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Abstract

The acceleration of solar energetic particles (SEPs) by flares and coronal
mass ejections (CMEs) has been a major topic of research for the solar-
terrestrial physics and geophysics communities for decades. This thesis
discusses theories describing first-order Fermi acceleration of SEPs through
repeated crossings at a CME-driven shock. We propose that particle trap-
ping occurs through self-generated Alfvén waves, leading to a turbulent
trapping region in front of the shock.

Decelerating coronal shocks are shown to be capable of efficient SEP
acceleration, provided seed particle injection is sufficient. Quasi-parallel
shocks are found to inject thermal particles with good efficiency. The roles
of minimum injection velocities, cross-field diffusion, downstream scattering
efficiency and cross-shock potential are investigated in detail, with down-
stream isotropisation timescales having a major effect on injection efficiency.

Accelerated spectra of heavier elements up to iron are found to exhibit
significantly harder spectra than protons. Accelerated spectra cut-off ener-
gies are found to scale proportional to (Q/A)1.5, which is explained through
analysis of the spectral shape of amplified Alfvénic turbulence. Acceleration
times to different threshold energies are found to be non-linear, indicat-
ing that self-consistent time-dependent simulations are required in order
to expose the full extent of acceleration dynamics. The well-established
quasilinear theory (QLT) of particle scattering is investigated by compar-
ing QLT scattering coefficients with those found via full-orbit simulations.
QLT is found to overemphasise resonance conditions. This finding supports
the simplifications implemented in the presented coronal shock acceleration
(CSA) simulation software.

The CSA software package is used to simulate a range of acceleration
scenarios. The results are found to be in agreement with well-established
particle acceleration theory. At the same time, new spatial and temporal
dynamics of particle population trapping and wave evolution are revealed.
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Chapter 1

Solar Energetic Particles

1.1 The Sun

The Sun, designated with the symbol �, is our life force. It feeds energy
to the solar system through electromagnetic (EM) radiation, gravitational
forces, plasma waves and ejected particles. The constant outflowing stream
of electrons and ions, known as the solar wind (Gringauz et al. 1960), is
a dilute hot plasma, streaming outwards through the planetary zone until
it forms the termination shock at the edge between the solar system and
interstellar space. Processes on the solar surface and in the solar corona
can release massive amounts of energy, leading to clouds of ejected plasma,
shock waves, and accelerated particles.

Solar wind ion charge states and abundances (see, e.g., Lodders 2003)
can vary both between different phases of the 11-year solar activity cy-
cle (Lee 2000), different solar wind outflow regions (Srivastava & Schwenn
2000), and different individual energy release events (Tylka et al. 1999). As
the solar wind (slow wind at ca. 400 km s−1, fast wind at ca. 700 km s−1)
is mostly collisionless, high energy particles do not thermalise efficiently.
Some particles can be accelerated as Solar Energetic Particles (SEP) to
tens or hundreds of MeV per nucleon, or, in the case of Ground-Level En-
hancement (GLE) events (Cliver et al. 1983; Reames 2009; Gopalswamy
et al. 2012), into the GeV range. These SEPs constitute a real hazard to
telecommunications, global positioning systems, space flight, and astronaut
safety.

The Earth has a strong internal dipole magnetic field, which extends
into near-Earth space as the magnetosphere (Fairfield 1968). A boundary
called the magnetopause exists where the solar wind and the extended
magnetic field of the Sun impact on the magnetosphere of the Earth. The
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impacting solar wind forms a bow shock in front of the magnetosphere. The
shocked and deflected region of plasma between the magnetopause and the
bow shock is known as the magnetosheath.

The magnetosphere shields the Earth, suppressing the influx of energetic
charged particles, which could potentially cause significant damage to near-
Earth satellites and astronauts conducting spacewalks (see, e.g., Dorman &
Pustil’nik 2008). Operation outside the protection of the magnetosphere is
only possible if the variations and effects of the solar environment are well
understood.

The term Space weather can be used both as a description of solar pro-
cesses and conditions harmful to technology and life (Wright et al. 1995)
and as a more encompassing description for the physical and phenomeno-
logical states of natural space environments (Watermann et al. 2009). In
studying and simulating SEP acceleration processes, we can attain a better
understanding of space weather and how to take it into account in space
mission design.

1.2 Observations of energetic particles

The rise of the space age has allowed mankind to breach the limitations of
ground-based observations, greatly increasing our capabilities in detecting
and understanding solar activity. Missions observing the solar wind and
the Sun from the Lagrange point L1, approximately stationary between
the Sun and the Earth, include, for example, ACE (Advanced Composition
Explorer), Wind, and SOHO (Solar and Heliospheric Observatory). The
Solar Dynamics Observatory or SDO is in geosynchronous orbit around
the Earth. The Cluster mission observes interactions between the solar
wind and Earth’s magnetosphere in orbit around the Earth, whereas the
STEREO (Solar Terrestrial Relations Observatory) mission consists of twin
spacecraft orbiting around the Sun at approximately 1 astronomical unit
(AU), with one unit orbiting ahead of the Earth, one following behind
it. Aboard the International Space Station, the AMS-02 (Alpha Magnetic
Spectrometer) further extends the observation of very high energy cosmic
rays (CRs). Other projects observing cosmic rays include, for example,
PAMELA and BESS. One example of a future mission for solar observations
is SolO (Solar Orbiter), which will achieve an elliptical orbit around the Sun,
with a perihelion of 0.284 AU. Another is SPP (Solar Probe Plus), with
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Figure 1.1: An example of particle flux detected by ERNE/LED
and ERNE/HED aboard SOHO from the December 13th, 2006
event. Energy ranges are in units MeV. Image credit: SEPServer
(www.sepserver.eu)

a perihelion distance of only 0.04 AU. When spacecraft positions allow,
multi-spacecraft observations can be used to infer the spatial and temporal
evolution of an event and associated SEP populations (see, e.g., Malandraki
et al. 2012 and Ng et al. 2012).

SEP observations can be done on a per-particle basis, or by generating
series of particle fluxes with segmented energy ranges (see, e.g., Torsti et al.
1988). Particles are classified according to element and isotope, and some-
times, charge state. Some instruments, such as ERNE aboard SOHO, are
capable of transmitting information on the directions of incident particles,
which can be used to infer the angular distribution of the flux (Torsti et al.
1997). Instruments are capable of observing only a limited range of par-
ticle energies although, for example, AMS-02 and PAMELA can observe
particles in the GeV or even TeV range. Example data gathered by ERNE
from the December 13th, 2006 event is shown in figure 1.1.

Before impacting the detector, accelerated particles travel through the
interplanetary medium, altering their angular and temporal profiles (see,
e.g., Kocharov et al. 2009). Deconvolution of the effects of IP transport on
properties of a SEP population can be used to find out additional informa-
tion on the release site. Solar event properties can also be probed by EM



20 Solar Energetic Particles

observations. Particle and EM observations, along with particle accelera-
tion theory and combined with numerical simulations, are an excellent tool
for furthering our understanding of solar phenomena.

1.3 Particle acceleration sources

Historically, SEP events were believed to originate at solar flares, observable
from the surface of the Earth through white light and hydrogen alpha-
line (Hα) emission. New and improved observational methods, facilitated
by spacecraft, encouraged attempts to categorise them. Since the 1980s,
SEP events have been split into two categories as impulsive and gradual
events (see, e.g., Reames et al. 1992). During these events, the particle
flux can increase by orders of magnitude. Impulsive events last from hours
to a few days, while gradual events can last up to a week. Research into
acceleration mechanisms at flares or shocks (see, e.g., Reames 2002) has
presented several mechanisms capable of explaining acceleration to high
energies, which can be used to describe features related to particle spectra,
temporal profiles, and ion ratios.

Observations of radiative emissions such as radio waves as well as soft
and hard X-rays can be used to connect the source of particle acceleration
to events visible on the solar disk. Emission profiles and their resemblance
to impulsive or gradual events (see, e.g., Reames 1990b and Reames et al.
1992) are an important classification tool.

Although some events seem to fit neatly into one or the other category,
there is a large indefinite group of mixed events exhibiting properties of
both types (see, e.g., Cane et al. 2003 and Tylka et al. 2005). Observed
particle fluxes can appear to exhibit both prompt and gradual components,
especially at high energies or for minor ions. Multi-peaked events may
suggest flare and shock acceleration occurring concurrently (Li & Zank
2005).

At the same time, there appears to be only a weak connection between
shock parameters and SEP acceleration efficiency (Lario et al. 2005). In
recent years, a growing trend has been to view shocks as the primary source
of energetic particle acceleration for both gradual and mixed events, with
flares providing important seed particle population enhancements (see, e.g.,
Mason et al. 1999, Tylka et al. 2001, Tylka et al. 2005 and Sandroos &
Vainio 2009b), which can lead to increased acceleration efficiency and ion
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composition resembling impulsive events. In this thesis, we focus on coronal
shocks as sources of SEP acceleration.

1.4 Shock acceleration mechanisms

As solar wind particles encounter a propagating coronal shock, they may
experience significant acceleration and reach high energies through various
interactions (see, e.g., Fisk 1971; van Nes et al. 1984). Diffusive Shock
Acceleration (DSA) is the process of particles gaining energy from repeated
shock crossings due to scatterings in both the upstream and the downstream
of the shock. Shock Drift Acceleration (SDA) describes energy gains of
particles due to the motional electric field. Shock Surfing describes small-
scale acceleration of particles, trapped at the shock front due to the cross-
shock potential, experiencing acceleration by the motional electric field.

1.5 Particle populations

SEP fluxes and the solar wind consist of the primary elements found in the
Sun (hydrogen, helium) and heavier elements. The exact composition of
the solar wind is modified by solar cycle activity, the source region, and the
solar wind type (Ross & Aller 1976; Reames et al. 2012). In table 1.1, we
present a selection of energetic particle types and their related elemental
abundances.

Due to the high temperature of the solar corona, gas exists in a plasma
state where hydrogen is found almost exclusively as detached protons and
electrons, and many heavier elements have also lost a significant fraction of
their electrons. The existence of both ions and electrons results in a macro-
scopically neutral plasma which can exhibit freeze-in of magnetic field-lines
(Alfv́en 1950). Alfvén (1977) delves further into this particle-field interac-
tion of plasmas.

A thermalised proton population has a Maxwellian velocity distribution,
given as

f(v) =

(
mp

2πkBT

)3/2

exp

[
−mp|v|2

2kBT

]
, (1.1)

where v is the velocity of the particle, mp is the proton mass, kB is the
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Boltzmann constant, and T is the plasma temperature. As the plasma of
the solar wind is dilute, it is considered collisionless, and the distribution
function of the plasma can differ from the Maxwellian. Thus, the solar
corona can consist of both thermal and non-thermal particle populations,
exhibiting suprathermal tails extending to high energies.

In order to model a particle population exhibiting a suprathermal tail,
we use the κ-distribution (Vasyliunas 1968; Prested et al. 2008), described
by the equation

f(v) =
n(r)Γ(κ+ 1)

w3
0π

3/2κ3/2Γ(κ− 1/2)

[
1 +
|v|2

κw2
0

]−κ−1

, (1.2)

where n(r) is the plasma density, r is the heliocentric distance, Γ is the
Gamma function, and w0 is a representative velocity parameter related to
the kinetic temperature T as

w0 =

√
2TkB

κ− 3/2

κmp
. (1.3)

The parameter κ signifies the strength of the suprathermal tail, with lower
values resulting in stronger tails, and the distribution approaches a Maxwellian
as κ → ∞. In this work, a κ-distribution of κ = 2 is used to represent a
strongly non-thermal particle population, and a parameter of κ = 15 is
used to represent a nearly Maxwellian distribution. A sample of distribu-
tion functions following the κ-distribution is shown in figure 1.2.

1.6 Energetic particle transport

In order to understand transport and acceleration of SEPs, it is essen-
tial to review the basic equations governing their motion within the solar
wind plasma environment. We assume an infinitely conducting plasma
with background magnetic field B0, and assume that a transformation to
a frame with macroscopic electric field E0 = 0 is possible. The motion of
a charged particle with velocity v, momentum p, and charge q can be de-
scribed with the guiding centre approximation, split into motion parallel to
the magnetic field line (v‖ = v cos θ) and perpendicular to it (v⊥ = v sin θ).
θ is the particle pitch-angle, and µ = cos θ is the pitch-angle cosine. Per-
pendicular motion occurs along a helical path, with angular gyrofrequency
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Figure 1.2: Sample particle distribution functions f(v) with
κ=2, 4, 6, and 15, along with a Maxwellian distribution func-
tion.
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Ω = −qB/(γmc), where c is the speed of light, and γ is the particle Lorentz
factor. The Larmor radius of the gyropath is rL = v⊥/Ω = γmcv⊥/(qB).
The guiding centre is found by projecting the position of the particle to the
field line at the centre of the gyropath. The guiding centre propagates at
speed v‖. This approximation is valid as long as the characteristic spatial
scale of the magnetic field is much larger than the Larmor radius.

In the absence of non-magnetic forces, changing magnetic flux density
can cause a particle to be deflected, with v‖ and v⊥ changing whilst v re-
mains constant. As magnetic flux density B increases, parallel velocity de-
creases, and a particle can experience magnetic mirroring. As B decreases,
the particle is focused towards smaller pitch-angles.

1.7 Kinetic theory

The evolution of a particle population can be described through kinetic the-
ory as an equation of change for the distribution function of particles. To
begin, we may assume all changes of state are adiabatic, and consider Liou-
ville’s theorem, i.e., the conservation of the distribution function fα(r,p, t)
for particle population α in phase space along particle orbits (Gibbs 1902).
Extending this to the whole distribution function and defining ṙ = v and
ṗ = q(E + v ×B/c) yields

dfα
dt

=
∂fα
∂t

+ ṙ · ∇rfα + ṗ · ∇pfα = 0. (1.4)

This is the kinetic form of the collisionless Boltzmann equation, also known
as the Vlasov equation.

