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A note on the 2nd edition

This is a clean-up of the first edition where many errors and mistakes have been corrected. No new material
has been added, though many updates have been made to the models; especially the implementations of
the operating cycle and the driver. See [1–3] for these. The models are all available for download through
www.chalmers.se/vehprop1

1The zip files that contain the library can also be found through https://chalmersuniversity.app.box.com/s/

f5ejzj18bh3c6z057ri71nf04er8g469.

www.chalmers.se/vehprop
https://chalmersuniversity.app.box.com/s/f5ejzj18bh3c6z057ri71nf04er8g469
https://chalmersuniversity.app.box.com/s/f5ejzj18bh3c6z057ri71nf04er8g469


Figure 1: Top level of VehProp

1 Introduction

VehProp, for VEHicle PROPulsion, is a simulation model library for evaluating the longitudinal performance
of a vehicle by predicting, for example; fuel consumption, productivity or clutch wear. The idea is to represent
the forces on, and the torque transmitted through the powertrain during time intervals that are typical for
conducting transport missions. This could mean anything from a minute to several days.

This report describes the library as parts of a full vehicle model. The model is based on a number of
articles by Jacobson and Eriksson see e.g. [4, 5] as well as the master thesis by Venbrant [6]. The physical
models are in turn based on work done in the PhD-thesis by Berglund [7] (engine) and the PhD-thesis by
Jacobson [8] (transmission). The chassis equations follow more or less from Newton’s Principia [9], but for a
more recent treatment that also gives a vehicle dynamic perspective see the compendium by Jacobson [10].

2 Simulation model structure and concepts

The simulation model is largely based on a modular structure and the modules are supposed to be divided
into components which are both intuitively and physically different. At top level the model is divided into
the operating cycle (generalized road), the driver (who controls the vehicle) and the vehicle (the system
under test), see Fig. 1.

The vehicle model here has been developed with the explicit purpose to reflect how the difference between
a single clutch (SC) and dual clutch (DC) transmission influence the transport mission efficiency (e.g. average
speed) and vehicle fatigue (e.g. clutch wear) during a realistic long-haul mission. As other performance
measures become interesting, it could (and will) be developed in other directions to capture for these too.

It should be pointed out that the model uses forward simulation (sometimes called natural dynamic or
causal) to better reflect reality. The opposite, a backward simulation (inverse dynamic or reverse causal),
would be more effective but would not be able to capture gear transitions or engine dynamics in a good way.
This is a major part of the model and thus a forward simulation is the canonical choice. The downside is
that it makes a driver model necessary, something that adds considerable complexity.
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3 Operating cycle

The operating cycle is very simple at the time of writing and uses only two road properties: speed and
topography, but the principle is the same for many other effects related to road and environment.

Each property is either defined as a function of position (static properties e.g. road curvature) or time
(dynamic properties, e.g. how long to stay with active PTO at a certain coordinate). The latter require a
much more sophisticated treatment than the former and since no such property is used at present, it will
not be treated further here.

Currently the operating cycle is a matrix OCab where the columns represent different properties and the
rows each property value at the current coordinate. The current properties are: an index j (a counter that
is included to easily see how big the matrix is), the position s (which is the governing variable), the target
speed v (sometimes referred to as vset), curvature κ, and altitude z or inclination angle θ (topography). In
the implementation the continuous functions are replaced by discrete variants. In that case the operating
cycle matrix can be written

OCab = δ1bka + δ2bsa + δ3bvset,a + δ4bκa + δ5bza (1)

where δij is the Kronecker delta. If the tensor notation is unfamiliar, a more convenient but less rigorous
way of writing would perhaps be

OCab = [i, s, v, κ, z]ab (2)

Each column here represents a different value of b in Eq. (1). The input to the module, see Fig. 2, is the
current position of the vehicle d, and a corresponding current index is calculated

i : d ∈ (si, si+1] (3)

For many of the variables linear interpolation is used to find intermediary values. Other types of in-
terpolation (or spline) methods could be used too, and what type that is most suitable is decided by the
underlying physical model of each parameter. This will be further discussed in future articles specifically
treating advanced operating cycle concepts. For a generic variable input variable x, using Eq. (3), the output

