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ABSTRACT 

UNIVERSITY OF TURKU 

Department of Chemistry/Faculty of Mathematics and Natural Sciences 

 

NIITTYMÄKI, TEIJA: Artificial ribonucleases: Oligonucleotides conjugated 

with metal ion chelates of azacrowns 

 

Doctoral thesis, 107 p. 

Laboratory of Organic Chemistry and Chemical Biology 

November 2014 

Ribonucleic acid (RNA) has many biological roles in cells: it takes part in 

coding, decoding, regulating and expressing of the genes as well as has the 

capacity to work as a catalyst in numerous biological reactions. These qualities 

make RNA an interesting object of various studies. Development of useful tools 

with which to investigate RNA is a prerequisite for more advanced research in 

the field. One of such tools may be the artificial ribonucleases, which are oligo-

nucleotide conjugates that sequence-selectively cleave complementary RNA 

targets. This thesis is aimed at developing new efficient metal-ion-based artificial 

ribonucleases. On one hand, to solve the challenges related to solid-supported 

synthesis of metal-ion-binding conjugates of oligonucleotides, and on the other 

hand, to quantify their ability to cleave various oligoribonucleotide targets in a 

pre-designed sequence selective manner.  

In this study several artificial ribonucleases based on cleaving capability of metal 

ion chelated azacrown moiety were designed and synthesized successfully. The 

most efficient ribonucleases were the ones with two azacrowns close to the 3´-

end of the oligonucleotide strand. Different transition metal ions were introduced 

into the azacrown moiety and among them, the Zn
2+

 ion was found to be better 

than Cu
2+

 and Ni
2+

 ions. 

Key words: RNA, oligonucleotide conjugate, metal ion chelate, azacrown, 

synthesis, cleaving agent 
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RNA:lla eli ribonukleiinihapolla on monia biologisia tehtäviä soluissa: se on 

mukana muun muassa geenien koodauksessa, säätelyssä ja ilmenemisessä. 

Tämän lisäksi RNA-molekyylit voivat toimia katalyytteinä lukuisissa biologi-

sissa reaktioissa. Nämä ominaisuudet tekevät RNA:sta hyvin mielenkiintoisen 

tutkimuskohteen. RNA-tutkimuksen edistyminen edellyttää käyttökelpoisten 

työkalujen kehittämistä. Yksi tällainen työkalu voisi olla keinotekoinen ribonuk-

leaasi eli oligonukleotidikonjugaatti, joka pilkkoo RNA:ta selektiivisesti. Tämän 

väitöskirjan tarkoituksena on kehittää uusia tehokkaita metalli-ionikelaatteihin 

perustuvia keinotekoisia ribonukleaaseja. Tarkoituksena on ensinnäkin valmistaa 

metalli-ioneja sitovia oligonukleotidikonjugaatteja ja toiseksi tutkia niiden kykyä 

pilkkoa sekvenssi-selektiivisesti erilaisia RNA-kohteita. 

Työssä suunniteltiin ja valmistettiin onnistuneesti useita keinotekoisia ribonuk-

leaaseja, jotka perustuvat atsakruunun metalli-ionikelaatin pilkkomiskykyyn. 

Tehokkaimmat valmistetuista ribonukleaaseista olivat oligonukleotideja, joiden 

3´-päässä oli kaksi atsakruunukelaattia. Atsakruunuun kelatoitiin myös erilaisia 

siirtymämetalleja; näiden joukosta Zn
2+

-ioni osoittautui paremmaksi kuin Cu
2+

- 

ja Ni
2+

-ionit. 

Avainsanat: RNA, oligonukleotidikonjugaatti, metalli-ionikelaatti, atsakruunu, 

synteesi 
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1. INTRODUCTION 

1.1 RNA 

RNA, like DNA, is composed of a long chain of nucleosides linked together via 

phosphodiester bonds (Figure 1). The difference lies in the structure of the sugar 

moiety (β-D-ribofuranosyl vs. 2´-deoxy-β-D-erythro-pentofuranosyl) and in one 

base (U vs. T). The uniqueness of RNA/DNA primary structure is determined by 

the sequence of its bases. The secondary structure is formed via complementary 

Watson-Crick base-pairing between two chains of RNA/DNA. Since binding of 

U/T to A is mediated by two and binding of C to G by three hydrogen bonds, 

CG-pairs are stronger than UA- or TA-pairs. Short sequences of RNA and DNA 

are called oligoribonucleotides (ORN) and oligodeoxyribonucleotides (ODN), 

respectively. 

 

Figure 1. The structure of RNA and DNA and the Watson-Crick base-pairing. 

The cleavage of phosphodiester bonds of RNA in a sequence selective manner is 

in cells catalyzed by both protein enzymes, ribonucleases, and catalytic RNA 

molecules. Naturally existing RNA molecules exhibiting catalytic activity are 

called ribozymes.
1
 The use of these as research tools for cleaving RNA 

phosphodiester bonds is, however, cumbersome and in many cases impossible. 

There clearly is a demand for manipulation of RNA by simpler agents, and 

development of synthetic mimics of ribozymes has been the goal of many studies 

during the past two decades.
2-5

 This kind of artificial ribonucleases, as they are 

called, can improve our understanding of mechanisms of enzyme action and they 

may also help to develop new biotechnological tools. These tools may, for 
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example, be artificial restriction enzymes, probes for structural studies of RNA 

and nucleic acid-targeting therapeutics. Although there have been many advances 

in the field, still the natural systems are far away as come for the catalytic 

activity. 

Restriction enzymes that recognize and cleave DNA sequences very specifically 

are familiar and widely used tools in molecular biology.
6
 Nevertheless 

corresponding restriction enzymes for the RNA scission on the same scale are 

not known. More widely useful sequence-selective manipulation of RNA by 

artificial restriction enzymes would bring about more advanced research in 

biotechnology. 

Since the double stranded regions of RNA are much more resistant to cleavage 

than the single stranded regions,
7
 cleaving agents can be used as probes in 

structural research of RNA.
8
 The sites where the cleavage takes place upon 

treatment with such a probe are accessible to the cleaving agent, while absence of 

the cleavage indicates that the targeted site has not been reached. This structural 

analysis helps to understand the biological role of the three-dimensional structure 

of various RNAs. 

Oligonucleotides which specifically inhibit unwanted genes by blocking 

messenger RNA (mRNA) activity are called antisense oligonucleotides. Their 

potential applications in chemotherapy have attracted many research groups in 

the area. The first thoughts about this antisense approach, as it is called, were 

published by Zamecnik and Stephenson in 1978.
9,10

 In antisense approach the 

disease is silenced at an earlier stage than with the traditional drugs (Figure 2). 

In cell, DNA is first transcribed to mRNA which is translated to proteins. If a 

particular mRNA encodes some disease, the resulting proteins are typically the 

immediate cause of the disease, and traditional drugs (circle in the figure) are 

targeted towards them. Antisense drugs are oligonucleotides that hybridize with 

mRNA and, hence, the translation is inhibited and ideally the proteins which 

cause the disease are not expressed at all. There are many challenges that 

antisense drugs must overcome before they can be used as drugs in reality. If the 

antisense oligonucleotide is unmodified, its hybridization with complementary 

mRNA activates the intracellular enzyme RNase H which degrades the target 

RNA. This releases antisense oligonucleotide and makes the reaction catalytic as 

antisense oligonucleotide can be reused. Unfortunately most of the modified 

oligonucleotides do not activate RNase H, so their antisense effect remains 

stoichiometric blocking. The modification of antisense oligonucleotide is, 

however, necessary because otherwise oligonucleotide cannot penetrate through 

cell membrane and it is destroyed by nucleases. Modification can also improve 

hybridization efficiency or pharmacokinetic properties. 
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Figure 2. Schematic presentation of the antisense strategy. DNA encodes a 

disease, which is inhibited by the action of the antisense drug. The most common 

way the traditional drug works is also represented. 

This thesis covers the main strategies how to cleave target RNA without the help 

of RNase H. This is achieved with the aid of different catalytic groups attached to 

oligonucleotides. These oligonucleotide conjugates are called artificial ribo-

nucleases and they work as represented in Figure 3. They consist of two parts: 

oligonucleotide part which takes care of the recognition of the target RNA and 

the catalytic part (triangle in the figure) which cleaves the target. The aim is that 

the artificial ribonuclease is released in the reaction and it can be recycled. 

 

Figure 3. The use of an artificial ribonuclease. The triangle represents the 

catalytic group which cleaves the mRNA. 

The first drug based on antisense technology came on the market in 1998. It was 

Vitravene, a phosphorothioate oligonucleotide targeted for the treatment of an 

eye disease, cytomegalovirus retinitis, of patients suffering from AIDS.
11

 Owing 

to improved therapies for patients having HIV, the need for Vitravene has 

diminished and nowadays it has left the market. In 2013, another phosphoro-

thioate oligonucleotide drug, Kynamro, was approved for clinical use. It lowers 
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cholesterol in patients with homozygous familial hypercholesterolemia (HoFH).
12

 

In addition there are more than 40 antisense oligonucleotides in clinical trials.
13,14

 

Three drug candidates for cancer treatment are already in phase III in clinical 

trials, so maybe the breakthrough is coming. 

1.2 Cleavage of RNA 

RNA molecules are or can be degraded at a certain speed which is often a critical 

factor for many biological processes, including those involved in processing of 

genetic information. Although RNA is, because of the 2´-hydroxy group, 

hydrolytically labile compared to DNA, it still is quite a stable molecule 

chemically. The half-life for the cleavage of a single phosphodiester bond is over 

100 years under physiological conditions.
15

 Cleavage of RNA can occur through 

oxidative or nucleophilic cleavage. In this thesis, only the nucleophilic cleavage 

is covered. As known already from the 1950s,
16

 the nucleophilic cleavage is 

initiated by the attack of the neighboring 2´-hydroxy group on the phosphorus 

atom leading to the departure of the 5´-linked nucleoside and simultaneous 

formation of a 2´,3´-cyclic phosphate (Scheme 1).
17

 This reaction proceeds 

through a pentacoordinate phosphorane intermediate or transition state in which 

the attacking nucleophile (2´-O
-
) and departing alkoxide (5´-O

-
) must occupy the 

apical positions, obeying the rules of Westheimer.
18

 The cyclic 2´,3´-phosphate is 

then rapidly hydrolyzed to a mixture of 2´- and 3´-phosphates. 

 

Scheme 1. Cleavage of the phosphodiester bond of RNA. 

Enhancement of the reaction can be achieved by facilitating the deprotonation of 

the attacking 2´-OH, stabilizing the phosphorane intermediate, orienting the 

entering and departing nucleophiles properly and stabilizing or facilitating the 

protonation of departing 5´-O
-
. Molecules that can work as artificial 

ribonucleases, i.e. enzymes capable of cleaving RNA, must therefore fulfill one 

or preferably several of the above mentioned rate-enhancing factors. It has been 
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estimated that the deprotonation of 2´-OH and protonation of 5´-O
-
 both 

accelerate the cleavage reaction by 10
6
-fold.

