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ABSTRACT 

Anna Kirjavainen 

RADIOSYNTHESIS AND USE OF [18F]F2 DERIVATIVES [18F]SELECTFLUOR 

BIS(TRIFLATE) AND [18F]ClF 

Department of Medicine and Turku PET Centre, University of Turku, Turku Finland 

Annales Universitatis Turkuensis 
Painosalama Oy, Turku, Finland 2014 

Positron emission tomography (PET) is a non-invasive functional and metabolic imaging 

technique that allows the quantification of specific biological and pharmacological processes 

in humans and animals in vivo. PET uses molecules labeled with short-lived positron (β+) 

emitters, such as 18F.  

Although fluorine is rare in natural compounds, medicinal fluorine chemistry is based on the 

fluorination of natural compounds or their close derivatives. The oxidizing strength of 

fluorine is high and easily leads to exothermic radical chain reactions and the formation of 

undesirable side products. Because of the vigorous reactivity of elemental fluorine, 

electrophilic radiofluorination often has low regioselectivity and poor yield. Therefore, one 

goal in electrophilic radiofluorination is to develop a non-hazardous electrophilic fluorine 

source with less reactivity and better selectivity.  

The [18F]F2 derivatives [18F]Selectfluor bis(triflate) ([18F]SF) and [18F]ClF were synthesized 

with high specific activity and their use demonstrated in electrophilic synthesis of model 

molecules. Two precursors of 6-[18F]FDOPA, stannylated and boronic ester compounds, were 

labeled using [18F]SF. [18F]NS12137, a norepinephrine transporter (NET)-selective tracer for 

PET imaging, was fluorinated with two electrophilic labeling agents, [18F]SF and [18F]F2, 

using a nucleophilic approach. A method to produce [18F]ClF via [18F]F2 was developed and 

its use demonstrated with the electrophilic addition of [18F]ClF to a C-C double bond. 

Keywords: Fluorine-18, electrophilic substitution, electrophilic addition, [18F]Selectfluor 

bis(triflate), [18F]monochloro fluoride. 
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TIIVISTELMÄ 

Anna Kirjavainen 

[18F]F2-JOHDANNAISTEN [18F]SELECTFLUOR BIS(TRIFLAATIN) JA [18F]ClF:N 

SYNTEESI JA KÄYTTÖ  

Valtakunnallinen PET-keskus ja Kliininen fysiologia ja isotooppilääketiede, Turun 
yliopisto, Turku 
 
Annales Universitatis Turkuensis 
Painosalama Oy, Turku, Finland 2014 

Positroniemissiotomografia (PET) on kajoamaton kuvantamismenetelmä, jolla voidaan tutkia 

biologisia ja farmakologisia prosesseja elävissä ihmisissä ja eläimissä. PET käyttää yhdisteitä, 

joihin on liitetty lyhytikäinen positroni (β+) säteilijä, kuten 18F.  

Lääketieteellinen fluorikemia perustuu luonnonyhdisteiden tai niiden johdosten fluoraukseen, 

vaikka luonnonyhdisteissä fluori onkin harvinainen. Fluorin hapetuskyky on korkea, mikä 

johtaa helposti lämpöä vapauttaviin radikaaliketjureaktioihin ja epätoivottujen sivutuotteiden 

muodostumiseen. Alkuaine fluorin voimakkaasta reaktiivisuudesta johtuen elektrofiilisessa 

radiofluorauksessa saavutetaan usein huono paikkaselektiivisyys ja matala saanto.  Tästä 

johtuen elektrofiilisessa radiofluorauksessa on tavoitteena kehittää helpommin käsiteltäviä ja 

vähemmän reaktiivisia elektrofiilisen fluorin lähteitä, joilla saavutetaan myös parempi 

paikkaselektiivisyys radiofluorauksessa.  

[18F]F2:n johdokset, [18F]Selectfluor bis(triflate) ([18F]SF) ja [18F]ClF, tehtiin korkealla 

ominaisaktiivisuudella ja niitä käytettiin malliyhdisteiden elektrofiilisessa synteesissä. Kaksi 

6-[18F]FDOPA:n lähtöainetta, tina- ja booriesteriyhdiste, leimattiin käyttäen [18F]SF:a. 

[18F]NS12137, norepinefriinin kuljettajaproteiini (NET) -selektiivinen PET-merkkiaine, 

fluorattiin käyttäen kahta elektrofiilista fluorauslähtöainetta, [18F]SF ja [18F]F2, sekä 

nukleofiilista synteesimenetelmää. [18F]ClF:lle kehitettiin tuotantomenetelmä käyttäen 

[18F]F2:a, ja [18F]ClF:n käyttöä tutkittiin hiili-hiili kaksoissidoksen elektrofiilisessa reaktiossa.  

Avainsanat: Fluori-18, elektrofiilinen substituutio, elektrofiilinen additio, [18F]Selectfluor 

bis(triflatti), [18F]monokloorifluoridi. 
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ABBREVIATIONS 

amu Atom mass unit 

BDE Bond dissociation energy [kJ/mol] 

Boc tert-Butyloxycarbonyl 

CD2Cl2 Deuterated dichloromethane 

CNS Central Nervous System 

CP Chemical purity 

DBH 1,3-Dibromo-5,5-dimethylhydantoin 

DMF N,N-Dimethylformamide 

DMSO Dimethylsulfoxide 

EF1,2A 2-(2-Nitro-1[H]-imidazol-1-yl)-N-(2,3,3-trifluoroallyl)-
acetamide 

[18F]EF5 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-
[18F]pentafluoropropyl)acetamide 

[18F]EF4Cla 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,3,3,3-[18F]tetrafluoro-
2-monochloropropyl)acetamide 

[18F]EF4Cb 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3-[18F]tetrafluoro-
3-monochloropropyl)acetamide 

EF3Cl2 2-(2-Nitro-1H-imidazol-1-yl)-N-(2,3,3-trifluoro-2,3-
dichloropropyl)acetamide 

EWG Electron-withdrawing group 

Elec Electrophile 

EOB End of bombardment 

EOS End of synthesis 

[18F]F- [18F]Fluoride ion 

[18F]FDG 2-[18F]Fluoro-2-deoxy-D-glucose 

[18F]FDM 2-[18F]Fluoro-2-deoxy-D-mannose 

6-[18F]FDOPA 4,5-Dihydroxy-2-[18F]fluoro-L-phenylalanine 

F-TEDA-X N-fluoro-1,4-diazabicyclo[2.2.2]octane 
GC Gas chromatography 

HPLC High performance liquid chromatography 

H3PO4 Trihydrogen phosphate 

K2.2.2 1,10-Diaza-4,7,13,16,21,24-hexaoxabicyclo[8,8,8]-
hexacosane; Kryptofix 2.2.2® 

LG Leaving group  

LC-MS/MS Liquid chromatography mass spectrometry  

MeBr Methyl bromide 

MeCN Acetonitrile 

MeI Methyl iodide 

Me-OTs Methyl tosylate 

Me-OTf Methyl triflate 

Mesylate Methanesulfonic acid 
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m/z Mass per charge 

MW Molecular weight 

NaI Sodium iodide 

n.c.a. No-carrier-added 

NFSi N-fluorobenzene sulfonamide 

Nosylate 3-Nitrobenzenesulfonic acid 

[18F]NS12137 (3-[(6-Fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]octane) 

Nuc Nucleophile 

OTf- Triflate 

OTs- Tosylate 

PET Positron emission tomography 

QMA Anion exchange cartridge 

RCP Radiochemical purity 

RCY Radiochemical yield 

RP Reversed phase 

RP-HPLC Reversed-phase high performance liquid 

 chromatography 

RT Room temperature 

RxN-F Alkylaminofluoride compound 

Rv(N) Normalized retention volume  

SA Specific activity 

SEAr  Electrophilic aromatic substitution 

SET Single electron transfer 

SF  Selectfluor bis(triflate), 1-chloromethyl-4-fluoro-1,4-
diazoniabicyclo[2.2.2]-octane bis(triflate) 

SFP (3-[(6-Trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-
[3.2.1]octane-8-carboxylate triflate 

SN2 Bimolecular nucleophilic substitution 

SNAr Nucleophilic aromatic substitution  

SPE Solid phase extraction 

SS Stainless steel 

TFA Trifluoroacetic acid 

THF Tetrahydrofurane 

TLC Thin layer chromatography 

TMATf 2-Acetyl-N,N,N-trimethylanilinium 
trifluoromethanesulfonate 

TMS Trimethyl silane 
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1. INTRODUCTION 

In 1903, Henri Becquerel and Pierre and Marie Curie were awarded the Nobel Prize for their 

research on spontaneous radioactivity, and in 1935 Irène and Frédérick Joliot-Curie were 

awarded the Nobel Prize for their discovery of artificial radioactivity. Ernst Lawrence was 

awarded the Nobel Prize for his findings related to the acceleration of particles using a 

cyclotron in 1939, and only four years later George de Hevesy was awarded the Prize for 

discovering the usefulness of radiotracers in chemistry. In 1937, the artificial fluorine 

radioisotope fluorine-18 was first produced by Arthur H. Snell (Snell 1937). Fluorine-18 has 

suitable chemical and nuclear properties for use in radiotracer chemistry; its relatively long 

half-life (109.8 min), decay route (97%, β+ emission), weak positron energy (635 keV), and 

low average range in tissue make fluorine-18 a suitable radioisotope for positron emission 

tomography (PET)-tracer chemistry. Fluorine also has several other radioactive isotopes with 

shorter half-lives (National Nuclear Data Center, Brookhaven National Laboratory, Upton, 

NY 11973-5000, De Kleijn 1977). 

Elemental fluorine was isolated for the first time by Henri Moissan in 1886 (Moissan 1886). 

Moissan was awarded the Nobel Prize in chemistry in 1906. However, the honor of 

discovering fluorine belongs to Carl W. Scheele, who discovered a fluorine-containing 

mineral, fluorspar (CaF2), in 1771. Fluorine is the 13th most abundant element in the Earth’s 

crust, but it is almost unknown in natural compounds. Since the 1930s, fluorine-containing 

compounds have had an important role in the development of technology, such as freons and 

fluoropolymers, as well as in the pharmaceutical and agrochemical fields (Dolbier 2005, 

O’Hagan 2003).  

PET is a non-invasive functional and metabolic imaging technique that allows the 

quantification of specific biological and pharmacological processes in humans and animals in 

vivo. PET uses molecules labeled with short-lived positron (β+) emitters. The most commonly 

used PET radioisotopes are 11C (t½=20.4 min), 13N (t½=10.0 min), 15O (t½=2.0 min), and 18F 

(t½=109.8 min) (Crane and Lauritsen 1934, Crane et al. 1934, Barkas 1939, Joliot and Curie 

1934, Livingston and McMillan 1934, Snell 1937). 

Fluorine-18 is the most commonly used radioisotope in the field of PET-radiochemistry due 

to its near optimal decay characteristics and relative ease of production. Because of the 

relatively short half-life of 18F-fluorine, rapid synthesis and purification processes are needed. 

After six half-lives only 1.6% of the initial activity remains. Nucleophilic fluorination is the 
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preferred approach for radiolabeling and produces tracers with high specific activity (SA). 

The greatest limitation of electrophilic 18F-radiolabeling is low SA, which is caused by the 

inherent dilution with carrier-F2. The synthesis with highly reactive [18F]F2 can lead to 

complex and time-consuming deprotection and purification processes. Therefore, one goal in 

electrophilic radiofluorination is to develop tamed high SA electrophilic fluorinating agents - 

in other words, non-hazardous electrophilic fluorine sources with less reactivity and better 

selectivity, such as alkylaminofluoride (RxN-F) reagents (Teare et al. 2008, Teare et al. 2010, 

Furuya et al. 2008a, Furuya et al 2009a, Lee et al. 2011, Tredwell et al. 2012 Liang et al. 

2013, Brandt et al. 2014, Campbell et al. 2014). 