ỹ = f(x, yi) =
x− xi

xi+1 − xi
(yi+1 − yi) + yi (4)

The implementation of the operating cycle can be seen in Fig. 2.
During a simulation, time is incremented in steps. To make the connection to the simulation more

apparent, a time index k can be attached to (some of) the variables in Eq. (4). At iteration k in the
simulation we would have:

tk =

k∑
j=1

∆tj (5)

i : dk ∈ (si, si+1) (6)

ỹk = f(xk, yi) (7)

In the following there may be some slight abuse of the notation, as the value ỹk which changes in each
steep and is sent around between modules in the simulation (the signal) may be referred to by the same
name as the parameter y in the operating cycle, which is completely static.

3.1 Speed

The prescribed speed vset is output as
vset = f(d, vset,i) (8)

Here the notational abuse is apparent, as the left hand side is the dynamic value which changes with each
time step k, but the right hand side is static. A better notation would be to make the time dependence
apparent and use Eq. (1).

vset,k = f(dk, OCi3) (9)

In the implementation, the signal is called v set.
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Figure 2: The operating cycle module

3.2 Topography

The topography can either be given as a road angle or altitude. If given as a road angle, it is represented by
a function, θ, that is piecewise constant over intervals of 25 m. Thus the road angle α that is output from
the operating cycle is

α = θi (10)

One could of course outfit this with a time index too: αk. In the simulation the signal is called alpha slope.
If the topography is given in altitude z, the output road angle is calculated by looking at the elevation

of the front part of the vehicle (zf ) and comparing it to the rear part (zr)

zf = f(d, zi) (11)

zr = f(d− l, zi), (12)

α = arcsin

(
zf − zr

l

)
(13)

where l is the wheelbase. In the implementation, the slope angle is called alpha slope.

4 Driver

The driver module of course represents the human driving the vehicle. The input is the current speed vis
and the target speed vset. The outputs are the (normalized) accelerator and brake pedal positions. A speed
error is formed as

ek = vset,k − vis,k (14)

and a PID-regulator is used to regulate the driver pedal positions. Writing the output from this as p(ek),
the pedal positions will be output as

p(ek) ≥ 0⇒ ap = p, bp = 0 (15)

p(ek) < 0⇒ ap = 0, bp = −p (16)

In the implementation the Matlab/Simulink default PID-regulator is used and apart from the basics
features it also includes some filtering and a useful anti-windup mechanism. A figure of the module can be
seen in Fig. 3.
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Figure 3: The driver module

5 Vehicle

The vehicle is by far the most complex module at the time of writing. The top level can be seen in Fig. 4
and it consists of three main sub models: engine, transmission and chassis. The inputs are the accelerator
pedal position ap, the brake pedal position bp and the road angle α. The outputs are the travelled distance d
(which for a one dimensional description with isotropic direction coincides with the position) and the current
speed vis. The physical vehicle model can be seen in Fig. 5.

5.1 Engine

The engine module inputs are the accelerator pedal position ap, a torque limit request flag, torque limit
specifier Tlim and the engine speed ωe. The module is shown in Fig. 6. It outputs an engine torque Te and
fuel volume flow rate V̇ .

This is a simple, empirical engine model with only two dynamic states (ωe and Te), but still we strive to
have it as physical as possible. The pedal position is reinterpreted as a torque request using a pedal map
fpedal(ap, ωe), the torque request is checked against both the maximum torque at current engine speed and
the torque limit request from the transmission. The limiting value is chosen and transformed into required
amount of fuel q injected into each cylinder, based on a fuel map ffuel(T, ωe). The fuel is injected into the
cylinders and a steady state torque is calculated from an engine map fengine(q, ωe). Depending on its size,
the torque it is either output directly or split into a base part and a top part. The former is instantaneous,
and the latter is subject to a first order differential equation, to mimic a boost pressure build-up. If the
requested top part is lower than the current top value, the change is immediate. The final output torque is
the sum of those parts. In the form of the equations

