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ABSTRACT 

Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest 

in up-converting phosphors in which the absorption of two or more low energy photons is followed by 

emission of a higher energy photon. Most up-conversion luminescence materials operate by using a 

combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, 

Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications 

as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the 

most sophisticated applications of lanthanide up-conversion luminescence is probably in medical 

diagnostics. However, there are some major problems in the use of photoluminescence based on the 

direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the 

emission of the phosphor in the visible. A promising way to overcome the problems arising from the 

blood absorption is to use a long wavelength excitation and benefit from the up-conversion 

luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has 

no capability for up-conversion in the excitation wavelength region of the conventional up-converting 

phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. 

The aim of this work was to prepare nanocrystalline materials with high red (and green) up-

conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling 

to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor 

particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and 

NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation 

and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, 

transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption 

spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence 

spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal 

structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, 

persistent up-conversion luminescence was introduced and discussed. 

For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more 

uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. 

On the other hand, further work must be carried out to optimize the persistent up-conversion 

luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials 

combining the advantages of both up-conversion and persistent luminescence. 

 

 

Keywords: Yttrium oxysulfide, Zirconium oxide, Sodium yttrium tetrafluoride, Ytterbium, Erbium, 

Nanomaterials; Up-conversion luminescence, Whole blood 



TIIVISTELMÄ 

Fotonien pinoamiseen perustuvan luminesenssin (up-konversioluminesenssi) löytämisen jälkeen 

siitä on kiinnostuttu yhä enenevissä määrin. Up-konversioluminesenssissa yhden tai useamman 

matalaenergisen fotonin absorptiota seuraa korkeampienergisen fotonin emissio. Suurin osa up-kon-

versiomateriaaleista käyttää kidehilassa olevaa, kolmenarvoisista harvinaisista maametalleista (lan-

tanideista) koostuvaa herkistin-aktivaattori-yhdistelmää, jossa herkistin on esimerkiksi ytterbium tai 

erbium ja aktivaattori erbium, holmium tai praseodyymi. 

Up-konversioloisteaineita voidaan käyttää useissa sovelluksissa, kuten lasereissa, näytöissä sekä 

arvopaperien varmenteissa. Eräs sovelluskohde on myös lääketieteellinen diagnostiikka. Kuitenkin 

suoraan UV-viritykseen perustuvan fotoluminesenssin käyttö esimerkiksi immunomäärityksissä on 

erittäin ongelmallista. Ihmisen veri absorboi voimakkaasti UV-säteilyä, kuten myös loisteaineen emis-

siota näkyvällä aallonpituusalueella. Lupaava menetelmä, jolla päästään eroon kokoveren absorpti-

osta aiheutuvasta ongelmasta, on käyttää matalaenergistä viritystä ja hyödyntää up-konversiomeka-

nismia. Kokoveri ei absorboi lähi-infrapuna-alueen säteilyä, eli se ei kykene käyttämään up-konver-

siomateriaalin herkistin-aktivaattori-yhdistelmän viritysaallonpituutta. 

Väitöskirjatyön tarkoitus oli valmistaa voimakkaasti punaista (ja vihreää) valoa luminoivia 

nanokiteisiä materiaaleja, joita voidaan käyttää kokoveren kvantitatiivisiin immunomäärityksiin. Nano-

kokoisia (kidekoko alle 50 nm) up-konversioloisteaineita tarvitaan, jotta ne toimisivat biologisten 

yhdisteiden kanssa. Nanokiteiset ZrO2:Yb3+,Er3+-, Y2O2S:Yb3+,Er3+-, NaYF4:Yb3+,Er3+- ja NaRF4-

NaR’F4 (R: Y, Yb, Er) -materiaalit valmistettiin poltto-, sooli-geeli-, sulate- ja kerasaostusmenetelmillä 

sekä solvotermisen synteesin avulla ja ne tutkittiin käyttäen termoanalyysiä, FT-IR-spektroskopiaa, 

läpäisyelektronimikroskopiaa, EDX-spektroskopiaa, XANES/EXAFS-mittauksia, absorptiospektro-

skopiaa, jauheröntgendiffraktiota sekä up-konversio- ja termoluminesenssispektroskopiaa. Lisäksi 

tutkittiin materiaalien epäpuhtauksien, kidekoon ja kiderakenteen vaikutusta up-konversio-

luminesenssin voimakkuuteen. Lopuksi esiteltiin täysin uusi ilmiö, viivästynyt up-konversio-

luminesenssi. 

Jotta nanomateriaalit toimisivat tehokkaasti biomäärityksissä, tulee niiden hiukkaskoko ja kokoja-

kauma optimoida. Vesiliukoisuuden parantamiseksi tulee pinnan muokkausta myös tutkia. Nanoma-

teriaalien viivästynyt up-konversioluminesenssi vaatii myös lisätutkimusta, jotta sekä up-konversio- 

että viivästyneen luminesenssin edut voidaan yhdistää entistä tehokkaammissa immunomäärityk-

sissä. 

 

 

Avainsanat: Yttriumoksidi, Zirkoniumoksidi, Natriumyttriumtetrafluoridi, Ytterbium, Erbium, 

Nanomateriaalit, Up-konversioluminesenssi, Kokoveri 
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SYMBOLS AND ABBREVIATIONS 

AMP 2-amino-2-methyl-1,3-propanediol 

APTE Addition of photons by transfer of energy 

CCD Charge coupled device 

CR Cross-relaxation 

c Concentration / moldm-3 

d Particle diameter / m 

DTA Differential thermoanalysis 

E Energy 

EDTA Ethylene diamine tetra-acetic acid 

EDX Energy-dispersive X-ray spectroscopy 

Em Emission 

 Trivalent erbium in ZrIV site, single negative net charge 

ESA Excited state absorption 

ETU Energy transfer up-conversion 

Exc Excitation 

EXAFS Extended X-Ray absorption near edge structure 

FT-IR Fourier transform infrared 

FWHM Full width at half maximum 

GGG Gadolinium gallium garnet, Gd3Ga5O12 

GSA Ground state absorption 

HPGe High purity germanium 

I Intensity 

IR Infrared 

K Kelvin 

LD Laser diode 

LED Light emitting diode 

Ln Lanthanide 

LRET Luminescence resonance energy transfer 

LuGG Lutetium gallium garnet, Lu3Ga5O12 

M Medium 

n Number of photons required to excite the corresponding emitting level 

NIR Near infrared 

No. Number 

PA Photon avalanche 

R Rare earth 

S Strong 

SEM Scanning electron microscopy 

S.H.G Second harmonic generation 

T Temperature 

'
ZrEr



Symbols and Abbreviations 

 

10 

TEM Transmission electron microscopy 

TG Thermogravimetry 

TGA Thermogravimetric analysis 

TL Thermoluminescence 

TPA Two-photon absorption 

TSTF Two-step, two-frequency 

UPC Up-conversion 

UV Ultraviolet 

Vis Visible 

 Oxygen vacancy, double positive net charge 

W Weak 

XANES X-ray absorption near edge structure 

XPD X-ray powder diffraction 

YAG Yttrium aluminium garnet, Y3Al5O12 

 Trivalent ytterbium in ZrIV site, single negative net charge 

YGG Yttrium gallium garnet, Y3Ga5O12 

YSGG Yttrium scandium gallium garnet, Y3Sc2Ga3O12 

YSZ Yttria stabilized zirconia 

Z Number of formula units per unit cell 

3D 3-dimensional 

λ Wavelength / nm 

β Lattice parameter / ° 

θ Bragg angle / ° 


OV

'
ZrYb
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1. INTRODUCTION 

Luminescence is a phenomenon in which a material emits electromagnetic radiation [1]. 

Luminescence is due to the radiative transitions between the electronic levels characteristic to the 

material. The radiation is usually in the visible range, but the basic process may yield also ultraviolet 

(UV) or infrared (IR) radiation. Such emissions can also be described as luminescence. The 

conventional luminescent materials usually follow the well-known principle of the Stokes law which 

simply states that excitation photons are at higher energy than emitted ones or, in other words, that 

output energy is weaker than input photon energy. 

Photon up-conversion is an anti-Stokes process generating higher-energy emission from low-

energy excitation radiation [2-7]. The increase in energy is achieved by absorbing multiple (usually 

two or three) photons per single emitted photon. The transition from the excited energy level back to 

the ground level, or to another lower-lying level, produces luminescence at shorter wavelengths than 

the original excitation wavelength. Most up-conversion luminescence materials operate by using a 

combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb, Er or Dy) and an activator (e.g. 

Er, Ho, Pr or Tm) ion in a crystal lattice. 

The simplest up-conversion mechanism is the two-steps absorption or the ground-state 

absorption/excited-state absorption (GSA/ESA), in which a single ion absorbs two sequential photons 

(Fig. 1) [8]. The first absorption excites the ion from the ground state into an intermediate level (GSA, 

ground state absorption). The second absorption is by the ion in this intermediate state and is termed 

excited state absorption (ESA). The excitation must be high enough for the second absorption to 

happen within the lifetime of the intermediate excited state. Since the two-steps absorption involves 

only a single ion, it can occur in materials with low doping levels. 

Cooperative

luminescence

Cooperative

sensitization

Two-steps

absorption

GSA / ESA
ETU S.H.G. TPA

YF
3
:Yb,Er

    10-3

SrF
2
:Er

  10-5

YF
3
:Yb,Tb

    10-6

YbPO
4

  10-8

KH
2
PO

4

  10-11

CaF
2
:Eu2+

   10-13

 
Figure 1. Various two-photon up-conversion luminescence mechanisms, examples of the materials 

and their typical relative quantum efficiencies (cm2W-1) [6]. The efficiencies are normalized 

for the incident flux. 

 

Substantial improvement in the up-conversion efficiencies is realized by exploiting energy transfers 

between rare-earth ions [2-4]. This scheme is often called energy transfer up-conversion (ETU) or 

addition of photons by transfer of energy (APTE) (Fig. 1). Very similar mechanisms to ETU are 

cooperative sensitization and cooperative luminescence [4,9,10], although these are capable of much 
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lower conversion efficiencies. The second harmonic generation (S.H.G.; also called frequency 

doubling) occurs in a non-linear medium without any absorption transitions [11]. The two-photon 

absorption excitation (TPA) resembles the two-steps absorption process but there is no intermediate 

level, hence a simultaneous absorption of two photons is required [12]. 

Photon avalanche (PA) induced up-conversion features an unusual pump mechanism that requires 

a pump intensity above a certain threshold value (Fig. 2) [13,14]. For example, the threshold value for 

the LiYF4:Er3+ system is 222 mW [6]. The PA process starts with the population of the intermediate 

excited level E1 by non-resonant weak GSA, followed by resonant ESA to populate higher excited 

level E2. After the metastable level population is established, the cross-relaxation energy transfer (or 

ion pair relaxation) occurs between the excited ion and a neighboring ground state ion, resulting in 

both ions occupying the intermediate level E1. The two ions readily populate the level E2 to further 

initiate cross-relaxation and exponentially increase level E2 population by ESA, producing strong up-

conversion emission as an avalanche process. 

G

E1

E2

 

Figure 2. Photon avalanche (PA) [6]. The dashed/dotted, dashed and full arrows represent 

photon excitation, energy transfer and emission processes, respectively. 

 

Different up-conversion processes may exist simultaneously [5,15,16] or the excitation process 

can be a mixture of two mechanisms [17]. The dominant mechanism may depend on several factors 

including the composition of the material, the temperature and the excitation power [18-20]. 

Furthermore, it is not always straightforward to identify which mechanism is in question. The following 

criteria have been used to distinguish the prevailing mechanism: the position of the respective energy 

levels of the sensitizer and activator ions; the power law dependence of the emission intensity vs. the 

excitation power and the sensitizer concentration; the rise and decay times of the emission as well as 

the shape of the excitation spectrum [5,21,22]. 

The up-conversion is most often a two-photon process but three-photon or higher-order up-

conversion processes also occur [6,23]. Due to its multiphoton nature, the response to infrared 

excitation intensity is typically considered to be nonlinear. The emission intensity (IEm) is proportional 

to a power n of the excitation intensity (IEx), where n is the number of the summed excitation photons 

(Eq. 1) [24]. 

IEm                                                                                                     (1) 

 

∝ n
ExI
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However, this has been demonstrated to be true only with reasonably low excitation powers, 

especially when the up-conversion process is based on energy transfer between a sensitizer and an 

activator ion [6,25]. The dependence on absorbed pump power decreases from the n:th order 

dependence towards linear response with increasing excitation power, regardless of the actual 

number of energy transfer up-conversion steps involved in the excitation process [25,26]. 

Since its recognition, conversion of the infrared radiation into the visible has generated much of 

interest in generating and incorporating novel areas of investigation. Up-converting phosphors have a 

variety of potential applications as lasers, diodes, displays, inks for security printing (bank notes, 

bonds), solar cells, enhancement of photosynthesis as well as in medical diagnostics [27-32]. One of 

the most sophisticated applications of lanthanide up-conversion luminescence is in diagnostic assays 

[33]. There are some major problems in the use of photoluminescence based on the direct UV 

excitation in immunoassays [34]. Human blood absorbs strongly UV radiation as well as the emission 

of the phosphor in the visible [35]. A promising way to overcome the problems arising from the blood 

absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence 

[36]. Since there is practically no absorption by the whole-blood in the near IR region it has no 

capability for up-conversion in the excitation wavelength region of the conventional up-converting 

phosphors based on the Yb3+ (sensitizer) and Er3+ (activator) combination. In order to accomplish an 

efficient coupling to biological compounds, nanosized material particles are needed. Nanomaterials 

with high up-conversion luminescence efficiency are also required in the development of novel 

homogeneous label technology for quantitative all-in-one whole-blood immunoassay which uses low-

cost measurement devices [37-39]. 

Nanoscale manipulation of lanthanide-doped up-converting nanocrystals leads to important 

modification of their optical properties in excited-state dynamics, emission profiles and up-conversion 

efficiency [40]. For example, the reduction in particle size provides the ability to modify the lifetime of 

intermediate states [41]. The control of spatial confinement of dopant ions within a nanoscopic region 

can lead to marked enhancement of a particular wavelength emission as well as generation of new 

types of emissions. 

The aim of the present work was to study the preparation, structure and up-conversion 

luminescence properties of the Yb3+ and Er3+ doped Y2O2S, ZrO2 and NaYF4 nanomaterials as well 

as to compare the properties of these host materials. The nanocrystalline materials were prepared 

with the flux method (Y2O2S) [42,43], combustion [44-50] and sol-gel [51-53] synthesis (ZrO2) as well 

as with the co-precipitation [54,55] and solvothermal [56-59] synthesis (NaYF4). The materials’ 

formation was studied with the thermal analysis, and the purity with the FT-IR spectroscopy. The 

particle morphology and the crystal structure and phase purity were studied with the transmission 

electron microscopy (TEM) and X-ray powder diffraction (XPD), respectively. The up-conversion 

luminescence and luminescence decays were studied with the NIR laser excitation (λexc: 970 nm). 

Also the elemental distribution (EDX) measurements were made. The effect of the luminescence 

intensities and the crystallite size, the crystal structure, as well as the impurities of the phosphors on 

the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-

conversion luminescence is introduced and discussed. 
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Most of the work included in this thesis has been presented in the following publications referred to 

as I-IX in the text. 
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2. UP-CONVERTING NANOMATERIALS 

2.1. Host materials 

Selection of the appropriate host materials (Table 1) is essential to obtain favorable optical 

properties such as high up-conversion efficiency and controllable emission profile [40]. 

 

Table 1. Oxide, halide, oxysulfide, garnet, phosphate, oxyfluoride and selected other compounds 

used as up-conversion luminescence host materials. 

 Material Ref. 

Oxides Y2O3, Gd2O3 44,49,60-63 

 ZrO2, TiO2 51-53,64-66 

Fluorides NaRF4, (R: Y, La-Lu) 6,54-59,67-74 

 LiYF4, KYF4 75-78 

 YF3, LaF3 6,73,79-85 

 BaY2F8, BaLu2F8 6,86,87 

 MgF2, SrF2, CaF2, CdF2 6,88 

 Pb5Al3F19 89 

 KLiYF5 90-92 

Chlorides, bromides and iodides NaCl, BaCl2, SrCl2, CaCl2 6,93,94 

 ThCl4, ThBr4 6,95 

 Cs2NaGdCl6, Cs2NaYCl6, Cs2NaYBr6 6,21,96-98 

 CsCdBr3, CsCdCl3, CsMnCl3  6,99 

 Cs2ZrBr6, Cs2ZrCl6, Cs2GeF6 6,100-102 

 RbCdCl3, RbMnCl3, Rb2CdCl4, Rb2MnCl4 6,21,103 

 Cs3Lu2Cl9, Cs3Yb2Cl9, Cs3Lu2Br9, Cs3Er2Br9, Cs3Er2Br9, 

Cs3Er2I9 

6,99,102 

 Ba2YCl7, Ba2ErCl7 6,102,104 

Oxysulfides Y2O2S, Gd2O2S, La2O2S 42,43,107-111 

Garnets Y3Al5O12 (YAG), Y3Ga5O12 (YGG), Y3Sc2Ga3O12 

(YSGG), Gd3Ga5O12 (GGG), Lu3Ga5O12 (LuGG) 

6,21,112-116 

Phosphates YbPO4, LuPO4, LaPO4  117-120 

Oxyfluorides YOF, GdOF 121,122 

Others LiNbO3, LiTaO3 123-126 

 TmP5O14 127,128 

 BaTiO3 129-131 

 La2(MoO4)3 132 

 ZnS 133,134 

 NaGd(WO4)2, KYb(WO4)2 6, 135,136 

 LaVO4, YVO4 21,137,138 

 ZnAl2O4 139 

 K5Nd(MO4)4 6 

 YAlO3, GdAlO3 140,141 
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As the trivalent rare earth ions exhibit similar ionic size and chemical properties, their inorganic 

compounds are ideal host materials for up-converting lanthanide dopant ions [40]. In addition, 

alkaline earth ions (Ba2+,Sr2+,Ca2+) and some transition metal ions (ZrIV and TiIV) also exhibit close 

ionic size to lanthanide ions [105]. Therefore, inorganic compounds containing these ions (e.g. 