In the field of fluorine radiochemistry, new fluorinating agents and precursors containing 

different leaving groups (LG) need to be developed, as well as new labeling methods, so that 

a broader variety of organic compounds can be radiofluorinated. In this thesis I will present 

the syntheses and evaluation of two novel electrophilic radiofluorinating agents: 

[18F]Selectfluor bis(triflate) ([18F]SF) and [18F]monochloro fluoride ([18F]ClF). 
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2. REVIEW OF THE LITERATURE 

2.1. Fluorine in chemistry 

Interest in fluorine has increased steadily since World War II, and our everyday lives are 

filled with fluorinated compounds. The research into fluorine chemistry (i.e., reaction 

methods and number of fluorinated compounds) has developed at an accelerated pace. During 

World War II the Manhattan Project involved research into fluorine-containing compounds 

compatible with F2 and UF6. Elemental fluorine (F2) is the most reactive halogen and the most 

reactive pure element. The fluorine atom is the most electronegative element of the periodic 

table and has the smallest van der Waals radius if hydrogen and its isotopes are not considered 

(Dolbier 2005). The electron configuration of fluorine is 1s22s22p5; because the valence 

electrons of fluorine are tightly held close to the nucleus by the nuclear charge, removing an 

electron from a fluorine atom to produce F+ is particularly difficult and energy consuming 

(endothermic; -1678.6 kJ/mol). In contrast, it is relatively easy (exothermic, 327.8 kJ/mol) for 

the fluorine atom to accept an electron (F-), filling the 2p-orbital and stabilizing the 

electropositive nucleus (O’Hagan 2008). Due to the tightly bonded electrons, the 

polarizability of the atom is very low. Elemental fluorine reacts aggressively with all other 

elements except the light noble gases He and Ne. The reactions are highly exothermic (Smart 

2001, Kirk 2006, Dolbier 2005, O’Hagan 2008). 

The bond between fluorine and carbon is a strong covalent bond, but the bond is highly 

polarized by the large difference in the electronegativity of fluorine and carbon (4.0 vs. 2.5 on 

Pauling’s scale). The C-F bond is intermediate in length (Table 1). Due to the high dipole 

moment the C-F bond generates, the electron density is concentrated around the fluorine atom 

and introduces a partial charge on the C-F bond (Cδ+-Fδ-). The high dipole moment of the C-F 

bond enables dipole-dipole interactions (Smart 2001, O’Hagan 2008). The partial charge also 

gives the bond its unusual strength.  

Unlike the effect of other atoms, when the number of fluorine atoms increases, the strength of 

the C-F bond increases. The bond dissociation energies (BDE) of some simple organofluorine 

compounds (C-F bond) are: CH3-F, 453 kJ/mol; CH2F-F, 500 kJ/mol; CHF2-F, 534 kJ/mol; 

and CF3-F, 546 kJ/mol. The high reactivity of fluorine can be explained by the weak F-F bond 

(BDE 159 kJ/mol), whereas the presence of fluorine in an organic molecule strengthens the 

bonds between other nearby atoms in the compound. The BDEs of C-C bonds are: CH3-CH3, 

372 kJ/mol; CH3-CF3, 372 kJ/mol; and CF3-CF3, 413 kJ/mol (Dolbier 2005).  
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Table 1. Van der Waals radii, C-X, bond lengths, C-X bond dissociation energies, and 
electronegativities of some common elements. 

X 
Van der Waals 

radius* [Å] 
Bond length 

C-X [Å] 
BDE C-X [kJ/mol] 

Electronegativity’s on 
Pauling’s scale 

H 1.2 1.09 413.7 2.1 

C 1.7 1.54 347.9 2.5 

N 1.55 1.47 291.8 3.0 

O 1.52 1.43 351.7 3.5 

F 1.47 1.35 441.7 4.0 

Cl 1.74 1.77 328.7 3.2 

*Bondi 1964 

Table 2. Bond lengths and BDEs of some single bonds. 

Compound Bond length [Å] BDE [kJ/mol]) 
S-F 156 284 

N-F 136 283 

O-F 142 190 

F-F 135 159 

Cl-F 163# 255 

Cl-Cl 175# 243 

#Van der Waals radius 

(Wilson et al. 1989, Luo 2003) 

The size of fluorine and hydrogen is often claimed to be nearly equal, and in radiochemistry 

the fluorinated analogs are designed by the replacement of hydrogen with fluorine-18. The 

steric size of fluorine attached to carbon is more similar to the oxygen attached to carbon due 

to the steric repulsion of fluorine and oxygen; correspondingly, the lengths of C-F and C-O 

bonds are more similar than the length of the C-H bond (135, 143, and 109 pm, respectively). 

The fluorination of an alkyl group always increases the steric size compared to non-
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fluorinated hydrocarbon groups. Over the years there has been much discussion about 

whether the fluorine atom acts as a hydrogen bond acceptor. The current opinion is that the 

covalently bonded fluorine hardly ever accepts a hydrogen bond, and conversely for the 

fluoride ion (Duniz 2004, Duniz and Taylor 1997). The exchange of the hydrogen atom for a 

fluorine atom affects the lipophilicity more than the oxygen-fluorine exchange (Smart 2001, 

Lasne et al. 2002, Kirk 2006, Müller et al. 2007, Purser et al. 2008). 

2.2. Lipophilicity of fluorine-containing molecules 

The affinity of a molecule for a lipophilic environment is called lipophilicity. Lipophilicity is 

usually measured by a molecule’s distribution in a biphasic system, either a liquid-liquid 

system using the partition coefficient in water/1-octanol or a solid-liquid system using 

retention on reversed-phase high performance liquid chromatography (RP-HPLC) or thin-

layer chromatography (TLC) (IUPAC 1997). The term LogD refers to a compound’s apparent 

partition coefficient in a biphasic water/1-octanol system at physiological pH (7.4). LogD 

takes into account both ionized and unionized forms of the compound. LogP refers to the 

actual partition coefficient, which takes into account only the unionized form of the 

compound and is not determined in physiological pH. LogD better describes the partition of 

the compound in the biological system. 

Lipophilicity is one of the key parameters affecting pharmacokinetic behavior, including 

uptake into different tissues and passage of the blood brain barrier (Smart 2001, Park et al. 

2001, Kirk 2006). High lipophilicity may increase non-specific binding (Dischino et al. 1983). 

The lipophilicity can be determined at physiological conditions (logD) using shake flask 

methods (Wilson et al. 2001) or approximated by commercial softwares (computed logP). 

In contrast to the fluorination of aromatic rings, which always increases the lipophilicity, the 

fluorination, perfluorination, or polyfluorination of aliphatic compounds does not always 

increase their lipophilicity. Fluorination of saturated alkyl compounds decreases their 

lipophilicity, especially if fluorine is introduced near oxygen or nitrogen atoms. A great 

decrease in logD usually occurs when fluorine is introduced near basic nitrogen (Smart 2001, 

Lasne et al. 2002, Kirk 2006, Müller et al. 2007, Purser et al. 2008). Lipophilicity decreases 

when the terminal carbon of an alkane is mono-, di-, or trifluorinated (Smart 2001). 

2.2.1. Solid-phase extraction 

Differences in the lipophilicity of molecules are utilized in solid-phase extraction (SPE). SPE 

is based on the sorption of a compound from a solution onto the solid-phase. The mechanisms 
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underlying the interaction between solid phase resin and the compound include van der Waals 

interactions, hydrogen bonding, dipole-dipole forces, size exclusion, and cation anion 

exchange (Thurman and Mills 1998).  

SPE is used for the purification and concentration of various materials and is highly suitable 

and amenable to PET-radiochemistry, partly due to the very low amounts of chemical entities 

encountered in PET-radiochemistry. From the radiochemistry point of view, SPE is used for 

the purification of radiotracers, removing impurities and organic solvents, and for assisting in 

formulation of the radiotracer for preclinical or human use (Thurman and Mills 1998, Lemaire 

et al. 1999). In some cases SPE has replaced HPLC purification of radiopharmaceuticals. In 

addition, the SPE approach is used in tracer hydrolysis, which is carried out while the 

compound is trapped on the solid phase (SP) material (Mulholland 1995, Lemaire et al. 1997, 

Mosdzianowski et al. 1999, Mosdzianowski et al. 2002, Lemaire 2002). Recently, Libert et al. 

reported the nucleophilic, no-carrier-added (n.c.a.), and enantioselective synthesis of 6-

[18F]fluoro-L-dopa ([18F]FDOPA) in which the alkylation step is performed using the SPE 

cartridge (Lemaire et al. 2004, Libert et al. 2013). 

In SPE the mechanisms of retention can be divided into normal phase, reversed phase (RP), 

and ion exchange. The SPE process can be divided into four steps (Figure 1). First, the solid-

phase resin is conditioned by passing a solvent through the sorbent to wet the packing 

material. With all methods the steps are similar, only the solvents that are used vary. For 

example, using an RP-cartridge, the sorbent is wetted with an organic solvent and rinsed with 

water or buffer. The aqueous solvent activates the cartridge for aqueous samples. Second, the 

diluted compound is loaded onto the SPE cartridge by gravity feed, pressure, or vacuum 

aspiration depending on the SPE system and the sample volume. Next, the SPE cartridge is 

washed with the appropriate solution to separate the compound from impurities and organic 

solvents. Finally, the compound is extracted from the SPE resin using a small volume of a 

suitable eluent for human injection, such as ethanol, and diluted with physiological buffers or 

sodium chloride solution (typically less than 10% of ethanol) (Lemaire et al. 1999). 
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Figure 1. Flow chart of SPE. 

2.3. Fluorine in radiochemistry 

Although fluorine is rare in natural compounds, medicinal fluorine chemistry is based on the 

fluorination of natural compounds or their close derivatives (Böhm et al. 2007). Fluorine has 

only one stable isotope (19F), and several artificial radioisotopes with half-lives from 

nanoseconds to minutes exist. The properties of fluorine-18 and some other commonly used 

positron emitters are presented in Table 3.  

Table 3. Some properties of commonly used β+ emitters. 

Radionuclide 
Maximum β+ 
energy [MeV] 

Maximum range 
in water [mm] 

Mean range in 
water [mm] 

Decay product 
11C 0.96 4.12 1.03 11B 

13N 1.19 5.39 1.32 13C 

15O 1.72 8.20 2.01 15N 

18F 0.635 2.39 0.64 18O 

64 Cu 0.653 2.9 0.64 64Ni 

68Ga 1.89 8.9 2.24 68Zn 

(National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, Welch and 
Redvanly 2003, Biersack and Freeman 2007,  Miller et al. 2008, Cal-Gonzáles et al. 2009) 
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Fluorine-18 can be produced in a cyclotron via several nuclear reactions; two of the most 

common nuclear reactions are presented in Table 4. The 18O(n,p)18F reaction is preferred due 

to the high yield and ease of production with modern cyclotrons. Batches of up to several 

hundreds of GBq of [18F]F- are routinely produced. 

Table 4. The most common nuclear  reactions for F-18. 

Nuclear reaction Target material Product 
Typical specific activity 

[GBq/µmol] 
20Ne(d,α)18F Ne/F2 [18F]F2 0.030-0.37 

20Ne(d,α)18F Ne [18F]F- 100-1000 

18O(p,n)18F H2
18O [18F]F- 10-7000 

18O(p,n)18F 18O2/F2
* [18F]F2 ~ 1.85 

18O(p,n)18F H2
18O post-target produced

[18F]F2 

55 

* Two-shoot method (Nickles et al. 1984) 

(Guillaume et al. 1991, Bergman and Solin 1997, Lasne 2002, Barnhart et al. 2003a) 

Fluorine-18 has increased in popularity as a radioisotope in the PET field due to its near 

optimal decay characteristics and relative ease of production also by low energy cyclotrons 

(Coenen 2007). 

2.4. Specific activity (SA) 

The SA is the amount of radioactivity per the mass unit of a radiolabeled compound. The SA 

decreases over time as a radioactive tracer decays and the unlabeled compound remains 

(Figure 2).  

The need for high SA depends on the target of the PET tracer, as many tracers are 

highly potent or toxic. Additionally, many receptor systems in the CNS exist in nanomolar 

concentrations, and low SA will lead to saturation of the receptors. As a consequence true 

tracer conditions (i.e. <5% occupancy by carrier) will not be satisfied at low SA. The injected 

mass of the tracer should be minimized, but the amount of injected radioactivity must be high 

enough for a statistically meaningful PET scan. SA is also dependent on the labeling method, 

i.e., nucleophilic vs. electrophilic. The methods of producing [18F]F2 require the addition of 
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carrier-F2, which decreases the SA, in contrast to nucleophilic [18F]F-, which can be produced 

as n.c.a and, thus, with high SA, see Table 4. 

  

Figure 2.  SA decreases over time with radioactive tracer decay, but the amount of unlabeled tracer 
remains the same. 

2.5. Fluorination methods in radiochemistry 

The radiofluorination methods can be divided into five groups as follows:  

1) Nucleophilic substitution 

2) Electrophilic substitution 

3) Electrophilic addition 

4) Radiofluorination via built-up procedures 

5) Radiofluorination via prosthetic groups 

Substitutions and additions are direct fluorination methods, and the last two methods are 

indirect methods. On the contrary to direct methods in built-up procedures and 

radiofluorination of prosthetic groups the carbon skeleton structure is changed. In built-up 

syntheses the easily 18F-fluorinated small molecule, such as 18F-fluoroaryls, is used to 

synthesize more complex molecules, which cannot be radiofluorinated directly due to 

mechanistic reasons, i.e. their low stability. In radiofluorination reactions via prosthetic 

groups the primary 18F-labeled functionalized compound is coupled with a second molecule, 

such as fluoroalkylations and fluoroacylations. Radiofluorination via prostethic group is used 

in labeling reactions of proteins, peptides and antibodies (Guillaume 1991, Coenen 2007, 

Banister et al. 2010, Ermert 2014). In this literature review I will concentrate on the direct 

substitution and addition labeling procedures. In radiosynthesis, the ratio of radioactive 

labeling agent and precursor is generally different from that of traditional organic chemistry. 