19
 Neutralization of the negative 

charge on the non-bridging phosphoryl oxygen can enhance the reaction by a 

factor of 10
5
 and allowance to the in-line orientation of the phosphorane 

intermediate can achieve the maximum of 100-fold acceleration. Understanding 

of the detailed mechanism of the cleavage reaction and factors affecting to it is 

the basic necessity for developing efficient and multifunctional catalysts.
20

 

The cleavage of phosphodiester bonds of RNA is catalyzed by several metal-ion-

dependent ribonucleases and ribozymes,
21

 but also metal-ion-independent 

biocatalysts are known.
22

 The most extensively studied example of the latter is 

RNase A, whose histidine residue deprotonates the attacking 2´-OH and 

protonates the departing 5´-O
-
. In addition, the dianionic phosphorane 

intermediate is stabilized by hydrogen bonding with lysine residue. This thesis 

concentrates mostly on the metal-ion-dependent cleavage. The exact details of 

the mechanism of the metal ion promoted reactions have not been sufficiently 

clarified, even though the reaction itself has been known since 1950s.
23

 There are 

various interpretations for the reaction, but usually only the cleavage of the 3´,5´-

bond, not the isomerization to the 2´,5´-bond, is accelerated.
24

  Only one metal 

ion participates in the reaction, except for the lanthanide ions where the 

polynuclear assemblies are the best catalysts.
25

 The reaction appears to proceed 

as illustrated in Scheme 2. First, there is a pre-equilibrium formation of a 

dianionic phosphorane, which is stabilized by a coordinated metal aqua ion. This 

pre-equilibrium stage is followed by the rate-limiting step of the actual cleavage 

reaction in which the departing 5´-oxygen atom is protonated. 3d transition metal 

ions catalyze this reaction faster than alkaline earth metal ions.
21

 Zn
2+

 ion belongs 

to the best metal ion catalysts, for example the poly(U) is degraded 1900 times 

more rapidly with 5 mM concentration of Zn
2+

 ion than without any metal ion 

(pH 5.6, 90 ºC).
26

 

 

Scheme 2. Metal ion promoted cleavage of RNA. 
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1.3 Cleaving agents 

Lots of efforts have been put on finding the cleaving agents that catalyze the 

cleavage of phosphodiester bonds efficiently. The catalysts fall mainly into two 

categories: a metal-ion-based catalysts and metal free systems which usually are 

nitrogen containing organic molecules. 

In order to get metal ion promoted cleavage sequence selective, metal ions must 

be coordinated to some ligand which, in turn, can be attached to oligonucleotide. 

Lanthanide ions are exceptionally good cleaving catalysts as compared to other 

metal ions.
27,28

 The most promising candidates of lanthanide-ion-based cleaving 

agents are the chelates of macrocyclic ligands, pyridine cyclophane 1
29-32

 and 

texaphyrin 2.
33-35

 

Another group of metal ions often used as cleaving agents is 3d transition metal 

ions, especially Cu
2+

 and Zn
2+

 ions. One significant advantage of these ions over 

lanthanides is their natural presence in intracellular fluids, hence, the ligands 

binding Cu
2+

 or Zn
2+

 may be expected to appear as Cu
2+

 or Zn
2+

 complexes even 

in intracellular environment. Especially Zn
2+

 ion, because of its total intracellular 

concentration is in micromolar range.
36

 The Cu
2+

-based cleaving agents have 

usually been terpyridine 3
37-40

 or 2,9-dimethylphenanthroline 4
41,42

 ligands. At 

the beginning of the research for this thesis, metal complexes used as sequence 

selective cleaving catalysts were mostly the above mentioned lanthanide and 

Cu
2+

 ion complexes. The first Zn
2+

 chelate was reported for the 2,9-dimethyl-

phenanthroline 4
41

 and at the same time with our study, the group of Strömberg 

investigated quite thoroughly the Zn
2+

 complexes of 4.
43-45

 

 

Although this thesis focuses on cleaving agents of metal ion complexes, main 

observations concerning metal ion independent agents
46

 are briefly discussed 

here. The cleaving activity of the non-metallic catalysts has usually remained 

rather low. Guanidinium group constructs have shown the best activities, the 

most efficient being tris[2-(benzimidazol-2-yl)ethyl]amine (5)
47

 and its 

attachment to an ODN has given quite effective sequence specific artificial 
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ribonuclease.
48

 Another unusually powerful group of non-metallic cleaving 

agents is offered by imidazole containing constructs. These structures mimic the 

catalytic center of enzyme RNase A which bears histidine residues.
22

 Several 

imidazole containing cleaving agents have been prepared and tested by the group 

of Vlassov.
49-53

 Among many conjugates tested, the most efficient ones were 

oligonucleotides bearing structure 6. Conjugates bearing several such groups and 

different linker arms were also studied.
52,53

 Simple oligoamine conjugates have 

also been investigated, but they exhibit rather modest activity.
25,54

 All the best 

cleaving agents of metal free systems have been designed during my research on 

Zn
2+

-based agents, so at the time I started there were not many efficient artificial 

ribonucleases reported. 

 

1.4 Synthesis of oligonucleotides and attachment of catalytic agents 

Artificial ribonucleases are typically synthesized by covalent attachment of the 

cleaving agent to a synthetic oligonucleotide strand (ODN, ORN or their analog) 

via some linker. ODN and 2´-O-alkyl-ORN strands are the most frequently used 

recognition domains. 2´-O-Alkyl-modification provides increased stability 

towards degradation by natural nucleases and higher binding affinity to the target 

RNA. Peptide nucleic acid (PNA) oligomers have also been used for this 

purpose; they have some desirable qualities, especially remarkable stability in 

biological fluids, that makes them good candidates.
55

 They also form stable 

hybrids with target RNA and are nowadays easily synthetized by peptide 

chemistry. 

The synthesis of the ODN/ORN strands are carried out on support and assembled 

on an automated synthesizer using either the more applied phosphoramidite 

strategy
56

 or the H-phosphonate strategy
57

 (Figure 4). The first nucleoside is 

anchored to the support, which is most commonly amino-functionalized 

controlled pore glass (CPG)-support, through the 3´-hydroxy group via a 

succinate linker.  The 5´-hydroxy function is usually protected with an acid-labile 

4,4´-dimethoxytrityl group. After its removal, the next nucleotide is coupled 

using a suitably protected building block with phosphoramidite or H-
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phosphonate functionality together with appropriate activator. For the 

phosphoramidite chemistry the most used activators are 1H-tetrazole-based but 

also 4,5-dicyanoimidazole is used, especially for ORN, and for the H-

phosphonate chemistry the activator is pivaloyl chloride. The main difference 

between the two strategies is the oxidation step; oxidation is carried out in every 

cycle on using the phosphoramidite strategy, while it is done only once after 

completion of the chain elongation in the H-phosphonate strategy. The capping is 

needed to terminate the chain elongation if the coupling is incomplete. On 

preparing ORN, the 2´-hydroxy function must be protected as silyl ether, for 

example, which withstands both acidic and basic conditions. The ammonolysis 

step releases oligonucleotide from the support and at the same time removes the 

base and phosphate protections. 

 

Figure 4. The solid-supported synthesis of oligonucleotide by the phosphor-

amidite and the H-phosphonate strategy. 
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On considering the conjugation of the catalyst to the oligonucleotide strand, one 

of the main things is the compatibility of the protecting groups used. The oligo-

nucleotide synthesis has conventionally acid labile 5´-protecting groups and base 

labile protections on the phosphate (only in phosphoramidite strategy) and base 

moieties; in addition, the chain is released from the support with a basic 

nucleophile. If the catalytic moiety is attached before completion of the 

oligonucleotide synthesis, any protections on it must withstand acid treatment 

repeated in every synthesis cycle and the catalytic moiety itself must withstand 

the base treatment at the end of the synthesis. If, on the other hand, the 

attachment is done after the chain assembly, the compatibility of the protecting 

groups on oligonucleotide and on the catalyst must still be taking into 

consideration. 

Two approaches are generally used for the conjugation of the catalytic group to 

the oligonucleotide; the attachment is done either in solution or on support. On 

applying the solution based approach, the oligonucleotide must bear a func-

tionality where to attach the catalyst. In most cases that have been an amino 

group introduced to the oligonucleotide on support. For example, compounds 7, 

8 and 9 with protected amino functions have been used to tether the catalyst in 

the middle of the chain through modification of a base or sugar moiety
32,44

 or at 

the 5´-end of the chain through a commercially available aminohexyl-linker.
33,58

 

Reaction of the amino-containing oligonucleotide in solution with a catalyst 

functionalized as a N-hydroxysuccinimide ester,
32,33,58

 isothiocyanate
32,58

 or phe-

nylcarbamate
44

 have yielded the desired oligonucleotide conjugates (Figure 5). 

Since the oligonucleotide is anyway assembled on support, it is only logical to 

carry out the conjugation on the same support. The notable advantage of the 

synthesis on support compared to that in solution is a much easier purification; 

most of the impurities can be simply washed away while the oligonucleotide 

conjugate is still anchored to the support. Another appealing feature is the 

possibility to do the whole synthesis automatically on synthesizer. This on-

support-approach requires conversion of the catalyst to an appropriate building 

block which can be used directly on automated synthesis of the oligonucleotide. 

Building blocks for the phosphoramidite strategy have been introduced for the 

terpyridine (10 and 11)
37,38,40

 and 2,9-dimethylphenanthroline ligands (12).
41

 

They bear both the phosphoramidite and the dimethoxytrityl functions, thus they 

can be incorporated into any position of the oligonucleotide chain as in Figure 4 

(building block of a catalyst is used instead of a nucleotide). Few reports are 

available for the conjugation of the catalyst (13-15 having phosphoramidite but 

not the dimethoxytrityl function) only to the 5´-end of the ODN.
35,39

 Since 

oligonucleotides are normally synthesized in the 3´→5´direction, coupling of the 

catalyst to the 5´-end is straightforward and can be done in the final step. 3´-

Conjugates are more complex to construct but nowadays commercially available 



20 Introduction 

universal support 16 (Glen Research, Universal Support III) allows utilization of 

appropriate building blocks of the catalyst in the first step of the chain 

elongation.
59,60

 

 

PNA-based artificial ribonucleases have been synthesized on support by the 

Fmoc-chemistry. The catalyst have been incorporated either directly to the 

desired site as a PNA building block 17
61

 or indirectly to a diaminopropionic acid 

unit 18, which contains a protected amino group to react, after exposure, with the 

phenylcarbamate activated catalyst, as indicated in Figure 5.
62,63

 

 

Figure 5. Attachment of the catalyst to the oligonucleotide chain in solution. 
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1.5 Targeting of ribonucleases 

The oligonucleotide strand serves as the recognition domain of the ribonuclease, 

and the cleaving agent as the active site. Because of the specificity of 

complementary Watson-Crick base pairing, the oligonucleotide strand may be 

made to direct the RNA cleavage toward any RNA target of known base 

sequence. Artificial ribonucleases are hoped to cleave the target RNA at a single 

desired position. If the metal-ion-promoted cleavage is aimed at being carried out 

in a sequence specific manner, the metal ion must be tightly bound to the ligand 

structure that allows its attachment to a predefined position within the oligo-

nucleotide chain. 

