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Abstract

The amount of biological data has grown exponentially in recent decades.
Modern biotechnologies, such as microarrays and next-generation sequenc-
ing, are capable to produce massive amounts of biomedical data in a single
experiment. As the amount of the data is rapidly growing there is an urgent
need for reliable computational methods for analyzing and visualizing it.
This thesis addresses this need by studying how to efficiently and reliably
analyze and visualize high-dimensional data, especially that obtained from
gene expression microarray experiments.

First, we will study the ways to improve the quality of microarray data by
replacing (imputing) the missing data entries with the estimated values for
these entries. Missing value imputation is a method which is commonly used
to make the original incomplete data complete, thus making it easier to be
analyzed with statistical and computational methods. Our novel approach
was to use curated external biological information as a guide for the missing
value imputation.

Secondly, we studied the effect of missing value imputation on the down-
stream data analysis methods like clustering. We compared multiple recent
imputation algorithms against 8 publicly available microarray data sets. It
was observed that the missing value imputation indeed is a rational way
to improve the quality of biological data. The research revealed differences
between the clustering results obtained with different imputation methods.
On most data sets, the simple and fast k-NN imputation was good enough,
but there were also needs for more advanced imputation methods, such as
Bayesian Principal Component Algorithm (BPCA).

Finally, we studied the visualization of biological network data. Biologi-
cal interaction networks are examples of the outcome of multiple biological
experiments such as using the gene microarray techniques. Such networks
are typically very large and highly connected, thus there is a need for fast
algorithms for producing visually pleasant layouts. A computationally ef-
ficient way to produce layouts of large biological interaction networks was
developed. The algorithm uses multilevel optimization within the regular
force directed graph layout algorithm.

i



ii



Tiivistelmä

Biologisen tiedon määrä on kasvanut räjähdysmäisesti viime vuosikymme-
ninä. Modernin bioteknologian keinot, kuten geenimikrosirut ja uudet sek-
vensointimenetelmät tuottavat valtavia määriä biolääketieteellistä dataa yh-
dellä koesarjalla. Tiedon määrän kasvaessa yhä nopeammin, enenee myös
tarve luotettaville tietoteknisille tiedon analysointi- ja visualisointiratkaisuil-
le. Tässä väitöskirjastyössä pyritään löytämään ratkaisuja näihin tarpeisiin.
Tutkimuksessa etsitään nopeita ja luotettavia tapoja analysoida ja visuali-
soida moniulotteista dataa, jota saadaan esimerkiksi geenimikrosirukokeiden
tuloksena.

Työssä kehitettiin aluksi algoritmisia keinoja parantaa geenimikrosiru-
datan laatua korvaamalla (imputoimalla) datan puuttuvat arvot estimaat-
tiarvoilla. Puuttuvien arvojen imputointi on menetelmä, jolla voidaan tuot-
taa alkuperäisestä epätäydellisestä datamatriisista täydellinen. Täydellisen
datan etuna on mm. sen helpompi analysoitavuus tilastollisilla ja algoritmi-
silla menetelmillä. Tutkimuksessa kehitettiin uusi lähestymistapa imputoin-
tiin. Ideana oli ohjata imputointia käyttämällä apuna luotettavaa ulkoista
biologista tietolähdettä.

Lisäksi tutkittiin tarkemmin sitä, kuinka imputaatio vaikuttaa jatkoana-
lysointimenetelmien, kuten ryvästämisen (klusteroinnin) tuloksiin. Työssä
vertailtiin useaa imputaatioalgoritmia. Vertailu suoritettiin imputoimalla ja
klusteroimalla kahdeksan erilaista mikrosirukokeilla tuotettua datamatrii-
sia. Tutkimuksen tulokset vahvistivat oletusta siitä, että puuttuvien arvo-
jen estimointi parantaa biologisen datan laatua klusteroinnin onnistumisella
mitattuna. Eri imputaatiomenetelmillä estimoitujen datajoukkojen kluste-
roinneissa oli selkeitä eroja. Useimmilla mikrosirudatoilla nopea ja yleisesti
käytetty k-NN-imputaatio menetelmä tuotti riittävän hyvälaatuisen datan
klusteroitavaksi. Toisaalta tietyissä tapauksissa osoitettiin, että paras tu-
los saavutetaan vasta edistyksellisemmillä imputaatiomenetelmillä. Esimerk-
ki tällaisesta oli bayeslaiseen pääkomponenttianalyysiin perustuva BPCA-
algoritmi.

Lopuksi tutkittiin biologisten vuorovaikutusverkkojen visualisointia. Bio-
logiset vuorovaikutusverkot ovat tyypillisesti lopputuloksia lukuisista biolo-
gisista koesarjoista, kuten mikrosirukokeista. Nämä verkot ovat usein hyvin
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isoja ja tiheitä. Tämän takia tarvitaan nopeita algoritmeja esteettisesti ja
biologisesti hyvän visualisoinnin tuottamiseen. Tässä tutkimuksessa kehi-
tettiin laskennallisesti tehokas tapa piirtää tällainen visualisointi. Kehitetty
menetelmä hyödyntää monitasoista optimointia tavallisessa jousivoimaohja-
tussa verkon piirtoalgoritmissa.
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Chapter 1

Introduction

Biological research has made important breakthroughs recently at an accel-
erating pace. The characteristic feature of the recent biological discoveries
has been the massively increasing amount of new biological data produced
through this research. One of the modern data collection methods of molec-
ular biology has been the DNA sequencing technique. In the year 1977 re-
searchers were able to read the DNA sequence of the bacteriophage φX174
containing 5,375 nucleotides [69]. The first complete genome sequencing
was finished by 1995 resulting in about 1.8 million base pairs of nucleotide
sequences of Haemophilus influenzae bacterium [29]. In the year 2003, the
genome sequencing achieved its most anticipated goal when the whole hu-
man genome of about 3.3 billion base pairs was finally sequenced [20]. Today
we have an easy access to over 190 billion base pairs of more than 300 000
organisms trough the GenBank database [11].

Concurrently with the development of the DNA sequencing, other high-
throughput biological data acquisition methods were developed. Maybe one
of the most important tools in these methods have been the gene microchips.
The first commercial microchips were originally produced by Affymetrix in
1996 [48, 50]. They were able to screen the expression levels of about 1000 to
2000 genes in one experimental condition. Modern microchips are nowadays
used to screen expression of thousands to tens of thousands of genes.

The very large amount of biological data yields a need for high perfor-
mance data analysis and visualization methods. Thus, methods for ana-
lyzing and visualizing large-scale biological data have been objects of very
active research from the late 70s to the present day.

Although, the data acquisition methods have become more and more
accurate, there are limitations on the reliability of the gathered data. A
typical limitation is caused by missing data values i.e. the data that have
not been acquired or that are for some reason considered unreliable. There
are numerous reasons for the existence of incomplete data in a biological re-
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search. For instance to keep the biological experiments at an affordable cost
level, research instruments such as microchips have to by small in physical
size. This is very analogical to digital photography where photons are gath-
ered with an imaging sensor (typically CMOS type). The smaller the sensor
the cheaper it is, but the acquired data become consequently less reliable.

Secondly, abundance of data and its typically very high dimensions cause
logical problems since the human comprehension is generally limited to the
first three dimensions. For instance it is not unusual to have a biological
data set consisting of thousands of data vectors of a dimension greater than
ten. In addition to human comprehension, the high dimensional data is a big
challenge for the most statistical analyzing methods available. It is also easy
to see that visualizing even three-dimensional data provides challenges, thus,
it is no wonder that higher dimensions are still much harder to visualize.

Moreover, although we have currently large amounts of computational
power available even in personal computers, most of the computationally
complex algorithms are still much too slow to be used when the problem
size is big enough.

1.1 Aim of the Thesis

This thesis considers ways to address the seemingly different needs on the
analysis path from the raw biological data from the experiments to biolog-
ically interesting results. Data from genome-wide gene expression experi-
ments are used as case studies. The missing data imputation belongs to the
first analysis steps after the raw data has been acquired. One of the sub-
sequent steps consists of clustering and visualization of the gene expression
data. Finally, biologically relevant conclusions will be drawn from the data.

Objectives of the thesis are to study: (P1) how to improve the impu-
tation accuracy with biological a priori information, (P2) how to evaluate
the imputation accuracy by considering the stability of the clustering results
(P3), how very large biological interaction networks can be visualized in a
biologically relevant and computationally effective way, (P4) how to improve
the computational complexity of a clustering algorithm with use of the M-
tree indexing method, and (P5) how to carry out data analysis of the real
clinical gene expression data. We aim to provide solutions to these topics
such that the developed methods could be applicable also in the other re-
search areas. While the application area belongs to the biological research,
our approach is algorithmic research.
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1.2 Structure of the Thesis

The rest of this thesis is organized as follows. We start from the biologi-
cal background in Chapter 2, going shortly through the basic terms of cell
biology and gene expression research. In Chapter 3 we present how gene ex-
pression is measured with the microarray techniques. We study the cDNA
and oligonucleotide microarray techniques since these were the two most
commonly used ones at the moment of writing the publications of this the-
sis. Chapter 4 presents approaches to dealing with the missing data. The
imputation methods for missing data developed here aim to provide as com-
plete and accurate data as possible for downstream analyses. Biological
visualization methods are examined in Chapter 5. We show how to develop
an efficient graph drawing tool suited for very big biological networks. The
tool is designed to take care of the strength of the connections between
nodes as described by external biological information that is available from
public sources such as the Gene Ontology. In Chapter 6, the summary of
each publication included in the thesis is presented. The conclusions are
presented in Chapter 7. We briefly discuss also other related publications of
the author at the end of the thesis.
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Chapter 2

Biological background

The need for efficient computational tools for analyzing biological data is
the basis of this work. Knowledge of the biological domain is needed when
developing methods for data analysis. Therefore, in this chapter, we will
go through some of the fundamental concepts of the biological background
domain. The discussion is very brief, and it only lists the concepts used
later in this study. First, in Section 2.1, we will explore the biological
processes that are taking place in the cell. We will shortly explain how
the cell produces proteins and other gene products through gene expression.
Also, mechanisms, such as gene regulation and interaction, that may trigger
these processes, are shortly described. The need to measure and quantify
the products of these processes presupposes a basic knowledge about the
fundamentals of the biotechnology and bioinformatics (Section 2.2). The
main source for the basic concepts and definitions discussed here is the
textbook of Watson et al. [90].

2.1 Biology of the cell

2.1.1 Structure of the cell

The cell is a basic structural and functional unit of all known living organ-
isms: It is described as the smallest unit of life [2, 90]. There are organisms,
such as bacteria, that consist of a single cell, and organisms, like human,
that contain trillions of cells of which each one has its own specific function.

Cells are traditionally divided into eukaryotic cells of animals, plants,
fungi etc. and prokaryotic cells of bacteria and archaes. Eukaryotic cells
have a nucleus while prokaryotic cells do not have it. In this study we focus
only on the organisms that consist of eukaryotic cells (Eukaryotes).

Almost all cells share some similar structures in their anatomy. We will
focus here on the cells that contain genetic material called DNA (Deoxyri-
bonucleic acid). Most eukaryotic cells contain the DNA in the cell’s nucleus.
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An example of a cell that does not contain a nucleus nor DNA is the red
blood cell of human.

DNA is a long polymer of nucleotides containing all genetic information
needed by the organism. DNA consists of a number of nucleotide pairs
that form a structure called double helix. DNA’s role is to preserve the
genetic information of the organism. DNA is accessed when the double
helix is opened totally or partially. When the double helix is opened the
cell can produce an identical copy of itself, that is needed when the cell is
proliferating. Partially opened DNA is needed when a sequence of DNA is
transcribed to messenger RNA (mRNA) (Ribonucleic acid).

There are four different nucleotides in DNA: adenine (A), guanine (G),
thymine (T), and cytosine (C). The double helix consists of two strands of
the nucleotides such that a nucleotide in the first strand (such as C) has its
opposite nucleotide (G) in the other strand.

A set of rules how nucleotides are arranged in the DNA, is called the
genetic code [2]. Nucleotides are arranged to a sequence of three nucleotides
triplets called codons. A codon represents the instruction according to which
an amino acid is selected when a protein molecule is formed from a gene [2].
For example the codon CCG in a gene will correspond the Proline amino
acid in a protein.