Review of the Literature 

 

20

The amount of unlabeled precursor is often 103 or 104-fold of the radiolabeling agent 

(Ametamey et al. 2008). This is particularly true for high SA nucleophilic fluorination. 

Nucleophilic and electrophilic fluorination methods are complementary processes, with the 

method of choice being dependent on the reactivity profile of the precursor toward 

fluorination (Chambers 2004). Nucleophilic fluorination is the preferred method for 

radiolabeling, because this process produces radiotracers with high SA. However, it is not 

always possible to use it due to the labeling conditions required or the labeled  

structure. Though electrophilic 18F-radiolabeling is a useful approach for labeling electron-

rich structures, its greatest limitation is the isotopic dilution introduced by the carrier-added 

methods that produce [18F]F2, leading to radiotracers with low SA (Berridge and Tewson 

1986). Selective electrophilic radiofluorination using [18F]F2 is challenging and easily leads to 

time-consuming deprotection and purification processes. Therefore, the major goals in 

electrophilic radiofluorination are to develop non-hazardous electrophilic fluorine sources 

with less reactivity and better selectivity, such as RxN-18F reagents (Teare et al. 2008, Teare et 

al. 2010, Furuya et al. 2008a, Tredwell et al. 2012, Liang et al. 2013, Brandt et al. 2014, 

Campbell et al. 2014), and to develop methods to produce these electrophilic labeling agents 

with high SA.  

2.5.1. Nucleophilic 18F-fluorination 

Nucleophilic radiofluorination reactions are mostly aliphatic SN2 or aromatic SNAr 

substitution reactions in which the target molecule has a suitable leaving group that is 

substituted with the fluoride anion. Fluoride anion is a weak base rather than a nucleophile 

(Nuc). [18F]F- is most often produced from highly 18O-enriched water by the nuclear reaction 
18O(p,n)18F. The [18F]F- is then solvated in target water and a poor nucleophile due to 

hydrogen bonding between the fluoride anion and water molecules. The content of the water 

target is passed through the anion exchange cartridge, and [18F]F- is eluted from an anion 

exchange resin with an aqueous alkali metal carbonate or alkali metal oxalate solution. Soft 

metal cations with large atomic radii (Cs+, Rb+) have also been used (Welch and Redvanly 

2003, Ametamey et al. 2008). A third group of counter ions are tetra-alkylammonium salts 

(tBu4N
+, Et4N

+), which have been used as counter ions without cryptands (Welch and 

Redvanly 2003, Lasne et al. 2002, Schirrmacher et al. 2007, Cai 2008, Lu and Pike 2008). 

Because fluoride pairs tightly with alkali metal cations, especially potassium, the crown-

ethers (18-crown-6) and cryptands (polyaminoethers; K2.2.2) have been used to chelate alkali 

metal cations that enable fluoride to be more reactive toward the molecule that is to be labeled 
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and enable the fluoride ion to be solubilized in apolar aprotic solvents (e.g., MeCN, DMSO, 

DMF, THF, CD2Cl2). The crown ether or cryptand is added to aqueous potassium 

[18F]fluoride and carbonate solution, and water is removed by azeotropic distillation with 

MeCN. The azeotropic distillation steps are repeated to ensure a dry anhydrous complex 

(Lasne et al. 2002, Cai 2008, Lu and Pike 2008, Ametamey et al. 2008, Dollé 2008). 

In aliphatic nucleophilic substitution (SN2) reactions the [18F]F- will attack the sp3 hybridized 

center at the opposite side relative to the LG, resulting in substitution with inversion of the 

configuration of the carbon center. In the SN2 type substitution, the LG is a weak base that can 

stabilize the resulting negative charge originating from the [18F]F- substitution (Scheme 1).  

LG 18F LG 18F

sp3 sp3

[18F]F-
- LG-

 

Scheme 1. SN2 type substitution. 

Different sulfonate esters are commonly used as a LG in nucleophilic fluorination (Figure 2) 

and halides are also used. Of the sulfonate esters, the most reactive is triflate; of the halides, 

the most reactive is iodide. Fluoride is not generally used as a LG in nucleophilic labeling due 

to the diluting effect of stable fluorine, which decreases the SA. Using nucleophilic 

radiofluorination, high radiochemical yield and SA is often achieved. On the other hand, the 

harsh reaction conditions in nucleophilic fluorination may not be suitable for the precursor 

and can lead to chemical decomposition of the reactant and product.  

 

Figure 3. Some sulfonyl-containing LGs used in nucleophilic labeling reactions. 

Nucleophilic aromatic substitution (SNAr) can be divided into homoaromatic and 

heteroaromatic reactions depending on the aromatic ring structure, but the principles of the 

reactions are the same. The SNAr reactions require at least one strong electron withdrawing 

group (EWG) and a good LG in an ortho- or para-position in the ring structure of the 

aromatic ring (Scheme 2).  
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Scheme 2. The SNAR reaction mechanism. 

Typical LGs are the NO2 group, tetra-alkyl groups, and halides. Good EWGs in the para- or 

ortho-position are NO2-, CF3-, CN-, and CHO-. The series NO2 > CF3 > CN > CHO > COR > 

COOR > COOH > Br, I, F, Me > NMe2 > OH, NH2 represents EWGs in descending order of 

promotion of the reactivity of the LG in nucleophilic fluorination (Lasne et al. 2002, Cai, Lu 

and Pike 2008, Dollé 2008). 

2.5.2. Electrophilic 18F-fluorination 

In electrophilic fluorination, fluorine behaves as a cation (F+) and reacts with electron-rich 

structures such as alkenes, aromatic rings, and carbanions. The main reaction mechanisms of 

electrophilic 18F-fluorination are aromatic substitution (SEAr) reactions and addition reactions 

to alkenes (Berridge and Tewson 1986). The oxidizing strength of fluorine is high and easily 

leads to exothermic radical chain reactions and the formation of undesirable side products. 

Because of the vigorous reactivity of elemental fluorine, electrophilic radiofluorination often 

has low regioselectivity and poor yield. These undesirable properties can be affected by 1) the 

dilution of fluorine with inert gases (0.1-0.5% fluorine in nitrogen or noble gas), 2) using 

strong acids (e.g., TFA) as a reaction medium, or 3) using less reactive electrophilic labeling 

agents than [18F]F2 (Lerman et al. 1981, Lerman et al 1984, Taylor 1999, Dollé 2008), 4) 

specifically-tailored leaving groups. In electrophilic substitution of aromatic rings, an EWG 

on the ring decreases the electron density of the reaction center and makes it less favorable for 

electrophilic attack (Namavari et al. 1995). 

Rozen and co-workers have studied the effects of temperature and solvent on the electrophilic 

reaction mechanism. They found that, in electrophilic radiofluorination, decreased reaction 

temperature and a polar solvent, in particular, promote electrophilic reactions and decrease 

radical attack. Polar solvents both encourage the polarization of the fluorine molecule and 

behave as acceptors for the fluorine atom (negatively charged atom of [18F]F2) in the 

transition state (Scheme 3) (Rozen and Gal 1987a,  Rozen and Gal 1987b, Sanford 2007).  
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Scheme 3. Polarization of F2 by protonic acid (upper) and dielectric aprotic solvent (H-solvent) 
(lower), which makes the F-F bond more prone to nucleophilic attack. Nuc can be a tertiary hydrogen, 
C-C double bond, or aromatic ring (Sanford 2007). 

The development of electrophilic radiofluorination of PET tracers is driven by the desire for a 

broader and more useful range of electrophilic labeling agents with higher SA than currently 

achieved. Electrophilic 18F-fluorination, when [18F]F2 is produced “in-target”, suffers from 

well-recognized drawbacks; the carrier-added method of [18F]F2 production produces labeled 

products with low SA. Pleasingly, post-target production of [18F]F2 has much increased SA 

(Bergman and Solin 1997). Another drawback is that, the maximum achievable RCY in 

electrophilic substitution is limited to 50% as only one of the two atoms of [18F]F2 ends up in 

the target molecule.  On the other hand in electrophilic addition the theoretical RCY is 100 % 

and subsequently the achievable SA is double that of electrophilic substitution. 

In perfluorination, several hydrogens on the molecule are replaced by fluorine. 

Perfluorination is usually carried out under conditions that favor the free radical mechanism 

(Hung et al. 1993, Sanford 2007). In contrast to perfluorination, selective direct 

monofluorination is promoted by decreasing the amount of carrier-fluorine using polar 

solvents and good LGs. The reaction conditions attempt to tame free radical processes (Rozen 

1988, Navarrini et al. 1999, Sandford 2007). Rozen and co-workers have shown that 

fluorination of the tertiary hydrogen is less probable when the EWG is located near the 

reaction center and the electron density of the reaction center is decreased (Gal et al. 1980, 

Gal and Rozen 1982, Rozen and Gal 1987a, Rozen and Gal 1987b). The reactivity of aliphatic 

hydrogen has been observed to decrease in the series primary > secondary > tertiary (Coenen 

2007). 

Selective SEAr requires an activated aromatic ring with a suitable, easily displaced LG, such 

as an organometallic group (Scheme 4). Most commonly used LGs are alkylated tin, 

germanium, and mercury groups (Berridge and Tewson 1986, Namavari et al. 1995, Coenen 

2007, Lasne et al. 2002, Forsback et al. 2008, Eskola et al. 2012a). In electrophilic synthesis 

of 6-[18F]fluoro-L-DOPA, the trialkyltin group has been shown to be very efficient (Namavari 

1992, Forsback et al. 2008). Due to the toxicity of these organometallic groups, boronic acids 

have also recently been used as the LG (Furuya et al. 2008a, Stenhagen et al. 2013).  
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Scheme 4. Selective electrophilic substitution of an aromatic ring (SEAr). 

The addition of [18F]F2 to alkenes follows the bimolecular electrophilic addition route of other 

halogens. Other halogens mostly form a trans-addition product due to the bridged halonium ion 

transition step. In the addition reaction with fluorine, the main route is cis-addition. This is due 

to the instability of the bridged fluoronium intermediate that would lead to the trans-addition 

product. Subsequently, nucleophilic attack of the double bond towards the fluorine molecule is 

followed by the formation of an unstable and tightly ion-paired α-fluorocation, which collapses 

before the rotation of the carbon-carbon bond (Scheme 5A) (Rozen and Brand 1986, Berridge 

and Tewson 1986, Dollé et al. 2008). With other electrophilic fluorinating agents containing the 

O-F bond, such as various [18F]hypofluorites, the addition reaction primarily leads to cis-

addition through a radical mechanism (Scheme 5B) (Rozen and Brand 1986). 

 

Scheme 5. A: Cis-addition of [18F]F2 to a double bond. B: Cis-addition of X[18F]F, X=CH3COO- 
(Rozen and Brand 1986). 

[18F]FDG was first synthesized via an electrophilic addition pathway before the nucleophilic 

synthesis method was developed. Ido et al. (1978) reported the addition reaction between 

[18F]F2 and triacetoxy glucal resulting in a mixture of [18F]FDG (6.1) and [18F]FDM (6.2) 

(Scheme 6).   

 

Scheme 6. Electrophilic synthesis of [18F]FDG (6.1) using [18F]F2, [
18F]FDM (6.2) is formed as a 

byproduct (Ido et al. 1978). 
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In the synthesis of the hypoxia marker [18F]EF5, nucleophilic substitution of bromine by 18F-

fluoride has been unsuccessful (Dolbier et al. 2001). Subsequently, electrophilic labeling of 

allyl precursor 7.1 with [18F]F2 was studied (Dolbier et al. 2001) (Scheme 7). In 2012 Eskola 

et al. published the synthesis of [18F]EF5 (7.2) via electrophilic addition using high SA [18F]F2 

(Eskola et al. 2012b). 

 

Scheme 7. Synthesis of [18F]EF5 (7.2) using [18F]F2 (Dolbier et al. 2001). 

2.6.  [18F]MeF 

[18F]MeF is the simplest possible 18F-labeled organic molecule. In addition to being used as a 

cerebral blood flow tracer in PET studies, [18F]MeF is the source of 18F atoms in the isotopic 

exchange reaction for the production of post-target [18F]F2 with high SA at Turku PET Centre 

(Bergman and Solin 1997). The success of [18F]MeF synthesis is crucial for the production of 

high SA [18F]F2.  

