
areas of comedo necrosis and carcinoma in situ with mixed ductal and lobular features. 
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In addition, clear cell and signet ring cell variants of LCIS have been described (Malley, 
2010). The clinical significance of these LCIS variants is still uncertain (Lakhani et al., 
2012b).

2.3 Prognostic and predictive factors in breast cancer

A prognostic factor provides information on clinical outcome at the time of surgery, 
independently of systemic adjuvant therapy. Such factors show the intrinsic biologic 
characteristics of tumours which are usually indicators for growth, invasion and 
metastatic potential (Subramaniam and Isaacs, 2005). The classical clinical prognostic 
factors that are considered to be independent variables in breast cancer include age, 
axillary lymph node status, tumour size, histopathologic features including tumour type 
and grade, lymphovascular invasion, expression of proliferation marker Ki-67, estrogen 
receptor (ER) and progesterone receptor (PR) status (Cianfrocca and Goldstein, 2004; 
Subramaniam and Isaacs, 2005; Weigel and Dowsett, 2010; Ly et al., 2012). 

A purely predictive factor is any measurement associated with a positive response to a 
given therapy, but it does not predict the outcome in untreated patients (Cianfrocca and 
Goldstein, 2004; Subramaniam and Isaacs, 2005). Certain biologic factors, including ER/
PR expression status, expression of Ki-67 and HER2 are both prognostic and predictive 
factors (Cianfrocca and Goldstein, 2004; Fasching et al., 2011). With the exception of ER 
or PR expression and HER2 gene amplification, there are no clinically useful predictive 
factors to identify breast cancer patients that will benefit from hormonal or targeted 
therapy (Pusztai et al., 2003; Oldenhuis et al., 2008, Hefti et al., 2013). Prognostic factors 
are traditionally used to identify patients, in whom unnecessary adjuvant therapy could 
be avoided on the risk of relapse. Predictive factors determine which treatment is best for 
the patient (Lønning, 2007). Prognostic and predictive factors are commonly discussed 
together and they both are used in deciding on cancer treatment and prognosis. As a 
positive prognostic factor may have a negative predictive value and in reverse, further 
studies are needed for the choice of treatment strategies individualized for each patient 
(Tonini et al., 2008). Although more than 100 individual prognostic factors have been 
reported in the literature, only a few of them such as plasminogen activator inhibitor 1 
(PAI) expression can be used in the clinic (Lønning, 2007; Senkus et al., 2013). Because 
of this gene expression profiling may become an important tool to predict the response 
to a specific treatment. However, large well-controlled studies are required to achieve 
this goal (Lønning, 2007). 

2.3.1 Grading of invasive breast cancer
Breast cancer includes a heterogeneous group of tumours with distinct clinical behaviour, 
histopathological features, as well as response to therapy and outcomes (Weigelt et al., 
2010). Despite the advances in molecular pathology, histologic grade and type of breast 
cancer remains the cornerstone of cancer management (Rosai, 2007). Many studies have 
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shown that histologic grade provides a strong predictor of outcome in patients with 
invasive breast cancer (Rakha et al., 2008a). The microscopic grading system of breast 
carcinoma has been developed more than 50 years ago and today the most widely used 
system is the so called Nottingham combined histologic grade (Elston and Ellis, 1991; 
Rakha et al., 2008b). The degree of differentiation is representative to the aggressive 
potential of the tumour and ranges from well to poorly differentiated. Well differentiated 
(grade I) cancer is the least aggressive, while poorly differentiated (grade III) cancer is 
the most aggressive type and needs a more effective treatment (Rakha et al., 2010c).

Method of grading 
A reliable grading of breast cancer should be done of the entire tumour tissue. The amount 
of clear acinar, glandular formation and defined tubular structures with a central luminal 
space is counted. One point is given, if more than 75% of the tumour cells are forming 
tubules/glands and three points if tubular formation is less than 10% of the tumour. Two 
points are given, if acinar formation ranges from 10% to 75%. Nuclear pleomorphism 
refers to the size and shape of the nucleus and nuclear appearances are evaluated from 
the area showing the worst degree of pleomorphism. Score 1 nuclei are very similar in 
size to nuclei in ductal epithelial cells with minimal pleomorfism. Score 2 cells have 
larger nuclei than normal cells with mild to moderate pleomorphism and with a small, 
but visible nucleoli. Score 3 has a prominent nuclei exhibiting marked variation in size 
and shape. Mitotic figures are evaluated from the hot spot area, and special attention 
should be given to high quality fixation, optimally stained haematoxylin and eosin 
(HE) sections and size of the high power field (HPF) of the microscope. Total number 
of mitoses per 10 HPF is calculated and only clear mitotic figures are counted as an 
indicator of proliferative activity. Scoring categories for the mitotic counts are read from 
“field diameter in mm” corresponding line of the calibration table (e.g. table in WHO 
Classification of Tumours of the Breast 2012, p.19). Scores from the acinus formation, 
nuclear atypia and mitotic count are added together, giving a possible total score of 3 to 9. 
The histological grade of the breast cancer is assigned on the following basis: scores 3-5 
represent grade I, well-differentiated cancer, scores 6-7 represent grade II, moderately 
differentiated cancer, and scores 8-9 represent grade III, poorly differentiated cancer 
(Elston and Ellis, 1991).

2.3.2 Histopathological and biological prognostic factors

Estrogen/progesterone receptor status
Estrogen and progesterone hormones play a significant role both in normal glandular 
development and in breast cancer progression (Cui et al., 2005). Estrogen mediates its 
biological effects on breast tissue by binding to specific intracellular receptors, estrogen 
receptor α (ERα) and β (ERβ) (Liang and Shang, 2013). The oncogenic effect of estrogen 
is mainly due to ERα-mediated transcriptional activation of genes that advance cell 
proliferation or reduce apoptosis (Liang and Shang, 2013). Although the presence of 
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ER and PR in an invasive breast carcinoma is considered both as a prognostic and a 
predictive factor (Rakha et al., 2007; Badve and Nakshatri, 2009; Liu et al., 2010), both 
lose their prognostic value after long-term follow-up (Cui et al., 2005; Taneja et al., 
2010; Lindström et al., 2012). Changes in the hormone receptor status during tumour 
progression or after treatment are estimated to happen in 10% to 40% of patients (Cui 
et al., 2005; Lindström et al., 2012). Approximately two-thirds of breast cancer cases 
express ER (Liu et al., 2010; Sandhu et al., 2010) and the majority of reports shows that 
ER is the most important single predictive factor identified in breast cancer (Oh et al., 
2006; Badve and Nakshatri, 2009; Weigel and Dowsett, 2010). More than half of these 
ER+ tumours also express PR, the expression of which has been considered as a clinical 
indicator of ER function (Cui et al., 2005; Lanari et al., 2009; Rakha et al., 2010c, Lanari 
et al., 2012). PR expression has been shown to be an independent factor associated with 
improved survival of breast cancer patients (Liu et al., 2010). ER+/PR-, ER-/PR+ or ER-/
PR- tumours are biologically and clinically distinct exhibiting higher risk of mortality 
compared to the risk of women with ER+/PR+ tumours (Rakha et al., 2007; Dunnwald 
et al., 2007). This is confirmed by gene expression arrays showing that ER+ and ER– 
breast cancers are fundamentally different diseases at the molecular level (Perou et al., 
2000; Sorlie et al., 2001; Geyer et al., 2012). Current endocrine therapy for treating ER+ 
breast cancer involves the use of anti-estrogens that block ER and aromatase inhibitors 
that decrease local and systemic estrogen production (Nair et al., 2011).

HER2
The human epidermal growth factor receptor 2, HER2, is a member of the epidermal 
growth factor receptor (EGFR) family of receptor tyrosine kinases and has been shown 
to provide both prognostic and therapeutic predictive value (Rakha and Ellis, 2009; 
Fiszman and Jasnis, 2011). HER2 is overexpressed in approximately 20% to 25% 
of invasive breast cancers (Fiszman and Jasnis, 2011) and is detected either by gene 
amplification or overexpression of the HER2 protein product (Madrid and Lo, 2004). 
HER2 positive breast cancer is associated with tumour aggressiveness, relapse and high 
rate of mortality (Murphy and Modi, 2009; Weigel and Dowsett, 2010). Recent studies 
suggest that the crosstalk between the ER and HER2 pathway plays a role in resistance to 
endocrine therapy and to HER2 directed agents (Gluck et al., 2011; Nahta and O´Regan, 
2012). Patients with HER2 overexpressing tumour are more likely to benefit from 
adjuvant anthracycline-based therapy (Cianfrocca and Goldstein 2004; Leo et al., 2011) 
and trastuzumab therapy (Herceptin™) when compared to patients with HER2 negative 
tumour (Goldhirsch et al., 2011). Trastuzumab is a humanized monoclonal antibody 
that binds selectively to the HER2 protein. For women with advanced HER2 positive 
breast cancer that has disease progression during treatment with Herceptin, Lapatinib 
(Tykerb™) is approved as a next line HER2 therapy (Murphy and Modi, 2009; Abramson 
and Arteaga, 2011). Labatinib is a small-molecule drug directed at the internal tyrosine 
kinase portion of the HER2 oncoprotein and can potentially resensitize HER2 positive 
tumour cells to the action of trastuzumab (Scaltriti et al., 2009; Rakha et al., 2010b). 
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Pertuzumab (Perjeta®) is an anti-HER2 humanized monoclonal antibody and works on 
a different part of the HER2 protein as Herceptin. Pertuzumab prevents HER2 from 
coupling with other HER receptors and is able to overcome at least some pathways of 
resistance to standard trastuzumab-based therapy (Baselga et al., 2012). Trastuzumab 
emtansine (Kadcyla®) is an antibody-drug conjugate that connects the inhibition of 
trastuzumab and the cytotoxic chemotherapy. This targeted medicine is indicated for 
the treatment of adults with HER2 positive breast cancer who have previously received 
trastuzumab, taxane-based chemotherapy or lapatinib (FDA, 2013). 

Ki-67
Ki-67 is a proliferation marker, whose expression varies throughout the different cell-
cycle phases with a peak during mitosis and absence in the resting phase G0 (Yerushalmi 
et al., 2010; Weigel and Dowsett, 2010; Dowsett et al., 2011). Near the end of the mitotic 
phase, a sharp decrease in Ki-67 levels occurs (Yerushalmi et al., 2010). The use of Ki-
67 as a prognostic and a predictive marker in breast cancer and in other malignancies has 
been widely studied and it seems that immunohistochemical expression of Ki-67 has an 
increasing value as a prognostic marker in early breast cancer (Yerushalmi et al., 2010). 
Recent studies further indicate that Ki-67 might have a valuable role in the distinction 
between luminal A and luminal B subtypes and in predicting the benefit of adjuvant 
treatment in breast cancer subtypes of poor prognosis (Cheang et al., 2009; Yerushalmi 
et al., 2010; Goldhirsch et al., 2011). Since the St. Gallen consensus in 2011, the value 
of 14% has been regarded as the Ki-67 cut-off value which distinguishes luminal A and 
luminal B subtypes (Goldhirsch et al., 2011). However, these breast cancer subtypes lack 
the accepted Ki-67 expression cut-off points for prognostic purposes (Dowsett et al., 
2011), and there are not enough data to find a relationship between the Ki-67 expression 
and therapy-specific benefit (Perez-Garcia and Cortes, 2012). Many cut-off values for high 
and low Ki-67 staining in breast cancer have been used, although immunohistochemical 
staining levels of 10%-20% have been the most common (Dowsett et al., 2011; Brown 
et al., 2014). A new study has raised the possibility that luminal HER2-negative breast 
cancer patients with Ki-67 higher than 35% might benefit from chemotherapy achieving 
improved survival (Horimoto et al., 2014).

p53
The TP53 gene codes for a tumour suppressor protein p53 that regulates the growth 
arrest and apoptosis, when cell damage is irreparable (Lara et al., 2011; Suzuki and 
Matsubara, 2011). Acquired mutations in the TP53 gene are observed in about 50% 
of human cancers (Coates et al., 2012; Eldar et al., 2013). Normally, p53 protein is 
present in an inactive form at very low levels, and it requires modification by other 
proteins to become active (Giaccia and Kastan; 1998). Functional inactivation of p53 
protein by gene mutation has been associated with early relapse, poor survival and 
resistance to certain chemotherapies in breast cancer (Lacroix et al., 2006; Al-azawi 
et al., 2011; Davion et al., 2012; Eldar et al., 2013). The p53 mutation is present 
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in 18% to 25% of breast cancers and the p53 protein overexpression correlates with 
negative hormonal status, basal-like or HER2-like breast cancer subtypes (Friedrichs 
et al., 1993; Sorlie et al., 2001; Lacroix et al., 2006; Al-azawi et al., 2011; Jung et al., 
2011). In addition, p53 positive tumours in luminal A and triple-negative subtypes 
show unfavourable prognosis (Jung et al., 2011). Some studies show p53 mutation 
to be an independent predictor of poor survival in breast cancer, but there are also 
contradictory results (Lai, 2004). So far guidelines do not recommend routine use of 
p53 immunohistochemistry, mainly because the sensitivity of p53 nuclear staining is 
only about 75% (Greenblatt et al., 1994).

Bcl-2
Bcl-2 is a cytoplasmic protein regulating apoptosis and programmed cell death (Dawson 
et al., 2010). In breast cancer, immunohistochemical bcl-2 expression correlates with 
ER- and PR- positivity, and with low grade and favourable survival (Nadler et al., 2008; 
Dawson et al., 2010; Subhawong et al., 2010). Although many previously reported 
studies have suggested bcl-2 to be an independent prognostic factor in breast cancer 
survival (Dawson et al., 2010; Hwang et al., 2012; Larsen et al., 2012), more studies 
are needed to support its routine use in clinical practice. A larger number of analyses is 
also required for the validation of immunohistochemical expression of bcl-2, because 
there is interlaboratory variation in results due to fixation, antigen retrieval and the used 
staining method. In addition, antibody types as well as cut-off values used to define 
immunohistochemical positivity differ in published reports (Dawson et al., 2010). 

2.4 Molecular classification of breast cancer

Microarray-based gene expression profiling has confirmed breast cancer to be a 
heterogeneous group of molecularly, biologically and clinically distinct diseases 
suggesting the existence of multiple cells of origin (Rakha et al, 2009; Prat and Perou, 
2009; Sotiriou and Pusztai, 2009; Reis-Filho and Pusztai, 2011; Toft and Cryns, 2011). 
The microarray-based gene expression profiling studies have shown that ER+ and ER– 
breast cancers are fundamentally different diseases at the molecular level (Perou et al., 
2000; Sørlie et al., 2001; Geyer et al., 2012). In 2000 and 2001, Perou and coworkers 
as well as Sørlie and coworkers identified in their studies that breast cancer could be 
divided into four types according to their gene expression profile: luminal-like, basal-
like, normal-like and HER2–positive tumours (Perou et al., 2000; Sørlie et al., 2001). 
Other less common molecular subtypes have also been described including molecular 
apocrine, claudin-low and interferon-rich subtypes (Colombo et al., 2011) (Figure 3). 
Further studies have revealed that the main subtypes possess different clinical behaviour, 
sites of relapse, histological features, response to chemotherapy and prognosis that can 
be probed with molecular methods (Sotirou and Pusztai 2009; Reis-Filho and Pusztai 
2011; Mackay et al., 2011). 
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Figure 3. Molecular classification of breast cancer subtypes.

ER+ luminal breast cancers can be subdivided into at least two subgroups, luminal A and 
luminal B, each with a distinctive molecular genetic profile and different clinical outcome 
(Sørlie et al., 2001; Creighton, 2012). The luminal A and B subtypes represent the hormone 
receptor-positive (ER+/PR+) breast cancers, that are the most common subtypes representing 
at least 70% of breast cancers (Dunnwald et al., 2007). Luminal A tumours have high 
expression of ER-activated genes and low expression of proliferation-related genes and are 
thus considered to be histologically low grade tumours with a favourable clinical outcome 
(Perou et al., 2000; Sørlie et al., 2001; Loi, 2008; Sotirou and Pusztai, 2009). 

Luminal B cancer is often a HER2–positive tumour expressing low levels of hormone 
receptors and is often a high grade tumour with high Ki-67 expression (Cheang et al., 
2009; Sotiriou and Pusztai, 2009; Tran and Bedard, 2011). Luminal B subtype is resistant 
to standard therapies, generally carries a poor prognosis and appears to have a tendency 
to metastasize to bone and pleura (Strehl et al., 2011, Tran and Bedard, 2011). To separate 
highly heterogeneous ER+ luminal subgroups between luminal A and luminal B breast 
cancer, determination of Ki-67 expression levels may be useful (Strehl et al., 2011). 
Luminal B breast cancer represents a distinctive biology from that of hormone-sensitive 
luminal A cancer, rather than simply representing a more advanced or aggressive form 
of luminal A subtype (Creighton, 2012).

In gene expression studies three non-luminal breast cancer subtypes have been identified 
in the ER- branch of the cluster: basal-like, normal breast-like and HER2 (Weigelt and 
Dowsett, 2010). 

