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Abstract

In this paper we present a framework for computational homogenization of the fluid–solid interaction that pertains to the
coupled deformation and flow of pore fluid in a fluid-saturated porous material. Large deformations are considered and the resulting
problem is established in the material setting. In order to ensure a proper FE-mesh in the fluid domain of the RVE, we introduce
a fictitious elastic solid in the pores; however, the adopted variational setting ensures that the fictitious material does not obscure
the motion of the (physical) solid skeleton. For the subsequent numerical evaluation of the RVE-response, hyperelastic properties
are assigned to the solid material, whereas the fluid motion is modeled as incompressible Stokes’ flow. Variationally consistent
homogenization of the standard first order is adopted. The homogenization is selective in the sense that the resulting macroscale
(upscaled) porous media model reminds about the classical one for a quasi-static problem with displacements and pore pressure
as the unknown macroscale fields. Hence, the (relative) fluid velocity, i.e. seepage, “lives” only on the subscale and is part of the
set of unknown fields in the RVE-problem. As to boundary conditions on the RVE, a mixture of Dirichlet and weakly periodic
conditions is adopted. In the numerical examples, special attention is given to an evaluation of the Biot coefficient that occurs in
classical phenomenological models for porous media.
c⃝ 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

MSC: 76S05; 74Q05; 74F10; 76D07
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1. Introduction

We consider the problem of fluid flow through deformable porous materials. Porous materials are present in a
vast number of natural as well as engineered structures. Examples of natural structures include biological tissue and
aquifers, while examples of engineered structures are foams and textiles. The microstructure of porous materials is
generally very complex with characteristics at a lengthscale much smaller than the scale of the application; hence,
it is computationally not feasible to solve the fully resolved problem. Consequently, macroscopic phenomenological
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Fig. 1. Fully resolved domain in the material configuration with magnification of a small part of the boundary and pertinent symbols.

material models, based on a priori homogenization, are commonly used. Starting from Biot [1], a large number of
so-called “porous media theories” of various complexity have been developed. An important class is the so-called
Porous Media Theory (PMT) [2]. Although computationally efficient, PMT models are less capable of representing
the intrinsic physical properties of the material.

As a viable alternative, computational homogenization [3] may be used, whereby the material response is evaluated
using a Representative Volume Element [4] (RVE) that contains a small subset of the fully resolved microstructure.
To ensure that the response from the RVE is physically feasible, boundary conditions satisfying the Hill–Mandel
condition [5,6] must be chosen.

This paper concerns the homogenization of a fluid-filled (saturated) porous material. The pore system is assumed
to be open, and we restrict the analysis to two phases; one solid and one fluid phase. Since we consider 3D
microstructures, the solid skeleton is assumed to be contiguous in order to be able to sustain loads. In particular,
we account for the interaction between the deformable solid and fluid, which represents a Fluid–Structure-Interaction
(FSI) problem. The homogenization of flow in deformable porous media is also addressed by Iliev et al. [7] where the
special case of flow through a deformable channel using asymptotic expansion.

We restrict to the case of laminar and incompressible flow of the pore fluid. For the FSI-problem, we use a
monolithic approach with a conforming interface mesh. In order to maintain a proper mesh in the fluid domain during
deformation, we introduce a fictitious elastic material in such a way that the mesh in the fluid domain follows the
deformation of the solid. Measures are taken in order to ensure that the presence of the fictitious elastic material does
not contribute to the overall stiffness of the RVE.

The paper is outlined as follows: In Section 2, the fine scale FSI-problem is established (in the material format). In
Section 3, we introduce the homogenization scheme in the setting of the Variational Multiscale method and identify the
macroscale problem. In Section 4, we discuss the RVE-problem. In Section 5, two numerical examples are presented.
Finally, in Section 6 conclusions and future work are discussed.

2. Fine-scale fluid–structure interaction problem

2.1. Preliminaries

As a starting point, we consider the fully resolved domain in the material configuration depicted in Fig. 1, where
the gray area represents the solid and the white area the fluid. We consider two phases, a solid phase, which is located
in Ω s and a fluid phase located in Ω f. We also define the total domain and boundary as Ω = Ω f

∪Ω s and Γ = Γ f
∪Γ s.

Γ f is the part of Ω f where fluid can enter and exit the domain and Γ s is the part of Ω s on the outer boundary. The
interface between the solid and fluid phases is introduced as Γ int

= ∂Ω s
∩ ∂Ω f.