Figure 2.1 presents a scale from a single cell (a), to its nucleus containing
the chromosomes (b). Chromosomes contain tightly packed DNA (c), where
the genes are located (d). A gene is composed of nucleotides (e).

Figure 2.1: View from a cell (a) to a small part of the gene (e) [2].

In Fig. 2.1, the structure of a cell is highly simplified: only the cell
membrane (i.e. the outer boundary of the cell) and nucleus are shown. A
more detailed illustration of an (animal) cell structure is presented in Fig.
2.2. The figure is adapted from to [90]. The function of the cell membrane
is to separate cell’s interior from the outside environment and act as an
interface between the cell and its outside [2]. The nucleus contains the DNA
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and nucleolus, which is used to assemble and transcribe ribosomal RNA
(rRNA). The rRNA is the building block of the ribosomes. The endoplasmic
reticulum is a labyrinth like structure of membrane; its role is to provide
a place where most of the protein synthesis occurs with the help of the
ribosomes. The ribosomes are the active molecular machines whose role is
to synthesize the proteins by linking amino acids together according to the
instructions given by messenger RNA molecules.

The cytoplasm (i.e. cell medium) contains also other organelles such as
mitochondria and Golgi apparatus: the mitochondria produces molecules
called adenosine triphosphate (ATP) which function as a source of chemical
energy in various processes in the cell. The function of the Golgi apparatus
is to package the proteins before they can be sent outside of the cell. We
suggest the reader to view the textbook of Watson et al. [90] for a more
detailed description.

Figure 2.2: General structure of an animal cell [90].

2.1.2 Biological processes

The two important biological processes of the cell, mentioned here, are the
gene expression, and DNA replication. Gene expression is a process in
which a particular region (gene) of the DNA is copied (in a transcription
sub-process) into a RNA which is then either translated to a protein, or for
some genes, is the final gene product itself [2]. The produced RNA can be
translated to an amino acid sequence in any of three possible reading frames,
depending on the from which of the first three nucleotides the translation
is started [2]. The translation begins with the start codon (typically AUG)
and ends when the stop codon of the RNA is reached [2].
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The expression level of a gene can be quantified from the abundance of
the messenger RNA molecules produced by the gene [51]. DNA replication is
the process where the original DNA molecule is replicated into two identical
copies. DNA replication is one of the key parts of the so-called cell-division
cycle, where a cell is divided into two cells.

Other important biological processes are regulation of the gene expres-
sion and interactions between proteins and/or genes. Genetic regulation
and interaction processes are commonly described by a genetic regulatory
network (GRN) in which genes interact with each other and other mate-
rial present in the cell. Genetic regulation is a set of processes that control
how, when, and in which amounts genes are expressed in the cell. In these
processes transcription factors (TF) such as the proteins and other gene
products, control the activation and suppression of the expression of other
genes. These processes are organized in networks called genetic regulatory
networks.

A genetic regulatory network can be initiated for instance by an envi-
ronmental change of the cell’s temperature that triggers the expression of
certain genes. Then, expression products of these genes typically will trigger
other genes to be expressed. This will continue, and can trigger more gene
expression in the cell and the cells nearby it.

2.2 From biochemistry and molecular biology to
bioinformatics

Many biological processes that operate on the molecular level, are inter-
related to one another. The roots of bioinformatics lie in the biological
sciences like the biochemistry and molecular biology [37]. The term bioin-
formatics was introduced in 1970 by Paulien Hogeweg as the study of infor-
matic processes in biotic systems [36]. The definition itself brings us close
to mathematical sciences like statistics and information sciences. One can
consider the bioinformatics as an example of successful inter-disciplinary
research area that is even more important today.

In this study we are interested in the challenges of the abundance of
data (so called data deluge) and data incompleteness which are products of
biotechnological research devices such as gene microchips. The abundance of
data is a reason why computer science is needed in bioinformatics. The data
incompleteness is due to the fact that we are quantifying real life biological
systems where lots of distractions are present.

We can perceive the amount of numerical data generated by biotechno-
logical research instruments by looking at the products which are available
from the biggest industrial bioinformatics companies such as Affymetrix and
Illumina. By an Affymetrix gene chip a small research team could easily ac-
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quire tens of millions of signal values in one week from a human genome
wide study using Human SNP (single-nucleotide polymorphism) Array 6.0
[55].

Gene expression profiling is used to find patterns of gene expression.
These patterns can be e.g. a temporal pattern of gene expressions during the
measured time span of the study in question, or physiological patterns where
the expression of the genes is measured in various physiological conditions.
Gene expression profiling is a widely used molecular biological technique for
studying the functional roles of genes in the cells. The data used in this
thesis originate from this kind of profiling studies.
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Chapter 3

Gene microarrays

The use of gene microarrays has been a popular technique for quantifying
the relative expression of thousands of genes in many different experimental
conditions [51][P1]. Gene microarrays are widely used for gene expression
profiling since they provide very high throughput for analyzing expression
profiles of thousands of genes simultaneously.

The first modern uses of gene microarrays for gene expression profiling
date back to 1995 when Schena et al. [71] were able to develop a high
throughput method for measuring the gene expression of 45 genes of Ara-
bidopsis in parallel. Before that, in 1982 [7], the gene microarray technology
was evolved from the Southern blotting method that is used to identify a
specific sequence of DNA from a studied sample [75]. For this reason the
basic steps of this method will be shortly reviewed below.

Southern blotting is a rather tedious process which provides reliable infor-
mation of the existence of the studied DNA sequence in the given samples.
The method is based on (i) the separation of differently sized DNA frag-
ments (cut by restriction enzymes) of given samples with the use of electric
field. This part is called electrophoresis. The electrophoresis step produces
patterns of DNA groups of the samples.

The patterns of DNA groups are then transferred into a sheet of ni-
trocellulose paper. Then (ii) plenty of single-stranded DNA probes of the
studied sequence is allowed to react with the sample groups to see how it
will anneal with them. The more annealed DNA is found from groups of a
sample, the more certain it is that the studied DNA is found from the sam-
ple. Quantification of the annealed DNA is made possible by labeling the
probe sequences by a radioactive or (more recently) fluorescent marker [13].
After the specific annealing time the remaining probes are washed away,
and the sheet of nitrocellulose paper was placed on an x-ray film in case
of radioactive markers. When the x-ray film was developed the annealing
profiles are obtained for all the samples.

11



In this study, we are especially interested in two different types of mi-
croarrays: spotted cDNA microarrays and in situ synthesized oligonucleotide
arrays. Both of these can be used for gene expression profiling [25, 40]. It
should be mentioned also, that the microarray technology has been used for
various other purposes too such as single nucleotide polymorphism (SNP)
detection [32] and identification of protein binding sites of DNA-binding
proteins [66], but those are not covered in this study.

3.1 cDNA microarrays

The cDNA microarrays are the first generation of gene microarrays. The
basic idea is to do multiple simplified and miniaturized Southern blotting
experiments in parallel. In a Southern blotting experiment the existence of
a single DNA sequence (probe) in the sample is studied, but in a cDNA
microarray it is possible to have thousands of probe cDNA sequences of
genes in the same experiment and study how these genes are expressed in
the studied sample. Thus, with gene microarrays one has a way to obtain a
whole gene expression profile of each sample.

3.1.1 Constructing cDNA microarray

A cDNA microarray is constructed (prepared) on a microscope glass slide
with an array of tiny spots. In our simplified example the array structure
consisting of M (commonly from hundreds to thousands) rows and 3 repli-
cate columns for each row is assumed. A small amount of purified and cloned
cDNA probes of the studied genes are placed on these spots such that the
three spots on a single row contain similar cDNA probes. The spots on the
second row respectively contain cDNA of another studied gene. In the end,
we have cDNA content of M genes 3 times in the individual spots of the
array (see Fig 3.1; Microarray preparation). In practice the ordering of the
spots on the microarray might not be so straightforward as in our example.

Now, assume that the researcher wants to study how the gene expression
profiles of a tumor sample (such as Colorectal adenocarcionoma [77]) differ
for different severity of the tumor. The motivation could be to find a set
of genes which are participating in the tumor development, such that it is
possible to prevent the deathly metastasis of the cancer. In a case such as
this the mRNA of the tumor samples will be extracted and purified, and
a cDNA is generated from it via reverse transcription. Then, the cDNA
of the studied sample (such as metastasis tumor) and the reference sample
(non-metastasis tumor) are labeled with different fluorescent colors (such as
Cy5 red and Cy3 green).

A small amount of both sample is placed on the columns of the cDNA
microarray spots, such that each spot of a different cDNA probe is let to
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Figure 3.1: Steps of the preparation and applying the cDNA microarray [84]

react with the sample’s mRNA. See Fig. 3.1 for a graphical representation
of the microarray slide applying process. This is a simplified example where
two arrays are used to study two different samples (such us two patients); in
practice the number N of samples is from 3 to hundreds but could be more,
even thousands.

After the mRNA of the studied and reference sample’s have been added
into spots, they are allowed to hybridize a specific time (e.g. overnight) at
about 65 degrees of Celsius. In hybridization two strands of nucleic acids
are bound (annealed) together. If the gene corresponding to the probe
cDNA is expressed in either of the samples, there will be labeled cDNA that
will hybridize with the cDNA probe. After hybridization the remaining
unreacted material is washed away and the color of each spot measured
using two different wavelengths of a laser beam.

Since the samples are labeled with a different fluorescent color, the level
of gene expression can be measured from the resulting color of the hybridized
mRNA. If, for instance, the mRNA from a metastasis tumor is labeled with
Cy5 and the reference sample is labeled with Cy3. Then, if the resulting color
of the spot is red instead of green we could deduce that the corresponding
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gene is more actively expressed (overexpressed) in the studied sample than
in the reference.

The color measurement process is called scanning. The scanning is done
with an automated microarray scanner, in which the color of each spot
is recorded with a photomultiplier tube [84]. The colors are subsequently
converted to numerical values.

The process described above is called two-channel detection since each
spot contains information about the expression level of the gene in both
the reference and the studied sample. In single-channel detection, only one
sample is allowed to hybridize with the probe cDNA [61]. Here we are mainly
studying the two-channel detection if not stated otherwise.

3.1.2 cDNA microarray data acquisition

Numerical microarray data are acquired from the image that is constructed
from the output of a microarray scanner. An example of a recorded image
of microarray spots is shown in Fig. 3.2 [84]. In the figure the spots are
already gridded (i.e. separated) from each other by using the vertical and
horizontal projections. The projections are got by summing the pixel values
of each pixel row (column) to a vertical (horizontal) axis and drawing the
grid lines between the minima of the projected values [84].

Figure 3.2: Gridded cDNA microarray spots [84]. 1

After the gridding is done the rough spot locations are detected. The
more accurate spot detection is called segmentation. The purpose of the seg-
mentation is to detect the exact areas of single spots where the hybridization
has happened. The segmentation can be done by drawing fixed or adaptive
circles or non-circular contours around each spot [84]. The segmented spot

1
Copyright All rights reserved by CSC - IT Center for Science Ltd, Finland. (The PDF version of this book
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is converted to a numerical value I by subtracting the average Î of the pixel
values (intensities) inside the segment from the background intensity IB
outside the segment:

I = Î − IB (3.1)

The final data value is calculated as a logarithm of the ratio of the
intensity of the studied sample IR and the intensity of a reference sample
IG. Here R and G denote red (Cy5) and green (Cy3) fluorescent colors
typically used for tagging the studied and reference cDNA samples.

To maintain the reliability of the data, a number of separate quality
control steps are also applied to segmented spots. In this phase, problematic
spots are marked as unreliable, and they will yield missing values. For
instance, a problematic spot could be a spot with very high variety in the
pixel intensities inside it, or two spots which lie too close to each other [92].

In this thesis, we will represent the data set (matrix) produced with a
microarray experiment with the following notation where M is the number
of genes (rows) and N is the number of experimental conditions (columns).

A = (aij)M×N =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aM1 aM2 · · · aMN

 (3.2)

A single row and column vector of A are notated as ai = [ai1, · · · , aiN ]
and a.j = [a1j , · · · aMj ]

ᵀ respectively. Row vectors of A are also called data
objects, genes, or gene expression profiles, depending on the context.

3.2 Oligonucleotide microarrays

One main difference between the cDNA microarrays and the oligonucleotide
arrays is between the probes used. While in the cDNA array the cloned
cDNA of known genes are used as probes, in the oligonucleotide arrays
the probes are synthesized nucleotide by nucleotide on the arrays. The
synthesized oligonucleotides are short, typically 10-30 base pairs, nucleotide
sequences that are known or predicted to match specific regions of the DNA
called open reading frames (ORF) [84]. An ORF is a continuous nucleotide
sequence without stop codons (see Section 2.1.2) [2].