A basal-like breast tumour (ER-, PR-, HER2-) is an aggressive breast cancer subtype 
overexpressing basal cytokeratins CK5/6, CK14 and CK17. Additional features used 
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to define basal-like breast tumours are high p53 and Ki-67 expression and poorly 
differentiated tumour grade (Kuroda et al., 2008; Loi, 2008; Tonini et al., 2008; Tang 
et al., 2009; Badve et al., 2011). The basal-like tumours represent about 15% to 20% 
of breast cancers and have a poorer prognosis compared to luminal tumours or triple-
negative tumours lacking basal-like markers (Tonini et al., 2008; Voss et al., 2011; 
Toft and Cryns, 2011). The metastatic spread pattern of basal-like subtype is different 
compared with other subtypes. Basal-like subtype favours a haematogenous spread with 
a tendency to develop metastasis in the brain and lungs and is less likely to spread to 
lymph nodes, liver or bones (Badve et al., 2011; Sandhu et al., 2010). These breast 
tumours are common in young women and especially, if they carry BRCA 1 mutation 
(Millikan et al., 2008; Toft and Cryns, 2011; Perou and Børresen-Dale, 2010; Lim et al., 
2009). Because of its triple-negative receptor status, basal-like breast tumours have poor 
response to standard adjuvant therapies such as endocrine therapy or trastuzumab, leaving 
chemotherapy as the only therapeutic option (Kuroda et al., 2008). Epidermal growth 
factor receptor (EGFR) overexpression is found by immunohistochemistry in more than 
50% of basal-like tumours (Cakir et al., 2012; Lavasani and Moinfair, 2012). Positive 
EGFR and CK5/6 immunohistochemical stainings have shown to identify patients with 
basal-like breast tumours, and EGFR targeted therapy could be useful in the treatment 
for this patient population (Sutton et al., 2010; Cakir et al., 2012). Although most of the 
basal-like tumours are high grade tumours, there are also low-grade breast carcinomas 
with a basal-like phenotype having an excellent prognosis, e.g. mammary adenoid cystic 
carcinoma, adenosquamous carcinoma and secretory carcinoma (Stolnicu, 2010; Kontos 
et al., 2011, Vasudev and Onuma, 2011, Badve et al., 2011, Wetterskog et al., 2012). 
Combining these factors, the expression of basal cell markers on its own does not affect 
the prognosis of breast cancer (Lavasani and Moinfar, 2012).

A less common molecular subtype is normal breast-like tumour that is rather poorly 
characterized. This tumour lacks ER and HER2 expression and can be CK5/6 positive 
(Bertolo et al., 2008; Weigelt et al., 2010). In gene expression analysis, normal breast-like 
tumour has been shown to cluster together with fibroadenomas and normal breast tissue 
and to express genes characteristic for adipose tissue and other non-epithelial cell types 
(Perou et al., 2000; Sørlie et al., 2001; Weigelt et al., 2010). Even though normal breast-like 
tumour has a basal-like triple-negative phenotype at the mRNA level (Perou et al., 2000; 
Finak et al., 2006), normal breast-like tumour has been shown to have a distinct response to 
neoadjuvant chemotherapy and better prognosis when compared to basal-like breast tumour 
(Kobayashi, 2008; Rakha et al., 2009; Yu et al., 2009; Weigelt et al., 2010; Toft and Cryns 
2011). About 6% to 10% of all breast cancers are supposed to fall into the normal breast-like 
category. The clinical significance of the normal breast-like subtype is yet to be determined 
and it remains unclear whether this subgroup represents a true subtype or a contamination 
of samples with normal beast tissue (Foulkes et al., 2010; Weigelt et al., 2010). 

The HER2-enriched subtype represents approximately 10% of all breast tumours and 
is characterized by high-grade tumours with metastases and in the absence of systemic 
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adjuvant and HER2 targeted therapies poor outcome (Tonini et al., 2008; Perou and 
Børresen-Dale 2010; Al-azawi et al., 2011). This subtype includes many, but not all, 
HER2 positive tumours or ones that overexpress HER2 gene product and are typically 
ER and PR negative (Allison, 2012). However, about 30% to 40% of the HER2-enriched 
tumours are ER+ leaving the majority as ER- (Perou, 2010). It should be noted that 
some of these tumours are clinically triple-negative, despite having the gene expression 
signatures of the HER2-enriched subtype (Perou, 2010). HER2-enriched subtype has to 
some degree sensitivity to chemotherapy and response to HER2-targeted therapy (Tonini 
et al., 2008). Despite trastuzumab-based therapy some patients with HER2 positive 
breast tumours do not benefit from this drug and some develop trastuzumab resistance 
during prolonged treatment (Barok et al., 2007; Prat and Perou, 2011).

In addition to these three ER- subtypes, at least three other molecular groups of ER- 
cancers have been identified including molecular apocrine, interferon-rich and claudin-
low subgroups (Weigelt et al., 2010). To better understand the clinical and biological 
significance of these novel subtypes further studies are needed. Molecular apocrine 
tumours are characterized by the apocrine type epithelium, ER negativity and androgen 
receptor (AR) positivity, but with an expression profile resembling ER+ luminal breast 
cancer (Sanga et al., 2009; Robinson et al., 2011; Cha et al., 2012). Furthermore, a high 
frequency of HER2 overexpression accompanied by basal markers such as CK5/6 and 
EGFR are frequently found (Cha et al., 2012; Lehmann-Che et al., 2013). It is estimated 
that 0,5% to 4% of breast tumours have features of molecular apocrine breast cancer 
and they mostly occur at advanced ages (Lehmann-Che et al., 2013). In recent studies, 
molecular apocrine breast cancer patients have been shown to have poor survival (Farmer 
et al., 2005), but better prognosis than patients with basal subtype of tumours (Sanga et 
al., 2009). 

The interferon-rich subtype is characterized by high expression of interferon regulated-
genes and has a considerably better prognosis than other triple-negative breast cancers 
(Hu et al., 2006; Foulkes et al., 2010). 

Recently identified claudin-low subtype shows a prevalence of 7% to 14% of breast 
cancers and is enriched for mesenchymal and stem cell markers (Foulkes et al., 2010; 
Prat et al., 2010). These tumours have been characterized by the lack of claudin proteins 
(Perou, 2010). Claudin proteins are important components of tight junctions that seal 
the potential space between adjacent epithelial cells controlling the cell polarity (Peddi 
et al., 2012; Blanchard et al., 2013). The claudin-low subgroup lacks cell-cell junction 
protein, including E-cadherin (Perou, 2010). The disruption of the tight junctions allows 
loss of cellular cohesion, aggressive growth and differentiation of cancer cells (Lu 
et al., 2013). Claudin-low subtype has positivity for vimentin and low expression of 
epithelial markers (Gerhard et al., 2012). Most of these tumours lack lobular features 
(Perou, 2010). Claudin-low tumour, like basal-like, is clinically mostly ER-/PR-/HER2- 
(triple-negative tumour) with a high frequency of metaplastic and medullary features 
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with an intense immune cell infiltrate (Perou, 2010; Haughian et al., 2011; Gerhard et 
al., 2012). Claudin-low molecular subtype benefits from chemotherapy to some degree 
and it is characterized by short disease-free survival, high proliferation index and high 
tumour grade (Perou, 2010; Haughian et al., 2011). As primitive breast stem cells can 
be the cells of origin in claudin-low tumours, these tumours arise from more immature 
precursors than other breast cancers (Lim et al., 2009; Prat et al., 2010).

Although molecular and genetic testing for breast cancer is very attractive, having 
prognostic and predictive value, it is expensive and not yet widely used (Onitilo et al., 
2009). Thus, the immunohistochemical classification of breast cancer as a clinical tool 
is still supported because it can be used at a reasonable cost and it has been shown to 
correlate well with gene expression categorization (Onitilo et al., 2009). 

As cancer is a genetic disease driven by heritable or somatic mutations, new DNA 
sequencing technologies have revealed a number of novel cancer-related genes 
(Ulahannan et al., 2013). Next-generation sequencing (NGS) employs micro- and 
nanotechnologies to reduce the size of sample components and reagent costs and it 
allows simultaneous sequencing and analysis of millions of samples as well (Shokralla 
et al., 2014). Using NGS hundreds to thousands genes involved in the development of 
a tumour can be sequenced all at once in a single test (Grada and Weinbrecht, 2013). A 
great strength of NGS system is that, they do not only recognize base substitutions but can 
simultaneously also find insertions, deletions, copy number alterations and translocations 
(Ross and Cronin, 2011). The application of NGS has identified extensive genetic 
variation between tumours (intertumour heterogeneity) and within tumours (intratumour 
heterogeneity) (Burrell et al., 2013; Hiley et al., 2014). While multiregional tumour 
sampling and molecular profiling of the tumour samples by NGS helps to understand 
cancer biology progresses and optimizes future cancer medicine for a patient, it is likely 
to have its limitations (Bedard et al., 2013). Although producing NGS data is today 
relatively straightforward, their analysis can be extremely difficult due to the increased 
complexity of results (Kim et al., 2014). Perhaps the greatest challenge now is to develop 
more efficient bioinformatics methods for organizing the information NGS provides.

2.5 Breast cancer treatment

Surgical and medical treatment of breast cancer has advanced dramatically in the past 
few decades. Nowadays, breast conserving therapy with segmental resection and sentinel 
lymph node biopsy followed by whole breast irradiation has become the preferred method 
of treatment for early-stage breast cancer. The sentinel lymph node technique is based 
upon the observation that tumour cells migrating from primary tumour metastasize to 
the first lymph node called sentinel lymph node before involving other lymph nodes of 
axilla (Hsueh and Giuliano, 1998). Presence or absence of lymph node metastases is 
one of the most important prognostic factors in women with early stage breast cancer 
(Lyman et al., 2014). Patients with isolated tumour cells (metastasis size ≤ 0.2 mm) 
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and node-negative breast cancer appear to have similar prognosis, and patients with 
micrometastasis (metastasis size > 0.2 mm but not >2.0 mm) have a 38% higher risk of 
tumour recurrence than node negative cancer (Andersson et al., 2010). The American 
Society of Clinical Oncology recommends no axillary lymph node dissection for women 
with early-stage breast cancer who have one to two sentinel lymph node metastases 
(found by sentinel node biopsy) and will undergo breast conserving surgery with whole-
breast radiotherapy (Lyman et al., 2014). Adjuvant radiation therapy is recommended to 
eliminate potential microscopic residual disease adjacent to the original tumour site after 
partial mastectomy (Hoover et al., 2011). Other adjuvant therapies include chemotherapy, 
endocrine therapy, targeted biologic therapy or a combination of treatments (Table 4). 
Adjuvant therapy is indicated after primary therapy for locally advanced breast cancer 
(Kataja et al., 2009) and for potential occult micrometastasis, which are thought to be 
responsible for distant metastasis (Owusu et al., 2012). Treatment is started if there is a 
clinically relevant reduction in risk of recurrence that can be reached with an acceptable 
level of treatment-related harmful side effects (Kataja et al., 2009).

Table 4. Systemic treatment recommendations for early breast cancer. 

Subtype Recommended 
therapy

Note of therapy

Luminal A-like: ER and PR positive, 
HER2 negative, Ki-67 low

ET alone in the 
majority of cases

CT in some cases (e.g. high 
grade, >1cm tumour size, 
positive nodal status)

Luminal B-like (Her2-negative): ER 
positive, HER2 negative, Ki-67 high or PR 
low

ET and CT for the 
majority of cases 

Luminal B-like (HER2-positive): ER 
positive, HER2 positive, any Ki-67, any 
PR

CT, anti-HER2 and 
ET for all cases

HER2-positive: HER2 positive, ER and 
PR negative

CT and anti-HER2

Triple-negative (ductal): ER and PR 
negative, HER2 negative

CT Triple-negative includes also 
medullary and adenoid cystic 
carcinoma with low risk of 
distant recurrence

ET endocrine therapy, CT chemotherapy. Modified from ESMO Clinical Practise Guidelines 
(Senkus et al., 2013).

2.6 Control of cell cycle

Cell proliferation is achieved through tightly controlled events called the cell cycle 
leading to replication of DNA and cell division (Caldon et al., 2006). The cell cycle 
is traditionally divided into four sequential phases known as G1, S, G2 and M (Sa and 
Das, 2008) (Figure 4). G1, S and G2 phases together are called the interphase that takes 
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place before cell division in mitosis (M phase). The G1 phase consists of cell growth 
and preparation of the chromosomes for replication. Once the required proteins and 
growth are complete, the cell enters the synthesis phase (S phase), which directs to the 
copying of the DNA. The second gap phase G2 lasts until the cell enters mitosis. The cell 
undergoes normal biosynthesis to ensure necessary cell functions. Near the end of G2 
phase, the cytoplasmic organelles duplicate in preparation for cell division. Mitosis (M 
phase) is the last stage of the cell cycle where the cell divides into two cells (Harwood 
et al., 2007; Sa and Das, 2008; Caldon et al., 2006; Ross et al., 2003). Cells that have 
stopped dividing are in the resting phase (G0) or in the first gap phase (G1) of the cell 
cycle (Harwood et al., 2007). The cell cycle progression and activation of each phase is 
dependent on the proper completion of the previous one. Cancer cells often avoid normal 
control linked to the cell cycle progression that stops proliferation in the presence of 
damaged DNA or other physiological injuries (Deshpande et al., 2005; Malumbres and 
Barbacid, 2009).

Figure 4. Cell cycle and cyclin-cyclin dependent kinase complex. (Modified from UCSF 
School of Medicine 2007).

The progression in cell cycle is regulated by activation and inactivation of different 
cellular proteins (Malumbres et al., 2009). The transition from one cell cycle phase to 
another is regulated by cyclin-dependent kinases (CDKs) and the activity of each CDK is 
controlled by cyclins, CDK inhibitors (CDKIs) and phosphorylating events (Malumbres 
et al., 2009; Vermeulen et al., 2003). In contrast to CDK protein levels, which remain 
stable during the cell cycle, cyclin levels raise and fall during the cell cycle (Figure 5). 
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In addition to cyclin binding, complete CDK activity is regulated by phosphorylation 
on conserved threonine and tyrosine residues by CDK activating kinases (CAKs) 
(Vermeulen et al., 2003). Of all CDKI, p27/Kip1 is one of the most important regulator 
which binds to complexes with CDK4, CDK6 or CDK2 and blocks the cell cycle at the 
G1/S phase checkpoint and is highly expressed in cells arrested at the G0 and G1 phases 
(Okabe et al., 2001). p27 level is frequently reduced in most common cancers and this is 
associated with a poor prognosis (Chu et al., 2008). 

Figure 5. Expression levels of cyclins through the cell cycle. The restriction point is a G1 phase 
checkpoint at which a cell commits to division and no longer requires growth factors for the 
completion of the cell cycle. (Modified from Abeloff´s Clinical Oncology 2008).

CDK activity can be inhibited by CDKIs usually during the G1 phase or in response to 
signals from the environment or from damaged DNA (Clement et al., 2001). Selected 
proteins at particular cell cycle phase become phosphorylated by active cyclin-CDK 
complexes in the cell cycle progression (Vermeulen et al., 2003). Degradation of the 
M phase cyclin/CDK complex by ubiquitin-mediated proteosome pathway is required 
to cause the exit of mitosis and cytokinesis (Hoyt, 2000; Bowerman and Kurz, 
2006). Although cyclin/CDKs are activated during cell cycle progression, it is their 
phosphorylation substrates that complete the ordered cellular changes leading to cell 
division (Deng et al., 2009).

2.7 Cyclins

Cyclins are nuclear proteins required for cell cycle progression (Husdal et al., 2005, 
Stamatakos et al., 2010). They are synthesized and destroyed at precise times during the 
cell cycle (Malumbres and Barbacid, 2009) so that the progression through the G1-S-G2-M 
cycle follows successive oscillations in the cyclin levels (Murray, 2004). As a result failure 
to degrade cyclins can trap cells in a particular cell cycle phase (White and Dalton, 2005). 
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D-type cyclins (D1, D2 and D3) act as links between extracellular signals, growth 
factors (e.g. insulin-like growth factor-1, transforming growth factor-α) and the cell 
cycle system (Sutherland et al., 1993; Yan et al., 1997; Roberti et al., 2009). Cyclin D1 
appears to be important in normal breast cell proliferation and differentiation during 
pregnancy (Neuman et al., 1997). The level of cyclin D1 does not show a typical 
fluctuation pattern displayed by other cyclins (Figure 5). Instead, its level is closely 
regulated by signalling from the extracellular matrix (ECM) including growth factor 
receptors and their downstream effectors (Yang K et al., 2006; Klein and Assoian, 2008; 
Roberti et al., 2009). High levels of cyclin D1 are observed in the G1 and G2 phases, 
and much lower levels in the S phase (Guo et al., 2005). Cyclin D1 binds to CDK4 or 
CDK6 thus regulating the passage of the cells from the G0 through the G1 into the S 
phase in the cell cycle (Kenny et al., 1999; Ahnström et al., 2005; Roy and Thompson, 
2006). When it is time for a cell to enter the S phase, active cyclin D1-CDK4/CDK6 
complex partially phosphorylates the retinoblastoma protein (pRb) inhibiting its activity 
(Weinberg, 1995). This growth inhibitory action of pRb serves as a gatekeeper of the G1 
phase and allows the cell to pass through the restriction point and induces expression of 
some genes (e.g. cyclin E) important for S phase progression (Sherr and Roberts, 2004; 
Roberti et al., 2009). pRb is quite frequently mutated in cancers causing loss of cell cycle 
regulation (Kouraklis et al., 2006).

The transition from the G1 to the S phase is a key check point that prevents the cell 
from entering the S phase in the presence of the damaged DNA (Malumbres and 
Barbacid, 2009). Entrance into the S phase and initiation of DNA replication requires 
the activity of CDK2, which is activated by E-type cyclins (E1 and E2) (Bashir and 
Pagano, 2005). In normal cells, cyclin E is expressed when needed and then it is 
rapidly degraded (Roberti et al., 2009). Cyclin E interacts with CDK2 and this complex 
phosphorylates pRb and regulates the G1/S phase transition (Vermeulen et al., 2003). 
Strictly regulated, increased expression of cyclin E is thought to promote tumourigenesis 
through shortening the G1 phase and driving cells into the S phase more rapidly, thus 
increasing the rate of proliferation of the cells (Nanos-Webb et al., 2012; Mittendorf et 
al., 2010). In tumours, cyclin E undergoes proteolysis, which generates biochemically 
hyperactive low molecular weight (LMW) species of cyclin E (Porter et al., 2001). The 
nuclear localized LMW forms of cyclin E exhibit increased CDK2-associated kinase 
activity and resistance to inhibition by CDK2 inhibitors (Loeb and Chen, 2012). The 
LMW form of cyclin E phosphorylates substrates effectively and as a result tumour cells 
can bypass the restriction point (Porter et al., 2001). Furthermore, the overexpression of 
cyclin E induces genetic instability, a feature that leads tumour to a more aggressive state 
(Roberti et al., 2009). 