In order to allow for subsequent boundary conditions on both phases, we split Γ f and Γ s into a Dirichlet part
and a Neumann part. Thus, for the solid boundary, we have Γ s

= Γ s
u ∪ Γ s

t where the displacement is prescribed on
Γ s

u (Dirichlet) and the traction is prescribed on Γ s
t (Neumann). Likewise, on the fluid part of the boundary, we have

Γ f
= Γ f

v ∪ Γ f
p where the velocity is prescribed on Γ f

v (Dirichlet) and the pressure on Γ f
p (Neumann). N is the outward

pointing normal to Γ and Ns is the normal on Γ int, pointing outwards from Ω s.
Note that, due to the forthcoming discretization of the domain and the interaction between the solid and the fluid,

the computational mesh in Ω f needs to follow the deformation of the solid in order to avoid the possibility of a
distorted mesh. In a staggered approach to FSI problems, a mesh of poor quality in the fluid part of the domain should
be updated after the solid deformation is computed in each iteration, using e.g. Laplace smoothing or by remeshing.
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However, the aim here is to establish a monolithic method and we propose to incorporate the update in the set of
equations. To that end, a fictitious elastic material is introduced in Ω f. The material is then attached to the internal
boundary Γ int. As the internal boundary moves, the fictitious elastic material is deformed, and the nodes inside Ω f

follow the deformation of the solid. To clarify, consider Fig. 2 where Fig. 2(a) is the undeformed mesh of both phases.
In Fig. 2(b), the solid is deformed and no means for correcting the mesh in Ω f is taken. Thus, the positions of nodes
inside Ω f are fixed which can cause the elements along Γ int inside Ω f to become ill-shaped. However, in Fig. 2(c), the
deformation of the fictitious elastic material ensures that the nodes in the fluid follow the fictitious elastic solid, thus
producing a proper mesh.

In what follows we assume that the motion of both solid and fluid is quasi-static in the sense that inertia terms are
left out. However, the motion of the fictitious elastic material in the pore space is still time-dependent, i.e. dt uf

≠ 0,
until the deformation becomes (possibly) stationary.

We now introduce the displacement us on Ω s, total velocity v on Ω f and pressure p on Ω f, all defined in the
material configuration. We also introduce the displacement uf on Ω f pertinent to the fictitious elastic material. The
total velocity v of the fluid is given as

v = dt uf
+ w (1)

where dt uf is the velocity of the fictitious elastic material, and w is the relative fluid–solid velocity. Obviously, dt uf

tends to zero as the quasi-static solution is approached.

Remark 1. As uf is not a “placement” of fluid particles, it lacks physical interpretation.

2.2. FSI-problem—Canonical format

Here, we restrict the analysis to that of a laminar and incompressible flow without convective acceleration,
i.e., Stokes’ flow. The FSI problem on strong form in the material configuration is given as

Ps(us
⊗ ∇) · ∇ = 0 in Ω s (2a)

Pf(v ⊗ ∇, F, p) · ∇ = 0 in Ω f (2b)

JF−T
: [v ⊗ ∇] = 0 in Ω f (2c)

where Ps is the first Piola–Kirchhoff stress of the solid, while Pf
= Pv(v⊗∇, F)− pJF−T is the first Piola–Kirchhoff

stress of the fluid where Pv is the viscous stress and p is the hydrostatic pressure. Furthermore, F = I + uf
⊗ ∇ is

the deformation gradient of the fictitious elastic material, and J is the Jacobian thereof. Eqs. (2a) and (2b) are the
momentum balance equations for the solid and fluid phase, respectively. Eq. (2c) is the mass balance equation under
the assumption of incompressibility. Here, we also give the pertinent boundary conditions as

ts = Ps
· N = t̂s on Γ s

t (3a)

us
= û on Γ s

u (3b)

tf = Pf
· N = − p̂ JF−T

· N = t̂f on Γ f
p (3c)

w = ŵnN on Γ f
v (3d)

where ts and tf define the solid and fluid tractions. t̂s and t̂f are the values assigned to the respective tractions, û is
the prescribed displacement along Γ s

u , p̂ is the prescribed pressure on Γ f
p in the current configuration and ŵn is the

prescribed fluid velocity out from Ω f.
On the internal boundaries, Γ int, the interaction conditions are given as

ts + tf = 0 (4a)

w = 0 (4b)

and we note that the no slip condition in Eq. (4b) is equivalent to v = dt u.
In the subsequent derivation, we first view the FSI problem and the problem pertinent to the fictitious elastic

material as two separate problems. We will then combine them such that the “mesh update apparatus” is incorporated
in the solver. Finally, we will reduce the number of unknowns by manipulating the solution and test spaces.
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Fig. 2. Illustrations of a meshed porous domain (a) undeformed mesh (b) deformed solid without means of correcting the mesh in the fluid region
(c) proper mesh.

The problem defined in Eqs. (2)–(4) is given on weak form as: Find (us, v, p, t) ∈ U s
× V × P × T such that

as 
us

; δu

− ⟨δu, t⟩Γ int = ls (δu) ∀δu ∈ U s,0 (5a)

af


uf, v; δv


+ bf


uf
; δv, p


+ ⟨δv, t⟩Γ int = lf (δv) ∀δv ∈ V 0 (5b)

bf


uf
; v, δp


= 0 ∀δp ∈ P (5c)