The Vlasov equation can be altered to use ensemble averages, where
〈fα(r,p, t)〉 = Fα(r,p, t), describing average evolution of a population
experiencing random magnetic fluctuations. We consider an ensemble of
small-scale fluctuations and quasilinear approximations (see, e.g., Schlick-
eiser 2002), and define the coordinate system as ξi = (p, µ, φ, x, y, z). This
is also presented in Paper IV, section 2.2, using coordinates Xσ. Here
p and µ describe particle momentum in the plasma rest frame, φ is the
gyrophase, and x, y, and z are spatial coordinates of the guiding centre.
This allows rearranging the Vlasov equation as a diffusion equation, known
as the Fokker-Planck equation (Chandrasekhar 1943). This, assuming a
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homogeneous background magnetic field, takes the form

∂Fα
∂t

+ vµ
∂Fα
∂z
− Ω

∂Fα
∂φ
− 1

p2

∂

∂ξi

(
p2Dξiξj

∂Fα
∂ξj

)
= Sα, (1.5)

where Sα = Sα(p, µ, φ, x, y, z) is a source function and Dξiξj is a Fokker-
Planck coefficient, and where Einstein summation is applied over i and j.
These diffusion coefficients are a way of describing the phase-space evolu-
tion of a particle population due to, for example, collisions and scattering
off magnetic fluctuations such as Alfvénic turbulence. Choosing to limit
motion to the guiding centre approximation along a single radial field line,
averaging over all gyrophases, and representing the coordinate system as
ξ̂i = (p, µ, z) allows describing the plasma rest frame evolution of the en-
semble average of particles F̂α(p, µ, z) with the equation

∂F̂α
∂t

+ vµ
∂F̂α
∂z
− 1

p2

∂

∂ξ̂i

(
p2Dξ̂iξ̂j

∂F̂α

∂ξ̂j

)
= Ŝα(p, µ, z). (1.6)

A major topic of research related to CRs is that of solving the various
Fokker-Planck coefficients, allowing formulation of CR transport equations
(see, e.g., Kulsrud & Pearce 1969, Jokipii 1971, Luhmann 1976, and Ruffolo
1995). The transport of energetic particles including adiabatic effects, mag-
netic focusing (Earl 1976), and interactions with turbulence are detailed in
chapter 3.
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Chapter 2

Coronal Shocks

2.1 Geometry

Coronal mass ejections occur with a variety of shapes and temporal pro-
files and, thus, there is no single correct way to model their morphology.
However, as a CME-driven shock will originate at a source of rapid energy
release, a feasible way to study the phenomenon is to view the shock driven
as a rapidly expanding nearly spherical front or dome. Recent EUV obser-
vations (see, e.g., Ma et al. 2011 and Grechnev et al. 2011) support this
interpretation. An example of such a framework is given in figure 2.1. The
released energy and expanding plasma cloud deform the structure of the
solar corona, which can have pre-existing complex formations.

The propagating coronal shock will intersect a number of magnetic field
lines with different geometries (Pomoell et al. 2011), possibly with exten-
sive ripples and perturbations (Giacalone & Neugebauer 2008). As direct
observations of ambient field lines are beyond our present capabilities, the
exact extent of deformation of the interplanetary magnetic field (IMF) is
unknown. A simplified, often used model is the Parker spiral, where mag-
netic field lines are frozen in the radially propagating solar wind, and the
rotation of the Sun twists them into a spiral shape. Well below 1 AU, the
spiral is not very tight, and the Parker field can be approximated by radial
field lines.

A simple model representing the heliospheric magnetic field consists of
a magnetic flux tube attached to the surface of the Sun and extending out-
wards along the Parker spiral. The flux tube cross-section scales as the
inverse of the magnetic flux density. As plasma consists of charged par-
ticles, they are considered trapped to the confines of this flux tube, and
travel according to the guiding centre approximation. As a simplification,

27



28 Coronal Shocks

Figure 2.1: Sample schematic of a spherically expanding CME
driving a shock front.

flux tubes can be considered infinitesimally thin. As an extensive coronal
shock front propagates and intersects the flux tube in question, the shock
parameters (shock-normal velocity Vs and shock-normal angle θBn) can be
tracked at the point of intersection. In Paper I, we investigated acceler-
ation effectiveness of a decelerating coronal shock, and in Paper III, we
investigated the effect of shock-normal angle θBn on particle injection.

In shock physics, a commonly used initial frame of reference is the shock
normal incidence frame (SNIF). In this frame, attached to the shock, the
flow of plasma u in the upstream is directed perpendicular to the shock
front. However, magnetic field lines are not necessarily aligned with the
plasma flow. Here we choose the z-axis to be normal to the shock, the
magnetic field to be in the zx-plane, and the y-axis to complement the
right-hand system. In the SNIF, a motional electric field may be present,
given by the equation

E = −1

c
u×B, (2.1)

directed along the y-axis. Next, we transform to a frame which moves along
the shock front with a speed of ux = uzBx/Bz. In this frame, known as
the de Hoffmann – Teller (HT) frame, the magnetic field and plasma flow
become aligned, and thus, the electric field disappears (de Hoffmann &
Teller 1950). Transformation to this frame is valid as long as the transfor-
mation velocity is subluminal, which is usually not a very limiting factor
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Figure 2.2: The shock normal incidence frame (SNIF, left) and
the de Hoffmann – Teller frame (HT, right)

in heliophysical cases. It is easily shown that the alignment of plasma flow
and magnetic field applies both in the upstream and the downstream of the
shock. According to the co-planarity theorem, both upstream and down-
stream flows exist in a single plane within the SNIF and HT frames, and
thus, the direction of the y-axis can be ignored. Examples of HT and SNIF
frames are shown in figure 2.2.

2.2 Velocities and Mach numbers

A shock may be modelled as a disturbance propagating within a medium
at a speed greater than the signal speed of the medium. As information of
the disturbance cannot travel ahead of it, the upstream properties of the
medium experience an abrupt change when encountering the disturbance,
and thus, a shock forms. The sound speed in a space plasma is given as

vs =

√
γP

ρ
=

√
γkBTsum

mp
, (2.2)

where γ = 5/3 is the polytropic index (or ratio of specific heats) describing
a mono-atomic gas, P is the gas pressure, and ρ is the gas mass density.
The temperature Tsum is the sum of electron and ion temperatures, as both
particle populations contribute to total gas pressure. As with any shock
waves, shocks in plasmas can be described by their Mach number. The
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sonic Mach number, describing speed relative to signal speeds of sound
waves, is defined as

Ms =
u1

vs
, (2.3)

where u1 is the HT-frame upstream gas flow speed towards the shock. In
general, we refer to upstream quantities with subscript 1 and to downstream
quantities with subscript 2.

In 1942, Hannes Alfvén postulated the existence of electromagnetic-
hydrodynamic waves propagating through plasma (Alfvén 1942). The Alfvén
wave is a non-compressional wave, caused by the freeze-in of magnetic field
lines to the plasma. It consists of magnetic disturbances and results from
the plasma attempting to return to a configuration with as little magnetic
field line curvature as possible. The Alfvén speed

vA =
B√
4πρ

(2.4)

describes the speed at which Alfvénic waves travel parallel to the mean
magnetic field. The Alfvénic Mach number MA is given as

MA =
u1

vA
. (2.5)

We define the (upstream) plasma beta, or the ratio of gas pressure to mag-
netic pressure, as

β1 =
8πP1

B2
1

=
2

γ

v2
s

v2
A

=
2

γ

M2
A

M2
s

. (2.6)

In order for a coronal disturbance to develop into a fast mode shock, it
must be super-Alfvénic in both the upstream and the downstream of the
shock. This can be defined as the condition rg < M2

A, where rg is the gas
compression ratio.

2.3 Jump conditions

The transition from upstream plasma quantities to downstream plasma
quantities at a shock results in a number of jump conditions, due to conser-
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vation laws and Maxwell’s equations, which can be expressed as continuous
fluxes across the shock. In describing these jump conditions, we use square
brackets [ ] to indicate the difference of the enclosed quantity on the differ-
ent sides of the discontinuity. The shock-normal component is designated
with the subscript n, with the tangential component designated with the
subscript t. In deriving the conditions, we have ignored terms of viscosity
and heat conduction, and use the gas adiabatic index γ. We also utilise the
co-planarity theorem.

Instead of presenting jump conditions for a classical hydrodynamic
shock, we choose to focus directly on the magneto-hydrodynamic (MHD)
case. Shock jump conditions, known as the Rankine-Hugoniot relations,
are reviewed in Salas (2007), and the equations can, in the HT frame, be
written as follows:

1. Continuity of shock-normal mass flux

[ρun] = 0 (2.7)

2. Continuity of shock-normal magnetic field component

[Bn] = 0 (2.8)

3. Continuity of shock-normal momentum flux[
P + ρu2

n +
1

8π
B2

t

]
= 0 (2.9)

4. Continuity of shock-transversal momentum flux[
ρunut −

1

4π
BnBt

]
= 0 (2.10)

5. Continuity of shock-normal energy flux[
1

2
ρu2un +

γP

(γ − 1)
un

]
= 0 (2.11)

6. Continuity of shock-transversal electric field

[utBn −Btun] = 0 (2.12)

In this formulation, the momentum flux conservation equations include
terms from the Maxwell stress tensor in addition to hydrodynamic terms.
The shock-normal energy flux conservation should include a term for elec-
tromagnetic energy, which is defined by the shock-normal component of
the Poynting vector S = c

4πE ×B. In a well-conducting plasma and after
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transformation to the HT frame, however, the Poynting vector reduces to
zero, and thus, the energy transfer term is zero. The continuity equation
for the shock-transversal electric field results from the induction equation
for ideal MHD.

Solving the jump conditions for an MHD discontinuity can result in
many different solutions, some of only limited interest. For shock waves, we
require un 6= 0, which excludes many trivial solutions from consideration.
Solving jump conditions for a parallel shock (ut = Bt = 0) is a great deal
simpler, but in this chapter we consider the general case for an oblique
shock in the HT frame. As suggested by Vainio & Schlickeiser (1999), we
consider the parallel shock as a special case with a small but finite upstream
tangential magnetic field (e.g., Bt = δB1 = 0.003B0 = 0.003Bn). This may
represent the effect the magnetic pressure of Alfvénic turbulence has at the
shock, and ensures a fast-mode shock.

2.4 Compression ratios

Important parameters in describing an MHD shock are the compression
ratios for gas density and magnetic flux density. The gas compression ratio
rg can, using the continuity of mass flux, be used to relate the normal
components of plasma flow velocity u, as

rg =
ρ2

ρ1
=
un,1

un,2
. (2.13)

For reference, the gas compression ratio of a parallel shock in an adiabatic
medium is given as

rg =
γ + 1

γ − 1 + 4β1γ−1M−2
A

, (2.14)

which limits the gas compression ratio to values rg < 4 (for γ = 5/3). This
is the form used in Paper II.

Due to B being divergence-free, the shock-normal component of B is
conserved. The ratio of magnetic flux densities, or the magnetic compres-
sion ratio, is

rB =
B2

B1
. (2.15)



Coronal Shocks 33

In the de Hoffmann – Teller frame, plasma flow is parallel with the
magnetic field, and flow speeds of plasma are related to shock compression
ratios via

u2

u1
=
rB
rg
. (2.16)

2.5 Solving the gas compression ratio

The Rankine-Hugoniot equations can be used to solve the gas compression
ratio at a shock of arbitrary shock-normal angle θBn. The process is omitted
here, as it has been introduced previously by Priest (1982). After a lengthy
calculation, the shock conditions result in a cubic equation for the gas
compression ratio rg, given as

0 = (M2
A − rg)2

{
γβ1rg +M2

A cos2 θBn((γ − 1)rg − (γ + 1))
}

+ rgM
2
A sin2 θBn

{
(γ + (2− γ)rg)M2

A + rg((γ − 1)rg − (γ + 1))
}
, (2.17)

where only parameters defined in the upstream of the shock are used. In-
stead of attempting to solve this cubic equation, we choose to reformulate it
in the parametric form suggested by Vainio & Schlickeiser (1999). Defining
M2

A = rg{1 + ζ} allows reformulating (2.17) as

0 = ζ2
{
γβ1 + (1 + ζ) cos2 θBn((γ − 1)rg − (γ + 1))

}
+ (1 + ζ) sin2 θBn {(γ + (2− γ)rg)(1 + ζ) + (γ − 1)rg − (γ + 1)} . (2.18)

This is a linear equation in rg(ζ), and can be rewritten as

rg(ζ) =
(1 + ζ)

{
ζ2(γ + 1) cos2 θBn + (1− γζ) sin2 θBn

}
− ζ2γβ1

(1 + ζ)
{
ζ2(γ − 1) cos2 θBn + (1 + (2− γ)ζ) sin2 θBn

} (2.19)

M2
A = rg(ζ) {1 + ζ} . (2.20)

This allows running through the parameter space of ζ > −1, using
known values of β1, θBn, and γ = 5/3, until (2.20) results in the (also
known) value of of M2

A. This can be achieved easily by applying, for exam-
ple, Newton’s method.

As the original equation was cubic in nature, we examine the param-
eter space of available solutions. One solution can be found by setting
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MA = rg = 1, which describes the motion of a shear Alfvén wave. In order
to find the other solutions at rg = 1, we simplify equation (2.17) into

0 = ζ2
{
γβ1 − 2(1 + ζ) cos2 θBn

}
+ 2ζ(1 + ζ) sin2 θBn. (2.21)

Disregarding the solution at ζ = 0 (the shear Alfvén wave), we can find the
remaining root values at

M2
A = 1 + ζ =

1 + 1
2γβ1 ±

√
(1 + 1

2γβ1)2 − 2γβ1 cos2 θBn

2 cos2 θBn
. (2.22)

These solutions are for the fast (+) and slow (-) MHD waves.