In situ synthesizing of probe nucleotides provides an advanced way to
have quality control in the arrays. For example GeneChip arrays of Affymetrix
contains additional test probes called mismatch (MM) for each perfect match
(PM) probe which contain one nucleotide mismatch in the middle of the
probe [84]. The function of the MM probe is to provide a way to mea-
sure non-specific hybridization [9]. Affymetrix GeneChip arrays have 10-25
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probes (from various parts of the gene’s DNA) for each studied gene. In
contrast, Illumina arrays have tens of copies of the same probes randomly
placed on the array [9].

The second difference between cDNA and oligonucleotide arrays is in the
arrangement of the research protocol. In cDNA microarrays one typically
has both the studied sample and the reference sample hybridized simulta-
neously on the spots. In contrast to that, in oligonucleotide array single
RNA is hybridized on the array and the studied samples are compared to
the reference sample computationally [84].

The first uses of these in situ synthesized arrays are from 1992 when
Southern et al. [76] were able to in situ synthesize and stably attach oligonu-
cleotides to a glass surface. Later, in 1994, Pease et al. developed the pho-
tolithographic process for synthesizing hundreds of tightly packed oligonu-
cleotide probes on a small array [62]. Pease et al. used their array for DNA
sequence analysis.

Later on in 1996, Lockhart et al. [50] utilized in situ synthesized oligonu-
cleotide arrays for gene expression analysis. They developed an approach
where more than 16,000 synthetic oligonucleotides probes were in situ syn-
thesized on a small array that can be scaled to contain tens of thousands of
probes [50].

In 2002, Nuwasysir et al. [57] created an array from 3240 genes of mouse’s
liver samples where for each gene the array contained 20 different probes.
Using the quantitative PCR (polymerase chain reaction) validation they were
able to show that the used maskless photolithography technology produced
high quality microarrays for gene expression analysis [57].

The data acquisition and preprocessing steps of oligonucleotide arrays
and cDNA arrays have many differences which are not covered in this study.
In the following chapters it is assumed that the data have been preprocessed
such that unreliable measurements are marked as missing values.

3.3 Handling microarray data

3.3.1 Data preprocessing

Microarray data preprocessing is an important step in the microarray data
analysis pipeline that should be done before any further analysis steps. In
this step the statistical characteristics of the data are verified. Since many
of the data analysis methods rely on the assumption of a certain statistical
distribution of the data, the distribution of the data should be verified [84].

Another typical preprocessing step is the detection of the unreliable data.
Unreliable data values can have high variation between technical replicates,
or have lower intensity value than the background, or may not fit to the
assumed statistical model of the data, i.e. are so-called outliers [84].
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One typical preprocessing task is to remove the genes for which the
expression remains constant over all of the conditions under analysis. This
can be done e.g. by filtering out genes ai in which the difference di between
the maximum and the minimum expression values is smaller than a constant
λ [77, 78, 80], more specifically in (3.3) the value of λ could be like 1.5 [P2].

di = arg maxj aij − arg minj aij < λ (3.3)

Finally, the preprocessing step typically includes the normalization and
standardization of the data. The purpose of the normalization is to remove
systematic variation of the data so that meaningful biological comparisons
can be made [4, 64]. The standardization allows us to compare and combine
the results of the different microarray experiments [84].

There are many ways to normalize the gene expression ratio data. A
simple and intuitive way is the log-transformation [P5][77, 78]. It transforms
expression ratios such that the expression ratios of underexpressed genes will
be smaller than 0 and correspondingly expression ratios of overexpressed
genes will be greater than 0 [84]. Another approach, in case of two-channel
detection, is called total intensity normalization [64] where the normalization
factor

Ntotal =

∑n
i=1 IRi∑n
i=1 IGi

(3.4)

is used to scale one or both intensities such that the normalized expression
ratio becomes, in the case of scaling only the green intensities,

Ii =
IRi
IGi

=
IRi

Ntotal · IGi
, (3.5)

where n is the number of spots and IRi (IGi) is the intensity value of the
red (green) channel in the ith spot. The result of this normalization is that
the mean expression ratio is 1 [64].

The problem with log-transformation and total intensity normalization
is that they cannot remove the expression ratio’s possible systematic depen-
dency on intensity which can appear e.g. as extra variation at low intensity
spots and curvature in a ratio-intensity (R-I) plot [64, 84]. An R-I plot is
produced by transforming the intensity values such that log10(Ri · Gi) is
used as the x -coordinate, and log2(Ri/Gi) as the y-coordinate of the new
plot. Lowess normalization (locally weighted scatterplot smoothing) is a
procedure which can be used to correct the systematic intensity dependent
deviation. It corrects this deviation by performing a local weighted linear
regression as a function of intensity (log10) and subtracting the estimated
ratio (log2) from the observed ratio for each spot [64].
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An example of typical standardization is to make the average expression
value of each experimental condition to 0 and the standard deviation to 1.
This can be achieved by subtracting the average expression value

µj =
1

M

M∑
i=1

aij (3.6)

of each experiment condition from all the gene’s expression values and di-
viding the gene’s subtracted expression value by the experiment condition’s
standard deviation:

σj =

√√√√ 1

M

M∑
i=1

(aij − µj)2. (3.7)

The standardized value will then be

áij =
aij − µj
σj

. (3.8)

3.3.2 Fundamentals of data analysis

We will briefly summarize here the basic concepts of microarray data analysis
methods. In itself the raw data is useful only as a valuable resource [12].
The purpose of data analysis is to turn the raw data to information and
finally to knowledge. There are a large number of different data analysis
methods developed by the statisticians and computer scientists. The most
common methods of microarray data analysis can be roughly classified into
the following groups: classification, regression, clustering, and visualization
[12]. The classification and regression are part of the supervised learning
methods whereas clustering is one of the unsupervised learning methods.

The classification is a task in which the algorithm called as classifier
is trained with data objects ai with known classification y (training data)
such that the algorithm can be later used to predict the probable class y of
a new data object x∗ [12]. The use of training data is a common approach
of all supervised learning methods. The number of possible classifications of
a data object is typically finite, such as y ∈(yes, no) or y ∈ (1, 2, 3, 4). An
example of classification could be a classifier that predicts the severity class
(lethal, non-lethal) of a tumor based on the microarray data experiment
performed on the tumor sample [P5].

One of simplest classifiers is the k nearest neighbor classifier (k-NN ) [21].
The classification of k -NN is based on the majority vote of k nearest (most
similar) known classification examples ai of x∗ [33, 79].

The similarity d (or dissimilarity) between the x∗ and ai can be measured
by different similarity (dissimilarity) measures. Dissimilarity measures are
often called distance functions or metrics. Perhaps the best known distance
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metric is the Euclidean distance dE . The Euclidean distance between the
vectors ai and x∗ is defined as below where aij is the jth component of
vector ai and x∗j is the jth component of x∗ [79].

dE =

√√√√ N∑
j=1

(aij − x∗j)2 (3.9)

Figure 3.3 shows a simple example of 7 data objects with known classifi-
cations (4 for class “filled circle” and 3 for class “open circle”). These seven
data objects and one new with “+” symbol are plotted onto xy-plot. Let
k = 3 be the neighborhood size. Lines in the plot indicate the three closest
data objects of the new object. Since the majority (2) of the three nearest
neighbors belongs to class “open circle”, also the new object is classified into
that class.

Figure 3.3: Classification of data object “+” with a 3-NN classifier.

More formally, let us assume that there are Y different classes.

k-NN algorithm

1. Find the k -neighborhood Nk(x∗) of object x∗ (see below).

2. For each class ci, (i = 1, .., Y ), the number of occurrences |ki| in the
Nk(x) is calculated such that

∑
i |ki| = k.

3. Object x∗ is classified to class ci with arg maxi |ki| in Nk(x∗).

19



Neighborhood Nk(x∗) of sample x∗ is defined by the k most similar known
classification examples ai which are found by sorting ai’s by their distance
from x∗ and choosing only the first k classification examples with smallest
distance from x∗ [33].

Regression [31] acts as classification but instead of a finite number classes
it will produce continuous value classification with the infinite number of
possible results. Thus, regression is used when the classification result is in
the real value space R. An example of regression task could be predicting
the probability {p ∈ R | 0 ≤ p ≤ 1} of patient survival from the cancer with
the microarray analysis of patient’s blood sample [56]. The regression can
also be used as a classification method by discretization of the continuous
result into a finite number of classes.

Adapting Hastie et al. [33], a linear regression model is formulated in
the following way. Given an input ai, the output ŷ can be predicted via
model

ŷ = β̂0 +

N∑
j=1

aij β̂j , (3.10)

where β̂0 is called the intercept. It is possible to simplify the model by
including constant 1 in the ai and including β̂0 in the vector of coefficients
β̂. The model can then be written in the vector form as an inner product

ŷ = aᵀi β̂. (3.11)

This linear model could be fitted to a set of training data e.g. by the least
squares method [46] where the coefficient of β is picked to minimize the
residual sum of squares between the known yis and predicted ŷs

RSS(β) =
M∑
i=1

(yi − aᵀi β)2, (3.12)

which is in matrix notation

RSS(β) = (y−Aβ)ᵀ(y−Aβ), (3.13)

where A is the data matrix and y is a vector of outputs in the training data.
When differentiating with respect to β, the normal equation is got

Aᵀ(y−Aβ) = 0. (3.14)

The unique solution is the following, if AᵀA is nonsingular

β̂ = (AᵀA)−1Aᵀy. (3.15)
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Then the predicted value can be calculated for a new input vector x as
ŷ = xᵀβ̂.

Data clustering (cluster analysis [82]) belongs to so called exploratory
data analysis methods. It is typically applied to a data set to reveal possi-
ble intrinsic patterns and structure of the data set [79]. Clustering is called
an unsupervised learning method since, unlike classification, it does not use
learning data [12]. Clustering tries to group the data set into a finite num-
ber of subgroups (clusters) such that data objects inside a cluster are on an
average more similar to each other than to any data object outside the clus-
ter. A typical example of this method is the hierarchical clustering of gene
expression profiles of microarray data with purpose of finding interesting
subgroups of genes from the data set [74].

For an example of the clustering methods let us see how the k-means
clustering [53] (also called as generalized Lloyd algorithm [47] and ISODATA
algorithm[8]) works. The idea of k-means clustering is to divide (partition)
the data objects ai of AM×N into k clusters represented by centroids cj
(center vector) of the clusters. The algorithm consists of two steps: (A)
partition and (B) centroid calculation, which are iterated until the algorithm
converges. In step (A), each data object ai is assigned to the cluster j for
which the centroid cj is closest to ai. Then in step (B), the algorithm
recalculates the centroid of each cluster as an average of the data vectors
that are assigned to it in step (A) [12].

Figure 3.4: Example of k-means clustering; partition step (A), and centroid
calculation (B). Bigger open circles denote cluster centroids. Straight line
segments in A mark the data objects that are partitioned into the corre-
sponding centroid. Arrows in B show how the new cluster centroids are
calculated as averages of data objects that were assigned to the correspond-
ing clusters.
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A simplified example of k-means clustering of 7 data objects is presented
in Fig. 3.4. We use k = 2, and two data objects are randomly selected for
initial centroids (bigger open circles). Then, all the objects are assigned
into the closest centroid (step A). Finally, in step (B) each centroids is re-
calculated from its data objects (step B). In this example k -means clustering
stops with one iteration since centroids are not moved anymore in the fol-
lowing iteration.

The visualization techniques are used in many phases of the data analysis
pipeline. First, fundamental visualizations such as histograms, heat maps,
and scatter plots are applied to verify the data quality and to see the basic
properties (like distribution) of the data [12]. Then, one could apply some
dimension reduction algorithm such as principal component analysis (PCA)
[38] to see how the data is projected into 2 dimensional space. Further on,
other data analysis tools such as classification or clustering need visualiza-
tions to help interpretation of the results. Later on in this thesis we will
study the visualization of biological interaction networks too.
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Chapter 4

Dealing with incomplete
biological data

The biological and technical backgrounds of the research of the present work
were discussed in the previous chapters. In Chapter 3, a research instru-
ment called gene microchip was shortly reviewed. Our interest in the gene
microchips is in their capability of providing a high throughput method for
acquiring massive amounts of data at once for biological or medical research
studies. From the point of view of a computer scientist, gene microchips pro-
vide many fascinating research questions. In this study, the following three
challenges are considered: how to cope with the incomplete data of a mi-
croarray experiment, how to visualize biological results of the experiments,
and how to handle the high amount of data with the slow algorithms.