−

dt us, δt


Γ int + ⟨v, δt⟩Γ int = 0 ∀δt ∈ T (5d)

where the abstract operators in Eq. (5) are defined as

as (u; δu) =


Ω s

Ps(u ⊗ ∇) : [δu ⊗ ∇]dV (6a)

ls/f(δu) =


Γ

s/f
u/v

t̂s/f
· δudV (6b)

af


uf, v; δv


=


Ω f

Pv(v ⊗ ∇, F) : [δv ⊗ ∇]dV (6c)

bf


uf
; v, p


=


Ω f

pJF−T
: [v ⊗ ∇]dV (6d)

⟨δu, t⟩Γ int =


Γ int

δu · tdS. (6e)

The Lagrange multiplier t in Eq. (5) constitutes the reaction force due to the no-slip condition in Eq. (4b). The solution
spaces are defined as

U s
=


us

∈


H1 

Ω s3
: us

= ûs on Γ s
u


(7a)

V =


v ∈


H1


Ω f

3
: v = v̂ on Γ f

v


(7b)

P = L2


Ω f


(7c)

T =


L2


Γ int

3
(7d)

and the test spaces are defined as

U s,0
=


us

∈


H1 

Ω s3
: us

= 0 on Γ s
u


(8a)

V 0
=


v ∈


H1


Ω f

3
: v = 0 on Γ f

v


. (8b)
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2.3. FSI-problem—Auxiliary problem and monolithic formulation

When a spatially fixed FE-mesh is used in Ω f for fluid motion, the mesh quality will gradually deteriorate due
to large deformation in the solid and corresponding large motion of the boundary Γ int, as illustrated in Fig. 2(b).
Some sort of mesh update is obviously needed, whereby the classical method is “mesh-smoothing”. Another option,
which is adopted in this paper, is to introduce an auxiliary problem in Ω f that represents the motion of a (fictitious)
solid material, whose displacements along Γ int are prescribed to those of the (real) solid material in Ω s. The
constitutive properties assigned to this fictitious material are conveniently chosen as elastic. The mesh may now be
continually updated (in time) from the resulting fictitious displacement field. On strong form, this auxiliary problem is
given as

PX(uf
⊗ ∇) · ∇ = 0 in Ω f (9a)

uf
= us on Γ int (9b)

uf
= N sus on Γ f (9c)

where us is the displacement solution to Eq. (5), and N s
: Ω s

→ Γ f is a nonlocal boundary operator defining the
external flow boundary in terms of the surrounding solid placement. The corresponding weak problem for the fictitious
elastic material becomes: Find uf

∈ U f such that

cf


uf
; δuf


= 0 ∀δuf

∈ U f,0 (10a)

where

cf (u; δu) =


Ω f

PX(u ⊗ ∇) : [δu ⊗ ∇]dV (11)

and PX is the first Piola–Kirchhoff stress tensor pertaining to the fictitious elastic material. The solution space is
defined as

U f(us) =


uf

∈


H1


Ω f

3
: uf

= N sus on Γ f, uf
= us on Γ int


(12a)

and the test space as

U f,0
=


uf

∈


H1


Ω f

3
: uf

= 0 on Γ f
∪ Γ int


. (13)

So far, we can solve the two problems in an iterative manner. However, we can combine them and thus incorporate
the apparatus for maintaining a proper mesh in the system of equations. In addition, we choose to reformulate the
combined equations using the relative velocity w rather than the total velocity v. We thus proceed as follows: Due to
the fact that T is complete, the condition in Eq. (5d) is fulfilled identically. Thus, without altering the solutions us, uf

and p, we can redefine the velocity in terms of v = dt uf
+ w, whereby the pertinent solution space for the relative

velocity w becomes

W =


w ∈


H1


Ω f

3
: w = ŵ on Γ f

v, w = 0 on Γ int


. (14a)

Here, we have restated the Dirichlet boundary condition for the flow by introducing ŵ := v̂ − dt N sus.
In order to impose (9b) explicitly, we can now construct a global displacement field u, defined as

u =


us in Ω s

uf in Ω f (15)

and introduce the function space U as

U =


u ∈


H1 (Ω)

3
: u = ûs on Γ s

u, u − N su = 0 on Γ f


. (16)

By construction, we note that u is continuous across Γ int. The resulting problem can be posed as follows: Find
(u, w, p, t) ∈ U × W × P × T such that
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as (u; δu) − ⟨δu, t⟩Γ int = ls (δu) ∀δu ∈ U s,0 (17a)

af (u, dt u + w; δv) + bf (u; δv, p) + ⟨δv, t⟩Γ int = lf (δv) ∀δv ∈ V 0 (17b)

bf (u; dt u + w, δp) = 0 ∀δp ∈ P (17c)

cf


u; δuf


= 0 ∀δuf
∈ U f,0. (17d)

As a final step, in order to eliminate the interfacial traction, t, we also merge the test spaces U s,0 and V 0 as follows:

U ∗
=


u ∈


H1 (Ω)

3
: u = 0 on Γ s

u ∪ Γ f
v


. (18)

As a result, we can add Eqs. (17a) and (17b), whereby the terms with the traction t cancel. We thus pose the problem
in its final weak form as: Find (u, w, p) ∈ U × W × P such that

as (u; δu) + af (u, dt u + w; δu) − bf (u; δu, p) = lu (δu) ∀δu ∈ U ∗ (19a)