Traw = fpedal(ap, ωe) (17)

Treq = min(Treq, Tmax(ωe), Tlim) (18)

q = ffuel(Treq, ωe) (19)

Tss = fengine(q, ωe) (20)

Tbase = min(Tss, Tsplit) (21)

Tdyn,req = Tss − Tbase (22)

Tdyn,req − Ttop < 0

Ttop = Tdyn,req (23a)

Tdyn,req − Ttop ≥ 0

Ṫtop = k(Tdyn,req − Ttop) (23b)

Te = Tbase + Ttop (24)

where coefficient k > 0 decides the build-up rate. The reason for Eqs. (23a) and (23b) is that the process
of reducing the boost pressure is much quicker than building it up. In principle one could handle it by Eq.
(23b) only and using different coefficients depending on whether Ṫ is positive or negative.
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Figure 4: The vehicle module

Figure 5: The physical vehicle model. The engine and transmission together make up the powertrain model,
which is the focal point in the simulation.
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Figure 6: The engine module
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There is also another engine layout where the engine efficiency is available. Then the fuelling can be
skipped since the request can be directly translated into a steady state torque and fuel rate computed from
the efficiency map. This approach requires fewer computations and is therefore quicker, but less physical.
As long as the fuelling process contains no dynamics these two approaches are equivalent.

Note that in the above treatment we have not really made a clear distinction between physical components,
but rather between different parts in the request chain. In reality the case is rather that the pedal actuation
is received by the main engine ECU, which relates it, via a fuel and engine map, to amount of fuel to inject
and then controls the injection process. Thus Eqs. (17) and (18) should really be in a control component,
whereas the others belong in mechanical components. For the current implementation the distinction is
irrelevant but may need to change if the complexity of the engine grows.

The variable q is the amount of fuel (in mg) to inject per cylinder (injection) stroke. In the end we are
interested in the volume of fuel consumed and need to relate these two quantities. It can be done by simply
using dimensional analysis: [q] = mg/stroke, and thus we need

ṁ = aωensq = c
N

n

ωe

2π
q (25)

ωe has the unit rad/s and therefore we have included a numerical ns which relates the number of strokes per
second to rotation speed. This depends on the number of cylinders (N) and the type of combustion process:
how many strokes (n) that are needed to complete one full thermodynamic cycle. For example: a two stroke
engine need only one complete turn (n = 1) but a four stroke engine needs two complete turns (n = 2) per
injection. The constant c is a simple unit conversion factor: c = 10−6 kg/mg. So for a six cylinder, four
stroke engine

ṁ =
3 · 10−6

2π
qωe (26)

with ṁ the fuel (mass) flow rate in SI-units. Some things are of interest from this: the total volume of
consumed fuel Vfuel and the engine efficiency η. With ζ = 43.1 MJ/kg the calorific energy content of diesel
and ρ = 0.832 · 103 kg/m3 the density, we have

Vfuel =
1

ρ

tf∫
t0

ṁ dt (27)

η =
Teωe

ζṁ
(28)

5.2 Transmission

The transmission is the most complex part and relies heavily on the input from various control strategies.
The input variables are the engine inertia Je, the engine torque Te, the slope angle α, the wheel angular
speed ωw and the wheel angular acceleration ω̇w. The outputs are the wheel torque Tw, the complete inertia
of all components up to the final drive Jtot, the engine speed ωe, a torque limit request flag and a torque
limit specifier Tlim.

The physical model of the clutch and the gearbox is shown in Fig. 7. In addition to this there is a final
gear afterwards, see Fig. 5. The cut between the engine and transmission in this figure is trivial, so

Te − T ′e = 0 (29)

ωe − ω′e = 0 (30)

Since T ′e = Te and ω′e = ωe the prime notation will be dropped to avoid unnecessary clutter.
Figure 7 shows a dual clutch gearbox. In this case one of the clutches controls the odd gear set and

the other the even one. Both of them are dry clutches and we have chosen to model them strictly with
Coulomb friction. Therefore each one operates in two regimes: one where it sticks and one where it slips.
The properties change based on the discrete state. Since there are two clutches there are four different
discrete states in total. The physical model of the gearbox can be seen in Fig. 8. The equations fall out as
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Figure 7: The physical model of the gearbox.