In figure 2.3, we present a sample of the parameter space of solu-
tions. Solutions resulting in rg < 1 are rarefactions, not shocks. Solu-
tions with M2

A < 1 represent slow shocks, and solutions for which rg > 1
and 1 < M2

A < rg hold true are intermediate shocks. The remaining solu-
tions of M2

A > rg > 1 represent fast shocks, where flows are super-Alfvénic.
By finding the three solutions for rg(ζ) = 1 and initialising our ζ-running
method at the largest of these values (and progressing in the positive di-
rection), we can limit the found solutions to the parameter space of fast
shocks.

2.6 Solving the magnetic compression ratio

The magnetic compression ratio rB was given as the ratio of upstream and
downstream magnetic flux densities. The change of the tangential magnetic
field component can be derived from the jump conditions, and is given as

Bt,2

Bt,1
= rg

M2
A − 1

M2
A − rg

. (2.23)

Combining this with equations (2.5), (2.8), and the decomposed form of
(2.15), we find the square of rB as

r2
B = cos2 θBn + sin2 θBn

(
M2

A − 1

M2
A − rg

rg

)2

. (2.24)



Coronal Shocks 35

Figure 2.3: The parameter space for solutions to the equation
linking gas compression ratio rg and Alfvénic Mach number MA.
In this figure, solutions for increasing ζ are plotted as a curve
with the values θBn = 30◦, γ = 5/3, and 1

2γβ1 = 0.05. The
three diamonds represent solutions at rg = 1. In the solution
space of fast-mode shocks, rg grows with increasing ζ.
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2.7 The cross-shock potential

The solar wind contains ions and electrons in amounts which result in a
macroscopically neutral plasma. A propagating shock disturbs the motion
of particles it encounters, which can lead to charge imbalance over small
spatial scales. Ions and electrons impacting the shock penetrate the down-
stream magnetic field according to their rigidity. The initial motion of
protons, being heavier particles, extends further into the shock profile than
that of electrons. This imbalance leads to an electrostatic potential jump
associated with the shock front.

The cross-shock potential has been observed and modelled most exten-
sively at the bow shock of the Earth (see, e.g., Hull et al. 2000 and Kuncic
et al. 2002). One method of approximating the effect is a potential jump
of

∆Φ = φ
1

2
mp

(
u2

n,1 − u2
n,2

)
, (2.25)

which is proportional to the change of the normal component of proton ram
energy with a fitting parameter φ ≈ 0.12 (Hull et al. 2000). The effect of a
cross-shock potential on particle acceleration has, prior to this work, been
investigated by, for example, Gedalin (1996) and Zank et al. (2001).



Chapter 3

Wave-particle interactions

Like any fluid medium, plasma can exhibit many kinds of fluctuations (see,
e.g., Boyd & Sanderson 2003). Electromagnetic waves (x-rays, visible light,
radio waves) can travel through plasma, as can pressure waves, sound waves
and magnetic fluctuations. Plasma waves store, transport, and redistribute
energy. As energetic particles travel along a helical trajectory through
a magnetised and turbulent plasma, they interact with plasma waves at
resonant wavenumbers. Waves cause particles to scatter, and scattering
particles amplify Alfvén waves (Lee 1971).

3.1 MHD waves

A full description of plasma waves, being outside the scope of this thesis, is
omitted in favour of MHD simplifications which describe wave properties
adequately for our modelling efforts. Additional descriptions can be found
in, for example, Kallenrode (2004) and Kulsrud (2005).

MHD waves arise from ion motion in the plasma, and are found at
relatively low frequencies. Equations describing MHD result in dispersion
relations, which describe wave-like solutions for plasma motion. Dispersion
relations for a MHD wave propagating in an arbitrary direction result in
three solutions: a fast mode, an intermediate mode, and a slow mode (see
also: section 2.5). Wave propagation can be described with angular wave
frequency ω, phase velocity vp = ω/k, group velocity vg = ∂ω/∂k, wave
number k, and direction of the wave vector k.

The dispersion relation for fast (+) and slow (−) MHD waves is

ω2

k2
=
v2

A + v2
s

2
± 1

2

√
(v2

A − v2
s )2 + 4v2

Av
2
s sin2 θ, (3.1)

37
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where θ is the angle between k and B0. The dispersion relation for the
intermediate wave is

ω

k
= vA cos θ. (3.2)

The solutions show that slow and intermediate MHD waves do not prop-
agate perpendicular to B0. At the perpendicular limit, the fast MHD
wave reduces to the magnetosonic wave, propagating with the phase speed

vp =
√
v2

A + v2
s with k ⊥ B0. At the parallel limit, with k ‖ B0, the fast

MHD wave propagates at a phase speed equal to the greater of vs and vA,
whereas the slow MHD wave propagates at a phase speed equal to the lesser
of vs and vA. At the parallel limit, the intermediate MHD wave propagates
at the phase speed vA.

We now consider the incompressible limit of MHD, which can be phys-
ically described as vs (or β from eq. 2.6) being very large. At this limit,
pressure disturbances propagate at very fast speeds, which results in fast
MHD waves propagating near-instantaneously. At the lowest order, incom-
pressible intermediate and slow MHD waves propagate at the same phase
speed vp = vA cos θ. At this limit, they differ mainly through polarisation.

The intermediate MHD wave is equivalent to an Alfvén wave (Alfvén
1942), alternatively called a shear Alfvén wave. Shear Alfvén waves are
polarised, i.e., have first-order magnetic disturbances δB, in the direction
perpendicular to both k and B0. The incompressible limit of the slow MHD
wave is called the pseudo Alfvén wave, and it is polarised in the k – B0

plane, perpendicular to k. Waves which have both k ‖ B0 and δB ⊥ B0

are referred to as the slab mode.

3.1.1 Helicity, polarisation, and oscillation frequency

Alfvén waves propagating at angles oblique to the background magnetic
field are always linearly polarised. However, parallel Alfvén waves can be
formulated as a combination of left-handed (LH) and right-handed (RH)
modes. Handedness is defined according to rotation around the direction of
the mean magnetic field. In the frame of the propagating wave, the spatial
helical form of the wave translates to a definition of left-handed or right-
handed magnetic helicity. The sign of the wavenumber k indicates helicity,
with k > 0 for RH waves and k < 0 for LH waves. In addition, the vector δB
rotates in the frame of the plasma in either the right-handed or left-handed
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direction around the mean magnetic field. The magnetic polarisation of
the wave is defined by the sign of the frequency ω, which is positive for LH
rotating waves and negative for RH rotating waves. As a result of these two
definitions, a wave can propagate either parallel (k ↑↑ B0) or anti-parallel
(k ↑↓ B0) to the mean magnetic field. Parallel waves propagate at velocity
ω/k = vA and anti-parallel waves at velocity ω/k = −vA.

When observing an Alfvén wave from a frame moving at speed v‖ along
the magnetic field, the relativistic Doppler-shifted oscillation frequency ω′

of a given wave is observed as

ω′ = γ‖(ω − k‖v‖), (3.3)

where γ‖ = 1/
√

1− v2
‖/c

2 and the sign of ω′ represents the observed mag-

netic polarity in the moving frame. Note that in different applications, the
naming conventions of forward or backward propagating waves can differ.
In the heliocentric frame, waves propagating outwards from the Sun are
often referred to as forward propagating waves, but when considering wave
transfer at a shock crossing, it is customary to define a forward propagating
wave as one propagating in the same direction as the plasma does in the
shock frame. In a general case, the cross-helicity Hc, used to describe the
ratio of wave intensities of forward-moving (I+) and backward-moving (I−)
waves, is given as

Hc =
I+ − I−
I+ + I−

. (3.4)

3.2 Particle transport and scattering

3.2.1 Quasi-linear theory

The most commonly adopted method of quantifying the scattering of en-
ergetic particles off Alfvén waves is known as quasi-linear theory (QLT),
as introduced by Jokipii (1966). The initial assumption of QLT is to de-
duce the motion of particles in circumstances where the effects of scattering
cause minimal disturbances to the gyropath of the particle. Magnetic fluc-
tuations are described as a linear first-order approximation of the form
B = B0 + δB, where the amplitude of magnetic fluctuations is δB � B0.
In the basic formulation, with k ‖ B0, only the perpendicular magnetic
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fluctuation component δB⊥ is considered, describing, for example, parallel
Alfvén waves.

Examining the scattering angle of a particle with mass m and charge
q through change of the pitch-angle cosine µ = cos θ = v‖/v allows us to
formulate the change of µ through the Lorentz force as

vµ̇ = v̇‖ =
q

mc
δB⊥(r, t)v⊥ sinφ, (3.5)

where φ is the angle between the perpendicular velocity component v⊥ and
the perpendicular magnetic fluctuation component δB⊥. Additionally, we
have used the assumption of conservation of energy in the wave frame. This
holds, for example, for MHD waves, where there is no electric field related
to the wave.

Choosing the coordinates so that B0 ↑↑ êz, the equation describing a
background magnetic field B0 and a circularly polarised parallel Alfvén
wave of frequency ω in the frame of plasma with k ‖ B0 becomes

B = B0êz + δB (êx − ıêy) eı(kz−ωt−φ
′), (3.6)

where φ′ is a phase constant. The velocity of a particle following a gyropath
along the background magnetic field B0 can be separated into components
in a similar way, resulting in

v = v‖êz + v⊥ (êx − ıêy) eı(−Ωt−Φ′), (3.7)

where Φ′ is a phase constant, and Ω > 0 for a positively charged particle.
For a particle propagating with parallel speed v‖ and gyrofrequency Ω, we
find z = v‖t. The phase difference φ′−Φ′ can be solved from the exponen-
tial oscillation terms of equations (3.6) and (3.7). If the phase difference
is constant, the wave and the particle are in resonance, according to the
condition Ω = ω − kv‖. For all non-resonant frequencies, over an extended
period of time, the quasilinear approximation results in the Lorentz force
contributions cancelling each other out.

For resonant interactions, the phase difference φ′−Φ′ defines the strength
and direction of the Lorentz force along the z-axis. If (φ′ − Φ′) = 0 or π,
v⊥ ‖ δB⊥ and v̇‖ = 0. (φ′ − Φ′) = ±π/2 leads to maximal acceleration in
the direction ±êz. Thus, particles can scatter off resonant waves in both
directions in µ-space.
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Derivations of QLT for waves with k not parallel with B0 are possible
(see, e.g., Schlickeiser 2002), but outside the scope of this thesis.

3.2.2 The Fokker-Planck equation and focused transport

The evolution of particle populations can be described through kinetic the-
ory, as introduced in section 1.7. The Fokker-Planck equation contains a
selection of diffusion coefficients, describing the evolution of the particle
population in phase space due to, for example, collisions and scattering off
magnetic fluctuations such as Alfvén waves. Additionally, the particle dis-
tribution experiences adiabatic cooling due to gas expansion (Skilling 1971,
1975) and pitch-angle focusing (Earl 1976; Ng & Wong 1979). Pitch-angle
focusing occurs due to conservation of magnetic moment as the flux tube
expands and magnetic flux density decreases.

In this section, we modify the Fokker-Planck equation (1.6) in order
to describe particle population evolution as a focused transport equation.
We include terms describing magnetic focusing and pitch-angle scattering
off Alfvén waves. We designate values given in the fixed inertial frame,
attached to the Sun, as plain (p, r, t) and values given in the frame of
scattering centres as primed (p′, r′, t′). In the inertial frame, scattering
centres propagate at speed V = usw + vA, where usw is the solar wind
speed.

We have excluded effects due to solar rotation and IMF curvature, as-
suming radial solar wind flow and a radial magnetic field. The assumption
of a radial field is reasonable within the solar corona and the innermost
parts of the heliosphere, but not at, for example, 1 AU. A more detailed
discussion, including effects due to solar rotation and magnetic field curva-
ture, can be found in Ruffolo (1995).

Particles experience adiabatic changes to their direction of momentum
both in the inertial frame (due to magnetic focusing) and in the frame of
scattering centres (due to pitch-angle scattering off Alfvén waves). The
resultant effect of adiabatic deceleration can also include minor terms due
to, for example, changes in solar wind speed usw or non-radial geometry.

Using the flux tube cross-sectional area A ∝ B−1, the heliocentric dis-
tance r, and the spatial scale length of the mean magnetic field L for which

1

L
= − 1

B

∂B

∂r
=

1

A
∂A
∂r

, (3.8)
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the rate of change for particle pitch-angle µ in the fixed frame due to mag-
netic focusing can be written as (Ruffolo 1995)

µ̇ =
v

2L
(1− µ2). (3.9)

In the frame of scattering centres, equation (3.9) becomes

µ̇′ =
(1− µ2)

2L

(
v′ + µ′V

(
1− v′2

c2

))
. (3.10)

Adiabatic deceleration (often described as average change of momentum
due to gas expansion) is derived as

ṗ′ = −V p
′

2L

(
1− µ′2

)
. (3.11)

Due to the small magnitude of the effect, adiabatic deceleration can often
be ignored for simplicity. The pitch-angle altering effect due to magnetic
focusing should not, however, be ignored.