−bf (u; dt u + w, δp) = 0 ∀δp ∈ P (19b)

cf (u; δw) = 0 ∀δw ∈ W ∗ (19c)

where we have introduced the new notation W ∗
≡ U f,0 and

lu (δu) =


Γ s

t

t̂s · δudS +


Γ f

t

t̂f · δudS. (20)

To conclude, we now test both the equilibrium balance for the solid and fluid phases with the same test function, δu,
which exists on the whole Ω . Thus, force equilibrium between the two will be fulfilled at all times. Furthermore, due
to the fact that δw = 0 on Γ int, the fictitious elastic material will not contribute to the overall stiffness, i.e. the coupling
between the deformation in the solid and fluid goes only one way.

3. Computational homogenization based on VMS

3.1. Selective VMS

In the spirit of the Variational Multiscale method, cf. [8,9], we can make the assumption that the fields u and p can
be split uniquely into a smooth (slowly varying) macroscale part and a non-smooth (rapidly fluctuating) subscale part.
We thus introduce the hierarchical decomposition P = P M

⊕Pµ and U = U M
⊕Uµ where P M, U M contain the slowly

varying (macroscale) parts, whereas Pµ, Uµ contain the rapidly fluctuating (subscale) parts. Hence, p = pM
+ pµ and

u = uM
+ uµ, where pM

∈ P M, pµ ∈ Pµ, uM
∈ U M and uµ ∈ Uµ. No such decomposition is made of W ; hence, it is

assumed that w ∈ W “lives” only on the subscale.
Now, by solving local problems for pµ, uµ and w = wµ in terms of pM and uM (as the driving fields), we may

formally obtain the functional dependence

p{pM, uM
} = pM

+ pµ{pM, uM
} (21a)

u{pM, uM
} = uM

+ uµ{pM, uM
} (21b)

w{pM, uM
} = wµ{pM, uM

}. (21c)

The curly brackets {•} in Eq. (21) indicate implicit dependence on the arguments. Furthermore, we split the pertinent
test functions in Eq. (19) as δp = δpM

+ δpµ, and δu = δuM
+ δuµ whereby we are able to split the problem into a

macroscale and a subscale problem. Consequently, we get for the subscale problem: Find (u, w, p) ∈ U × W × P

as 
u; δuµ


+ af 

u, dt u + w; δuµ

− bf 

u; δuµ, p


= lu

δuµ


∀δuµ ∈ U ∗µ (22a)

−bf 
u; dt u + w, δpµ


= 0 ∀δpµ ∈ Pµ (22b)

cf (u; δw) = 0 ∀δw ∈ W ∗ (22c)

and for the macroscale problem: Find (uM, pM) ∈ U M
× P M such that1

1 It is recalled that p, u, w are parameterized in terms of uM, pM as indicated in Eq. (21).
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Fig. 3. Example illustrations of (a) the heterogeneous subscale domain (RVE) Ω� (b) the homogeneous macroscale domain Ω .

as


u; δuM


+ af


u, dt u + w; δuM


− bf


u; δuM, p


= lu

δuM


∀δuM

∈ U ∗M (23a)

−bf


u; dt u + w, δpM


= 0 ∀δpM
∈ P M. (23b)

We now reformulate Eq. (23b) upon integrating by parts

−bf


u; v, δpM


= −


Γ f

δpM Jw · F−T
· NdS +


Ω f

(∇δpM) · JF−1
· wdV −


Ω f

δpMdt JdV = 0. (24)

To obtain the last term, we used the identity JF−T
: [dt u ⊗ ∇] = dt J . Moreover, we used that w = 0 on Γ int to

conclude that the surface integral does not get any contribution from Γ int. We now restate the macroscale problem in
Eq. (23) as: Find (uM, pM) ∈ U M

× P M such that

as


u; δuM


+ af


u, dt u + w; δuM


− bf


u; δuM, p


= lu

δuM


∀δuM

∈ U ∗M (25a)

df


u; w, δpM


− ef


u; δpM


= lp


u; δpM


∀δpM
∈ P M (25b)

where we introduced the additional forms

df (u; w, p) =


Ω f

(∇ p) · JF−1
· wdV (26a)

ef (u; p) =


Ω f

pdt JdV (26b)

lp (u; p) =


Γ f

w

pJ ŵ · F−T
· NdS (26c)

and Γ f
w is the part of Γ where w is prescribed.

3.2. Homogenization

For the subsequent homogenization, we introduce the intrinsic averaging operators ⟨•⟩
α
� and ⟨⟨•⟩⟩

α
�, where α

denotes either the solid phase, s, or the fluid phase, f , as

⟨•⟩
α
� =

1
|Ωα

�|


Ωα

�

•dV and ⟨⟨•⟩⟩
α
� =

1
|Γ α

�|


Γ α

Γ

•dS

where | • | denotes the size of •, the size being a measure of volume, area or length, depending on •. Here, we chose
to split the fully resolved domain Ω into N adjacent subdomains as Ω = ∪

N
i=1 Ω�,i , such that each Ω�,i is an RVE

that is assumed to exhibit a periodic geometry. We also introduce the decomposition Ω� = Ω f
� ∪ Ω s

�, as depicted in
Fig. 3(a), where Ω f

� is the fluid part and Ω s
� is the solid part. Furthermore, we introduce the boundary Γ� = Γ f

� ∪Γ s
�.