Figure 8: The transmission module
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Figure 9: The clutch module

follows

Jeω̇e =Te − (Tc1 + Tc2) (31)

Jtω̇t =− Tt + (r1Tc1 + r2Tc2) (32)

∆ωi =ωe − riωt, i = 1, 2 (33)

Tci =

{
Ci sgn(∆ωi), if ci slip
from Eqs., if ci stick

(34)

Ci = cmaxpi (35)

slip condition: Tci > Ci (36)

stick condition: ∆ωi = 0 (37)

One of the discrete states, the stick-stick state, is thoroughly uninteresting because it cannot happen
while driving. If both of the clutches stick then the engine crankshaft and the clutch output shafts need to
have the same speed: the only speed that can satisfy that equality is zero. The state could be used as a
parking brake, but this is not something that we are interested in modelling.

The conditions for transitioning between the states in Eqs. (36) and (37) are indirectly controlled by the
clutch pressures pi. These are in turn controlled via some actuators depending on the engineering solution
(valves for a hydraulic or pneumatic solution) by the transmission ECU.

After the gearbox there is a final drive gear, where also a total transmission efficiency ηT has been
included

TFD =ηT rFDTt (38)

ωFD =
ωt

rFD
(39)

These are the same as the torque and rotational speed of the wheels, see (53) and (54).

5.2.1 Implementation of the mathematical model

The implementation separates into three main parts (the top three modules in Fig. 8): a state machine
for the clutch, a module for the gearbox and a module for the final drive. The clutch module and its state
machine can be seen in Figs. 9 and 10. A limitation in the implementation is that the clutch state must
be delayed one time step, so the switch between states will always be one tick behind. The reason is that
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Figure 10: The clutch state machine

the Eqs. (31) to (36) make up a set of differential algebraic equations (DAE), and since Simulink is strictly
causal it has trouble solving them. However, when the clutch state is already known the problem set reduces
to a system of ordinary differential equations (ODE) instead, and those Simulink excels at handling. Also
note that the stick-stick state is missing from the clutch state machine (though it could easily be introduced).

The gearbox module is shown in Fig. 11 and all the submodules can be seen in Figs. 12, 13 and 14.
There are some things that may be of note here. There is one submodule for each state: odd stick/even

slip, odd slip/even slip and odd slip/even stick. All of them compute their output in each tick, and the signal
router (Fig. 15) manages which of them to send further on and which ones to block. The odd stick/even slip
and odd slip/even stick are identical under the transformation 1 ↔ 2 in Eqs. (31)-(37) of course, but the
slip-slip equations are a little bit different. The reason is that the number of dynamic states change here:
when one of the clutches stick the input and output shaft speeds are linearly dependent (the engine speed
depends on the transmission shaft speed through the gear ratio, which in the end depends on the vehicle
speed), but when both clutches slip there is no such relation and these two speeds evolve independently.
Thus whenever the slip-slip state is entered the engine speed needs to be decoupled and reinitialized.

Another thing that should be pointed out is that the inertias are sent onwards and the equations that
are implemented are somewhat different from those presented so far. This is another relic from the choice
of Simulink as implementation language: as noted above the equations are linearly dependent and, together
with the relations for the chassis, must be solved as a system. Simulink cannot treat non-causalities, so we
basically have to solve it by ourselves and implement it in a way so that and output (vehicle acceleration)
can be computed from and input (engine torque). When doing that, all the inertias (both rotational and
mass) bunch together. The final solving step is done in the chassis module when finding the linear vehicle
speed, so the inertias need to be sent onwards until that point (see section 5.3).

The final module concerning the mechanical system is the final drive in Fig. 16.