In this chapter, we shall discuss what the missing values are, why they
cause problems, and how to cope with them. Fundamentally, the missing
values are data elements for which there is no observed signal or the signal is
suspected to be unreliable. The treatment of missing values is a well known
statistical problem since 1987 when Little and Rubin wrote their textbook
of Statistical Analysis with Missing Data [49].

In the context of statistics, there are basically three types of missing val-
ues proposed by Little and Rubin [49] (missing data mechanisms): the values
that are missing completely at random (MCAR), the values that are miss-
ing at random (MAR), and values that are not missing at random (NMAR)
[34, 49].

To understand these different missing value mechanisms better, a missing
data indicator matrix [49] M = (mij)M×N is used to indicate values of A
that are missing. Value mij = 1 if aij is missing, otherwise mij = 0. Suppose
that it is possible to divide the original data into the missing part Amiss

and the completely observed part Aobs. The missing data indicator M is
treated as a random variable which has a probability distribution that is
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controlled by the unknown parameter φ [49]. Then, according to Little and
Rubin [49], the data is of MCAR-type if M does not depend on A, i.e.
f(M|A, φ) = f(M|φ). The data is of MAR-type if missingness depends
only on the observed part Aobs of A, i.e. f(M|A, φ) = f(M|Aobs, φ). If the
missingness depends on the missing part Amiss of the data, the data is of
the NMAR-type.

An example of a MCAR missing value in the microarray data could be
for example a dust particle that prevents receiving of a reliable signal value
for a particular data point. MAR missing values allow some non-randomness
which does not depend on the underlying missing data itself. For instance,
the cause of a MAR missing value could be that some of the probe cDNA
clones are not available for the microarray experiment because those were
run out in the previous experiment. But if the existence of a missing value
depends on the underlying value itself, the data is of the NMAR-type. An
example reason for NMAR could be a bug in the scanning software which
will report spots with very high intensity as missing or unreliable.

4.1 Causes of incomplete biological data

In the context of gene microarrays, the missing values can occur in various
phases of the microarray study pipeline. Since each experiment contains
lots of manual laboratory work before the actual microarray experiment,
there is a possibility for human mistakes even before the actual microarray
is prepared. The array itself might contain dust, scratches or some factory
defects. Considering that microarrays themselves are small (typically glass
slide) instruments containing a lot of very small spots from which the signal
values are measured, it is very probable that some amount of noise exists
in the observed data. An example of noise is the substantial cell-to-cell
variation of gene expression even between two genetically identical cells [63].

Speaking of noise itself, it is a well-known problem for every digital pho-
tographer. In digital photography the noise problem is addressed basically
in three ways: (1) with noise reduction algorithms, (2) by sampling mul-
tiple photos together, and (3) with bigger, more sensitive and thus more
expensive imaging sensors. In biological context, there are almost exactly
the same options available.

As we approach the missing value problem using tools of algorithmic
computer science, we will focus the interest on the approach (1) presented
above. The algorithms designed for compensating, augmenting or replacing
the missing values in data are called as missing value imputation algorithms.
In microarrays, the approach (2) could be utilized for instance by making
the arrays to contain multiple redundant experiments (like in Figure 3.1) or
making multiple identical microarray studies. The approach (3) is typically
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0 10 20 30 40

YHR007C 0.89 0.84 0.76 1.14 1.19

YBR218C 0.85 0.81 1.30 1.34

YAL051W 1.03 0.76 0.75 0.85 0.89

YAL053W 0.87 0.75 0.85 1.00

YAL054C 1.59 1.14 1.00 1.14

YAL055W 1.47 1.00 1.09 1.04

Table 4.1: Small subset of data from the study of DeRisi et al. [23]. The
four empty slots represent missing values.

addressed using more precise laboratory methods, such as quantitative PCR,
for verifying the most important results of the faster and cheaper microarray
studies.

4.2 Missing value imputation

The missing value imputation of gene expression data is a widely studied
research problem since about the year 2000. It is a process where missing
data values are replaced with the estimates determined from their supposed
values. One of first surveys of different imputation methods on gene expres-
sion data is by Troyanskaya et al. [81]. They proposed several imputation
methods for missing gene expression data including the k-NN imputation
presented in Section 4.2.2. Before that, the missing values were typically
either excluded, zero imputed or average imputed (Section 4.2.1) [81]. In
2004 De Brevern et al. studied many public microarray data sets and ob-
served the wideness and severity of missing values to the methods used for
further analysis of data [22].

To demonstrate how the missing value imputation methods work, a very
small part of data obtained from a real microarray study is used (see Table
4.1). The data originates from a study of the metabolic and genetic control
of gene expression of budding yeast [23].

The table shows the gene expression profiles of 6 genes over 5 different
time points during the metabolic shift from yeast fermentation to respira-
tion. This process is called the diauxic shift. Each value represents the
expression ratio between the reference genes (from the yeast sample that
was not in the diauxic shift phase) labeled with Cy3, and the genes from
the yeast sample at different time points of the diauxic cycle labeled with
Cy5. The values close to 1 are supposed to represent a situation where the
gene from the reference sample is expressed similar with the gene of the
studied sample. If the value is greater than 1, the gene is supposed to be
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overexpressed in the studied sample. Similarly the values below 1 are from
genes underexpressed in the studied sample. The empty four slots in the
Table 4.1 represent missing values.

One typical task to do after obtaining the data values such as those in
Table 4.1, is to find the set of similarly expressed genes. In the simplest
form this could be solved by calculating the correlation between the rows
of the table. But how to calculate the correlation coefficient when there is
missing values present. Basically, there are three choices, (1) rule out all
the rows or columns containing a missing value, (2) adjust the formula of
calculating the correlation coefficient, or (3) impute the missing values of
the data table.

Method (1) causes clearly a massive loss of data since in the worst case
there would be one missing value in each row and column [22]. Method (2) is
a much better choice, but what about if we would like to use another formula
for calculation of the expression profile similarities? It is rather obvious that
the method (3) is the most straightforward option here; it will produce a
complete data matrix that is ready for any known statistical analyses.

In the following Sections 4.2.1 to 4.2.3 a number of different approaches
to applying the imputation on data sets containing missing values will be
studied. The discussion will start with the simplest approaches and then
proceed into more specific ones.

4.2.1 Average imputation

In the imputation methods based on the averaging, a statistical average value
is used as a substitute for the missing values. In the simplest form, the value
zero (0) is used as an imputation value. This is of course appropriate only
if the expected expression value of the genes is close to zero.

More typically either the average of the whole data set is used or the
average of the row or column of the missing value is used. In Table 4.2, the
missing values are imputed as column averages.

The mathematical formula of average imputation could be defined as in
(4.1) (row average) and (4.2) (column average) where aop is missing and
other values are present.

âop =
1

N − 1

N∑
j=1
j 6=p

aoj , (4.1)

or

âop =
1

M − 1

M∑
i=1
i 6=o

aip. (4.2)
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0 10 20 30 40

YHR007C 0.89 0.84 0.76 1.14 1.19

YBR218C 0.85 0.81 1.30 1.02 1.34

YAL051W 1.03 0.76 0.75 0.85 0.89

YAL053W 0.87 0.75 0.85 1.00 1.12

YAL054C 1.59 1.14 1.00 1.02 1.14

YAL055W 1.47 1.00 0.93 1.09 1.04

Table 4.2: Column-average imputed example data. The imputed values are
presented with bold.

The first formula is used if the missing value of row o is imputed with
the average of the existing values of the row. The second formula uses an
average of the existing values of column p to impute its missing one. It
is possible to generalize these functions for cases where there are multiple
missing values in row o or in column p.

At the time point 30 there were two missing values (for genes YBR218C
and YAL054C) and since the average of the non-missing values of the column
is used, both imputed values are the same (1.02). The imputation of genes
YBR218C and YAL054C will be studied in the following chapter.

4.2.2 Local average imputation

Let us look closer the gene expression profiles of the genes YBR218C and
YAL054C in Table 4.1. Both of these contain a missing value at the same
time point (30). In Section 4.2.1 (Table 4.2), these missing values were
imputed as the same average value. Figure 4.1 shows plots of the expression
profiles of all the genes in Table 4.1.

The gene expression data are presented as a graph of gene expression
profiles ai. The genes that contained a missing value at time point 30 are
plotted with dashed lines to distinguish them from the other profiles. To
calculate the similarities such as correlation (or dissimilarities such as the
Euclidean distance) between the profiles, one could of course use the previ-
ously imputed full profiles of Table 4.2. But instead of it, correlation will
be derived in the way mentioned earlier; namely by applying the correlation
calculation that takes the missing values into account.

The reason why we are not using the average imputed values is that we
would like to have the correlation calculations to be as unbiased as possi-
ble. In the following, the correlations are calculated by first constructing a
complete data matrix by excluding the missing values from the matrix. It is
done here in a simple way by removing the column 30 and removing the row
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Figure 4.1: Gene expression profiles of the genes of the Table 4.1. The genes
that contained a missing value at time point 30 are plotted with dashed
lines.

0 10 20 40

YHR007C 0.89 0.84 0.76 1.19

YBR218C 0.85 0.81 1.30 1.34

YAL051W 1.03 0.76 0.75 0.89

YAL054C 1.59 1.14 1.00 1.14

YHR007C YBR218C YAL051W

YHR007C 1

YBR218C 0.40 1

YAL051W 0.39 -0.25 1

YAL054C 0.06 -0.61 0.91

Table 4.3: Complete sub-matrix of Table 1 (left) and correlation coefficients
between its rows (right).

YAL055W. The resulting complete submatrix with correlation coefficients
is presented in Table 4.3.

It is observed that the correlation between the genes YBR218C and
YAL054C is low (-0.61). Thus, it might be a better idea to use a more
sophisticated method than simple averaging to impute missing values of
those genes. One way to incorporate the correlation in the imputation is to
use the local average imputation technique. The local average imputation
uses the correlation or some other similarity (or dissimilarity) measure to
find the set of most similar vectors (i.e. the neighborhood) from the data
from which the average imputation is calculated.

One common choice for dissimilarity measure is the Euclidean distance
dE (see Eq. 3.9). It can be generalized to work also with vectors that contain
missing values: the squared difference is calculated only for the values aoj
and aij , where both values are present.
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Perhaps the best known local average imputation method is the k-Nearest
Neighbor imputation (k -NN). This method uses the k-NN classifier (see Sec-
tion 3.2.2) for selection of k nearest neighbor genes for the gene ao with
missing values.

Let us now see how the k -NN imputation works. To impute a missing
value for aop, the algorithm first finds the neighborhoodNk(ao) of ao. That is
done by calculating the distances dEi between ao and ai where i = 1, . . . , o−
1, o + 1, . . . ,M and then sorting the distances dEi. After that the k first
vectors with smallest values of dEi are taken and the average of their pth
components is used as an estimate for missing value aop.

Now, as we have seen how the similarity (or dissimilarity) between the
vectors could be used as to guide the imputation, let us see how the missing
values of Table 4.1 are imputed using the k-NN imputation. Instead of
correlation the Euclidean distance is used here as the distance metric for
simplicity.

Let us impute the missing value at column 30 of row YBR218C using
the 2-NN imputation. When calculating the Euclidean distances between
the row YBR218C and other rows, the two closest rows to YBR218C are
the rows YAL053W and YHR007C and thus the missing value is estimated
as (1.14 + 1.00) / 2 = 1.07.

Results of the 2-NN imputation are presented in Table 4.4, where all the
missing values have different imputation values if compared to the ones got
with the column-average imputation technique (Table 4.2).

We have now studied a rather simple way to improve the original average
imputation using the average calculation of nearest k rows of the matrix A.
One can easily see the k-NN imputation as a generalization of the average
imputation technique since using the value k = M − 1, the imputation
technique reduces to the average imputation.

One drawback of the k-NN algorithm is the dependency on the selection
of the parameter k. Troyanskaya et al. (2001) studied the effect of the
neighborhood size on the imputation of microarray data; they applied the
imputation on multiple data sets and showed that values of k between 10
and 20 provided the best imputation accuracies [81]. Tuikkala et al. also
studied the selection of the value k on multiple microarray datasets and
proposed 20 as the recommended value of k [P1].