Finally, we introduce the union of all internal boundaries as Γ int
� . We note that the intrinsic averaging operator has the

following important property for the split-up domain:
Ωα

f dV =


Ω

nα
⟨ f ⟩

α
� dV, nα def

=
|Ωα

�|

|Ω�|
and


Γ α

f dS =


Γ

nα
Γ ⟨⟨ f ⟩⟩

α
�dS, nα

Γ
def
=

|Γ α
�|

|Γ�|
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where nα is the volume fraction of phase α, whereas nα
Γ is the surface fraction of phase α. Note that nf is the porosity

of the RVE. Without altering the problem, we now reformulate the integrals in Eqs. (22) and (25) as

as (u; δu) =


Ω

ns 
Ps(u ⊗ ∇) : [δu ⊗ ∇]

s
� dV (27a)

lu (δu) =


Γt

ns
Γ ⟨⟨t̂s · δu⟩⟩

s
� + nf

Γ ⟨⟨t̂f · δu⟩⟩
f
�dS (27b)

af (u, v; δu) =


Ω

nf 
Pv(v ⊗ ∇) : [δu ⊗ ∇]

f
� dV (27c)

bf (u; δu, p) =


Ω

nf

pJF−T

: [δu ⊗ ∇]

f

�
dV (27d)

df (u; w, δp) =


Ω

nf

(∇δp) · JF−1

· w
f

�
dV (27e)

ef (u; δp) =


Ω

nf
⟨δp dt J ⟩

f
� dV (27f)

lp (u; δp) =


Γw

nf
Γ ⟨⟨δpJ ŵ · F−T

· N⟩⟩
f
�dS. (27g)

3.3. Macroscale problem

We choose first order homogenization, i.e pM and uM are represented within each RVE (for X ∈ Ω�) in terms of
macroscale fields ū and p̄ as follows:

pM
= p̄ + ḡ · [X − X̄f

] and uM
= H̄ · [X − X̄s

] (28)

where p̄ = p̄(X̄) is the macroscale pore pressure, ḡ def
= (∇ p̄)(X̄) is the macroscale pore pressure gradient,

H̄ def
= (ū⊗∇)(X̄) is the macroscale displacement gradient, X̄f and X̄s are the center points for Ω f

� and Ω s
�, respectively,

and X̄ is the macroscopic coordinate being the center of the whole Ω�.2 The macroscale momentum balance in
Eq. (23a) thus becomes:

Ω
P̄ : [δū ⊗ ∇]dV =


Γ

ns
⟨⟨t̂s⟩⟩

s
� · δū + nf

⟨⟨t̂f⟩⟩
f
� · δūdS (29)

where the macroscopic total stress tensor P̄{H̄, p̄, ḡ} is computed as

P̄ = ns 
Pss

� + nf

Pf

f

�
. (30)

Similarly, the macroscale mass balance equation (Eq. (24)) becomes
Ω


nf

⟨W⟩
f
� · ∇δ p̄ − dt Φ̄δ p̄ − dtΦ̄

(2)
· ∇δ p̄


dV =


Γw

nf
Γ ⟨⟨Ŵ · N⟩⟩

f
�δ p̄ dS (31)

where we have introduced the material fluid velocity W = Jw · F−T, the prescribed material fluid velocity Ŵ, and the
storage terms

Φ̄ def
= nf

⟨J ⟩
f
� and Φ̄

(2) def
= nf


J [X − X̄f

]

f

�
(32)

which are the relative pore space and the first moment thereof, respectively. Φ̄
(2)

can be neglected for large scale
separation, which is henceforth assumed. We may also introduce the macroscale seepage velocity (of the first
Piola–Kirchhoff type) as follows:

W̄ def
= nf

⟨W⟩
f
� . (33)

2 The center point refers to the center of mass assuming uniform density, i.e. X̄α
= ⟨X⟩

α
�.
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The complete macroscale problem is now given as: Find (ū, p̄) ∈ Ū × P̄ such that
Ω

P̄ : [δū ⊗ ∇]dV =


Γ


ns

⟨⟨t̂s⟩⟩
s
� · δū + nf

⟨⟨t̂f⟩⟩
f
� · δū


dS ∀δū ∈ Ū 0 (34a)

Ω
dt Φ̄δ p̄ dV −


Ω

W̄ · ∇δ p̄ dV = −


Γw

Ŵnδ p̄ dS ∀δ p̄ ∈ P̄ 0 (34b)

where Ŵn = nf
Γ ⟨⟨Ŵ · N⟩⟩

f
� is the prescribed seepage on Γw. The macroscale boundary is decomposed as Γ =

Γu ∪ Γt = Γp ∪ Γw. Furthermore, we introduce the solution and test spaces

Ū =


ū : ū ∈


H1 (Ω)

3
, ū = û on Γu


(35a)

P̄ =


p̄ : p̄ ∈ L2 (Ω) , p̄ = p̂ on Γp


(35b)

Ū 0
=


ū : ū ∈


H1 (Ω)

3
, ū = 0 on Γu


(35c)

P̄ 0
=


p̄ : p̄ ∈ L2 (Ω) , p̄ = 0 on Γp


. (35d)

Note that ū and p̄ are introduced on the whole of Ω and not just the solid or fluid part.