BaY2F8, SrF2, CaF2, ZrO2, TiO2) are frequently used as host materials for up-conversion processes 

[51-53,64-66,86-88]. However, lanthanide doping in the nanocrystals is accompanied by the 

formation of crystal defects such as interstitial anions and cation vacancies to maintain charge 

neutrality. To maintain a single crystal phase of the host for efficient up-conversion, the dopant 

concentration should be stringently controlled. 

Ideal host materials should also have a low lattice phonon energy, which is a requirement to 

minimize non-radiative loss and maximize the radiative emission [18,51]. Heavy halides like 

chlorides, bromides and iodides generally exhibit low phonon energies of less than 300 cm−1. 

However, they are hygroscopic and are of limited use [40,106]. 

Rare-earth oxysulfides (e.g. Y2O2S, La2O2S, Gd2O2S) have been known for a long time as 

excellent phosphor host materials and used in cathode ray tubes, field emission displays and X-ray 

luminescent screens [42,43,107-111]. The up-converting oxysulfide phosphor has higher up-

conversion efficiency when compared to the respective oxide (same doping level and similar particle 

size). The enhancement in the visible up-conversion efficiency can be due to the lower phonon 

energy in yttrium oxysulfide, when compared to yttrium oxide. 

The variation of the crystal structure in the host materials can significantly influence the optical 

properties of the nanocrystals [40]. For example, the hexagonal-phase NaYF4:Yb3+,Er3+ bulk 

materials exhibit about an order of magnitude enhancement of the up-conversion efficiency relative to 

their cubic phase counterparts [142,143]. The phase-dependent optical property can be ascribed 

directly to the different crystal fields around the trivalent lanthanide ions in matrices of various 

symmetries [144]. Low symmetry hosts typically exert a crystal field containing more uneven 

components around the dopant ions compared to the high symmetry counterparts. The uneven 

components enhance the electronic coupling between the 4f energy levels and higher electronic 

configuration and subsequently increase f–f transition probabilities of the dopant ions. In addition, the 

decrease in the cation size (or unit-cell volume) of the host can cause an increase in the crystal field 

strength around the dopant ions and lead to the enhanced up-conversion efficiency. For example, the 

NaYF4:Yb3+,Er3+ material exhibits an up-conversion luminescence two times stronger than that of 

NaLaF4:Yb3+,Er3+. The distance between the atoms affects also to the efficiency of the energy 

transfer. 

The up-conversion emission color of the lanthanide-doped nanocrystals can be modified by 

changing the size of the nanocrystals [40,49,145]. When the crystallite size is smaller, there are more 

impurities (e.g. NO3
- , OH-) due to the large surface area. This increases the probability of the 

multiphonon relaxation. For example, in the case of the ZrO2:Yb3+,Er3+ nanomaterial, the multiphonon 

relaxation weakens the green luminescence, and increases the intensity of the red luminescence. By 

controlling the size of the nanocrystals, also the concentration of the surface dopant ions can be 

precisely modulated, leading to a gradual variation in the emission color [40]. 



Up-converting Nanomaterials 

 

17 

2.2. Sensitizers 

In singly doped nanocrystals (e.g. Er3+ or Tm3+ doped), the two major parameters that affect the 

up-conversion processes are the distance between the two neighboring activators and the absorption 

cross-section of the ions [6,40]. High doping levels can lead to deleterious cross-relaxation, resulting 

in quenching of the excitation energy. The concentration of the activator ions should be kept low and 

precisely adjusted to avoid the quenching effect. In addition, most lanthanide activator ions exhibit 

low absorption cross-sections, leading to the low pump efficiency. Therefore, the overall up-

conversion efficiency for singly doped nanocrystals is relatively low. 

To enhance the up-conversion luminescence efficiency, a sensitizer with a sufficient absorption 

cross-section in the NIR region is usually co-doped along with the activator to take advantage of the 

efficient ETU process between the sensitizer and activator [6,7,40]. Trivalent ytterbium possesses an 

extremely simple energy level scheme with only one excited 4f level of 2F5/2. The absorption band of 

Yb3+, that is located around 980 nm due to the 2F7/2
2F5/2 transition, has a high absorption cross-

section (11.7 ± 1.0 × 10-21 cm2) [146]. The absorption cross-section of Yb3+ at 980 nm is about an 

order of magnitude higher than that of the Er3+. Commercial laser diodes are also available for this 

wavelength. Additionally, the 2F7/2
2F5/2 transition of Yb3+ is well resonant with many f–f transitions of 

typical up-converting lanthanide ions (Er3+, Tm3+, and Ho3+), thus facilitating efficient energy transfer 

from Yb3+ to other ions. These optical characteristics make Yb3+ particularly suitable for use as an up-

conversion sensitizer. The sensitizer content is normally kept high (ca. 20 mol-%) in doubly or triply 

doped nanocrystals, while the activator content is relatively low (below 2 mol-%), minimizing the 

cross-relaxation energy loss. 

It is also found that Dy3+ ion can act as an sensitizer in a YBr3:Dy3+,Er3+ codoped materials 

[147,148]. In these materials, the Dy3+ ion has an absorption band (6H9/2) around 7700 cm-1 

(1300 nm) higher than the ground state (6H15/2). The energy can then transfer to the 4F9/2 level of Er3+ 

and finally cause a radiative transition from the 4F9/2 to the 4I15/2 ground level causing luminescence at 

660 nm. 

 

2.3. Activators 

The requirement of the multiple metastable levels for up-conversion makes the lanthanides well-

suited for this application [40,144]. To generate practically useful up-conversion emission, the energy 

difference between each excited level and its lower-lying intermediate level (ground level) should be 

close to the excitation energy to facilitate the photon absorption and energy transfer steps involved in 

the up-conversion processes. Er3+, Tm3+, and Ho3+ typically feature such ladder-like arranged energy 

levels and are thus frequently used activators. 

 

2.3.1. Yb3+/R3+ PAIRS 

In the Yb3+ sensitized Er3+ up-conversion luminescence, the first photon of near-infrared (NIR) 

radiation excites the Yb3+ ion to the sole excited 2F5/2 level from which the excitation may relax 

radiatively back to the ground 2F7/2 level (Fig. 3) [6,22,149,150]. 
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Figure 3. Schematic diagram of the Yb3+ sensitized Er3+ up-conversion luminescence [6,22,149-151]. 

 In this figure, the excited and emitting energy levels of the activator are drawn separately 

 for clarity. Further on, the excitations and emissions are drawn together to save space. 

 

Taken into account the long lifetime of the excited 2F5/2 level (typically one ms), the Yb3+ ion may well 

transfer the excitation energy to an Er3+ ion with higher probability than decaying radiatively. The Er3+ 

ion is promoted to the 4I11/2 level, and further to 4F7/2 due to the absorption and energy transfer of 

another NIR photon. Then Er3+ decays rapidly and non-radiatively to the 2H11/2, 
4S3/2 or 

4F9/2 levels. 

The up-conversion emission is customarily assigned to the following transitions: green emission in 

the 520-580 nm region to the (2H11/2, 
4S3/2)→

4I15/2 transitions and red emission in the 650-700 nm 

region to the 4F9/2→
4I15/2 transitions of the Er3+ ion. It should be noted that other pathways (including 

the initial ground (GSA) and further excited state (ESA) absorptions) may be possible involving the 

Er3+ ions only. 

In the Yb3+-Ho3+ system, the excited Yb3+ can transfer the energy to the Ho3+ ion (Fig. 4). 
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Figure 4. Schematic diagram of the Yb3+ sensitized Ho3+ up-conversion luminescence [110]. 

 

The Ho3+ ion is promoted to the 5I6 level, and further to the 5F5, 
5F4,

5S2 or 5F2,
3K8 levels due to the 

absorption and energy transfer of additional NIR photons. The Yb3+, Ho3+ –codoped materials 

produce blue, green, and red luminescence due to the following transitions: blue emission in the 
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region of 480 nm due to the (5F2,
3K8)→

5I8 transitions, green emission in the 530-580 nm region due to 

the (5F4,
5S2)→

5I8 transition, and red emission 630-680 nm due to the 5F5→
5I8 transition. In addition, 

NIR emission between 735–775 nm are attributed to the Ho3+ ions 5F4,
5S2→

5I7 transition. 

In the Yb3+ and Tm3+ doped materials, under the 980 nm excitation, the Yb3+ ion is exited from 
2F7/2 to 2F5/2 level (Fig. 5) [142,143]. The energy can be transferred to the Tm3+ ion nonradiatively to 

excite it up to the corresponding excited level. The emission bands at 450, 475, 645, 690 and 800 nm 

are due to 1D2→
3F4 (violet), 1G4→

3H6 (blue), 1G4→
3F4 (red), 3F3→

3H6 (red) and 3H4→
3H6 (NIR) 

transitions of Tm3+ ion, respectively. 
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Figure 5. Schematic diagram of the Yb3+ sensitized Tm3+ up-conversion luminescence [142,143]. 

 

In the Yb3+-Tb3+ system, two NIR photons excite two Yb3+ ions to the 2F5/2 level (Fig. 6) [19]. After 

that, the photons may relax radiatively from this excited level back to the ground level (2F7/2). 

Alternatively, two excited photons may combine and produce co-operative luminescence, which 

energy is twice the energy of the 2F5/2 level. This high energy photon then excites one Tb3+ ion to the 
5D4 level. The excited Tb3+ ion can then be excited to the 5D1 level and relax nonradiatively to the 5D3 

level. Therefore, visible up-conversion emission is obtained when the Tb3+ ion is relaxed from the 5D3 

or 5D4 level to the 7FJ (J = 6, 5, 4 or 3) level. 
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Figure 6. Schematic diagram of the Yb3+ sensitized Tb3+ up-conversion luminescence [19]. 
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2.3.2. Yb3+/R13+/R23+ COMBINATIONS 

Utilization of varied dopant-host combinations is the most straightforward approach to the 

generation of multicolor up-conversion nanocrystals [40]. Typical dopant-host combinations to 

prepare multicolor up-conversion nanocrystals (Table 2) contain Yb3+ ions, which are either 

intentionally added or act as host lattice constituents, to absorb excitation radiation [40]. 

 

Table 2. Typical dopant-host combinations for making multicolored up-conversion nanocrystals [40]. 

  Major emissions* (nm)  

Dopant Yb3+ + Host Blue Green Red Ref. 

Tm3+ α-NaYF4
# 450; 475 (S)  647 (W) 142 

 β-NaYF4
# 450; 475 (S)   152 

 LaF3 475 (S)   83 

 LuPO4 475 (S)  649 (S) 119 

Er3+ α -NaYF4
# 411 (W) 540 (M) 660 (S) 142 

 β -NaYF4
#  523; 542 (S) 656 (M) 152 

 LaF3  520; 545 (S) 659 (S) 83 

 YbPO4  526,550 (S) 657; 667 (S) 119 

 Y2O3  525; 550 (W) 650 (S) 62 

Ho3+ α -NaYbF4
#  540 (S)  153 

 LaF3  542 (S) 645; 658 (M) 83 

 Y2O3  540 (S) 650 (M) 154 

*S, M, and W refer to strong, moderate and weak emission intensities, respectively. 
#α-NaYF4: cubic crystal form, β-NaYF4: hexagonal crystal form. 

 

Although different dopant-host combinations can lead to multiple up-conversion emissions, the 

color output that can be produced by this method is somewhat limited and associated with several 

apparent drawbacks. Nanoparticles in the form of different host materials can exhibit significantly 

different surface chemistry, while nanoparticles with different dopant ions generate only a limited 

number of efficient up-conversion colors upon activation with Tm3+, Er3+, and Ho3+ ions. 

The up-conversion emission color also varies with the concentration of the dopant ions [40]. The 

dopant concentration, which determines both the relative amount of the dopant ions in the 

nanocrystals as well as the average distance between neighboring dopant ions, has a strong 

influence on the optical properties of the nanocrystals. For example, an increase in the dopant 

concentration of Yb3+ in Y2O3:Yb3+,Er3+ nanoparticles induces enhanced back-energy-transfer from 

Er3+ to Yb3+, thereby leading to a relative increase in intensity of red emission of Er3+. A similar 

phenomenon also has been observed in ZrO2 nanocrystals co-doped with Yb and Er. By reducing the 

concentrations of the both Yb3+ and Er3+ ions, a relative decrease of the red emission intensity have 

observed in the NaYF4:Yb3+,Er3+ nanocrystals. 

The up-conversion multicolor fine-tuning in the visible spectral region can be alternatively achieved 

via a three-component dopant system (Yb3+-Er3+-Tm3+, Yb3+-Ho3+-Tm3+, Yb3+-Tb3+-Tm3+, Yb3+-Er3+-
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Tb3+ or Yb3+-Pr3+-Tm3+) in a dual emission process [40,155-157]. The presence of the three activator 

ions with the close energy level schemes ensures effective energy transfer between these. 

In the Yb3+ sensitized Er3+,Tm3+ up-conversion luminescence the close location of the energy 

levels suggests effective energy transfer between them (Fig. 8) [155]. For example, the phonon-

assisted energy transfer from the 2F5/2 energy level of Yb3+ to the 3H5 and 3H4 levels of Tm3+ can take 

place. The energy transfer from the 2F5/2 state of Yb3+ to the 4I11/2 manifold of Er3+ can also be 

expected. These two possible transfer processes would not lead to the visible photon emission. 

Nevertheless, if two Yb3+ ions are excited, such an Yb-Yb pair can transfer electron excitation energy 

to the 1G4 state of Tm3+ and/or 4FJ (J = 3/2, 5/2, 7/2) states of Er3+ with subsequent emission of blue 

light. The cooperative energy transfer mechanism can be responsible for the up-converted emission 

in all considered systems. Intensity of such up-converted emission should grow up with increasing 

laser pump energy [25,26]. 
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Figure 8. Schematic diagram of the Yb3+ sensitized Er,Tm3+ up-conversion luminescence [155]. 

 

The tunable red-green-blue mechanism was rooted in the nearly resonant cross-relaxation process 
1G4 (Tm) + 5I7 (Ho)→3H5 (Tm) + 5S2 (Ho) (CR2, Fig. 9) [156]. There are several reasons responsible 

for the occurrence of the cross-relaxation process: firstly, the energy mismatch of 135 cm−1 can easily 

be dissipated by the lattice phonons and allow this process to efficiently occur. Secondly, both the 
1G4 (Tm) and 5I7 (Ho) states are metastable states, which have enough time to allow this process to 

occur. Thirdly, the rise time for the 5S2 (Ho) is reduced as compared to that of Yb3+/Ho3+ doped 

nanocrystals because the lifetime of 5I7 (Ho) (817 µs) state is longer than that of 1G4 (Tm) (550 µs) 

state. The blue up-conversion emission arose from Yb3+/Tm3+ pairs mainly via a well-known three-

photon process, and the green band from Yb3+/Ho3+ pairs was a two-photon process. There is also 

another cross-relaxation process 1G4 (Tm) + 5I8 (Ho)→3F4 (Tm) + 5S2 (Ho) (CR1, Fig. 9), which is 

responsible for the red up-conversion emission energy transfer (energy mismatch of 151 cm-1). All 

facts have been identified by spectral and kinetic investigations, suggesting the occurrence of the 

proposed cross-relaxation process. 
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Figure 9. Schematic diagram of the Yb3+ sensitized Ho,Tm3+ up-conversion luminescence [156]. 

 

When Er3+ ion is substituted with Tb3+ ion (Fig. 10), it becomes possible that the Yb–Yb pair can 

effectively excite Tb3+ ions in their 5D4 state, which is about 15 000 cm-1 above the nearest 7F0 

manifold of Tb3+ [155]. 
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Figure 10. Schematic diagram of the Yb3+ sensitized Tb,Tm3+ up-conversion luminescence [155]. 

 

Such a large energy gap makes multiphonon relaxation to this 7F0 state practically impossible, and 

emission of a visible photon at about 480 nm can be expected. All other processes involving energy 

transfer between the Yb3+ and Tm3+ ions have been described above. 

If the Pr3+ ion is added to the Yb3+/Tm3+ dopants pair, the 3PJ (J = 0, 1, 2) and 1I6 manifolds of Pr3+ 

ion can be excited by the Yb–Yb pair (Fig. 11) [155]. In addition, the 1G4 manifold of Pr3+ at about 

10,000 cm-1 can be excited by a direct energy transfer from a single Yb3+ ion. So, these possible 

processes of energy transfer allow getting up-conversion luminescence in the considered crystals, 

after resonant excitation of Yb3+ ion at 980 nm. 
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Figure 11. Schematic diagram of the Yb3+ sensitized Pr,Tm up-conversion luminescence [155]. 

 

Especially the Er3+ ions has a role in the excitation process for the up-conversion emission of Tb3+ 

ion in the Yb3+,Tb3+ co-doped materials (Fig. 12) [157]. 
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Figure 12. Schematic diagram of the Yb3+ and Er3+ sensitized Tb3+ up-conversion luminescence 

[157]. 