5.2.2 Control modules

The control module (which would be equivalent to a transmission ECU) is shown in Fig. 17. Three functions
are included: the gearshift manager (which includes the gearshift strategy and decides when a gearshift is
complete), the clutch pressure control (which manages the clutches), and an engine torque limiter (which
communicates with the engine module).

Gearshift manager

The gearshift manager (Fig. 18) decides when to initiate a gearshift and which gear to engage. In principle,
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Figure 11: The gearbox module
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Figure 12: The gearbox details when the odd clutch sticks (c1 = co)

Figure 13: The gearbox details when both clutches slip
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Figure 14: The gearbox details when the even clutch sticks (c2 = ce)

Figure 15: The signal router
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Figure 16: The final drive module

Figure 17: The control function module
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Figure 18: The gearshift manager

a gearshift is requested if the current gear is different from the selected (or desired, rather), no other gearshift
request is active, and no shift has been performed for the past tmin seconds.

The gear choice (Fig. 19) is simple and depends only on engine speed and the inclination angle. If
the engine speed goes below the downshift threshold a downshift is initiated and vice versa for an upshift.
The inclination angle has discrete effect providing regimes in which different engine speed thresholds are
utilized. Typically the engine speeds need to be higher for both up- and downshift in a downhill (meaning
later upshifts and earlier downshifts, to increase the performance) and the other way around in a downhill
(for fuel efficiency). The number of gears to shift is similarly dependent on current gear and inclination. If
the current gear is denoted by ic, the gear request by ireq, the number of gears to shift N(ic, α) and the up
and down limits by ωu,lim(ic, α) and ωd,lim(ic, α) respectively, then

ωe ≥ ωu,lim(ic, α) ⇒ ireq = ic +Nu(ic, α) (40)

ωe < ωd,lim(ic, α) ⇒ ireq = ic −Nd(ic, α) (41)

For a dual clutch transmission the gearshift is typically sequential by necessity: otherwise there would need
to be a disruption in the power transfer. This is not the case for an SC, where non-sequential gearshifts are
used extensively to improve fuel economy. Therefore numerical representations of the functions ωu,lim(ic, α),
ωd,lim(ic, α), Nu(ic, α) and Nd(ic, α) are different for SC and DC.

The gearshift controller (Fig. 20) makes the decision on when to command a gearshift and what to
specify as the current gear.

Clutch pressure control

The second function, shown in Fig. 21, is the clutch manager (or clutch pressure control), and it manages
the pressures in Eqs. (35). Here we imagine that the pressure is directly controlled by the module and not
indirectly by some valves, but to get it somewhat more realistic the pressure actuation is linear (and not
instantaneous) with specific rise and fall times.

There are two parts of it, one controller (Fig. 22) and one actuator (Fig. 23).
It should be noted that although the physical model has two clutches, the clutch control can be tailored

in such a way that it behaves as a single clutch transmission too. If the disengaging clutch fully disconnects
and there is a time delay before the connecting one engages, the disruption in power transfer mimics that of
a single clutch. Thus the only thing that needs to be replaced when modelling a vehicle with an SC instead
is the clutch control strategy.
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Figure 19: The gear choice strategy

Figure 20: The gearshift controller
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Figure 21: The clutch pressure control

Figure 22: The clutch controller
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Figure 23: The clutch actuator

The controller (Fig. 22) is based around the clutch control state machine (Fig. 24), with some signal
routing to decide which clutch is disengaging and which one is engaging, as well. The useful output is the
clutch commands k1 (odd clutch) and k2 (even clutch), with ki = −1 disengage, ki = 0 hold, and ki = 1
engage. The clutch state is also passed onto the actuator module.

Two different control concepts have been implemented. The first is that of a single clutch as explained
above. Here, the control is very simple, whenever a gearshift is detected the disengaging clutch kprevious =
−1, knext = −1, and after a time delay td (to simulate the power disruption) kprevious = −1, knext = 1. It
could be done in a much more refined way: e.g. waiting for shaft synchronization before reconnecting to
reduce heat generation and thus clutch wear. At the time of writing this is remains to be done. The engine
speed control is performed by the engine itself, but in a controlled fashion via the torque limit module.