One requirement for artificial ribonucleases is the fast release of the cleaved 

RNA fragments from the ribonuclease to avoid product inhibition. In other 

words, in a first step, the target and ribonuclease must form a stable duplex in 

order to have the cleavage reaction to take place in a desired position, and after 

that, the duplex between cleaved fragments and the ribonuclease must be 

sufficiently destabilized to allow release of the ribonuclease. Thus the ribo-

nuclease can bind and cleave another complementary RNA target sequence, and 

work as a real catalyst. 

The precise cleavage site within the target RNA is also important. The single 

stranded regions of target are cleaved much more efficiently than the double 

stranded ones.
7
 Accordingly, either the cleaving agent should be situated at the 

end of the oligonucleotide or if situated in an intrachain position, the 

ribonuclease and the target should be forced to hybridize with each other in such 

a manner that the RNA target forms a bulge which is susceptible to the 

cleavage.
31,32,64

 Within a duplex region, the 2´-hydroxy function is not suitably 

oriented for the cleavage reaction, whereas in a bulged region there is enough 

conformational freedom for proper orientation.
31

 The bulge can additionally be 

regarded as a pocket for the cleaving agent. Also the base sequence of the target 

RNA has an influence on the reactivity.
65
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1.6 Kinetic measurements 

Research groups have used slightly different experimental conditions when 

analyzing the action of artificial ribonucleases. Accurate comparison of the 

results is, hence, difficult. An approximate comparison can be found from litera-

ture.
3
 The cleavage reactions have generally been carried out at only one tempe-

rature, pH and ionic strength, the most frequently used conditions being 37 ºC, 

pH 7.5 and 0.1 M ionic strength. There is only one study where the pH 

dependence of the cleavage rate has been studied.
40

 The concentration of metal 

ion compared to that of the oligonucleotide-bound chelate has also varied from 

one study to another. The lanthanide ion based artificial ribonucleases have been 

synthesized by attachment of the preformed metal complex to the oligonucleotide 

probe. In other words, the concentration of the lanthanide ion has been the same 

as that of the oligonucleotide conjugate in the cleavage reaction.
35,58

 The Cu
2+

 

and Zn
2+

 based artificial ribonucleases, on the other hand, have been formed by 

addition of the metal ion post-synthetically to the oligonucleotide-bound chelate 

and the concentration of the metal ion in the cleavage reaction has varied from 1 

equivalent
66

 to excess of the metal ion.
43,61,67

 The dependence of the rate on the 

concentration of Cu
2+

 ion
40,60

 or Zn
2+

 ion
43

 has been explored. Concentrations of 

the artificial ribonucleases and the targets have been different in various studies 

which may also influence on the rate of the cleavage and thus complicate the 

comparison. Still one complication is that various methods have been applied to 

the analysis of the aliquots withdrawn from the reaction mixture. Most of the 

cleavage rates have been obtained by densitometric analysis of autoradiograms of 

gel electrophoresis, the quantification of which is rather susceptible to expe-

rimental errors. Nevertheless, approximate first-order rate constants may be 

obtained by this method when several samples are analyzed as a function of 

time.
34,40

 Many cleavage studies by gel electrophoresis are, however, based on a 

single aliquot at late stage of the reaction.
32,66

 Only one group has used a more 

quantitative method by analyzing the samples with either RP HPLC
43

 (in case of 

2´-O-methyl-ORN based cleaving agents) or anion exchange HPLC
62

 (in case of 

PNA based agents). This provides more accurate first-order rate constants. The 

anion exchange HPLC gave higher resolution than the RP HPLC.
62

  



 Introduction 23 

1.7  Metal-ion-based artificial ribonucleases 

1.7.1 Lanthanide ion complexes 

Lanthanide ion complexes attached to ODN have been shown to be effective 

sequence-selective artificial ribonucleases. For example, Eu
3+

 complexes of 

macrocyclic pyridine cyclophanes 19 and 20 have been used as ligands.
58

 The 

target was a 29-mer ORN and after 16 h, at an excess of conjugate 19 or 20, 51 

% or 88 % of the target oligonucleotide was cleaved, respectively, at 37 ˚C and 

pH 7.4. The difference in the activity of these conjugates is believed to derive 

from the nature of the linker used to tether the lanthanide chelate to the 

oligonucleotide moiety. An intra-chain conjugated version of 20 was additionally 

prepared to ensure turnover.
32

 This conjugate 21 was used with two types of 

targets, one with a fully complementary sequence and the other that formed a 

bulge upon hybridization with the conjugate. The two targets were incubated for 

16 h at 37 ˚C and pH 7.4 in the excess of conjugate 21. The fully matched target 

was cleaved only to a minor extent (7%), whereas the bulged target was cleaved 

almost quantitatively (92%). The efficient turnover was also observed with a 

related Eu
3+

-complex on using 2´-O-methoxyethyl oligoribonucleotides instead 

of ODN as a sequence recognizing moiety.
68

 Sequence-specific cleavage of large 

RNA target was tested using a conjugate similar to 19, but again having the ODN 

replaced with the 2´-O-methoxyethyl-ORN.
29

 The targets were 571 and 2977 

nucleotides long c-raf-1 RNA transcripts and the conjugates were 12 or 14 bases 

in length. The cleavage efficiency of 60–70 % was obtained within 4 h at 37 ˚C 

and pH 7.5 using 2-fold excess of the conjugate over the RNA target. 

 

Another macrocyclic ligand used as a cleaving agent with lanthanide ions, viz. 

with Dy
3+

, is a texaphyrin complex conjugated to the 5´-end of ODN (22a-e).
35
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The cleavage reactions were carried out at 37 ˚C and pH 7.5 in excess of the 

conjugate. The most efficient cleavage was obtained with conjugate 22c, which 

cleaved the target RNA at half-life of 2.1 h. The Dy
3+

 texaphyrin complex was 

additionally attached to an internal site of the ODN (23) and the conjugate 

obtained was reported to show turnover.
34

 Under conditions of 10-fold excess of 

the target RNA, conjugate 23 cleaved 67 % of the total RNA. 

 

1.7.2 Transition metal ion complexes 

The earliest transition metal-ion-based artificial ribonucleases date back to the 

same time as lanthanide ion based catalysts. The first one was Cu
2+

 chelate of 

terpyridine conjugated to an intra-chain position of a 17-mer ODN (24).
37

 Its 

target was a 159-mer RNA sequence derived from a conserved region of the gag-

mRNA of HIV. The amount of specific cleavage was 11 % at 37 ˚C and 18-25 % 

at 45 ˚C (both at pH 7.5) in excess of the conjugate over the target. The cleavage 

took place within the duplex region, not at a bulge. The flexibility of the target 

RNA strand was increased by replacing the nucleotide bearing the terpyridine 

complex by serinol.
38,41

 This serinol-terpyridine ODN 25 placed the cleaving 

agent directly opposite to the unpaired nucleobase and thus increased the level of 

conformational freedom and made the cleavage much more susceptible resulting 

in a greater than 3-fold increase in overall RNA cleavage efficiency in com-

parison to 24. Subsequently a series of ribozyme mimics were made, which 

contained the same serinol-terpyridine complex but now with propane-1,3-diol 

spacer(s) at either or both sides of the terpyridine unit.
66

 This created a bulge 
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opposite to the catalyst, which eased the cleavage. The most active ribonuclease 

mimic among this series was the conjugate with one spacer on both sides of the 

terpyridine complex. It cleaved up to 67 % of the total RNA target at pH 7.4 and 

45 ºC and showed turnover even in 10-fold excess of the target. 

The cooperative reactivity was achieved for 3´- and 5´-tethered Cu
2+

-terpyridine 

chelates 26 and 27.
39,59

 The 3´-conjugate alone was inactive and 5´-conjugate 

showed only modest activity (18 % of target was cleaved at pH 7.5 and 37 ºC in 

20 h), but when they were used together in a tandem fashion, 92 % cleavage was 

reached under the same conditions. When the two conjugates were connected to 

each other via a flexible linker (to get the conjugate 28), the cleavage was further 

enhanced twofold.
40

 The most efficient cleavage was afforded by conjugate 28 

with one linker unit (n=1). The reaction was fastest at pH 7.5 and showed 

turnover. Inspired by the cooperativity of the two cleaving agents mentioned 

above, a combinatorial approach was applied to searching the most efficient 

artificial ribonucleases amongst all combinations of four different cleaving 

agents.
60

 Three out of the four cleaving agents contained the Cu
2+

-terpyridine 

chelate and one the Cu
2+

 chelate of N,N-bis(2-pyridylmethyl)glycyl moiety (29). 