A-type cyclins (A1 and A2) are expressed in the early S phase of the cell cycle (Fuchimoto 
et al., 2001). Cyclin A protein level increases during the cell cycle progression to the 
G2 phase and falls in mid of the M phase (Sherr, 1996; Pagano et al., 1992). Therefore 
cyclin A is one of the most useful markers detecting proliferating cells (Jensen et al., 
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2001; Poikonen et al., 2005). Cyclin A replaces cyclin E as a partner of CDK2, while 
later in S phase it leaves CDK2 to associate with CDK1 a bit earlier than cyclin B during 
the G2 phase (Yam et al., 2002; Bashir and Pagano, 2005; Roberti et al., 2009). Cyclin 
A2 is essential for the activation of DNA synthesis and it is overexpressed in a variety 
of human cancers when compared with normal cells and tissues (Dobashi et al., 1998; 
Traganos, 2004; Wang et al., 2009; Sørby et al., 2012). The expression level of cyclin 
A2 seems to be a marker of tumour aggressiveness and to associate with reduced-free 
and overall survival (Poikonen et al., 2005; Aaltonen et al., 2006; Wang et al., 2009; 
Liang et al., 2012). There are also data from different malignancies indicating that a high 
proliferation rate correlates with a better chemotherapy response indicating that tumours 
with high cyclin A2 expression are more suitable for chemotherapy (Li et al., 2002; 
Poikonen et al., 2005; Wang et al., 2009).

Cyclin B1, like cyclin A, is classified as a mitotic cyclin and it functions as a key 
cell cycle regulator of the G2/M checkpoint (Ho et al., 2002). The onset of cyclin B1 
synthesis starts when the cell exits the S phase, reaches the maximal level when the cell 
enters mitosis and persists to mid-mitosis (Pines and Hunter, 1991; Ho et al., 2002). 
Overexpression of cyclin B1 is reported to enable cells to override the G2 DNA damage 
checkpoint (Androic et al., 2008). Overexpression of cyclin B1 is demonstrated in several 
malignancies including breast cancer, gastric cancer, cervical cancer, hepatocellular 
cancer, oesophageal squamous cell cancers and non-small cell cancers (Androic et al., 
2008; Aaltonen et al., 2009a; Weng et al., 2012).

2.7.1 Cyclin D1 and breast cancer
Cyclin D1 is overexpressed at the mRNA and protein level in approximately 50% of 
primary breast cancer cases being one of the most commonly overexpressed proteins 
in breast cancer (Roy and Thompson 2006; Rudas et al., 2008; Quintayo et al., 2012). 
Overexpression of cyclin D1 may occur with or without CCND1 (cyclin D1 gene) gene 
amplification, which is observed in about 15% of all breast cancers (Roy and Thompson, 
2006; Weigel and Dowsett, 2010; Tobin and Bergh, 2012). Gene amplification of CCND1 
has been linked to an aggressive disease, whereas overexpression of the cyclin D1 protein 
has been linked to both poor and good clinical outcome as well as to endocrine therapy 
resistance (Reis-Filho et al., 2006; Tobin et al., 2011; Lundgren et al., 2012; Tobin and 
Bergh, 2012). 

Uncontrolled production of cyclin D1 affects the amount of cyclin D-CDK4/CDK6 
complex being formed, even when the growth factors are not present (Yang et al., 2006). 
Overexpression of cyclin D1 and/or CDK4/6 is considered to be the major mechanism 
behind the oncogenic function of cyclin D1 (Sun et al., 2011). Cyclin D1 overexpression 
has been shown to associate with ER and PR positivity and to have a strong inverse 
correlation with the expression of the basal-like markers such as EGFR, CK14, CK5/6 
and CK17 (Reis-Filho et al., 2006; Peurala et al., 2013), that is, breast cancers with a 
good prognosis. While estrogen can induce cyclin D1 expression, anti-estrogen therapy 
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has an inhibitory effect on cyclin D1 (Liang and Shang, 2013). Inhibition of cyclin 
D1 activity decreases estrogen-stimulated breast cancer cell proliferation, whereas 
induction of cyclin D1 mimics the effect of estrogen and starts cell cycle progression 
in anti-estrogen arrested cells (Butt et al., 2005; Liang and Shang, 2013). There are 
studies suggesting that amplification as well as overexpression of cyclin D1 are linked 
to early relapse, resistance to endocrine therapy and poor prognosis in ER+ and PR+ 
breast cancers (Aaltonen et al., 2009b; Taneja et al., 2010; Yang et al., 2010; Tobin 
and Bergh, 2012). It has been suggested that cyclin D1 activates ERs in the absence of 
estrogen and independent of complex formation to a CDK partner and this activation is 
not inhibited by anti-estrogens (Zwijsen et al., 1997). In several clinical studies, early 
relapse and poor survival were observed in cyclin D1 positive breast cancer patients who 
received tamoxifen therapy (Musgrove et al., 1993; Rudas et al., 2008). It seems that a 
large group of breast cancer patients receiving anti-estrogen tamoxifen therapy develop 
resistance to hormonal treatment or do not benefit from it, because overexpression of 
cyclin D1 reverses the growth-inhibitory effects of anti-estrogens (Stendahl et al., 2004; 
Fouladdel et al., 2005; Berglund et al., 2008). 

Conflicting data on the association between cyclin D1 protein level and clinicopathological 
parameters have been reported (Lehn et al., 2010). The previous studies have shown 
association between overexpression of cyclin D1 and breast cancers that are hormone 
receptor positive, low histologic grade and non-triple negative subtype (Peurala et al., 
2013; Chung et al., 2014). However, cyclin D1 overexpression is found to correlate 
with high Ki-67 expression among ER positive breast cancer, but with low proliferation 
among ER negative breast cancer (Aaltonen et al., 2009b). High CCND1 amplification is 
shown to associate with high tumour grade, poor prognosis and it may be indication for 
additional chemotherapeutic treatment in women with ER positive breast cancer (Roy 
et al., 2010). Cyclin D1 is the product of CCND1 and the overexpression of cyclin D1 
is associated with longer disease specific survival (Chung et al., 2014) and decreased 
recurrence rate (Lundgren et al., 2012). If cyclin D1 is used as a prognostic or treatment 
predictive biomarker in breast cancer, patients’ tumour samples should first be separated 
by CCND1 copy number to find out the true clinical value of cyclin D1. CCND1 amplified 
cases should be removed before conducting cyclin D1 protein expression of remaining 
tumour samples and before relating this expression to other clinicopathological data, 
e.g., ER, PR, HER2 and Ki-67 expression (Tobin and Bergh, 2012).

2.7.2 Cyclin E and breast cancer
Cyclin E is overexpressed in about 25% of breast tumours and it is consistently linked to 
poor prognosis with a strong association to ER negativity and a high histological grade 
(Cooley et al., 2010; Keyomarsi et al., 2002; Agarwal et al., 2009; Roberti et al., 2009). 
In tumour, cyclin E undergoes proteolytic processing by the serine protease, elastase, 
generating low molecular weight cyclin E (LMW-E) that exhibit increased kinase 
activity and resistance to inhibition by cyclin kinase inhibitors p21/p27 (Keyomarsi et 
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al., 2002; Loeb and Chen 2012; Nanos-Webb et al., 2012). This LMW-E is not found 
in normal tissue and breast cancer patients with tumours expressing LMW-E have a 
poor prognosis (Nanos-Webb et al., 2012). It has been suggested that the generation of 
the LMW forms of cyclin E in tumours may be due to an increase in elastase activity 
(Roberti et al., 2009). Targeting LMW-E in metastatic breast cancer could have important 
therapeutic implications, because there is no toxity to normally proliferating cells in the 
body (Roberti et al., 2009; Loeb and Chen, 2012). Furthermore, high expression or 
amplification of cyclin E and corresponding CDK2 activity have been shown to predict 
the failure of endocrine therapy as well as the resistance to trastuzumab in HER2 
patients (Span et al., 2003; Cooley et al., 2010; Mittendorff et al., 2010; Scaltriti et 
al., 2011). Co-treatment of trastuzumab with CDK2 inhibitors may be a valid strategy 
for patients whose tumours display cyclin E amplification/overexpression (Scaltriti 
et al., 2011). The contribution of cyclin E to tamoxifen resistance is unclear, but a 
link between cyclin E overexpression and diminished response to tamoxifen has been 
suggested (Dhillon and Mudryj, 2002).

2.7.3 Cyclin A and breast cancer
There are two subtypes of cyclin A, cyclins A1 and A2, of which cyclin A2 is proposed 
to be a prognostic factor in breast cancer (Fuchimoto et al., 2001; Gong and Ferrell, 
2010; Li et al., 2010b). Overexpression of cyclin A2 has been associated with a poor 
outcome in breast cancer patients in several studies (Michalides et al., 2002; Kühling 
et al., 2003; Poikonen et al., 2005; Ahlin et al., 2009; Nilsson et al., 2013). In addition, 
upregulation of cyclin A has been reported to correlate with increased risk of recurrence 
among patients with node-negative breast cancer (Baldini et al., 2006). Furthermore, 
decreased level of cyclin A has been shown to correlate with decreased level of cells 
in the S and G2 cell cycle phases (Wang et al., 2013). Interestingly, metastatic cancer 
cells have, however, been reported to show less cyclin A2 expression than nonspreading 
tumour cells (Casimiro et al., 2012). 

2.7.4 Cyclin B1 and breast cancer
Cyclin B1 is not so extensively studied in breast cancer as cyclins D1 and E, but 
overexpression of cyclin B1 has been shown to associate with aggressive tumour 
phenotype and to be an independent predictor of poor overall and metastasis-free 
survival in breast cancer patients (Suzuki et al., 2007; Aaltonen et al., 2009a; Agarwal et 
al., 2009). High cyclin B1 expression occurs in luminal B and basal-like breast tumours 
and overexpression of cyclin B1 is associated with an aggressive behaviour in hormone 
receptor-positive breast cancers (Agarwal et al., 2009). Nuclear cyclin B1-positive 
breast cancers have been shown to be resistant to adjuvant chemotherapy and tamoxifen 
therapy (Suzuki et al., 2007). Thus, inhibiting cyclin B1 function in combination with 
chemotherapeutic drugs can strengthen the antiproliferative effect of chemotherapy, and 
this way cyclin B1 has been proposed to be a potential target for anticancer therapy 
(Androic et al., 2008). 
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2.8 Extracellular matrix

Extracellular matrix (ECM) is essential for tissue structure and influences many biological 
processes including cell differentiation and proliferation (Velleman et al., 2012). The 
ECM is prescribed as a dynamic structure that consists of a varying collection of proteins 
and sugars and generates signals through feedback loops to control the behaviour of cells 
(Järveläinen et al., 2009; Cox and Erler, 2011). For these processes, the ECM must be 
degraded to let cell migration, cellular signal transmission, modulation of growth factor 
activity and deposition of new matrix to occur (Kim et al., 2011). Studies emphasize that 
ECM alterations have biological importance also in tumour invasion and metastasis as 
well as in response to pharmacotherapy (Järveläinen et al., 2009; Polyak and Kalluri, 
2010; Bremnes et al., 2011; Desmedt et al., 2012; Velleman et al., 2012).

Mammary epithelium is bilayered, with milk-producing luminal cells and a basal layer 
of contractile myoepithelial cells (Deugnier et al., 2002), which produce the basement 
membrane that separates the epithelium from the ECM (Guo et al., 2012). The normal 
tissue stroma is composed of both cellular (fibroblasts, endothelial cells, smooth muscle 
cells, adipocytes, inflammatory cells, nerve cells) and non-cellular components (e.g. 
proteins, proteases, cytokines, growth factors) (Cirri and Chiarugi, 2012). During early 
stages of tumour progression, cancer cells attach and invade through the basement 
membrane to become into direct contact with the activated stroma that has long time been 
considered to be a passive responder in the tumourigenesis (Kalluri and Zeisberg, 2006). 
The tumoural stroma has been observed to undergo extensive gene expression changes 
even at the pre-invasive stage of DCIS, supporting the view that stromal mechanisms 
play an important role in modulating anti-tumourigenic properties (Buraschi et al., 2012). 

Changes in the ECM surrounding the tumour are largely due to the actions of 
carcinoma-associated fibroblasts (CAFs) (Eck et al., 2009). Tumour cells induce and 
maintain fibroblasts in an activated CAF phenotype which, in turn, produce growth 
factors and cytokines that maintain tumour progression (Bremnes et al., 2011; Cirri 
and Chiarugi et al., 2011; Conklin and Keely, 2012, Koontongkaew, 2013). CAFs have 
been shown to originate from various sources, such as nearby tissue or bone marrow via 
circulation, indicating their diverse cellular origin (Togo et al., 2013). At the very early 
stages of breast cancer, CAFs inhibit invasion mainly through the formation of gap 
junctions between activated fibroblasts (Cirri and Chiarugi et al., 2011). Later on CAFs 
are stimulated by several tumour-secreted factors, and activated CAFs with abnormal 
ECM interrupt tissue polarity, architecture and promote epithelial cell transformations 
leading to tumour-promoting angiogenesis, inflammation by endothelial and immune 
cells, and invasion (Järveläinen et al., 2009; Cirri and Chiarugi, 2011; Khamis et al., 
2012; Lu et al., 2012). Once the basement membrane is degraded, CAFs accumulate 
causing the expansion of tumour stroma. This stromal reaction is called desmoplasia 
and it is observed also in metastatic sites (Cirri and Chiarugi, 2011; Khamis et al., 
2012). CAFs are abundant providers of various types of ECM components, which are 
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critical regulators of desmoplasia and tissue stiffening in tissue fibrosis (Levental et al., 
2009).

Activated stromal cells, together with tumour cells, have an increased ability to secrete 
a wide variety of growth factors, chemokines, hormones and to synthesize collagens 
and other ECM macromolecules such as proteoglycans (PGs) as well as several 
ECM-modifying enzymes, including MMPs and their inhibitors, tissue inhibitors of 
metalloproteinases (TIMPs) (Schauer et al., 2011; Cirri and Chiarugi, 2012). Although it 
is unlikely that a single proteinase or a single cascade of proteinase activation is involved 
in all tumours, the MMPs represent the most prominent group of proteinases associated 
with tumour progression (Kessenbrock et al., 2010). All cellular processes that involve 
molecular interactions at the cell surface involve PGs, because these molecules bind 
proteins and are abundant in the ECM (Perrimon and Bernfield 2001). PGs fill the 
majority of the extracellular interstitial space within the tissue (Järveläinen et al., 2009). 
A matrix PG that maintain the structural and functional integrity of the interstitial ECM 
is decorin, a small extracellular matrix proteoglycan that importantly affects the biology 
of various types of cancer (Iozzo and Sanderson, 2011; El Behi et al., 2013).

2.9 Matrix Metalloproteinases

The MMP family includes connective tissue degrading zinc-dependent endopeptidases 
(Conklin and Keely, 2012). Degradation of the ECM by MMPs is essential in many 
normal biological processes including development, growth and angiogenesis, as well as 
in pathological processes including wound healing and tumour invasion (Yan and Boyd, 
2007). MMP family currently consists of 24 proteins that collectively are able to cleave 
all components of the ECM in mammals (Lenglet et al., 2013; Logan et al., 2012). 
Traditionally, the MMPs have been divided into collagenases, gelatinases, stromelysins, 
matrilysins, membrane-type MMPs and other MMPs on the basis of their specificity 
for ECM components and subcellular localization (Jackson et al., 2009; Mannello and 
Medda 2012; Micheal et al., 2013). 

MMP synthesis. Because MMPs are synthesized and secreted as inactive zymogens, 
they need extracellular activation by the MMP itself, another MMP or a proteinase of 
an other group (Egeblad and Werb, 2002). In the latent pro-MMP form the prodomain is 
thought to fold over and cover the catalytic site. This folded conformation is necessary 
to keep the MMP in its inactive proform. The latent pro-MMP structure includes signal 
peptide, propeptide, catalytic domain, hemopexin domain and a small hinge region 
(Nelson and Melendez, 2004). During the synthesis the signal peptide guides the enzyme 
into the endoplasmic reticulum. The catalytic domain contains the zinc-binding region 
bound by a cysteine residue within the propeptide domain. The hemopexin domain 
mediates protein-protein interactions. The disruption of the zinc-cysteine bond is 
thought to represent a critical step in initiating the MMP autoactivation (Figure 6). This 
uncontrolled proteolysis leads to an imbalance in the expression or activities of MMPs 
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and this has been implicated to take place in many diseases including cancer growth, 
cancer cell invasion and metastasis (Nelson and Melendez, 2004; Page-McCaw et al., 
2007; Mannello, 2011).

Figure 6. Structure of MMP-1. MMP-1 is initially secreted as inactive zymogens with a pro-
peptide domain that must be removed before the enzyme is active. The propeptide domain contains 
a conserved cysteine, which is ligated with the active site Zn++. Activation of pro-MMP-1 occurs 
when the prodomain is cleaved by other proteases or when the cysteine switch is disrupted. 
Oxidation activation may regulate many MMPs. Active MMP-1 has an open configuration. 
(Modified from Nelson and Melendez 2004).

MMP activity and function. The expression and proteolytic activity of MMP is 
regulated at different levels by gene expression, compartmentalization (i.e., pericellular 
accumulation of the enzyme), conversion from zymogen into active proteolytic enzyme 
or by the presence of specific inhibitors, TIMPs (Kessenbrock et al., 2010). The majority 
of MMPs are proteolytically activated in the extracellular space (Hidalgo and Eckhardt, 
2001). In addition to the components of the ECM, MMPs can cleave also many of the 
bioactive molecules at or around the cell surface (Murphy and Nagase, 2011). 