For the dual clutch, the strategy needs to be more refined: the engine is never fully disconnected from
the transmission so it cannot be controlled in that way to the same extent. Instead the clutch pressures
are steered so that the transferred torque either brakes the engine (upshift) or accelerates it (downshift).
Figures 25 and 26 show the principle.

These are based on the idea of a desired gearshift time tg and the assumption that the vehicle speed is
unchanged during gearshift. Let the gear ratio of the current gear be rc and the gear ratio of the next gear
rn. Then Eq. (31) can be used to find the transmission torque (again, assuming both this and the engine
torque are constant) that achieves this in the desired time

ωe(t) =
Te − (Tcc + Tcn)

Je
t+ ωe(t0) (42)

v(t0) =v(tg) ⇒ ωe(tg) =
rn
rc
ωe(t0) (43)

∆ωe =ωe(tg)− ωe(t0) =

(
rn
rc
− 1

)
ωe(t0) (44)

Tcc + Tcn =Te +
Je∆ωe

tg
(45)

In the case of a downshift, the engaging clutch is initially disregarded (Tcn = 0) and disengaging clutch
torque Tcc is found (smaller than the engine torque) using Eq. (45). In the case of an upshift the engaging
clutch torque is found (larger than the engine torque) in the same way, then the engaging clutch and the
disengaging one are actuated simultaneously.
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Figure 24: The clutch control state machine

Figure 25: The pressure control principle for a downshift. Note that C > 0 so the engine accelerates.
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Figure 26: The pressure control principle for an upshift. Note that C < 0 and the engine decelerates.

Since the clutch actuators are not ideal, the equations above are only an approximation of the actual
behaviour of the engine speed so there must also be some kind of fall back when things do not work out.
That is the reason for the BailOut state.

The final component here is the clutch actuator in Fig. 23, that relates the commands from the controller
into the (normalized) pressures pi. The connection between ki and pi is

ṗi =
ki
τs
, pi ∈ [0, 1] (46)

with τs being a rise or fall time, whose value depends on the clutch state and whether the pressure is to
be increased or decreased. Equation (46) implies that the pressure change is not instantaneous but linear,
so even though the description of the clutch pressure is not based on a physical model (e.g. hydraulic or
pneumatic), it is not a fully idealized model.

Engine torque limiter

The engine torque limiter in Fig. 27 is an essential component for the single clutch transmission but not at
all as important for the dual clutch, the reverse situation from the clutch control. The control principle can
be seen in Figs. 28 and 29.

Both the timing and the limit levels here are fixed, depending on whether it is an upshift or a downshift
and the severity of the inclination. A more realistic and effective approach would be to have these dynamic,
i.e. compute both the torque request and the ramping start and end points from e.g. a desired gearshift
time. This is something that remains to be done.

Currently, the torque limit is based on the clutch pressures only. For the single clutch gearshifts the
torque limit request can be written as follows

Tlim =


∞, pc > pbreak
cmaxpc + Ts, pc ≤ pbreak
T0, pc = 0, pn = 0
cmaxpn + Ts, pn ≤ pbreak
∞, pn > pbreak

(47)
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Figure 27: The engine torque limit module

Figure 28: The principle for the engine torque limiter during a downshift
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Figure 29: The principle for the engine torque limiter during an upshift

where we have used the current (subscript c) and next (subscript n) indices as in Eq. (42). In the end the
only thing that differs between the upshift and downshift is the final torque T0 during full declutch. For a
downshift it is positive and for an upshift it is negative.

Note that this is only a limit request, then it is up to the engine to accept and perform the necessary
actions to output the torque. In our case the engine is simple enough that this is never a problem, but in a
real vehicle there certainly could be.

5.2.3 Off-line computations

There are lots of interesting things that can be computed using output from the simulation, but that do
not necessarily need to be done during the run. The gain is both a reduced complexity and a decrease in
computation time.