4. RVE-problem

4.1. Preliminaries

Suppose that the macroscale solution fields ū and p̄ are known in a given (nested) iteration stage of the macro-
subscale problem. For any given macroscale point, we may thus compute the values of H̄, p̄ and ḡ, which are fed into
the subscale problem formally defined by Eq. (22). This problem is localized to the RVE in what follows.

Along with the assumption of separation of scales, it is natural to assume that the transient of the fluctuating fields
is very rapid within the RVE. As a consequence, we introduce the approximation of stationary subscale response and,
therefore, neglect the term dt u, cf. [10]. This is also in complete analogy with the initial assumption of a stationary
flow. As another preliminary, we choose Dirichlet boundary conditions on the displacement, i.e. we choose uµ = 0
on Γ�.

As a result, the (still un-closed) problem reads as follows: Find (u, w, p) ∈ U� × W� × P� such that

as
�


u; δuµ


+ af

�


u, w; δuµ


− bf

�


u; δuµ, p


= l�,u


δuµ


+


Γ�

tR · δuµdS ∀δuµ ∈ U ∗

� (36a)

−bf
�


u; w, δpµ


= 0 ∀δpµ ∈ P� (36b)

cf
� (u, δw) = 0 ∀δw ∈ W ∗

� (36c)

where we introduce the RVE-spaces

U� =


u ∈ [H1 (Ω�)]3

: u = ū + H̄ ·

X − X̄


on Γ�


(37a)

P� =


p ∈ L2


Ω f

�


(37b)

W� =


w ∈


H1


Ω f

�

3
: w = 0 on Γ int

�


(37c)

U ∗

� =


u ∈


H1 (Ω�)

3
: u = 0 on Γ s

�


(37d)

W ∗

� =


w ∈


H1


Ω f

�

3
: w = 0 on Γ f

� ∪ Γ int
�


. (37e)
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Moreover, tR is the reaction force due to the cutting up of the domain and is given as

tR =


tRs = Ps

· N on Γ s
�

tRf = Pf
· N = tR,sub

f − ( p̄ + ḡ · [X − X̄f
])JF−T

· N on Γ f
�

(38)

where the subscale fluid reaction term is defined as tR,sub
f = (Pv

− pµ JF−T) · N.

4.2. Closing the RVE-problem—Auxiliary constraints

To close the RVE-problem, a number of extra conditions (constraints) must be introduced as complements to
Eq. (36). Firstly, in order to enforce the proper mean pressure we add the condition

⟨p⟩� = p̄ (39)

corresponding to the Lagrange multiplier λ. Secondly, we adopt weakly periodic boundary conditions on w and pµ.
[Note that we have already assumed homogeneous Dirichlet condition on uµ.] For a background discussion on weakly
periodic boundary conditions, we refer to [11]. We formulate the condition on pµ as

[[pµ]] = [[p − pM
]] = 0 or [[p]] = [[pM

]] = ḡ · [[X]]. (40)

The jump operator [[•]] is introduced as [[ f ]] = f (X) − f (X−(X)), where X is a coordinate on the positive (mirror)
part on Γ�, denoted Γ+

� henceforth, whereas X−(X) is the corresponding point on the negative (image) part of Γ�.
For the seepage velocity w, we pose the weakly periodic boundary condition as

[[JF−1
· w]] = 0 (41)

where we recall that JF−1
· w = W is the pull-back of w to the material configuration. Altogether, the conditions

on weak periodicity give two Lagrange multipliers: β ∈ B� := [L2


Γ f+

�


]
3 for the seepage velocity condition and

γ ∈ G� := [L2


Γ f+

�


] for the pressure condition.