MMPs are capable of degrading almost all ECM components including a variety of 
proteins and growth factors (Mannello, 2011). However, ECM components are sensitive 
to proteolysis by different MMPs and not all ECM components are cleaved by each 
MMP (Löffek et al., 2011). The proteolytic activity of MMPs has an essential role in 
forming space for cells to migrate to organize tissue architecture through effects on the 
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ECM and intercellular junctions. Furthermore, the proteolytic activity of MMPs can 
produce specific substrate-cleavage fragments with different biological activities, and 
activate or deactivate signalling molecules (Page-McCaw et al., 2007). Most MMPs 
function in the extracellular environment, but recent studies have found MMP function 
also in the cytoplasm and nucleus (Mannello and Medda, 2012).

MMPs play an important role in tissue destruction and fibrosis as well as in weakening 
the ECM (Mannello and Medda, 2012). Althought the activity of MMPs has been 
shown to be essential in many biological processes, the uncontrolled MMP activity is 
an emerging area of interest. The central role for MMPs in cancer is increased tissue 
remodelling as well as degradation (Nagase et al., 2006; Mannello and Medda, 2012). 
This biological activity degrades ECM to make a path for cells to migrate and to invade 
to peripheral tissue and metastasize (Kessenbrock et al., 2010). Thus, in a wide range 
of human malignancies, the MMP expression is increased and correlates with tumour 
growth, increased invasiveness and poor survival (Eiseler et al., 2009; Köhrmann et al., 
2009, Kaimal et al., 2013). 

2.9.1 MMP-1 and breast cancer
Among the MMPs, the collagenolytic protease MMP-1 is the most highly expressed 
interstitial collagenase that degrades different types of fibrillar collagens (Sauter et 
al., 2008). Several studies indicate the important role of MMP-1 in the proteolysis 
of the ECM in normal tissue remodelling and growth (Zhang et al., 2013). MMP-1 
is widely associated with many pathological conditions including cancer progression 
during invasion and metastasis, e.g. in melanoma, lung, colorectal and breast cancers 
(Fanjul-Fernandez et al., 2013). High MMP-1 expression is responsible for loosening 
cell adhesion enhancing both the invasion and migration of cancer cells during the 
metastatic process (Pulukuri and Rao, 2008; Sauter et al., 2008). In addition, MMP-1 
activates other MMPs, such as MMP-2 and -9 (Mannello, 2011). Overexpression of 
MMP-1 is a high risk factor that associates with the overall survival in breast cancer 
patients (Feng et al., 2011; Liu et al., 2011). MMP-1 is expressed by the cancer cells 
themselves or by the surrounding stromal cells adjacent to invasive tumour (Eck et 
al., 2009; Köhrmann et al., 2009). By immunohistochemistry MMP-1 expression has 
been localized to the stromal cells of neoplastic tissue (Shiozawa et al., 2000) as well 
as to the cytoplasm of tumour epithelial cells (Sunami et al., 2000; Jordan et al., 2004), 
while in normal breast tissue no positive MMP-1 has been found (Köhrmann et al., 
2009; Mannello and Medda, 2012). In situ hybridization studies have detected MMP-1 
mRNA expression in stromal cells as well as in carcinoma cells (Shiozawa et al., 2000). 
In one report, MMP-1 immunostaining was restricted to the nuclei of tumour epithelial 
cells, which was unexpected, because MMPs are considered to be cytoplasmic or 
membrane-bound proteins (Köhrmann et al., 2009). Understanding the role of nuclear 
MMP-1 in various pathological events can reveal new MMP functions (Mannello and 
Medda, 2012). 
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Recent studies have shown that members of the MMP family have distinct roles at different 
stages during cancer progression and in different breast cancer subtypes (McGowan and 
Duffy, 2008; Gialeli et al., 2011). In breast cancer, MMP-1 expression has been shown 
to be up-regulated in basal-type cancers compared to non-basal type cancers (McGowan 
and Duffy, 2008). Because basal-type cancers have triple-negative receptor status, in 
addition to surgery, the only systemic therapeutic option is chemotherapy. Since MMP-1 
is preferentially elevated in basal-type tumours, blocking the activity of MMP-1 should 
theoretically prove to be beneficial in the treatment of this subtype of breast cancer 
(McGowan and Duffy, 2008; Liu et al., 2012). 

Latest studies report that tumour-produced MMP-1 regulates the permeability and 
breakdown of the endothelial barrier and makes it more penetrable for tumour cell invasion 
into the ECM (Juncker-Jensen et al., 2013). Stromal-derived MMP-1 is able to cleave 
and activate a G-protein-coupled receptor, namely protease-activated receptor-1 (PAR-1), 
which is a membrane protein and an oncogene (Mercuri and Thompson, 2005). Endothelial 
PAR-1 activation by MMP-1 leads to the activation of intracellular signal promoting cell 
migration towards the stroma (Ho et al., 2009). Blocking the action of either MMP-1 or 
PAR-1 should induce apoptosis and theoretically might serve as an ideal drug target in the 
treatment of invasive and metastatic breast cancer (Yang et al., 2009).

2.10 Decorin

Structure of decorin. Decorin, a small condroitin/dermatan sulfate PG produced by 
fibroblasts, has been cloned and sequenced from human sources in 1980s (Krusius 
and Ruoslahti, 1986). PGs are proteins that consist of one or more glycosaminoglycan 
side chains linked to a core protein and they are a significant component in the ECM 
participating in signalling events (Ruoslahti, 1989; Järveläinen et al., 1991; Kim et al., 
2011). Decorin binds to the surface of the collagen fibrils through their core protein and 
project their side chains into the interfibrillar space (Orgel et al., 2009).

Decorin is a small leucine-rich extracellular PG, built up of four domains. The first 
domain encompasses a signal peptide followed by the propeptide. Both signal peptide 
and propeptide are proteolytically processed before the secretion of the mature decorin 
molecule into the extracellular space (Ameye and Young, 2002). The second domain has 
a single chondroitin or dermatan sulphate glycosaminoglycan (GAG) side chain and a 
cysteine-rich region. The third and central region of the decorin core protein is composed 
of ten leucine-rich repeats that take part in biological functions of decorin with other 
proteins. This domain contains also three potential sites for N-linked oligosaccharine 
substitution. The fourth domain of decorin contains two cysteine rich recidues (Reed and 
Iozzo, 2003; Zhao et al., 2013) (Figure 7). While much of decorin´s activity is associated 
with the core protein, a single GAG chain also plays a role in decorin´s function and 
the structure of protein-free GAG chain varies depending on the tissue in which it is 
biosynthesized (Zhao et al., 2013). 
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Figure 7. Structure of decorin. Decorin consists of a protein core containing ten leucine-rich 
repeats (LRR) flanked by cysteine-rich domains and a single chondroitin sulphate or dermatan 
sulphate glycosaminoglycan (GAG) chain, which is located near its N-terminus. Three N-linked 
oligosaccharides are located on the same side of the molecule. SP (signal peptide), PP (propeptide). 
(Modified from Chen and Birk 2011).

Regulation of collagen fibrillogenesis. Because decorin is widely expressed in human 
tissues and it is particularly abundant in type I and II collagen fibril-rich connective 
tissues, e.g. in skin, tendon, cornea and cartilage, it is thought to play a part in the control 
of fibrillogenesis (Vogel et al., 1984; Danielson et al., 1997; Reese et al., 2013). Decorin 
is primarily synthesized by fibroblasts and myofibroblasts (Goldoni and Iozzo, 2008), as 
well as by vascular smooth muscle cells (Järveläinen et al., 1991; Dugan et al., 2006). 
Decorin promotes the formation of fibers with variations in the stability and solubility 
of also other collagens including types III, V, VI, XII and XIV (Iozzo, 1999; Neill et 
al., 2012b). Decorin may bind to collagen with its core protein through leucine-rich 
repeat regions and to another decorin through the interaction with their GAG chains 
(Liu et al., 2005). In addition to regulating collagen fibril formation, decorin has a role 
in cell proliferation, differentiation, migration, adhesion, angiogenesis and in apoptosis 
(Schaefer et al., 2002; Reed and Iozzo, 2003; Tufvesson and Westergren-Thorson, 2003; 
Järveläinen et al., 2006; Fiedler and Eble, 2009; Bi et al., 2012; Buraschi et al., 2012; 
Jungman et al., 2012; Bi and Yang, 2013; Sainio and Järveläinen, 2013; Yu et al., 2014).

Regulation of growth factor activity. In normal adult tissue, decorin seems to play an 
important role in maintaining fibroblasts within an inactive state (Tran et al., 2003). 
In fact, decorin is seldom expressed by actively proliferating or transformed tissues 
(Tralhão et al., 2003). Through a specific region within the third domain of decorin core 
protein it forms a complex with TGF-β1, which is a powerful pro-fibrotic cytokine and 
an inhibitor of cell cycle progression of normal mammary epithelial and endothelial cells 
(Reiss and Barcellos-Hoff, 1997; Kolb et al., 2001; Seoane, 2006; Hu et al., 2009; Baghy 
et al., 2012). In the ECM, by directly binding to TGF-β1, decorin core protein has been 
shown to modulate a feedback system that regulates cell growth and prevents the fibrotic 
activity of TGF- β1 (Yamaguchi and Ruoslahti, 1988; Akman et al., 2013). TGF-β1 acts 
as an antiproliferative factor in normal epithelial cells and becomes a positive mediator of 
tumour progression later in tumour development (Reiss and Barcellos-Hoff, 1997; Bierie 
and Moses, 2006). The antifibriotic activity of decorin is related to the fact that it directly 
interacts with TGF-β1 as well as with collagen (Akman et al., 2013, Honardoust et al., 
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2013). TGF-β1 induces fibroblast proliferation and transformation into myofibroblasts, 
stimulates the synthesis of ECM proteins and glycoproteins as well as activates growth 
factor activity (Maroni and Davis, 2012, Botfield et al., 2013). Decorin has the ability to 
bind and store free TGF-β temporarily in the ECM and to prevent TGF-β from binding 
to its receptor (Bi and Yang, 2013). TGF-β is released from decorin-complex by MMPs 
to carry out its biological function (Boivin et al., 2012).

Decorin is reported to be a bi-functional proteoglycan being a structural ECM component 
and also having the ability to act as a signalling molecule on the cell surface (Goldoni 
and Iozzo, 2008; Baghy et al., 2012; Frey et al., 2013). One of the main targets of 
decorin is to affect the biology of several receptor tyrosine kinases by triggering receptor 
internalization and degradation (Buraschi et al., 2013). Decorin binds to and modulates 
the signalling of epidermal growth factor receptor (EGFR) and other members of the 
ErbB family of receptor tyrosine kinases, such as hepatocyte growth factor receptor 
(Met), and tyrosine kinase type I insulin-like growth factor receptor (IGF-IR) (Zhu et al., 
2005; Goldoni and Iozzo, 2008; Buraschi et al., 2010). Unlike the other EGF family of 
growth factors, the activation of EGFR by decorin induces growth suppression of many 
cell types such as fibroblasts and endothelial cells (Tran et al., 2003, Howe and Brown, 
2011). 

Decorin binds to multiple receptors with diverse affinity and especially with EGFR 
decorin has a high affinity binding (Iozzo and Schaefer, 2010). The core protein of 
decorin activates EGFR by rapid phosphorylation, which leads to the stimulation of 
mitogen-activated protein kinase (MAPK) and to elevation of endogenous p21, a cyclin-
dependent kinase inhibitor, arresting the cells in the G1 phase of the cell cycle (Csordás 
et al., 2000; Bi et al., 2008; Goldoni and Iozzo, 2008; Iozzo and Schaefer, 2010; Neill 
et al., 2012b, Feugaing et al., 2013). In addition to EGFR, decorin has been shown to 
suppress cell growth by binding and modulating the signalling of other ErbB members 
such as ErbB2 and ErbB4 (Zhu et al., 2005; Goldoni and Iozzo, 2008; Bi and Yang, 
2013). 

Decorin induces tyrosine phosphorylation of Met, the receptor of hepatocyte growth 
factor (HGF), leading to a wide range of biological effects on mesenchymal and 
epithelial cells (Goldoni et al., 2009). Met is normally expressed by epithelial cells, 
while expression of HGF is restricted to cells of mesenchymal origin (Gentile et al., 
2008). Met signalling promotes multiple biological activities, including proliferation, 
angiogenesis and motility of epithelial cells (Trusolino et al., 2010; Lefebvre et al., 
2012). Decorin induces suppression of intracellular β-catenin via down-regulation 
of Met (Goldoni et al., 2009). β-catenin level and localization throughout the cell is 
controlled by E-cadherin, a protein that binds β-catenin and links the complex to the 
actin cytoskeleton maintaining epithelial integrity and epithelial barrier (George and 
Dwivedi, 2004). Thereby, the antimigratory action of decorin is proposed to happen 
through the interaction with E-cadherin (Bi et al., 2012; Feugaing et al., 2013). 
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Decorin has also been shown to act as a regulator of programmed cell death (Merline 
et al., 2009). Decorin prevents apoptosis by binding to IGF-IR (Hermanto et al., 2002; 
Galvan et al., 2003) and signalling via the P13K/Akt pathway (Merline et al., 2009; 
Iozzo et al., 2011). Decorin can positively regulate the IGF-IR system in endothelial cells 
leading to its phosphorylation (Schönherr et al., 2005; Iozzo et al., 2011). This interaction 
modulates endothelial cell motility and capillary morphogenesis (Fiedler et al., 2008). 
IGF-1 leads to the activation of ER protein via receptor-associated intracellular signalling 
and they act in a synergistic manner promoting cell proliferation in breast epithelial 
cells (Sarfstein et al., 2012; Skandalis et al., 2013; Tsonis et al., 2013). Lack of decorin 
causes a significant increase in IGF-IR levels and promotes apoptosis, inflammation and 
fibrosis in renal tubular cells (Iozzo and Schaefer, 2010). 

Role of decorin in angiogenesis. Angiogenesis, the formation of new blood vessels 
from existing vasculature, involves degradation of the ECM, migration, proliferation, 
and capillary tube formation of endothelial cells, followed by matrix remodelling 
(Grant et al., 2001; Salomäki et al., 2008; Pozzi and Zent, 2009). The involvement 
of decorin in angiogenesis is somewhat controversial (Neill et al., 2012b). Decorin 
is upregulated during angiogenesis (Järveläinen et al., 1992; Fiedler and Eble, 2009) 
and in the absence of decorin angiogenesis is dysregulated (Fiedler et al., 2008). While 
vascular endothelial cells normally do not express decorin (Järveläinen et al., 1991), it is 
thought that decorin controls endothelial cell-matrix interactions by signalling through 
IGF-IR and influencing integrin (Fiedler and Eble, 2009; Bi and Yang, 2013). Capillary 
endothelial cells synthesize decorin only during angiogenesis associated with profound 
inflammatory processes (Nelimarkka et al., 2001). On the other hand, in an experimental 
mouse model decorin has been shown to be primarily an inhibitor of angiogenesis 
(Järveläinen et al., 2006, Neill et al., 2012b). Later stages of angiogenesis, such as lumen 
formation and maturation, are probably also regulated by decorin (Fiedler and Eble, 
2009). Direct interactions of decorin with cell surface receptors could play an important 
role in this process (Fiedler et al., 2008). The different biological activity of decorin may 
be explained by the different length or sulfation patterns of GAG chain as well as signals 
from the local environment (Fiedler and Eble, 2009). 

Role of decorin in inflammation. In addition to the above mentioned functions, 
decorin is involved in the complex signalling during inflammation (Frey et al., 2013). 
Inflammation is not only a protective mechanism against microbial invasion, but 
inflammation may occur during tissue injury under sterile conditions (Moreth et al., 
2012). In the latest studies decorin has been reported to act as an endogenous ligand of 
the toll-like receptors (TLR), a group of central receptors functioning in innate immune 
responses (non-specific immune system) (Merline et al., 2011; Neill et al., 2012a). By 
signalling through TLR2 and TLR4 pathways decorin gives rise to proinflammatory 
signalling of various chemo- and cytokines, including programmed cell death 4 (PDCD 
4), and triggers an acute inflammatory response (Frey et al., 2013). In the ECM, decorin 
blocks the binding of TGF-β1 to its receptor, thereby suppressing the maturation of 
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oncogene miR-21, a post-transcriptional inhibitor of PDCD 4 (Merline et al., 2011). 
Overexpression of decorin increases TLR2/4 driven synthesis of PDCD 4, which reduces 
the production of the anti-inflammatory cytokines such as interleukin-10. As a result, 
the decorin-evoked signalling drives the immune reaction toward a more apoptotic and 
inflammatory response (Merline et al., 2011; Moreth et al., 2012; Frey et al., 2013). In 
sepsis, decorin is an early response gene evoked by inflammation, and treatments that 
decrease decorin abundance could be used to calm inflammation (Moreth et al., 2012; 
Merline et al., 2011).

2.10.1 Decorin and cancer
During tumourigenesis, cancer cells secrete growth factors, chemokines and matrix-
degrading enzymes that stimulate cell growth, angiogenesis and activate stromal cells to 
release mitogenic substances which in turn further stimulate tumour cell growth (Wels 
et al., 2008; Theocharis et al., 2010). The role of decorin in cancer progression and the 
possible therapeutic potential of decorin as a tumour suppressing antimetastatic agent 
have been recognized in numerous studies (Iozzo and Sanderson, 2011; Theocharis et 
al., 2010; Neill et al., 2012b; Sainio and Järveläinen, 2013). Earlier studies have shown 
that lack of decorin does not lead to the development of spontaneous tumours (Danielson 
et al., 1997), but it assists tumourigenesis (Iozzo et al., 1999). 