 

The first NIR photon excites the Yb3+ ion to the 2F5/2 level (Fig. 12). The excitation may then relax 

radiatively back to the ground level (2F7/2). Alternatively, the energy can be transferred to the Er3+ ion. 

This energy can promote the Er3+ ion from the 4I15/2 to the 4I11/2 level, and if the latter is already 

populated a transition from the 4I11/2 to the 4F7/2 level can occur. The Er3+ ion can relax nonradiatively 

to the 2H11/2, 
4S3/2 or 4F9/2 level. Therefore, both green (2H11/2, 

4S3/2 → 4I15/2) and red (4F9/2 → 4I15/2) up-

conversion emission is obtained. Alternatively, the energy can be transferred to the Tb3+ ion. This 

energy can promote the Tb3+ ion from the 7F6 to the 5D4 level. Excited Tb3+ ion can then be excited to 

the 5D1 level and relax nonradiatively to the 5D3 level. Therefore, visible up-conversion emission is 

obtained when Tb3+ ion relax from 5D3 or 5D4 level to the 7FJ (J = 6, 5, 4 or 3) level. Energy transfer 

from Tm3+ 1G4 level to the Tb3+ 5D4 level and co-operative luminescence from Yb3+ in the Yb3+,Tb3+ 

co-doped materials can also enhance the Tb3+ up-conversion luminescence. 
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By adding two emitters (Tm3+ and Er3+) with different concentration ratios, the relative intensity of 

the dual emissions can be precisely controlled, resulting in tunable color output from blue to white 

[40]. In addition, the approach was also utilized to expand the emission fine-tuning in the NIR spectral 

region. By increasing the concentration of Tm3+ ions in the NaYF4:Yb3+,Tm3+ nanocrystals, the NIR 

emission of Tm3+ can be considerably enhanced with respect to the blue emission. The phenomenon 

is primarily attributed to enhanced population of the 3H4 level generated by the energy resonant 

between 1G4
3H4 and 3F4

3F2 at elevated dopant concentration of Tm3+. Given the broad range of 

available dopant-host combinations, this approach as well as its complementary version of down-

conversion multicolor tuning should allow generation of a large library of emission spectra in the 

visible and NIR spectral region that are particularly useful in multiplexed labeling. 

Recently, four-color emissions have been demonstrated from NaYbF4:Tm3+, NaYbF4:Ho3+, 

NaYbF4:Er3+, and NaYF4:Yb3+ nanocrystals, respectively [153]. Under a single wavelength excitation 

at 980 nm, the nanoparticle solutions exhibit characteristic emission spectra and four different colors 

without the use of any color filter. 

 

2.3.3. MULTIPHONON AND CROSS-RELAXATION 

Non-radiative multiphonon relaxation rate between energy levels is an important factor that 

dictates the population of intermediate and emitting levels and subsequently determines the 

efficiency of the up-conversion process [22,151]. The prerequisites for efficient multiphonon 

relaxation are an energy level below the luminescent level and/or high-energy phonon. For Tb3+, the 

energy difference between the 4S3/2 (and 2H11/2) levels yielding the green luminescence and the next 

lower level (4I9/2) is ca. 3000 (and ca. 3700) cm-1. When the crystallite size is smaller, there exist 

usually more impurities (e.g. NO3
- ,  OH-) and the large surface area to facilitate the quenching of 

luminescence. The probability of the multiphonon relaxation is increased because the impurities have 

high phonon energies (up to 1500 and 3500 cm-1) and thus less phonons (one or two) are needed for 

quenching. The multiphonon relaxation of the green luminescence enhances the intensity of the red 

luminescence by populating the 4F9/2 level. 

Another process that may affect the luminescence intensities is cross-relaxation [6,52-53,151]. For 

Er3+, there are three possible cross-relaxation processes resulting in the quenching of the green 

luminescence (Fig. 7). The first process involves the 4F7/2→
4F9/2 relaxation and 4I11/2→ 4F9/2 excitation. 

The energy is ca. 5200 cm-1. In the second possible cross-relaxation process there are coupled the 
2H11/2→

4I13/2 relaxation and the 4I15/2→
4I9/2 excitation. The energy in these two processes is ca. 

12500 cm-1. The quenching of the emission from the 4S3/2 level proceeds through the thermally 

activated 2H11/2 level. In the third process there are coupled the 2H11/2→
4I9/2 relaxation and the 

4I15/2→
4I13/2 excitation. The energy difference related to these processes is ca. 6700 cm-1. These two 

last mentioned cross-relaxation processes are competing with the green luminescence, the 

multiphonon relaxation and also with each other. The cross-relaxation processes of Er3+ is naturally 

favored by the rather high erbium concentration. 
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Figure 7. Cross-relaxation processes of the Yb-Er up-conversion luminescence [6,52-53,151]. 

 

2.3.4. d TRANSITION METALS 

In addition to the lanthanides, some transition metals (including Ti2+, Cr3+, Ni2+, Mo3+, ReIV, and 

OsIV) are capable of photon up-conversion [6,151,158-161], but the degree of the nonradiative 

relaxation of the excited d-electrons is higher than that of the lanthanide f-electrons. Due to the lower 

up-conversion efficiency of the transition metal dopants, the usability in commercial applications are 

in minor relevance. 

 

2.4. Applications 

2.4.1. BIOANALYTICAL APPLICATIONS 

2.4.1.1. Bioaffinity assays 

Up-conversion applications have been devised for detection of cell and tissue surface antigens as 

luminescent bioassays [31,32,37-39]. The main advantage is that IR up-converting phosphors are 

excited by wavelengths (980 nm) that cannot excite the biological materials (e.g. blood) (Fig. 13). The 

main merit of the up-conversion-based assay technology is the absence of autofluorescence at 

visible wavelengths, which commonly deteriorates the detection limits of assays involving biological 

components. The autofluorescence originates from endogeneous fluorophores of biological material 

and is observed at wavelengths longer than the excitation radiation.  However, under NIR excitation 

the possible autofluorescence is observed at the NIR region several hundred nanometers away from 

the visible wavelengths where the emission is collected (anti-Stokes shift up to 500 nm). This 

advantage enables, at least in theory, more sensitive bioanalytical methods as the background 

fluorescence can be minimized. 
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Figure 13. Excitation and emission of the up-converting particles and the absorption wavelength of 

the whole blood. 

 

The operation of the bioaffinity assays relies on reversible binding events between biomolecules 

[162]. These recognitions may be, for example, between two proteins, between a protein and a small 

ligand molecule, or between nucleic acids. Often the aim is to determine the concentration of an 

analyte of interest. There are different ways to categorize the bioaffinity assays. One division can be 

made into heterogeneous and homogeneous bioaffinity assays based on how the signal from the 

specific binding reaction is generated. In the former type, the formed complex is physically separated 

from other interfering assay components with the help of one or more washing steps before 

measuring the signal. This requires that one of the biomolecules in the complex is bound to a solid 

surface. In the latter type, no washing steps are required, as the binding reaction itself causes a 

modulation in the signal level. Another categorization can be made to competitive and non-

competitive assays based on the source of the signal. In non-competitive assays the signal arises 

from the labeled recognition biomolecule that is bound to the analyte of interest. In the competitive 

format, on the other hand, the signal typically arises from a labeled analyte analogue. This principal 

difference causes the dose-response curves to appear essentially opposite, so that in a non-

competitive assay the signal increases, and in a competitive assay the signal decreases with 

increasing analyte concentration. The non-competitive format is generally considered to be the more 

sensitive of the two formats. 

The inorganic lanthanide crystals have been proven to be useful in bioaffinity assays [162]. In 

addition to immunoassays, up-converting nanoparticles have been used, for example, in enzyme 

activity assays and DNA-hybridization assays taking advantage of the up-conversion phenomenon 

(Fig. 14). 
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Figure 14. Principle of the competitive homogeneous up-conversion LRET assay using biotin as a 

model analyte [38]. Yb3+,Er3+-doped up-conversion phosphor (donor) produces 

emission at 550 nm upon excitation at 980 nm. 

 

2.4.1.2. Luminescent sensors 

Chemical sensors are small instruments that respond to the presence of certain analytes by 

producing a measurable signal [162]. Sensors have been designed mainly for pH, temperature, 

oxygen, carbon dioxide, hydrogen peroxide, glucose, proteins, nucleic acids, anions, metal ions, 

cofactors and coenzymes. Chemical sensors usually consist of two connected units: a chemical 

receptor for analyte recognition, and a physicochemical transducer for producing a signal proportional 

to the analyte concentration. Traditionally, chemical sensors have contained organic dye molecules, 

such as rhodamine, as luminescent compounds. Currently, there has been increasing interest in 

using NIR emitting lanthanide ions and up-converting nanoparticles for better tissue penetration. Up-

converting nanoparticles have been applied in sensor systems to detect e.g. pH [163], temperature 

[164], NH3 [165], and O2 [166]. 

 

2.4.1.3. Microscopy and imaging 

The non-toxic up-converting nanoparticles are very promising for imaging applications [162]. The 

NIR excitation minimizes photodamage and allows deep tissue penetration. The elimination of 

autofluorescence resulting from the up-conversion phenomenon further increases the detection 

sensitivity compared to imaging applications using more traditional reporters. Additionally, up-

converting nanoparticles are readily internalized by many cell types and in the imaging of blood 

vessels. There is currently an increasing interest towards multifunctional (dual-mode) reporters also 

in imaging. For example, the particulate reporters can be made electron dense, which enables their 

use in electron microscopy, or elements applicable for MRI (such as gadolinium) can be incorporated 

into the particle. As an example, gadolinium-doped UCPs have been used in vivo combining 

luminescence imaging with MRI [167]. 

 

2.4.1.4. Lateral flow assays 

Both immunochromatic assays and lateral flow assays for nucleic acid detection have been 

demonstrated using sub-micrometer-sized up-converting particles [168]. The assay strip for UCP-

based lateral flow assays consists of a sample pad, an adsorbent pad, and a nitrocellulose 
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membrane with specific capture molecules deposited at test and control lines. Both benchtop and 

portable readers for the detection of up-conversion luminescence have been developed offering a 

simple instrumented method to read assays and removing the possibility of human error compared to 

interpreting a visual strip. 

 

2.4.2. LASERS 

Because optically pumped lasers are originally based on a Stokes pumping process, one basic 

problem is to obtain a high-density pumping source at a shorter wavelength than their emitting 

wavelength [25]. At this moment, the most widely studied up-conversion laser is LiYF4:Er3+ where 

green (551 nm) and red (619, 669, 702, and 702 nm) lasing has been demonstrated by pumping into 

either 4I9/2 level with wavelengths around 800 nm or the 4I11/2 level with wavelengths around 970 nm 

[76]. 

 

2.4.3. DIODES 

Infrared up-conversion devices generally consisted of Yb3+-sensitized and Er3+- or Tm3+-activated 

fluoride phosphors and GaAs:Si light emitting diodes (LEDs) as excitation sources [169]. However, 

since the overall efficiency of the up-conversion display devices were generally low and inferior to 

that of green emitting GaP LEDs, the devices were forsaken and little attention was paid to them 

thereafter. 

However, a 980 nm emitting laser diode (LD) has been developed for pumping an Er3+-doped fiber 

amplifier for optical communication systems [169]. This wavelength region is also in fair agreement 

with the peak wavelength of Yb3+ ion absorption. The LD has high output (over 50 mW) and good 

reliability. Since the LD output light can be finely focused, adoption of LD has pronouncedly increased 

the infrared excitation density and also made it possible to accomplish effective optical confinement. 

 

2.4.4. DISPLAYS 

The physical mechanism on which the 3D display technology is based is known as two-step, two-

frequency (TSTF) up-conversion (Fig. 15) [28]. It is crucial that the two-step excitation process in the 

active ion occurs from only the selective absorption of two different IR wavelengths, as it is this 

mechanism that enables a visible point of light to be "turned on" only where the two laser beams 

cross and nowhere else [28]. By controlling the spatial coordinates of the intersection of the two 

lasers, one can address a "voxel," or volumetric pixel, at a specific location inside the bulk imaging 

medium. Rapidly scanning the point of intersection around inside the display volume moves the 

position of the voxel and allows 3D images to be drawn. 
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Figure 15. Layered device architecture proposed for providing wavelength-addressable red, green, 

and blue colors in a solid-state, 3D display (left) [28]. Photograph of a monochrome, 

solid-state, 3D display in a 1 cm3 Pr3+-doped sample (right) [28]. 

 

For example, the transparent host materials used for the display are heavy metal fluoride glasses 

doped with rare earth lanthanides: praseodymium (red), erbium (green) and thulium (blue) [28]. 

These glasses, the most common of which is ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) [170], have been 

developed for fiber laser and optical amplifier applications and are characterized by low (below 

500 cm-1) phonon energies, a critical parameter leading to reduced nonradiative losses and 

increased up-conversion efficiencies. 

 

2.4.5. INKS FOR SECURITY PRINTING 

Security inks are specialized inks used for the purpose of authentication, anti-counterfeiting, and 

loss or theft prevention [29]. Up-conversion phosphors are suitable for various kinds of printing 

application, and can be mixed with several types of inks. These security inks can be added e.g. in 

plastics, papers, cloths, ceramics, glasses or in solutions. 

Invisible inks contain unconventional dyes or pigments which become visible when exposed to an 

excitation light source which causes luminescence [29]. Invisible inks are a subcategory of a class of 

security inks. Such inks are widely used in bank notes or currency as an anti-counterfeit measure. 

 

2.4.6. SOLAR CELLS 

One of the most interesting and highly promising suggestions for a future application of the 

efficient up-conversion phosphors is as an active coating on solar cells for increased sun light to 

electric energy conversion efficiencies [21,171,172]. The application of a layer of a suitably chosen 

up-converting material adhered to a silicon solar cell will enable such a solar cell to indirectly utilize 

sub-band gap radiation (λ > 1100 nm) that would otherwise not be absorbed by the silicon. This 

principle was demonstrated using a silicon solar cell with a microcrystalline NaYF4:Er3+ coating [21]. 

A contribution to the photocurrent extracted from the cell was found under excitation from 1500 to 

1600 nm, coinciding with the Er3+ 4I15/2→
4I13/2 transition. Even though this contribution had somewhat 

poor external quantum efficiency, this value is many orders of magnitude higher than the intrinsic 

absorption of silicon in this wavelength region. As the up-conversion process is nonlinear, a higher 
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excitation density will also significantly increase the efficiency of such a device. Therefore, at least in 

principle, an up-conversion phosphor adhered to an optimized bifacial solar cell operating under high 

excitation density, most likely through the use of focusing optics, may significantly increase the 

overall efficiency of the solar cell. 

 

2.4.7. ENHANCEMENT OF PHOTOSYNTHESIS 

An interesting biological application of up-conversion luminescence is in the photosynthesis [173]. 

The rate of hydrogen production with photosynthetic systems is critically dependent on the light use 

efficiency of the photosynthetic electron transfer chain [174-176]. In the photosynthesis, plants, algae 

and cyanobacteria convert light to chemical energy. The photosystems can only use photons whose 

energy exceeds a threshold value of approximately 1.8 eV (700 nm). Longer wavelengths are not 

even absorbed by chlorophylls and other photosynthetic antenna pigments. However, radiation 

between 400 and 700 nm represents only 44 % of total solar energy while the range above 700 nm 

comprises 52 %, and therefore the light use efficiency of photosynthetic systems would be greatly 

improved if photosynthesis could also use near-infrared (NIR) radiation. A possible method for 

making the energy content of NIR photons available for photosynthesis is to convert NIR radiation to 

visible light with the photon up-conversion mechanism [6]. 
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3. EXPERIMENTAL 

3.1. Materials preparation 

3.1.1. Y2O2S:Yb3+,Er3+ 

Y2O2S:Yb3+,Er3+ materials were obtained with the flux method [42,43]. The rare earth oxide 

prepared with the combustion synthesis [44-50] is heated in the Na2Sx flux composition to form the 

corresponding oxysulfide (Eq. 2). Suitable fluxes include sulfur and sodium carbonate. 

 

Y2O3:Yb3+,Er3+ + 1.5Na2CO3 + 4S → Y2O3:Yb3+,Er3+ + 1.5Na2Sx → 

Y2O2S:Yb3+,Er3+ + 1.5Na2S2O4                                                                                                               (2) 

 

Heating of the starting materials was carried out in an Al2O3 crucible under static N2 gas sphere by 

heating to the desired temperature and maintaining this temperature for 2 h. After the heating, the 

products were allowed to cool down naturally to the room temperature under the same gas sphere. 

The products were ground in an agate mortar and washed with deionized water to remove the Na2S2O4 

impurities. The products were also washed with an aqueous solution of acetic acid (c: 2.5 moldm-3) to 

remove the rest of the impurities. 

 

3.1.2. ZrO2:Yb3+,Er3+ 

3.1.2.1. Combustion synthesis 

The precursor materials of ZrO2:Yb3+,Er3+ prepared with the combustion synthesis were the 

aqueous solutions of zirconyl nitrate (ZrO(NO3)2) as well as ytterbium and erbium nitrates (Yb(NO3)3 

and Er(NO3)3, respectively) [44-50]. The nominal concentrations of Yb3+ and Er3+ were 5 or 10 and 2 

or 4 mole-%, respectively, of the ZrIV amount (yttrium 14, 28 or 42 mol-%). Glycine (NH2CH2COOH), 

semicarbazide (H2NCONHNH2·HCl), urea ((NH2)2CO), or 2-amino-2-methyl-1,3-propanediol (AMP, 

(HOCH2)2C(NH2)CH3) served as the fuel. Additional ammonium nitrate (NH4NO3) was used as an 

oxidizer with selected fuels. The combustion reaction was carried out in a glass reactor using a weak 

upward air flow. Selected products were post-annealed in air at 700 °C for 1 h if the materials’ 

crystallinity was poor. 