One such thing is the temperature in the bulk material of the clutches. Among other things this is
related to the wear of the clutch material. To not confuse temperature and torque in this section, we use
M to denote torque and T for temperature. The heating is due to the friction, whenever at least one of the
clutches slip and there is some connection

dQ

dt
= |∆ωc1Mc1 |+ |∆ωc2Mc2 | (48)

with Q the heat energy in the clutch. The above equation could be used directly to formulate a crude
measure of the clutch wear, namely the total amount of dissipated energy.

Ec =

tf∫
t0

dQ

dt
dt (49)

However, we may use Eq. (48) and consider the heat exchange with the environment via Newton’s law of
cooling to compute the temperature as a function of time. The heat exchange with the surroundings due to
a temperature difference is

dQ

dt
= −q(T− T0) (50)

where q is the thermal dissipation rate and T0 is the temperature of the surrounding. Fourier’s equation can
be used to supply information on the time evolution of the temperature

−∇ · (k∇T) + ρcp
∂T

∂t
=

dQ

dt
(51)
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Figure 30: A free-body diagram of the quarter car (truck) model of the vehicle chassis.

with k the heat dispersion, ρ the volume density and cp the specific heat capacity. In this case we will neglect
the troublesome first term, by assuming that the heat travels much quicker inside the material than between
the interfaces. Then we end up with a so called lumped capacitance model. Note that the heating power in
Eq. (48) flows into the system, while that in Eq. (50) flows from the system (into the environment). The
differential equation for the temperature becomes

∂T

∂t
=

1

ρcp
(|∆ωc1Mc1 |+ |∆ωc2Mc2 | − q(T− T0)) (52)

One could also keep the terms separate, because the heating due to the clutch slip is typically a much faster
process (seconds) than the cooling due to the surrounding (minutes).

Though the temperature could be tracked during the simulation, there is no real point since it doesn’t
affect the dynamics in the current model. To decrease the simulation time it is instead computed afterwards.
One could implement a temperature dependency in the clutch capacity though (or decreased capacity due
to wear etc.) and in that case the above should instead be incorporated into the model.

5.3 Chassis

The last part is the chassis that connects the longitudinal resistances and road effects to the propulsion
torque. At this level the dynamics is strictly one-dimensional, i.e. neither load transfer, pitch nor heave are
considered at the time of writing.

Because of these simplifications, we have used a quarter car model for the vehicle, see Fig. 30. This
corresponds to the part called chassis for the total vehicle in Fig. 5. Like before, the cut between the
transmission and the chassis is trivial and

TFD − Tw = 0 (53)

ωFD − ωw = 0 (54)

The notation here is somewhat inconsistent: TFD and ωFD are entities after the final drive, while Tw
and ωw are entities before the wheel.

24



Figure 31: A free-body diagram of the wheel and tyre on plane ground.

In this case the tyre has been fused to the wheel and these two together make up a rigid cylinder without
slip, see Fig. 31.

The figure implies the equations

0 = Ff − Fx,prop −mwv̇w (55)

0 = N − Fz −mwg (56)

0 = Tw − Tb − rwFf − eN − Jwω̇w (57)

rwωw = vw (58)

v = vw (59)

For the chassis with no wheels (Fig. 32) we can write down the following equations

0 = Fx,prop − Fair −msv̇ (60)

0 = Fz −msg (61)

Fair =
1

2
ρairACdv

2 (62)

Combining these and rotating the system to account for an inclination angle α gives the following equations
for the full chassis in Fig. 30

(
ms +mw +

Jw
r2w

)
v̇ =

1

rw
(Tw − Tb)− Fair − Fslope − Froll (63)

0 = N − (ms +mw)g cos(α) (64)

Froll =
e

r
N = fr(ms +mw)g cos(α) (65)

Fslope = (ms +mw)g sin(α) (66)
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Figure 32: A free-body diagram of the chassis without tyre on plane ground.

The term ms +mw is of course the total vehicle mass and we therefore write m = ms +mw. Also note
that the wheel inertia comes into effect when combining the system of equations from the wheel and the raw
chassis.