[18F]MeF can be prepared by a variety of methods, including silver oxide-assisted production 

from MeI and [18F]F- in MeCN (Gatley et al. 1981, Gatley 1982, Gatley et al. 1991), the use 

of non-volatile TMATf in DMSO, microwave-assisted synthesis of [18F]MeF from quaternary 

anilinium salts in DMSO (Banks et al. 1994), and an exchange reaction between [17F]F2 

(t½(17F) = 65 s) and methane gas (Stone-Elander 1986, Barnhart et al. 2003b).  

The trapping methods of [18F]MeF and [11C]MeF, as well as other gaseous 

hydrofluorocarbons in SepPak cartridges, have been studied by Gatley and colleagues (Stone-

Elander et al. 1986, Gatley et al. 1991, Gatley et al. 1993). In 1991 they presented a method to 

recover [18F]MeF in SepPak cooled with ethanol/dry ice temperature (Gatley et al. 1991), and 

in 1993 [18F]MeF was formed trapped on an alumina cartridge (Gatley et al. 1993). Bergman 

and Solin have published a robust method to trap [18F]MeF in a stainless steel (SS) loop at the 

temperature of liquid nitrogen after preparative chromatographic purification (Bergman and 

Solin 1997).   

The radiochemical yield (RCY) of [18F]MeF is important for the production of post-target 

[18F]F2 (Bergman and Solin 1997), as the subsequent yield of [18F]F2 depends on this. The 

chemical purification of [18F]MeF after synthesis has been given little attention. A high 
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chemical purity (CP) of [18F]MeF is needed to achieve the high SA of post-target [18F]F2. In 

the production of high SA [18F]F2, the amounts of [18F]MeF and carrier-F2 are low, so even 

minute impurities can decrease the yield and SA of [18F]F2.  In the synthesis of post-target 

[18F]F2, [
18F]MeF was purified by gas chromatography and the purified fraction collected in 

the SS loop at -190°C (liquid nitrogen).  

2.7.  [18F]F2 

[18F]F2 gas can be produced using several methods: 1) irradiating neon gas with deuterium to 

produce 20Ne(d,α)18F (Bida et al. 1980, Casella et al. 1980, Barnhart et al. 2003a) in the 

presence of carrier-F2, 2) with the two shoot method in which 18O2 gas is bombarded with 

protons to produce 18O(p,n)18F (Nickles et al. 1984, Chiracal et al. 1995, Roberts et al. 1995, 

Bishop et al. 1996), and then bombarded again after adding carrier-fluorine diluted with a 

noble gas, and 3) a post-target method in which 18O-enriched water is bombarded with 

protons, and the formed [18F]F- is utilized in the synthesis of post-target [18F]F2. With “in-

target” methods the SAs are significantly lower than with post-target methods. The SA of 

labeled products directly affects the SA of other electrophilic labeling agents produced from 

[18F]F2; therefore, it is important to develop methods to produce [18F]F2 and tamed [18F]F2 

derivatives with the highest achievable SA. 

2.8. Other sources of electrophilic [18F]fluorine 

Attempts have been made to tame the reactivity of [18F]F2 by producing 18F-labeled 

derivatives of fluorine gas, such as O-18F class ([18F]hypofluorites and perchloryl 

[18F]fluoride), [18F]XeF2, or RxN-18F class reagents. Common to all 18F-labeled derivatives 

produced from in-target [18F]F2 is a poor SA, which restricts the use of these derivatives. The 

scope and limitations of these derivatives should be judged based on various characteristics. 

Typically, these characteristics are the reactivity profile, availability of suitable methods for 

production, chemical impurities formed in production, stability, and obviously RCYs and 

SAs. At present availability of such data is limited for most of the electrophilic 18F-sources. 

2.8.1.  [18F]Hypofluorites – O-18F 

The reaction mechanism of hypofluorites with alkenes can follow either a free radical or an 

electrophilic pathway. In general, polar and steric aspects determine the regio- and 

stereochemistry of the fluorinated product. Moreover, electron-rich alkenes, polar solvents, 

low concentration, temperature, and sometimes aerobic conditions encourage an electrophilic 

reaction and suppress fluorine radical processes (Navarrini et al. 1999). In most cases, 
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hypochloryl and perchloryl fluorides are labeled using direct electrophilic substitution with 

[18F]F2. These [18F]O-F hypofluorite derivatives of [18F]F2 are less reactive and more selective 

than [18F]F2. Perchloryl fluoride has been investigated, but not used routinely because of its 

explosive nature (Fowler et al. 1982, Ehrenkaufer and MacGregor 1982). 

[18F]Acetyl hypofluorite 

[18F]Acetyl hypofluorite ([18F]CH3COOF) has been reported to react with alkenes (double 

bonds), producing syn-fluorinated products with relatively good regioselectivity. It has also 

been shown to be milder and more selective than other O-F group labeling agents (CF3OF, 

CF3COOF, CF3CF2OF) when using highly activated aromatic rings as a labeling substrate 

(Rozen and Lerman 1979, Rozen and Menahem 1980, Rozen et al. 1981, Lerman et al. 1981, 

Lerman et al. 1984). In 1982, Fowler et al. reported the radiosynthesis (Scheme 8) and use of 

[18F]CH3COOF. Using this liquid phase synthesis method, [18F]CH3COOF has been produced 

with high yield and used for labeling reactions without a separate purification process. The 

highest RCY was achieved using ammonium acetate. Other cations that have been used are 

K+, Cs+, and Na+. The lowest RCY was obtained with the Na+ cation (Fowler et al. 1982). 

 

Scheme 8. Synthesis of [18F]acetyl hypofluorite (Fowler et al. 1982). 

Some years later, the synthesis of [18F]CH3COOF was developed further by both Jewett et al. 

(1984) and Chiracal et al. (1988). In this “gas-solid phase method”, the content of the target 

chamber (mostly [18F]F2/neon) was passed through a column containing a complex of alkali 

metal acetate and acetic acid (Scheme 9). [18F]CH3COOF was eluted from the column by 

aqueous solution.  

 

Scheme 9. Synthesis of [18F]acetyl hypofluorite (Jewett et al. 1984, Chiracal et al. 1988). 

In 1992, Namavari et al. published a paper in which they compared [18F]F2 and 

[18F]CH3COOF as labeling agents in the synthesis of 6-[18F]FDOPA. The decay corrected 

RCY with [18F]CH3COOF was significantly lower than with [18F]F2, 8% and 25% 

respectively (Namavari et al. 1992). Several papers on fluorodemetallation reactions, i.e. Sn, 

Ge, Si, and Hg metals, (Adam et al. 1984, Coenen and Moerlein 1987, Namavari et al. 1992, 



Review of the Literature 

 

28

Adam and Jivan 1988, Chaly et al. 1993,) with [18F]CH3COOF have been published since the 

1980s. 

 

Scheme 10. Radiofluorination of an aromatic ring with [18F]CH3COOF (M=Si, Ge, or Sn and  X= 
OCH3, CH3, H, F, Br, CF3,or  NO2) (Coenen and Moerlein 1987). 

[18F]Trifluoroacetyl hypofluorite 

[18F]Trifluoroacetyl hypofluorite ([18F]CF3COOF) is the oldest of all O-F class reagents 

(Neirinckx et al. 1978). In 1979 the synthesis and use of CF3COOF and other non-radioactive 

fluoroxy compounds was published by Rozen and co-workers (Rozen and Lerman 1979, 

Rozen and Lerman 1980, Rozen and Menahem 1980). 

 [18F]Perchloryl fluoride 

[18F]Perchloryl fluoride ([18F]FClO3) is a gaseous fluorinating agent produced from [18F]F2 

(Ehrenkaufer and MacGregor 1982) that has been used for the fluorination of 

unfunctionalized aryllithiums. In 1983, Ehrenkaufer and MacGregor published the results of 

fluorinating aryl lithiums with pharmacologically interesting functionalized groups using 

[18F]FClO3 (Ehrenkaufer and MacGregor 1983). In 2008, Hiller et al. published methods for 

producing n.c.a. [18F]FClO3 from [18F]fluoride (K[18F]F or H[18F]F). The RCYs remained 

low, only 1-6%, and the reproducibility of n.c.a. [18F]FClO3 has been reported to be poor 

(Hiller et al. 2008). [18F]FClO3 has to be purified carefully from unreacted [18F]F2 and the 

chlorinated oxides formed as side products because these impurities can further decrease the 

RCY. The formation of [18F]FClO3 is almost quantitative in the reaction shown in Scheme 11, 

but the highest achieved RCY is 50% due to the formation of [18F]KF (Ehrenkaufer and 

MacGregor 1983, Hiller et al. 2008). 

 

Scheme 11. Synthesis of [18F]perchloryl fluoride (Ehrenkaufer and MacGregor 1983). 

2.8.2. [18F]Xenon difluoride 

The high reactivity of elemental fluorine indicates that it will react with heavier noble gases, 

such as xenon (Tius 1995, Lu 2010). [18F]XeF2 can be produced via several synthesis routes, 
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both electrophilic and nucleophilic. The thermal reaction between xenon and [18F]F2 is a 

possible method for producing [18F]XeF2 (Scheme 12) (Chiracal et al. 1984). More recently, 

Constantinou et al. published a synthesis method in which [18F]XeF2 is produced via an 

isotopic exchange reaction using Cs+-Kryptofix222 complex a catalyst for the ionization of 

XeF2 (Constantinou et al. 2001).   

 

Scheme 12. Electrophilic synthesis of [18F]XeF2 (Chiracal et al. 1984). 

[18F]XeF2 has only a limited number of applications, and the SA of [18F]XeF2 is relatively low 

regardless of the production method (Chiracal et al. 1984, Constantinou et al. 2001, Lu and 

Pike 2010). Lu and Pike (2010) achieved a SA of 1.1 GBq/µmol.  

             

Scheme 13. Radiofluorination with [18F]XeF2 (Lu and Pike 2010). 

2.8.3.  RxN-18F reagents 

RxN-F reagents can be divided into neutral (R2NF) or quaternary ammonium salts (R3N
+F A-). 

Counter ion A- must be a non-nucleophilic anion, and organonitrogen groups (R2N and R3N
+) 

must be both good LGs and stable enough to survive without fluorine and the counter ion 

under the reaction conditions. 

RxN-18F reagents are mostly selective, easy to handle, and their reactivity controllable. 

Though much attention has been paid to the development of electrophilic N-F reagents, only a 

few have been labeled with 18F-fluorine and used in radiofluorination (Lal et al. 1996, Teare 

et al. 2007). RxN-18F reagents can be divided into four classes by their molecular structures: 

1) N-[18F]fluoropyridium reagents (Oberdorfer et al. 1988a), 2) N-[18F]fluoropyridones 

(Oberdorfer et al. 1988b), 3) N-[18F]fluorosulfonamides and N-[18F]fluorosulfonimides 

(Satyamurthy et al. 1990, Differding and Hofner 1991, Rostami 2007, Teare et al. 2007), and 

4) N-[18F]fluoro-1,4-diazabicyclo[2.2.2]octane derivates (Banks 1990, Banks 1998, Nyfeller 

et al. 2005, Teare et al. 2010). N-18F reagents have been used in fluorine/metal exchange 

reactions of organic compounds. 
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N-[18F]fluoropyridinium triflate 

N-fluoropyridinium triflate is stable and nonhygroscopic electrophilical fuorination agent. It 

has high reactivity compared to other N-fluoropyridinium salts with BF4, SbF6 and ClO4 

counter anions. (Umemoto et al. 1986). N-[18F]fluoropyridinium triflate (13.1) can be 

prepared from a reaction between [18F]F2 and N-trimethylsilylpyridinium triflate in 

acetonitrile (Scheme 13). The SA of N-[18F]fluoropyridinium triflate has been reported to be 

~6 MBq/μmol (Oberdorfer et al. 1988a).  

 

Scheme 13. Production of N-[18F]fluoropyridinium trilate (Obendorfer 1988a). 

N-[18F]fluoropyridinium triflate has high reactivity with Grignard reagents, carbanions, and 

enolates (Scheme 14) (Umemoto et al. 1986, Obendorfer et al. 1988a).  

 

Scheme 14. Radiofluorination of Grignards reagent (upper) and enolate (lower) with N-
[18F]fluoropyridinium trilate (Oberdorfer et al. 1988a). 