4.2.3 Weighted average imputation

In the previous chapter the local average imputation was considered as a
generalization of the average imputation algorithm. An apparent further
generalization is to apply weights in the average calculation. It was demon-
strated in the previous chapter that using only the most similar rows to
impute the missing value is a sensible generalization of the simple average
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0 10 20 30 40

YHR007C 0.89 0.84 0.76 1.14 1.19

YBR218C 0.85 0.81 1.30 1.07 1.34

YAL051W 1.03 0.76 0.75 0.85 0.89

YAL053W 0.87 0.75 0.85 1.00 1.04

YAL054C 1.59 1.14 1.00 0.97 1.14

YAL055W 1.47 1.00 0.88 1.09 1.04

Table 4.4: 2-NN imputed values of the Table 4.1.

imputation. Thus, weighting for example by distances can be seen as a
further generalization of the average imputation.

Similarly as k-NN imputation algorithm has its classifier counterpart (the
k-NN classifier), same holds for weighted average imputation. The classifi-
cation methods that use a weighting function in the distance calculation are
called kernel methods [12].

The weighted average imputation is based on the weighted average cal-
culation. While in standard average each sample contributes equally to the
result, in the weighted average each sample has a unique weight that speci-
fies the amount of its contribution to the result. More formally the weighted
average for column j is shown in formula (4.3) where wi is the weight of gene
ai.

a.j =

∑M
i=1wiaij∑M
i=1wi

(4.3)

Standard average is a special case of the weighted average, where each
wi ≡ 1. For the local average calculation it holds:

wi ≡ 1 if ai ∈ Nk(ao) and wi ≡ 0 otherwise (4.4)

The weights wi could be defined as in Section 4.2.2 to 0s and 1s, or more
generally to be anything more complicated as long as the formula (4.3) is
used in the calculation. Typically only normalized weights wi ∈ [0, 1] are
used.

One obvious way to define the weights is to use the similarity of rows as
the weights. For instance, the distances di between ao and ai can first be
normalized by dividing each distance by the biggest row distance maxi(di)
of A, thus all the distances would be between 0 and 1. After that the
similarities are obtained from the distances by subtracting these from 1.
Another possibility is to use some external information about the relatedness
between the ao and ai. For example, in case of gene expression data, if we
know from the literature that genes YHR007C and YBR218C belong to the

30



same functional group of genes, we could increase the weight of row (gene)
YHR007C that is used in the weighted imputation of the missing value in
the gene YBR218C.

In addition to average calculation, the weighting functions are possible
to incorporate also into the neighborhood calculation. In this scheme the
final distance dEi (see Section 4.2.2) between the gene ao with missing value
and its neighbor gene ai depends also on the weighting function.

4.2.4 GO-based imputation

The GO-based imputation is an example of the weighted average imputa-
tion. In the publication P1 of this thesis the k -NN imputation was reor-
ganized to use the semantic similarity information when determining the
k-neighborhood of the gene to be imputed [P1]. The semantic similarity
tells how much mutual information two genes mapped into the Gene Ontol-
ogy share [52]. We will study the Gene Ontology and the semantic similarity
more in the Section 5.3.1; here it is enough to understand that semantic sim-
ilarity reflects the functional closeness of two genes. The idea of GO-based
imputation is that the semantic similarity will help us to gather more func-
tionally similar genes into the neighborhood than the simple distance-based
neighborhood selection could do [P1].

In the publication (P1), a combined dissimilarity measure is formed by
combining the semantic dissimilarity dSi(see Section 5.3.1) with the Eu-
clidean distance using a weight α ∈ [0, 1]. The weight controls how much
the semantic dissimilarity contributes to the combined distance value:

dCi(ao, ai) = dSi(ao, ai)
α · dEi(ao, ai) (4.5)

The parameter α is calculated adaptively as a first step of the imputation
process using a small non-missing subset of the original data as a learning
dataset [P1]. The semantic similarity information has been utilized also for
clustering of gene microarray experiments [60].

4.2.5 Local least squares imputation

In the publications (P1) and (P2) of this thesis the local least squares impu-
tation (LLS) method has been used as a baseline to evaluate the GO-based
k-NN imputation. LLS imputation has originally been proposed by Kim et
al. (2005). It consists of two steps. First, a procedure similar to the k-NN
imputation is used to select the k-neighborhood for the gene with missing
value. Then, the missing value is predicted by the least squares regression
using the genes in the k-neighborhood to predict the missing value. The
advantage of LLS over k-NN imputation is that it utilizes the correlation
structure of the data [43].
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In addition to the methods presented above, there are several other im-
putation algorithms which have been used for imputing gene expression
datasets. In the following some of those are shortly introduced. Zero im-
putation replaces missing values with 0s. Iterative LLS imputation is a
modification of the LLS imputation which iteratively improves the imputa-
tion by using the results of the previous imputation iteration as an input of
the current iteration [16]. BPCA (Bayesian Principal Component Analysis)
imputation involves Bayesian estimation of missing values with the iterative
expectation maximization algorithm [58]. SVR imputation uses so-called ra-
dial basis kernel functions for neighborhood selection after which the missing
value estimates are calculated with quadratic optimization [88].

4.3 Measuring the imputation accuracy

Since there are so many different imputation methods, a way to measure the
accuracy of the missing value estimation technique is needed. A common
strategy is to take a complete data matrix AM×N and place randomly a
certain amount (e.g. 1 %) of missing values to it (see e.g. [16, 43, 81] and
[P1]). These randomly generated missing values in A′M×N are then imputed
and the imputed values are compared to the original values.

Perhaps the most frequently used method for comparisons has been the
normalized root mean squared error (NRMSE) [81][P1]. This measure can be
calculated when we have the original complete data with no missing values.
The NRMS error between the original data matrix AM×N and imputed data
B = (bij)M×N is calculated with formula below.

NRMSE =

√√√√∑M
i=1

∑N
j=1(aij − bij)2∑M

i=1

∑N
j=1mij · a2ij

, (4.6)

where the M = (mij)M×N is the missing value indicator matrix of A′. For
example the missing value indicator matrix for the data of Table 4.1 is the
following

M =



0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0


Another way to measure the imputation accuracy is to see how the impu-

tation affects the further data analysis tasks applied to the data. Jörnsten
et al. (2005) studied how imputation affected the significance analysis of
differential expression [42]. They also proposed a new LinCmb imputation
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technique that adaptively uses estimates of some existing imputation meth-
ods to calculate the final imputation. They showed that missing values affect
the significance analysis by increasing the false positive and the false nega-
tive rate of the results when compared to the results of the complete dataset
[42]. They also proposed that their new imputation method is superior to
widely used methods in terms of the NRMS error. In terms of false positive
and negative rates, the algorithm is competitive to more advanced methods
such as BPCA [58].

Scheel et al. (2005) studied the detection of differentially expressed genes
from imputed data [70]. They compared imputation methods by investigat-
ing the percentage of lost differentially expressed genes compared to the set
of differentially expressed genes of the complete dataset. They showed that
their new way to compare imputation algorithms provides useful information
that the NRMS error cannot find [70].

There are also studies on classification accuracy of imputed data [73, 87]
which show that cross-validated classification accuracy of imputed datasets
provides another alternative to the NRMS error. The first study of how
missing values affect the stability of clusters of hierarchical clustering was
by Brevern et al. [22].

In publication (P2) the imputation accuracy was evaluated by analyzing
its effect on the preservation of original k-means clustering structure and on
the Gene Ontology enrichment analysis of the clusters. It was shown that
imputation is always a better choice than leaving the missing values in the
data. Another observation of the study was that the BPCA method is one
of the best imputation methods.
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Chapter 5

Visualizing biological data

5.1 Introduction to visualization

Visualizing plain figures and sets of numbers is essential for making data
more sensible for an observer. Edward Tufte writes in his book Beautiful
Evidence [83] how visualization is an evidence. An evidence has a producer
and a consumer; analytical thinking is used to produce a visualization from
a set of figures and to communicate the evidence to the observer [83]. Good
visualization is not only an evidence as in the saying “seeing is believing” but
also as “seeing is understanding” [15]. Visualization should be also reliable;
it is common knowledge that it is possible to mislead human perception
with simple optical illusion such as the Grid illusion presented in Fig. 5.1,
where the observer tends to see small colored squares in the crossings of
white lines. The grid illusion was first published by Ludimar Hermann in
1870 [35].

Figure 5.1: Grid Illusion by Ludimar Hermann (1870) [35].

The credits of the first statistical visualizations go to R. A. Fisher (1925)
and his book of Statistical Methods for Research Workers [28]. The X-rays
discovered in 1938 provided the first time in history a way to visualize non-
visible things. In 1960 the computer graphics revolutionized the way how
visualization can be created, presented and altered “in the fly” [15]. In 1977
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John Tukey wrote his book Exploratory Data Analysis in which he provided
a number of visualization tools for data analysts [85].

Visualization can be classified to different types of visual presentations.
There are among others: charts, graphs, colored matrices, contours, vec-
tor fields, volume visualizations, multidimensional visualizations, geometric
modelings, animations, sparklines and combinations of these [15]. In the
present study the focus of interest is especially in graphs as they provide
a natural way to visualize the relationships between genes and gene prod-
ucts [P4]. In this study, graph visualizations are used for biological data
called biological interaction networks, in order to illustrate the interactions
between biological components such as genes and gene products.

5.2 Visualizing biological data

In the following we define biological data as a set of signals measured from
a biological sample and converted to digital values. Examples of biological
data are the gene expression data discussed in Chapters 3 and 4, the DNA
sequence information, and the information of relationships between genes
and gene products. Different types of biological data have their own charac-
teristics that might lead to different visualization needs. For instance, gene
expression data has typically very high dimensionality which limits the use-
fulness of many visualization methods which have been designed to work in
two or three dimensions. In this study we will present visualization methods
for gene expression data and biological interaction networks.

5.2.1 Visualizing gene expression data

Chapters 3 and 4 included a discussion of some properties of the gene ex-
pression data analysis. In the following we limit our interest to the cDNA
microarray gene expression data sets. As an example of the properties of
typical cDNA microarray gene expression data set let us consider the data
sets used in the publication (P2). Eight different microarray data sets were
analyzed in that study. Dimensionality N of the data sets varied from 7 to
26 and the number M of genes was between 4771 and 7070. Each except
one of the data sets contained also missing values: at the lowest 0.4% and at
the highest 6.7% of all values were missing. The datasets were classified to
three different types: time series, steady state, and mixed type (i.e. multiple
time series) data sets. There were also notable differences in the correlation
structures between the genes of each data set [P2].

The matrix or the data table representation that is seen for example in
Table 4.1 might be the simplest form of gene expression data visualization.
The problem of the data table is that it requires much space and is therefore
practical only for small (sub) sets of the data. To ease the space requirements
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of the visualization, the size of the cells of the data table can be make smaller.
That will result that the numbers will eventually become unreadable. One
way to overcome the problem is to convert the numbers to colors.

Figure 5.2 visualizes about 4% of the whole diauxic shift data set with the
open source TM4 Microarray Software Suite [68]. This type of visualization
is called as a color matrix (it can be called also as heat map) visualization.
The color matrix of Fig. 5.2 is transposed such that rows represent exper-
imental conditions (time points) and columns represent genes. The gene
names are left out from Fig. 5.2, but time points are visible. The color
scale on the right hand side shows how the numerical expression ratios are
converted to colors.

The colors of individual cells represent the expression ratio of genes such
that bright red colors indicates overexpression of the gene in the studied
sample when compared to the expression of the reference sample. Likewise
the bright green colors indicates that the gene is underexpressed in the
studied sample. The closer to black the color is the more similar is the gene
expressed both in the studied and in the reference sample. Grey values are
used for representing the missing values.

Figure 5.2: Color matrix visualization of part of the diauxic shift data set.
Grey values are used for representing the missing values.

Figure 5.2 reveals at least two things. First, most of the genes are ex-
pressed almost similarly in the studied and the reference sample; this is seen
from the abundance of black and dark colors. Secondly, it seems that in this
small subset of data the most action is happening at the time point 18.5 h,
since there seem to be more differently expressed genes than at any other
time point.