We now rewrite equation (1.6) in mixed coordinates. The number of
particles found at a point in phase-space is defined as

F (p, r, t) d3r d3p = F ′(p′, r′, t′) d3r′ d3p′ = F ∗(p′, r, t) d3r d3p′,

where the final form F ∗(p′, r, t) is given in mixed coordinates. We choose
to use the one-dimensional guiding centre approximation and ignore terms
O(vV/c2), noting that F ∗(p′, µ′, r, t) ≈ F (p, µ, r, t) (see, e.g., Gleeson &
Webb 1980). Using this notation, we derive an equation describing focused
transport (see also Roelof 1969, Kunstmann 1979, and Ng et al. 2003),
resulting in the form

∂F ∗α
∂t

+
(
v′µ′ + V

) ∂F ∗α
∂r

+
(1− µ′2)

2L

(
v′ + µ′V

) ∂F ∗α
∂µ′

−(1− µ′2)

2L
V p′

∂F ∗α
∂p′
− ∂

∂µ′
Dµ′µ′

∂F ∗α
∂µ′

= 0. (3.12)

In this equation, the second term describes particle streaming and solar
wind convection, the third term describes pitch-angle focusing due to the di-
verging magnetic field, the fourth term describes adiabatic deceleration and
the fifth term describes pitch-angle scattering off resonant Alfvén waves.
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The benefit of using mixed coordinates is that by choosing to examine
particle scattering in the frame of scattering centres, it can be described in
an adiabatic manner through the single Fokker-Planck coefficient Dµ′µ′ .

An alternative method of describing the large-scale spatial and temporal
evolution of a quasi-isotropic (f ≈ f0(r, p, t)) particle population is Parker’s
equation (see, e.g., Parker 1965b and Jokipii & Parker 1970). Instead of
describing scattering off Alfvénic turbulence through Dµµ, it is possible to
reformulate scattering according to the particle mean free path λ = 3D‖/v
(see also Hasselmann & Wibberenz 1968). This yields the spatial diffusion
coefficient (Earl 1974)

D‖ =
v2

8

∫ +1

−1

(1− µ2)2

Dµµ
dµ. (3.13)

For an isotropic particle population, adiabatic deceleration is described as

〈ṗ〉 = −p
3
∇ ·V. (3.14)

With this formulation, Parker’s equation describing a quasi-isotropic
population within an expanding radial flux tube becomes

∂f0

∂t
+ V

∂f0

∂r
− p

3

1

A
∂

∂r
(AV )

∂f0

∂p
=

1

A
∂

∂r

(
AD‖

∂f0

∂r

)
. (3.15)

Following Kocharov et al. (1996) and Kocharov et al. (1998), and using
the linear density n = d2N/dr dp = 4πp2Af0, we can reformulate Parker’s
equation as

∂n

∂t
+

∂

∂r

[(
V +

D‖

L

)
n

]
− ∂

∂p

[
p

3

(
∂V

∂r
+
V

L

)
n

]
=

∂

∂r

(
D‖

∂n

∂r

)
,

(3.16)

which allows us to examine how, according to the second term, amplified
turbulence (with D‖ ≈ 0) can cause even high-energy particle populations
to be convected at the speed of scattering centres.

Focused diffusion equations or reformulations of Parker’s equation al-
low theoretical assessment of particle population evolution, but cannot be
extended to account for self-consistent wave generation and particle trap-
ping. As such, they are presented for comparison and reference. The Monte
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Carlo method of calculating particle transport, as presented in chapter 5,
is a better tool for self-consistent acceleration simulations.

3.2.3 Fokker-Planck coefficients

Full derivation of Fokker-Planck coefficients is beyond the scope of this the-
sis, and we direct the interested reader to Schlickeiser (1989) and Schlick-
eiser (2002). For particle scattering off Alfvén waves, the Fokker-Planck
coefficient is given as (Schlickeiser 2002)

Dµµ =
2Ω2

B2
0

(
1− µ2

) ∑
j=±1

∞∑
n=−∞

∫
d3kRj

[
1− µωj

k‖v

]2(nJn(v⊥k⊥/Ω)

v⊥k⊥/Ω

)2

P jRR(k), (3.17)

where Jn is the Bessel function. The resonance function, with the assump-
tion of negligible damping, is presented here as

Rj = πδ(v‖k‖ − jk‖vA + nΩ), (3.18)

where δ is the Kronecker delta.

For the term n = 0, the Fokker-Planck scattering coefficient is zero. For
n 6= 0 we can use the magnetostatic approach, assuming particles propagate
at velocities v � vA. This results in the resonance condition being reduced
to R = πδ(v‖k‖ + nΩ), as well as the simplification[

1− µωj
k‖v

]2

≈ 1.

In this way the scattering coefficient for Alfvénic turbulence becomes

Dµµ =
2πΩ2

B2
0

(
1− µ2

) ∞∑
n=−∞

∫
d3k δ(k‖v‖ + nΩ)

(
nJn(v⊥k⊥/Ω)

v⊥k⊥/Ω

)2

Pxx(k).

(3.19)

We define the denominator, and the argument of the Bessel function, as
x = v⊥k⊥/Ω. As for parallel Alfvén waves x = 0, we investigate the Bessel
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function as a series

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)
(1

2x)2m+α, (3.20)

where the first term is seen to be 1
4x and all other terms include higher

powers of the argument x. Thus, for purely parallel Alfvén waves, only the
term n = 1 survives, the terms x = v⊥k⊥/Ω cancel out, and the relevant

part of equation (3.19) becomes
(

1
4

)2
.

The Fokker-Planck coefficient for particles scattering off pseudo Alfvén
waves (after a similar derivation) is given as (see Paper IV and Schlickeiser
2002)

Dµµ =
2πΩ2

B2
0

(
1− µ2

) ∞∑
n=−∞

∫
d3k δ(k‖v‖ + nΩ)

(
J ′n(v⊥k⊥/Ω)

)2
Pxx(k,

(3.21)

where J ′n is the derivative of Jn.

3.3 Scattering rate and pitch-angle dependence

The energetic particle scattering rate, ν = 2Dµµ/(1 − µ2), can be used to
link particle scatterings with the magnetic fluctuations they experience. In
the simplest case of slab-mode turbulence (i.e., fluctuations with wave vec-
tors aligned with the background magnetic field), the resonant wavenumber
of the scattering particle is kr = Ω/v‖. According to Schlickeiser (1989), we
define the particle mean free path as

λ =
3v

8

∫ +1

−1

(1− µ2)2

Dµµ
dµ. (3.22)

Here the standard quasi-linear theory (SQLT) pitch-angle diffusion coeffi-
cient is (Vainio & Laitinen 2001)

Dµµ =
π

2

Ω2

B2
(1− µ2)

I(Ω/(vµ))

|vµ|
, (3.23)
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which is described in terms of wave intensity I(k), which is related to the
magnitude of magnetic fluctuations as

∫
I(k) d3k = 〈δB2〉. For vanishing

magnetic helicity, I(k) = I(−k), the wave intensity I(k) can be related
with the wave power spectrum as

|k|I(k) =
1

2
fP (f). (3.24)

Combining equations (3.23) and (3.24) results in the pitch-angle diffusion
coefficient

Dµµ =
π

4
Ω(1− µ2)

frP (fr)

B2
. (3.25)

Inserting this into the definition of scattering frequency results in

ν =
π

2
Ω
frP (fr)

B2
. (3.26)

This depends on the particle pitch-angle only through the resonant wave
frequency

fr =
Ω

2π

V

v|µ|
, (3.27)

where V is the propagation speed of resonant waves.

This pitch-angle-dependent scattering poses a challenge. Particles with
values of µ close to zero are resonant with fluctuations associated with very
large wavenumbers, so require the presence of high frequency waves in order
to experience significant scattering. Alfvénic waves in the inner heliosphere
contain very little power at high frequencies, due to dissipation effects, and
thus form the so-called resonance gap. If particles are unable to scatter
across hemispheres past µ = 0, they cannot become isotropic, which is a
prerequisite for diffusive type particle transport characterised by a mean
free path. Work on extending QLT in order to bridge the resonance gap
has been published in, for example, Ng & Reames (1995).

In order to bridge the resonance gap, and simplify wave amplification
calculations (see section 3.4), we alter the SQLT resonance condition ac-
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cording to Lee (1983), resulting in

fr = fcp
V

v
, (3.28)

where fcp = Ω/(2π). This is equivalent to applying the restrioction of
|µ| = 1 to equation (3.27).

In Paper IV, we discuss the reliability of QLT by comparing it with
full-orbit simulations using MHD-generated turbulence, and find that QLT
overestimates the pitch-angle dependence of particle scattering, lending
credibility to this approximation. We also refer the reader to Ng & Reames
(1995), where Extended QLT (EQLT) was formulated with the same target
of crossing the resonance gap.

3.4 Wave amplification via particle scattering

Energetic particles scattering off Alfvén waves conserve their energy in the
wave frame, experiencing only deflection. As waves propagate at speed
vA in relation to the solar wind plasma, particle energy in the solar wind
plasma frame is not conserved (see figure 3.1). Each small-angle particle
scattering changes the plasma-frame particle energy by ∆Ep = vAp∆µ,
where p and ∆µ are measured in the wave frame. Thus, conservation of
total plasma-frame energy results in energy deposition to turbulence, with
a change of the resonant wave energy of ∆Ew = −vAp∆µ. In this section,
we detail the connection between wave amplification and energetic particle
scatterings, as formulated in Vainio (2003), and extend it to account for
minor ions.

Summing up all energy deposition contributions in a certain spatial
position, the rate of change for wave energy density is found as

dUw

dt
= −

∫
vAp
〈∆µ〉
∆t

fα(r,p, t) d3p, (3.29)

where fα is the ion distribution function. Here the change in pitch-angle
is given by the Fokker-Planck coefficient 〈∆µ〉/∆t = ∂Dµµ/∂µ, where
Dµµ = 1

2〈(∆µ)2〉/∆t is the particle pitch-angle diffusion coefficient. In
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QLT (Jokipii 1966), it is defined (following the notation of Vainio 2003) as

Dµµ =
π

4
Ω(1− µ2)

|kr|W (kr)

UB
, (3.30)

where kr is the resonant wavenumber. The energy associated with the
magnetic field, UB = B2/8π = 1

2v
2
Anpmp, is calculated assuming that all

solar wind ions are protons.

Rewriting equation (3.29) in a cylindrically symmetrical form, and mak-
ing the substitution d3p = p2 sin θ dp dθ dφ = −2πp2 dp dµ, results in

dUw

dt
=

∫∫
2πvAp

3∂Dµµ(kr)

∂µ
fα(r,p, t) dµdp. (3.31)

Examining
∫ ∂Dµµ

∂µ fα(r,p, t) dµ through partial integration yields

∫ +1

−1

∂Dµµ

∂µ
fα(r,p, t) dµ =

+1/
µ=−1

Dµµfα(r,p, t)−
∫ +1

−1
Dµµ

∂fα(r,p, t)

∂µ
dµ.

(3.32)

According to equation (3.30), we find Dµµ(µ = ±1) ≡ 0, and the first term
on the RHS equals zero.

Assuming the existence of only slab-mode outward-propagating Alfvén
waves, we can write the wave energy density as Uw =

∫
W (k) dk, where

W (r, k, t) dk is the energy density of waves with a wavenumber in the range
from k to k+dk. Since the pitch-angle diffusion coefficient Dµµ is calculated
for only a single wavenumber kr, we can use equation (3.32) and rewrite
equation (3.31) to include integration over all wavenumbers using the delta
function. This results in the form∫

dW (k)

dt
dk = −

∫∫∫
δ(k − kr) 2πvAp

3Dµµ(k)
∂fα(r,p, t)

∂µ
dµ dpdk.

(3.33)

Since both sides are integrated over k, we can limit our examination to the
integrands, which must be equal.
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Figure 3.1: Plasma frame velocity vectors for particles scat-
tering off Alfvén waves. Energy is conserved in the frame of
waves, propagating at speed vA, resulting in addition or sub-
traction of energy in the plasma frame. Long arrows represent
pre-scattering velocities, shorter arrows represent the speed dif-
ference in the plasma frame.
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Combining equations (3.30) and (3.33), we find

dW (k)

dt
= −

∫∫
δ(k − kr)

π2vAp
3Ω

2UB
(1− µ2)|k|W (k)

∂fα
∂µ

dµdp, (3.34)

which can be transformed into

1

W

dW

dt
= −

∫∫
δ(k − kr)|k|

π2p3Ω

vAnpmp
(1− µ2)

∂fα
∂µ

dµdp, (3.35)

where the resonant wavenumber kr = Ω/vµ.
Next, we replace δ(k+ Ω/vµ) with 1

2δ(|k|−Ω/v). This simplification of
the quasi-linear resonance condition ignores the µ-dependence, as suggested
by, for example, Skilling (1975), Bell (1978), and Lee (1983). Next we use
partial integration to find

∫ +1

−1
(1− µ2)

∂fα
∂µ

dµ =

+1/
µ=−1

(1− µ2)fα −
∫ +1

−1
(−2)µfα dµ, (3.36)

which allows us to obtain the growth rate

Γw(k) =
1

W

dW

dt
= − π2Ω

vAnpmp

∫∫
p3µ|k|δ(|k| − Ω/v)fα dµ dp. (3.37)

We now choose the resonant relativistic momentum p = γmv as the
independent parameter, with v = Ω/|k|. We define a constant K0 = γmΩ
and transform the integral over p into an integral over k, as the Dirac delta
function is defined in k-space. Now dp = d(K0/|k|) = − K0

|k|2 d|k|, |k| = K0/p

and we find
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− π2

vAnpmp

∫∫
p3µΩ|k|δ(|k| − Ω/v)fα dµdp

=
π2

vAnpmp

∫∫
K5

0

|k|4
µ

γm
δ(|k| − Ω/v)fα dµ d|k|

=
π2

vAnpmp

∫
v4

Ω4
K5

0

µ

γm
fα dµ

=
π2K0

vAnpmp

∫
p4 µ

γm
fα dµ

=
π

2

γmΩ

vAnpmp
2π

∫
p3µvfα dµ.