N-[18F]fluoropyridones 

In 1988, Obendorfer et al. published synthesis methods for and the use of 1-[18F]fluoro-2-

pyridone (15.1), a new electrophilic N-F labeling agent. 1-[18F]fluoro-2-pyridone was 

produced by passing [18F]F2 through the substrate solution at -78°C, and the crude product 

could be used without any purification. Organometallic compounds, such as lithium-

containing molecules, can be labeled with 1-[18F]fluoro-2-pyridone (Scheme 15) (Obendorfer 

1988b). 
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Scheme 15. Synthesis and use of 1-[18F]fluoro-2-pyridone (15.1) (Obendorfer 1988b). 

N-[18F]fluoro-N-alkylsulfonamide 

Several different N-[18F]fluoro-N-alkylsulfonamides have been synthesized (Satyamurthy et 

al. 1990) and tested in fluorination reactions. N-[18F]fluoro-endo-norbornyl-p-

tolylsulfonamide (16.1) has been shown to be the most reactive of the N-[18F]fluoro-N-

alkylsulfonamides (Scheme 16), which are reactive towards Grignard reagent (R-MgBr) and 

organilithium (R-Li) reagents. In reactions with bulky N-[18F]fluoro-N-alkylsulfonamides, the 

RCY has been relatively low, probably due to steric hindrance between the substrate and the 

bulky labeling agent (Satyamurthy et al. 1990). 

 

Scheme 16.  Synthesis and use of N-[18F]fluoro-endo-norbornyl-p-tolylsulfonamide (16.1) 
(Satuyamurthy et al. 1990). 

N-[18F]fluorobenzenesulfonimide 

N-fluorobenzenesulfonimide (NFSi, 17.1) is a neutral fluorinating agent that is stable and 

solid at room temperature (RT). NFSi is soluble in common organic solvents, such as acetone, 

CH2Cl2, MeCN, DMF, and THF, and was found to be suitable for the fluorination of a variety 

of organometallic compounds, but it also permits the fluorination of slightly activated 

aromatic compounds (Satyamurthy et al. 1990, Davis et al. 1995, Rostami 2007, Liang et al. 

2013). Enantioselective fluorination of β-ketoesters is possible when using NFSi with chiral 
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palladium complexes (Liang et al. 2013). Organocatalyzed enantioselective fluorinated 

products can be obtained with [18F]NFSi (Teare et al. 2007). 

 

Scheme 17. Synthesis of [18F]NFSi and its use in the fluorination reaction of allylsilane (Teare et al. 
2007). 

 

Scheme 18. Fluorination of Grignard reagent with NFSi  (Satyamurthy et al. 1990). 

2.8.4. 18F-TEDA-X reagents 

F-TEDA-X reagents, N-fluoro-1,4-diazabicyclo[2.2.2]octane derivates, form a versatile group 

of NF class reagents and belong to quaternary ammonium salts (R3N
+F A-). F-TEDA-X 

reagents include a comprehensive number of derivatives in which the side chain groups and 

counter ions can be varied. F-TEDA-X reagents have been used in traditional organic 

chemistry as selective electrophilic fluorinations (Banks 1990, Banks et al. 1996, Banks 1998, 

Nyfeller et al. 2005, Furuya et al. 2008a, Furuya 2009a, Tang and Ritter 2011, Teare et al. 

2010).        

 

Figure 4. N-fluoro-1,4-diazabicyclo[2.2.2]octane derivate (SelectfluorTM), R= Me, CH2CF3, or CH2Cl, 
and X- = OTf or BF4- (Banks 1990, Banks et al. 1992,  Banks 1998,  Hart and Syvret 1999, Nyfeller et 
al. 2005, Singh and Shreeve 2005). 

With F-TEDA-X derivatives, different organic structures can be effectively fluorinated, from 

aliphatic chain structures, alkenes, and amines to aromatic rings, glycols, and electron rich 

organic structures, under regioselective and relatively mild reaction conditions. (Hart and 

Syvret 1999, Nyfeller et al. 2005, Singh and Shreeve 2004, Furuya et al. 2008a, Furuya et al. 

2009a).  
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In aliphatic fluorinations, F-TEDA-X derivatives have two possible reaction mechanisms: SN2 

or single electron transfer (SET); with aromatic fluorination the mechanisms are SEAr or SET. 

The reaction mechanism of fluorination with F-TEDA-X derivatives depends on the nature of 

the precursor and fluorinating agent. In addition, the reaction solvent impacts the reaction 

mechanism (SN2 vs. SET) (Banks et al. 1990, Vincent et al. 1999, Nyfeller et al. 2005, 

Sorokin et al. 2013).  

 

Scheme 19. SN2 and single electron transfer (SET) mechanism of fluorination with F-TEDA-X 
derivatives (Banks et al. 1990). 

The reactivity of F-TEDA-X derivatives varies depending on the structure of the side group 

and the counter ion. Fluorine will have a more electrophilic character if the peripheral alkyl 

side group is more electron-withdrawing. Of the peripheral side groups, the methyl group 

affects the reactivity the least. The trifluoroethyl group increases the reactivity compared to 

the chloromethyl group. Using triflate as a counter ion has been shown to increase the 

reactivity of F-TEDA-X compared to BF4 (Banks et al. 1992, Banks et al. 1996, Hart and 

Syvret 1999, Vincent et al. 1999, Nyfeller et al. 2005). Vincent et al. (1999) observed higher 

yields and fewer side products when Selectfluor bis(triflate) was used instead of Selectfluor 

tetrafluoroborate (Vincent et al. 1999).  

The F-TEDA-X derivatives are soluble in a limited number of polar protic and aprotic 

solvents: water, nitromethane, MeCN, DMF, DMA, acetone, and CD2Cl2 (Nyfeller et al. 

2005, Banks 1998, Teare et al. 2010). Currently, ionic liquids, triflate, and tetrafluoroborate 

are used in the fluorination reactions with F-TEDA-X (Nyfeller et al. 2005).  

Selectfluor tetrafluoroborate – F-TEDA-BF4 

N-fluoro-1,4-diazabicyclo[2.2.2]octane with a chloromethyl side chain and tetrafluoroborate 

counter ions (N-fluoro-1,4-diazabicyclo[2.2.2]octane bis(tetrafluoroborate), SelectfluorTM), F-

TEDA-BF4 (Figure 5), is a quaternary ammonium salt and has the second highest reactivity of 

the F-TEDA-X derivatives (Banks 1990, Banks 1998, Singh and Shreeve 2004, Nyfeller et al. 
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2005, Chambers 2010). With F-TEDA-BF4, a variety of different structures can be 

fluorinated, from aliphatic chains and alkenes to aromatic rings and amines (Singh and 

Shreeve 2004). 

 

Figure 5. N-fluoro-1,4-diazabicyclo[2.2.2]octane bis(tetrafluoroborate), commercial Selectfluor. 

Lately, several applications of the fluorination of aryls with F-TEDA-BF4 have been 

published by Ritter and co-workers. They have concentrated on fluorination mediated or 

catalyzed by transition metals (Furuya et al. 2008a, Furuya and Ritter 2009a, Furuya et al. 

2009b, Furuya and Ritter 2010), but also fluorination reactions for aryl boron (Furuya and 

Ritter 2008b) and aryl silane (Tang and Ritter 2011) using F-TEDA-BF4. Hodson et al. (1994) 

and Tageucki et al. (2000) presented an electrophilic fluorination method for fluoroindoles 

using F-TEDA-BF4 as a fluorinating agent. 

[18F]Selectfluor bis(triflate) 

The production of radiolabeled N-[18F]fluoro-1,4-diazabicyclo[2.2.2]octane bis(triflate) 

([18F]SF, 20.1) was published by Teare et al. in 2010 (Scheme 20). They also reported the 

electrophilic radiofluorination of several model molecules using [18F]SF (Teare et al. 2010). 

In 2013, Mizuta et al. increased the variety of radiolabeling approaches using [18F]SF by 

publishing a synthesis method for catalytic decarboxylative fluorination of tri- and 

difluoromethyl arenes (Scheme 21) (Mizuta et al. 2013). 

  

Scheme 20. Synthesis of [18F]Selectfluor bis(triflate) (Teare et al. 2010). 

 

Scheme 21. Synthesis of [18F]trifluoromethyl using [18F]SF (Mizuta et al. 2013). 
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2.9. ClF and [18F]ClF 

In the 1970s and 1980s, Boguslavskaya and co-workers studied the substitution and addition 

reactions of ClF to halogen-substituted alkanes, vinyl alcohols, and substituted α,β-

unsaturated acids. ClF is the lightest interhalogen and has a remarkable dipole moment, 

0.89 D, which enables the chlorine atom to act as an electrophile (Boguslavskaya et al. 1980, 

Boguslavskaya et al. 1982, Boguslavskaya 1984).  

Using a mild reaction environment without any catalyst, it is possible to fluorinate bromine 

LG containing alkanes and esters via a substitution reaction (Scheme 22). The bromine to 

fluorine substitution is possible in inert, low polarity solvents such as CCl3, CHCl2, or 

CF2ClCCl2F. The substitution reaction is not temperature sensitive, as substitution occurs 

from -78°C to +50°C. The alkane substituents cannot contain any reactive double bonds, such 

as hydroxyl-, carboxylic acid, aryl-, cyano-, or trialkylamine groups, which can react with ClF 

under these reaction conditions. During the bromine substitution reaction, a carbocation is 

formed. Accordingly, the reactivity of bromine substitution decreases in the following order 

due to the stability of the carbocation intermediate: tertiary carbon > secondary carbon > 

primary carbon (Boguslavskaya et al. 1982). 

 

Scheme 22. Bromine substitution using ClF (Boguslavskaya et al. 1982). 

Boguslavskaya et al. have also shown that ClF addition reactions are more regioselective in 

anhydrous and strongly polar HF than in inert low polarity solvent, as mentioned above, but 

CH2Cl2 can also be used. The addition reaction of ClF to allyl alcohols is trans-stereospecific 

in both types of reaction media. In an inert solvent, several EWGs on both sides of the double 

bond can significantly hinder the addition of ClF (Boguslavskaya et al. 1980). Boguslavskaya 

et al. also observed that the addition of ClF favors the electrophilic mechanism over the 

radical mechanism. The choice for inert reaction solvent or reaction temperature (-30ºC to 

+30ºC) did not have a remarkable effect on the yield of the addition reaction (Boguslavskaya 

et al. 1980). 

In addition reactions of ClF to allyl esters in an inert non-polar solvent, the direction of 

addition does not predominantly depend on the type of double bond substituent and both 

Markovnikov (60%) and anti-Markovnikov (40%) products were observed (Boguslavskaya 

1984). 
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In 1978, Lambrecht et al. described a production method for [18F]ClF in which neon gas 

containing chlorine gas was bombarded with deuterons. The recovery yield was reported to be 

~5.7%, but the produced [18F]ClF was not used in further reactions (Lambrecht et al. 1978). In 

2011, Engle et al. published a method to produce ClF in which the chlorine atom is 

radioactive: [34m,38Cl]ClF. After production of the radioactive isotope of chlorine-38, they 

used a method similar to the synthesis of post-target [18F]F2 (Engle et al. 2012). Paper III 

reported a method for producing [18F]ClF from post-target [18F]F2. We have also 

demonstrated the use of [18F]ClF in an addition reaction of the C-C double bond, which, to the 

best of my knowledge, is the first demonstration of the 18F-fluorination of an organic 

molecule with [18F]ClF. 
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3. AIMS OF THE STUDY 

The aims of this study were to develop the new radiolabeling agents [18F]SF and [18F]ClF and 

to demonstrate their usefulness in labeling reactions of radiotracers with practical utility. 

The following objectives were set: 

1. To synthesize [18F]Selectfluor bis(triflate) ([18F]SF) with high SA and to demonstrate 

the electrophilic synthesis of model molecules, such as 6-[18F]FDOPA, using [18F]SF. 

2. To compare the two electrophilic labeling agents [18F]SF and [18F]F2 and a nucleophilic 

approach in the synthesis of [18F]NS12137, a norepinephrine transporter (NET) 

selective tracer for PET imaging. 

3. To develop a method to produce [18F]ClF via [18F]F2 and demonstrate the electrophilic 

addition reaction of [18F]ClF to a C-C double bond-containing structure. 
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4. MATERIALS AND METHODS 

4.1. General 

All of the fluorinated radiolabeling agents and radiotracers described in this section were 

synthesized using synthesis devices built at the Radiopharmaceutical Chemistry Laboratory of 

Turku PET Centre. In the semi-preparative purifications, a Jasco PU-2089 Plus HPLC pump 

(JASCO Europe s.r.l., Cremella, Italy) with UV and radioactivity detectors was used. A VDC-

405 ionization chamber (Veenstra Instruments, Joure, the Netherlands) was used for 

radioactivity measurements. Helium (99.995%) used in atzeotropic distillation, and 1% 

chlorine in neon used in [18F]ClF synthesis, were supplied by AGA (Turku, Finland). Neon 

(99,995%) used as a sweep gas, and the carrier-fluorine, 0.5% F2 in neon, were supplied by 

Linde AG - Geschäftsbereich Linde Gas, Unterschleicssheim, Germany. Homemade 

preparative GC columns were used for the purification of [18F]MeF. A stainless steel HPLC 

column (7.8 x 300 mm) was emptied of its original filling and filled with gas chromatography 

(GC) material (Hayesep Q 80-100 mesh, Grace Davison Discovery, Deerfield, IL, USA). 