 

3.1.2.2. Sol-gel synthesis 

The ZrO2:Yb3+,Er3+ nanomaterial was also prepared with the sol-gel synthesis by mixing first 

zirconium n-propoxide as the precursor in a solution of ethanol, nitric and hydrochloric acids at room 

temperature and stirring vigorously [51]. After that, aqueous ytterbium (10 mol-%) and erbium  

(4 mol-%) nitrate solutions were added. The obtained solution was stirred for 60 min, and 

subsequently CO2-free distilled water was added dropwise. After the gelation, the material was dried 

and annealed for 6 h at 400 °C and 20 h at 1000 °C in static air in a ceramic crucible with a lid. 

 

3.1.3. NaYF4:Yb3+,Er3+ 

3.1.3.1. Co-precipitation synthesis 

The NaYF4:Yb3+,Er3+ nanomaterials were prepared with a co-precipitation synthesis [54]. In a 

typical procedure for the preparation of the NaYF4:Yb3+,Er3+ particles, 2.1 g of NaF (0.05 mol) was 
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first dissolved in 60 cm3 of deionized water. Another solution was prepared by mixing together 16 cm3 

YCl3, 3.4 cm3 YbCl3, 0.6 cm3 ErCl3 and 20 cm3 EDTA solution. The concentration of each solution 

was 0.2 moldm-3. The complex solution was injected into the NaF solution quickly, and the mixture 

was stirred for 1 h at room temperature. Precipitates from the reaction were centrifuged, washed 

three times using deionized water and once with anhydrous ethanol. The precipitates were then dried 

under vacuum for 24 h. 

The nanocrystalline shell in the core-shell Na(Y,Yb)F4-NaErF4 nanomaterials was prepared with 

the same synthesis as the homogeneous material by dissolving first 2.1 g of NaF in 60 cm3 of 

deionized water. Then dried Na(Y,Yb)F4 core was mixed into this solution. The ErCl3 solution 

(0.6 cm3) was poured quickly into the NaF-core solution, and the mixture was stirred for 1 h at room 

temperature. The precipitate was centrifuged, washed and dried as above. 

The annealing of the nanoparticles was carried out under a N2 + 10 % H2 gas sphere by heating to 

the desired temperature at a rate of 20 °C per minute, and maintaining this temperature for 5 h. After 

annealing, the products were cooled down naturally to room temperature under the same gas sphere. 

Selected materials were prepared without EDTA to study the effect of the EDTA amount on the 

particle size. 

 
3.1.3.2. Solvothermal synthesis 

Up-converting NaYF4:Yb3+,Er3+ nanoparticles were also prepared with the solvothermal synthesis 

(Eq. 3) [56]. 

 

NaOH(aq) + C18H34O2(l) + RCl3(aq) + 4NaF(aq) → 

NaRF4(s) + 3NaCl(aq) + C18H33O2Na(aq) + H2O                                                                                 (3) 

 

In a typical synthesis, NaOH (1.2 g, 30 mmol), water (9 cm3), ethanol (10 cm3), and oleic acid 

(20 cm3) were mixed under agitation to form a homogeneous solution [56]. Then 0.6 mmol (total 

amounts) of rare-earth chloride (1.2 cm3, 0.5 mol/dm3 RCl3, R: Y (78), Yb (20), Er (2 mol-%)) aqueous 

solution was added under stirring. Subsequently, 1.0 moldm-3 aqueous NaF (4 cm3) solution was added 

dropwise to the above solution. Some of the solutions became highly viscous due to a saponification 

reaction. The mixture (44 cm3) was stirred for ca. 10 min, then transferred to a 25 cm3 glass reactor, 

sealed, and hydrothermally treated at 140-185 °C for 4-12 h. The pressure of the reaction vessel was 

0.9-2.0 MPa. The system was cooled to room-temperature naturally, and the products deposited at the 

bottom of the vessel. Cyclohexane was used to collect the products. The products were subsequently 

deposited by adding ethanol to the sample-containing cyclohexane solution. The resulting mixture was 

then centrifuged to obtain powder samples. The products were dried in a vacuum desiccator and 

washed with ethanol several times to remove oleic acid, sodium oleate, and other remnants. 

 

3.2. Characterization 

3.2.1. THERMAL ANALYSIS 

The TG and DTA curves between 25 and 1200 °C were measured in flowing air (100 cm3min-1) 

with a TA Instruments SDT 2960 Simultaneous DTA-TGA thermoanalyzer with a heating rate of 

5 °Cmin-1. α-Al2O3 was used as both the reference and crucible material. 
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3.2.2. FT-IR SPECTROSCOPY 

The FT-IR spectra between 400 and 4000 cm-1 were measured with a Mattson Instruments 

GALAXY 6030 or Nicolet Nexus 870 spectrometer with a 4 cm-1 resolution. The materials were mixed 

with KBr and then pressed to transparent discs. 

 

3.2.3. PARTICLE SIZE AND MORPHOLOGY 

The particle size and morphology of the materials were examined using a JEM 1200EX 

transmission electron microscope with a 0.14 nm resolution. The X-ray detector was a NORWAR-

window Si(Li) detector. The materials were embedded in epoxy resin and cut on an ultramicrotome at 

70 nm thickness. 

The particle size and morphology were also studied with the Tecnai 12 Bio Twin transmission 

electron microscope equipped with a CCD camera. The measurement voltage was 120 kV and the 

resolution 0.49 nm. The materials were suspended to the 10 mM borate buffer with 0.1 % Tween-20 

detergent and then added to the copper grid. 

The EDX maps with the SEM images were obtained with the FEI Quanta 200 field emission 

scanning electron microscope with the EDAX Genesys 4000 equipment and the Sapphire Si(Li) 

detector. 

 

3.2.4. X-RAY POWDER DIFFRACTION 

The crystal structure and phase purity of the nanomaterials were analyzed with the X-ray powder 

diffraction (XPD) measurements. The patterns were collected with a Huber G670 image plate (2θ 

range: 4-100°) Guinier-camera (CuKα1 radiation: 1.5406 Å). The reference patterns were calculated 

with the PowderCell program [177] using the crystallographic data from [178]. 

 

3.2.5. CRYSTALLITE SIZE CALCULATIONS 

The crystallite size of each ZrO2:Yb3+,Er3+ nanomaterial was estimated from the diffraction data by 

using the Scherrer formula (Eqs. 4 and 5) [179]. In this equation, d (m) is the mean crystallite size, λ 

(m) the X-ray wavelength, β (rad) the full width at half maximum (FWHM) of the most appropriate 

reflection and θ (°) half of the Bragg´s angle (2θ). The reflection broadening due to the diffractometer 

set-up was eliminated from the βs-value by using a microcrystalline reference (βr). 

 

βcosθ

0.9λ
=d                                                                                                                                            (4) 

 

                                                                                                                                           (5) 

 

3.2.6. XANES / EXAFS 

The XANES and EXAFS measurements were made at Hamburger Synchrotronstrahlungslabor 

(HASYLAB) at Deutsches Elektronen-Synchrotron (DESY) (Hamburg, Germany), Beamline C. The 

data was collected on the Er LIII and Yb LII edges because Yb LIII could not be used due to the close 

proximity of Er LII. Si(111) double crystal monochromator and Canberra 7 pixel High Purity 

2
r

2
s

2 ββ=β -
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Germanium (HPGe) detector were used. The measurements were made in fluorescence mode. The 

EXAFS data was treated with the EXAFSPAK program suite [180]. 

 

3.2.7. ABSORPTION SPECTROSCOPY 

The absorption spectra of a ZrO2:Yb3+,Er3+ nanomaterial prepared with the sol-gel synthesis were 

measured with a Varian Cary 5E UV-vis-NIR spectrometer between 10 000 and 11 500 cm-1 at room 

and 10 K temperature. The material was mixed with KBr and then pressed to a disc. 

The absorption spectrum of the whole blood was measured with a Shimadzu Biospec 1601 

spectrometer between 9100 and 41 600 cm−1 at room temperature. The whole-blood solution 

contained 5 vol-% of blood diluted in 10×10−3 mol dm−3 Tris-HCl (pH 8.0) buffer solution. 

 

3.2.8. UP-CONVERSION LUMINESCENCE AND LUMINESCENCE DECAY 

The up-conversion luminescence spectra of the nanomaterials were measured at room 

temperature with an Ocean Optics PC2000-CCD spectrometer. The spectral response of the 

spectrometer was calibrated with an Ocean Optics LS-1-CAL-INT calibration source. The NIR 

excitation (970 nm) source was a HTOE FLMM-0980-711-1300m fiber-coupled IR laser diode. There 

was a longpass filter (850 nm, Edmund RG850) between the laser and the sample holder. The 

material was packed inside a capillary tube as evenly as possible. A shortpass filter (850 nm, 

Edmund 46386) between the sample and the detector was used to exclude the exciting radiation 

from the detector. Spectra were collected with the Ocean Optics OOIIrrad software. The laser diode 

was controlled with a Wavelength Electronics LDTC2/2. The correct absolute intensities of the 

luminescence spectra of the different samples were ensured by using always the same calibrated 

measurement practice and checking the reproducibility of individual measurements. 

The decay curves were measured with the same excitation source at 650 nm. The width of the 

excitation pulse was 5, 20 or 40 milliseconds. After each pulse there was a 60-95 ms delay before the 

next pulse. One measurement consisted of 1000-10 000 pulse-delay cycles. 

 

3.2.9. UV-VUV EXCITATION SPECTRA 

The UV-VUV excitation spectra of the ZrO2:Yb3+,Er3+ nanomaterials were measured between 3.7 

and 40 eV by using synchrotron radiation (SR) at the SUPERLUMI beamline of HASYLAB at DESY 

(Hamburg, Germany). The samples were mounted on the cold finger of a liquid He flow cryostat. The 

spectra were recorded at 10 and 298 K with a 2-m McPherson type excitation monochromator 

attaining a resolution down to 0.02 nm. The emission spectra were obtained with a 0.3-m Acton 

Research Corp. Czerny-Turner-type triple-grating SpectraPro 300i monochromator (200 to 800 nm) 

equipped with a conventional photomultiplier (and a CCD-camera). 

 

3.2.10. THERMOLUMINESCENCE 

The thermoluminescence (TL) glow curves were measured with an upgraded Risø TL/OSL-DA-12 

system using a constant heating rate of 5 °Cs−1 in the temperature range from 25 to 400 °C. The 

global TL emission from UV to 650 nm was monitored. Prior to the measurements, the samples were 

irradiated with a combination of Philips TL 20W/05 (emission maximum at 360 nm) and TL 20W/03 
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(420 nm) UV lamps for two minutes. A delay of 3 min between the irradiation and measurement was 

used. The analysis of the TL glow curves was carried out with the deconvolution method by using the 

program TLanal v.1.0.3 [181]. 
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4. RESULTS AND DISCUSSION 

4.1. Formation 

4.1.1. Y2O2S:Yb3+,Er3+ 

The TG curve of the precursors of the Y2O2S:Yb3+,Er3+ nanomaterial shows the formation of the 

Na2Sx flux (Fig. 16). According to the DTA curve, the formation of the flux is completed around 

450 °C. The weight loss at 1100 °C indicates the decomposition of the oxysulfide back to the oxide. 
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Figure 16. TG and DTA curves of the precursors of the Y2O2S:Yb3+,Er3+ nanomaterial prepared 

with the flux method. 

 

4.1.2. ZrO2:Yb3+,Er3+ 

The TG curve of the ZrO2:Yb3+,Er3+ nanomaterial prepared with the combustion synthesis shows 

the decomposition of nitrates at 250-450 °C (Fig. 17) [I]. 
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Figure 17. TG and DTA curves of the ZrO2:Yb3+,Er3+ nanomaterial prepared with the combustion 

synthesis [I]. 

 

A small amount of moisture is present because a low temperature weight loss is observed below 

200 °C. With glycine used as the fuel, a further mass change is observed between 500 and 650 °C. 

This change is due to the decomposition of zirconium oxycarbonates/oxynitrates [182,183]. The 

exothermic signal in the DTA curve around 700 °C can be related to the appearance of a crystalline 

phase of ZrO2:Yb3+,Er3+ as indicated by the XPD patterns. The gradual weight loss at higher 

temperatures can be taken as an indication of evaporation of tightly bound species, e.g. OH- groups 

(as water). The presence of these impurities may have a nefarious effect on the luminescence 

performance of these nanomaterials. 
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4.1.3. NaYF4:Yb3+,Er3+ 

The DTA curve of the NaYF4:Yb3+,Er3+ nanomaterial prepared with co-precipitation with EDTA 

shows an exothermic reaction at 500 °C due to the formation of the hexagonal phase from the low 

temperature cubic one (Fig. 18, left) [II]. Also the endothermic reaction at 665 °C due to the formation 

of high temperature cubic phase from the hexagonal one is observed. The DTA curve of the 

NaYF4:Yb3+,Er3+ nanomaterial prepared without EDTA (Fig. 18, right) shows an exothermic reaction 

at 440 °C and an endothermic one at 660 °C due to the phase formations described above. 
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Figure 18. TG and DTA curves of the NaYF4:Yb3+,Er3+ nanomaterials prepared with co-

precipitation with (left) and without EDTA (right) [II]. 

 

This revealed that the preparation of the nanomaterial with EDTA needs a higher temperature for 

the formation of the hexagonal phase. This might be due to the property of EDTA preventing the 

particle growth. The crystallite size of the hexagonal phase seems in most cases to be larger than 

that of the cubic ones (see Chapter 4.4.3) and because of that, higher temperatures are needed for 

the cubic phase changing to the hexagonal one. Finally, at 1100 °C, the materials were decomposed 

to NaF and Y2O3, and, at 1240 °C, the YF3 compound was formed. 

 

4.2. Materials’ purity 

4.2.1. Y2O2S:Yb3+,Er3+ 

The FT-IR spectra of the Y2O2S:Yb3+,Er3+ nanomaterials prepared with the flux method show 

vibrations of water due to KBr discs (Fig. 19). This is evidenced by the broad band around 3350 cm-1 

as well as a narrower band observed at 1640 cm-1, indicative of antisymmetric and symmetric OH 

stretching and HOH bending modes [184]. Also, strong Y-O vibrations at 450 cm-1 are observed due 

to the very good crystallization of the Y2O2S:Yb3+,Er3+ products. The content of water is decreased 

when the annealing time is higher (Fig. 19, left). There are also weak signals at 1100 and 1388 cm-1 

which are due to a small amount of SO4
2-.   
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Figure 19. FT-IR spectra of the Y2O2S:Yb3+,Er3+ nanomaterials prepared with the flux method. 

 

4.2.2. ZrO2:Yb3+,Er3+ 

The FT-IR spectra reveal the conventional impurities (NO3
-
, OH-) [184] in the nanomaterials 

prepared with the combustion synthesis (Fig. 20) [III,IV,185]. Although the organic compounds (fuels) 

have mainly decomposed to CO2, H2O and NOx, the materials may contain carbon residues, since 

some ZrO2:Yb3+,Er3+ nanomaterials prepared with this synthesis are brown, whereas the body color 

of pure ZrO2 is white. On the other hand, the coloration of the products may be due to color centers 

present because of the aliovalent substitution of ZrIV with Yb3+ or Er3+. 
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Figure 20. FT-IR spectra of the ZrO2:Yb3+,Er3+ nanomaterials prepared with the sol-gel and 

combustion synthesis [III,IV,185]. 

 

4.2.3. NaYF4:Yb3+,Er3+ 

4.2.3.1. Homogeneous materials 

The FT-IR spectra of the NaYF4:Yb3+,Er3+ prepared with co-precipitation reveal that in the 

materials with both cubic and hexagonal phases, there are metal-fluoride vibrations of both phases; 

at 550 and ca. 400 cm-1 for cubic and hexagonal phase, respectively (Fig. 21) [II,184]. The strong OH 

stretching and HOH bending vibrations at 3350 and 1550 cm-1 [184] respectively, are mainly due to 

the water absorbed on the surface of the KBr disc during the disc preparation. 
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Figure 21. FT-IR spectra of the homogeneous NaYF4:Yb3+,Er3+ nanomaterials prepared with co-

precipitation and annealed at selected temperatures (left) and gas spheres (right) [II]. 

 

In the FT-IR spectra of the NaYF4:Yb3+,Er3+ nanomaterials prepared with the solvothermal 

synthesis (Fig. 22), there are metal-fluoride vibrations, which reveals that there are both hexagonal 

and cubic phases: at 400 and ca. 530 cm-1, respectively [V,184]. 
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Figure 22. FT-IR spectra of the homogeneous NaYF4:Yb3+,Er3+ nanomaterials prepared with the 

solvothermal synthesis at selected reaction pressures [V]. 

 

The strong vibration at 1100 cm-1 is due to the CO group (Fig. 22) [184]. The vibrations at 1408 

and 1462 cm-1 are due to the bending vibrations of methylene (CH2) in the long alkyl chain of the 

oleic acid and the vibration at 1633 cm-1 is due to the RHC=CHR double bond. The 2854 and 

2924 cm-1 vibrations are assigned to the stretching vibrations of methylene (CH2) group. The OH 

stretching (3445 cm-1) vibration is mainly due to the water absorbed on the surface of KBr disc during 

the preparation. According to these results there is oleic acid in the materials but it is impossible to 

say, whether the oleic acid chains are unattached or coating the nanoparticle surfaces. 