One of the combinations appeared to be clearly most efficient cleaving over 80 % 

of the target at pH 7.4 and 37 ºC in 20 h with turnover. 
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Another widely studied ligand for transition metal ions is 2,9-dimethylphenan-

throline. The first such construct was tethered to the serinol unit incorporated in 

the middle of an ODN chain (30).
41

 Its Cu
2+ 

complex cleaved 65 % of the target 

RNA in 15 h, at pH 7.4 and 37 ºC. Comparisons to the corresponding terpyridine 

conjugate 25 showed about five-fold enhancement of cleaving activity. The 

reason for the lower activity of the terpyridine complex may be its tendency to 

dimerize and become inactive in that way.
42

 Methyl substituents of 2,9-dimethyl-

phenanthroline inhibit the formation of dimers,
69

 which enhances its catalytic 

activity. The cleaving activity of the Zn
2+

 chelate of 30 is about 40 % of that of 

its Cu
2+

 counterpart.
41

 

Parallel to our research on artificial ribonucleases, quite extensive studies were 

carried out with Zn
2+

 chelates of the 2,9-dimethylphenanthroline conjuga-

tes.
43,44,70

 The influence of the linker structure and the site of tethering, as well as 

the structure of the target RNA, on the efficiency of the cleavage was investiga-

ted with conjugates of 11-mer 2´-O-methyl-ORN (31-33). The catalytic group 

was tethered either to the base moiety, i.e. C-5 of deoxyuridine or N-4 of 

cytidine, or to the 2´-position of the sugar moiety for evaluation of the effect of 

the attachment site on the cleaving activity. The Zn
2+

 chelates of the base moiety 

tethered conjugates 31 and 32 cleaved the target slightly faster than the Zn
2+

 

chelate of the 2´-tethered conjugate 33, the most efficient being 31 with the half-

life of 11h at pH 7.4 and 37ºC.
43,44

 The cleavage reactions showed turnover. The 

targets were designed to form bulges of 0–5 nucleotides opposite the cleaving 

complex, when hybridized to the conjugates. 3- And 4-nucleotide bulges were 

normally cleaved easier than 2- or 5-nucleotide bulges, and the cleavage of 1- 

and non-bulge combinations could hardly be detected at all. All phosphodiester 

bonds within the bulged regions were cleaved, although some preference among 

the cleavage sites could be in some cases observed. For example, with conjugate 

31 and a target forming a 3-nucleotide bulge, almost 70 % of the cleavage took 

place at one site.
43

 The cleaving activity fell down when the catalytic group was 

attached to the 5´-end of the 2´-O-methyl-ORN.
43,44

 Further investigation on 

whether the target sequence could be changed revealed that the bulged part 

largely determined the cleavage rate, while the sequence of the duplex stem can 

be replaced with the desired one.
45
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The first PNA-based ribonuclease mimic reported contained Zn
2+

 chelate of 2,9-

dimethylphenanthroline as the cleaving catalyst (34) and showed only modest 

activity.
61

 The efficiency of such conjugates was afterwards improved by another 

research group who used Zn
2+

 and Cu
2+

 chelates of conjugates 35a and 35b.
62,67

 

The Zn
2+

 chelates of PNA based conjugates 35a and 35b were tested against 

targets forming 4- and 3-nucleotide bulges when hybridized. Combination of the 

conjugate 35a, containing a shorter linker, and the target which formed a 4-

nucleotide bulge turned out to be most active, exhibiting the half-life of 11 h (pH 

7.4 and 37ºC).
62

 The cleaving activity was comparable to that of the correspon-

ding 2´-O-methyl-ORN based systems.
44

 The same PNA conjugate 35a was next 

studied with Cu
2+

 ions.
67

 It was found to be considerably faster than the Zn
2+

 

dependent counterpart; the best conjugate/target combination exhibited the half-

life of 30 min under the same conditions. It also displayed efficient turnover and 

high selectivity of the cleavage site. With this result, the Cu
2+

 chelate of conjuga-

te 35a is the best artificial ribonuclease reported so far. 
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2. AIMS OF THE THESIS 

RNA has many biological roles in cells: it takes part in coding, decoding, 

regulating and expressing of the genes as well as has the capacity to work as a 

catalyst in numerous biological reactions. These properties make RNA an 

interesting object of various studies. Development of useful tools with which to 

investigate RNA is a prerequisite for more advanced research in the field. One of 

such tools may be the artificial ribonucleases, which can be targeted to cleave 

any sequence of RNA. The present study is aimed at developing new efficient 

and sequence-selective metal-ion-based artificial ribonucleases. On one hand, to 

solve the challenges related to solid-supported synthesis of metal-ion-binding 

conjugates of oligonucleotides, on the other hand, to quantify their ability to 

cleave various oligoribonucleotide targets in a pre-designed sequence selective 

manner. 
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3. RESULTS AND DISCUSSION 

Our group has previously discovered that certain metal ion complexes of 

macrocyclic polyamines, the so called azacrowns, significantly enhance the 

cleavage of RNA phosphodiester bonds. These azacrowns are also known to 

form remarkably stable complexes with 3d transition metal ions. The stability 

constants for the Ni
2+

, Cu
2+

 and Zn
2+

 complexes of cyclic triamines range from 

10
8
 to 10

16
 M

-1
,
71

 whereas those for the corresponding 2,9-dimethylphenan-

throline complexes, for example, fall between 10
3
-10

6
 M

-1
.
72

 Tight binding of 

metal ions to ligands is advantageous under intracellular conditions, where the 

concentration of metal ions is low. The influence of metal ion complexes of 

azacrowns on the cleavage of phospohodiester bond(s) of dinucleoside 

monophosphates,
73

 2´,3´-cyclic monophosphates
73,74

 and oligoribonucleoti-

des
26,64,75

 has been investigated in our laboratory. The cleavage rates for poly(U) 

with certain Zn
2+

 chelates is shown in Figure 6.
26

 As seen from the cleavage 

rates, Zn
2+

 complex of 1,5,9-triazacyclododecane (35) exhibited the highest 

activity. It was also shown that the metal chelates promoted the cleavage without 

enhancing the isomerization of 3´,5´-phosphodiester bonds of poly(U) to 2´,5´-

bonds. The cleaving capability of chelate 35 was studied in more detail with 

targets forming hairpin loops
75

 and bulges.
64

 Even small nucleotide bulges were 

found to allow reasonably fast cleavage, although increasing the bulge size and 

thus also the flexibility accelerated the cleavage. Within the duplex region, the 

chain was not cleaved. The chelate 35, when anchored to oligonucleotide, can be 

considered to be a good candidate as an artificial ribonuclease. The present study 

focuses on preparing azacrown-functionalized oligonucleotides and evaluation of 

their applicability to cleave target RNA. 

 

 

Figure 6. The first-order rate constants for the cleavage of phosphodiester bonds 

of poly(U) by Zn
2+

 chelates (2 mM) at pH 6.2, 90 ºC and I = 0.1 M.
26
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3.1 Synthesis of the artificial ribonucleases 

We decided to synthesize the artificial ribonucleases by an on-support approach 

for the reasons considered in section 1.4. Thus building blocks derived from the 

azacrown were needed, as well as a method for their attachment to the solid-

supported oligonucleotides. 

3.1.1 Synthesis of the azacrown building blocks 

Azacrowns are usually linked to other molecules via a ring-nitrogen atom. This 

may, however, affect the ability to form metal ion complexes. For example, 

methylation of all the nitrogen atoms of the 1,4,8,11-tetraazacyclotetradecane (36 

shown in Figure 6) destabilizes the formation of the Zn
2+

 complex by five orders 

of magnitude.
76

 Therefore, attachment of the azacrown to the oligonucleotide 

through carbon atom of the ring seems more appealing and this approach was 

used in the present study, even though the synthesis of the azacrown bearing a 

side arm in carbon was somewhat challenging. The syntheses of 3-(3-amino-

propyl)-1,5,9-triazacyclododecane (37), 3-[N-(3-aminopropanoyl)-3-aminopro-

pyl]-1,5,9-triazacyclododecane (38), 3-[N-(6-aminohexanoyl)-3-aminopropyl]-

1,5,9-triazacyclododecane (39) and 2-cyanoethyl 3-[1,5,9-tris(trifluoroacetyl)-

1,5,9-triazacyclododecan-3-yl]propyl N,N-diisopropylphosphoramidite (40) used 

for conjugation of azacrown(s) to oligonucleotide are outlined in Scheme 3.
I,III

 

Azacrown 37 has been prepared previously, but the first step of that multistep 

synthesis was low yielding.
77

 We decided, hence, to modify the synthesis of 37 as 

illustrated in Scheme 3.
I
 Commercially available diethyl malonate was 

deprotonated to C2 carbanion which was used to alkylate 3-trityloxypropyl 

bromide (41). The obtained diethyl 2-(3-trityloxypropyl)malonate (42) was 

reduced to diol 43 and reacted with p-toluenesulfonyl chloride (TsCl) to form 

1,3-ditosyloxy-2-(3-trityloxypropyl)propane (44). For the introduction of the 

azacrown structure, a previously reported method was utilized.
78,79

 Accordingly, 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was reacted with ditosylate 44 and 

subsequent NaBH4-treatment afforded the orthoamide 45. Acid-catalyzed 

hydrolysis of the orthoamide function and simultaneous removal of the trityl 

group gave the 3-(3-hydroxypropyl)-1,5,9-triazacyclododecane as a trihydro-

chloride salt (46). Nitrogen atoms of the ring were then protected with tert-

butoxycarbonyl (Boc) groups and the hydroxy function was converted to amino 

function by displacement with a phthalimido (PhtN) group by Mitsunobu 

reaction, followed by a hydrazine treatment. Finally, the Boc-protections were 

removed with hydrogen chloride and the product obtained as a hydrochloride salt 

was converted to a free base 37 by passing it through an anion-exchange resin 
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(HO
-
 form). All reactions gave good yields, usually about 80 % without 

optimization. 

 

Scheme 3. Syntheses of the azacrown building blocks 37–40. Reagents and 

conditions: (i) TrCl, Et3N, THF; (ii) diethyl malonate, NaOEt, EtOH; (iii) 

LiAlH4, Et2O; (iv) TsCl, Py; (v) 1. TBD, DME, 2. NaBH4, DME; (vi) 6 M aq 

HCl; (vii) Boc2O, NaOH, H2O, MeCN; (viii) PhtNH, DEAD, Ph3P, THF; (ix) 

NH2NH2, EtOH; (x) 1. 6 M aq HCl, MeOH, 2. Dowex 2x8, HO
-
; (xi) TfaOMe, 

NaOMe, MeOH; (xii) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, 

Et3N, CH2Cl2; (xiii) BocNH(CH2)nCOOH (n=2 or 5), DCC, HOBt, dioxane; (xiv) 

1. TFA, CH2Cl2, 2. Dowex 2x8, HO
-
. 

The linker aimed at connecting the azacrown to the oligonucleotide was 

elongated by acylating the primary amino group of compound 49 with N-Boc-

protected β-alanine or 6-aminohexanoic acid (Scheme 3).
I
 After removal of the 

Boc groups and conversion to a free base the azacrowns having N-(3-amino-

propanoyl)-3-aminopropyl (38) and N-(6-aminohexanoyl)-3-aminopropyl (39) 

tethers were obtained. 
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The azacrown building block 40 (Scheme 3) was synthesized for the preparation 

of oligonucleotide conjugates bearing two azacrown moieties.
III

 The previously 

prepared
I
 46 was protected by acylating the nitrogen atoms with trifluoroacetyl 

(Tfa) groups, after which the hydroxy function was phosphitylated with 2-

cyanoethyl N,N-diisopropylchlorophosphoramidite. 

3.1.2 Synthesis of the building blocks for the oligonucleotide 

conjugation 

Monofunctionalized oligonucleotides were prepared by using a previously 

developed thioester method that enables formation of an amide bond between the 

azacrown and oligonucleotide. The azacrown was attached to the 3´- and 5´-ends 

of the oligonucleotide as well as in the middle of the chain. For these purposes, 

the thioester function was constructed on the support 53
80

 to obtain the 3´-

conjugates and introduced into the non-nucleosidic phosphoramidite reagents 

54
80

 and 55
81

 for the preparation of the 5´- and intrachain conjugates, 

respectively. The support 53 was an aminoalkylated CPG-support acylated with 

5-(4,4´-dimethoxytrityloxy)-4-oxo-3-thiapentanoyl groups. The phosphoramidite 

reagents 54 and 55 contained 2-benzylthio-2-oxoethyl groups for conjugation. 