High level of decorin mRNA expression has been reported during early stages of 
tumourigenesis, while low expression levels has been found in advanced disease stage, 
e.g in lymphoma and prostate cancer (Feugaing et al., 2013; Suhovskih et al., 2013). 
Decorin expression is down-regulated both at protein and mRNA level in a variety of 
epithelial tumours such as in breast (Troup et al., 2003), colorectal (Bi et al., 2012), 
ovarian (Nash et al., 2002), lung (Campioni et al., 2008) and prostate (Henke et al., 
2012) cancers, while decorin expression is preserved in the surrounding ECM (Köninger 
et al., 2004, Feugaing et al., 2013). In addition, cancers such as pancreatic cancer that 
is characterized by a strong desmoplastic reaction, express abundant decorin (Goldoni 
and Iozzo, 2008). Loss of decorin favours a clear decrease in cell differentiation, an 
increase in cell proliferation and metastatic spreading (Bi et al., 2008; Goldoni and 
Iozzo, 2008). Breast and lung cancers expressing low levels of decorin and high levels 
of EGFR have been reported to be associated with a short progression time and a poor 
outcome (Troup et al., 2003; Goldoni and Iozzo, 2008; Araki et al., 2009; Biaoxue et 
al., 2011). While in most studies decorin has been shown to have an antioncogenic 
role, it has been found to have also an opposite role on tumour progression (Cawthorn 
et al., 2012). There are studies suggesting a pro-invasive effect for decorin and decorin 
overexpression is correlated with increased tumour invasion and metastasis, e.g. in 
prostate, oral squamous cell and bladder cancers (Dil and Banerjee, 2011; Neill et al., 
2012a; El Behi et al., 2013; Suhovskih et al., 2013). Muscle-invasive bladder cancers 
have shown decorin overexpression compared to non-invasive cancer (El Behi et al., 
2013). 
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Possible variations in decorin expression by immunohistochemistry may be explained by 
intratumour heterogeneity or even by inappropriate analysis tools (Michor and Polyak, 
2010). Immunohistochemical analysis can be influenced by length and method of 
specimen fixation and processing, pretreatment protocols, reagents and substrates used, 
specificity and sensitivity of detection system and choice of control material (Dacic et 
al., 2006). Also the controversial results can be explained by individual variation of 
decorin protein in different types and stages of carcinomas (Niedworok et al., 2013; 
Suhovskih et al., 2013). 

Anti-oncogenic properties of decorin. Decorin binds a large number of structural 
components within the ECM and affects the biology of various types of cancer by 
inhibiting the activity of several receptors that are overexpressed, mutated or involved 
in tumour progression (Cabello-Verrugio and Brandan, 2007; Buraschi et al., 2012; Bi 
and Yang, 2013). Decorin has been proposed to be a “pan-ErbB receptor inhibitor” that 
can antagonistically interact with multiple signalling pathways causing a reduction in 
primary tumour growth and metastatic spreading by slowing cell motility and weakening 
cell invasion through the ECM (Goldoni et al., 2008; Neill et al., 2012b). Studies on 
prostate cancer have identified decorin induced protein mitostatin, which is expressed in 
most normal human tissues, but markedly down-regulated in advanced stages of bladder 
and breast tumours (Fassan et al., 2011). The role of mitostatin is thought to be in the 
control of cell growth and apoptosis (Vecchione et al., 2009). 

By inducing proinflammatory signalling, decorin links inflammation, immunosuppression 
and tumour growth together (Merline et al., 2011; Neill et al., 2012b). During cancer 
progression immune cells including tumour associated macrophages polarize differently 
and do not exert their immune function but rather favour tumour growth and angiogenesis 
at later stages to promote cancer (Lamagna et al., 2006). Decorin is a natural biological 
non-toxic product and therefore it may not be immunogenic by itself (Reed et al., 2002; 
Feugaing et al., 2013). In cancer, decorin has been identified to reduce the abundance 
of anti-inflammatory molecules (e.g. interleukin-10) and to induce the synthesis of pro-
inflammatory modulators (e.g. tumour necrosis factor-α, interleukin-12b) (Merline et 
al., 2011; Neill et al., 2012b). Decorin mediated regulation of inflammatory processes 
can shift the immune reaction to the suppression of tumourigenic growth (Merline et al., 
2011; Moreth et al., 2012; Neill et al., 2012b; Frey et al., 2013).

Localization of decorin expression in cancer cells. Although several studies have been 
performed to examine decorin expression in different cancers, some uncertainty has 
remained whether cancer cells express decorin or not. Particularly, the localization of 
decorin expression at the cellular level in cancer in vivo has remained open. In spite of 
the fact that most epithelial cells do not produce decorin, ectopic expression of decorin 
induced by adenoviral-mediated delivery has been shown to change the expression of 
several hundred stromal genes producing an unfavourable tumour microenvironment for 
tumour progression and metastasis (Santra et al., 1997; Köninger et al., 2004; Sainio 
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and Järveläinen, 2013). Overexpression of decorin or its addition to culture media has 
been shown to cause profound cytostatic effects on many cancer cells independent of 
their histogenetic backgrounds (Santra et al., 1997). The mechanisms by which decorin 
expression is generally blocked and modified in cancer patients are not known (Goldoni 
and Iozzo, 2008). As can be expected, the potential use of decorin as an anticancer agent 
is a promising target for cancer research (Neill et al., 2012a; Pucci-Minafra et al., 2008; 
Järveläinen et al., 2009; Theocharis et al., 2010; Sainio and Järveläinen, 2013). 
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3. AIMS OF THE STUDY

Because of the complexity of breast cancer, this study aimed to bring up new insights 
to predict the outcome of breast cancer patients and to find out new prognostic factors. 
The purpose of this research was to study cell cycle regulators, cyclins, and matrix 
metalloproteinase MMP-1 in breast cancer. Furthermore, special emphasis was made to 
explore the antitumour effect of the ECM proteoglycan, decorin, in human breast cancer. 
The specific aims of this study were:

1.  To study the prognostic value of combined expression of cyclins A, B1, D1 and 
E in different breast cancer subtypes in combination with traditional prognostic 
factors 

2.  To examine the immunohistochemical expression of MMP-1 and its localization 
in correlation with well-known traditional prognostic factors in breast cancer 
epithelial cells and cancer associated stromal cells 

3.  To localize decorin expression in healthy human breast tissue and in human breast 
cancers. In addition, the effect of decorin transduction on the behaviour of cultured 
human breast cancer MCF7 cells was examined
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4. MATERIALS AND METHODS

4.1 Patients and tumour samples

Studies I-III comprised tissue samples from breast cancer patients who were operated 
and treated at Turku University Hospital during the years 1985-2008. The clinical 
characteristics of the patients in the studies are described in Table 5. The patients were 
selected from the routine files of radical mastectomies to have enough material for the 
examination. Only tumours derived from epithelial cells were included in the studies 
I-III. All patients had over 10 mm invasive breast cancer and the age of the patients 
ranged from 30 to 94 years at the time of diagnosis. 

Samples for immunohistochemical stainings and for mRNA analyses in the studies I and 
III were excised from the invasive border of the tumour after the surgical removal of the 
breast. The fresh tumour specimens were cut in two pieces. One half was frozen in liquid 
nitrogen and stored at -72 °C for mRNA analysis with real-time quantitative polymerase 
chain reaction (RT-qPCR), while the other half was fixed in 10% phosphate buffered 
formaldehyde and embedded in paraffin. 

In the study II, follow-up information on life status was collected for each case (Central 
Statistical Office of Finland). Patients´ clinical history and tumour characteristics 
including tumour size and lymph node status were obtained from the pathology database 
(Table 5). None of the patients received radiation- or chemotherapy before the operation. 
Slides were reviewed to confirm the diagnosis of breast carcinoma. In situ carcinomas 
were not included in this study. 

In the study III normal human female breast tissue (three samples) and intraductal 
papillomas (three samples) were obtained through reduction mammoplasty of the 
healthy side. 
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Table 5. Patients and tumour characteristics in the studies I-III.
Characteristics Number of patients (%) in studies I-III

I II III
Number of the patients 53 125 69 
Age 40-94 30-90 40-94 

(mean 67) (mean 57.5) (mean 65.4)
Grade

I 7 (13.2%) 10 (8%) 8 (11.6%) 
II 24 (45.3%) 66 (52.8%) 36 (52.2%) 
III 18 (34%) 49 (39.2%) 25 (36.2%)
in situ II 1 (1.9%)
in situ III 3 (5.7%)

Axillary nodal status
N0 25 (47.2%) 64 (51.2%) 33 (47.8%) 
N≥1 26 (49%) 50 (40%) 33 (47.8%)
Unknown (axillary evacuation done 1993 and 1994) 2 (3.8%) 11 (8.8%) 3 (4.3%)

Estrogen receptor (ER) status 1)

Positive 35 (66%) 80 (64%) 56 (81.2%)
Negative 14 (26.4%) 45 (36%) 13 (18.8%)
Positive in DCIS 3 (5.7%)
Negative in DCIS 1 (1.9%)

Progesterone receptor (PR) status 1)

Positive 36 (68%) 82 (65.6%) 53 (76.8%)
Negative 13 (24.5%) 43 (34.4%) 16 (23.2%)
Positive in DCIS 3 (5.7%)
Negative in DCIS 1 (1.9%)

Ki-67 status 2) 
low ≤ 15% 17 (32%) 63 (50.4%) 23 (33.3%)
intermediate 16-30% 19 (35.8%) 41 (32.8%) 26 (37.7%)
high > 30% 17 (32%) 20 (16%) 20 (29%)
one value missing 1 (0.8%)

Histologic type
Ductal 37 (69.8%) 110 (88%) 49 (71.0%)
Lobular 8 (15.1%) 10 (8%) 11 (15.9%)
Subtypes 4 (7.5%) 5 (4%) 9 (13.0%)
Ductal carcinoma in situ 4 (7.5%)

HER2 3) 
IHC positive (2+ and 3+) 20 (37.7%) 25 (20%) 27 (39.1%)
IHC negative (0 and 1+) 29 (54.7%) 100 (80%) 4 (60.9%)
IHC positive in DCIS 2 (3.8%)
IHC negative in DCIS 2 (3.8%) 
CISH positive 10 (18.9%) 11 (15.9%)
CISH positive in DCIS 2 (3.8%)

CK 5/6 4) 
Triple-negative (ER-, PR-, HER2-) 11 (20.8%) 35 (28%) 7 (10.1%)
Basal-like carcinoma (ER-, PR-, HER2-, CK5/6+) 8 (15.1%) 20 (16%) 4 (5.8%)

1,4) Cut off point used for ER and PR immunohistochemistry is nuclear positivity in 10% of 
tumour cells and 10% cytoplasmic staining in tumour cells for CK5/6. 
2) Proliferation index according to St Gallen Consensus (Goldhirsch et al., 2009).
3) All IHC HER2+ and 3+ cases were retested by CISH. Scoring of HER2 immunohistochemistry: 
Score 0: no staining is observed or cell membrane staining is observed in less than 10% of tumour 
cells. Score 1+: a faint perceptible membrane staining can be detected in more than 10% of the 
tumour cells or cells are only stained in part of their membrane. Score 2+: a weak to moderate 
complete membrane staining is observed in more than 10% of the tumour cells. Score 3+: a strong 
complete membrane staining is observed in more than 10% of the tumour cells.
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4.2 Methods

4.2.1 Histology and immunohistochemistry (I, II, III)
In the studies I-III, four µm thick serial paraffin sections were cut from tumour tissue 
and stained with haematoxylin and eosin (HE). The tumour histology in the studies I-III 
was assessed according to the WHO classification (Ellis et al., 2003) and tumour grading 
was based on the recommendations made by Elston and Ellis in 1991 (Elston and Ellis, 
1991). Tumour size and axillary lymph node status were also analysed. In the study I 
immunohistochemical staining for cyclins A, B1, D1 and E, ER and PR, Ki-67, CK5/6 
and HER2 were performed from subsequent sections. After reviewing the HE sections, 
two breast carcinoma areas per patient were selected for tissue microarray technique 
(TMA). Four µm thick sections were cut from array blocks and transferred to glass slides. 
Immunohistochemical staining for cyclins A, B1, D1 and E were performed on TMA-
slides. Mitotic figures were counted on light microscope at the most cellular area of the 
tumour periphery from 10 high-power fields (40x objective, area of a single field 0,23 
mm2, field diameter 0,54 mm) (Meyer et al., 2009). From these areas, the standardized 
mitotic index (SMI), which gives the number of observed mitoses per square millimetre 
of malignant epithelium, was determined. 

In the study II immunohistochemical staining for MMP-1, ER, PR, Ki-67, HER2, bcl-2, 
p53 and CK5/6 were performed. 

In the study III the immunohistochemical profile of different human breast cancers was 
characterized by ER and PR, HER2, Ki-67 and p63 stainings, of which p63 was done to 
identify myoepithelial cells in some cases. Immunohistochemical stainings for cyclins 
A, B1, D1 and E, MMP-1, bcl-2, ER and PR receptors, Ki-67, CK5/6 and HER2 were 
carried out in the studies I-II with Tech-Mate 500+ immunostainer using monoclonal 
antibodies and a peroxidase/diaminobenzidine LSAB+ or EnVision detection kit (Dako, 
Hamburg, Germany). The LSAB method is based on a modified labeled avidin-biotin 
(LAB) technique, in which a biotinylated secondary antibody forms a complex with 
peroxidise-conjugated streptavidin molecules. In EnVision technique the primary 
antibody is followed by a polymeric conjugate in sequential steps (Sabattini et al., 1998). 
The used antibodies, dilutions and pre-treatments in the studies I-II are presented in 
Tables 6-7. 
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Table 6. Immunohistochemical staining protocol used in the studies I and II. 
Immunohistochemical stainings for cyclins A, B1, D1 and E as well as ER, PR, Ki-67, HER2, 
MMP-1, p53, bcl-2 and CK5/6 were performed from formalin fixed, paraffin embedded 
specimens with TechMate 500+ immunostainer using monoclonal antibodies and a peroxidase/
diaminobenzidine LSAB+ detection kit (DAKO, K5001). 

Antibody Source (clone) Dilution
Pre-treatment in microwave oven,
2 x 7 min, 850W Study

ER DAKO M7047 
(1D5) 1:40 10 mM TRIS-HCl 1mM EDTA (pH 9) I, II

PR Novocastra NCL-
PGR) (1A6) 1:20 10 mM TRIS-HCl 1mM EDTA (pH 9) I, II

Ki-67 DAKO M7240 
(MIB1) 1:10 10 mM sodium citrate buffer (pH 6) I, II

HER2 Novocastra NCL-
CB1 (CB11) 1:50 10 mM sodium citrate buffer (pH 6) I, II

Cyclin A Novocastra NCL-
CYCLIN A (6E6) 1:60 10 mM sodium citrate buffer (pH 6) I

Cyclin B1 Novocastra NCL-
CYCLIN B (7A9) 1:10 10 mM sodium citrate buffer (pH 6) I

Cyclin D1 LabVision RM-
9104-S (SP4) 1:50 10 mM TRIS-HCl 1mM EDTA (pH 9) I

Cyclin E Zymed (HE12) 1:50 10 mM TRIS-HCl 1mM EDTA (pH 9) I

Cytokeratin5/6 DAKO M7237 
(D5/16B4) 1:50 10 mM TRIS-HCl 1mM EDTA (pH9) I, II

MMP-1 Oncogene (41-1E5) 1:100 10 mM TRIS-HCl 1mM EDTA (pH9) II

p53 DAKO M7001 
(DO-7) 1:200 10 mM TRIS-HCl 1mM EDTA (pH9) II

bcl-2 DAKO M0887 
(124) 1:200 10 mM TRIS-HCl 1mM EDTA (pH9) II

Table 7. Immunohistochemical staining protocol used in the studies I and III. Five different 
ready-to-use mouse or rabbit monoclonal antibodies and cyclins for tissue microarray study were 
used with Benchmark XT immunostainer and ultraView Universal DAB Detection Kit (Ventana/
Roche, Tucson, Arizona, USA). 

Antibody Source (clone) Dilution Program Study
ER Roche (SP1) ready to use mild CC1 + 24 min antibody incubation III
PR Roche (1E2) ready to use mild CC1 + 28 min antibody incub. + ampl.kit III
HER2 Roche (4B5) ready to use mild CC1 + 24 min antibody incubation III 
Ki-67 Roche (30-9) ready to use mild CC1 + 12 min antibody incubation III
p63 Roche (4A4) ready to use standard CC1 + 32 min antibody incubation III
Cyclin A Novocastra (6E6) 1:5 standard CC2 + 44 min antibody incubation I
Cyclin B1 Novocastra (7A9) 1:5 standard CC2 + 32 min antibody incubation I
Cyclin D1 NeoMarkers (SP4) 1:20 standard CC1 + 44 min antibody incubation I
Cyclin E Zymed (HE12) 1:10 standard CC1 + 32 min antibody incubation I

In the study III five different ready-to-use mouse or rabbit monoclonal antibodies for 
ER, PR, HER2, Ki-67 and p63 (Ventana Medical Systems/Roche Diagnostics, Tucson, 
Arizona, USA) and in study I for cyclins A, B1, D1 and E for TMA were used with 
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Ventana BenchMark XT immunostainer and ultraView Universal DAB Detection Kit 
(Ventana/Roche, Table 7). UltraView Universal DAB is a multimer-technology based 
detection system intended for the specific and sensitive detection of mouse and rabbit 
primary antibodies. The kit is biotin-free and thus it eliminates non-specific staining 
resulting from endogenous biotin. The cyclin staining’s of TMA were comparable with 
the staining performed with TechMate 500+ immunostainer and LSAB+ detection kit.