In addition to these observations, Fig. 5.2 also shows several limitations
of the color matrix visualization technique. First, the visualization still
needs much space: even if the width of the cells is reduced to 1 pixel the
whole data set would not fit into a normal computer screen. Secondly, the
visualized data seems to be in disorder; the visualization might be more
informative if the genes with similar expression profiles would be close to
each other in the color matrix. Finally, there are a lot of missing values in
the data which will distract the further data analysis.

To address these limitations we will first impute the missing values of
the data with 20-NN imputation. Imputation provides us a complete data
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set that is much easier to analyze and visualize further on. Secondly, to
increase the order of the data set and enhance its visualization we group the
genes with similar expression profile near to each other. This can be done
with the grouping algorithm presented below. This algorithm is developed
from the hierarchical grouping algorithm presented by Joe H. Ward (1963)
[89]. The result of that kind of grouping is presented in Fig. 5.3.

Hierarchical grouping algorithm

1. Suppose given data matrix AM×N and distance measure d(aj , ak).

2. Let BM×N be a copy of AM×N , and let X = M

3. Let F = {S1, S2, . . . , SM} be a data structure of M sequences such
that initially each Si = (i). Let Sij denote jth element of Si.

4. Find the two genes (rows) ai and al from BX×N such that their
expression profiles are the most similar to each other: d(ai, al) =
minXj,k=1d(aj , ak), where j < k.

5. Combine sequence Sl with Si and remove Sl from F such that in-
dexes of the sequences following Sl are updated as following F ′ =
{S1, . . . , S′i, Si+1 . . . , Sl−1, S

′
l, . . . , S

′
M−1}, where S′i = Si ∪ Sl and S′l =

Sl+1, . . . , S
′
M−1 = SM .

6. Calculate an average pseudo gene ak for the genes indexed by the com-
bined sequence S′i, if e.g. S′i = (i, l), then ak = ((ai1+al1)/2, . . . , (aiN+
alN )/2).

7. Replace genes ai and al of BX×N with ak thus producing BX−1×N ,
let X = X − 1

8. Continue from step 4 until there is only one pseudogene left in BX×N ,
i.e. X = 1, and thus only one combined sequence S′1 left in the F ′.

9. Finally, rearrange rows of AM×N into A′M×N such that ith row of
A′M×N is the S1ith row of the AM×N . In the end, the genes (rows) of
A′M×N are grouped together such that genes with similar expression
profile are located near to each other.

The algorithm above is very similar to agglomerative hierarchical cluster-
ing, which will be discussed in the following section. The algorithm can also
by used as a data reduction tool when the genes which are close enough to
each other are combined to a single average gene and thus the visualization
can be packed to a more compact representation.
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5.2.2 Visualization and clustering

Clustering (see Section 3.3.2) can also be used as a data visualization method.
The goal of microarray data clustering is to divide rows (genes) of the data
set into several clusters, such that each cluster contains only the genes that
are similar to each other and also all clusters (as represented by a centroid
gene) are dissimilar to each other.

Clustering is typically one of the first tools that is applied to preprocessed
gene expression data [24]. It allows also a more advanced visualization of
the data than a simple color matrix visualization.

Hierarchical clustering of diauxic shift data set is presented in Fig. 5.3.
Hierarchical clustering can be done by the grouping algorithm presented in
the previous section; its result is further visualized by drawing a dendrogram
that reveals the sub-clustering structure of the data with a binary tree. The
dendrogram is drawn such that whenever two genes (or pseudo genes) ai
and al are clustered together then these two genes are connected with an
arc shaped edge to represent the pseudo-gene ak as a parent node of the genes
in the binary tree. The height of the arc represents the distance between
the (pseudo) genes that are grouped together. In the clustering of Fig. 5.3
we have used the correlation as a distance measure between the genes. The
distance scale is shown on the top right corner of Fig. 5.3. The distance
scale shows the distance of two genes ai and al at the moment when they
were clustered together.

Figure 5.3: Hierarchical clustering of a part of the diauxic shift data with
one highlighted sub-cluster.

Besides the hierarchical clustering there are many other clustering algo-
rithms such as k-means and SOM clustering [79]. The k-means clustering
(see Section 3.3.2) and hierarchical clustering are some of the most popular
clustering algorithms applied to gene expression data [24]. For a more de-
tailed description of different clustering algorithms see Andreopoulos et al.
(2009) [5].
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5.3 Biological interaction networks and visualiza-
tion

Next step after visualization and exploratory data analysis such as cluster-
ing, is to deduct biologically relevant conclusions from the data. A typical
goal is to derive biological interactions from the experiments. These inter-
actions happen between the molecules like proteins and nucleic acids and
can form wide networks of interactions.

These networks are commonly graphs containing a set of nodes and edges.
The nodes are typically either genes or gene products such as proteins and
the edges represent the relatedness between the nodes. It is typical that
an interaction network is relevant only for a single organism like yeast, or
human, but there are also examples of more general graph-like structures
that can be applied to multiple different organisms.

Researchers are interested in many different kinds of biological interac-
tion networks; the type of a network typically depends on the type of the
molecules represented by the nodes.

In the protein-protein interaction (PPI) networks the nodes of the net-
works are proteins and the interactions between them are the (typically undi-
rected) edges of the network. An edge between the pair of nodes indicates
that the corresponding proteins physically bind [1]. In the gene-regulatory
(GR) network edges are typically directed and thus have the source and
target node. The source node depicts the transcription factor such as a pro-
tein that regulates the gene (the target node). Edges can involve weights
which are used to model the degree of the regulation. In the genetic interac-
tion (GI) network, nodes represent genes and the a edge between the nodes
(genes) is an indication that the gene affects to the function of the other
gene. The effect of a gene to the other gene’s function can be varied: the
first gene can e.g. reduce the expression of the other genes.

In this study we will treat the biological networks as the repository of
biological knowledge on the relationships between the molecules. The bi-
ological interaction networks are constructed by gathering information of
relationships between the selected nodes of the network. The relationship
information can be e.g. from a particular microarray experiment, or it could
have been derived from multiple experiments, or it could be even predicted
from known biological models [3].

5.3.1 Gene Ontology

The Gene Ontology (GO) can be thought as an example of a network of
biological knowledge shared by several different organisms. The definition
for an ontology in general, is a set (vocabulary) of objects (beings, conceptual
elements), their properties (nature), and their relations to other objects [17].
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relation an example

is a mitochondrial DNA repair is a mitochondrial DNA metabolic process
occurs in mitochondrial DNA metabolic process occurs in mitochondrion
part of mitochondrion (is) part of cell
regulates regulation of meiotic cell cycle regulates meiotic cell cycle

Table 5.1: Subset of the term relations in the Gene Ontology

The GO could be seen as a graph-like structured biological network but
it is more than that. The GO is a dynamic and controlled vocabulary that
can be applied to describe roles of biological processes, molecular functions
and cellular components of several organisms [6]. The GO is maintained
and actively developed by the Gene Ontology Consortium [6] which is a set
of communities for model organisms, protein databases, and research.

From a practical point of view, the structure of the GO is a set of Gene
Ontology terms which are divided into three separate domains: cellular
components, molecular function, and biological process. A GO term can be
in relation to a set of other GO terms. Each term has its id, name, name-
space, definition, etc. Examples of types of relations used in the GO are
presented in Table 5.1.

One can see from Table 5.1 that some of the relations are related to
certain parts of the cell and others are linked to biological processes of the
cell. The GO graph contains three subgraphs: one for biological processes
(BP), one for molecular functions (MF), and one for cellular components
(CC). On the top of the GO graph these three subgraphs are linked to one
root term named gene ontology. A small part of the BP Gene Ontology is
visualized in Fig. 5.4. This visualization is produced with QuickGO Gene
Ontology browser [14]. The visualized graph shows the acyclic directed
rooted graph structure of the Gene Ontology.

The GO Consortium also maintains databases of annotated genes and
gene products for several organisms. Each annotated gene or gene product
typically has mappings to several GO terms. For instance, yeast’s (Saccha-
romyces cerevisiae) protein YKL192C (Mitochondrial matrix acyl carrier
protein) is mapped i.a. to the GO term GO:0006633 (fatty acid biosyn-
thetic process).

The GO is typically used as a tool for biological evaluation of the results
of downstream data analysis methods such as clustering [P2], finding of
differentially expressed genes [77, 78, 80], or network visualization [P4].

Semantic similarity in the GO

As stated before, the semantic similarity can be interpreted as a measure of
how much knowledge content is shared by two entities [52]. In Section 5.3.1,
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Figure 5.4: Visualization of a part of the biological process ontology starting
from the GO term GO:1901026 “ripoptosome assembly involved in necrop-
tosis”.

we described the Gene Ontology as a tree-like graph structure of connected
GO terms. The semantic similarity of two GO terms ci and cj can be defined
as the mutual information content of these two terms. Based on these ob-
servations, Lord et al. [52] proposed a straightforward way to determine the
semantic similarity of GO terms ci and cj : it is measured as the information
content p(c) of the minimum subsumer c of terms ci and cj . For instance, in
Fig. 5.4 the semantic similarity of the terms “protein complex biogenesis”
and “protein complex subunit organization” is the information content of
the term “cellular component organization or biogenesis”. The information
content p(c) of term c can be estimated as the probability of the occurrence
of the term and its child terms [52]. More formally:

p(c) =
|c|∑N
i=1 |ci|

, (5.1)

where |c| is the number of occurrences of c (i.e. 1 + the number of child
terms of c), N is the total number of GO terms in the ontology, and |ci| is
the number of occurrences of the term ci. As a standard distance (dissimi-
larity) measure, the Euclidean distance dE was used in the previous chapter.
Another dissimilarity measure, called semantic dissimilarity, is needed here.
Semantic dissimilarity measure dS(ai, aj) [52][P1] is calculated with the al-
gorithm that first associates the genes ai and aj to a set of GO terms Ti and
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Tj . GO term c is included in the set Ti (Tj) if there is a GO annotation that
associates ai (aj) to c. Then, the information content pij(c) is calculated be-
tween each ci ∈ Ti and cj ∈ Tj as above. Finally, the semantic dissimilarity
is calculated as an average of the information content values pij(c) [P1].

5.3.2 Network visualization

The network visualization is a process where nodes and edges of the net-
work are placed in a two- or three-dimensional space. The visualization
process is formalized as a layout algorithm. The (automatic) network vi-
sualization dates back to 1960s when D. Knuth published the article on
drawing flowcharts [44]. After that, several algorithms have been proposed
on drawing different kind of graphs and networks. When drawing the visu-
alization of a network, several aesthetic criteria are taken into account to
maintain the readability of the visual outcome [10]. These aesthetic criteria
include minimization of the number of crossings between the edges, mini-
mization of the area of the visualization, and maximization of the smallest
angle between the edges from the same node [10]. These criteria form hard
optimization problems and may conflict with each other such that optimiz-
ing one criterion weakens another. Beside the selected aesthetic criteria, the
network visualization is associated with drawing conventions which tell how
the nodes and edges should be drawn. In the following, the nodes are drawn
as small circles and edges are straight lines between the nodes.

One of the simplest layout algorithms is the grid layout : it first draws
the nodes of the network in a random order into a given rectangular area
(like computer screen) starting from the top left corner and continuing to
the right as long as there is space for the next node. When the first row
of the area is filled with evenly spaced nodes the algorithm continues from
the next row (i.e. below the node that was placed to the top left corner).
The spacing between the nodes is calculated such that the given area is fully
utilized. After all nodes have been placed, the edges are drawn between the
nodes as straight lines.

An example of the grid layout visualization of protein-protein and protein-
DNA interactions from a study of yeast galactose utilization pathway [41]
is presented in Fig. 5.5. The layout has been produced with Cytoscape [72]
network visualization software. The grid layout algorithm is a fast and sim-
ple way to produce a network visualization but it has many disadvantages.
First, the edges between the nodes placed on the same row or column are not
distinguishable from other edges of the same row or column. Then, the pos-
sible substructures (like clusters) of the graph are not easy to find from the
visualization. Finally, the layout produced with the algorithm is often far
from aesthetic due to the typically very high number of edge intersections.
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Figure 5.5: Grid layout visualization of a subset of protein-protein and
protein-DNA interactions of yeast.

There are different approaches to producing readable network visual-
izations. One of the most used approaches for networks with straight line
edges is the force-directed approach (or spring embedding) which simulates
a system of spring forces between the nodes of the graph [10]. This idea was
originally proposed by Eades [26]. In this approach, a natural spring length
luv is assigned for each pair of nodes (u, v) of the graph. The value luv can
be chosen as the number of edges on the shortest path between the nodes u
and v [10].