More detailed information about the materials and instruments used in radiosynthesis can be 

found in the original publications (Papers I, II and III). 

Analytical radio-HPLC 

All of the radiopharmaceuticals described in this section were analyzed using a VWR-Hitachi 

L-2130 HPLC pump (VWR Hitachi, VWR International GmbH, Darmstadt, Germany) 

combined with a VWR-Hitachi L-2400 UV-absorption detector and a 2 x 2 inch NaI-crystal 

for the detection of radioactivity.  

Radio-LC-MS/MS 

Liquid chromatography mass spectrometry with radioactivity detection was used for 

identification of the radiopharmaceuticals in papers II and III. The LC-MS/MS system used a 

linear ion trap quadrupole mass spectrometer (QTRAP, Applied Biosystems SCIEX, Toronto, 

Canada) equipped with a turbo ion spray source and an Agilent 1100 series pump (Agilent 

Technologies, CA, USA). The homemade radioactivity detector placed between the LC outlet 

and MS inlet consisted of a teflon loop embedded in a plastic scintillator (Meltilex®, Wallac, 

Perkin Elmer, Turku, Finland). Light from β+-particles interacting with the scintillator was 

detected by a double cathode PM-tube and the signal converted to a millivolt signal 

proportional to the radioactivity concentration eluting from the LC column.  
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4.2. Synthesis of labeling reagents  

[18F]Fluoride was produced with a CC-18/9 cyclotron (Efremov Scientific Research Institute 

of Electrophysical Apparatus, St Petersburg, Russia) by irradiating 2.1 ml 18O-enriched water 

(18O, >98 atom%, Rotem Industries, Israel) in a niobium target with an 18 MeV proton beam. 

The produced [18F]F- was isolated from the target liquid on an anion exchange cartridge 

(QMA, Waters Corporation, Milford. MA, USA). The trapped [18F]F- was then released by an 

eluent consisting of potassium carbonate, MeCN, and water and transferred into a vessel 

containing Kryptofix K2.2.2 in MeCN.  

An anhydrous cryptand complex of [18F]F-/Kryptofix K2.2.2 was formed by atzeotropic 

distillation with MeCN. During evaporation, the reaction vessel was heated to 100°C. The 

methylation precursor (MeI, MeBr, Me-OTs, or Me-OTf; 90 µl/ml) was dissolved in MeCN 

and added to the dried residue. [18F]MeF was synthesized through nucleophilic displacement 

of iodide, bromide, tosylate, or triflate from a methyl precursor (Scheme 23). The formation 

reaction of [18F]MeF was allowed to occur for 90 s at 100°C. With the methylation precursor 

MeI, sonication during the atzeotropic distillation and reaction was tested. 

 

Scheme 23. Formation of [18F]MeF using methyl halogens, methyl tosylate, or methyl triflate. X = Br, 
I, tosylate, or triflate. 

With the 4-N,N,N-trimethylanilinium triflate precursor (Blecha et al. 2008, Dannoon et al. 

2010), the synthesis of [18F]MeF was somewhat different than with other methyl precursors. 

First, 1.0 ml water containing 7 - 9 mg K2CO3 was pushed through a QMA cartridge 

containing [18F]F- and into the reaction vial. Next, the methylation precursor 4-N,N,N-

trimethylanilinium triflate (23-27 mg) was dissolved in a K2.2.2/DMSO solution (21-30 mg 

in 2.0-3.0 ml) and a QMA cartridge flushed with this solution. Atzeotropic distillation was not 

necessary. The reaction solution was heated at 190°C for 10 min (Scheme 24) and then cooled 

for 1 min. 

 

Scheme 24. Formation of [18F]MeF using [18F]F-
aq and 4-N,N,N-trimethylanilinium triflate (Blecha et 

al. 2008, Dannoon et al. 2010). 
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With all methyl precursors, the formed [18F]MeF was flushed with neon into the self-made 

semi-preparative GC column (7.8 x 300 mm). In the semi-preparative GC column, [18F]MeF 

was eluted with neon gas. [18F]MeF gas was separated from gaseous impurities and the 

purified [18F]MeF fraction trapped in a stainless steel loop at -196°C using liquid nitrogen. 

4.2.1. [18F]F2 

[18F]MeF was transferred with a low amount of carrier fluorine (~1000 nmol) in neon to a 

quartz discharge chamber. A high voltage discharge was initiated through this gas mixture 

(Scheme 25).  

 

Scheme 25. Production of [18F]F2. 

 

Figure 6. Flow chart of synthesis procedures for [18F]F2 and its derivatives [18F]SF and [18F]ClF. Me-
X, X= I-, Br-, OTf-, or OTs-.  
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4.2.2. [18F]Selectfluor bis(triflate) (I) 

In paper I, the reaction conditions for [18F]SF were further optimized from those in Teare et 

al. (2010). The influence of the concentration of SF precursor, 2 µmol (2.7 mM) versus 7.5 

µmol (10 mM), in labeling reactions was studied. [18F]F2 was bubbled directly through the 

reaction solution containing the SF precursor (0.6-2.3 mg, 2.0-5.5 µmol, MW 310 g/mol) and 

LiOTf (0.3 or 1.2 mg, 2.0 or 7.5 µmol, MW 156.01 g/mol) in acetone-d6, leading to 

instantaneous fluorination. The formed crude stock solution of [18F]SF was used without any 

further purification. These two concentrations of the [18F]SF solution, 2.7 mM and 10 mM, 

were evaluated in electrophilic labeling of  6-[18F]FDOPA (Scheme 26 and Table 6).  

 

Scheme 26. Synthesis of [18F]SF.  

4.2.3. [18F]ClF (III) 

For formation of [18F]ClF, chlorine gas (1400 nmol) was added to the quartz vessel the 

[18F]MeF/F2 discharge (Scheme 27). The formation of [18F]ClF was not promoted by heating 

or any other means.  

 

Scheme 27. Formation of [18F]ClF. 

4.3. Synthesis of 6-[18F]FDOPA (I) 

Both tin and silver(I) complex LG-containing precursors were used in the synthesis of 6-

[18F]FDOPA (Schemes 28 and 29). The silver(I) complex (29.2) was produced from boronic 

ester (29.1) (Scheme 29) in situ. With the stannyl-containing precursor, the synthesis of 6-

[18F]FDOPA occurred at both 2.7 mM and 10 mM [18F]SF, but with silver(I) complex only 

2.7 mM [18F]SF was used.  

[18F]SF in acetone-d6 (0.2 ml) was added to a reaction vial containing either 28.1 or 29.2 (10 

µmol). Silver triflate (20 µmol) was added only for fluorination of 28.2. The reaction solution 

was stirred for 20 minutes at RT. Subsequently, acetone was evaporated at RT and the Boc- 

protecting groups removed with 48% HBr (0.3 ml) at 130°C for 5 minutes (Scheme 28). The 
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MeO- protecting groups were hydrolyzed with 57% HI (0.3 ml) at 130°C for 15 minutes 

(Scheme 29). 

 

Scheme 28. Synthesis of 6-[18F]FDOPA using trimethyltin as a leaving group and [18F]SF as a 
labeling agent. 

 

Scheme 29. Synthesis of 6-[18F]FDOPA using aryl boronic ester (29.1) as a leaving group. 

After the radiofluorination samples from the reaction mixtures of both precursors were 

collected and analyzed with analytical radio-HPLC, the fractions corresponding to the 

protected intermediates 28.2 and 29.3 were collected from the HPLC outlet. The same 

analysis was carried out after hydrolysis, when the fraction corresponding to 6-[18F]FDOPA 

was collected and measured for radioactivity and to calculate the SA. 

Statistical analyses were performed using the program Graph Prism, version 5.01 (GraphPad 

Software, San Diego, CA, USA). RCYs were compared using the unpaired t-test with 

Welch’s correction. Results are expressed as means ± SD for the indicated number of 

observations (Figure 7). Means were considered significantly different when p<0.05. 
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4.4. Synthesis of [18F]NS12137 (II) 

4.4.1. Nucleophilic synthesis  

The brominated precursor tert-butyl(1S,5R)-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-

azabicyclo[3.2.1]-octane-8-carboxylate 31.1 (7.1-10.2 mg; 20.6-26.6 µmol) was dissolved in 

0.5-1.0 ml DMSO and added to the dry 18F-/K2CO3/K222 complex. The reaction solution was 

heated at 190ºC for 15 minutes (Scheme 30), diluted with 0.5-1.5 ml MeCN, and purified 

using semi-preparative HPLC.  

 

Scheme 30. Nucleophilic synthesis of [18F]NS12137. 

4.4.2. Electrophilic synthesis with [18F]F2 

[18F]F2 was bubbled directly through reaction solution containing the stannylated precursor 3-

[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate 31.1 (1.5-1.7 

mg; 3.2-3.6 µmol) in CD2Cl2 (750 µl) (Scheme 31). After fluorination, the solvent was 

evaporated at RT, the residue dissolved into MeCN, and then purified using semi-preparative 

radio-HPLC.  

 

Scheme 31.  Electrophilic synthesis of [18F]NS12137 using [18F]F2. 

4.4.3. Electrophilic synthesis with [18F]SF 

[18F]SF stock solution (2.7 mM, 0.2 ml) and silver triflate (5-20 mg, AgOTf) measured to be 

twice the molar amount of the [18F]SF in stock solution were added to the vial containing 

stannylated precursor (2.6-5.1 mg; 5.6-17.1 µmol) (Scheme 32). The reaction mixture was 

stirred for 20 min at RT. After the reaction, the solvent was evaporated at RT. The residue 

was dissolved in MeCN and purified using semi-preparative radio-HPLC.  
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Scheme 33. Electrophilic synthesis of [18F]NS12137 using [18F]SF. 

The purified protected intermediate (30.2) of the [18F]NS12137 fraction radiofluorinated 

using either of the above methods was collected, diluted with 30 ml water, and loaded onto a 

preconditioned C18 SepPak (Waters Corporation, Milford, MA, USA). The SepPak was then 

washed with 20 ml water. Deprotection was achieved in 4 min on the SepPak using 48% HBr 

(300 μl). After hydrolysis the SepPak was rinsed with water and [18F]NS12137 eluted using 1 

ml EtOH and 4 ml 0.9% NaCl solution. The chemical purity (CP), radiochemical purity 

(RCP), and SA of the final product were analyzed using analytical radio-HPLC. 

RadioLC-MS/MS was utilized for identification of the protected and deprotected 

[18F]NS12137 based on m/z. Samples were separated on a Waters Atlantis dC18 column (1.0 

x 150 mm, 3 μm, Waters Corp., Milford MA, USA) using a flow rate of 50 µl/min. The 

mobile phase consisted of 80% MeCN with 0.1% formic acid and 20% water (v/v). The turbo 

ion spray source was operated in positive ion mode. 

4.5. Synthesis of [18F]EF4Cla,b (III) 

The gaseous contents of the quartz reaction vessel were bubbled through the precursor 

solution containing EF1,2A (2-(2-nitro-1[H]-imidazol-1-yl)-N-(2,3,3-trifluoroallyl)-

acetamide) in TFA (Scheme 33), and radiolabeled products were isolated and identified by 

radio-HPLC. The same HPLC system was used for semi-preparative HPLC separation and 

identification of the radiolabeled products. The HPLC pump was connected to a SunFire C18 

column (5 µm, 4.6 x 150 mm, Waters Corp., Milford, MA, USA), and the HPLC column was 

eluted with 0.1% formic acid in methanol:water (38:62, v/v) at a flow rate of 1.0 ml/min.  
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Scheme 33. Synthesis of [18F]EF4Cla and [18F]EF4Clb. 

RadioLC-MS/MS analysis of [18F]EF4Cla,b 

In radioLC-MS/MS analysis, single ion masses were monitored: EF1,2A m/z 263 amu, 

[18F]EF5 m/z 301 amu, [18F]EF4Cla m/z 317 amu, [18F]EF4Clb m/z 317 amu, EF3Cl2 m/z 333 

amu. The separated products, [18F]EF4Cla, [18F]EF4Clb, [18F]EF5, and precursor (EF1,2A), 

were fragmented using the LC-MS/MS system (Figure 10). Fragmentation conditions varied 

for different compounds: [18F]EF4Cla, [18F]EF4Clb, [
18F]EF5, and EF3Cl2 were fragmented 

using a collision energy of 15 kV. In fragmentation of the precursor, a collision energy of 5 

kV was used. 