 

4.2.3.2. Core-shell materials 

The FT-IR spectra (Fig. 23) reveal that in the core-shell Na(Y,Yb)F4-NaErF4 material prepared with 

the co-precipitation method, there were metal-fluoride vibrations of cubic and hexagonal phases; at 

550 and ca. 400 cm-1, respectively [VI,184]. The other materials show only the metal-fluoride 

vibrations at 350 cm-1 due to the pure hexagonal structure. The strong OH stretching and HOH 

bending vibrations at 3350 and 1550 cm-1, respectively, are mainly due to the water absorbed on the 

surface of the KBr disc during the disc preparation. 
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Figure 23. FT-IR spectra of the homogeneous NaYF4:Yb3+,Er3+ and core-shell Na(Y,Yb)F4-NaErF4 

nanomaterials prepared with co-precipitation [VI]. 

 

4.3. Particle size, morphology and elemental distribution 

4.3.1. Y2O2S:Yb3+,Er3+ 

The TEM measurements for Y2O2S:Yb3+,Er3+ nanomaterials prepared with the flux method allow the 

direct imaging of nanoparticles and provides information on the quality of individual particles, e.g. their 

size and size distribution (Fig. 24) [VII]. 

 

  

  

 

Figure 24. TEM images of selected Y2O2S:Yb3+,Er3+ nanomaterials prepared with the flux method 

[VII]. 

 

The particle size is smaller for materials annealed at lower temperatures. The average particle size 

determined from TEM is equal to 10 nm for the materials annealed at 500 °C (Fig. 24A) and 20-40 nm 

for materials annealed at 700 or 600 °C (Figs. 24B and 24C). The particle size is ca. 70-110 nm for the 

materials annealed at 900 °C (Fig. 24D). These sizes agree with the calculations using the Scherrer 

equations. 
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4.3.2. NaYF4:Yb3+,Er3+ 

The TEM images of the NaYF4:Yb3+,Er3+ nanomaterials prepared with co-precipitation using EDTA 

as a chelating agent reveal that the particles are quite uniform in size (ca. 110 nm), and the shape is 

spherical-like (Fig. 25) [186]. The particles are strongly aggregated before annealing, but after 

annealing, they are more separate. This is probably due to the loss of the moisture during the 

heating. The annealing at low temperature (350 °C) did not increase the particle size. 

 

  

Figure 25. TEM images of the homogeneous NaYF4:Yb3+,Er3+ nanomaterials prepared with co-

precipitation (not annealed (left) and annealed 5 h @ 350 °C in N2+10 % H2 gas sphere 

(right)) [186]. 

 

The TEM images of the NaYF4:Yb3+,Er3+ nanomaterials prepared with the solvothermal synthesis 

(Fig. 26) reveal that there are both small spherical and large cubic particles [V]. The particles are also 

strongly aggregated. The size of the spherical particles is 10-20 and the cubic particles ca. 50 nm. In 

addition, rods with the length of ca. 1 μm are observed. These rods are formed due to the high NaF 

to R3+ ratio (7:1) [68,187] and long reaction time. 

 

  

Figure 26. TEM images of the NaYF4:Yb3+,Er3+ nanomaterial prepared with the solvothermal 

synthesis for 8 h @ 177 °C [V]. 

 

According to the literature, the NaF to Y3+ molar ratio can greatly influence the morphology of the 

hexagonal β-NaYF4 crystals [68]. The morphology evolution process of the hexagonal-phase NaYF4 

along with the molar ratio of NaF to Y3+ is interesting. The hexagonal crystal system has four crystal 

axes, three of which intersecting with each other at a skew angel 60° in a plane surface are assistant 

axes, and the other axis (c axis) perpendicular to the plane is the principle axis. According to the 

general principle of crystal growth, the most representative and common shape for hexagonal 

1.8 MPa 1.71 MPa 
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compounds is the hexagonal prism. If the crystal growth rate on the directions of the assistant axes is 

quicker than that on the c axis in the crystal growth process, the crystal takes the hexagonal plate 

morphology. Otherwise, the crystal is likely to be a long and thin hexagonal prism, and even to be a 

long needle if the growth rate along the c-axis is much quicker than along the plane surface. As 

mentioned earlier, the growth rate at different directions of β-NaYF4 has been reported to be profoundly 

affected by the NaF to Y3+ ratio. In the synthetic route, NaF is excessive compared with Y3+ and the 

excessive F is inevitably capped on the crystal surface due to the strong coordination effect between F– 

and Y3+. According to the Gibbs-Thompson theory, the relative chemical potential of a crystal is simply 

proportional to its surface-atom ratio, determined by the average number of dangling bonds per atom 

over the entire crystal. The capping effect of F– would decrease the average number of dangling bonds, 

and further decrease the chemical potential of the crystal, as well as the crystal plane. 

A detailed observation on the crystal structure of β-NaYF4 reveals that the Y3+ density on different 

crystal planes varies. The density of Y3+ on the (10 1 0) crystal plane is larger than the density of Y3+ 

on the (0001) crystal plane. The capping effect of F– on the (10 1 0) crystal plane is greater than it on 

the (0001) plane. As a result, the chemical potential of these crystal planes varies, and the relative 

growth rate on the different directions changes, finally leading to the different crystal morphologies. 

The EDX spectroscopy measurements show a homogeneous distribution for all elements (Na, Y, 

Yb, Er) in the homogeneous NaYF4:Yb3+,Er3+ prepared with co-precipitation without EDTA and 

annealed at 400 oC (Fig. 27, left). The Na(Y,Yb)F4-NaErF4 core-shell material prepared at 400 °C 

shows an inhomogeneous distribution of Er due to the lack of diffusion induced mixing of layers at 

such a low temperature (Fig. 27, middle). The homogeneous elemental distribution of the 

Na(Y,Yb)F4-NaErF4 core-shell materials prepared at the higher temperature (600 °C) indicates (at 

least a partial) mixing of the layers by diffusion of the Yb3+ and Er3+ ions (Fig. 27, right). According to 

the SEM images, the particle size in these materials is ca. 100 nm. However, the annealing at 600 °C 

caused particle aggregation. 

 

  NaYF4:Yb3+,Er3+, T: 400 oC          Na(Y,Yb)F4-NaErF4,T: 400 °C      Na(Y,Yb)F4-NaErF4,T: 600 °C 

     

Figure 27. Elemental distribution of the homogeneous NaYF4:Yb3+,Er3+ and the core-shell 

Na(Y,Yb)F4-NaErF4) nanomaterials  prepared with co-precipitation (without EDTA). 
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4.4. Structure and phase purity 

4.4.1. Y2O2S:Yb3+,Er3+ 

The X-ray powder diffraction patterns (Fig. 28) [VII] confirm that the crystal structure of the 

Y2O2S:Yb3+,Er3+ nanomaterials prepared with the flux method is hexagonal (space group P3m, No 

164, Z: 1) [178] composed of the alternating (RO)2
2+and S2- layers [188]. 
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Figure 28. X-ray powder diffraction patterns of the selected Y2O2S:Yb3+,Er3+ nanomaterials 

prepared with the flux method [III]. 

 

The structure is very closely related to the A-type rare earth oxide (A-R2O3) structure, the 

difference being that one third of the oxygen sites is occupied by sulfur. No oxide precursor material 

was found in the nanomaterials.  

The high annealing temperature improved the crystallinity and increased the crystallite size (Fig. 28, 

left), as can be seen on the narrow and intense reflections. When the annealing temperature was low, the 

crystallite size was smaller and the crystallinity was poorer (broad and less intense reflections). The 

different erbium concentrations did not affect the crystallinity or the crystallite size (Fig. 28, right). 

 

4.4.2. ZrO2:Yb3+,Er3+ 

The XPD measurements reveal that the structure of the ZrO2:Yb3+,Er3+ nanomaterials is that of the 

typical cubic yttria stabilized zirconia (YSZ phase, cubic with space group Fm3m, No 225, Z: 4) 

[I,IV,VIII,178]. The nanomaterials prepared with the combustion synthesis (Fig. 29, left) are 

essentially pure, whereas small amounts of the monoclinic (P21/a, No 14, Z: 4) [178] zirconia phase 

as an impurity is found in the materials prepared with the sol-gel synthesis. 

According to the literature [189,190], the structure of pure ZrO2 is monoclinic but with small 

amounts of the trivalent lanthanide doping ions present (e.g. Y3+, Eu3+; ionic radii 1.02 and 1.07 Å, 

respectively [105]) there may exist also tetragonal and cubic phases. In the ZrO2:Y
3+,Eu3+ system, if 

the dopant ion level is more than 10 % of the zirconium amount [191], there are no more monoclinic 

or tetragonal phases present, only the cubic one. If the doping level is greater than 57 %, one obtains 

the cubic C-type R2O3 phase. Because the ionic radii of Yb3+ (0.99) and Er3+ (1.00 Å) are closer to 

that of ZrIV (0.84 Å) than those of Y3+ and Eu3+, more Yb3+ and Er3+ than Y3+ and Eu3+ can probably 

be doped in the zirconia host. According to the Vegard’s rule [192], a good solid solubility can occur 

when the difference in the ionic radii of the host and dopant ions is less than 15 %. In addition, the 

charges should be the same as well as the structures of the pure end member compounds be similar. 

In the ZrO2:Yb3+,Er3+ nanomaterial, the sizes of the ions are close to fulfilling the Vegard’s rule. Also 
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the structures of the pure compounds (ZrO2, C-R2O3) are very closely related to the fluorite type 

structure. Only the charge difference does not favor the solid solubility but this problem is 

compensated by the charge compensation and the closely related structures. This is valid for the 

nanomaterials prepared with the combustion synthesis because of the rapid method of synthesis 

enabling the lanthanide ions to substitute for ZrIV. In contrast, in the nanomaterial prepared with the 

sol-gel method, the slow reaction rate results in the presence of the monoclinic and/or tetragonal 

phases due to the establishment of a chemical equilibrium during the reaction. This chemical 

equilibrium is not achieved during the fast combustion synthesis and phase segregation is thus a 

minor problem. Whether this segregation is partial (with low and high R3+ content ZrO2:Yb3+,Er3+ 

phases) or complete (with ZrO2 and (Yb,Er)2O3 phases) is not possible to be deduced from the X-ray 

powder patterns. The total absence of the reflections for the C-R2O3 phase suggests the former while 

the rather strong reflections - so far unknown - may belong to a lanthanide zirconite phase. 

According to the X-ray powder diffraction patterns (Fig. 29, right), the crystal structure of the 

ZrO2:Y
3+,Yb3+,Er3+ nanomaterials was cubic (space group: Fm3m, No. 225, Z: 4) [178]. Small 

amounts of the monoclinic (P21/a, No. 14, Z: 4) [178] and tetragonal (P42/nmc, No. 137, Z: 2) [178] 

zirconia phases were found as impurities when the nominal Yb3+ and Er3+ concentrations were 5 and 

2 mole-%, respectively. 

The mean crystallite sizes were calculated with the Scherrer equation [179]. The crystallite sizes 

were 5-30 nm for the nanomaterials prepared with the combustion synthesis and ca. 50 nm for those 

prepared with the sol-gel method (Fig. 29). The nanomaterials, prepared with semicarbazide and 

urea, were well crystallized compared to the nanomaterial prepared with AMP. The larger crystallite 

size of the nanomaterials prepared with the sol-gel method is due to the slower crystallization and 

can be taken as a further indication of the possible phase segregation. The crystallite sizes of the 

ZrO2:Y
3+,Yb3+,Er3+ nanomaterials estimated with the Scherrer equation were ca. 30 nm. 
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Figure 29. X-ray powder diffraction patterns of the ZrO2:(Y
3+,)Yb3+,Er3+ nanomaterials prepared 

with the combustion and sol-gel synthesis [I,IV,VIII]. 

 

4.4.3. NaYF4:Yb3+,Er3+ 

4.4.3.1. Homogeneous materials 

The NaRF4 materials are known to exist as either a cubic or hexagonal form (Fig. 30) [193]. The 

cubic form has a fluorite (CaF2) type structure (Fm3m, No. 225, Z: 2) and it may crystallize in various 
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stoichiometries Na1-2wY1+2wF4+4w with w ranging at least from -0.04 to 0.18 [194]. The hexagonal 

structure has been suggested to be either that of NaNdF4 (P6, No. 174, Z: 1.5) [195] or related to 

Gagarinite (NaCaLaF6) having the formula Na1.5R1.5F6 (P63/m, No. 176, Z: 1) [143]. The (low-

temperature) cubic form transforms to the hexagonal one and then to a (high-temperature) cubic 

upon heating. Both changes are irreversible [196]. The change from the hexagonal to the cubic form 

has been suggested to involve the gradual loss of NaF finally resulting before decomposition in a 

Na5Y9F32 stoichiometry with an unknown crystal structure [143,193]. 

 

Figure 30. Cubic (left) and hexagonal (right) structure of NaYF4 [IX]. 

 

The crystal structure of the NaYF4:Yb3+,Er3+ materials prepared with co-precipitation with EDTA 

was cubic below the annealing temperature of 400 °C, both cubic and hexagonal between 400 and 

600 °C and cubic again over 700 °C (Fig. 31, left) when annealed in N2 + 10 % H2 gas sphere [II]. 

The structure of the as-prepared NaYF4:Yb3+,Er3+ material was cubic. 
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Figure 31. X-ray powder diffraction patterns of the NaYF4:Yb3+,Er3+ nanomaterials prepared with 

co-precipitation and annealed at selected temperatures (left) and gas spheres (right) 

[II]. 

 

Annealing in the N2 + 10 % H2 gas sphere at 600 °C produced only hexagonal phase whereas a 

small amount of cubic phase was present in the materials annealed in air or in N2 when prepared 

without EDTA (Fig. 31, right) [II]. There was more cubic phase present in the material prepared with 

EDTA. EDTA thus seems to hinder the formation of the hexagonal phase. There was also a small 

amount of R2O3 impurity in the material prepared without EDTA and annealed for 5 h at 600 °C in 

N2 + 10 % H2 gas sphere. 
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The calculated crystallite sizes were ca. 60-150 nm for the cubic phase and ca. 100 nm for the 

hexagonal phase. The smallest nanocrystallites were obtained with the lowest annealing 

temperature. EDTA did not have an effect on the crystallite size even though it is a strong chelator 

and should decrease the crystallite sizes as mentioned previously. 

There were both cubic and hexagonal phases in the NaYF4:Yb3+,Er3+ materials prepared with the 

solvothermal synthesis (Fig. 32) [V]. Also, a small amount of the NaF impurity was observed. The 

calculated crystallite sizes were 20-25 and over 140 nm for cubic and hexagonal particles, 

respectively. The size of the cubic particles did not change with the pressure or reaction time, 

whereas there was a large variation of the hexagonal particle sizes. 
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Figure 32. X-ray powder diffraction patterns of the NaYF4:Yb3+,Er3+ nanomaterials prepared with 

the solvothermal synthesis with selected reaction pressures (left) and  times (right) [V]. 

 

4.4.3.2. Core-shell materials 

The XPD patterns revealed the presence of the hexagonal (P6 (#174), Z: 1.5) [178] form of the 

homogeneous NaYF4:Yb3+,Er3+ annealed at 400 or 600 °C as well as the core-shell Na(Y,Yb)F4-

NaErF4 nanomaterial annealed at 400 °C (Fig. 33) [VI]. The materials were prepared with co-

precipitation. The core-shell Na(Y,Yb)F4-NaErF4 nanomaterial annealed at 600 °C was a mixture of 

both the (high temperature) cubic (Fm3m (#225), Z: 2) [178] and hexagonal forms. There was also a 

very small amount of the C-R2O3 impurity in the homogeneous NaYF4:Yb3+,Er3+ nanomaterial 

annealed at 600 °C. 
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Figure 33. X-ray powder diffraction patterns of the NaRF4-NaR’F4 nanomaterials prepared with co-

precipitation [VI]. 
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In the case of the Na(Y,Yb)F4-NaErF4 materials (cubic/hexagonal ratio 6), it can be assumed that 

the structure of the core is mainly cubic and the shell hexagonal [VI]. In other words, the shell layer 

may prevent the phase transition from cubic to hexagonal of the core during the annealing. 

The calculated crystallite sizes were approximately 80 nm for the materials annealed at 400 and 

ca. 100 and 150 nm for the cubic and hexagonal phases, respectively for the materials annealed at 

600 °C [VI]. The crystallite sizes of the core-shell materials were nearly equal to those for the 

homogeneous Na(Y,Yb,Er)F4. However, from the present diffraction data, it is difficult to judge 

whether core-shell structures have been formed or to what extent the core and shell contents have 

been mixed during the heating. 

 

4.5. Environment of Yb and Er 

4.5.1. ZrO2:Yb3+,Er3+  

The XANES results of the ZrO2:Yb3+,Er3+ up-conversion luminescence materials show only the 

trivalent ytterbium and erbium dopants (Fig. 34) [VIII,197]. When the dopants enter a tetravalent site, 

there has to be charge compensation. Most probably, oxygen vacancies are created for this purpose 

according to the following scheme: 2 x
ZrZr  → 2 '

ZrR + 
OV . In this Kröger–Vink -notation,  denotes a 

positive and ' a negative charge relative to the environment of the lattice defect - either an oxygen 

vacancy or an aliovalent R3+ ion substituting ZrIV, respectively. Neutral charge is marked as ×. 
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Figure 34. The room temperature XANES spectra of the Er LIII (left) and Yb LII (right) edges in the 

ZrO2:Yb3+,Er3+ nanomaterial prepared with the combustion method [VIII]. 