4.2.2 Evaluation of immunohistochemical stainings (I, II, III)
The nuclear staining of cyclins A, B1, D1 and E, p53, ER, PR and Ki-67 was evaluated from 
cells at the border of the most cellular part of the carcinoma. The immunohistochemical 
staining for MMP-1 in breast cancer cells was observed both in nuclei and in the 
cytoplasm. HER2 expression was evaluated as membrane staining of invasive tumour 
cells and scored to four classes (0/1+/2+/3+). The areas showing necrosis or inflammation 
were excluded from the analysis. The cell counting analysis was performed for cyclins, 
Ki-67, MMP-1, p53 and hormone receptors independently by two observers without 
any knowledge of the clinical data. Using the high-power (40x) objective the number 
of immunopositive cancer cells per 100 malignant cells (0% to 100%) from three 
separate cell rich areas was counted and the mean value of immunopositive areas was 
recorded. In addition to tumour cells MMP-1 staining in stromal fibroblasts near the 
tumour was evaluated in the same way. For bcl-2, cytoplasmic staining was scored and 
the percentage of positive tumour cells was recorded. Carcinomas were divided by their 
immunohistochemical profiles into luminal A and B, HER2 overexpressing, normal 
breast-like and triple-negative carcinomas. Triple-negative cases (ER-, PR- and HER2-) 
were stained with basal cytokeratin CK5/6, and the expression was considered positive if 
at least 10% of the cancer cells showed cytoplasmic and/or membranous staining (Rakha 
and Ellis, 2009). 

4.2.3 Construction of tissue microarrays (I)
Two carcinoma areas from each breast tumour were selected on HE-stained sections and 
two 1,2 mm diameter cores from the donor block were transferred to the recipient block 
with a manual tissue arrayer (Beecher Instruments, Sun Prairie, WI, USA). Four μm 
thick sections were cut from the recipient TMA block on electrostatically charged glass 
slides (SuperFrost +) for immunohistochemical staining. The interpretation of results 
was performed as described above. The immunohistochemical staining data of TMA 
for cyclins A, B1, D1 and E were compared with the results of the traditional large 
histological slides. 

4.2.4 HER2 chromogen in situ hybridization (I,III)
Chromogen in situ hybridization (CISH) of breast cancer samples was performed in the 
studies I and III in order to confirm the immunohistochemical 2+ - 3+ cases of HER2 
protein expression as well as the ambiguous results. The test was performed on 4 μm 
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thick paraffin sections using the SPoT-Light HER2 CISH-kit, in which the gene specific 
HER2 probe was labelled with digoxigenin (Zymed, South San Francisco, CA, USA). 
The target gene was localized with a HRP/DAB-detection system. The gene expression 
of HER2 was interpreted as positive if 6 or more gene copies and/or clusters were 
observed in at least 10% of the tumour cells (Zhao et al., 2002).

4.2.5 Reverse transcription quantitative polymerase chain reaction (I, III)
Cyclins A, B1, D1 and E mRNA levels in the study I were analysed from 12 tumour 
samples (one ductal carcinoma grade II and lobular carcinoma grade II, two ductal 
carcinomas grade I and lobular carcinomas grade I, three ductal carcinomas grade III 
and ductal carcinoma in situ grade III) using normal human breast tissue as a reference. 
Total RNA was isolated using the RNeasy kit (Qiagen, Hilden, Germany). For each 
sample, 1µg of RNA was treated with RQ1 DNase (Promega, Madison, WI, USA) 
and reverse transcribed using Moloney murine leukaemia virus RNase H (Promega, 
Madison, WI, USA). Primers and probes for the cyclin genes were chosen using the 
ProbeFinder software program (Roche Applied Science, Basel, Switzerland) and for 
the GAPDH (glyceraldehyde 3-phosphate dehydrogenase) the Primer Express 2.0 
software program (Roche, Applied Biosystems, Mannheim, Germany). Sequences of 
primers used in RT-qPCR studies I and III are presented in Table 8. ABsolute QPCR 
ROX Mix (Abgene, Epsom, United Kingdom) was used to prepare the reaction mixes, 
and the PCR was performed with ABI Prism 7700 Sequence Detection system (Roche, 
Applied Biosystems, Mannheim, Germany). Relative quantities of cyclin mRNAs were 
normalized against GAPDH and relative gene expression was calculated using the 2–δδct 
method with cDNA from normal breast tissue as a reference (Livak, 2001).

Table 8. Primer and probe sequences used in real-time quantitative polymerase chain 
reaction (Studies I and III).

Gene Primer sequence (5´-3´)
Cyclin A Sense CCATACCTCAAGTATTTGCCATC

Antisense TCCAGTCTTTCGTATTAATGATTCAG
Cyclin B1 Sense CATGGTGCACTTTCCTCCTT

Antisense AGGTAATGTTGTAGAGTTGGTGTCC
Cyclin D1 Sense TCCAGAGTGATCAAGTGTGACC

Antisense TGGGGTCCATGTTCTGCT
Cyclin E Sense ACAGCTTGGATTTGCTGGA

Antisense TCTGCTTCTTACCGCTCTGTG
GAPDH Sense ACCCACTCCTCCACCTTTGA

ACCCACTCCTCCACCTTTGA
Antisense TTGCTGTAGCCAAATTCGTTGT

Decorin Sense GGACCGTTTCAACAGAGAGG
Antisense GAGTTGTGTCAGG GGGAAGA

GNB2L1 Sense GAGTGTGGCCTTCTCCTCTG
Antisense GCTTG CAGTTAGCCAGGTTC
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In the study III RNA concentration from the extractions was determined using a Nano-
Drop spectrophotometer (ThermoScientific, Waltham, MA, USA) and the integrity of 
the RNA was confirmed with agarose gel electrophoresis. One µg of RNA was DNase 
treated with RQ1 RNase-Free DNase (Promega, Madison, WI, USA) and reverse 
transcribed into cDNA using M-MLV reverse transcriptase and Oligo(dT)15 primer 
(Promega, Madison, WI, USA) according to manufacturer’s instructions. RT-qPCR 
was performed using GoTaq qPCR Master Mix (Promega, Madison, WI, USA) with 
100 nM primer concentrations and final volume of 10 μL according to manufacturer’s 
protocol. GNB2L1 was chosen as a reference gene (Zhang et al., 2005). Reactions were 
run on an Applied Biosystems 7900HT machine (Roche, Applied Biosystems). The 
qPCR protocol consisted of initial denaturation at 95°C for 2 minutes followed by 40 
cycles of denaturation at 95°C for 40 seconds and extension at 60°C for 45 seconds. 
The specificity of the reactions was confirmed by melt-curve and agarose gel analysis. 
Triplicate CT values were analysed using the comparative CT (2-△△CT) method.

4.2.6 Decorin in situ hybridization (III)
Decorin in situ hybridization (ISH) in the study III was performed on 4 µm breast tissue 
sections by probing with human decorin antisense and sense single-stranded RNA 
riboprobes. A 533 bp fragment containing human decorin cDNA was cloned into the 
Eco RI/Hind III site of pGEM-4Z transcription vector (kindly provided by Dr. Liliana 
Schaefer, University of Frankfurt, Frankfurt am Main, Germany). Linearized plasmid 
DNA was purified with QIAquick PCR Purification Kit (Qiagen) and digoxigenin (DIG)-
labeled sense and antisense RNA probes were synthesized by in vitro transcription with 
SP6 and T7 polymerases, respectively, by using a DIG RNA Labeling Kit (Roche, 
Applied Science, Mannheim, Germany). Probe quantification was carried out with a 
DIG Nucleic Acid Detection Kit (Roche, Applied Science, Mannheim, Germany) and 
ISH was performed as described (Salomäki et al., 2008).

4.2.7 Adenoviral vectors (III)
For transduction experiments in the study III, a recombinant replication-deficient 
adenoviral vector dcn-pxc1c-1 was used. This vector harbors the human decorin (dcn) 
cDNA under the control of cytomegalovirus (CMV) promoter. For the preparation of 
the vector, full length human decorin cDNA (Fisher et al., 1989) in pGEM plasmids 
was cloned and inserted into shuttle plasmid pxcJL-1. The viruses were prepared by 
cotransfecting HEK293 –cells with back bone plasmid pBHG10. As a control vector 
RAdlacZ, which harbors the E. coli ß-galactosidase gene (lacZ) under the control of 
CMV IE promoter was used (Wilkinson, 1992). This vector was purchased from the 
Virus Vector Facility, Centre for Biotechnology, University of Turku, Turku, Finland.
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4.2.8 Decorin transduction (III)
Human breast adenocarcinoma cell line MCF-7 was used in the study III for transduction 
with a recombinant replication-deficient adenoviral vector dcn-pxc1c-1. MCF-7 cells 
were maintained in RPMI-1640 medium containing 10% fetal bovine serum (FBS), 
25 μM insulin, 1 nM β-estradiol, 2 mM L-glutamine, penicillin (100 IU/mL) and 
streptomycin (100 μg/mL), and grown at 37 °C with 5% CO2. The cells were plated on 
a 24-well plate (Greiner Bio-One, Kremsmuenster, Austria), 30 000 per plate. The next 
day, cells were transduced with 0, 3, 30, 100, 300 and 1000 pfu/cell of dcn-pxc1c-1 
or RAdlacZ in reduced medium containing no FBS. Four parallels were made of each 
vector concentration. After 24 h incubation, the cells were washed twice with reduced 
medium and incubated in this medium for another 24 h. The cells were trypsinized, 
pooled, and the RNA was extracted using NucleoSpin RNA II –kit (Macherey-Nagel, 
Düren, Germany) according to the manufacturer’s instructions. 

4.2.9 GeneSapiens database (III)
The GeneSapiens database was used to compare decorin gene expression levels between 
healthy human breast tissue and selected types of human breast cancer (Kilpinen et al., 
2008). This database (http://www.genesapiens.org/) covers the relative gene expression 
patterns for 17330 genes across all the 9783 annotated healthy and pathological human 
tissue samples from publicly available Affymetrix microarray experiments. The database 
contains 15 healthy breast tissue samples and 1504 different human breast cancer 
samples.

4.2.10 Statistical analyses (I, II, III)
The association between tumour grade and the immunohistochemical expression of 
different cyclins in the study I was tested with Kruskal-Wallis and pairwise comparisons 
with Mann-Whitney U–tests. In pair wise comparison Bonferroni-adjustment was applied. 
Correlations were calculated using Spearman rank-order correlation coefficients. Non-
parametric tests were applied because of non-normal distribution of variables. Unpaired 
Student´s t-test was used in statistical analyses in study III. All p values <0.05 were 
considered statistically significant.

Breast cancer-specific survival time in the study II was determined from time of 
diagnosis until death from breast cancer. Patients who were alive at the end of the 
follow-up on October 2009 or died of other causes were used as censored values in 
survival analyses. Kaplan-Meier survival analyses were carried out to compare breast 
cancer-specific survival curves. Univariate Cox regression model was used to examine 
prognostic factors for breast cancer-specific survival. Factors significantly associated 
with disease-specific survival in univariate models were included in multivariate 
stepwise Cox regression model (inclusion and exclusion criteria p=0.05). Results were 
expressed using hazard ratios (HR) with 95% confidence intervals (CI) and P-values less 

http://www.genesapiens.org/
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than 0.05 were considered as significant. The statistical analyses were carried out using 
SAS/STAT(r) software, Version 9.1.3 SP4 of the SAS System for Windows.

4.3 Ethics

Ethical approval for the use in clinical material of the studies was given by Turku 
University Hospital Ethics committee (no 241/2005) and the Finnish National Authority 
for Medicolegal Affairs (no 4424/32/300/02). 
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5. RESULTS

5.1 Cyclins A, B1, D1 and E in breast cancer (I)

5.1.1 Comparison between immunohistochemical expression of cyclins A, B1, 
D1, E and traditional prognostic factors (I)

In the study I the aim was to collectively analyse the expression of cyclins A, B1, D1 
and E in 53 breast cancer cases and to determine the correlation with tumour grade, 
immunohistochemical analysis of ER, PR, HER2 and Ki-67. Based on the expression 
of ER, PR, HER2 and CK5/6, tumours were divided into subgroups such as triple-
negative (ER-, PR-, HER2-, CK5/6- ) and basal-like (ER-, PR-, HER2-, CK5/6+) breast 
carcinomas and the combined analysis of cyclin expression was correlated with these 
subtypes. 

The mean standardized mitotic index (mitoses/mm²) was in invasive breast carcinomas 
8.6 (range 0-72.5) and in ductal carcinomas in situ 16.3 (range 6.8-29.3). A significant 
positive correlation was found between tumour grade and Ki-67 status (r = 0.62, p < 
0.0001) as well as HER2 expression (r = 0.35, p = 0.0104). In addition, tumour grade 
showed a significant positive correlation with standardized mitotic index (r = 0.60, p < 
0.0001). 

The expression of cyclin A ranged from 0% to 59% and cyclin B1 from 0% to 30% in 
breast cancer samples. The expression of cyclin E was higher as compared to cyclins 
A and B1 ranging from 1% to 76%. The widest range between 3% to 90% was in the 
expression of cyclin D. The immunohistochemical expression of cyclins A, B1 and E 
showed significant association with tumour grade (p = 0.0011 for cyclin A, p = 0.0047 
for cyclin B1, p = 0.0005 for cyclin E), while cyclin D1 showed no significant correlation 
(Figure 8). 

When the traditional prognostic factors were studied, cyclin A, B1 and E expression 
showed positive correlation with Ki-67 expression (r = 0.71, p < 0.0001 for cyclin A, r = 
0.57, p < 0.0001 for cyclin B1 and r = 0.60, p < 0.0001 for cyclin E) and no significant 
correlation was found between cyclin D1 staining and Ki-67 expression. Cyclins A 
and B1 did not show any correlation with hormone receptors ER or PR. However, a 
significant negative correlation came up between cyclin E and ER (r = -0.37, p = 0.0100) 
and PR (r = -0.35, p = 0.0153), while cyclin D1 had a significant positive correlation with 
the expression of ER (r = 0.37, p = 0.0088) and PR (r = 0.33, p = 0.0233). In addition, 
cyclin A, B1 and E expression showed positive correlation with HER2 (r = 0.32, p = 
0.0264 for cyclin A, r = 0.43, p = 0.0026 for cyclin B1, r = 0.34, p = 0.0199 for cyclin 
E), while cyclin D1 showed no significant correlation with HER2. 
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Figure 8. The association of histological grade of the breast cancer with the 
immunohistochemical expression of cyclin A, B1, D1 and E. P-values for cyclin A: overall 
p=0.0025, grade I vs. II P=0.3774, grade I vs III p=0.0069, grade II vs III p=0.0321. P-values 
for cyclin B1: overall p=0.0058, grade I vs II p=0.5466, grade I vs III p=0.015, gradus II vs III 
p=0.048. Cyclin D1 did not show any correlation with the grades. P-values for cyclin E: overall 
p<0.0001, grade I vs II p=0.294, grade I vs III p=0.0063, grade II vs III p<0.0003. 

Cyclin A, B1 and E expression showed also positive correlation with standardized mitotic 
index (r = 0.71, p < 0.0001 for cyclin A, r = 0.44, p = 0.0019 for cyclin B1 and r = 0.54, p 
< 0.0001 for cyclin E), while cyclin D1 showed no significant correlation. Furthermore, 
cyclin E expression correlated with triple-negative cancers (p = 0.0474), while no 
correlation was found with basal-like carcinomas. Cyclin D1 expression correlated with 
non-triple negative (p = 0.0156) and non-basal-like (p = 0.0279) carcinomas. Cyclin A 
did not show any correlation with triple-negative or basal-like breast cancers, nor did 
cyclin B1. 

The immunohistochemically detected expression of cyclins A, B1 and E strongly 
correlated with each other, specially cyclins A and B1 (r = 0.60, p < 0.0001), which also 
had a significant positive correlation with cyclin E (r = 0.49, p = 0.0004 for cyclin A, r = 
0.52, p = 0.0001 for cyclin B1), while the expression of cyclin D1 correlated with none 
of the other cyclins. 

5.1.2 Results of tissue microarray (I)
In the present study I the results of the conventional large section slides were similar 
with the staining results of tissue microarray slides (Figure 9), which also showed a 
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positive correlation with mitotic index (r=0.48, p=0.0006 for cyclin A, r=0.28, p=0.0530 
for cyclin B1, r=0.36, p=0.0137 for cyclin E), as well as with Ki-67 expression (r=0.53, 
p=0.0001 for cyclin A, r=0.41, p=0.0041 for cyclin B1, r=0.41, p=0.0039 for cyclin E). 
In summary, the immunohistochemical staining of tissue sections and tissue microarrays 
were quite well comparable with each other. Intraclass correlation coefficients (ICC) 
between the immunohistochemical stainings of tissue sections and tissue arrays were 
good (for cyclin A ICC=0.69, for cyclin D1 ICC=0.80) or moderate (for cyclin B1 
ICC=0.49, and for cyclin E ICC=0.49). 

Figure 9. Immunohistochemical staining for cyclins A, B1, D1 and E performed on breast 
cancer tissue microarray (invasive ductal carcinoma GIII). The scale bar represents 200 µm 
for all images.

5.1.3 Gene expression levels of cyclins A, B1, D1 and E (I)
The mRNA expression of cyclins A, B1, E and D1 was analysed by quantitative PCR in 
12 breast cancer cases to find out whether the cyclin mRNA expression correlated with 
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the cyclin protein levels. The expression was compared to normal breast tissue, which 
was used as a reference when calculating the relative gene expression of cyclins. 

An increased cyclin gene expression was observed in most of the analysed breast cancer 
samples. Cyclin A mRNA expression was increased in 9/12 tumours, cyclin B1 in 9/12 
tumours, cyclin D1 in 7/12 tumours and cyclin E in all 12 samples analysed. Although 
differences were seen between the mRNA expressions, a number of similarities were 
also found, for example higher expression of cyclins A, B1 and E in poorly differentiated 
ductal carcinomas, grade III. In addition, two ductal carcinomas in situ GIII had higher 
cyclin A gene expression than other breast cancers. Furthermore, ductal carcinoma in situ 
GIII patients were found to have a moderate cyclin B1 and E mRNA expression. In our 
tumour samples, cyclin D1 mRNA expression was variable with the highest expression 
in grade III tumours. 

Comparison between the immunohistochemical staining of cyclins and the results of 
quantitative PCR showed some variation, e.g expression level of cyclin D1 protein as 
higher than mRNA level. Further consideration of the statistical correlation between the 
gene expression and immunohistochemical staining is not possible due to the limited 
number of samples (12) analysed. 