Lipophilicity measurements of [18F]EF4Cla,b 

The lipophilicity of [18F]EF4Cla, [18F]EF4Clb, and [18F]EF5 was determined under 

physiological conditions (logD), and ClogP values were calculated using two different 

commercially available codes: ChemDraw©, version 11 (CambridgeSoft Corporation, 

Cambridge, MA, USA) and ACD/ChemSketch Freeware, version 12.0 (Advanced Chemistry 

Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2009).  

The apparent partition coefficients (logD) for [18F]EF4Cla, [18F]EF4Clb, and [18F]EF5 were 

determined using the shake flask method (OECD 1995). The radiolabeled compound (3 - 5 

MBq) was shaken in a saturated mixture of n-octanol (10 ml) and 0.1 M phosphate buffer (pH 
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7.4, 10 ml) for one hour at RT. The radioactivity concentration of both phases was measured 

and logD calculated. The retention volumes (RV(N)) of [18F]EF4Cla, [18F]EF4Clb, and 

[18F]EF5 were calculated from the HPLC chromatograms and normalized to the RV(N) of 

EF3Cl2. 
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5. RESULTS 

5.1. Synthesis of labeling reagents 

5.1.1. [18F]MeF 

The RCYs of [18F]MeF using halogenated precursors are presented in Table 5. The highest 

RCY of [18F]MeF was achieved using 4-N,N,N-trimethylanilinium triflate as a precursor 

(Entry 6). No significant difference was found in the RCYs of methyl iodide with (Entry 1) or 

without (Entry 2) sonication. With methyl bromide the formation of [18F]MeF was very low, 

0.52 ± 0.33% (Entry 3). Low RCY was observed using methyl triflate as a precursor (Entry 

5). The RCY was similar using methyl tosylate (Entry 4) or methyl iodide as a precursor. All 

of the results are decay corrected to the end of bombardment (EOB) and summarized in 

Table 5. 

Table 5. Radiochemical yields (mean ± SD) of [18F]MeF using different precursors with decay 
corrected to EOB. 

Entry Precursor Number of synthesis 
Radiochemical 

yield 
[% at EOB] 

 

1 MerI# n=5 57.8 ± 2.4  

2 MeI† n=4 59.5 ± 4.8  

3 MeBr n=3 0.52 ± 0.33  

4 MeOTs n=3 57.2 ± 5.5  

5 MeOTf n=3 6.4 ± 3.1  

6 

4-N,N,N-

trimethylanilinium 

triflate 

n=3 85.6 ± 11.5  

# with sonication, †without sonication 

5.1.2. [18F]Selectfluor (I) 

[18F]SF was prepared and successfully used for 18F synthesis. [18F]SF stock solutions of  5-10 

GBq were used in labeling reactions for up to several hours after preparation. The stock 

solution of [18F]SF was not homogenous when left without mixing, as layers with different 

concentrations of radioactivity were observed (Kirjavainen, unpublished data). Remixing the 

solution before sampling aliquots for reactions homogenized the stock solution. 
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5.1.3.  [18F]ClF (III) 

[18F]ClF was not isolated and the RCY was not calculated. Instead, the formation of [18F]ClF 

was identified from the reaction products produced through electrophilic addition of [18F]ClF. 

5.2. Synthesis of 6-[18F]FDOPA (I) 

The applicability of [18F]SF was demonstrated with the radiolabeling of stannylated and aryl 

boronic ester precursors of 6-[18F]FDOPA. The results are presented in Table 6. 

Table 6. The measured RCYs (mean ± SD) of 6-[18F]FDOPA with stannylated precursor ( n= 6) and 
boronic ester precursor (n=6). The results are presented as mean +/- SD. 

Entry Precursor of FDOPA 
RCY [%] 

c(SF stock) = 2.7 mM c(SF stock) = 10 mM 

1 arylstannane 12.1 ± 3.7 6.8 ± 1.8 

2 boronic ester 19.0 ± 12.2 - 

Arylstannane precursor was reacted at RT with [18F]SF (lower or higher molar SF 

concentration (Table 6 Entry 1), and silver(I) triflate (Table 6 Entry 2) in acetone-d6 for 20 

minutes. The yield of 6-[18F]FDOPA using stannylated precursor did not differ significantly 

from the yield of 6-[18F]FDOPA using boronic ester precursor. In addition, less SF precursor 

resulted in significantly higher RCY for 6-[18F]FDOPA (Table 6 Entry 2, Figure 7). 

6-[18F]fluoro-L-DOPA

[18F]SF 2 mol [18F]SF  7.5 mol
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Figure 7. Statistical analysis of the yield of 6-[18F]FDOPA using 2 µmol (n=6) or 7.5 µmol  (n=6) 
stannylated precursor. 

5.3. Synthesis of [18F]NS12137 (II) 

[18F]NS12137 was synthesized using a nucleophilic and two electrophilic methods. In 

electrophilic labeling with [18F]F2, the number of radioactive side products was greater than in 

electrophilic labeling with [18F]SF or nucleophilic labeling (see Paper III, Suppl. Data). 



Results 

 

49

The RCP of the protected intermediate was equivalent (>95%) in all methods. The RCY, 

RCP, and SA are presented in Table 7. The deprotection proceeded smoothly at RT, and the 

RCP of [18F]NS12137 exceeded 96% with all methods. The highest achieved SA using 

[18F]F2 as a labeling agent was 29 GBq/µmol. This value was achieved using optimized 

conditions; very high starting activity and minimized F2-carrier addition.  

Table 7. RCYs, RCPs, and SAs of protected intermediate of [18F]NS12137 (30.2) using different 
labeling approaches. SAs are decay corrected to EOB. Data was achieved using same condition in 
tracer synthesis. The results are presented as mean +/- SD. 

Entry  
RCY* of 30.2 

[%] 

RCP of 30.2 

[%] 

SA* of 30.2 

[GBq/µmol] 
 

1 
Electrophilic labeling 

via [18F]F2 
2.1 ± 0.9 96.2 ± 0.1 1.8 ± 0.5  

2 
Electrophilic labeling 

via [18F]Selectfluor 
2.3 ± 1.5 > 99.5 1.4 ± 0.3  

3 Nucleophilic labeling 48.7 ± 8.2 99.6 ± 0.7 > 500  

                        *Decay corrected to EOB 

With LC-MS the SIMs were monitored: [18F]NS12137 m/z 223 amu and Boc-protected 

[18F]NS12137 m/z 323 amu (Figure 8). 
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Figure 8. RadioLC-MS chromatograms of [18F]NS12137 (top) and Boc-protected [18F]NS12137 
(bottom) analyzed by selected ion masses: m/z 232 for [18F]NS12137 and m/z 323 for Boc-protected 
[18F]NS12137 (Paper III, Supplementary data). 

5.4. Synthesis of [18F]EF4Cla,b (III) 

Radiolabeled products [18F]EF4Cla, [18F]EF4Clb, and [18F]EF5 were produced in a single 

synthesis and separated by HPLC. The RCYs, RCPs, and SAs of all products are presented in 

Table 8. The SAs of [18F]EF4Cla (Entry 1) and [18F]EF4Clb (Entry 2) were determined using 

EF5 as a reference assuming that the UV absorption absorbance of [18F]EF4Cla and [18F]EF4Clb 

was equivalent to that of EF5 (Entry 3). The ratio of the SAs of [18F]EF4Cla and [18F]EF5 was 

0.56 ± 0.03, and the ratio of the SAs of [18F]EF4Clb and [18F]EF5 was 0.55 ± 0.05.  

Table 8. The RCYs, RCPs, and SAs of [18F]EF4Cla (n=5), [18F]EF4Clb (n=5), and [18F]EF5 (n=5). The 
results are presented as mean +/- SD.  

Entry Product 
RCY (absolute 

yields) [%] 

RCY (from HPLC 

chromatogram) [%] 

SA* 

[GBq/µmol] 

1 [18F]EF4Cla 7.7 ± 0.9 8.5 ± 2.0 6.0 ± 1.6 

2 [18F]EF4Clb 4.6 ± 0.5 5.4 ± 1.7 3.3 ± 0.9 

3 [18F]EF5 24.6 ± 2.9 29.4 ± 4.2 3.2 ± 0.7 

*The SAs are decay corrected to the EOS 
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Identification of [18F]EF4Cla,b  

The turbo ion spray source was operated in negative ion mode. SIMs were monitored: EF1,2A 

m/z 263 amu, [18F]EF5 m/z 301 amu, [18F]EF4Cla m/z 317 amu, [18F]EF4Clb m/z 317 amu, 

and EF3Cl2 m/z 333 amu (Figure 9).  

 

Figure 9. Radio LC-MS/MS (Paper III, Supplementary data). 

In the LC-MS/MS spectra of [18F]EF4Cla, [
18F]EF4Clb, and [18F]EF5, the mass peaks at m/z 

96, 112, 196, and 214 amu (1-4, Figure 10) were common to [18F]EF4Cla, [
18F]EF4Clb, and 

[18F]EF5. The mass peaks at m/z 270 amu for [18F]EF4Cla and [18F]EF4Clb were identified as 

[18F]EF5
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the parent ion lacking the NO2 group. The corresponding mass peak for [18F]EF5 was 

observed at m/z 254 amu. Breakage of the terminal carbon bond of the halogenated tail was 

seen in the formation of the mass peaks at m/z 250 amu for [18F]EF4Cla (parent minus -CF3), 

m/z 234 for [18F]EF4Clb (parent minus -CClF2), and m/z 230 for [18F]EF5 (parent minus -

CF3). For both [18F]EF5 and [18F]EF4Clb, an m/z 186 product was identified as 1-(2-((1,1-

difluoroethan-1-id-2-yl)amino)-2-oxoethyl)-1H-imidazol-2-ide. In this ion, both the terminal 

carbohalogen group and the NO2 group were detached. The corresponding product for 

[18F]EF4Cla at m/z 202 amu was observed in only minute amounts. Furthermore, in the 

fragmentation pattern of [18F]EF4Clb, ions were observed at m/z 281 amu (parent minus -Cl) 

and m/z 261 amu (parent minus -Cl and -F) (Paper III, Supplementary data). 

 

  O

NN

NO2
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NN

NO

NN

NO2

O

NN

NO2

N
H

F  

1 (m/z 96 amu)        2 (m/z 112 amu)         3 (m/z 196 amu)                4 (m/z 214 amu) 

Figure 11. Consider the m/z spectra of [18F]EF4Cla (A), [18F]EF5 (B) and [18F]EF4Clb (C) fractions. 
Parent is assigned the symbol M. Signals marked 1-4 represent common structures for all molecules 
and are depicted below the figure (Paper III, Supplementary data). 

Lipophilicity of [18F]EF4Cla,b 

The lipophilicity of [18F]EF4Cla, [18F]EF4Clb, and [18F]EF5 was determined under 

physiological conditions by calculating ClogP using two commercially available software 

(Table 9). 
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Table 9. LogD7.4 and ClogP values of  [18F]EF4Cla, [
18F]EF4Clb and [18F]EF5 (Paper III). 

 [18F]EF5 [18F]EF4Cla [18F]EF4Clb  

Shake-flask method 

(logD7.4) (n=3) 

0.6 ± 0.04 0.79 ± 0.08 0.78 ± 0.1  

ChemSketch (ClogP) 1.35 ± 0.83 1.51 ± 0.79 1.87 ± 0.75  

ChemDraw (ClogP) 0.83 1.17 1.43  

*logP = 0.6 
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6. DISCUSSION 

In this study, the regioselective radiofluorinating agents [18F]SF and [18F]ClF were developed 

with high SA. In the synthesis of [18F]SF presented in papers I and II, [18F]F2 was bubbled 

through an SF precursor solution at RT. In paper III, the gas mixture of [18F]F2, [
18F]ClF, and 

Cl2 was bubbled through an EF5 precursor in order to produce [18F]EF4Cla, [
18F]EF4Clb, and 

[18F]EF5, which were separated by HPLC. 