Now we can note that Sα(r, p, t) = 2π
∫ +1
−1 p

2µvfα(r, p, t)) dµ is the stream-
ing of ions, i.e. the net number of particles crossing a point in space per
unit area (perpendicular to the magnetic field), unit momentum, and unit
time, at (wave-frame) momentum p. Thus, with the additional definition of
the (non-relativistic) ion cyclotron frequency Ωc = γΩ = qB/(mc), we can
formulate the turbulence growth rate Γw(kr) as

Γw(kr) =
π

2
Ωc

m

mp

pSα(r, p, t)

npvA
, (3.38)

where kr = Ω/v is the wavenumber resonant with particles of momentum p.
This allows for a numerically efficient way of coupling particle scatterings
(measured as streaming) with turbulence generation, which is especially
useful in self-consistent Monte Carlo simulations.

3.5 Wave cascading

Alfvén waves interact and transfer energy across wavenumber space through
a process known as cascading. Non-linear interactions between three Alfvén
waves (Shebalin et al. 1983; Goldreich & Sridhar 1995) or two Alfvén waves
and a sound wave (Chin & Wentzel 1972; Vainio & Spanier 2005) alter the
inertial range spectrum of turbulence. SEP scattering can amplify turbu-
lence in the inertial range, as described in section 3.4. At the ion and elec-
tron cyclotron frequencies, energy from turbulence begins to increasingly
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dissipate into solar wind thermal energy (Hollweg 1986). Thus, cascading
from small to large wavenumbers is a strong candidate for explaining coro-
nal heating (Cranmer et al. 2007 and references therein). Inverse cascading
from large to small wavenumbers is also possible, as presented in Spanier
& Vainio (2008).

Spatial gradients leading to interactions at large scales cause “stirring”,
acting as a energy source at low wavenumbers. The triple correlation
timescale τ3 represents how fluctuations of similar size interact with each
other. The Alfvén timescale is the crossing time τA = λ/vA, and the non-
linear timescale is the eddy-turnover time τNL = λ/δu, where δu is the
velocity amplitude of plasma fluctuations.

The two best known analytical solutions for the inertial range spec-
trum of Alfvénic turbulence in the solar wind are the Kolmogorov (Kol-
mogorov 1941, 1991) and the Iroshnikov-Kraichnan (IK, Iroshnikov 1963,
1964; Kraichnan 1965) models. At the limit of weak magnetic fields or
strong turbulence (τ3 ≈ τNL) spectral evolution follows the Kolmogorov
phenomenology (P ∝ f−5/3). For weak turbulence or strong magnetic
fields (τ3 ≈ τA) the power spectrum is found to follow the IK phenomenol-
ogy (P ∝ f−3/2). Bridging between Kolmogorov and IK phenomenolo-
gies has been suggested by, for example, Zhou & Matthaeus (1990) (with
τ−1

3 = τ−1
NL + τ−1

A ) and Miller & Roberts (1995).

A flux function is used to describe the flux of wave power across frequen-
cies. As a phenomenological treatment, the flux function is often assessed
through dimensional analysis (see, e.g., Leith 1967, Dobrowolny et al. 1980,
Tu et al. 1984, and Zhou & Matthaeus 1990). For numerical work, cascad-
ing can be described through the simplification of linear diffusion, defined
as

F (r, f) = −Dff
∂P

∂f
, (3.39)

whereDff is the spectral diffusion coefficient. This coefficient is phenomeno-
logical, with the form chosen to result in the preferred spectral shape (Kol-
mogorov or IK), possibly depending on plasma parameters. Laitinen (2003)
formulated this as

Dff = 2πC(r)
vA

usw + vA

1

1 +
√
fP/B2

f4P

B2
, (3.40)
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where C(r) is a constant determining the wavenumber of the high-frequency
turbulence break point. A simpler approximation, used in this work, is

Dff =
usw + vA

1 AU
f
−2/3
b f8/3, (3.41)

which leads to a Kolmogorov spectrum above the turbulence break point
fb = 1 mHz at 1 AU (see, e.g., Horbury et al. 1996).

3.6 Wave transport

In addition to cascading (section 3.5), wave power changes due to plasma
expansion and changes of speeds, as the solar wind plasma flows outwards
from the Sun (Matthaeus et al. 1994). The WKB approach (Parker 1965a;
Barnes & Hollweg 1974), addresses transport of non-interacting waves,
which can be seen as a starting point for modern wave transport theories.
WKB alone has succeeded in correlating some interplanetary observations
with coronal sources (see, e.g., Denskat & Neubauer 1982 and the Helios
mission).

Tu et al. (1984) formulated the evolution of an outward-propagating
spectrum of Alfvénic turbulence as

∇ ·
[(

3

2
usw + vA

)
P (r, f)

4π

]
− usw · ∇

(
P (r, f)

8π

)
= − ∂

∂f

(
F (r, f)

4π

)
.

(3.42)

The energy contained in inward-propagating waves was considered negligi-
ble despite them contributing to the spectral flux function F (r, f). Apply-
ing (3.42) to a radial magnetic flux tube of cross-section A ∝ B−1 results
in the equation

1

A
∂

∂r

[
A
(

3

2
usw + vA

)
P (r, f)

4π

]
− usw

∂

∂r

P (r, f)

8π
= − ∂

∂f

(
F (r, f)

4π

)
.

(3.43)

In Tu et al. (1984), wave power was represented with a WKB-form,
which, in the absence of cascading, would remain radially constant. In a
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similar manner, we define

P̃ (f, r) =
V 2(r)

B(r)vA(r)
P (f, r), (3.44)

which remains constant through WKB transport. Rewriting our wave evo-
lution equation (3.43) with A ∝ B−1, and including the wave growth rate
term Γw(f, r), we find

∂P (f, r)

∂t
+
B(r)vA(r)

V (r)

∂

∂r

(
V 2(r)

B(r)vA(r)
P (f, r)

)
= Γw(f, r)P (f, r)− ∂F

∂f
,

(3.45)

where F is the flux function. Rewriting this for P̃ and using a diffusive
approximation for the flux function results in the wave evolution equation

∂P̃ (f, r)

∂t
+ V (r)

∂P̃ (f, r)

∂r
= Γw(f, r)P̃ (f, r) +

∂

∂f
Dff

∂P̃ (f, r)

∂f
. (3.46)

3.6.1 Transmission of Alfvén waves across the shock

The presented methods for wave spectral evolution and wave propagation
assume a quasi-steady background. Thus, these methods cannot be applied
in solving the wave composition in the downstream of a shock. Detailed re-
search into wave transmission at a shock front can be found in, for example,
Campeanu & Schlickeiser (1992), Schlickeiser et al. (1993), and Vainio &
Schlickeiser (1999). Ng (2007) simulated wave transmission along with par-
ticle interactions at a parallel shock, but only within a limited spatial range.
For the research presented in this work, we consider the fact that down-
stream of the shock, turbulence is excited to a significant degree (Vainio &
Schlickeiser 1998), and assume scattering to be strong (Giacalone & Jokipii
2007; Burlaga et al. 2006). Thus, for each acceleration cycle, the time spent
in the downstream is much smaller than the time spent in the upstream,
and can be approximated to be of small consequence.



Chapter 4

Diffusive Shock Acceleration

Diffusive shock acceleration (DSA) describes the process of acceleration as
particles bounce repeatedly between the upstream and downstream of a
shock. In the solar context, it is often described as accelerating seed parti-
cles from the solar wind to very high energies through repeated interactions
with a propagating coronal shock or the bow shock of the Earth (see, e.g.,
Lee 1982). This is a first-order Fermi acceleration process (Fermi 1949),
and has been investigated first by Axford et al. (1977), Krymskii (1977),
Blandford & Ostriker (1978), and Bell (1978). In order for particles to
encounter the shock multiple times, some phenomenon must force them to
return from the upstream (and downstream) back to the shock. In this
work, we study the possibility that turbulence generated by the accelerated
particles themselves traps them to the upstream near-shock region.

4.1 Momentum increase

First-order Fermi acceleration, where a particle bounces off a propagating
shock or the fast-moving plasma behind it (Bell 1977), could be crudely
approximated as a ball bouncing off a table tennis racket. However, what
in fact happens is best described through the scatterings the particle expe-
riences in the various frames in question. In this discussion, we ignore the
effects of solar rotation and assume solar wind plasma motion to be radial,
omitting the effects caused by centrifugal and Coriolis forces.

55
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The velocity of a particle can be defined, for example, in the following:

• The frame of a space-borne observational platform or satellite

• The frame of the propagating coronal shock

• The solar wind flow frame

• The frame of outward propagating waves

• The frame of downstream scatterings centres

As particles travel through interplanetary space, they scatter off Alfvénic
turbulence at resonant wavenumbers. Particle pitch-angles change, but en-
ergy is conserved in the frame of scattering centres. As presented in chap-
ter 3, assuming the simplified case of only outward propagating waves, the
frame of scattering centres travels at the wave phase speed V = usw + vA.
Waves propagating across the shock are amplified and interactions alter
cross helicities (Vainio & Schlickeiser 1999). Exact solutions to wave trans-
mission processes are difficult to find, especially at oblique shocks, and thus,
for simplicity, we assume the downstream scattering frame to be equal to
the downstream plasma frame (Hc,2 = 0).

The statistical average change of momentum 〈∆p〉, measured for parti-
cles in the solar wind frame after returning from a shock crossing, is positive
due to the relative velocities of the upstream and downstream scattering
centres (Bell 1978). Sample particle velocity schematics are shown in figure
4.1.

4.2 Population trapping

A requirement for extended Fermi acceleration is for particles to be trapped
to the vicinity of the shock in both the upstream and the downstream.
This can be achieved by, for example, scattering. The extent of the trap-
ping region affects particle escape out of the acceleration process (see, e.g.,
Ostrowski & Schlickeiser 1996 and Vainio et al. 2000). In the upstream,
particle trapping can be explained through scattering off Alfvén waves am-
plified by streaming particles (see section 3.4). Thus, for particles to be
efficiently trapped to the near-shock region, there must be enough particle
streaming to cause significant wave amplification.
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Figure 4.1: Fermi acceleration experienced by sample particles
at a shock. Velocities are given in arbitrary units, in the iner-
tial frame, and the flow velocity ratio u1/u2 = 2. The upper
[lower] image depicts a slow [fast] upstream particle (arrow 1)
experiencing scattering in the downstream (dashed lines) and
being ejected to the upstream of the shock (arrow 2). The in-
crease in inertial frame speeds is shown as the thick arrows, and
the increase in upstream plasma frame speeds is seen from the
difference in the radius of the solid semicircles.
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4.2.1 Return from the downstream

Particles transmitted to the downstream of the shock are, as a population,
convected away from the shock front. Further major energy gains are ex-
perienced only by particles which re-enter the upstream, remaining within
the acceleration process. Statistical re-entry probabilities for particle popu-
lations can be assessed through the assumption of population isotropy (the
approximation of strong scattering) and calculated particle fluxes. A useful
simplification is to assume particles are trapped to a single flux tube and
to calculate velocities in the HT frame.

For isotropic downstream populations, the probability of return to the
shock front can be approximated by the ratio of shock-bound and downstream-
bound fluxes. This was presented in Jones & Ellison (1991), and we for-
mulate it as

Pret =


(
v′−u2
v′+u2

)2
, v′ > u2

0, v′ ≤ u2.
(4.1)

As our description of guiding centre motion is restricted to a single dimen-
sion, with values calculated in the HT frame, equation 4.1 contains u2, not
u2,n. The particle plasma frame speed v′ is considered in a frame moving
along the downstream field line, not perpendicular to the shock front.

As particles transmitted to the downstream are anisotropic, the return
condition (4.1) should be applied at a downstream return boundary (see,
e.g., Ellison et al. 1995), where particles have achieved isotropy. Particles
are allowed to propagate in the downstream and isotropise through small-
angle scatterings. The downstream return boundary could be approximated
as being, for instance, at a distance of 2λ in the downstream. We note that
in the diffusion-convection equation,

ux
∂n

∂x
=

∂

∂x

(
κx
∂n

∂x

)
, (4.2)

the characteristic distance of the system is the diffusion length κx/ux, where
x is the spatial distance in the shock-normal direction and κx is the asso-
ciated diffusion coefficient. We then assume that particles have achieved
sufficient isotropy at three times the diffusion length, placing the down-
stream return boundary at B = 3κx/ux.
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The shock-normal diffusion coefficient κx = 〈(∆x)2〉/(2∆t) can be split
into field-parallel and field-perpendicular components as

〈(∆x)2〉 = 〈(∆x‖)2 cos2 θBn,2 + (∆x⊥)2〉 sin2 θBn,2

+ 2∆x‖∆x⊥ cos θBn,2 sin θBn,2〉
= 〈(∆x‖)2 cos2 θBn,2 + (∆x⊥)2〉 sin2 θBn,2〉, (4.3)

where the mixed term vanishes due to ensemble averaging. Thus, we find
κx = κ‖ cos2 θBn,2 + κ⊥ sin2 θBn,2. If we assume only motion and diffusion
parallel to the mean magnetic field, we have κ⊥ = 0. Using κ‖ = v′λ‖/3,
this allows defining the return boundary as being parallel to the shock and
at the distance B = λ‖ cos θBn,2v

′/u2 in the downstream.

4.2.2 Cross-field diffusion

Downstream of the shock, magnetic disturbances are strong, leading to
efficient scattering. As δB � B0 does not necessarily hold true, magnetic
field lines can wander and twist. This can be described through field-line
random walk, but this method introduces the possibility of a single field
line intersecting with the shock front multiple times. Cross-field diffusion
plays a minor role at quasi-parallel shocks when θBn,2 is small, and proper
assessment of it would require full-orbit simulations, which are outside the
scope of this thesis.

Even if particle motion is constrained to unidirectional field lines, par-
ticles experiencing strong scattering can be deflected to a new gyropath. In
this way, they are no longer locked to a single magnetic field line (see, e.g.,
Jones et al. 1993 and Baring et al. 1995). This can lead to their guiding
centre jumping up to a theoretical maximum distance of 2rL, perpendicu-
lar to the magnetic field line. This can be modelled as cross-field diffusion,
with perpendicular diffusive motion of the guiding centre.