5.2 Identification of MMP-1 in breast cancer (II) 

5.2.1 MMP-1 expression in breast cancer (II)
MMP-1 expression was observed in all analysed breast tumours (Figure 10). In the study 
II original tissue sections were used instead of TMA, because the tissue fixation and 
tumour heterogeneity could have caused variability in results. The MMP-1 antibody 
used recognises both the latent and active form of MMP-1 protein. MMP-1 expression 
was higher in tumour cells than in tumour associated stromal cells and the MMP-
1 expression ranged from 10% to 95% in tumour cells. 7.2% of the cases showed 
MMP-1 expression in tumour epithelial cells with value ≤ 30%, 8% with value ≤ 50%, 
31.2% with value ≤ 70% and 53.6% with value over 70%. In stromal cells the MMP-1 
expression ranged from 5% to 80% and 47,6% of cases were positive with value ≤ 30%, 
14,5% were positive with value ≤ 50%, 30,6% were positive with value ≤ 70% and 7,3% 
were positive with value over 70%. A significant correlation was seen between tumour 
grade and MMP-1 expression in tumour epithelial cells (r=0.23, p=0.0101) as well as in 
stromal cells (r=0.21, p=0.0170), the higher grade tumours showing the strongest MMP-
1 expression (Figure 11). HER2 immunohistochemical staining correlated with MMP-1 
expression both in stromal cells (r = 0.25, p = 0.0050) as well as in tumour epithelial cells 
(r = 0.22, p = 0.0121) (Figure 12B), while no significant correlation was seen with ER or 
PR. Neither Ki-67 nor bcl-2 expression showed any significant correlation with MMP-1 
staining in tumour epithelial or stromal cells. p53 had a significant positive correlation 
with MMP-1 expression in tumour cells (r=0.23, p=0.0113), but not in stromal cells. 
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Figure 11. Correlation between tumour grade and MMP-1 reactivity. A significant correlation 
was found between the tumour grade and MMP-1 expression in tumour epithelial cell panel (A, 
r=0.23, p=0.0101) as well as in stromal fibroblasts (B, r=0.21, p=0.0170), the higher grade tumours 
showing the strongest MMP-1 positivity. (The nonparametric Spearman´s rank correlation r is a 
statistic for measuring the strength of the association between variables).
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5.2.2 MMP-1 expression in different breast cancer subtypes (II)
MMP-1 expression in stromal cells showed significant differences (p = 0.0129) between 
breast cancer subtypes (luminal A, luminal B, HER2, triple-negative subtypes), while 
MMP-1 expression of cancer epithelial cells did not show any association with different 
breast cancer subtypes (Figure 12 A). In stromal cells MMP-1 expression was higher 
in luminal B type tumours than in luminal A subtype (p = 0.0258). In addition, MMP-1 
expression in luminal B-type stromal cells was higher than in stromal cells in triple-
negative subtype (p = 0.0336). When tumours were divided into triple-negative and non-
triple-negative subtypes, no association with MMP-1 immunohistochemical staining in 
cancer cells or stromal cells was noted. Basal-like and non-basal-like groups had no 
association with MMP-1 expression in tumour epithelial cells or stromal cells. 

Figure 12. Correlation between MMP-1 expression in fibroblasts and different subgroups. MMP-1 
expression in stromal fibroblasts showed significant differences (A, p = 0.0129) between different breast 
cancer subtypes. Luminal B type tumours demonstrated higher stromal cell MMP-1 expression than 
luminal A subtypes (p = 0.0258). In addition, MMP-1 expression in luminal B-type stromal cells was 
higher than in stromal fibroblasts in triple-negative subtype (p = 0.0336). HER2 immunohistochemical 
staining correlated with MMP-1 expression in stromal cells (B, r = 0.25, p = 0.0050). 

5.2.3 Survival analysis for MMP-1 expression (II)
To examine whether the studied MMP-1 expression could be used as a prognostic 
indicator of breast cancer outcome, the influence of MMP-1 expression in tumour 
epithelial cells and stromal cells was studied using Cox univariate survival analyses. The 
median follow-up time was extensively long being over 20 years (range from 17 to 24 
years). 44 patients (37%) included in the survival analyses were alive, 51 (43%) had died 
from breast cancer and 23 (19%) from some other reason at the end of follow up time. 

In the breast cancer-specific survival there was a statistically significant difference 
between high and low MMP-1 expression in tumour cells (cut-off point 70%, p = 
0.0171), grade I and III tumours (p = 0.0099), high and low ER expression (cut-off point 
10%, p = 0.0013), low and high immunohistochemical bcl-2 expression (cut-off point 
25%, p = 0.0003), basal-like and non-basal-like subtypes (p = 0.0103), triple-negative 
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and non-triple-negative breast cancers (p = 0.0137) (Figure 13). The differentiations in 
breast cancer-specific survival between Ki-67 subgroups proliferation index ≤15% and 
proliferation >15% were also statistically significant (p=0.0022). MMP-1 expression in 
cancer stromal cells showed no statistically significant association with breast cancer-
specific survival, nor did patient age or p53 expression. 

Figure 13. Kaplan-Meier analysis for disease-specifc survival of patients with breast cancer 
stratified according to MMP-1 positivity in tumour cells with a 70% cut-off level (A), triple-
negative and non-triple-negative subgroups (B), Ki-67 subcategories (≤15%, 15%<Ki-67≤30% 
and > 30%) (C), bcl-2 with a 25% cut-off level (D). Comparison between curves was performed 
using the log-rank test. 
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The potential independent prognostic value of immunohistochemically detected MMP-1 
expression in tumour cells was evaluated by stepwise Cox regression analysis. It was 
found that ER >10% (HR 0.41, 95% CI 0.24 to 0.72, p=0.0018), Ki-67 >15% (HR 2.35, 
95% CI 1.34 to 4.13, p=0.0030), bcl-2 >25% (HR 0.33, 95% CI 0.18 to 0.63, p=0.0007), 
triple-negative subtype (HR 2.05, 95% CI 1.15 to 3.68, p=0.0158), basal-type subtype 
(HR 2.34, 95% CI 1.20 to 4.58, p=0.0127) and tumours cells with MMP-1 positivity with 
70% (HR 1.99, 95% CI 1.12 to 3.53, p=0.0194) significantly associated with disease-
specific survival in univariate models and were used as cut-off values. For p53 >10% 
(HR 1.73, 95% CI 0.98 to 3.06, p=0.0601) or for PR>10% (HR 0.71, 95% CI 0.40 to 1.25, 
p=0.2322) no significant association was found. Factors significantly associated with 
disease-specific survival in univariate models were included in multivariate analysis. 
Ki-67 >15% (p=0.0186), bcl-2 >25% (p=0.0158) and MMP-1 with tumour cells >70% 
positivity (p=0.0438) were independent prognostic parameters for breast cancer-specific 
survival (Table 9).

Table 9. Multivariate analysis of disease specific- survival analysis at 24 years (Study II).

Variable HR (95%CI) p (multivariate)
Ki-67>15% 2.01 (1.12-3.59) 0.0186*
Bcl-2>25% 0.45 (0.23-0.86) 0.0158*
MMP-1 tumour cells >70% 1.81 (1.01-3.22) 0.0438*
HR= Hazard Ratio
P-value less than 0.05 (*) were considered as significant.
Tumour grade was not included in disease specific -survival analysis, because none of grade I 
patients died of breast cancer.

5.3 Decorin expression in human breast tissue (III)

5.3.1 Localization of decorin mRNA in healthy human breast tissue, and in 
benign and malignant tumours of the human breast (III) 

Analysis of publicly available GeneSapiens databank demonstrated that, although decorin 
expression is abundant both in healthy human breast tissue and in various human breast 
cancers, its expression is greater in healthy breast tissue than in ductal, lobular or other 
breast cancers (see the study III, Figure 1). Results of ISH analysis with DIG-labeled 
RNA probes for decorin clearly demonstrated that in healthy human breast tissue the 
expression of decorin takes place only in the cells within the stromal area surrounding 
the lobules and in the intralobular stroma, whereas the epithelial cells of normal ducts 
or lobules showed no decorin expression (Figure 14). Similar analysis of intraductal 
papillomas revealed that decorin expression is localized merely to the primary breast 
stroma around the dilated duct of papillomas, while the intraductal papilloma tissue 
was completely negative for decorin gene expression (Figure 15). Consistently with the 
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above, no decorin mRNA transcripts were detected within precancerous DCIS or LCIS. 
Furthermore, invasive epithelial cells from ductal, lobular and mucinous cancers lacked 
decorin mRNA, the expression of decorin taking place merely in the native stromal cells 
(Figure 16). 

Figure 14. In normal human breast tissue, decorin mRNA is localized only in the stromal 
cells surrounding the lobulus and in the intralobular stromal cells. HE staining of normal 
lobulus and its stroma in panel A and in panel B ISH for decorin, serial section of the same normal 
lobulus as in panel A. The scale bar in panel A represents 50 µm for A-B. (Modified from original 
publication III).

Figure 15. HE staining of benign intraductal papilloma (A). The cells of intraductal papilloma 
(indicated by asterisks) do not express decorin (B, C). Decorin mRNA is localized to the primary 
stroma around the dilated duct of the papilloma (B, C). Positive DIG reaction in ISH indicating 
the localization decorin mRNA can be seen in purple. The scale bar in panel A represents 500 µm 
for A and 50 µm for B-C. (Modified from original publication III).
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Figure 16. Epithelial cells of invasive lobular breast cancer are negative for decorin 
expression. HE staining of invasive lobular carcinoma with lobular carcinoma in situ (A) and 
ISH for decorin (B). Positive DIG reaction of stromal cells in ISH indicating decorin expression 
can be seen in purple. Arrows in panel B indicate areas of infiltrating cancer cells negative for 
decorin expression. No decorin mRNA was detected in lobular carcinoma in situ (asterisk). The 
scale bar in panel A represents 200 µm for A-B.

5.3.2 Effect of adenoviral decorin transduction on MCF7 cells (III)
Next, human breast adenocarcinoma cell line MCF7 and decorin producing adenoviral 
vector were applied to examine the effects of targeted decorin transduction on the 
behaviour of breast cancer cells. Similarly to the above results in vivo, cultured MCF7 
cells did not express decorin as shown by RT-qPCR. When these cells were transduced 
with decorin adenoviral vector, their growth pattern changed markedly, i.e., their 
proliferation was inhibited and cell cohesion was decreased. Decorin-transduced MCF7 
cells also exhibited a number of morphologic alterations. Particularly, several of the 
decorin-transduced MCF7 cells contained a large vacuole within another larger cell with 
a crescent-shaped nucleus at its periphery (Figure 17). These so-called cannibal cells 
were also observed among the MCF7 cells transduced with the control vector and among 
those without any transduction, but to a much lesser number.
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Figure 17. Decorin gene transduction mediated by a recombinant adenovirus has a 
significant effect on the growth pattern of human breast adenocarcinoma cells (MCF-7) 
and inhibits their proliferation. HE staining of MCF-7 cell cultures transduced with human 
decorin cDNA containing adenovirus (Ad-Dcn) (A) and lacZ gene containg adenovirus (Ad-
LacZ) (B). Control vector Ad-LacZ encoding lacZ gene (C). Magnified illustration of the boxed 
region shown in A (C). Arrows indicate the presence of cannibal cells after Ad-Dcn transduction 
of MCF-7 cells (D). Number of observed mitoses per 100 cells, 2 days after in vitro incubation 
with Ad vectors. A – B, scale bar 50 µm; C, scale bar 10 µm; **, p < 0,001, Student´s t-test. 
(Modified from original publication III).
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6. DISCUSSION

6.1 Prognostic value of cyclin A, B1, D1 and E in breast cancer (I)

As a result of regular mammography screening, a shift toward the detection of earlier-
stage breast cancers with better prognosis has occurred (Mook et al., 2011). Additional 
specific biomarkers are however required to provide safer, more individualized treatment 
and to spare patients from unwanted side effects and complications of over-treatment 
(Weigel and Dowsett, 2010).

The molecular interaction between cell function and cyclins in cancer is far from being 
fully understood (Casimiro et al., 2012). In cancer cells, cyclin expression is found to be 
highly upregulated leading to uncontrolled cell division and proliferation (Rastogi and 
Mishra, 2012). Although many previous studies have analysed the protein expression and 
prognostic role of different cyclins in breast cancer, little is known about their combined 
expression, especially in combination with classic prognostic factors. 

Overexpression of cyclins A, B1, and E have been shown in several studies to associate 
with poor prognosis in breast cancer (Baldini et al., 2006; Aaltonen et al., 2009a; Scaltriti 
et al., 2011). Also, in the present study, the immunohistochemical expression of cyclins 
A, B1 and E showed significant association with tumour grade, mitotic index as well as 
with HER2 and Ki-67 expression. Furthermore, the expression of cyclins A, B1 and E 
correlated with each other, but not with the expression of cyclin D1. In the study I none 
of the cyclins A, B1, E or D1 showed correlation with metastasis. Triple-negative breast 
cancers are typically high grade tumours and frequently associated with high expression 
of Ki-67 and high level of cyclin E, but low expression of cyclin D1 (Branham et al., 
2012), which was also confirmed in the present study. 

The prognostic value of histological grade has been accepted in most breast cancer types 
and it is a valuable prognostic factor, particularly in early breast cancer without lymph 
node involvement (Rakha et al., 2010b; Reyal et al., 2013). A recent immunocytology 
study has shown overexpression of cyclins A and E to appear after 11 months from the 
tamoxifen exposure in the endometrial cells in women with breast cancer (Metwally et 
al., 2013). This cyclin overexpression in these patients may be a marker of malignant 
transformation (Metwally et al., 2013). Alterations of cyclin expression levels in control 
breast tissue after cancer treatment could also be easily detected and this could provide a 
new and valuable tool for follow-up for positive cyclins breast cancer patients. 

Cyclin E has been shown to be a sensitive and specific prognostic indicator in patients 
with breast cancer (Keyomarsi et al., 2002). The results of the study I showed that 
cyclin E has a negative correlation with ER and PR status and a positive correlation 
with triple-negative breast carcinomas thus associating high cyclin E expression with a 
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high risk of cancer progression. In addition, the positive correlation between cyclin E 
and histological grade, Ki-67, HER2 and standardized mitotic index are in agreement 
with poor clinical outcome in breast cancer. Cyclin E overexpression is shown to lead 
to acquired trastuzumab resistance, which results a lower progression free survival 
(Scaltriti et al., 2011). The mechanism of trastuzumab is mediated by inhibiting the 
kinase activity and exposion of CDK2 (Le et al., 2006). Trastuzumab has also shown to 
suppress the level and activity of CDK6, cyclin A and cyclin D1 (Le et al., 2006). An 
overload of cyclin E may therefore make cells independent from trastuzumab-mediated 
cell cycle arrest (Scaltriti et al., 2011). Trastuzumab-resistant cells have higher CDK2 
activity and are more sensitive to CDK2 inhibitors suggesting that treatment with CDK2 
inhibitors may be a suitable strategy in breast cancer patients with high cyclin E and 
HER2 expression (Fiszman and Jasnis, 2011; Scaltriti et al., 2011).

The mRNA level of cyclin E was upregulated in all 12 breast cancer samples studied 
and the highest cyclin E mRNA expression was detected in grade III samples when 
compared to normal breast tissue by quantitative PCR. A discrepancy between the cyclin 
E immunohistochemical and mRNA expression has previously been demonstrated 
(Potemski et al., 2006). This may be explained by the fact that frozen tumour tissues 
examined by RT-PCR might contain some fat tissue, fibrotic tissue or lymphocytic 
infiltrates from the adjacent stroma, while immunostaining results are specific for tumour 
cells (Oda et al., 2010). Furthermore, the amount of mRNA does not always correlate to 
the protein level (Potemski et al., 2006). 

The prognostic value of cyclin D1 as a breast cancer biomarker is a somewhat controversial 
issue, while both positive and negative findings have been observed (Mylona et al., 
2013; Peurala et al., 2013; Xu et al., 2013). High CCND1 amplification is associated 
with poor prognosis in breast cancer, whereas high protein expression of cyclin D1 has 
been linked to both poor and good clinical outcome (Roy et al., 2010; Lundgren et al., 
2012). Apart from the role as a prognostic marker, cyclin D1 overexpression alone or 
cyclin D1 overexpression together with CCND1 amplification have been associated in 
ER+ breast cancer to tamoxifen resistance in some studies (Roy et al., 2010). While 
estrogen rapidly induces cyclin D1 expression, antiestrogens cause an inhibition of CDK 
activity and a reduction in cyclin D1 expression. Some published studies suggest that 
high cyclin D1 expression is not solely associated with CCND1 gene amplification but 
is also affected by ERα status (Quintayo et al., 2012).

In a recent meta-analysis CCND1 overexpression has been detected to affect the 
prognosis of ER+ breast cancer patients, but not patients with unselected primary breast 
cancer or patients treated with neoadjuvant chemotherapy (Xu et al., 2013). Cyclin D1 
overexpression has been demonstrated to correlate with poor prognosis in invasive breast 
cancer when no adjuvant treatment is given (Lin et al., 2013). A positive relationship 
between cyclin D1 overexpression and ER is a repeated result in almost all studies 
(Mylona et al., 2013). From a clinical point of view, overexpression and amplification 



 Discussion 69

of cyclin D1 associates with poor endocrine response (Patani et al., 2013). The study I 
confirmed a significant positive correlation between the immunohistochemical staining 
of cyclin D1 and the expression of hormone receptors ER and PR. Furthermore, cyclin 
D1 overexpression correlated with non-triple negative and non-basal-like breast 
carcinomas. The connection between ER and cyclin D1 expression implies that cyclin 
D1 might contribute to the prognosis of ER+ patients. In addition, the lack of correlation 
between cyclin D1 and tumour grade, Ki-67, HER2 suggests that increased expression 
of cyclin D1 might indicate a good prognosis for breast cancer patients. 