 

Difunctionalized oligonucleotides were prepared by coupling azacrown 

phosphoramidite 40 to a single non-nucleosidic building block bearing two 

hydroxy functions.
III

 Levulinic acid esters (Lev) were used as protecting groups 

of these functions, because they can be conveniently removed on-support by fast 

treatment with hydrazinium acetate in pyridine.
82,83

 The syntheses of the three 

building blocks, i.e. 2-cyanoethyl 3-(4,4´-dimethoxytrityloxy)-2,2-bis[N-(3-le-

vulinoyloxypropyl)carbamoyl]propyl N,N-diisopropylphosphoramidite (56), 2-

cyanoethyl [(2-levulinoyloxyethyl) 5-O-(4,4´-dimethoxytrityl)-3-O-(2-levulino-

yloxyethyl)-β-D-ribofuranoside-2-yl] N,N-diisopropylphosphoramidite (57) and 

2-cyanoethyl [(2-levulinoyloxyethyl) 5-O-(4,4´-dimethoxytrityl)-2-O-(2-le-

vulinoyloxyethyl)-β-D-ribofuranoside-3-yl] N,N-diisopropylphosphoramidite (58) 

are outlined in Scheme 4. 
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Scheme 4. Syntheses of the building blocks 56–58 for the double conjugations. 

Reagents and conditions: (i) Lev2O, DMAP, Py; (ii) aq 80 % AcOH; (iii) 

DMTrCl, Py; (iv) 2-cyanoethyl N,N,N´,N´-tetraisopropylphosphorodiamidite, 

tetrazole, MeCN; (v) AllOH, BF3·Et2O, CH2Cl2; (vi) AllO(CO)OMe, Pd(OAc)2, 

PPh3, THF; (vii) 1. NaOMe, MeOH, 2. NaH, PMBCl, DMF; (viii) 1. OsO4, 

NaIO4, H2O, dioxane, 2. NaBH4, EtOH, CH2Cl2; (ix) Lev2O, DMAP, Py; (x) H2, 

Pd/C, EtOH; (xi) DMTrCl, Py; (xii) 2-cyanoethyl N,N-diisopropylchloro-

phosphoramidite, Et3N, CH2Cl2. 

The starting material for the building block 56, N,N´-bis(3-hydroxypropyl)-2-

methoxy-1,3-dioxane-5,5-dicarboxamide (59), was prepared as described 

previously.
84

 The hydroxypropyl arms of 59 were esterified with levulinic 

anhydride and the resulting compound 60 was treated with acetic acid to expose 

the other two hydroxy functions.
III

 One of the hydroxy groups of 61 was 

protected as DMTr-ether and the other was phosphitylated to obtain the desired 

building block 56. 
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The syntheses of the ribose-based branching units 57 and 58 started from the 

commercial 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (63).
III

 A BF3 promoted 

glycosidation with allyl alcohol gave a mixture of allyl 2,5- and 3,5-di-O-acetyl-

β-D-ribofuranosides 64a and 64b together with allyl 2,3,5-tri-O-acetyl-β-D-

ribofuranoside.
85

 The free hydroxy groups of 64a and 64b were then allylated,
86

 

after which the isomers 65a and 65b were separated by silica gel chromato-

graphy. The base-labile acetyl protections were replaced with 4-methoxybenzyl 

(PMB) group and the allyl group was first converted to aldehyde with 

OsO4/NaIO4 and then reduced to a 2-hydroxyethyl group with NaBH4, giving 

compounds 67a and 67b. The hydroxy group was levulinoylated and the PMB 

protections were removed by Pd/C-catalyzed hydrogenolysis. Among the 

exposed hydroxy functions of 69a and 69b, the primary hydroxy group was 

subjected to dimethoxytritylation, and the remaining secondary hydroxy group to 

phosphitylation, which gave the building blocks 57 and 58 in the form required 

for the oligonucleotide synthesis. 

3.1.3 Assembly of the azacrown-conjugated oligonucleotides 

2´-O-Methyl ORN strand was used as a recognition domain of the artificial 

ribonucleases. This choice was based on the good stability towards naturally 

existing nucleases and the high binding affinity to the target RNA. 2´-O-Methyl 

ORNs were synthesized in 1 µmol scale by the conventional phosphoramidite 

method on an automated DNA/RNA synthesizer following the standard RNA 

coupling protocol. All azacrown conjugated 2´-O-methyl ORNs were purified by 

ion-exchange HPLC or RP HPLC and characterized by mass spectrometry. 

The oligonucleotide conjugates bearing one azacrown unit at the 3´- or 5´-end or 

in the middle of the chain were prepared by forming an amide bond by the 

thioester approach. Accordingly, 3´-tethered conjugates were synthesized by 

assembling the desired 2´-O-methyl ORN chain on the modified support 53 

bearing the thioester linker (Scheme 5).
I
 After the chain assembly, the linker was 

cleaved by using an amino-functionalized azacrown derivative 38 as an attacking 

nucleophile. The deprotection of the 3´-tethered conjugate 71 was completed by 

ammonolysis in solution. Conjugate 72 having a different base sequence was 

synthesized similarly. 
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Scheme 5. Synthesis of the 3´-tethered conjugates 71 and 72. Reagents and 

conditions: (i) oligonucleotide synthesis; (ii) 1. 38, H2O, 2. aq NH3. 

Conjugation to the 5´-end was accomplished with a non-nucleosidic phosphor-

amidite reagent 54, which also contained the thioester function for the azacrown 

attachment.
I
 The standard phosphoramidite chemistry was used for the 2´-O-

methyl ORN chain assembly and reagent 54 was employed in the last coupling 

cycle (Scheme 6). The amino functionalized azacrown 37 was then reacted with 

the thioester group, and the deprotection of conjugate 73 and its release from the 

support was completed with ammonia. 

 

 

Scheme 6. Synthesis of the 5´-tethered conjugate 73. Reagents and conditions: (i) 

54, tetrazole, MeCN; (ii) 1. 37, H2O, 2. aq NH3. 
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The intrachain conjugation was performed using a non-nucleosidic building 

block 55 in a desired position within the chain (Scheme 7).
I
 After the oligo-

nucleotide synthesis, the thioester bond was cleaved with three different 

azacrown derivatives 37, 38 or 39 to obtain intrachain conjugates 74, 75 or 76 

having 4-, 8- or 11-atom long tether to the azacrown. The synthesis was 

completed with ammonolysis. 

 

Scheme 7. Synthesis of the intrachain conjugates 74–76. Reagents and condi-

tions: (i) standard oligonucleotide synthesis cycle with 55; (ii) oligonucleotide 

synthesis; (iii) 1. 37, 38 or 39, H2O, 2. aq NH3. 

The oligonucleotide conjugates containing two azacrowns in the middle of the 

chain or close to the 3´-terminus were prepared using a phosphodiester linkage 

between the azacrown and the oligonucleotide strand. For this purpose, 

levulinoyl-protected hydroxy functions were incorporated into the 2´-O-methyl 

ORNs with the aid of branching units 56, 57 or 58.
III

 Scheme 8 illustrates, as an 

example, the synthesis of oligonucleotide conjugates 77 and 78. After the chain 



 Results and Discussion 37 

assembly, the levulinoyl protections were removed on-support with hydrazinium 

acetate in pyridine and the azacrown building block 40 was coupled by two 

consecutive coupling cycles. Finally, the conjugate was released into solution 

and deprotected with ammonia treatment. Conjugates 79–82 were prepared 

similarly. The conventional phosphoramidite chemistry with RNA coupling 

protocol was used for the oligonucleotide synthesis, except that two coupling 

cycles had to be used to couple 56. For this building block, also a prolonged 

detritylation time was needed, consistent with earlier studies.
84,87,88

 Commercially 

available 5´-O-acetylated nucleotide building block was used in a last coupling 

cycle to protect the terminal hydroxy function at the time the azacrown building 

block was coupled to the other hydroxy groups. 

 

 

3.2 Synthesis of the targets 

The chimeric ribo/2´-O-methyl ORNs used as targets in the kinetic studies were 

synthesized on an automated DNA/RNA synthesizer from commercially 

available 2´-O-methyl and 2´-O-triisopropylsilyloxymethyl (TOM)-protected 2-

cyanoethyl-N,N-diisopropylphosphoramidite building blocks.
I-IV

 The standard 

RNA coupling protocol for the conventional phosphoramidite strategy was used 

on a 1 µmol scale. The targets were purified by ion-exchange HPLC and 

characterized by mass spectrometry. Sterilized water and equipment were used 

for all solutions and handling of the targets. 
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Scheme 8. Synthesis of the difunctionalized conjugates 77 and 78. Reagents and 

conditions: (i) oligonucleotide synthesis cycle with 56; (ii) oligonucleotide 

synthesis; (iii) H2NNH2·H2O, Py, AcOH; (iv) 1. two consecutive standard 

phosphoramidite couplings with 40, 2. aq NH3. 
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3.3 Kinetic studies 

The cleaving activities of the conjugates bearing one azacrown at the 3´-end (71 

and 72), 5´-end (73) or within (74–76) the 2´-O-methyl ORN chain, as well as 

the activities of the conjugates bearing two azacrowns at the penultimate site at 

3´-end (77, 79 and 81) or within (78, 80 and 82) the chain, were determined.
I-III

 

Because preliminary studies showed only very low activity for the 5´-tethered 

conjugate 73, we decided to leave that conjugate from further investigations.
I
 The 

more accurate cleavage studies were done with other conjugates by using 

chimeric ribo/2´-O-methyl ORNs 83–87 (Figure 7) as targets.
I-III

 The sequence 

of 2´-O-methylribonucleotides within these chimeric targets facilitated the 

synthesis and ensured efficient hybridization with the complementary artificial 

ribonuclease, whereas the ribonucleotide sequence offered the potentially scissile 

phosphodiester bonds. The base sequence of 3´-tethered conjugate was fully 

complementary with the 3´-terminal sequence of its target (83, 84) and the base 

sequences of the intrachain conjugate and its targets (85–87) were designed to 

form either a tri- or pentanucleotide bulge upon hybridization. 

 

Figure 7. Structures of the targets 83–87. The bold letters refer to ribo-

nucleotides, the rest to 2´-O-methylribonucleotides. 

All the cleavage reactions were carried out in 0.1 M HEPES buffer at pH 7.3 and 

35 ºC and the ionic strength was adjusted to 0.1 M with NaNO3. The progress of 

the reactions was followed by analyzing the composition of the samples 

withdrawn at suitable intervals from the reaction mixtures by capillary 

electrophoresis. To ease the quantification of the samples, p-nitrobenzene-

sulfonate was used as internal standard. As is discussed in section 1.6, the 

conditions of the cleavage reactions and the methods used for the analysis of the 

samples differ significantly between various research groups. The capillary 

electrophoresis may be regarded as an accurate method, compared, for example, 

to the extensively applied gel electrophoresis. 