In Paper III, we assess effects of downstream cross-field diffusion on
injection according to this approximation of jumps across unidirectional
field lines. We consider two downstream cross-field diffusion coefficients.
The first goes to zero in the vicinity of the shock, prohibiting particles
from reaching the shock front via a cross-field diffusion jump. The second
remains constant up to the shock, allowing particles to jump right up to
the shock front, from where particles with a suitable shock-bound parallel
velocity can be injected. The first method results in injection decrease,
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the second in injection increase of similar magnitude. Thus, we consider
ignoring cross-field diffusion a fair first-order approximation for the scope
of this thesis.

4.2.3 The injection problem

A longstanding question regarding DSA is that of sufficient seed particle in-
jection. Solar wind seed particles interacting with a propagating shock must
be injected into the acceleration process in quantities significant enough to
maintain acceleration and to match observations. The diffusion approxi-
mation, often used for describing evolution of particle populations, assumes
that they are quasi-isotropic, which holds true especially when v � u. Es-
pecially at low energies, the diffusion approximation is incapable of describ-
ing particle population evolution accurately, as particles are not isotropic in
the shock frame. Seed particles with high energies, which can be accurately
modelled through diffusive equations, may not be not abundant enough to
result in adequate particle injection for an efficient DSA process.

As shock-normal propagation velocity Vs or shock-normal angle θBn

increases, the HT-frame flow speeds increase, and the threshold speeds
at which diffusive methods are no longer applicable increase. Thus, the
injection problem is especially meaningful for oblique shocks, which are
often viewed as essential for SEP acceleration (see, e.g., Ellison et al. 1995
and Giacalone & Jokipii 2006). The injection problem is assessed in detail
in Paper III.

The injection problem can be addressed in a variety of ways. Some
choose to bypass it by assuming mono-energetic injection (e.g. Li et al.
2012) or power-law seed populations (e.g., Sandroos & Vainio 2007; Ng
& Reames 2008). Other methods include a κ-distribution with an ad-hoc
minimum injection energy (e.g. Neergaard Parker & Zank 2012). Alterna-
tively, particle injection energies can be modelled on the downstream gas
temperature (Zank et al. 2007) or using a thermostat model (Malkov &
Völk 1995a,b, 1998).

In Monte Carlo simulations, the anisotropic downstream-transmitted
seed population can be assumed to isotropise through small-angle scatter-
ings. However, downstream propagation without boundaries is not numer-
ically feasible, requiring a combination of particle simulations and careful
application of the diffusion approximation. One such method, used in this
work, is described in section 5.
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4.2.4 Upstream trapping

In the less-turbulent upstream, particle population escape can be assessed
through transport equations and the quantified amplified turbulence. Strong
turbulence leads to a small value of the diffusion coefficient D‖, and this
strong turbulence is highly dependent on a large amount of energetic par-
ticle streaming in the upstream (see section 3.4). As presented in section
3.2.2, equation (3.16) for an isotropic population of particles using linear
particle density is

∂n

∂t
+

∂

∂r

[(
V +

D‖

L

)
n

]
− ∂

∂p

[
p

3

(
∂V

∂r
+
V

L

)
n

]
=

∂

∂r

(
D‖

∂n

∂r

)
.

The second term, which is the convection term, shows that the particle
population is convected away from the Sun at speed V + D‖/L, where
the portion D‖/L is due to diffusion and magnetic focusing. Thus, in
regions where V +D‖/L < Vs, the particle population experiences sufficient
scattering to cause particles to re-encounter the shock and be accelerated to
higher energies. Conversely, in regions where V +D‖/L > Vs, the scattering
effects of turbulence are insufficient to convect the population of accelerated
particles back to the shock front, allowing them to escape.

The V + D‖/L < Vs formulation of particle trapping is supported by
the concept of streaming limits. This effect, based on observations, was
introduced in Reames (1990a) and further assessed in, for example, Ng &
Reames (1994) and Reames & Ng (1998). In Reames & Ng (2010), it is
linked to GLE observations.

In figure 4.2 we show a sample particle population in front of a coro-
nal shock, where the streaming particles have amplified turbulence to an
adequate extent to generate a region of turbulent trapping in front of the
shock. Particles outside the trapping region (at high energies or far from the
shock) are slow to isotropise whilst experiencing strong focusing towards
µ = 1, and thus, their mean motion is away from the shock.

4.3 Accelerated population spectra

Assuming that particle populations are isotropic allows finding analytical
solutions to accelerated population spectra. The diffusion-convection equa-
tion (see, e.g, Parker 1965b, Gleeson & Axford 1967, and Jones 1990) can be



62 Diffusive Shock Acceleration

Figure 4.2: Sample energetic particle population accelerated
by a coronal shock (filled contours), and the associated turbu-
lent trapping region formed due to wave amplification through
streaming of particles (dashed curve). The edge of the turbulent
trapping region is defined as V +D‖/L = Vs.
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used to find theoretical steady-state solutions for particle spectra at a prop-
agating shock (see, e.g., Axford et al. 1977, Krymskii 1977, and Blandford
& Ostriker 1978).

We present various well-known solutions, where the particle distribution
function must be continuous at the shock. The upstream distribution may,
as x → −∞ (in the far upstream), approach alternatively 0 or a small
background spectrum. The downstream spectrum is taken to be spatially
constant. For detailed analysis on previous work related to spectral analysis
of accelerated particles, we refer the reader to, for example, Jones (1990),
Schlickeiser et al. (1993), and Vainio (1999).

One solution for cosmic rays of momentum p � mu1x, where there is
no additional source function at the shock, is given by utilising separate
asymptotic values for x→ ±∞ (Blandford & Ostriker 1978) as

f0(x, p) =

{
f−(p) + {f+(p)− f−(p)} e−u1x

∫ 0
x dx

′D−1
xx , x < 0

f+(p), x ≥ 0
(4.4)

f+(p) =σp−σ
∫ p

p0

dp′ p′σ−1 f−(p′), (4.5)

where σ = 3rg/(rg−1) (Drury 1983). Further, solving the energy spectrum
of the differential particle flux in the downstream of the shock (see, e.g.,
Vainio 1999) finds

dJ

dE
= p2f0 ∝ p−Γ, (4.6)

where Γ = σ − 2 = (rg + 2)/(rg − 1).

Choosing to include a low-energy mono-energetic particle source func-
tion Q0 at the shock front, Forman & Webb (1985) find the solution as

f+(p) = σ

{
Q0

4πu1xp3
0

+

∫ p

p0

dp′

p′

(
p′

p0

)σ
f−(p′)

}(
p0

p

)σ
, (4.7)

where p0 = mu1x. This leads to the conclusion that for all upstream seed
particle distributions where f−(p) ∝ p−σ

′
and σ′ > σ, the resultant spec-

trum at the shock still reduces to f+(p) ∝ p−σ.

The above derivations assume that particle populations isotropise in the
frame of gas flows. If particles are assumed to isotropise in the frame of
scattering centres (propagating at the wave phase speed in the frame of gas
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flows), we find σ = 3rsc/(rsc − 1), where

rsc =
V1x(p)

V2x(p)
= rg

MA +Hc1

MA +
√
rgHc2

(4.8)

is the scattering centre compression ratio for particles of momentum p
(Vainio & Schlickeiser 1998).

When comparing simulation results or analytical theories to particle
observations (see, e.g., Tylka et al. 2000), it is necessary to account for
high-energy particles escaping from the acceleration process due to the en-
ergy dependence of the diffusion coefficient Dxx. Ellison & Ramaty (1985)
introduced the e-folding spectrum as a way to parametrise the maximum
energy attained through shock acceleration as

dJ

dE
∝ p−Γ exp

(
− E
Ec

)
, (4.9)

where Ec is the spectral cut-off energy. Ec will change with shock proper-
ties, acceleration efficiency, and ion population.

4.4 Acceleration timescales

In section 4.3, a solution was provided for particle spectra resulting from a
steady-state DSA scenario. This is a useful analytic tool, applicable to, for
example, the termination shock at the outer edge of the heliosphere. How-
ever, a shock propagating through the solar corona is a transient event, and
thus, it becomes necessary to investigate acceleration timescales (Krymsky
et al. 1979). The canonical solution for acceleration time in DSA is pre-
sented as (Axford 1981)

τacc =

(
1

p

dp

dt

)−1

=
3

u1 − u2

(
D‖,1

u1
+
D‖,2

u2

)
. (4.10)

Assuming downstream turbulence to be strong, and thus, downstream scat-
tering times to be negligible, equates to setting D‖,2 ≈ 0. Analytical solu-
tions to acceleration timescales, with momentum-dependent diffusion coef-
ficients, are presented in, for example, Drury (1983) and Forman & Drury
(1983).
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4.5 Shock drift acceleration

Shock drift acceleration (SDA) is an acceleration mechanism of energetic
particles which only occurs when θBn > 0. It is an effect occurring on
(relatively) small spatial scales due to the motional electric fields arising
from the component of plasma flow perpendicular to the magnetic field.
SDA can cause rapid SEP acceleration and has been linked to energetic
storm particle spikes (Sarris & van Allen 1974; Armstrong et al. 1977). If
calculations are done in the HT frame, the motional electric field vanishes,
and SDA effects can be considered accurately modelled to first order (see,
e.g., Webb et al. 1983 and Terasawa 1979).

4.5.1 Shock surfing

A similar process to shock drift acceleration, increasing pick-up ion energies,
is shock surfing (see, e.g., Lever et al. 2001). In shock surfing, the cross-
shock potential causes the particle to be reflected at the shock in mid-
gyropath. Thus, the particle bounces along the shock front in a series of
arcs, being accelerated by the motional electric field, until it has achieved
enough energy to escape the surfing process. Shock surfing can be examined
through full-orbit simulations, but is outside the scope of this thesis.
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Part II

CSA: Monte Carlo
simulations of

Coronal Shock Acceleration
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Chapter 5

Developing a self-consistent
DSA simulation

Numerical simulations of SEP acceleration are used to infer accelerated
particle spectra and time profiles from, including but not limited to, seed
particle populations and shock properties. Due to the limitations of per-
forming in-situ observations within the solar corona, simulations play a
major role in aiding our understanding of SEP acceleration. As such, they
have been the focus of many research groups for decades.

A review on this field of study can be found in, for example, Lee (2005).
Ng et al. (2012) present a review on one modelling effort, which has given
interesting results on, for example, streaming limits and elemental abun-
dances. It includes the bootstrapped feedback of self-generated waves (Ng &
Reames 2008), finding solutions to analytical schemes via numerical meth-
ods (see also Ng et al. 1999 and Ng et al. 2003). Another model using
distribution functions is the α-particle acceleration model of Galinsky &
Shevchenko (2010), utilising scale separations. Its strengths include injec-
tion from the ambient medium and support for large spatial scales.

Giacalone (2005) presented test particle simulations, assessing the ef-
fect of shock-normal angle on acceleration efficiency (see also Giacalone &
Jokipii 2006). They, however, included no wave amplification due to parti-
cles, instead assessing a multitude of astrophysical scenarios not limited to
coronal effects. The SHOPAR code (see, e.g., Sandroos & Vainio 2006 and
Sandroos & Vainio 2009a) is likewise a test particle code, but developed
specifically for the coronal environment and associated complex magnetic
geometries. The PATH code (see, e.g., Zank et al. 2000) consists of a 2D
MHD module for shock modelling and an onion shell model for accelerated
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particle populations downstream of the shock with Monte Carlo simulation
of ions escaping upstream.

The Coronal Shock Acceleration (CSA) simulation software was devel-
oped in order to meet the requirements of extended self-consistent DSA
at a propagating coronal shock, with wave amplification generated by the
streaming particles themselves. The analytical basis of the model, along
with wave amplification equations, was presented in Vainio (2003). Pre-
vious results based on the CSA code base have been published in Vainio
& Laitinen (2007) and Vainio & Laitinen (2008). The software supports
the OpenMPI library for sharing processing load over multiple cores. The
software is written in Fortran 90/95, with data files using the FITS file
format.

5.1 Simulation framework

CSA is a Monte Carlo simulation code which simulates coupled transport
of energetic particles and Alfvén waves. Due to numerical limitations, the
coronal/interplanetary flux tube, along which the coronal shock and parti-
cles propagate, is modelled with only a single radial coordinate. Simulation
parameters define solar wind parameters, normalisation values at 1 AU, in-
jected particle population properties, and the motion of the shock front
along the flux tube.

As DSA with self-generated waves cannot be described through test
particle simulations, the software is constructed with a feedback loop. Seed
population parameters and the shock description are predetermined through
initialisation parameters and the applied solar wind model. We consider
downstream turbulence to be strong regardless of upstream wave spectra.
This way, particle injection can be assessed during simulation initialisation.
Then, as the shock propagates through the corona, injected particles are
activated as the shock passes their injection position.

Particle propagation is implemented through a 1-D guiding centre ap-
proach. Particle streaming is tracked and used to infer wave amplification.
Alfvénic turbulence is tracked on a grid attached to the propagating shock,
with frequency diffusion (see equation 3.41) and convection (see section 3.6)
used to account for non-linear interactions and WKB transport. Alfvén
wave power is then used to calculate particle scattering coefficients. At
predetermined times, particle spectra and wave power are written to disk,
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Figure 5.1: Flow chart of CSA simulation software. Particle
properties affect their return probability and downstream prop-
agation, but do not modify shock properties.

with the simulation continuing until the target simulation time is attained.
A flowchart describing the simulation framework is presented in figure 5.1.

CSA supports the OpenMPI standard for parallelisation with the amount
of simulated particles split across all processes. At time step intervals
∆t, processes distribute accumulated turbulence amplification coefficients
Γw(r, f) amongst themselves. ∆t can be adjusted during the simulation in
order to minimise data transfer between processes. Minimum and maxi-
mum values for allowed amplification coefficients can be set manually, lim-
iting ∆t.