In RT-PCR study, cyclin D1 gene expression had variable results and cyclin D1 was 
up-regulated in 7/12 (58%) tumours studied, which is higher than in previous reports 
(5% to 30%) (Elsheikh et al., 2008; Roy et al., 2010). When cyclin D1 mRNA level 
was compared with the immunohistochemically detected expression, cyclin D1 protein 
expression was constantly higher suggesting that translation of cyclin D1 is not always 
secondary to gene transcription, and pathogenic activation of cyclin D1 can occur 
via potential additional pathways, including transcriptional and post-transcriptional 
dysregulation (Arnold and Papanikolaou, 2005). 

Increased expression of cyclin A has been associated with poor prognosis in a variety of 
invasive human cancers (Mrena et al., 2006) including advanced breast cancer, where 
high cyclin A expression has been demonstrated to correlate with tumour grade, mitotic 
index and Ki-67 status (Poikonen, 2005). The results of the study I showed correlation 
with cyclin A expression and tumour grade, Ki-67, HER2, standardized mitotic index 
as well as expression of cyclins B1 and E suggesting that cyclin A overexpression is 
linked to poor prognosis. Triple-negative or basal-like tumours did not correlate with 
cyclin A expression. There are also opposite results concerning the role of cyclin A as a 
prognostic marker, so the impact of cyclin A expression on clinical outcome is not clear 
(Ahlin et al., 2009). The differences between published results may be due to the lack 
of definition of optimal cut-off value for cyclin A expression in tumour cells (Ahlin et 
al., 2007). 

A previous study has shown unexpectedly that the overcome from distant metastases 
to death was significantly longer for patients with tumours expressing high cyclin A 
expression compared with low cyclin A tumours (Ahlin et al., 2009). Patients with 
distant metastases receive palliative chemotherapy, which is more effective in highly 
proliferating tumours than in slowly proliferating ones. As cyclin A synthesis is active 
during cell cycle progression from the start of S phase to the beginning of mitosis, high 
cyclin A expression detects the cells that are actively proliferating and thus most sensitive 
to chemotherapy (Huuhtanen et al., 1999). It is also possible that other mechanisms 
than gene mutation or amplification might have a role in the overexpression of cyclin 
A in different tumour subtypes. Depending on which mechanism causes the protein 
overexpression, the influence on patient survival in breast cancer may vary (Sørby et 
al., 2012).
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Cyclin B1 is a key initiator of mitosis in cell cycle and cyclin B1 overexpression has been 
found to associate with various clinico-pathologic parameters including high tumour 
grade and distant metastasis. Therefore cyclin B1 has been identified as a prognostic 
marker for poor patient outcome in several tumours, including breast cancer (Aaltonen 
et al., 2009a; Chae et al., 2011; Khan et al., 2013). Cyclin B1 is first situated in the 
cytoplasm, and at the beginning of mitosis it is translocated to the nucleus (Suzuki et al., 
2007). However, a significant part of cyclin B1-Cdk1 complex remains in the cytoplasm 
(Gavet and Pines, 2010). The different intracellular localization of cyclin B1 can have 
different effects on the results of the immunohistochemical expression as well as on the 
malignant potential of cyclin B1 (Suzuki et al., 2007). 

The immunohistochemical expression of nuclear cyclin B1 in the study I was observed 
in 0% to 30% of the tumour samples. The mRNA expression of cyclin B1 was up-
regulated in 9/12 cases (75%) and the mRNA levels tended to be higher in poorly 
differentiated breast cancers. In addition to mRNA, immunohistochemically detected 
protein expression of cyclin B1 showed a significant association with tumour grade, 
standardized mitotic index, Ki-67 and Her-2/neu. These observations are in agreement 
with earlier studies, which show that nuclear cyclin B1 immunoreactivity is significantly 
associated with adverse clinical outcome in breast cancer patients (Suzuki et al., 2007; 
Aaltonen et al., 2009a). Cyclin B1 had a significant positive correlation with cyclins A 
and E, but unlike in some previous studies the study I showed that cyclin B1 was not 
correlated to triple-negative or basal-like breast cancer subtypes (Agarwal et al., 2009).

Most published TMA validation studies have correlated one to three cyclins with clinico-
pathological characteristics of breast cancers (Aaltonen et al., 2006), but in the study I 
cyclins A, B1, D1 and E were evaluated together. The results of the TMA slides were 
quite well comparable with the staining results of the traditional large section slides in 
breast cancer. Thus TMA can be considered to replace the whole section slides when 
studying the cyclin expression in breast cancer. 

In conclusion, the findings of the study I suggest that overexpression of cyclins A, B1 
and E associate with aggressive breast cancer. Cyclin D1 expression is independent of 
other cyclins and is correlated with ER and PR status, non-triple negative and non-
basal-like breast carcinomas suggesting that cyclin D1 expression might be a marker 
of good breast cancer prognosis. Since cellular proliferation is an essential factor in the 
biologic behaviour of breast cancer (Jonat and Arnold, 2011), the expression of Ki-67 
could be worth of studying together with the expression of cyclins A, B1, D1 and E when 
determining breast cancer prognosis.

6.2 MMP-1 as a prognostic marker in breast cancer (II)

Recent studies have revealed that breast cancer progression is a multistep process and it 
is thought to be driven by complex and reciprocal interactions between epithelial cancer 
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cells and cells in the surrounding microenvironment including leukocytes, fibroblasts, 
macrophages and endothelial cells (Khamis et al., 2012; van Rooyen et al., 2013). 

Several studies have shown that breast cancer progression, invasion and metastatic 
potential may be associated with the overexpression of various matrix metalloproteinases 
(MMPs), which were originally recognized as extracellularly acting proteolytic enzymes 
(Mannello and Medda, 2012). The study II shows MMP-1 positivity both in the nuclei 
and in the cytoplasm of breast cancer epithelial cells as well as in cancer associated 
stromal cells, which is in line with recent works (Mannello and Medda, 2012). The 
earlier conflicting results may occur due to the used antibody (Köhrmann et al 2009), 
while there are antibodies that are specific for the latent form of MMP-1 and show no 
reaction with the active form. In addition, different pretreatment protocols and other 
MMP family members can cause non-specific staining results. 

The most important finding of the present study was that MMP-1 expression in tumour 
epithelial cells carries unexpectedly an independent prognostic value in breast cancer. 
Identification of the nuclear localization of immunohistochemically detected MMP-1 
expression represents a new and interesting viewpoint of MMP-1 function showing 
that the acitivity of MMP-1 is not limited to the ECM. While MMP-1 is involved 
extracellularly in the breakdown of many secreted factors and matrix proteins critical 
for tumour progression and invasion, the role of intracellularly located MMP-1 is still 
poorly understood. There are studies showing that MMP-1 accumulates within the cells 
during the mitotic phase of the cell cycle, and thus nuclear localization of MMPs could 
be associated with apoptosis (Limb et al., 2005; Hadler-Olsen et al., 2011). Future 
studies should aim at the role of the nuclear MMP-1 in breast cancer development and 
additional studies are required to understand the interaction between MMP-1 activity at 
various subcellular and extracellular localization. 

In the study II the MMP-1 expression was also analysed in different breast cancer 
subtypes. One important finding was the significantly different MMP-1 expression in 
stromal cells in different breast cancer subtypes. The MMP-1 positivity in stromal cells 
in triple-negative subtype and HER2 overexpression breast cancer can help to recognize 
the patients with risk of metastatic behaviour. Luminal B subtype showed higher MMP-1 
expression in stromal cells than the triple-negative subtype. In addition, recent studies 
have shown breast cancer subtypes to have distinct interactions with the surrounding 
microenvironment (Breuer et al., 2013). Stromal gene expression has been shown to 
correlate with histological tumour grade (Ma et al., 2009) and the latest studies have 
presented that the molecular profiling of the cancer-associated microenvironment may be 
a better predictor of patient outcome in breast cancer than the tumour epithelium (Farmer 
et al., 2009). In the study II the patient follow up time was more than 20 years and the 
survival analyses revealed a significant link between high MMP-1 expression both in 
cancer-associated fibroblasts and in tumour cells with metastatic tumour progression and 
shortened survival. The interaction with breast cancer epithelial cells and surrounding 
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stroma emphasize the importance of the wider MMP molecular profiling of a “lethal 
stromal phenotype” when identifying patients at the greatest risk (Mannello, 2011). 

Over the past decades, the pharmaceutical industry has made an impressive attempt 
to develop synthetic metalloproteinase inhibitors (MMPIs) for the treatment of cancer 
and other diseases. MMPIs have been tested in clinical research studies to treat various 
cancers, but tests have failed to improve patient outcome. In addition, patients have 
had harmful side effects from joint toxicity that is thought to be due to broad-spectrum 
nature of MMP1 inhibition (Bingham, 2005). The administration of MMPIs should be 
made after thorough consideration, because the expression profile of MMPs, as well as 
the activity of MMPs, is not the same in different cancer types and varies in the early 
stage compared to advanced cancer (Galley et al., 2011). In the future, studies should 
be focused on new selective MMP-1 inhibitors that are capable of minimizing undesired 
interaction with other metalloenzymes (Fisher and Mobashery, 2006). 

In conclusion, the results of the study II reveal that high MMP-1 expression both in 
tumour epithelial cells and in cancer associated stromal cells are significantly associated 
with breast cancer progression, poor prognosis and shortened survival. In addition, 
correlation between p53 and MMP-1 expression in tumour epithelial cells is in line 
with tumour aggressiveness. The results point out that cancer epithelial cells and their 
microenvironment interact together creating the process of carcinogenesis (Albini and 
Sporn, 2007). Further clarification of the microenvironmental mechanisms involved in 
tumour progression and targeting these components gives a great promise for future 
cancer therapy (Muppalla et al., 2013).

6.3 Localization of decorin expression in benign and malignant breast 
tissue and the effect of decorin transduction on breast cancer cells 
(III)

Previous reports of decorin expression levels in breast cancer have been variable. 
Low level of decorin has been associated with invasive breast cancer and poor clinical 
outcome (Buraschi et al., 2012). On the other hand, it has been reported that decorin 
overexpression is associated with high number of lymph node metastasis and poor 
survival in breast cancer (Cawthorn et al., 2012). Moreover, decorin has been shown to 
be overexpressed in the stroma of human laryngeal cancer and to be associated with the 
histological gradus (Stylianou et al., 2008). In addition to these varied results, there has 
also been uncertainty whether breast cancer epithelial cells express decorin (Gu et al., 
2010; Oda et al., 2012). 

In the study III the publicly available GeneSapiens databank offered the possibility 
to study decorin gene expression level between different tumour types and the 
corresponding normal human tissue (Kilpinen et al., 2008). The analysis revealed that 
the relative decorin gene expression level is significant in both healthy breast tissue and 
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in different breast tumours. Decorin expression was found to be lower in most common 
types of breast cancer, but higher in breast carcinomas without known special type, when 
compared to decorin expression in healthy breast tissue. The level of epithelial cells in 
malignant tumours can be predominant over the stromal component and thus malignant 
tumours are expected to accumulate less decorin than normal breast tissue (Goldoni and 
Iozzo, 2008). Thus, reduced levels of decorin can possible explain the association with 
more aggressive tumours (Oda et al., 2012). 

Significant variations exist in the results of publicly available datasets depending, e.g., 
on the number of patients in each database, the quality of specimens collected, sample 
processing and instrumentation used for gene expression read-out (Freeman et al., 2013). 
Furthermore, the samples contain various amounts of stroma (Sainio et al., 2013) and 
the amount of epithelium in breast tissue decreases with menopausal status (Reid et al., 
1996). One reason for the variation in decorin expression could be the composition of the 
stromal component among different tumours, which can vary markedly from abundant 
elastic tissue to mucinous stroma (Connolly et al., 2003). The heterogeneity of samples 
can cause discrepancies among results (Chou et al., 2013), and thus previously reported 
analyses of decorin gene expression profiling have not been able to separate invasive 
breast cancer from in situ breast cancer or identify different subtypes of breast cancer. 

Localization of decorin in normal human breast tissue and in breast tumour in vivo. 
The immunohistochemically detected expression of decorin was restricted to the ECM 
adjacent to the normal epithelium and to the peritumoural stroma, while cancer epithelial 
cells as well as normal breast epithelium showed no decorin expression. Although much 
utilized method, immunohistochemistry can reveal only the existence of a protein after 
production not the exact site of protein expression on a cellular level. While GeneSapiens 
database does not reveal the cellular origin of a specific molecule, we used ISH with DIG-
labeled decorin probes in the study III, and demonstrated that epithelial cells from normal 
human breast tissue, benign intraductal papillomas or different human breast cancers did 
not express decorin mRNA. Instead, the expression of decorin was localized to the cells 
of the stroma both in normal human breast tissue and in breast tissues containing benign 
or malignant breast epithelial tumours. This same finding was also showed to be true for 
human breast adenocarcinoma MCF7 cells and in a recent study showing that human 
bladder cells lack the expression of decorin in vitro and in vivo (Sainio et al., 2013). 

ISH is a useful method to localize and detect specific mRNA, e.g. decorin, in 
morphologically preserved tissues sections or cell preparations to a particular cell or 
a particular region of the tissue of interest (Uehara et al., 2007; Kirsch et al., 2012; 
Yoshihara et al., 2013). On the contrary, Northern blot and RT-PCR analyses use pooled 
tumour samples that in addition to tumour cells contain tumour-associated normal 
epithelial cells and original stromal cells. Thus, the pooled tumour samples give only 
information on the presence or absence of mRNAs without the information of the cellular 
source of mRNA (Wilcox, 2000). 
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Radiologically dense breast tissue is known to be one of the strongest risk factor for all 
types of breast cancer (Guo et al., 2001; Bertrand et al., 2013). Alteration in stromal 
composition has been correlated with increased mammographic density, because breast 
stroma is the major tissue compartment by volume (Alowani et al., 2003). Decorin 
accumulation has been shown to be involved in the formation of a collagenous rich 
stroma associated with mammographic density (Skandalis et al., 2011). Up-regulation of 
decorin may lead to an organized ECM, potentially providing a physical barrier against 
tumour cell migration (Bi, 2013). However, the abundant expression of decorin may 
lead to changes in cytoskeletal organization in the ECM and thus impede the diffusion of 
chemotherapeutic agents (Provenzano and Hingorani, 2013). 

Influence of targeted decorin transduction on the behaviour of human breast cancer 
cell line in vitro. 
ISH results clearly demonstrated that human breast cancer epithelial cells are not able 
to express decorin. In the study III, decorin transduction caused significant changes in 
the behaviour of decorin-negative MCF7 human breast carcinoma cells. Adenoviral-
mediated expression of decorin has earlier been shown to cause morphological changes 
in the human tumour xenografts including sharper tumour border, reduced invasiveness 
and angiogenesis as well as evidence of cyto-differentiation (Reed et al., 2002). Earlier 
preclinical studies have also demonstrated that exogenous decorin added to the tumour 
microenvironment evokes endothelial cell autophagy (Neill et al., 2013). In the study 
III, the discovered cannibalism in decorin-transduced MCF7 cells can be an evidence 
of process where cancer cells are under starvation (Wang et al., 2013). Autophagy 
can also indicate the potential oncosupressive function by acting to remove critical 
cell components that would otherwise be involved in tumour growth (Buraschi et al., 
2013). Because decorin is a well-known non-toxic natural biological product and an 
anti-oncogenic molecule, it could be a new therapeutic target in the treatment of breast 
cancer (Santra et al., 2000; Neill et al., 2012b).

Despite of decorin´s tumour suppressor role in carcinogenesis, it has also been shown 
to have opposite roles in tumour progression depending on the type and background of 
the cancer analysed (El Behi et al., 2013). A recent experiment with aggressive human 
bladder tumour cells has shown that decorin overexpression is required unexpectedly for 
cancer progression by promoting angiogenesis and tumour cell invasiveness (El Behi 
et al., 2013). This opposite role is explained by different decorin forms and/or protein 
localization, for example with nuclear localized decorin (Dil and Banerjee, 2012). The 
mechanism of decorin-induced growth suppression on MCF7 breast cancer cells has not 
been the research subject in this study. However, the observed decreased proliferation 
of MCF7 is most likely mediated by the interaction of decorin core protein with EGFR 
and other ErbB family proteins (Feugaing et al., 2013). Alternative possible mechanisms 
include other tyrosine kinase pathways, whose activity is regulated by decorin (Hu et al., 
2009).
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7. CONCLUSION

Based on the results of the present study, the following conclusions can be drawn:

1.  The overexpression of cyclin A, B1 and E correlated with aggressive breast 
cancers. Cyclin D1 expression was independent of the other cyclin and could be 
considered as a marker of good prognosis. The expression of cyclins A, B1, D1 
and E may be beneficial to study together for determining prognosis for invasive 
breast cancer. 

2.  The immunohistochemical staining of tissue sections and tissue microarrays 
were comparable with each other. Intraclass correlation coefficients between the  
immunohistochemical stainings of tissue sections and tissue arrays were good.

3.  MMP-1 expression associated strongly with tumour evolution, poor prognosis 
and shortened survival. High MMP-1 expression in both cytoplasm and nuclei 
of breast cancer cells with respect to stromal cells revealed an unexpected role 
of nuclear MMP-1. Both tumoural and stromal cells were involved in breast 
cancer progression suggesting that breast cancer outcome is driven by interactions 
between epithelial cancer cells and stromal microenvironment. .

4.  Cancer cells independently of the type of breast cancer do not express decorin 
mRNA. Decorin expression was localized in the cells of the original stroma both 
in normal breast tissue and in breast tissue containing benign or malignant breast 
epithelial tumours. Transduction of decorin in decorin-negative human breast 
cancer cells markedly modulated the growth pattern of these cells. The result of 
this study suggests that decorin might have therapeutic value in the treatment of 
breast cancer. 
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