4.3. Operational format of the RVE-problem

The system of equations that defines the RVE-problem in its operational format becomes: Find (u, w, p, λ, γ, β) ∈

U� × W� × P� × R × G� × B� such that

as
�


u; δuµ


+ af

�


u, w; δuµ


− bf

�


u; δuµ, p


+ gf

�


u; δuµ, β


+ f f

�


p̄, ḡ | u; δuµ


= 0 ∀δuµ ∈ U ∗

� (42a)

−bf
�


u; w, δpµ


+


δpµ

f
� λ + hf

�


δpµ, γ


= 0 ∀δp ∈ Pµ� (42b)

cf
� (u, δw) = 0 ∀δw ∈ W ∗

� (42c)

⟨p⟩
f
� δλ = p̄ δλ ∀δλ ∈ R (42d)

hf
� (p, δγ ) = lf

� (ḡ| δγ ) ∀δγ ∈ G� (42e)

gf
� (u; w, δβ) = 0 ∀δβ ∈ B� (42f)

where

f f
� ( p̄, ḡ | u; δu) =

1
|Ω�|


Γ f

�


p̄ + ḡ · [X − X̄f

]


JF−T

· N


· δu dS (43a)

gf
� (u; w, β) =

1
|Ω�|


Γ f+

�

[[JF−1
· w]] · β dS (43b)

hf
� (p, γ ) =

1
|Ω�|


Γ f+

�

[[p]]γ dS (43c)

lf
� (ḡ | γ ) = ḡ ·

1
|Ω�|


Γ f+

�

[[X]]γ dS. (43d)
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Fig. 4. RVE consisting of a single unit cell.

Fig. 5. Biot coefficient α versus (a) macroscale pressure p̄ (b) bulk modulus K s in the solid phase.

Here we note that, due to the choice of boundary conditions, the subscale part of tR vanishes on both Γ s
� and Γ f

�.

5. Numerical examples

5.1. RVE-model

Numerical examples are presented subsequently for an RVE with the simple subscale geometry shown in Fig. 4.
The RVE is of cubic shape with the side-length 1 m. All faces of the RVE are identical with a quadratic hole located
in the center. The hole measures 0.33 × 0.33 m2; consequently, the porosity of the undeformed RVE is nf

= 0.26.
The following constitutive equations were adopted for the two phases:

Neo-Hooke hyperelasticity was assumed to represent the intrinsic deformation characteristics of the solid phase,
whereby the parameter Gs, K s are recovered in the small strain limit for the deviatoric and volumetric response,
respectively. The used values for Gs and K s vary in the numerical examples (as given below). The fictitious elastic
material is also represented by a Neo-Hooke hyperelastic material. Here, we chose both the bulk and shear modulus
as 50 Pa.

Standard Newtonian (linear) viscous flow was assumed for the fluid flow. The corresponding first Piola–Kirchhoff
stress is given as

Pv
= Jσ v

· F−T with σ v
= µ[v ⊗ ∇]

sym. (44)

Due to the assumption dt u = 0, we have v = w in practice. The viscosity µ is set to 1 Pa s. The Lagrange multipliers γ

and β associated with the weakly periodic boundary conditions are approximated using global polynomials of order 2.
FE-computations were carried out on a 3D-mesh of tetrahedrons, whereby the following element approximations

were used: For the solid skeleton and the fictitious elastic material in the pore space, u is quadratic. For the fluid phase,
we adopt the Taylor–Hood element with quadratic w and linear p. The mesh were generated using a criteria on the
maximum edge length of 0.09 on the elements.

All computations are performed using the open source Finite Element solver OOFEM [12].
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Fig. 6. The solid part of the domain, cut in half, showing the von Mises stress and deformation fields due to a prescribed pressure p̄. (a) p̄ = 10 Pa,
(b) p̄ = 20 Pa, (c) p̄ = 30 Pa and (d) p̄ = 40 Pa.

5.2. Assessment of the Biot coefficient

From [1], the total macroscopic stress in the case of small deformations and linear elastic solid skeleton can be
given as

σ̄ (=P̄) = Ē : H̄ − α p̄I (45)

where α is the (constant) Biot coefficient, and Ē is the homogenized overall stiffness. Thus, α measures how the
pressure in the fluid affects the mean stress in the solid. Theoretically, α varies from nf (no interaction) to 1 (full
interaction). Here, the term “no interaction” can be thought of as the case where a rigid interface boundary Γ int

�
prevents the pressure in the fluid to contribute to the stress in the solid. Full interaction implies that the fluid pressure
is “extrapolated” onto the solid.

The effect of α should appear in the present definition of P̄ if P̄{H̄, p̄, ḡ} is properly linearized and the result is
evaluated for small values of p̄. However, to simplify calculations, we rather redefine α as the secant of the total mean
stress in the following sense

α = −
P̄m(H̄, p̄, ḡ) − P̄m(H̄, 0, ḡ)

p̄
with P̄m

def
=

1
3

P̄ : I. (46)

Hence, α corresponds to the Biot coefficient for small values of p̄ in the light of the ansatz in Eq. (45). Whereas
the Biot coefficient classically is defined only for linear problems, α thus defines the interaction also for non-linear
formulations.

In the following example, we evaluate α for the special case when H̄ = 0 and ḡ = 0. Since P̄m(0, 0, 0) = 0, we
thus obtain

α = −
P̄m(0, p̄, 0)

p̄
. (47)
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Fig. 7. Seepage velocity W̄1 versus prescribed uniaxial stretch H̄11 and shear H̄12 for different shear modulus, Gs, and macroscale fluid pressure,
p̄. (a), (b) p̄ = 0 Pa, (c), (d) p̄ = 20 Pa, (e), (f) p̄ = 40 Pa.