An illustrative example of monitoring the cleavage reaction is given in Figure 8, 

which shows electropherograms obtained in the beginning, in the middle and in 

the end of the cleavage reaction. The followed reaction was the cleavage of the 
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target 85 by the Zn
2+

 complex of the oligonucleotide 82 conjugated with two 

azacrowns.
III

 As seen from the electropherograms, all oligonucleotides and 

internal standard appeared at different retention times, and the target disappeared 

and two product oligonucleotides were formed as the reaction proceeded. The 

first-order rate constant was obtained for the disappearance of the target by 

comparison of the peak area to that of the internal standard. 

 

Figure 8. The electropherograms obtained at times 0, 146 and 383 h for the 

cleavage of the target 85 by the Zn
2+

 complex of the conjugate 82. The reaction 

was carried out in HEPES buffer (0.1 M, I = 0.1 M with NaNO3) at pH 7.3 and 

35 ºC. The initial concentration of both the target and the conjugate was 18 µM. 

3.3.1 Cleavage by the mono(azacrown) conjugates 

Figure 9 shows, as an example, the cleavage of target 83 by the 3´-tethered 

conjugate 71 under the conditions mentioned above.
II
 The initial concentration of 

the target and the conjugate was 36 µM and that of Zn
2+

 ion somewhat higher to 

internal standard 
starting material 

(= target 85) 
products conjugate 82 

0 h 

146 h 

383 h 
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ensure complete complexing. The influence of the Zn
2+

 ion concentration on the 

cleavage reaction was investigated by increasing the concentration from 50 µM 

to 150 µM, and this did not affect the cleavage rate. The cleavage site within 

target 83 was determined by spiking the product mixture with potential cleavage 

products. The major product was found to be 3´-UGUGUCGUUGCGG-5´, the 

minor product being 3´-UGUGUCGUUGCGGA-5´. Accordingly, the target 83 

was mainly cleaved at the 5´-side of the last base-paired nucleotide and slightly 

cleaved at the phosphodiester bond one nucleotide towards the 5´-end. The 

reaction showed turnover in spite of the fact that the cleavage site is outside the 

complementary region of the target and the artificial nuclease. The target was 

entirely cleaved obeying first-order kinetics, even when present in 4-fold excess 

compared to the cleaving agent. 

 

Figure 9. Cleavage of the target 83 by the Zn
2+

 complex of artificial nuclease 71 

in HEPES buffer (0.1 M, I = 0.1 M with NaNO3) at pH 7.3 and 35 ºC. The initial 

concentration of both the target and the nuclease was 36 µM.
II 

Table 1 records the first-order rate constants for the cleavage of targets 83 and 

84 by cleaving agents 71 and 72, respectively.
II
 The 71/83 combination of the 

cleaving agent and the target evidently forms a more stable duplex than the 72/84 

pair, as it contains 8 CG base-pairs compared to only 4 CG base-pairs in 72/84. 

The less firmly hybridized conjugate 72 cleaved its target 5 times more 

efficiently than conjugate 71 under turnover conditions (4-fold excess of the 

target compared to the cleaving agent). The enhanced cleavage does not probably 

result from the reduced affinity to the target, but from the fact that 5´-UpA-3´ 
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bond is cleaved instead of 5´-ApG-3´ bond. The 5´-UpA-3´ bond is known to be 

cleaved easier than the other phosphodiester bonds.
65

 With the more stable pair 

71/83, the cleavage activity increased with increasing concentration of the 

cleaving agent, whereas the less stable pair 72/84 behaved quite in an opposite 

manner: increasing the concentration of the conjugate 72 retarded the cleavage. 

This may result from the tendency of conjugate 72, containing two sequences of 

contiguous uracil bases, at higher concentration to undergo intermolecular 

association by mutual interaction between the Zn
2+

 chelate in one conjugate and a 

uracil base in another. The explanation is reasonable because the azacrown 

chelates have been shown to bind to uracil bases.
89

 

Comparative measurements with Cu
2+

 and Ni
2+

 ions were also carried out.
II
 Both 

of these metal ion chelated conjugates were less efficient than the Zn
2+

 ion 

chelates, as is seen from the Table 1. 

Table 1. First-order rate constants for the cleavage of targets 83 and 84 by metal 

ion chelates of 3´-tethered mono(azacrown) conjugates 71 and 72, respectively, 

in 0.1 M HEPES buffer at pH 7.3 and 35 ºC (I = 0.1 M with NaNO3). 

cleaving 
agent target M2+ 

c(cleaving 
agent) / µM 

c(target) / 
µM k / 10-6 s-1 

71 83 Zn2+ 36 36 1.5 ± 0.2 

   18 18 1.4 ± 0.1 

   18 36 0.31 ± 0.02 

   9 36 0.20 ± 0.02 

  Cu2+ 18 18 0.49 ± 0.01 

  Ni2+ 18 18 0.71 ± 0.03 

72 84 Zn2+ 18 36 0.77 ± 0.06 

   9 36 1.0 ± 0.1 

  Cu2+ 9 36 0.62 ± 0.08 

  Ni2+ 9 36 0.71 ± 0.03 

Table 2 records the first-order rate constants for the cleavage of targets 85–87, 

forming bulges of various size and base content by the intrachain conjugates 74–

76 bearing linkers of different length.
II
 The cleavage by these intrachain 

conjugates also showed turnover, i.e. the disappearance of the target was 

complete and obeyed first-order kinetics even in 4-fold excess of target. The 

length of the linker attaching the azacrown to the oligonucleotide had some effect 

on the cleavage rate. With target 85, forming an A3-bulge, the rate was enhanced 
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45 % on going from the longest to the shortest linker and with A5-bulged target 

86, the rate enhancement was 30 %. 

The influence of the bulge size created on the target upon hybridization was 

investigated by comparing the targets forming A3- (85) and A5-bulges (86). The 

more flexible A5-bulge was cleaved 60-80 % more efficiently than the A3-bulge 

with all the intrachain conjugates 74–76. Interestingly, the U3-bulge was 

remarkably more stable than the A3-counterpart. The reason may be the tendency 

of the Zn
2+

 azacrown chelate to bind uracil base of the U3-bulge and in that way 

prevent the catalytic action.
89

 

Table 2. First-order rate constants for the cleavage of targets 85–87 by Zn
2+

 ion 

chelates of intrachain mono(azacrown) conjugates 74–76 in 0.1 M HEPES buffer 

at pH 7.3 and 35 ºC (I = 0.1 M with NaNO3). 

cleaving agent target 
c(cleaving 
agent) / µM c(target) / µM k / 10-6 s-1 

74 85 18 18 0.74 ± 0.06 

 86 18 18 1.2 ± 0.08 

 87 9 36 < 0.1 

75 85 18 18 0.64 ± 0.06 

  18 36 0.96 ± 0.05 

  9 36 0.48 ± 0.02 

 86 18 18 1.1 ± 0.06 

  18 36 0.88 ± 0.04 

  9 36 0.37 ± 0.02 

 87 9 36 0.12 ± 0.02 

76 85 18 18 0.51 ± 0.01 

  18 36 0.60 ± 0.04 

  9 36 0.46 ± 0.02 

 86 18 18 0.92 ± 0.04 

  18 36 0.96 ± 0.05 

  9 36 0.41 ± 0.03 

 87 9 36 0.11 ± 0.01 
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Table 3 lists the first-order rate constants for the cleavage by intrachain chelates 

of Cu
2+

 and Ni
2+

 ions as compared to Zn
2+

 ion.
II
 The Cu

2+
 and Ni

2+
 chelates of 

conjugates 75 and 76 were less powerful cleaving agents than the Zn
2+

 chelates. 

The same was discovered for the 3´-tethered conjugates as well, but now with the 

intrachain conjugates, the Cu
2+

 chelate was more efficient than the Ni
2+

 chelate, 

while the situation was opposite with the 3´-tethered conjugates. 

Table 3. First-order rate constants for the cleavage of targets 85 and 86 by metal 

ion chelates of intrachain mono(azacrown) conjugates 75 and 76 in 0.1 M 

HEPES buffer at pH 7.3 and 35 ºC (I = 0.1 M with NaNO3). 

cleaving 
agent target M2+ 

c(cleaving 
agent) / µM 

c(target) / 
µM k / 10-6 s-1 

75 85 Zn2+ 18 36 0.96 ± 0.05 

  Cu2+ 18 36 0.25 ± 0.01 

  Ni2+ 18 36 0.17 ± 0.02 

 86 Zn2+ 18 36 0.88 ± 0.04 

  Cu2+ 18 36 0.55 ± 0.08 

  Ni2+ 18 36 0.26 ± 0.02 

76 85 Zn2+ 18 36 0.60 ± 0.04 

  Cu2+ 18 36 0.20 ± 0.02 

  Ni2+ 18 36 0.12 ± 0.01 

 86 Zn2+ 18 36 0.96 ± 0.05 

  Cu2+ 18 36 0.44 ± 0.06 

  Ni2+ 18 36 0.14 ± 0.01 

 

3.3.2 Cleavage by the bis(azacrown) conjugates 

The cleaving activities of conjugates 77, 79 and 81, bearing two azacrowns close 

to the 3´-end of a 2´-O-methyl ORN, were determined under the same conditions 

as the activities for the monofunctionalized conjugates.
III

 The cleavage of target 

83 obeyed first-order kinetics with all the cleaving agents studied, as is seen from 

Figure 10. Interestingly, the catalytic activity differed significantly regardless of 

the structural similarity of the cleaving agents, conjugate 79 showing the best 

activity. The cleavage site was again defined by spiking the product mixture with 
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potential cleavage products and 3´-UGUGUCGUUGCGGA-5´ was found to be 

the product from reactions with all the cleaving agents 77, 79 and 81. In other 

words, the target was cleaved at the 5´-side of the nucleoside opposite to the non-

nucleosidic unit holding the azacrown ligands. 

 

 

Figure 10. Cleavage of the target 83 by the Zn
2+

 complexes of the artificial 

ribonucleases 77, 79 and 81 in HEPES buffer (0.1 M, I = 0.1 M with NaNO3) at 

pH 7.3 and 35 ºC. The initial concentration of both the target and the nuclease 

was 18 µM. The logarithmic concentration of 83 is plotted against time. Nota-

tion: 77 (■), 79 (●) and 81 (▲).
III 

 

Table 4 records the first-order rate constants for the cleavage reactions by the 

conjugates bearing two azacrown ligands either close to the 3´-terminus (77, 79 

and 81) or in the middle of the chain (78, 80 and 82).
III

 The influence of the 

cleavage rate on the Zn
2+

 ion concentration was studied with conjugates 77 and 

79 by increasing the concentration of the Zn
2+

 ion from 90 µM to 180 µM and 

keeping the other conditions unchanged. As is seen from the table, the rate 

constants obtained were equal within experimental errors, suggesting that the 

concentration of 90 µM is sufficient to achieve the maximal cleaving activity. 