CSA can save its full simulation state at wall time or simulation time
intervals, allowing computationally intensive simulations to be run in multi-
ple consecutive sessions. This resume functionality supports parallelisation,
with the primary root process handling all file access.

The logarithmic grids CSA uses internally are also used for data output
to disk. Simulation parameters include the number of bins in each direction
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(radial, frequency, velocity) and the minimum and maximum values for
each direction. The values assigned to the grid in the χ-direction (where
χ = v, f, or r and i = 0 . . . nχ − 1) are

χi = exp

(
i

nχ − 1
log
(
χ1

χ0

)
+ log (χ0)

)
. (5.1)

5.2 Particle Transport

We solve the stochastic differential equations governing particle transport
by considering a large number of representative particles which are propa-
gated inside the flux tube and scattered off Alfvén waves. Instead of solving
the equation for focused transport (3.12), we split the equivalent stochastic
particle motion into separate operations. It should be noted that adiabatic
deceleration is implicitly included when particle focusing and scattering are
accounted for in appropriate frames of reference.

Particle motion is restricted to the adiabatic guiding centre approxima-
tion (in the HT frame), where guiding centre motion and plasma flow are
aligned with the background magnetic field B0. Particles are propagated
with a staggered leapfrog algorithm (see, e.g., Morton & Mayers 2005), with
particle time step ∆ti ≤ ∆t.

The particle time step is set for each particle as ∆ti = 2−ni∆t, where
ni ≥ 0 is an integer. This is used to constrain the scattering amplitude νi∆ti
to values between 0.02 and 0.05. Additionally, ni may be incremented to
prevent a particle crossing more than one spatial grid cell boundary during
one step.

At each particle half-step, particle pitch-angles are corrected for fo-
cusing effects due to decreasing magnetic flux density, and particles are
scattered through isotropic small-angle scattering in the frame of outward
propagating Alfvén waves. At the half-step interval, the particle position is
compared with the shock position, and shock interaction routines are called
when necessary.

The equations describing implicit Euler solutions for focusing are (Vainio
& Laitinen 2008)

h = −vi∆ti
2

∂ lnB

∂r

∣∣∣∣
r=ri

(5.2)
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and

µ′i =
−1 +

√
1 + 4h(µi + h)

2h
, (5.3)

where ri is the particle position at the half-time step, and vi and µi are
the particle speed and pitch-angle cosine at the beginning of the time
step. Isotropic particle scattering, at frequency ν, is then performed af-
ter Lorentz-transforming vi and µi to the Alfvén wave frame (designated
v′i, µ

′
i). Scattering angles θs and φs are randomized according to Kocharov

et al. (1998), where θs =
√
−2ν∆ti log(1− S) and φs = 2πS ′, and S and S ′

are uniformly distributed random numbers in the range [0, 1). The pitch-
angle cosine, after focusing and scattering, is

µ′′ = µ′ cos θs +
√

1− µ′2 sin θs cosφs. (5.4)

5.3 Wave evolution

The wave power of Alfvénic fluctuations is stored on a grid, attached to
the propagating shock and convected along with it. The grid is logarithmic
both in the radial and frequency directions. Only outward-propagating
waves are considered (see, e.g., Schwenn & Marsch 1991, pp. 159), moving
at speed V = usw + vA. Our wave model considers WKB propagation with
added terms for diffusion and amplification, and additionally wave power
is convected on the grid towards the shock at speed Vs−V . We store wave
power as WKB-normalised values according to (3.44).

This evolution of the wave spectrum, formulated as equation (3.46),
is handled through operator splitting. After each simulation time step,
we first apply frequency diffusion and then convect wave power on the
grid according to the difference between shock propagation speed and wave
phase speed. Finally, wave amplification due to particle streaming is applied
with the methods described in section 3.4.

Our diffusion calculations are conducted with a standard implicit Crank-
Nicholson scheme (Crank et al. 1947), using the form of Dff presented in
(3.41). The Crank-Nicolson scheme is unconditionally stable and always
second-order accurate. However, we constrain the diffusion time step as
∆tj ≤ (∆fmin)2/Dff ,max to preserve accuracy. The wave intensity at the
low frequency boundary is kept constant, representing a heating source,
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and the wave intensity at the high frequency boundary is set to follow a
P̃ ∼ f−3 power law.

Due to spatially changing wave phase speeds V (r), wave advection is
handled by a combination of a regular 1st order upwind scheme and an
explicit Lax-Wendroff scheme (Lax & Wendroff 1960), with a Van Leer flux
limiter (van Leer 1974) defining the combination ratio. Additionally, the
scheme takes into account the logarithmic nature of the grid. The advection
module can use smaller time steps ∆tk = 2−nk∆t to retain stability accord-
ing to the Courant condition. At the far boundary, P̃ is kept constant, and
at the shock boundary, a regular upwind scheme is used.

The initialisation spectrum of waves is set to P̃ (f, rw0) ∝ f−1 where
rw0 is an initialisation distance parameter, which we set as rw0 = 1.5R�.
We then calculate diffusive advection of this spectrum, first to the initial
position of the shock, and then across the whole wave grid. Finally, we
normalise the wave power in order to achieve a given 100 keV proton mean
free path at 1 AU. We set this to λ(1AU) = 55R�, which agrees with
observations (see, e.g., Palmer 1982).

The process of transforming particle streaming into wave amplification
is described in section 3.4. We present equation (3.38) as

Γ(r, fr) =
π

2
Ωc

m

mp

pSα(r, p, t)

npvA
, (5.5)

where the particle streaming is given as

Sα(r, p, t) = 2π

∫ +1

−1
vp2fα(r, p, t)dµ. (5.6)

After each half-step of particle movement, the position of the particle on
our wave grid is compared to saved values, to accumulate particle streaming.
However, as our grid is attached to the shock, this results in the shock-
frame streaming value Sα,grid(r, p, t). This is transformed into the frame of
propagating waves as Sα(r, p, t) = msSα,shock(r, p, t), where

ms =
vwµw

vgµg
(5.7)

is a transformation parameter, a subscript of w denotes particle values in
the frame of waves and one of g denotes values in the frame of the grid.
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Particle streaming is gathered over time step ∆t intervals, then processed
into wave amplification as described in section 3.4.

5.4 Simulation and shock parameters

Our solar wind model considers a single radial flux tube of coronal or so-
lar wind plasma. The properties of plasma are fixed with semi-empirical
expressions as a function of radial distance from the Sun. The flux tube
is assumed to be surrounding a radial magnetic field line, and expands
according to A ∝ B−1, with

B(r) = B0

(
r

r⊕

)−2
[

1 + bf

(
r

R�

)−6
]
, (5.8)

where r⊕ = 1 AU and R� is the solar radius. We typically set bf = 1.9
and B0 scales the values to 2.90 nT at 1 AU (see Vainio et al. 2003). We
consider the solar wind density to be (Cranmer & van Ballegooijen 2005)

nsw(r) =n0

[(
r

R�

)−2

+ 25

(
r

R�

)−4

+ 300

(
r

R�

)−8

(5.9)

+1500

(
r

R�

)−16

+ 5796

(
r

R�

)−33.9
]
,

where n0 is used to fix the Alfvén speed, from equation (2.4), to match
the simulation parameter vA(1 AU). We usually set vA(1 AU) = 20 km s−1.
The ion temperature T is taken to be (Cranmer & van Ballegooijen 2005)

T (r) = 5 · 105

[
0.2 + 0.02

(
r

R�

)0.8

+ 0.21

(
r

R�

)−33
]−1

. (5.10)

Ions and electrons are considered to have the same temperature, and they
both contribute to plasma pressure in calculating the sound speed in equa-
tion (2.2). Solar wind flow velocity is inferred from mass conservation. The
temperatures and flow speeds used in our model are shown in figure 5.2.

The shock profile evolution parameters chosen for our model are the ini-
tial shock-normal velocity Vs,0, the initial shock angle cosine µs,0 = cos(θBn,0),
the asymptotic shock angle cosine µs,1 = cos(θBn,∞), the shock-normal de-
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Figure 5.2: CSA model values for solar wind speed usw, Alfvén
speed vA, wave phase speed V , and ion temperature T . Model
normalisation parameters are B(1 AU) = 2.90 nT, bf = 1.9,
vA(1 AU) = 20 km s−1, and usw(1 AU) = 380 km s−1.
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celeration V̇s, and the inverse shock cosine transition time qn. The shock-
normal velocity at time t is

Vs(t) = Vs,0 + V̇st (5.11)

and the shock-normal angle cosine at time t is

µs(t) =
µs,0 + tqnµs,1

1 + tqn
. (5.12)

This allows for modelling of an expanding shock front with a decreasing
shock-normal velocity, and with the intersection angle decreasing over time,
which is a fair approximation of many coronal mass ejection driven shocks.
The point of intersection between the shock front and the magnetic field line
within the simulation flux tube propagates at speed VS,‖(t) = Vs(t)/µs(t)
in the solar frame and is stationary in the HT frame.

The gas compression ratio rg at the shock front is solved according to
section 2.5, using a simple Newton iterator. The magnetic compression
ratio rB can be solved analytically with equation (2.24). Gas and mag-
netic compression ratios for sample shocks are presented in figure 5.3. CSA
considers the shock profile to be a step with no prescribed foot, ramp or
foreshock. We do not convect actual simulation values of Alfvénic tur-
bulence to the downstream, and they are not used in calculating shock
parameters or downstream scattering amplitudes.

5.5 Particle-shock interactions

Simulated particles which encounter the propagating coronal shock can be
either reflected at the shock or transmitted to the downstream. For each
particle-shock interaction, we calculate the appropriate return probability
Pret, and if it is high enough, we return the particle back to the upstream
with the appropriate modifications to speed and pitch-angle. The represen-
tative weight of the particle is adjusted by multiplying it with the return
probability Pret.

Reflection at a shock front can be caused by magnetic compression
(section 2.6) and the cross-shock potential (section 2.7). As presented in
appendix B of Paper III, a particle is reflected, and thus, returned to the
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Figure 5.3: CSA model solutions for gas compression ratio rg

(above) and magnetic compression ratio rB (below), for a selec-
tion of shock-normal velocities and angles.
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upstream, if

2µvu1 − v2 + v2(1− µ2)rB > u2
1 − 2(q/m)∆Φ. (5.13)

In our notation, the return probability from a shock encounter for a reflected
particle is Pret = 1.

Transmitted particles are slowed down by the cross-shock potential and
have their pitch-angle altered due to magnetic compression. The down-
stream speed v′ and pitch-angle µ′ of particles can be solved, as presented
in Paper III, with the following equations:

v′2 =
[
u2 −

√
u2

1 − 2µvu1 + v2 − v2(1− µ2)rB − 2(q/m)∆Φ
]2

+(1− µ2)v2rB (5.14)

µ′ =
1

v′

[
u2 −

√
(µv − u1)2 − 2

mM∆B − 2
mq∆Φ

]
(5.15)

M≡ m(1− µ2
2)v2

2

2B2
=
m(1− µ2

1)v2
1

2B1
(5.16)

CSA considers the downstream of a propagating coronal shock to be
strongly turbulent (D‖,2 ≈ 0, see eq. 4.10), resulting in negligible down-
stream residence time. In the downstream, we apply the ratio of shock-
bound and downstream-bound fluxes (see equation 4.1) to find the mean
probability of return to the upstream.

Freshly transmitted particles are not isotropic, and as presented in Pa-
per III, making such an assumption could significantly skew injection prob-
abilities. Thus, we propagate particles in the downstream up to a return
boundary at xn = −B (see, e.g., Ellison et al. 1996 and section 4.2.1). Par-
ticles have an initial return probability of Pret,0 = 1. At the distance
xn = −B, particles have encountered enough scatterings to warrant the as-
sumption of isotropy. At this point, the return probability Pret,i from equa-
tion (4.1) can be assigned. After this, particles receive a new randomised
flux-weighted shock-bound pitch-angle

µ′ =
1

v′

(
u2 + (v′ − u2)

√
S
)
, (5.17)
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where S is a uniformly distributed random number in the range [0,1). Par-
ticles then propagate and scatter until they return to xn = −B or until
they reach the shock front. Multiple encounters with the return boundary
can result in a cumulative return probability Pc =

∏
Pret,i. If at any time

Pc < 10−6, the particle is considered lost to the downstream. If the particle
returns to the shock front, it is returned to the upstream with Pret = Pc.

In the downstream, the angle between the shock normal and the mean
magnetic field is θBn2, which is found from cos θBn2 = r−1

B cos θBn. The
field-parallel diffusion coefficient is κ‖ = v′λ‖/3, and if used, the field-
perpendicular diffusion coefficient is κ⊥(µ′) = a⊥κ‖(1− µ′2), where a⊥ is a
parameter of cross-field diffusion strength. The term (1−µ′2) scales motion
according to the Larmor radius rL. The shock-normal diffusion coefficient
is then formulated as κx = κ‖ cos2 θBn,2 + κ⊥(µ′) sin2 θBn,2.

In Paper II, the downstream return boundary is set to B = 2λ‖ cos θBn2

in order to ensure sufficient isotropisation time. Elsewhere, we use B = 3κx/ux,
which becomes

B = λ‖
(
cos2 θBn,2 + a⊥ sin2 θBn,2

) v′

u2 cos θBn,2
. (5.18)

In this, we have cautiously used the maximum value κ⊥(µ′)|max = a⊥κ‖.
If cross-field diffusion is not simulated, we set a⊥ = 0.