As to parameter values, we choose the shear modulus Gs
= 50 Pa and let the bulk modulus K s vary. Fig. 5 shows

how α changes with p̄ for different choices of the bulk modulus K s. For very low values of K s, it turns out that α

approaches the porosity, nf, while for large values, it is close to 1. For low values of K s, α depends significantly on p̄
while for large values it is quite insensitive, i.e. the ansatz in Eq. (45) is validated. Fig. 5(b) gives the same information
in a different way. Fig. 6 shows the distribution of stress and deformation in the RVE due to the prescribed macroscale
pore pressure.

5.3. Assessment of the apparent permeability

The apparent permeability is investigated in terms of the seepage velocity w̄ for unit pressure gradient, i.e. for
ḡ = −e1. Clearly the result will be affected by the state (H̄, p̄). More specifically, Fig. 7 shows how w̄1 varies with
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Fig. 8. The fluid part of the domain, cut in half, showing the velocity and deformation fields due to prescribed simple shear. (a) H̄12 = 0.0,
(b) H̄12 = 0.1, (c) H̄12 = 0.2, (d) H̄12 = 0.3, (e) H̄12 = 0.4 and (f) H̄12 = 0.5.

the macroscopic displacement gradient H̄ = H̄11e1 ⊗ e1 or H̄ = H̄12e1 ⊗ e2 (representing uniaxial stretch and simple
shear) for increasing values of H̄11 and H̄12, respectively. We choose the bulk modulus K s

= 50 Pa and let the shear
modulus Gs vary. The behavior is clearly nonlinear, as shown in Fig. 7. Figs. 8 and 9 show snapshots of the deformed
pore space when the RVE is subjected to different modes of macroscale deformation.

5.4. Influence of RVE-size

Next, we consider RVEs consisting of several unit cells, positioned in an array as illustrated in Fig. 10. In order to
achieve an objective comparison, we choose constant values of the Lagrange multipliers γ and β, i.e. 0th order. Both
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Fig. 9. The fluid part of the domain, cut in half, showing the velocity and deformation fields due to prescribed stretching. (a) H̄11 = 0.0,
(b) H̄11 = 0.1, (c) H̄11 = 0.2, (d) H̄11 = 0.3, (e) H̄11 = 0.4 and (f) H̄11 = 0.5.

Gs and K s are chosen as 50 Pa. The prescribed mean pressure p̄ is 20 Pa. As in the previous computations, a unit
pressure gradient in the e1-direction is imposed on the RVE. Due to the high computational cost, the mesh used in this
numerical example is somewhat coarser than the mesh used in the previous computations. The maximum length of an
element edge was chosen as 0.1.

Fig. 11(a) shows how the seepage velocity changes with strain for the three RVE-sizes. The difference between
the results presented here and the corresponding results in Fig. 7 is due to the choice of lower order weakly periodic
boundary conditions and a coarser mesh. In absolute terms, however, the permeability differs only a little between the
RVEs. Fig. 11(b) shows how the current (deformed) porosity φ changes with strain. The observed trend for increasing
RVE-size can be explained by the fact that the overall flexibility of the solid skeleton increases as the constraining
boundary effect is reduced.

6. Conclusions and outlook

A novel approach to modeling the fluid-structure interaction in porous media, based on computational
homogenization, is presented. A monolithic FSI problem, representing finite strains, is devised. By introducing a
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Fig. 10. RVE design. (a) 1 × 1 × 1, (b) 2 × 2 × 2, (c) 3 × 3 × 3 unit cells.

Fig. 11. (a) Seepage velocity w̄1 versus prescribed uniaxial stretch for different RVE sizes. (b) Porosity φ versus prescribed uniaxial stretch for
different RVE sizes.

fictitious elastic material in the pore system, we prevent the computational mesh from being overly distorted. Special
care is taken such that the fictitious material does not contribute to the overall stiffness. By homogenizing the FSI
problem, we arrived at a coupled macroscale equation that is recognized in the porous media literature.

In the numerical examples, the classic Biot coefficient is evaluated, and it is shown to remain within its theoretical
bounds. Furthermore, the dependence of deformation and pressure on the macroscale permeability is assessed. The
numerical examples also verify that the mesh-smoothing method prevents distorted elements.

A list of future extensions of the model framework can be made long due to the large number of complex physical
phenomena that take place in porous media. For example, we could choose to incorporate contact models to handle
pore collapse, models for erosion of the internal surfaces and adding more phases. However, as many of these
processes are very complex and, generally, computationally expensive to simulate, a natural first step is to reduce
the computational cost. To that end, assessing non-linear solvers and investigating Dirichlet boundary conditions on
the fluid phase are pressing matters.

As of now, the model has only been evaluated using an elastic solid material. Thus, the model should be extended to
other types of subscale material models, such as visco-plasticity, in order to be able to simulate the behavior of e.g. soft
clay, gels, biological tissues etc. Hence, the theoretical framework must be extended to include history effects.
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