The distance distributions calculated from EXAFS (Fig. 35) correspond well to those calculated 

from the structural data [198] for the cubic rare earth stabilized ZrO2. The similarity of the Zr-Zr, Yb-

Zr/Er/Yb and Er-Zr/Yb/Er distances (3.63 Å for each) confirms that the Er3+ and Yb3+ ions occupy the 

ZrIV sites in the structure. The R-O and R-M distributions are rather broad partly due to the high 

measuring temperature and partly to the multisite nature of the R positions. This means slightly 

different spatial positions of the oxygen vacancies created by the charge compensation inducing 

several slightly different '
ZrR  sites [199]. The observed Yb-O (2.30) and Er-O (2.26 Å) distances are 

too short when compared with the calculated Zr-O distance (2.23 Å) when taking into account the 

ionic radii (Zr: 0.84, Yb: 0.985, and Er: 1.004; CN: 8 [199]). This indicates the rigidity of the structure 

but also the presence of oxygen vacancies around Er3+ and Yb3+. The oxygen vacancies resulting 

from the charge compensation are expected to agglomerate with '
ZrR  due to the electrostatic 
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reasons. This would effectively reduce the coordination number 8 around Zr to 7 (or even 6) around 

R3+. This decrease in the coordination number by one unit corresponds to ca. 0.06 Å decrease in the 

R-O distances [199]. The R-O distances calculated from the ionic radii should be 2.375 and 2.394 Å 

for Yb3+ and Er3+, respectively. The analysis of the EXAFS data shows, however, that the R-O 

distances obtained do not correspond to a coordination number lower than 7 for the R3+ ions. It may 

be even higher if the rigidity of the lattice is taken into account. 
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Figure 35. Distance distributions calculated from the Er LIII and Yb LII EXAFS spectra the 

ZrO2:Yb3+,Er3+ nanomaterials prepared with the combustion method [VIII]. 

 

According to the ionic radii, the Yb-O distance should be shorter than Er-O, but the opposite is 

observed. This is unexpected, since the higher charge density of Yb3+ should attract more the oxide 

ions. The reason for this could be that there are more oxygen vacancies around Er3+ than Yb3+. On 

the other hand, these materials produced persistent up-conversion luminescence. This seems to 

require the (at least virtual) change of the oxidation state of one of the species involved. In the 

Yb3+,Er3+ system, the only change possible at ambient conditions, is the formation of the divalent 

Yb2+ (or Yb3+-e-) species which both demand more space than the simple Yb3+ ion. 

 

4.5.2. NaYF4:Yb3+,Er3+ 

The XANES measurements show that there are present only trivalent erbium and ytterbium in the 

NaRF4-NaR’F4 (R: Y, Yb, Er) nanomaterials prepared with co-precipitation (Fig. 36). 
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Figure 36. XANES spectra of the homogeneous NaYF4:Yb3+,Er3+ and core-shell Na(Y,Yb)F4-

NaErF4 nanomaterials prepared with co-precipitation [200]. 
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The materials studied were prepared at 400 °C in a N2 + 12 % H2 atmosphere. The reducing 

conditions may affect the valences of Er and Yb. Especially, the Yb3+ ion may be reduced to Yb2+. 

However, the XANES data indicated only the trivalent form for both erbium and ytterbium in both 

materials. This was suggested by the single white lines peaking on the absorption edges. The 

divalent forms would have been observed as white lines ca. 8 eV below the trivalent ones [200], but 

not a trace of such signals was detected. Trivalency was anticipated, since the Yb and Er dopants 

are expected to replace the Y3+ ion in the NaYF4 host as well as the fact that both Er and Yb were 

trivalent in the starting materials. 

The EXAFS measurements show good quality fine structure enabling distance distribution 

calculations (Fig. 37). 
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Figure 37. EXAFS spectra and calculated bond distances of the homogeneous NaYF4:Yb3+,Er3+ 

and core-shell Na(Y,Yb)F4-NaErF4 nanomaterials prepared with co-precipitation [200]. 

 

Both the homogeneous and core-shell nanomaterials have very similar spectra for Er and Yb. The 

distance distributions obtained from the EXAFS data using the EXAFSPAK program [180] indicate 

that the surroundings of both Er3+ and Yb3+ are as calculated from structural data for the 

homogeneous hexagonal NaRF4 structure [201]. In the core-shell material, the shell Er-F distance 

(ca. 2.32 Å) is shorter than the core Yb-F or the Er-F and Yb-F (ca. 2.35 for all three) for the 

homogeneous material. Assuming a complete solid solubility, the average radius of the R3+ ions [105] 

for the homogeneous material and the core should be 1.07 whereas 1.06 Å is expected for the shell. 

The results may thus indicate that a core-shell structure has been formed. However, the differences 

of the R-F distances between homogeneous and core-shell nanomaterials are very small. 

 

4.6. Absorption spectroscopy 

The absorption spectra of the ZrO2:Yb3+,Er3+ nanomaterials prepared with the sol-gel synthesis 

showed the 2F7/2→
2F5/2 transition of Yb3+ in the wave number region 10 000 - 11 500 cm-1 (Fig. 38) 

[III]. The absorption bands were broad both at the room temperature and 10 K. This is due to the 

lanthanide dopants possessing multisite positions in the zirconia matrix. The multisite position may 

thus improve the absorption efficiency. The strongest absorption band centered at 10 310 cm-1 fits 

well to the laser excitation used. Other absorption bands in the spectra are probably due to the 

vibrational fine structure. A comparison between the absorption spectra of the ZrO2:Yb3+,Er3+ 
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nanomaterials and the whole-blood reveals that there is no blood absorption in the excitation 

wavelength region of the phosphor. 
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Figure 38. Absorption spectra of the ZrO2:Yb3+,Er3+ at RT and 10 K and the spectrum of the whole 

blood [III]. 

 

4.7. Excitation spectroscopy 

The luminescence excitation spectra were collected to gain information on the band gap energy of 

the ZrO2:Yb3+,Er3+ nanomaterials. At 10 and 300 K, the Eg was 5.3 eV (234 nm) and 5.1 (243), 

respectively (Fig. 39) [VIII]. Such a decrease is common for band gap energies [202] and the 

observed values are in good agreement with data published earlier for non-doped ZrO2 [e.g. 203]. 
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Figure 39. Synchrotron radiation luminescence excitation spectra of ZrO2:Yb3+,Er3+ nanomaterials 

at 10 K [VIII]. 

4.8. Up-conversion luminescence 

4.8.1. Y2O2S:Yb3+,Er3+ 

Strong red and moderate green up-conversion luminescence was obtained from the 

Y2O2S:Yb3+,Er3+ nanomaterials prepared with the flux method (Fig. 40, left) [VII]. An increase in the 

annealing temperature brought up a rapid growth of the crystallites of the Y2O2S:Yb3+,Er3+ 

nanomaterials. Along with the increased crystallite size, the intensity of the green up-conversion 

luminescence due to the (2H11/2,
4S3/2)→

4I15/2 transitions increased more than that of the red 

(4F9/2→
4I15/2) one, i.e. the Ired/Igreen intensity ratio (ca. 7 at 600/700 °C and 4 at 900 °C) decreases with 

increasing particle size. 
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Figure 40. Up-conversion luminescence spectra of the Y2O2S:Yb3+,Er3+ nanomaterials prepared 

with the flux method with selected annealing temperatures (left) and Er3+ concentrations 

(right) [VII]. 

 

The Er3+ ions tend to form clusters when the particle size decreases [VII,109]. This improves the 

probability of the cross-relaxation (CR) processes of Er3+ ions. The first process includes the 
2H11/2→

4I13/2 relaxation and the 4I15/2→
4I9/2 excitation (energy difference: 12 500 cm-1). In the second 

possible cross-relaxation process, there are coupled the 2H11/2→
4I9/2 relaxation and the 4I15/2→

4I13/2 

excitation (energy difference: 6700 cm-1). These two processes decrease the intensity of both the red 

and green luminescence. In the third possible cross-relaxation process, there are the 4F7/2→
4F9/2 

relaxation and the 4I15/2→
4I11/2 excitation (energy difference: 5000 cm-1). This process favors the red 

luminescence. 

The weak total up-conversion luminescence from materials prepared at low temperatures is partly 

due to the increase in the particle surface area, which increases the amount of the surface defects 

and the adsorption of other defect impurities (e.g. CO2, H2O) [VII]. Both cause important losses in the 

luminescence. There is no up-conversion luminescence from the nanomaterials when the heating 

temperature is 500 °C (Fig. 40, left). 

The comparison of the up-conversion luminescence spectra of materials with different erbium 

content showed that the intensity of the green luminescence decreases, although to lower extent 

compared to the red one, as the erbium concentration increases (Figs. 40, right; 41). At low Er3+ 

concentrations, the Er3+ ions are randomly distributed in the host lattice and this prevents the 

interionic CR processes. Therefore the green luminescence is stronger when compared to the red 

one. When the erbium mole fraction is higher than 0.005 the concentration quenching occurs and 

thus weakens the total up-conversion luminescence intensity. 
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Figure 41. Red-to-green intensity ratios of the Y2O2S:Yb3+,Er3+ nanomaterials prepared with the 

flux method with selected annealing temperatures and Er3+ concentrations. 

 

4.8.2. ZrO2:Yb3+,Er3+ 

In the ZrO2 matrix, the luminescence transitions are rather broad and without evident crystal field 

fine structure. This observation is in agreement with the multi-site positions occupied by the trivalent 

Yb3+ and Er3+ ions. This is due to the lack of any trivalent ion site in the ZrO2 structure and the 

creation of oxide vacancies (Kröger-Vink notation: 
OV ) as a result of the Yb3+ and Er3+ ions 

occupying the tetravalent ZrIV site ( '
ZrYb or '

ZrEr ) in the cubic fluorite type structure (Fig. 42). 

Figure 42. Structure of the environment of zirconium in ZrO2 with and without R3+ substitution 

[204]. 

 

In the ZrO2:Y
3+,Eu3+ system, at least three different oxide vacancy positions have been found 

around the R3+ ion [191,199]. A similar behavior is present in the ZrO2:Yb3+,Er3+ nanomaterial due to 

the similar ionic radii of the Y3+ and Yb3+. In addition, because of the smaller ionic radius of ZrIV 

compared to those of Yb3+ and Er3+, further structural distortions around the R3+ ions are induced due 

to the different charge compensation schemes in the outer coordination spheres. These distortions 

cause the broadening of the individual lines in the luminescence spectra. 

Owing to the general tendency of defects to form aggregates and because of the electrostatic 

attraction between the species, '
ZrYb - 

OV - '
ZrEr  pairs are formed. These pairs can enhance the 

absorption efficiency and the energy transfer between Yb3+ and Er3+ ions though energy migration 

between Yb3+ ions may result, too. The energy migration may cause the excitation energy to reach 

an impurity and be lost before reaching an Er3+ ion. 



Results and Discussion 

 

53 

The most intense up-conversion luminescence was observed from the ZrO2:Yb3+,Er3+ 

nanomaterial prepared with the combustion synthesis with semicarbazide as the organic fuel (Fig. 

43). 
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Figure 43. Up-conversion luminescence spectra of the ZrO2:Yb3+,Er3+ nanomaterials prepared with 

the combustion and sol-gel synthesis [204]. 

 

This is due to the structurally pure cubic nanomaterial. The luminescence intensity was very weak 

from the nanomaterials prepared with the AMP or glycine as the fuel. This is due to the small 

crystallite size (ca. 5 nm) and the large surface area of the particles. Large surface area increases 

the amount of surface defects and the adsorption of impurities (e.g. CO2, H2O, NO3
-
) that decrease 

the luminescence intensity. Although there were considerable amounts of nitrate residues in the 

nanomaterial prepared with the urea as the fuel, there were observed rather intense up-conversion 

luminescence. This is due to the good crystallinity and large crystallite size of these nanomaterials. 

The crystallite sizes of the ZrO2:Yb3+,Er3+ nanomaterials prepared with the sol-gel synthesis were 

larger when compared to the nanomaterials prepared with the combustion synthesis. Despite this, the 

luminescence intensity was lower than that of the nanomaterials prepared with the combustion 

synthesis with semicarbazide as the fuel. The weak luminescence intensity is probably due to the fact 

that the sol-gel nanomaterial was a mixture of the cubic and monoclinic forms. This phase separation 

evidently weakens the luminescence intensity since the optimum concentrations for the R3+ ions are 

lost. Because of the ZrO2 and R2O3 being in separate phases, concentration quenching might occur 

due to the too high Yb3+ and Er3+ concentrations in the R2O3 phase. Alternatively, if separate low and 

high R3+ content ZrO2 phases are formed, the R3+ concentrations in the latter phase are too high and 

in the former too low. For this reason, concentration quenching (Er3+) and energy migration (Yb3+) to 

non-luminescent sites can occur just in a manner similar to R2O3. The different surrounding 

microdomains of the Yb3+ and Er3+ ions of the nanomaterials prepared with different methods might 

also affect the absorption efficiency and luminescence intensity. 

The most intense red up-conversion luminescence (Fig. 44) was obtained when xYb : 0.10 and xEr: 

0.04 without Y3+ (curve 2) or with the lowest Y3+ concentration (xY: 0.14, curve 3). The weakness of 

the green luminescence is due to several cross-relaxation (CR) processes [IV]. 
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Figure 44. Up-conversion luminescence spectra of the ZrO2:(Y
3+,)Yb3+,Er3+ nanomaterials 

prepared with the combustion and sol-gel synthesis [IV]. 

 

The more there was yttrium in the materials the weaker was both the red and green up-conversion 

luminescence. This is due to the formation of Yb3+- 
OV -Y3+ entities instead of the Yb3+- 

OV -Er3+ (and 

Yb3+- 
OV -Yb3+) ones. The Yb3+- 

OV -Y3+ entities cut the energy migration in the Yb3+ sublattice, 

increase the distance between ytterbium and erbium and thus prevent short range Yb3+-Er3+ energy 

transfer. The energy transfer processes needed for the up-conversion are made more difficult and 

finally the up-conversion luminescence is weakened. When the nominal concentration of Er3+ was 

2 % (curve 1), the green luminescence was slightly stronger when compared to higher (four) Er3+ 

concentration (curve 2). The cross-relaxation processes are favored by the higher erbium 

concentration because Er3+ ions can form Er3+- 
OV -Er3+ pairs with the oxygen vacancies. These pairs 

increase, in addition to the intra-ion cross-relaxation processes, the inter-ion processes and thus the 

concentration quenching is more effective. 

When the nominal Yb3+ and Er3+ concentrations were 5 and 2 %, respectively (Fig. 44, curve 2), 

the total up-conversion luminescence intensity was lower when compared to that of the ZrO2 

nanomaterial with xYb: 0.10 and xEr: 0.04. In the first place, this is due to the low Yb3+ concentration 

(weak absorption of the NIR photons), but probably the low structural purity of the former material 

being a mixture of both the cubic and monoclinic phases may have an effect, too. 

The ZrO2:Yb3+,Er3+ nanomaterials exhibit a very high Ired / Igreen ratio (Fig. 45) compared to the 

other host materials (e.g. NaYF4) [I]. This is due to the very low intensity of the green luminescence. 

In the ZrO2 host, there are three main reasons for the weak green luminescence: the multiphonon 

relaxation, the cross-relaxation and trapping of excitation energy by defects. 

The prerequisites for efficient multiphonon relaxation are an energy level below the luminescent 

level and/or high-energy phonon. The energy difference between the 4S3/2 (and 2H11/2) levels yielding 

the green luminescence and the next lower level (4I9/2) is ca. 3000 (and ca. 3700) cm-1. The Zr-O 

phonon energy is 470 cm-1 [18] and the Er-O energy is approximately the same. In pure materials, 

the multiphonon relaxation process is not probable because too many (six or seven) lattice phonons 

are needed. However, when the crystallite size is smaller, there exist usually more impurities (e.g. 

NO3
-
, OH-) and the large surface area to facilitate the quenching of luminescence. The probability of 
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the multiphonon relaxation is then increased because the impurities have higher phonon energies (up 

to 1500 and 3500 cm-1) and thus less phonons (one or two) are needed for quenching. Finally, the 

multiphonon relaxation of the green luminescence enhances the intensity of the red luminescence by 

populating the 4F9/2 level. 
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Figure 45. Red-to-green intensity ratios of the ZrO2:(Y
3+,)Yb3+,Er3+ nanomaterials prepared with 

the combustion and sol-gel synthesis [I]. 

 

The energy difference between the 4F9/2 level yielding the red luminescent and the next lower level 
4I9/2 is also ca. 3000 cm-1. This means that the probability for the multiphonon relaxation of the red 

luminescence should be comparable to that of the green luminescence. However, the red emission is 

quite strong and thus the multiphonon relaxation is not working efficiently in this case. It should also 

be noted that both the green and red luminescence of the ZrO2:Yb3+,Er3+ nanomaterials are weak 

when compared to other host lattices (e.g. NaYF4, Y2O2S) [I]. The multiphonon relaxation processes 

can thus explain the weakness of the total luminescence but not the individual green luminescence. 

The second process that may affect the luminescence intensities is cross-relaxation [I]. The cross-

relaxation processes of Er3+ are naturally favored by the rather high erbium concentration in the 

ZrO2:Yb3+,Er3+ nanomaterials (nominally four mole-%) because then the erbium ions can locate near 

each other. As a special feature in the zirconia host, the Er3+ ions can form pairs with the aid of the 

oxide vacancy, i.e. Er3+- 
OV -Er3+. Thus the inter-ion cross-relaxation processes can occur easily 

between the Er3+ ions and decrease the intensity of the green luminescence. 