Doing this is very useful, as the equation can then be treated in a causal way: which means that we can
prescribe a value for Tw and Tb (the input) and compute a linear acceleration v̇ (the output). So to close the
loop this reduction must be done all the way done to the engine torque (which depends on the accelerator
pedal through Eqs. (17)-(24)). Since the clutch model can take three discrete states, there will be one set
of equations for each such state.

For the case when clutch one sticks and clutch two slips, the reduced expression takes the form[
m+

1

r2w

(
Jw + r2FDJt + r2FDr

2
1Je
)]
v̇ =

rFDr1
rw

Te +
rFD (r2 − r1)

rw
Tc2 − (Fair + Fslope + Froll) (67)

The expression for clutch two sticks and clutch one slips is analogous and can be found by the transformation
1↔ 2. The factor in front of v̇ on the left hand side is sometimes called the effective mass and written m∗,
γm or km. The two first terms on the right hand side can be thought of as the propulsion force

m∗ = m+ 1
r2w

(
Jw + r2FDJt + r2FDr

2
1Je
)

Fx,prop = rFDr1
rw

Te + rFD(r2−r1)
rw

Tc2
c1 stick, c2 slip

When the slipping clutch is fully disconnected, it reduces to the familiar expression where the propelling
force is the engine torque times the total gear ratio.

In the case where both clutches slip, the engine and chassis (everything after the clutch really: driveline
and chassis) decouple and the states evolve independently of each other. The engine follows Eq. (31), while
the linear vehicle speed expression reduces to[

m+
1

r2w

(
Jw + r2FDJt

)]
v̇ =

rFD

rw
(r1Tc1 + r2Tc2)− (Fair + Fslope + Froll) (68)

with the clutch torques given by the first case in Eq. (34). The expression for effective mass and propulsion
force are different from the stick-slip system, but can still be easily identified

m∗ = m+ 1
r2w

(
Jw + r2FDJt

)
Fx,prop = r1Tc1 + r2Tc2

c1, c2 slip
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Figure 33: The top level of the chassis module.

Therefore a familiar expression can be written for the acceleration, independently of which state the clutch
is in

m∗v̇ = Fx,prop − (Fair + Fslope + Froll) (69)

However, the engine speed ωe must still be handled in the slip-slip case. The implementation of the chassis
can be seen in Figs. 33 and 34. The implemented equation is the one given by Eq. (69), and so this is the
reason why the inertias have been propagated from the other modules (see Figs. 4, 11 and 16).

The brake system in figure 33 is nothing sophisticated, a linear function of the brake pedal position

Tb = Tb,maxbp · tanh(v) (70)

where Tb,max is a constant representing the maximum torque that the brake system can deliver. The factor
tanh(v) is included to get the torque direction correct: the resulting brake force should always counter the
direction of motion, and to remove the brake torque at standstill.

6 Discussion and conclusion

Hopefully it can be understood from the previous sections that this model is very much a work in progress.
The research in the OCEAN-project (see [11]) relates to the operating cycle module, and at the time of
writing this is the least sophisticated model in VehProp. As this model becomes more and more demanding,
the vehicle model (and driver too, for that matter) must be further developed to be able to account for
the effects the road, environment and missions has. Some things that we already foresee will need to be
implemented are

• Dry friction model for the brakes (needed for proper standstill and start-stop).

• Reversing (important for proper mission description).

• Standstill (essential for realistic driving scenarios).

• Spring and damper model for the suspension (to account for road roughness)

• Driver look-ahead (to hit the correct stop positions).

• Tyre (important all over really, but especially for starts, to account for different surfaces, and also has
a small effect on fuel consumption).
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Figure 34: The external chassis module.

The main purpose of the model is to accurately predict fuel consumption, but there are a number of
secondary properties that can be predicted or estimated at the same time.

The clutch temperature is one of them and it can be related to wear, which can be taken as another
evaluation factor.

The time to finish a specific mission is another evaluation factor. This is probably most effective when
comparing different vehicle configurations, e.g. the difference between a single or a dual clutch transmission.
The evaluation factor measures transport productivity: finishing a mission quicker allows for more missions
per time unit.
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