The reaction showed turnover in spite of the fact that the cleavage took place 

outside the complementary region, as can be seen from the reactions where the 

target 83 was present in 4-fold excess compared to the cleaving agent 77 or 79. 
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Table 4.  First-order rate constants for the cleavage of target 83 by Zn
2+

 ion 

chelates of 3´-terminal bis(azacrown) conjugates 77, 79 and 81 and for the 

cleavage of targets 85 and 86 by Zn
2+

 ion chelates of intrachain bis(azacrown) 

conjugates 78, 80 and 82 in 0.1 M HEPES buffer at pH 7.3 and 35 ºC (I = 0.1 M 

with NaNO3). 

cleaving 
agent target 

c(cleaving 
agent) / µM 

c(target) / 
µM c(Zn2+) / µM k / 10-6 s-1 

77 83 18 18 90 5.9 ± 0.3 

79  18 18 90 20.8 ± 0.5 

81  18 18 90 2.5 ± 0.3 

77  18 18 180 6.3 ± 0.3 

79  18 18 180 20.7 ± 0.9 

77  9 36 90 0.27 ± 0.01 

79  9 36 90 0.76 ± 0.08 

78 85 18 18 90 0.9 ± 0.3 

80  18 18 90 1.7 ± 0.1 

82  18 18 90 1.1 ± 0.2 

78 86 18 18 90 1.2 ± 0.1 

80  18 18 90 1.7 ± 0.1 

82  18 18 90 1.0 ± 0.1 

 

The activity of the artificial ribonucleases 78, 80 and 82 incorporating two 

azacrowns in the middle of the 2´-O-methyl ORN chain, was tested with targets 

85 and 86, forming upon hybridization an A3- or A5-bulge, respectively, opposite 

to the azacrown ligands.
III 

All the ribonucleases cleaved the targets, but at a 

slower rate than the 3´-tethered counterparts. Again, the conjugate derived from 

the 1-O,3-O-difunctionalized ribofuranosyl building block (80) was the most 

efficient, but the catalytic activity was more than 1 order of magnitude lower 

than that of its 3´-terminal counterpart 79. The reason for the higher activity of 

the 1-O,3-O-difunctionalized azacrown conjugates 79 and 80 over their 1-O,2-O-

difunctionalized counterparts 81 and 82, respectively, remains obscure. It may 

simply be that the orientation of the 3-O-tethered azacrown group is optimal for 

the cleavage. 
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3.3.3 Comparison of the mono- and bisconjugated artificial 

ribonucleases 

The cleavage of phosphodiester bonds within similar targets by monomeric Zn
2+

 

complex of 1,5,9-triazacyclododecane (35) as a catalyst has been previously 

studied. The first-order rate constant, for example, for the cleavage of 5´-UpA-3´ 

bond within a linear single strand at pH 7.4 and 35 ºC is 4.2 x 10
-6

 s
-1

 on using 

the Zn
2+

 chelate at a 5 mM concentration.
64

 The rate constant for the cleavage by 

the 3´-tethered mono(azacrown) cleaving agent 72, which also cleaves the target 

at the 5´-UpA-3´ bond, is 1.0 x 10
-6

 s
-1

 at pH 7.3, 35 ºC and 9 µM concentration 

of the conjugate (Table 1).
II
 Accordingly, the conjugation of one azacrown to the 

sequence-recognizing oligonucleotide probe accelerates the cleavage 130-fold. A 

similar comparison can be made for the cleavage of A3-bulge; the monomeric 

chelate 35
64

 at the concentration of 5 mM cleaves the bulge at rate 4.5 x 10
-6

 s
-1

 

and intrachain mono(azacrown) conjugate 74 at concentration of 18 µM cleaves 

the bulge at rate 0.74 x 10
-6

 s
-1

 (Table 2).
II
 Accordingly, the cleavage of A3-bulge 

is accelerated 46-fold when azacrown is attached to the oligonucleotide chain. 

Attaching two azacrown units to the 3´-terminal site of oligonucleotide chain 

enhances further the cleavage capability. Mono(azacrown) conjugate 71 and bis-

(azacrown) conjugates 77, 79 and 81, all of which have the same base sequence, 

cleave target 83 at the rates 1.4 x 10
-6

 s
-1

 (Table 1),
II
 5.9 x 10

-6
 s

-1
, 20.8 x 10

-6
 s

-1
 

and 2.5 x 10
-6

 s
-1

 (Table 4),
III

 respectively, at the identical conditions. In other 

words, all the bisfunctionalized conjugates exhibit better catalytic activity than 

the monofunctionalized counterpart, the enhancement being most significant with 

conjugate 79, 15-fold compared to 71. If the best bis(azacrown) conjugate 79 is 

compared to the monomeric Zn
2+

 chelate 35 at the same concentration (18 µM), 

the rate acceleration is 1000-fold.
64

 

The artificial ribonucleases 78, 80 and 82 bearing two azacrowns in the middle of 

the chain accelerate the cleavage only slightly more efficiently than their mono-

azacrown counterpart. The mono(azacrown) conjugate 75, having approximately 

the same length of the tether as 78, 80 and 82, exhibit a first-order rate constant 

of 0.64 x 10
-6

 s
-1

 for the A3-bulged target 85 (Table 2).
II
 Under the same condi-

tions, the rate constants referring to cleavage of the same target by the bis(aza-

crown) conjugates 78, 80 and 82 are 0.9 x 10
-6

 s
-1

, 1.7 x 10
-6

 s
-1

 and 1.1 x 10
-6

 s
-1

, 

respectively (Table 4).
III

 At its best, the acceleration is 2.5-fold. The A5-bulged 

target 86 is cleaved approximately as readily by conjugates with one and two 

azacrowns. 
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3.4 Conjugates derived from a uracil selective cleaving agent 

Base moiety selective cleavage of phosphodiester bonds has been achieved by 

small molecular cleaving agents. For example, the azacrown moieties when 

attached to an aromatic scaffold (88) cleave target RNA at the 5´-side and to a 

lesser extent at the 3´-side of uridines.
89-91

 The selectivity arises from the tenden-

cy of the azacrown to bind to uracil base. Thus, one of the Zn
2+

-azacrown groups 

anchors the cleaving agent 88 to the uracil base, while the other Zn
2+

-azacrown 

group works as a catalyst and cleaves the phosphodiester bond of the target. The 

cleavage is two orders of magnitude faster at a uridine site than at an adenosine 

or a cytidine site, which may be enough for the short targets. For the longer 

sequences, random background cleavage, which is proportional to the number of 

phosphodiester bonds in oligomer, is too fast to allow controlled cleavage. This 

part of the thesis focuses on clarifying whether utilization of the anchoring ability 

to the uracil base can be used in synergy with the sequence recognition of the 2´-

O-methyl ORN probe. Does that cooperation enhance the catalytic efficiency, 

resulting in cleavage precisely at a single phosphodiester bond? The principle 

behind the study is outlined in Figure 11. Accordingly, oligonucleotide conjuga-

tes bearing the dinuclear azacrown ligand 88 have been synthesized and their 

ability to cleave various RNA targets has been investigated.
IV 
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Figure 11.  The principle of cooperative action of artificial ribonucleases.
IV 

 

3.4.1 Synthesis of the oligonucleotide conjugates 

Dinuclear azacrown ligand 88 was designed to incorporate a phosphoramidite 

group for the oligonucleotide conjugation. For this purpose 2-cyanoethyl 2-[3,5-

bis({[1,5,9-tris(trifluoroacetyl)-1,5,9-triazacyclododecan-3-yl]oxy}methyl)phen-

oxy]ethyl N,N-diisopropylphosphoramidite (89) was prepared according to 

Scheme 9.
IV

 Commercially available dimethyl 5-hydroxyisophtalate (90) was 

first treated with allyl bromide, and the ester groups of 91 were then reduced to 

hydroxy functions, which were converted to better leaving groups by tosylation. 

1,5,9-Tris[(tert-butoxy)carbonyl]-1,5,9-triazacyclododecan-3-ol (94), prepared as 

described earlier,
89

 was used as a nucleophile to replace the tosyl groups of 93. 

The allyl function of the bis(azacrown) compound 95 was converted to aldehyde 

to obtain 96, which was onward reduced to alcohol 97. Finally, the Boc 

protections were replaced with Tfa groups and the hydroxy function was 

phosphitylated to yield the desired bis(azacrown) building block 89 to be used 

for the oligonucleotide conjugation. 
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Scheme 9.  Synthesis of the bis(azacrown) building block 89. Reagents and con-

ditions: (i) AllBr, 
i
Pr2EtN, DMF; (ii) LiAlH4, Et2O; (iii) TsCl, NaOH, H2O, 

dioxane; (iv) 94, NaH, DMF; (v) OsO4, NaIO4, H2O, dioxane; (vi) NaBH4, 

EtOH; (vii) 1. TFA, CH2Cl2, 2. TfaOMe, Et3N, MeOH, 3. (Tfa)2O, Py, CH2Cl2, 

4. Et3N, MeOH; (viii) 2-cyanoethyl N,N-diisopropylchlorophosphoramidite, 

Et3N, CH2Cl2. 

 

The non-nucleosidic building blocks 99 and 100 (Scheme 10), which allow the 

attachment of bis(azacrown) 89 to the oligonucleotide chain, were prepared as 

follows. 2-Cyanoethyl {(2R,3S,5S)-2-[(4,4´-dimethoxytrityl)oxymethyl]-5-(2-le-

vulinoyloxyethyl)tetrahydrofuran-3-yl} N,N-diisopropylphosphoramidite (99) 

was synthesized as described earlier.
92

 Its analog 100, with a longer side chain, 

was synthesized from previously prepared compound 101.
92

 The aminolysis of 

101 with 2-[2-(2-aminoethoxy)ethoxy]ethanol (102) yielded amide 103, which 

was subjected to acylation of the hydroxy group with levulinic anhydride and 

then to removal of the silyl protection with Bu4NF.
IV

 Compound 105 was finally 

converted to the phosphoramidite building block 100 by conventional method. 
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Scheme 10.  Non-nucleosidic building blocks 99 and 100. Reagents and condi-

tions: (i) 1. aq KOH, dioxane, 2. Dowex-50 (pyridinium form), Py, 3. 102, 

HBTU, 
i
Pr2EtN, DMF; (ii) Lev2O, Py; (iii) Bu4NF, THF; (iv) 2-cyanoethyl N,N-

diisopropylchlorophosphoramidite, Et3N, CH2Cl2. 