The spring forces help to keep the lengths of the edges at optimal level.
The system needs also so called global repulsive forces, which push the nodes
further away from each other, to prevent the spring system from collapsing
to a locally optimal solution [86]. Typically, these global repulsive forces are
calculated within a predefined distance R from each node to its neighbor
nodes to speed up the calculation [86]. An iterative optimization technique
is used to find the configuration of nodes such that the energy of the spring
forces is minimized. An example of the force-directed visualization of the
network of Fig. 5.5 is presented in Fig. 5.6.

The multilevel layout (MLL) algorithm used in the publication (P4)
is a modification of the multilevel force-directed placement algorithm pro-
posed by Walshaw [86]. The force-directed node placement algorithm used
in Walshaw’s method is a modification of the Fruchterman & Reingold (FR)
algorithm [30] that is based on the original idea of Eades.

The multilevel optimization of the Walshaw’s algorithm is the first prac-
tical implementation of the idea where the graph is iteratively coarsened
(or clustered) by combining the closest nodes into a cluster (metanode) [86].
This coarsening is continued until the graph is reduced to a smaller size than
a given threshold. This set of gradually coarsened graphs are then laid out
by a force-directed (or other) algorithm starting from the smallest graph.
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Figure 5.6: Force-directed layout visualization of the same data as in Fig.
5.5.

The layout calculated for the smallest graph is used as an initial layout of
the parent graph. This process is iterated until the original (un-coarsened)
graph is laid out.

The closest nodes in the coarsening phase are found by calculating a
matching which means that a maximal independent subset of the graph
edges is found. Each pair of two nodes connected by an edge in the subset
is combined to a metanode and the edge and the two nodes are removed
from the graph. In the original graph an unit weight is assigned for each
node; the weight of a metanode is calculated as a sum of the weights of the
combined nodes.

As the finding of the maximal independent set is a computationally costly
operation, Walshaw used a non-optimal method where the randomly ordered
list of nodes is searched for nodes that are not yet matched (i.e. the node
nor its neighbor node are not in the subset) [86]. The order in which the
nodes are selected into the subset is based on the increasing weight of the
nodes [86].

For further information on graph visualization we suggest the reader
to refer the textbook “Algorithms for the Visualization of Graphs” by G.
Battista [10].
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Chapter 6

Summary of publications

This thesis is built around publications (P1) to (P5) presented below. Since
the research articles deal with multiple topics of interest; the main topics
that are dealt with in them are summarized in Table 6.1.

(P1) (P2) (P3) (P4) (P5)

Microarray data analysis × × ×
Missing value imputation × ×
Algorithm development × × ×
Clustering or classification × × × ×
Biological networks × ×
Visualization ×

Table 6.1: Summary of topics studied with in the publications of the thesis.
Columns (P1) to (P5) corresponds the publications and the rows to the most
important topics of the publications

6.1 Improving Missing Value Estimation in Mi-
croarray Data with Gene Ontology (P1)

In publication (P1), we introduced an idea of improving the missing value
imputation with biological a priori information of gene relationships. It was
shown how the semantic similarity information of genes mapped into the
Gene Ontology can be used to improve the accuracy of missing value impu-
tation. A Gene Ontology based k-NN imputation technique was introduced.
The power of the technique was evaluated using four publicly available yeast
microarray datasets. The GO-based k -NN imputation was compared against
the standard k -NN imputation and more advanced local least squares (LLS)
imputation [43].
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The experimental results with four datasets suggest that the semantic
similarity information obtained from the GO enhances the imputation ac-
curacy of the k -NN algorithm (compared to the original k-NN imputation)
especially when there are lots of missing values and the number of exper-
imental conditions (N ) of the dataset is small. The GO-based local least
squares (LLS) imputation did not provide such a clear improvement over
the original LLS method.

In the tests, the datasets were first made complete by removing genes
containing missing values from each of them. Then, a specific amount (1%,
5%, 10%, and 20 %) of missing values were randomly added to each dataset
and the NRMS error was calculated between the original and imputed values.
This testing procedure was repeated ten times for each dataset, for each
missing value percentage and for each imputation method.

Figure 2 of (P1) shows a comparison of the NRMS errors of the impu-
tation methods for different missing value percentages in the diauxic and
histone datasets. Diauxic is time-series data that contains the expression
values of 6068 genes in seven experimental conditions [23]. The histone data
is from a study of the effect of nucleosomes and silencing factors on the
yeast’s global gene expression: it is time-series and contains 6181 genes in 7
experimental conditions [91].

Figure 2 of the publication shows how the increased number of miss-
ing values increases the benefit of the GO-based k-NN imputation over the
normal k-NN. It was also shown that although the proposed GO-based im-
putation was able to improve the k-NN imputation, the LLS imputation
produces still more accurate imputation results. In addition, the GO-based
approach was not so successful when it was applied to the LLS imputation.
This phenomenon is partly explained by the fact that the k-NN imputation
typically uses a smaller neighborhood than the LLS imputation (20 genes
vs 150 genes) and thus k-NN imputation benefits more from the wisely se-
lected genes. Moreover, the GO-based imputation technique was developed
to the neighborhood selection rather than for the estimate calculation, thus
its benefit decreases as the size of the neighborhood increases. Finally, the
results of LLS imputation were already so good that there was little room
for fine tuning that would have been available from the GO-based approach.

The study left room for future research. First, only a few yeast microar-
ray datasets were studied. It would be interesting to see how GO-based
imputation would perform for other organisms such as human. Secondly,
more study is needed to incorporate the semantic dissimilarity calculation
not only into the neighborhood selection but also into the estimation step
of the k-NN and into other imputation methods. Further, there are many
other ways to calculate the semantic similarity in the GO than the method
of Lord et al. used in (P1). Finally, the semantic similarity in the GO is
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not the only external information that could be applied to imputation; for
example the similarity of gene’s protein sequences could be used too [65].

6.2 Missing Value Imputation Improves Cluster-
ing and Interpretation of Gene Expression Mi-
croarray Data (P2)

The effect of missing values and imputation on the clustering of the gene
expression data is discussed in publication (P2). As clustering is one of the
first exploratory tools used on a new microarray dataset, it is important to
know which imputation technology should be applied to the dataset such
that the clustering results would be good.

In addition to the clustering, publication (P2) compares the imputation
against the Gene Ontology enrichment analysis of the clusters and evalu-
ates how different properties of the data, such as correlation structure and
missing value distribution, affect on the imputation results. The publication
consists of an analysis of eight public gene microarray datasets with seven
imputation algorithms and one non-imputing approach. Used algorithm are
zero imputation (ZERO), row average (RAVG), k -NN, Bayesian principal
component analysis (BPCA), local least squares (LLS), iterated LLS (iLLS),
and support vector regression (SVR) imputation.

The imputation accuracy was evaluated by analyzing its effect on the
preservation of the original k-means clustering structure and on the Gene
Ontology enrichment analysis of the clusters.

The study was initiated by preprocessing the gene expression datasets by
filtering out the genes with low variability and standardizing the datasets.
Then, genes with missing values were removed from each dataset to produce
eight complete datasets. Missing values were generated into each test dataset
using a similar probability distribution of the missing values as there was in
the original dataset.

Then, the k-means clustering was applied with various amounts of clus-
ters (k = 2, 3, . . . , 10) to the complete datasets to produce a set of 8 reference
clusterings for each dataset. Next, each missing value dataset produced ear-
lier was imputed with all the imputation algorithms. The datasets were then
clustered and the produced clusterings were compared to the corresponding
reference clusterings.

Figure 6.1 illustrates the reference clustering of the complete data (Fig.
6.1 A) and a clustering (Fig. 6.1 B) obtained when the corresponding dataset
with missing values was imputed and clustered. The moved three genes
demonstrate how the imputation affects the resulting clusterings.

The comparison of the clusterings in publication (P2) was done by com-
paring the clustering of the complete data to the corresponding clustering of
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Figure 6.1: (A) An example of the reference clustering of a complete data,
(B) corresponding clustering obtained after missing value imputation. Cir-
cles represent clustered genes and stars are the cluster centroids.

the imputed data using the average distance of partitioning (ADBP) as the
measure of the agreement. The idea of the ADBP measure is to sum up the
differences D(cj , uj) of the corresponding cluster pairs of the two clusterings
and normalize the sum of differences such that the ADBP error 0 indicates
that the clusterings are identical, and 1 means that the clusterings are to-
tally different. The difference of a cluster pair is calculated by calculating a
set-theoretic difference of uj of cj and vice versa, the differences of all cluster
pairs are summed up and divided with summed cluster sizes. For example,
the ADBP error between the clusterings A and B in Fig. 6.1. is:

ADBP (A,B) =
1

k

k∑
j=1

D(cj , uj)

=
1

3
(D(c1, u1) +D(c2, u2) +D(c3, u3))

=
1

3
(

1

6 + 4
(2 + 0) +

1

5 + 6
(0 + 1) +

1

5 + 6
(1 + 2)) ≈ 0.19

By definition, ZERO imputation always has the NRMS error one. RAVG
was the second worst as expected and it outperformed the ZERO imputa-
tion in all the studied cases. The next worst imputation method in terms
of NRMSE was k-NN. It operated properly only when there was a strong
correlation structure in the dataset. There was no clear winner among the
more advanced imputation methods since the imputation accuracy of each
method depended on the properties of the dataset being imputed. On the
other hand, when counting the ranks of the methods, iLLS and BPCA were
among the two best.

When comparing the ADBP error of the clusterings one can clearly see
how seriously missing values can affect the ability of the clustering algorithm
to reproduce the reference clustering. Even as small amount as 0.5% had
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a distinct impact on the clustering result. Another observation was that
the imputation was always a better choice than leaving the missing values
in the data (the Nimp approach). Perhaps the most striking observation
was that there was no clear winner among the more advanced imputation
methods. As expected the ZERO and RAVG methods were clearly the worst
methods, but k-NN was almost as good as other more advanced methods in
all but two datasets (Spellman98 and Hirao03) which had a relatively low
correlation structure.

In general, the ADBP error of clusterings of GO terms confirmed the
results obtained from gene clustering comparison. The biological interpre-
tation of the clustering results could be preserved if missing value ratio was
low enough and a sophisticated imputation method was used.

As a conclusion, imputation is a good choice when there is intention
to make a cluster analysis of gene microarray data having missing values.
According to the present results, the BPCA is one of the best imputation
methods if a fast and reliable imputation method is needed. A benefit of
the method is that its performance is independent on the properties of the
dataset.

When the missing value rate goes above 5%, none of the methods could
reasonably correct the influence of missing values on the consistency of clus-
tering results. One possible approach could then be to filter out a certain
amount of genes which contain the highest amount of the missing values.

6.3 A multilevel layout algorithm for visualizing
physical and genetic interaction networks, with
emphasis on their modular organization (P3)

The problem of visualization of very large biological interaction networks
was studied in publication (P3). One of the most popular software suites es-
pecially developed for visualization of biological networks is Cytoscape [72].
A multilevel layout (MLL) plug-in for Cytoscape was implemented in the
present work. The multilevel optimization method, originally proposed by
Walshaw [86] was modified for capturing the modular organization of biolog-
ical networks. The current implementation works with very large networks
and provides reasonable visualizations of complicated networks. In addition,
a network validation tool was developed. The tool uses external biological
information to assess the quality of a given layout.

The MLL algorithm modifies the Walshaw algorithm by adding an op-
tion to use node degree weighting in the matching procedure. This option
will help in finding a bigger subset of edges (and thus better coarsening)
when there are ’star-like’ structures present in the graph. Further, the M-
tree structure [19] was used to quickly find the neighbor nodes of the current
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node in the calculation of the global repulsive forces. Finally, another op-
tion was added to the algorithm to help emphasizing dense cluster structures
of biological networks [P4]. Figure 6.2 demonstrates the visualization pro-
duced with the MLL algorithm; the node degree weighted matching and the
clustering options were used here.

Figure 6.2: Multilevel layout (MLL) visualization of the same data as in
Fig. 5.5.

Evaluation of the MLL algorithm showed that it produced biologically
relevant and visually pleasant layouts in most biological network types. The
computational complexity of the algorithm was reduced by using the M-tree
data structure to index the node distance calculations in the step where
the repulsive forces are calculated to the nodes that are close the node that
is currently processed. As a conclusion the implementation of the MLL
algorithm offers a competing option for other layout solutions available in
the Cytoscape.