The very weak green luminescence can thus be explained with both the multiphonon and the 

cross-relaxation processes [I]. However, in order to judge the relative probabilities of these 

processes, it should be noted that the cross-relaxation processes do not enhance the intensity of the 

red luminescence. In fact, if the cross-relaxation processes were the only processes that quench the 

green luminescence, there should not appear any red luminescence, because the cross-relaxation 

processes do not populate the 4F9/2 level. Because efficient red luminescence is observed, the 

multiphonon relaxation process must be the dominating relaxation process. 

The energy trapping caused by the oxygen vacancies is also a competing process with the 

multiphonon and cross-relaxation processes [I]. The total luminescence intensity can be quenched 

due to the absorption of the excitation energy. However, it is evident that the persistent luminescence 

following the energy released from the traps is originating from the 4F9/2 level, i.e. is red. 
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The power curves (luminescence intensity versus excitation power) of the green and red Er3+ 

luminescence for the materials with xY: 0.14, xYb: 0.10 and xEr: 0.04 (Fig. 46) were measured to verify 

the up-conversion luminescence process as described above [205]. 
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Figure 46. Up-conversion power curves of the ZrO2:Yb3+,Er3+ nanomaterials prepared with the 

combustion synthesis [205]. 

 

Experimental results were fitted to the well-known equation Iem ∝ n
excI  (Eq. 1), where Iem and Iexc stand 

for the up-conversion emitting and exciting signal, respectively, and n is an integer denoting the 

number of photons required to excite the corresponding emitting level. In the low-power region, the 

slopes in the dilogarithmic plot are close to 2, but in a higher-power region the slopes decrease as 

the power increases. Since for a two-photon up-conversion process a value of 2 for n is expected, it 

is assumed that the difference is a consequence of the cross-relaxation processes taking place. 

 

4.8.3. NaYF4:Yb3+,Er3+ 

4.8.3.1. Homogeneous materials 

The strongest up-conversion luminescence of the NaYF4:Yb3+,Er3+ materials prepared with co-

precipitation with EDTA was obtained when the annealing temperature was 700 °C due to the large 

crystallite size (ca. 150 nm) (Fig. 47, left) [II]. The smaller is the crystallite size the weaker is the total 

up-conversion luminescence due to the large surface area of the small particles. Large surface area 

increases the amount of the surface defects and the adsorption of the atmospheric impurities (e.g. 

CO2, H2O, NO -
3) that decrease the total luminescence intensity. The total luminescence intensity of 

the as-prepared material and the material annealed at 200 °C were almost the same. This indicates 

that the crystallite sizes of the materials are the same, so the used annealing temperature is too low 

to improve the up-conversion luminescence intensity. 

The up-conversion luminescence spectra showed also that the bands of the luminescence spectra 

have different shapes when annealed at different temperatures (Fig. 47, left) [II]. This is due to the 

different structures of the materials: the cubic and hexagonal phases have different microdomains 

around the luminescence centers. Also the low and high temperature cubic materials have differently 

shaped luminescence bands; this confirms that the NaYF4 has two different cubic structures. 



Results and Discussion 

 

57 

520 560 600 640 680

0

50

100

150

200

250

300

350

0

2000

4000

6000

8000

10000

No annealing

200

300

400

600

5 h @ 700 oC 
(right axis)

4S
3/2
4I

15/2

4F
9/2
4I

15/2

2H
11/2

4I
15/2

In
te

n
si

ty
 /

 A
rb

. 
U

ni
ts

NaYF
4
:Yb3+,Er3+

x
Yb

: 0.17, x
Er

: 0.03

Co-precipitation
With EDTA
N

2
 + 10 % H

2
 gas sphere

 

Wavelength / nm

 

520 560 600 640 680

0

1000

2000

3000

4000

N
2
 + 10 % H

2
, with EDTA

2H
11/2

4I
15/2

4S
3/2
4I

15/2

4F
9/2
4I

15/2

  

 

 

In
te

ns
ity

 /
 A

rb
. 

U
ni

ts

Wavelength / nm

NaYF
4
: Yb3+, Er3+

x
Yb

: 0.17, x
Er
: 0.03

Co-precipitation method, without EDTA

5 h @ 600 oC N
2

Air

N
2
 + 10 % H

2

 

Figure 47. Up-conversion luminescence spectra of the NaYF4:Yb3+,Er3+ nanomaterials annealed at 

selected temperatures (prepared with EDTA, left) and gas spheres (prepared without 

EDTA, right) [IV]. 

 

When prepared without EDTA at 600 °C, the total up-conversion luminescence of the 

NaYF4:Yb3+,Er3+ materials was stronger than prepared with EDTA (Fig. 47, right) due to the efficiently 

luminescent hexagonal phase of the former material [II]. When prepared with EDTA there was cubic 

phase in the material that weakens the luminescence. Although the structure of the material annealed 

at 700 °C is cubic, the strong luminescence of the material is due to the large crystallite size which 

increases the up-conversion luminescence intensity. The most intense total luminescence of the 

materials prepared without EDTA and annealed at 600 °C was obtained with the inert N2 gas sphere 

(Fig. 47, right) [IV]. This is due to the lack of the (surface) impurities caused by oxygen in air or 

hydrogen in the N2 + 10 % H2 gas sphere. 

When prepared without EDTA and annealed at 600 °C in N2 + 10 % H2 the intensity of the green 

luminescence was higher compared to the materials prepared with EDTA (Fig. 48) [II]. This is due to 

EDTA that increases the probability of the cross-relaxation processes of Er3+. The cross-relaxation 

processes decrease the intensity of green luminescence and increase the red one. Also the high 

Ired/Igreen ratio at low annealing temperatures is due to the surface impurities of the small 

nanoparticles. The impurities weaken especially the green luminescence due to the cross-relaxation 

mechanisms. 
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Figure 48. Red-to-green up-conversion luminescence intensity ratios of the homogeneous 

NaYF4:Yb3+,Er3+ materials prepared with co-precipitation [II]. 
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The cross-relaxation processes of Er3+ are naturally favored by the rather high erbium concentration 

in the NaYF4:Yb3+,Er3+ nanomaterials (three mole-%) because the erbium ions can locate near each 

other. Also the strong red luminescence can be explained with the above mentioned cross-relaxation 

process. 

The up-conversion luminescence of the NaYF4:Yb3+,Er3+ materials prepared with the solvothermal 

synthesis was stronger with the increasing reaction time and pressure as well as with the increasing 

proportion of the hexagonal crystal form (Fig. 49, left) [V]. The most intense luminescence was 

obtained with the material annealed for 8 h at 177 °C (1.8 MPa, filling rate 80 %). The large crystallite 

size increased the luminescence intensity due to the smaller surface area of the particles. Large 

surface absorbs more (atmospheric) impurities (like H2O, CO2) which decrease the luminescence 

intensity. 

In the up-conversion luminescence spectra of the materials with selected reaction times (Fig. 49, 

right) the most intense luminescence is obtained with the material treated for 12 h due to the largest 

amount of the highly luminescent hexagonal form [V]. The shape of the red luminescence band of the 

material treated for 4 h is different than the two other luminescence bands. This is due to the different 

crystal field around the luminescence Er3+ center. 
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Figure 49. Up-conversion luminescence spectra of the NaYF4:Yb3+,Er3+ nanomaterials prepared 

with the solvothermal synthesis with selected pressures (left) and times (right) [V]. 

 

The red-to-green ratio was high with low reaction pressures (Fig. 50) [V]. This is due to the large 

amount of the cubic particles with small crystallite size. The small cubic particles absorb more the 

(atmospheric) impurities (like H2O, CO2) which weaken especially the green luminescence due to the 

multiphonon de-excitation mechanism. 
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Figure 50. Red-to-green up-conversion luminescence intensity ratios of the NaYF4:Yb3+,Er3+ 

nanomaterial prepared with the solvothermal synthesis with selected reaction pressures 

(left) and times (right) [V]. 

 

4.8.3.2. Core-shell materials 

The up-conversion luminescence spectra of the NaRF4-NaR’F4 (R: Y, Yb, Er) prepared with co-

precipitation show strong red (centered at 660) and moderate green (525 and 545 nm) up-conversion 

luminescence due to the (4F9/2→
4I15/2) and (2H11/2, 

4S3/2→
4I15/2) transitions, respectively (Fig. 51) [VI]. 

When annealed at 600 °C, the partially cubic core-shell Na(Y,Yb)F4-NaErF4 nanomaterial produces 

stronger luminescence than the corresponding homogeneous NaYF4:Yb3+,Er3+ with the hexagonal 

structure. Although the hexagonal NaYF4 phase is one of the most efficient lattices for up-conversion 

luminescence known to date [22,23], the up-conversion luminescence intensity of the hexagonal, 

homogeneous Na(Y,Yb,Er)F4 material is rather weak compared to the partially cubic core-shell 

materials. This is due to the aggregation by diffusion at high annealing temperatures, probably 

enhanced by the interface between the core and the shell. In the homogeneous material, there is no 

concentration gradient for the optically active ions and they cannot move towards more favorable 

places for the up-conversion luminescence. 
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Figure 51. Up-conversion luminescence spectra of the homogeneous NaYF4:Yb3+,Er3+ and core-

shell Na(Y,Yb)F4-NaErF4 nanomaterials prepared with co-precipitation [VI]. 
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It could also be thought that it is easier to excite the ytterbium ion when it is in the shell layer and 

close to the erbium activator ions. However, according to these results, the up-conversion 

luminescence intensity is more efficient, when the ytterbium ions are in the core [VI]. The reason for 

this might be the inability of the atmospheric impurities (e.g. OH-) to disturb the excitation energy 

absorption of the ytterbium if it is located in the core. The impurities can also weaken the 

luminescence of the erbium activator ions, but the effect seems to be rather insignificant. 

The homogeneous NaYF4:Yb3+,Er3+ material produces stronger luminescence than the core-shell 

Na(Y,Yb)F4-NaErF4 when annealed at 400 °C (Fig. 51) [VI]. The weak luminescence of the core-shell 

nanomaterial is probably due to the concentration quenching of Er3+ emission and/or the long 

distance between the Yb3+ sensitizer and the Er3+ activator ions weakening the Yb3+-Er3+ energy 

transfer. Also the low annealing temperature might prevent the diffusion, and in this case, despite the 

concentration gradient, the optically active ions cannot move towards more favorable places for the 

up-conversion luminescence. 

The low Ired/Igreen ratio (Fig. 52) of the core-shell Na(Y,Yb)F4-NaErF4 (T: 400 °C) is due to the lack 

of the cross-relaxation processes [VI]. The lowest Ired/Igreen ratio of the materials annealed at 600 °C is 

observed with the homogeneous NaYF4:Yb3+,Er3+. This is due to the random location of the erbium 

ions in the R3+ sites of the NaYF4 host lattice.  The high Ired/Igreen ratio of the Na(Y,Yb)F4-NaErF4 

material may be due to the cross-relaxation processes of the erbium ions (Fig. 52). These are 

enhanced by the high Er3+ concentration in the shell layer, which improves the probability of the 

cross-relaxation processes and increases the red luminescence intensity as well as decreases the 

green one. 
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Figure 52. Red-to-green up-conversion luminescence intensity ratios of the homogeneous 

NaYF4:Yb3+,Er3+ and core-shell Na(Y,Yb)F4-NaErF4 nanomaterials prepared with co-

precipitation [VI]. 

 

4.9. Up-conversion luminescence decay 

4.9.1. Y2O2S:Yb3+,Er3+ 

The analysis of the red up-conversion luminescence decay curves (Fig. 53) revealed that the 

Y2O2S:Yb3+,Er3+ materials prepared with the flux method achieve the saturation point during the 

20 ms excitation process. The longest feeding process with the material with the lowest Er3+ 

concentration (xEr: 0.005) is due to the weak absorption of the NIR photons by Yb3+ and the low 
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probability of the energy transfer to the Er3+ ion. This, in turn, is due to the long distance between the 

Yb3+ and Er3+ ions. For the other materials, the higher concentrations of the Er3+ ions make the 

energy transfer process easier. 
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Figure 53. Red up-conversion luminescence decays of the Y2O2S:Yb3+,Er3+ nanomaterials prepared 

with the flux method. 

 

The short lifetimes (Table 3) of the Y2O2S:Yb3+,Er3+ nanomaterials are due to the small particle 

size (70-110 nm) and large surface area to which the impurities (e.g. CO2, H2O, NO -
3 ) can be 

absorbed from the atmosphere. These impurities can cause several side processes, which can cause 

the short luminescence lifetime. 

 

Table 3. Up-conversion luminescence lifetimes of the Y2O2S:Yb3+,Er3+ nanomaterials.  

xEr Lifetime τ1 / ms 

(Amplitude / %) 

Lifetime τ2 / ms 

(Amplitude / %) 

Lifetime τ3 / ms 

(Amplitude / %) 

0.005 0.076 (99.5) 0.440 (0.40) 2.686 (0.1) 

0.01 0.063 (99.7) 1.340 (0.3)  

0.02 0.068 (99.3) 0.743 (0.7) 4.604 (0.04) 

0.03 0.057 (99.0) 0.378 (0.9) 3.375 (0.09) 

0.04 0.060 (98.5) 0.346 (1.4) 3.027 (0.09) 

 

4.9.2. ZrO2:(Y
3+,)Yb3+,Er3+ 

The analysis of the red up-conversion luminescence decay curves of the ZrO2:Yb3+,Er3+ materials 

prepared with the combustion synthesis revealed that the saturation is achieved during the 20 ms 

feeding process (Fig. 54). For these ZrO2:Yb3+,Er3+ materials, the high concentrations of the Yb3+ and 

Er3+ ions (xYb: 0.10 and xEr: 0.04, respectively) make the energy transfer process rather easy. 
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Figure 54. Red up-conversion luminescence decays of the ZrO2:Yb3+,Er3+ nanomaterials prepared 

with the combustion synthesis. 

 

ZrO2:Yb3+,Er3+ has been observed to show persistent up-conversion luminescence, i.e. a 

combination of up-conversion and persistent luminescence [I,III,VIII]. When it was tried to enhance 

the persistent up-conversion luminescence without weakening the up-conversion luminescence 

intensity, Y3+ ions were doped in the ZrO2:Yb3+,Er3+ materials to create more oxygen vacancies by 

charge compensation [IV]. The analysis of the up-conversion luminescence decay curves (Fig. 55) 

revealed that for the material with the lowest Yb3+ and Er3+ concentrations (xYb: 0.05, xEr: 0.02, curve 

1), the luminescence feeding process does not achieve the saturation point during the excitation 

process of five ms. This is due to the weak absorption of the NIR photons by Yb3+ and the low 

probability of the energy transfer to the Er3+ ion. This is, in turn, due to the long distance between the 

Yb3+ and Er3+ ions. For the other materials, the higher concentrations of the Yb3+ and Er3+ ions (xYb: 

0.10 and xEr: 0.04, respectively) make the energy transfer process easier. The saturation point for the 

material with the highest Y3+ concentration (xY: 0.42, curve 5) is achieved easily because of the 

formation of the Yb3+-Y3+ pairs instead of the Yb3+-Er3+ (or Yb3+-Yb3+) pairs. The up-conversion 

luminescence is rather weak, however, since only very few isolated Yb3+ and Er3+ ions (or, most 

probably, Yb3+-Er3+) contribute to the up-conversion. 
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Figure 55. Red up-conversion luminescence decays of the ZrO2:(Y
3+,)Yb3+,Er3+ nanomaterials 

prepared with the combustion synthesis [IV]. 



Results and Discussion 

 

63 

In general, it is observed that the lower is the yttrium concentration the stronger is the up-

conversion luminescence (Fig. 55) [IV]. This is due to the easier Yb3+-Er3+ pair formation with lower 

yttrium concentration. With higher yttrium concentrations, the yttrium isolates the ytterbium and 

erbium ions from each other. This makes the energy transfer more difficult and causes the weak 

luminescence. There is no significant difference in the saturation times between the material with the 

lowest yttrium concentration compared to the corresponding material doped with Yb3+ and Er3+ only. 

There are at least two different lifetimes (Table 4) for the red up-conversion luminescence at 

650 nm (Fig. 55) [IV]. The short luminescence lifetimes fall in the range of 100 to 350 μs which is 

quite typical for the conventional Er3+ luminescence. The shortest luminescence lifetime is observed 

for the material with the highest yttrium concentration (xY: 0.42, curve 5). This is due to the presence 

of strong competing processes, probably involving energy transfer to oxygen vacancies formed by 

the Y3+ addition. These vacancies are thus acting as traps. The longer “short” luminescence lifetimes 

for the other Yb3+ and Er3+ doped materials indicate that such competing processes are of minor 

importance and underline the importance of the Y3+ doping in creation of energy storing traps. 

 

Table 4. Up-conversion luminescence lifetimes of the ZrO2:(Y
3+,)Yb3+,Er3+ nanomaterials.  

xY / xYb / xEr Lifetime τ1 / ms 

(Amplitude / %) 

Lifetime τ2 / ms 

(Amplitude / %) 

Lifetime τ3 / ms 

(Amplitude / %) 

0 / 0.05 / 0.02 0.15 (37) 0.51 (61) 2.43 (2) 

0 / 0.10 / 0.04 0.10 (60) 0.31 (38) 2.27 (2) 

0.14 / 0.10 / 0.04 0.08 (65) 0.25 (34) 1.65 (1) 

0.28 / 0.10 / 0.04 0.03 (71) 0.14 (28) 0.88 (1) 

0.42 / 0.10 / 0.04 0.01 (83) 0.22 (17)  

 

The long-duration part of the Er3+ decays extends well beyond 10 ms for the different 

ZrO2:Yb3+,Er3+ materials (Fig. 55) [IV]. The relatively intense afterglow indicates that the energy 

stored in the traps created by the R3+ doping can be recovered later. This afterglow can be called 

“persistent up-conversion”. However, it seems that the Y3+ addition cannot enhance that the use of 

the energy stored and this energy is predominantly lost. This is evident from the curves 3 to 5 (Fig. 