 

Incorporation of the above-mentioned building blocks to the 2´-O-methyl ORN 

strand is outlined in Scheme 11.
IV

 The commercially available support with N
4
-

benzoyl-5´-O-(4,4´-dimethoxytrityl)-2´-O-methylcytidine was used. The 5´-O-

protection was first removed and the non-nucleosidic building block, either 99 or 

100, was coupled manually using a prolonged coupling time. Then the levulinoyl 

protection was removed with hydrazinium acetate in pyridine and the bis-

(azacrown) building block 89 was coupled manually using again a prolonged 

coupling time. The support bearing the bis(azacrown) block was loaded to the 

synthesizer, and the 2´-O-methyl ORN sequence was assembled by the standard 

phosphoramidite chemistry. The fully deprotected oligonucleotide conjugates 

106 and 107 were obtained by ammonolysis. 
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Scheme 11.  The synthesis of the bis(azacrown) oligonucleotide conjugates 106 

and 107. Reagents and conditions: (i) manual oligonucleotide synthesis cycle 

with 99 or 100; (ii) H2NNH2·H2O, Py, AcOH; (iii) manual oligonucleotide 

synthesis cycle with 89; (iv) 1. oligonucleotide synthesis, 2. aq NH3. 

3.4.2 Hybridization with target sequences 

Targets for the bis(azacrown) oligonucleotide conjugates 106 and 107 are shown 

in Figure 12. All the targets are 20-mer chimeric ribo/2´-O-methyl ORNs 108–

113 having fully complementary 3´-terminal sequence and containing different 

5´-terminal ribonucleotide overhangs. One uridine is located in various places 
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within the overhang. For comparative purposes, an unconjugated 2´-O-methyl 

ORN 114 was synthesized and hybridized with the same targets. 

 

 

Figure 12.  Structures of the targets 108–113 and the reference oligonucleotide 

114. The bold letters refer to ribonucleotides, the rest to 2´-O-methylribo-

nucleotides. 

 

Table 5 records the melting temperatures for the duplexes of bis(azacrown) 

conjugate 107 and reference oligonucleotide 114 with several targets 108–113.
IV

 

As can be seen from the data, the conjugate 107 hybridizes with all the targets 

even somewhat better than the reference oligonucleotide 114 containing no 

azacrown groups. The duplexes formed are clearly stable at the temperature of 

the cleavage reactions, 35 ºC. The presence of Zn
2+

 ion further stabilizes the 

duplexes, the stabilization being most evident with the target 109, which has the 

uracil base directly after the complementary region of the conjugate 107 and the 

target. In this case, the temperature is increased by 5.3 ºC, while the increase is 

only 1.7 ºC with the reference oligonucleotide 114 and the same target. When 

conjugate 107 was hybridized with target 108, containing no uracil within the 

overhang, the addition of Zn
2+

 ion increased the temperature only by 2.2 ºC. 

Evidently, the azacrown group of the conjugate 107 truly recognizes the uracil 

base of the target. 
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Table 5.  Melting temperatures of the duplexes of oligonucleotide conjugate 107 

and reference oligonucleotide 114 with targets 108–113 in the absence and 

presence of Zn
2+

 ion (10 µM) in 10 mM phosphate buffer at pH 7.0 (I = 0.1 M 

with NaCl). The concentrations of the oligomers were 2 µM. 

Target 
Tm (107) / º  Tm (114) / º 

without Zn2+ with Zn2+  without Zn2+ with Zn2+ 

108 76.1 78.3  73.8 74.9 

109 76.7 82.0  73.3 75.0 

110 76.7 79.7  73.5 76.1 

111 77.5 79.8  75.0 74.6 

112 78.2 78.5  74.5 74.4 

113 75.9 77.9  75.5 74.4 

 

3.4.3 Kinetic studies 

It has been reported earlier that dinuclear Zn
2+

 complex of bis(azacrown) 

monomer 88 cleaves ORN targets 5´-CAAUAC-3´ and 5´-CAACAC-3´ at rates 

7.70 x 10
-6

 s
-1

 and 0.24 x 10
-6

 s
-1

, respectively.
91

 In other words, the target with 

uracil base within the sequence is cleaved 32 times faster than the target without 

uracil residue. The obvious rate acceleration most likely results from the 

anchoring of one azacrown group of the monomer 88 to the uracil base, bringing 

the other azacrown group near the cleavable phosphodiester bond.
89,91

 The 

melting temperature studies also indicate that the bis(azacrown) oligonucleotide 

conjugate 107 really recognizes the uracil base of the target 109.
IV

 For these 

reasons, one might expect this anchoring ability in synergy with the sequence 

recognition by the oligonucleotide probe to result in facilitated and selective 

cleavage of the targets containing uracil base near the cleavage site. However, 

this is not the case. Table 6 records the rate constants for the cleavage of the 

targets 108–113 by the bis(azacrown) conjugates 106 and 107 and also, for 

comparison, by the bis(azacrown) monomer 88 in the presence of the reference 

oligonucleotide 114.
IV

 As can be seen, the target 108 containing no uracil was 

cleaved even better than the targets containing uracil. That is, tethering of the 

bis(azacrown) 88 to the sequence recognizing oligonucleotide does not speed up 

the cleavage reaction. On the contrary, the uracil specific cleavage is retarded. 

The reason for this observation may be that when the oligonucleotide moiety of 
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the bis(azacrown) conjugate 106 or 107 is hybridized with the target and at the 

same time the azacrown is anchored to the uracil base of the target, the rigidity of 

the structure prevents the remaining azacrown to reach the phosphodiester bond 

any more. Consistent with this assumption, the cleavage by the monomeric 

bis(azacrown) 88 together with the reference oligonucleotide 114 resulted at 

some point even higher cleavage rates than conjugates 106 and 107. The earlier 

finding with the mono(azacrown) conjugates 74–76, according to which uracil 

bulges were not cleaved in striking contrast to adenine bulges, lends additional 

support for this interpretation.
II 

 

Table 6.  First-order rate constants for the cleavage of targets 108–113 by Zn
2+

 

ion chelates of bis(azacrown) conjugates 106 and 107 and monomeric 

bis(azacrown) 88 in presence of reference oligonucleotide 114 in 0.1 M HEPES 

buffer at pH 7.3 and 35 ºC (I = 0.1 M with NaNO3). The concentration of the 

oligomers and 88 were 18 µM and that of Zn
2+

 ion 90 µM. 

target k (106) / 10-6 s-1 k (107) / 10-6 s-1 k (88 + 114) / 10-6 s-1 

108 2.44 ± 0.07 1.66 ± 0.08 0.8 ± 0.1 

109 1.09 ± 0.04 0.19 ± 0.03 0.9 ± 0.1 

110 2.7 ± 0.1 0.44 ± 0.03 4 ± 1 

111 0.39 ± 0.04 0.25 ± 0.02 0.5 ± 0.1 

112  0.82 ± 0.05 0.8 ± 0.1 

113  0.79 ± 0.08 1.5 ± 0.2 
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4. CONCLUSIONS 

In this study several artificial ribonucleases based on cleaving capability of metal 

ion chelated azacrown moiety were designed and synthesized. The synthesis 

strategy is such that can be easily adapted to tethering of various groups other 

than azacrowns, to the desired position in oligonucleotide strands. The most 

efficient ribonucleases were the ones with two azacrowns close to the 3´-end of 

the 2´-O-methyl ORN, the best being 1-O,3-O-difunctionalized conjugate 79.
III

 

Among the transition metal ions studied, the Zn
2+

 ion was found to be better than 

Cu
2+

 and Ni
2+

 ions.
II
 

It is challenging to improve further the cleaving activity by simply bringing the 

cleaving agent near the cleavable site. Apparently, on achieving some kind of 

optimum structure for both the cleaving agent and the target, it may be possible 

to get even more potent artificial ribonucleases. 2,9-Dimethylphenanthroline, 

being more efficient cleaving agent than azacrown, may form together with the 

target more ideal structure or orientation for the cleavage.
67

 It has, however, one 

major disadvantage over the azacrown; its stability constants for the Zn
2+

 and 

Cu
2+

 complexes are much weaker.
72

 Thus, even though the 2,9-dimethyl-

phenanthroline cleaves better in excess of metal ion, the situation is probably 

opposite under intracellular conditions where the metal ion concentration is 

lower. At this moment, the best cleaving agents may be fast enough for the 

biotechnological studies in vitro; for example for cutting of large RNA molecules 

or for analyzing the three-dimensional structures of RNAs. But before they can 

be more widely used in vivo, and thus also in therapeutic applications, the 

cleaving efficiency, and possibly also the complex stability, must be considerably 

improved. 
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5. EXPERIMENTAL 

5.1 Synthesis and analysis of the compounds 

The detailed synthetic methods of the compounds discussed in this thesis can be 

found in the original publications.
I-IV

 All the oligonucleotides were synthesized 

on an Applied Biosystems 392 or 3400 DNA/RNA synthesizer by conventional 

phosphoramidite strategy. The monomeric compounds were analyzed by MS, 
1
H 

NMR, 
13

C NMR and 
31

P NMR when needed and the oligonucleotide conjugates 

were analyzed by ESI-MS. 

5.2 Kinetic measurements 

The reactions were carried out in Eppendorf tubes immersed in a water bath of 

35 ºC. The pH was adjusted with 0.1 M HEPES buffer to 7.3 and the ionic 

strength with NaNO3 to 0.1 M. The concentrations of the azacrown conjugated 

oligonucleotides, targets and metal ions (added as nitrates) were as mentioned in 

the tables. 4-Nitrobenzenesulfonate ion was used as an internal standard. The 

total volume of the reaction mixture was 200 µl in each kinetic run. Aliquots of 

20 µl were withdrawn at suitable intervals and the reaction was quenched by 

adding aq HCl and cooling to 0 ºC. 

The samples were analyzed immediately by capillary zone electrophoresis 

(Beckman Coulter P/ACE MDQ CE System) using a fused silica capillary (inner 

diameter 50 µM, effective length 50 cm) with inverted polarity, citrate buffer (0.2 

M, pH 3.1) and -30 kV voltage. The quantification was based on comparison of 

the UV absorptions at 254 nm of the target oligonucleotide and internal standard. 

The peak area was first normalized by dividing it by migration time. The first-

order rate constants were calculated for the disappearance of the target according 

to the integrated first-order rate law. 

5.3 Melting temperature studies 

The melting curves (absorbance versus temperature) were measured at 260 nm 

on a Perkin-Elmer Lambda 35 UV/VIS Spectrometer using 10 mM potassium 

phosphate buffer (pH 7) containing 0.1 M NaCl. The concentrations of the oligo-

nucleotides and their targets were 2 µM. The Tm values were determined as the 

maximum of the first derivative of the melting curve. 
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