6.4 Accelerating GLA with an M-Tree (P4)

In publication (P4), algorithmic techniques to reduce the computational
time of the generalized Lloyd algorithm (GLA, called also the k -means).
The algorithm is commonly used as a codebook generation algorithm in
vector quantization [45], in data mining [79], as well as in k-means clustering
of gene expression profiles [24]. The idea was to utilize the M-tree data
structure [19] to reduce the number of distance calculations needed in the
GLA. The algorithm is called k-means clustering in the following, for sake
of consistency.
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Basically, the speed of the k-means clustering mostly depends on the
number of distance calculations since it is the most costly operation of the
algorithm. In the original version of the algorithm each partitioning step
requires O(k ·M) distance calculation, where k is the number clusters and
M is the number of data objects.

The idea in (P4) is to build an M-tree over the set of k centroids at the
beginning of each partition step. The M-tree structure makes it possible
to find the nearest centroid for a data object using a logarithmic number
of distance calculations. Since an M-tree must be rebuilt at the beginning
of the each partition step, it causes an overhead of approximately of k ·
log(k) distance calculations. On the other hand, the number of distance
calculations reduces to O(log(k)) ·M for each partition step.

The computational results suggest that the M-tree optimized k-means
clustering clearly outperforms the standard k-means in terms of the number
of distance calculations needed. The new approach was also compared to the
so called triangle inequality elimination (TIE) method in which the distance
calculations between data object x and cluster centroid ci are avoided if the
distance between ci and the nearest centroid ca found thus far (in k-NN
search) is greater than 4 times the distance between x and ca [18][P4]:

d(ci, ca) > 4 · d(x, ca). (6.1)

This means that a significant part of the distance calculations could be
omitted by computationally low cost multiplication operation.

6.5 Altered expression of p120catenin predicts poor
outcome in invasive breast cancer (P5)

This publication provides an example how to apply microarray data analysis
techniques on clinical data. The contribution in this work was mainly the
applying of statistical and algorithmic data analysis techniques on the given
raw cDNA microarray data. Other related publications are summarized
after Chapter 7.

Publication (P5) focuses on the role of regulator proteins on the prog-
nosis of the invasive breast cancer. First, cDNA microarrays were used to
find genes that were differentially expressed on the cancer in general and
also between the metastatic and the non-metastatic (local) groups. The
microarray data analysis was performed on tumor samples obtained from
10 patients. The same patients were used to obtain reference samples from
the healthy breast tissue outside of the tumor. The study includes also an
immunohistochemical analysis of 341 tissue arrays.

The RNA that was extracted from the tumor samples and a pooled
reference sample was hybridized on the cDNA microarrays. The final gene
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expression ratios were log2-transformed and intensity-normalized with the
LOWESS method. Data were analyzed in two phases. First, differentially
expressed genes were found between the tumor and the health tissue samples.
Secondly, we identified gene pairs that could be used to achieve as clear
classification as possible between the metastatic and local breast cancer
groups.

The differentially expressed genes were found similarly as in the related
publications [77, 78]. Shortly, the p-value < 0.05 of t-test against zero and
average absolute gene expression value above 0.5 were used as threshold
values.

Separation in gene expression between local and metastasized cancer
cases was performed with the 1-Nearest Neighbor method, searching for
pairs of genes which were able to separate the groups of the local and the
metastasized cases without any errors. The gene pairs were required to
produce linear separation between the classed. The classification results
were validated with the leave-one-out method and a classification score was
calculated for the gene pairs using Fisher’s discrimination ratio.

As a result, p120catenin was found to be down-regulated with genes
producing E-cadherin and α-cadhering. Further immunohistochemistry re-
sults verified that p120catenin is an independent predictor of breast cancer
survival.
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Chapter 7

Conclusions

The massive amount of quantitative data (such as gene expression data)
available has initiated a change in the field of biology. The biological re-
search has become more and more data-centered. This change has affected
other sciences such as computer science, statistics, and mathematics. The
challenges in biological data acquisition, organization, analysis, and visual-
ization have implied development of even more sophisticated computational
methods. The development of algorithms for these needs has been the main
topic of the thesis.

7.1 Achievements of the Thesis

In this thesis, we have addressed several practical problems in terms of de-
veloping and analyzing algorithmic techniques to be used in the microarray
data processing tasks. The data analysis begins by preprocessing, such as
missing value imputation. It then continues by downstream data analysis
tasks such as clustering and classification and by visualization of the results.

It was shown how the missing value imputation of cDNA microarray data
can be improved using the Gene Ontology as a source of a priori information
on the semantic similarity of genes (P1). We then introduced a novel way to
measure the imputation accuracy based on the clustering of imputed data
(P2).

To help the visualization of very large biological interaction networks
we developed a multilevel layout plug-in (P3) for Cytoscape software suite
[72]. Alongside with that, we proposed an algorithm (and accompanying
Cytoscape plug-in) to reliably assess the biological relevance of any biological
interaction network layout.

The usability of many data analysis techniques depends on the compu-
tational complexity of the algorithms behind the methods. We gave a way
to improve the computation efficiency of k-means clustering with an M-tree
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index [19] built on the centroids of the k-means clustering (P4). This index-
ing structure could be incorporated also in other algorithms such as k-NN
imputation and in classification methods that rely on neighbor searches.

Finally, we showed how analysis of the gene expression data of breast
cancer study can be analyzed with basic statistical and algorithmic tech-
niques (P5).

7.2 Final remarks

Only a small portion of the whole field of biological data analysis is discussed
in detail in the thesis. The field is an interesting research area since there is
so much room for further improvements: the algorithms can be optimized
for the computational, statistical and biological performance, and for more
aesthetic visual outcomes. On the other hand, the nature of the biologi-
cal data itself and the importance of the possible results brings an extra
motivation to the development of even better methods for this domain.

The missing value imputation (topic of the older publications (P1) and
(P2)) has been studied also after the publications of the thesis. For instance,
Oh et al. studied the biological impact of missing values on three clustering,
three differential expression detection (DE), and four classification methods
[59]. They found out that the DE methods were the most sensitive to the
missing values. Otherwise their results support the ones of our study (P2),
where it was hard to find a single best imputation method for all cases
[59], but instead more advanced methods such as BPCA and LLS seemed
frequently produce good imputation results [59].

Also the topic of the oldest publication (P4) of the thesis, the optimiza-
tion of k-means clustering, is still under ongoing research. For example
Fausett et al. (2013), accelerated the nearest neighbor search method of the
k-means algorithm by utilizing geometric relations among input vectors [27].
They proposed that the new method was superior to other tested methods
such as TIE for the used test data.

As future work, missing data imputation methods could be applied also
to other research topics of bioinformatics where missing, uncertain, or un-
reliable information is present. One example of this is the genome-wide
association study (GWAS) [67], where imputation has been used for esti-
mating uncertain genotypes [39, 54].
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List of related co-authored
publications not included in
the thesis.

The author has taken part to bio-medical research projects. Below, a short
description of their most important results alongside with explanation of
the used statistical and algorithmic techniques is provided below. The most
relevant contribution of the candidate to these publications was statistical
and algorithmic data analysis.

1. Maaria Tringham, Johanna Kurko, Laura Tanner, Johannes Tuikkala,
Olli S. Nevalainen, Harri Niinikoski, Kirsti Näntö-Salonen, Marja Hi-
etala, Olli Simell, Juha Mykkänen, Exploring the Transcriptomic Vari-
ation Caused by the Finnish Founder Mutation of Lysinuric Intoler-
ance (LPI). Molecular genetics and metabolism 105, 408-415, 2012.

In this publication we studied genome-wide gene expression profiling
of patients having autosomal recessive disorder called lysinuric protein
intolerance (LPI). LPI patients have various symptoms such as failure
to thrive, protein aversion, and anemia. The study subjects here were
13 Finnish LPI patients and for a control group we had 10 healthy
volunteers. The sex and the age of each control volunteer was chosen
to match the ones of the studied patient.

The RNA of each subject was extracted from the blood sample and hy-
bridized on an Illumina Expression BeadChip Array. Gene expression
values were normalized with quantile normalization and signal log ra-
tios (SLR) were computed between the expression values of the studied
and control samples. Genes where SLR was below 0.75 or where the
control expression value was below 300 (the average background value
being 220) were filtered out. The resulting 9920 genes were further
filtered such that the fold change had to be at least 0.8 and p-value
of t-test at most 0.05. As a result of this analysis we discovered 487
(439) significantly up-regulated (down-regulated) genes [80].
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The functional distribution of these up- and down-regulated genes was
studied by plotting the gene frequencies against their Gene Ontology
annotations (GOA). Moreover, “the ratio of the GOA frequency of
the genes with altered expression to those of the genes with unaltered
expression was plotted for each GOA category in order to pursue the
change of gene functions observed in LPI”. Based on these analysis
steps we were able to divide the up- and down-regulated genes into dif-
ferent Gene Ontology categories that were distinct from the categories
of the control samples. For instance, inflammatory response, immune
system processes and apoptosis had signification accumulation of the
up- and down-regulated genes.

2. Kati Talvinen, Johannes Tuikkala, Olli Nevalainen, A Rantanen, Pirkko
Hirsimäki, Jari Sundström, Pauliina Kronqvist, Proliferation Marker
Securin Identifies Favourable Outcome in Invasive Ductal Breast Can-
cer. British Journal of Cancer 99, 335-340, 2008.

This publication studied the gene expression and the immunohisto-
chemical analysis of the invasive ductal breast cancer. The cDNA
microarray analysis was performed on the tumor samples from 10 pa-
tients. Five normal tissue samples outside the tumor were used as a
pooled control samples to enable the two-channel cDNA microarray
analysis. The RNA extracted from the studied and control samples
was labeled and hybridized on the microarray slide containing “ap-
proximately 4000 probes of genes with proven or suspected roles in
human cancer” [78]. The array contained three technical replicates
(spots) of each probe.

The spots of the scanned arrays were verified by visual inspection such
that only high quality spots were taken into account. The expression
value of the probe was calculated as a median of replicate spots when
all spots were accepted, and as a mean value if one of the spots was
rejected. The probes with less than two accepted spots were considered
missing values. Then, the gene expression ratios were calculated and
results were normalized by LOWESS method [93] and the data was
log2 transformed.

Genes with significantly different expression were found by determin-
ing the mean expression ratios and comparing them by the t-test. A
gene was considered as up-regulated (down-regulated) if the p-value
of the t-test against 0 was less than 0.05 and the average expression
ratio was greater than 0.5 or less than -0.5 in case of down-regulated
gene. The Gene Ontology information of the differentially expressed
genes was studied with the GoMiner software [94].
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As a result of the above analysis we were able to find 119 up-regulated
and 224 down-regulated genes. The article states: “These (genes) rep-
resented several significantly deregulated gene groups encoding pro-
teins participating in DNA replication, regulation of cell proliferation,
protein biosynthesis, superoxide dismutase activity and cytokine pro-
duction” [78]. Further immunohistochemistry analysis of proliferation-
related genes suggests that there is a subgroup of the patients for which
the ductal breast cancer has better prognosis when the expression of
the securin is low.

3. Kati Talvinen, Johannes Tuikkala, Juha Grönroos, Heikki Huhtinen,
Pauliina Kronqvist, Tero Aittokallio, Olli S. Nevalainen, Heikki Hiekka-
nen, Timo Nevalainen, Jari Sundström, Biochemical and Clinical Ap-
proaches in Evaluating the Prognosis of Colonic Cancer. Anticancer
Research 26(6), 2006.

The prognosis of the colon cancer. The colon cancer is classified to
be in different stages depending on the prognosis of the patient. The
most favorable class is the stage I, the stages II-III have also improved
prognosis when adjuvant treatments are applied after surgery. Stage
IV is the most fatal for the patient. We studied the gene expression
of the tumor samples from 6 patients with different stage classifica-
tion. Healthy colon tissue of the same patients was used as a reference
sample.

The analysis of the gene expression data was made similarly as in
the related publication (2). As a result of mining the differentially
expressed genes, 69 genes were found to be up-regulated and 89 down-
regulated compared with the corresponding reference sample. The
Gene Ontology analysis of these genes showed that processes such as
cellular defense, cell structure, motility and cell division were found to
be “notably represented among the most deregulated genes” [77]. In
the further histochemistry analysis the histological grade was found to
be associated with the cancer stage classification.
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