52). Although the Y3+ co-doping should enhance the formation of the R3+-R3+ pairs in the ZrO2 host 

material; these may predominantly be the Y3+-Y3+ pairs, not the Yb3+-Er3+ or Yb3+-Yb3+ ones with 

utility to the up-conversion luminescence. The less there are rare earth dopants in the material the 

longer is the luminescence lifetime.   

 

4.9.3. NaYF4:Yb3+,Er3+ 

4.9.3.1. Homogeneous materials 

The materials prepared with co-precipitation show slow feeding processes (Fig. 56). The strongest 

up-conversion luminescence intensity is obtained with the NaYF4:Yb3+,Er3+ nanomaterial with the 

highest annealing temperature (700 °C, Fig. 56, left). This material shows also the longest 

luminescence lifetime (ca. 7 ms). This is due to the color centers which can cause the trapping of the 

excitation energy in the system followed by thermal bleaching of this energy and feeding to a 
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luminescence center finally causing the persistent up-conversion luminescence. The shortest lifetime 

(ca. 0.4 ms) is obtained with the nanomaterial annealed at 200 °C. This is due to the small particle 

size (ca. 80 nm) and large surface area to which the impurities (e.g. OH-) can be absorbed from the 

atmosphere. These impurities can cause several side processes, which, in turn, can cause the short 

luminescence lifetime. 

When annealed in selected gas spheres, the longest lifetime was obtained with N2 (Fig. 56, right).  

This is due to the lack of the color centers caused by oxygen in air or hydrogen in the N2 + 10 % H2 

gas sphere, which can cause the slightly shorter luminescence lifetimes. 
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Figure 56. Red up-conversion luminescence decay measurements of the homogeneous 

NaYF4:Yb3+,Er3+ nanomaterials prepared with co-precipitation and annealed at selected 

temperatures (prepared with EDTA, left) and gas spheres (prepared without EDTA, 

right). 

 

The red up-conversion luminescence decay curves reveal that the luminescence feeding process 

is very slow with the NaYF4:Yb3+,Er3+ nanomaterials prepared with the solvothermal synthesis (Fig. 

57) [V]. 
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Figure 57. Red up-conversion luminescence decay measurements of the homogeneous 

NaYF4:Yb3+,Er3+ nanomaterials prepared with the solvothermal synthesis [V]. 
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The saturation point is achieved not until the excitation of ca. 25 ms. The feeding processes of the 

materials with selected reaction times are almost similar. The long-duration part of the Er3+ decays 

extends beyond 10 ms for the different NaYF4:Yb3+,Er3+ materials. The relatively intense afterglow of 

the material with the reaction time of 12 h indicates that the material is well crystallized and the 

amount of the side processes is small. This afterglow can be called “persistent up-conversion”. The 

short afterglow (ca. 7 ms) of the material with reaction time of 4 h is due to the poorly crystallized 

structure and the large amount of the side processes. 

 

4.9.3.2. Core-shell materials 

The materials prepared with co-precipitation show slow feeding processes (Fig. 58) [VI]. The 

strongest up-conversion luminescence intensity is obtained with the Na(Y,Yb)F4-NaErF4 core-shell 

nanomaterial with the highest annealing temperature (600 °C). This material shows also the longest 

luminescence lifetime (over 20 ms). This is due to the color centers which can cause the trapping of 

the excitation energy in the system followed by thermal bleaching of this energy and feeding to a 

luminescence center finally causing the persistent up-conversion luminescence. The shortest lifetime 

(ca. 15 ms) is obtained with the Na(Y,Yb)F4-NaErF4 core-shell nanomaterial annealed at 400 °C. This 

is due to the small particle size (ca. 80 nm) and large surface area to which the impurities (e.g. OH-) 

can be absorbed from the atmosphere. These impurities can cause several side processes, which, in 

turn, can cause the short luminescence lifetime. 
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Figure 58. Red up-conversion luminescence decay measurements of the homogeneous 

NaYF4:Yb3+,Er3+ and core-shell Na(Y,Yb)F4-NaErF4 nanomaterials prepared with co-

precipitation [VI]. 

 

4.10. Thermoluminescence 

As discussed above, the presence of the Er3+ ions and Yb3+ in the ZrIV site ( '
ZrEr  and '

ZrYb ) 

requires charge compensation. The creation of Zr vacancies ( ''''
ZrV ) is very improbable and thus the 

widely accepted option for charge compensation in the ZrO2:R
3+ are the oxide vacancies ( 

OV ). On 

the other hand, a similar decrease in the negative charge can be achieved by substituting oxide with 

hydroxide (OH-) ions which, due to the low temperature synthetic method and aqueous media, are 

omnipresent. Energetically, the defects with a positive net charge ( 
OV  or •OHO ) are considered to be 
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located close to the conduction band, while negatively charged defects (as cation vacancies or '
ZrR ) 

are close to the valence band, which gives them the possibility to act as electron and hole traps, 

respectively. 

In order to probe the existence of defects (traps), thermoluminescence (TL) glow curves were 

measured from room temperature up to 400 oC. Although it is very difficult to relate the origin and 

type of the defects to the details of the glow curves, at least the mere presence of them gives 

important information. The glow curve of the ZrO2:Yb3+,Er3+ nanomaterial shows a wide band with 

moderate intensity between 50 and 225 oC with a shoulder at 170 oC (Fig. 59) [VIII]. The weakness of 

the TL emission may be due to the weak detection in the red spectral region rather than to the weak 

emission itself. The deconvolution of the glow curve results in three traps with depths of 0.68, 0.85 

and 1.03 eV. For efficient (regular) persistent luminescence, the main TL band is usually observed 

close to but below 100 oC, e.g. at 90 for Sr2MgSi2O7:Eu2+,R3+ [e.g. 206]. The TL results thus suggest 

that ZrO2:Yb3+,Er3+ has a rather ideal trap structure, but the TL intensity, i.e. the trap density, may not 

be as high as needed for really efficient persistent luminescence. 
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Figure 59. Thermoluminescence glow curve of the ZrO2:Yb3+,Er3+ nanomaterial [VIII]. 

 

4.11. Persistent up-conversion luminescence mechanism 

As indicated by the TL measurements, there are vacancies (together with impurities, e.g., OH− 

groups) present in the ZrO2:Yb3+,Er3+ nanomaterials mainly due to the charge mismatch between the 

trivalent Yb3+ (and Er3+) and the tetravalent ZrIV ions [VIII]. Similar defects are known to store energy 

in the persistent luminescence materials (e.g. Eu2+-doped alkaline earth aluminates and silicates) 

[207] as well as in the photostimulated materials (e.g. Eu2+-doped BaF(Cl,Br)) [208]. As a further 

proof to the existence of persistent luminescence for either Yb3+- or Er3+- doped materials, 

experimental data for strong afterglow have been found from Yb3+-doped garnets (YAG:Yb3+, YbAG) 

[209,210], Si:Er3+ and oxysulfides (Y2O2S:R3+, R: Ce-Nd, Sm-Yb, Gd2O2S:Er3+ [211,212]. It can thus 

be assumed that the persistent up-conversion in the ZrO2:Yb3+,Er3+ nanomaterials is possible. Since 

there are two possible candidates, Yb3+ and Er3+, it is of theoretical interest to find out which of these 

two may be involved in the persistent luminescence. The chemical behavior of these two rare earth 

ions is, however, rather different: Yb3+ can be reduced with relative ease (just after Eu3+ in the R3+ 

series) whereas Er3+ is a typical R3+ ion with no tendency to divalent or tetravalent state. An obvious 



Results and Discussion 

 

67 

analogy can thus be drawn between the chemical behavior of Yb3+ and Eu3+, both of which possess 

the stable divalent form, though massively more stable for europium. 

The analogous chemical behavior is not, however, a sufficient proof for similar luminescence 

behavior. For the construction of the persistent up-conversion luminescence mechanism in the 

ZrO2:Yb3+,Er3+ nanomaterials, the following knowledge, discussed above in detail, is required: the 

nature of the luminescent center(s), the persistent emission energy, the band gap energy as well as 

the nature and depths of the energy storage traps [VIII]. Furthermore, the location of the ground level 

of the emitting ion in the host band gap needs to be established. 

Based on an empirical model [213], the location of any R2+ 4f ground level in the band structure of 

a material can be determined since these positions for different R2+ are close to host-independent, 

The most convenient R2+ is Eu2+ though any other R2+ is eligible, as well. For Eu2+, the location of the 

4f ground level is obtained from the energy of the charge transfer (CT) transition of O2-→Eu3+ which 

two energy values are the same - as a first approximation - if e.g. relaxation energies are neglected. 

The value used here (4.95 eV, 40 000 cm-1, 250 nm) is that reported earlier for ZrO2:Eu3+ [214]. The 

R3+ 4f ground level locations follow a tendency similar to the one for R2+ but the energy difference for 

these two curves depends on the particular host. Data reported for SrAl2O4 [215] was used to place 

the position of the Eu3+ 4f ground level 5.8 eV below the Eu2+ one, in accordance with the 

approximate value of ca. 6 eV for oxide materials. The said empirical model was then used to obtain 

the locations of the Er3+ and Yb3+ 4f ground levels, while the excited level energies were obtained 

from earlier results [216] utilizing semiempirical calculations valid for all R3+ within an accuracy of a 

few 100 cm-1 that is largely sufficient for present considerations. As a result of the application of this 

model, the 4f13 ground level 2F7/2 of Yb3+ is located in the valence band of the ZrO2 host (Fig. 60) 

which information is of importance when the charge carriers in persistent luminescence systems are 

considered [VIII]. Equally important is to observe that the Er3+ 4f ground level is well above the top of 

the valence band, at ca. 5000 cm-1. 

 

Figure 60. The mechanism of the persistent up-conversion luminescence [VIII]. 
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The mechanism for the persistent up-conversion luminescence in ZrO2:Yb3+,Er3+ nanomaterials is 

as follows (Fig. 60): initially, the Yb3+ is excited by NIR radiation exposure involving the transition 

from the 2F7/2 ground state to the excited 2F5/2 level [VIII]. Then a part of the excited energy is 

transferred to erbium and regular up-conversion luminescence is observed. Alternatively, some of the 

excited energy can be stored in the traps. Since the decay time of Yb3+ emission is 3 to 10 times that 

of Er3+, it is more probable that the energy storage occurs in the vicinity of Yb3+ than Er3+. Similarly to 

the Eu3+ persistent luminescence [217], the charge carriers are holes created in the valence band of 

ZrO2 due to the formation of an Yb3+-e- pair (or less probably Yb2+). The holes are trapped to shallow 

traps immediately above the valence band with a release of thermal energy. The Yb3+ at the excited 
2F5/2 level is frozen until the trapped holes are released. The probability of trapping the excitation 

energy in this manner can be assumed to be a few orders of magnitude lower than the energy 

transfer to Er3+ since the persistent up-conversion luminescence is weak and its duration short. Other 

factors leading to similar results are: 1) the low mobility of holes in the valence band thus restricting 

the trapping process to the vicinity of ytterbium and 2) the consequent easy recombination. In 

contrast, the number of possible hole traps, YbZr
'  is very high and should promote the persistent up-

conversion luminescence. The actual luminescence involves the reverse process of freeing the holes 

from the traps to Yb3+ via the valence band of ZrO2 by thermal energy. This process precedes the 

energy transfer to Er3+ and the radiative relaxation of excited Er3+ thus creating persistent up-

conversion luminescence. 
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5. CONCLUSIONS 

The flux method, the sol-gel, combustion and solvothermal syntheses as well as the co-

precipitation method enabled the preparation of the pure nanocrystalline up-conversion phosphors. 

The heating temperature affected strongly on the Y2O2S:Yb3+,Er3+ particle size, varying between 10 

and 110 nm. The combustion synthesis was found to be an efficient way to prepare the 

nanocrystalline up-converting ZrO2:Yb3+,Er3+ luminescence materials with cubic ZrO2 structure with 

the particle size of 20-40 nm. The sol-gel synthesis yielded ZrO2:Yb3+,Er3+ material with slightly larger 

crystallite sizes (ca. 50 nm) with monoclinic and cubic structures. The monoclinic phase was due to 

the too low rare earth dopant concentration to stabilize the cubic structure. The heating temperature 

affected the structure of the NaYF4:Yb3+,Er3+ nanomaterials producing a low temperature cubic phase 

below 400, hexagonal between 400 and 600 and a high temperature cubic one at 700 °C. The 

NaYF4:Yb3+,Er3+ nanomaterials prepared with co-precipitation were mainly spherical, whereas in the 

materials prepared with the solvothermal synthesis there were also large rod-like particles. This is 

due to the NaF to Y3+ molar ratio affecting the morphology of the hexagonal NaYF4 crystals. 

The Na(Y,Yb)F4-NaErF4 core-shell nanomaterials were a mixture of the hexagonal and high 

temperature cubic forms with the annealing temperature of 600 °C. This reveals that a relatively low 

annealing temperature is needed for obtaining the high temperature cubic form in the core-shell 

materials. The inhomogeneous Er distribution in the Na(Y,Yb)F4-NaErF4 (T: 400 °C) core-shell 

nanomaterial is probably due to the Er located only in the shell layer. This is due to the lack of the 

diffusion induced mixing of the layers at such a low temperature. The homogeneous Er distribution in 

the core-shell Na(Y,Yb)F4-NaErF4 (T: 600 °C) material may be due to the (at least a partial) mixing of 

the layers by diffusion of the Yb3+ and Er3+ ions. 

The XANES measurements of the NaYF4:Yb3+,Er3+ and Na(Y,Yb)F4-NaErF4 nanomaterials show 

that there was only trivalent erbium and ytterbium as expected. Distance distributions calculated from 

EXAFS correspond well to expected distances and Er and Yb are on their regular sites in the NaRF4 

structure. The Er-F distance of the core-shell material (2.32) differs slightly from the other R-F 

distances (ca. 2.35 Å). This reveals that maybe there is a core-shell structure, but the differences are 

very small. 

The Y2O2S:Yb3+,Er3+ nanomaterials demonstrated strong red (4F9/2→
4I15/2) and moderate green 

(2H11/2,
4S3/2)→

4I15/2 up-conversion luminescence under infrared excitation. Due to the cross-relaxation 

processes, as the crystallite size decreased, the green up-conversion luminescence intensity 

decreased more than the red one. Also the intensity of the green luminescence decreases, as the 

erbium concentration increases. 

All the ZrO2:Yb3+,Er3+ materials showed rather efficient red up-conversion luminescence with broad 

features due to the multiple Er3+ sites originating from different charge compensation schemes 

because of aliovalent substitution. As a result of the structural purity, the combustion route yielded 

products with the highest luminescence intensity. The red/green intensity ratio was found to increase 

with the decreasing crystallite size due to the weakening of the green luminescence. This may be due 

to a very complex relaxation process involving the multiphonon and cross-relaxation as well as 

energy trapping caused by lattice defects. The multiphonon relaxation process must be the 
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dominating relaxation process of the green luminescence because of the efficient red luminescence 

observed. 

The luminescence decay characteristics with at least two different lifetimes in the range typical of 

Er3+ luminescence agreed with the multisite nature of the ZrO2 lattice. The materials obtained with 

different methods showed considerable differences in the longer lifetimes. Moreover, severe 

afterglow, i.e. persistent up-conversion luminescence, was observed for the products of the 

combustion route indicating the inherent energy storage capability of the ZrO2:(Y
3+,)Yb3+,Er3+ 

materials. 

The NaYF4:Yb3+,Er3+ nanomaterials produced very strong green and red up-conversion 

luminescence. The strongest total up-conversion luminescence was obtained from the material 

annealed at 700 °C due to the large crystallite size. In the up-conversion luminescence spectra, the 

bands corresponding to different transitions of Er3+ have different shapes when annealed at different 

temperatures. This is due to the different structures of the materials: the cubic and hexagonal phases 

have different arrangement of anions, i.e. different crystal field, around the luminescence Er3+ 

centers. Also the low and high temperature cubic materials have different shapes of the 

luminescence bands; this reveals that NaYF4 has two different cubic structures. 

The concentration quenching or the long distance between Yb and Er weakens the up-conversion 

luminescence intensity in the core-shell Na(Y,Yb)F4-NaErF4 materials. The low Ired/Igreen ratio with the 

homogeneous NaYF4:Yb3+,Er3+ is due to the lack of the cross-relaxation processes caused by the 

random location of the erbium ions in the R3+ sites of the NaYF4 host lattice. The longest decay 

observed with Na(Y,Yb)F4-NaErF4 (T: 600 °C) is due to the color centers which causes the persistent 

up-conversion luminescence, whereas the shortest decay is observed with Na(Y,Yb)F4-NaErF4 (T: 

400 °C) due to the impurities which can cause several side processes. 

However, the differences in up-conversion luminescence intensities and lifetimes are strongly 

affected by the particle size, which makes different nanomaterials difficult to compare. Also the 

reproducibility of the nanomaterials was a challenge causing batch-to-batch variations of the up-

conversion luminescence properties.  

For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more 

uniform crystallite sizes. More work is also needed with the reproducibility of the materials, because 

only that way more liable results can be obtained. Surface modifications need to be studied to allow 

for the dispersion in water. Further work is needed to reveal the details of the persistent up-

conversion luminescence, too, but already by now the mechanism is qualitatively consistent with the 

experimental findings. It also provides a major breakthrough in the understanding of the origin of the 

persistent up-conversion luminescence. 
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