6.1. Synthesis of labeling reagents 

6.1.1.  [18F]MeF 

High quality [18F]MeF is a prerequisite for the successful production of high SA [18F]F2. The 

RCY and SA of [18F]MeF directly affects the SA of [18F]F2. The RCY was reproducible for 

the synthesis with methyl iodide, but with methyl triflate the yield varied considerably. The 

RCY of [18F]MeF did not increase significantly when sonication was used with the MeI 

precursor. The highest RCY was achieved with 4-N,N,N-trimethylanilinium triflate, but there 

were some issues achieving high CP for [18F]MeF with the preparative GC system. The 

approach for synthesizing [18F]MeF with 4-N,N,N-trimethylanilinium triflate does not require 

atzeotropic distillation, but the reaction time is significantly longer than with other methyl 

precursors. Furthermore, with other methyl precursors, the only liquids used in the synthesis 

are water and MeCN, so the synthesis device is not contaminated with other solvents, which 

can occur during synthesis with 4-N,N,N-trimethylanilinium triflate. This contamination with 

a high boiling point solvent can also affect the preparative GC purification and function of the 

GC column. Automation of the synthesis of [18F]MeF using 4-N,N,N-trimethylanilinium 

triflate as a methyl source is possible and could be achieved easily. On the other hand, the 

synthesis of [18F]MeF with methyl iodide is already automated in our laboratory and is robust 

and repeatable. In conclusion, 4-N,N,N-trimethylanilinium triflate appeared to be a promising 

precursor, but further studies are needed in order to improve the robustness of the synthesis in 

our hands.  

6.1.2. [18F]Selectfluor (I) 

[18F]SF has a unique reactivity profile in the sense that it is much milder and selective than 

elemental fluorine and suitable for the fluorination of electron-rich substrates that cannot be 

fluorinated using alternative N-F reagents. The advantage of [18F]SF is that the stock solution 

has high stability and can be divided for several syntheses, or even transported to other 

laboratories. These characteristics are highly sought after, especially for 18F-labeling 

precursors that are not suitable for nucleophilic fluorination. Further studies and optimization 
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using various SF counter-ions will be needed. However, [18F]SF reagent has shown its 

usefulness and versatility as an electrophilic radiofluorinating agent.  

The stock solution of [18F]SF was not homogenous when left without mixing, as uneven 

activity distribution was observed in the solution. Thus the [18F]SF stock solution has to be  

stirred before use in radiolabeling. Deuterated acetone has been shown to be a suitable solvent 

for the production of [18F]SF, due to its superior chemical quality (Kirjavainen, unpublished 

data). [18F]SF in acetone-d6 can be used directly in labeling reactions. Acetone can also be 

evaporated easily due to its low boiling point, thereby allowing wider range of precursors to 

be solubilized and amenable to [18F]fluorination. 

6.1.3.  [18F]ClF (III) 

Modification of the pentafluoro group of [18F]EF5 by fluorine for chlorine exchange modified 

the lipophilicity of the chlorinated molecules that were formed. However, preclinical studies 

showed that the biological behavior of these chlorinated molecules is not altered to a great 

extent compared to the parent molecule [18F]EF5. This result encourages development of the 

electrophilic labeling approaches for 18F using [18F]ClF. However, this approach requires a 

suitable double bond for the addition of [18F]ClF, which can limit the number of candidate 

tracer molecules. In this study, only one precursor candidate was labeled with [18F]ClF; thus, 

the broader use of this labeling agent should be studied further. 

[18F]ClF could be produced by F2-carrier-addition via [18F]F2 and subsequent Cl2 addition in 

the quartz chamber at RT, but it was not possible to produce n.c.a [18F]ClF by electrical 

discharge in the quartz chamber direct from [18F]MeF and Cl2. In the electrical discharge 

method, [18F]MeF and F2, were decomposed to atoms in Ne gas matrix. During the discharge, 

an F2 excimer is formed that emits enough highly energetic UV light (157 nm) to cut the C-F 

bonds of [18F]MeF (dissociation energy of C-F bond is 217 nm). The Cl2 excimers produced 

in a similar way by high voltage discharge do not have enough energy (wavelength of emitted 

UV light is 258 nm). Therefore, research on other methods for excitation of gas molecules in 

this setting is needed. One worthwhile option for study is a vacuum UV excimer laser. We 

postulate that with ArF laser photons can be produced with enough energy to cut the C-F 

bond, with no need for carrier-F2, and n.c.a. [18F]ClF can be produced. The amount of 

[18F]ClF formed will be so low that special synthesis and analytical devices will be needed, 

such as GC-MS, which can analyze gases with low atomic masses. In addition other chamber 

materials than quartz , i.e. Teflon, will be valuable to study. 
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6.2. Synthesis of 6-L-[18F]FDOPA (I) 

This study showed that [18F]SF is appropriate for the production of high quality 6-

[18F]FDOPA. 6-[18F]FDOPA can be prepared in acetone as efficiently as in acetonitrile (Paper 

II, Teare et al. 2010). A significant difference was found in the RCY of 6-[18F]FDOPA when 

using different amounts of precursors in the preparation of [18F]SF. Silver triflate-mediated 
18F fluorination of electron-rich arylstannane is of particular interest because this 

transformation, which can now be conducted selectively and rapidly under very mild 

conditions, indicates that the unprotected alcohol functionality is well tolerated. The boronic 

ester LG is less toxic than the arylstannane group and may be a better choice when using large 

amounts of precursor and electrophilic radiofluorinating agents with low SA. On the other 

hand, with the SA presented in this study, the toxicity of stannylated precursors would not be 

a problem. Also, from the GMP point of view, the long and demanding synthesis procedures 

needed with boronic ester precursor are not practical and often not possible.  

Elemental fluorine was shown to be so highly reactive that even minute impurities of SF 

precursor, solvents, or other chemicals can crucially affect the RCY and SA of the formed 

[18F]SF. Elemental fluorine is the limiting reagent in the reaction and may prefer reacting with 

these impurities. In contrast to the work of Teare et al. (2010), who used a large excess of SF 

precursor in the synthesis of [18F]SF from [18F]F2, we decreased the amount of SF, 

demonstrating a significant increase in the yield of [18F]SF and subsequent radiofluorinations 

when using more closely matched stoichiometry for the reagents. 

6.3. Synthesis of [18F]NS12137 (II) 

In this study, [18F]NS12137 was successfully produced by three different methods. The 

radiofluorination of [18F]NS12137 with [18F]SF took 20 min at RT due to the lower reactivity 

of [18F]SF compared to [18F]F2, but fewer byproducts were observed for the same reason. 

Regardless of the electrophilic labeling method used, the RCY, RCP, and SA were similar. 

The electrophilic radiofluorination method for [18F]NS12137 using [18F]F2 was 

straightforward and could easily be automated for GMP environments. Thus, both 

electrophilic labeling methods are suitable for the production of [18F]NS12137.  

With the nucleophilic labeling methods the RCY and SA were considerably higher compared 

to electrophilic methods, and only a few byproducts were observed. However, the reaction 

conditions were very harsh. With the nucleophilic method, the amount of base, reaction 

temperature, reaction time, or solvent will need more attention, and the optimization of 
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reaction conditions is more time-consuming than with electrophilic methods. [18F]NS12137 

was evaluated as a NET tracer and high SA was crucial due to the low density of NET in the 

brain. The SA of the electrophilic labeling agent achieved with the post-target production 

method can be high, as has been demonstrated earlier in the synthesis of [18F]CFT for clinical 

use (Laakso et al 1998). On the other hand, in the nucleophilic synthesis the harsh reaction 

environment could lead to decomposition or racemization of the precursor or desired product; 

thus, the electrophilic labeling method, even with significantly lower RCY, may be the better 

choice. However, as a general statement it can be said that, all other things being equal, 

nucleophilic fluorination is to be preferred over electrophilic fluorination due to the higher SA 

achievable. 

The pharmacokinetics of [18F]NS12137 was evaluated in vivo and ex vivo in brain and 

periphery of healthy, adult and juvenile Sprague Dawley rats. The pharmacological specificity 

in rats was estimated from the decrease in binding after the administration of a dose of 

nisoxetine, a highly selective NET antagonist. The highest [18F]NS12137 binding was found 

in the locus coeruleus, which has the highest level of NET expression in rat brain. The highest 

region-to-cerebellar cortex uptake ratios were obtained in the locus coeruleus and 

hippocampus. The region-to-cerebellar cortex ratios in thalamus, hypothalamus, and septum 

did not differ from striatum, which is known of low level of NET expression. In rats that were 

treated with nisoxetine the binding in locus coeruleus was not detectable.  

6.4. Synthesis of [18F]EF4Cl,b (III) 

[18F]EF4Cla and [18F]EF4Clb were selected as model molecules for [18F]ClF labeling because 

their precursor contains a suitable double bond for the electrophilic addition reaction. 

Furthermore, the effects of the added chlorine atom were compared to pentafluorinated 

[18F]EF5. The biological behavior of [18F]EF5 is well known (Koch et al. 2001, Eskola et al. 

2012). [18F]EF4Cla and [18F]EF4Clb were produced simultaneously. The SAs of [18F]EF4Cla 

and [18F]EF4Clb were determined using EF5 as a reference because it was not possible to 

obtain non-radioactive standards of the monochlorinated products. Because the UV-active 

structure is the same in all three molecules, the UV absorbance of [18F]EF4Cla and 

[18F]EF4Clb was assumed to be equal to the UV absorption of EF5. Furthermore, the SAs of 

the monochlorinated 18F-labeled products were half the SA values obtained for the [18F]EF5. 

This outcome was predictable, as the molar amount of [18F]ClF is doubled in the reaction with 

[18F]F2. [
18F]EF4Cla, [

18F]EF4Clb, and [18F]EF5 have unique MS/MS fragmentation patterns 
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and were identified by these patterns. LC-MS/MS analysis and fragmentation was a useful 

method for identifying this kind of regioisomer. 

The results of the lipophilicity measurements and calculations varied somewhat due to 

commercially available codes, but the chromatographic behavior of [18F]EF4Cla, [
18F]EF4Clb, 

and [18F]EF5 and the shake flask method confirmed the results. Monochlorinated [18F]EF4Cla 

and [18F]EF4Clb were more lipophilic than the pentafluoro group-containing [18F]EF5. 

Furthermore, the dichlorinated, non-radioactive molecule EF3Cl2 was more lipophilic than the 

monochlorinated molecules determined by HPLC retention times and ClogP. The position of 

a single chlorine atom on the two terminal carbon atoms of the chlorinated analog had a slight 

effect on the lipophilicity according to HPLC analysis and ClogP values. This difference was 

marginal and the shake flask method is not very sensitive; therefore, the difference was not 

observed with the shake flask method for logD determinations. 

Experimental tumors in mice were achieved by subcutaneous injections of adenocarcinoma 

cells at three male nude mice and three PET scans were carried out on each tumor-bearing 

mouse using the Inveon multimodality PET/CT scanner. Compared to [18F]EF5, the 

chlorine/fluorine exchange of [18F]EF4Cla and [18F]EF4Clb affected the lipophilicity of these 

molecules, however it did not significantly affect their biological behavior and the hypoxia 

avidity. This indicates that [18F]ClF is an useful agent for 18F-labeling of clinical radiotracers.
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7. CONCLUSIONS 

High SA for the electrophilic labeling agent [18F]SF can be achieved with post-target [18F]F2. 

This thesis shows that highly regioselective electrophilic 18F corporation is possible using 

[18F]SF and suitable good LG-containing precursors. The electrophilic synthesis of 6-

[18F]FDOPA using [18F]SF as a labeling agent was presented as an example. The RCY of 6-

[18F]FDOPA was higher when using less of the precursor of [18F]SF. The production method 

for [18F]SF without [18F]F2, i.e., the nucleophilic synthesis route, could expand the field of 

electrophilic fluorine-18 chemistry and allow facilities not equipped to handle [18F]F2 to 

perform electrophilic [18F]fluorination. However, this will require broad collaboration 

between “traditional” organic chemists and radiochemists.   

The highly NET selective tracer [18F]NS12137 was produced with different electrophilic 

labeling agents [18F]SF and [18F]F2 and also with nucleophilic labeling. The number of 

byproducts was highest with [18F]F2, and only a few byproducts were observed with [18F]SF. 

The nucleophilic synthesis was the most effective way to produce [18F]NS12137. 

[18F]NS12137 has also shown potential as a NET tracer in preclinical studies. Thus, 

[18F]NS12137 shows characteristics of a PET tracer with potential utility also in clinical 

imaging. In the future, [18F]NS12137 can easily be put into production for clinical use in 

GMP environment. 

In this thesis, the novel synthesis method for producing high SA [18F]ClF via post-target 

[18F]F2 was presented. Its utility was demonstrated by the electrophilic addition of [18F]ClF to 

a double bond in the synthesis of chlorinated analogs of [18F]EF5: [18F]EF4Cla and 

[18F]EF4Clb. These analogs were identified by their splitting patterns using radioLC-MS/MS 

analysis. Our results indicated that the hypoxia specificity was quite similar for all three 

tracers, thus [18F]ClF is a suitable labeling agent for radiotracer syntheses. The next step in 

the synthesis of [18F]ClF will be the development of n.c.a. [18F]ClF. 
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