Particle motion normal to the shock front is found as

∆xn = ∆x‖ cos θBn,2 + ∆x⊥ sin θBn,2. (5.19)

In the downstream, field-parallel particle motion is ∆x‖ = (v′µ′ − u2)∆t′,
where ∆t′ = 0.1/ν is the propagation time step and ν = v′/λ‖ is the particle
scattering frequency. The perpendicular motion of particles is solved using
the stochastic differential equation method (Gardiner 1985) as

∆x⊥ = Rn

√
2κ⊥(µ′)∆t′ = Rn

√
1− µ′2

√
(2/3)a⊥λ‖v′∆t′, (5.20)

where Rn is a normal distributed random number from a Box-Muller trans-
form (Box & Muller 1958). Perpendicular motion is additionally con-
strained to ∆x⊥ ≤ v′⊥∆t′.
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5.6 Particle injection

A major factor contributing to the efficiency of DSA is the total amount of
particles participating in the acceleration process. CSA simulates particle
injection by propagating a coronal shock along the prescribed radial flux
tube and simulating interactions of ambient solar wind test particles with
the shock front. Any particles which return to the upstream of the shock
are considered injected, and can participate in the acceleration process.
The injection process is discussed in extensive detail in Paper III.

CSA allows for two κ-distributed seed particle populations (hereafter
populations 1 and 2), which follow the descriptions given in section 1.5.
Additionally, each population can contain a portion of minor ions (3He2+,
4He2+, 16O6+, and 56Fe14+). The spatial distribution of seed particles for
each population is given as

nαj(r) = εαjnsw(r), (5.21)

where values εαj are parameters, α designates the ion in question, and j rep-
resents population 1 or 2. For protons, CSA allows values of εH1 + εH2 ∈ (0, 1].
Abundances εαj for minor ions are given in units εHj . Suggested sample val-
ues for ion abundances are εHe3,j = 1.6·10−5, εHe4,j = 4·10−2, εFe,j = 1·10−4

and εO,j = 8 · 10−4 (based on Lodders 2003).
CSA supports distribution shapes of κ = 15, κ = 12, and values from

the range κ ∈ [2, 6]. The value of 15 is considered close to a Maxwellian
distribution. Alternatively, the parameter κ can be set to follow a linear
trend between r = 1.5R� and 3R� from 6 to 2 (and constant outside this
range). This simulates how, at small radial distances and with higher gas
densities, particles have a higher chance of thermalising. The particle speed
v is measured in the upstream plasma frame. We use mass-proportional
temperatures for different ion species and the proton kinetic temperature
is taken to agree with the radial solar wind model.

5.6.1 Monte Carlo tests for injection

The protons of each population are represented by NHj Monte Carlo par-
ticles, and for each minor ion species there are Nαj = 1

4NHj Monte Carlo
particles. The particles are distributed uniformly along the path of the
shock, with positions randomised from ri ∈ [rs(t = 0), rs(t = tmax)). As the
average spatial separation of particles is δrαj = (rs(tmax)−rs(0))/Nαj , each
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simulated particle is assigned a representative weight of

wij =

∫ ri+δrαj

ri

A(r)nαj(r) dr, (5.22)

where nαj is the particle density and A(r) is the flux tube cross-sectional
area.

We solve analytical speed thresholds for particle injection due to both
reflection at the shock and scatterings in the downstream. As presented
in Paper III, the minimum plasma frame speed for particles resulting in
injection can be solved from our solar wind and shock parameters. For each
particle, at position ri, we find two threshold speeds for reflection, and 1-3
threshold speeds for injection after downstream isotropisation. Downstream
isotropisation threshold speeds resulting from extrema at µ 6= ±1 (see Pa-
per III, appendix B) are solved through numerical iteration. Finding the
smallest of these threshold speeds can, for some simulation parameters and
particle positions, result in a minimum speed of 0. In these circumstances,
completely cold seed particles have a nonzero probability of injection, and
injection test speeds have no lower limit.

The particle speed is randomised from the κ-distribution, allowing only
speeds which exceed the injection threshold speed. The randomisation is
done via a numerical look-up table, which is created for values of κ = 2, 2.5,
3, . . . , 6, 12, and 15. Linear interpolation is used to find the speed associated
with the randomisation parameter, a uniformly distributed random num-
ber. If the value of κi assigned to the particle is not included in the table,
but κi ∈ [2, 6], a second linear interpolation is performed between the two
values found by using the nearest tabulated values of κ. The κ-distribution
representative velocity parameter w0 is solved from the radial temperature
profile T (r) or, if given, a constant solar wind plasma temperature.

Seed particles are considered isotropic in the upstream plasma frame.
Taking into account flux conservation, as presented in Paper III, the pitch-
angle cosine µ of particles with speeds v < u1 is randomised as

µ|v<u1 =
u1

v
−
√

(
u1

v
− 1)2 + 4

u1

v
S, (5.23)

where µ receives values from the range −1 < µ ≤ +1 and S is a uniformly
distributed random number in the range [0,1).
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For particles with speeds v > u1, information of the propagating shock
can extend into the upstream, affecting the incident particle pitch-angle
distribution. Thus, we place particles in the upstream at a distance of
x1 = 2λ, with

µ|v>u1 = −
(
−u1

v
+ (1 +

u1

v
)
√
S
)
, (5.24)

which limits µ to values from the range −1 < µ ≤ u1
v , i.e. travelling towards

the shock. The particles are then scattered and convected in the upstream
until they reach the shock front.

When particles reach the shock front, they are tested for particle-shock
interaction to find their probability of returning to the upstream Pret. Suc-
cessfully returning particles are considered injected.

5.6.2 The negative binomial distribution and the minimum
variance unbiased estimator

Despite calculating minimum injection speeds, randomised particles might
not be injected into the acceleration process. To retain statistical accuracy,
we employ statistical methods and note that the amount of successful in-
jections follows a negative binomial distribution. We randomise particles
in groups of varying sizes, where for each attempt within the group, the
particle receives newly randomised values of v and µ. Each group will re-
sult in injection of a single representative particle, and the group size is
dependent on injection probability. First, the newest particle in a group is
tested for reflection. Reflected particles are returned to the upstream and
considered injected, with Pret = 1. Non-reflected particles are transmitted
to the downstream, with v′ and µ′ calculated according to equations (5.15)
and (5.14), after which downstream propagation and scattering follows.

We attempt new particles until each group has R = 5 successfully in-
jected particles (hereafter referred to as successes). The amount of unin-
jected or unsuccessful particles in the group is designated K. From R and
K, we estimate the statistical probability, P, of the group resulting in a
particle designated as successful. With P calculated, the last successful
particle of the group is considered injected, and is used to represent the
whole group.

As a precaution against excessively low success probabilities, the group
size is limited to (R + K) = 106. If this limit is reached, and at least 2
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successes are encountered, the values of Ri and Ki associated with the last
encountered success are used to calculate P. If the tests resulted in only 0
or 1 successes, the group is considered as resulting in no injection.

In estimating P, the minimum variance unbiased estimator (see, e.g.,
Lehmann & Casella 1998) is used, which gives

P =
R− 1

R+K − 1
. (5.25)

It should be noted, however, that the actual probability of injection for a
particle is Pinj = PPret, where Pret is the probability of return associated
with the last encountered success. Thus, the injected weight of the Monte
Carlo particle is found as Wij = wijPinj, where wij is the representative
weight of upstream seed particles assigned to this group, as shown in equa-
tion (5.22).

5.7 Data output

CSA results are saved using the Flexible Image Transport System (FITS,
see, e.g., Wells et al. 1981). Each file consists of multiple Header + Data
Units (HDUs). Each HDU contains header information with all simulation
parameters and definitions on how to interpret the contained data.

Turbulence power files contain 3 HDUs.

• The primary data unit contains a 3-dimensional data cube with di-
mensions equal to the number of output time steps, the number of
radial bins, and the number of frequency bins. Each data value rep-
resents the wave power P (f) at the given output time step, radial
position, and frequency.

• The first extension data unit contains a 2-dimensional array of the
radial positions associated with each cell, in units of solar radius, at
each output time step.

• The second extension data unit contains a 2-dimensional array of the
frequencies associated with each cell, given in hertz, at each output
time step.

• The third extension data unit contains a table with a single data
column of simulation times at each output time step, given in seconds.
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Particle distribution files contain 3 HDUs. A separate file is created
for each active ion species. Particle counts can be chosen to represent the
number of particles within the bin or the omnidirectional intensity I in
units cm−2 sr−1 s−1 MeV−1. This omnidirectional intensity is defined as

dI

dE
=
p2

2

∫
f(p, µ) dµ =

1

4π

dN

d3x dp
. (5.26)

• The primary data unit contains a 3-dimensional data cube with di-
mensions equal to the number of output time steps, the number of
radial bins, and the number of speed bins. Each data value represents
the chosen particle count within the bin, starting at the given radial
position and speed, at the given time.

• The first extension data unit contains a 2-dimensional array of the
radial positions associated with each cell, in units of solar radius, at
each output time step.

• The second extension data unit contains a 2-dimensional array of the
particle speeds associated with each cell, given in units c, at each
output time step.

• The third extension data unit contains a table with the following data
columns:

1. Simulation times at each output time step, given in seconds.

2. Amount of active particles within the simulation at each output
time step.

3. Amount of particles injected into the simulation during each time
step.

4. Amount of particles leaving the simulation during each time step.

5. Weighted average age of active particles within the simulation
at each output time step, given in seconds.

6. Weighted average age of particles injected into the simulation
during each time step, given in seconds.

7. Weighted average age of particles leaving the simulation during
each time step, given in seconds.
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Each FITS file contains only counts and weighted ages of particles
belonging to the appropriate ion population.

For enhanced statistical stability, particle counts can be integrated over the
length of the output time step (at ∆ti intervals) instead of representing a
snapshot situation at the moment of output.
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Chapter 6

Results of DSA at coronal
shocks

In this chapter, we present simulation results of DSA at coronal shocks.
These results span a larger parameter space than presented in the arti-
cles included in this thesis. We compare proton and minor ion spectra,
wave amplification results, and wave power spectra at shocks of varying
shock-normal velocities and shock-normal angles. Our results show how
DSA efficiency at coronal shocks varies greatly based on shock and seed
population properties.

6.1 Simulation parameters

In the presented simulations, we have used different constant values for the
shock-normal velocity Vs and the shock-normal angle θBn. We assume the
solar wind to consist of both thermal and non-thermal populations. Paper
III contains detailed assessment of the injection process, allowing us to
adjust simulation input parameters for suitable numerical efficiency. The
non-thermal seed particle population is modelled as a κ = 2 distribution,
and is set to 1% of the solar wind density. The thermal population should
be the remaining 99% of solar wind density. Our injection method treats
seed particles as pure test particles, instead of allowing them to affect the
properties and spatial profile of the shock front or plasma flows. Thus, it
is possible that our method overestimates the particle injection from the
thermal population. For this reason, we artificially inhibit the injection of
thermal particles, seeding them as only 10% of solar wind density. This
decreases the possible injection of thermal particles, but does not affect the

89
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suprathermal population. For minor ion abundances, we used estimates
presented in Paper II (see, e.g., Lodders 2003), both for thermal and
suprathermal populations.

We simulate particle scatterings in the downstream up to the return
boundary B, but based on the results of Paper III, we do not simulate
cross-field diffusion. Our simulation parameters are listed in tables 6.1
through 6.4.

number of radial grid points nr = 401

minimum value for radial grid points r0 = 5 · 10−3R�

maximum value for radial grid points r1 = 308.167R�

number of velocity grid points nv = 81

minimum value for velocity grid points v0 = 108 cm s−1

maximum value for velocity grid points v1 = 2.9 · 1010 cm s−1

number of frequency grid points nf = 81

minimum value for frequency grid points f0 = 10−5 s−1

maximum value for frequency grid points f1 = 103 s−1

Table 6.1: Simulation parameters 1: Data grids

6.1.1 Injection efficiency

As presented in Paper III, oblique shocks are inefficient at injecting ther-
mal particles into the acceleration process. We attempted injection of both
κ = 2 and κ = 15 populations for shocks with θBn = 0◦ and θBn = 15◦,
but omitted tests at higher shock-normal angles. In table 6.5, we list the
injection efficiencies of protons for all presented simulations, and show that
injection of thermal particles was negligible in all cases except for the par-
allel Vs = 1500 km s−1 case.
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Shock-normal velocity Vs (constant) 1000, 1500, or 2000 km s−1

Shock-normal angle θBn (constant) 0◦, 15◦, 30◦, or 60◦

Shock starting position rs0 2R�

P ∝ f−1 initialisation distance rw0 1.5R�

Simulation time tmax 640 s

Output time step tout 10 s

Internal time step ∆t (adjusted dynamically) 6.4 · 10−3 s

Minimum value for Γw per time step Γmin = 4 · 10−3

Maximum value for Γw per time step Γmax = 0.2

Cross-shock potential strength φ = 0.12

Table 6.2: Simulation parameters 2: Shock and simulation pa-
rameters

Magnetic flux tube supra-expansion coefficient bf = 1.9

Magnetic field strength at 1 AU B(1 AU) = 2.90 nT

Solar wind speed at 1 AU usw(1 AU) = 380 km s−1

Alfvén speed at 1 AU vA(1 AU) = 20 km s−1

Mean free path for 100 keV proton at 1 AU λ(1 AU) = 55R�

Table 6.3: Simulation parameters 3: Solar wind parameters

6.1.2 The turbulent trapping region

Throughout our interpretation of the simulation results, we will be refer-
ring to the turbulent trapping region, as defined in section 4.2.4. Within
the turbulent trapping region, particles are confined to the vicinity of the
shock, experiencing efficient DSA. In figure 6.1, we show contour plots of
omnidirectional proton intensities along with the boundary of the turbulent
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Proton density for population 1 (κ = 2) εH1 = 0.01

Proton density for population 2 (κ = 15) εH2 = 0.1

Proportional 3He2+ density εHe3,1 = εHe3,2 = 1.6 · 10−5

Proportional 4He2+ density εHe4,1 = εHe4,2 = 4 · 10−2

Proportional 16O6+ density εO,1 = εO,2 = 1 · 10−4

Proportional 56Fe14+ density εFe,1 = εFe,2 = 8 · 10−4

Table 6.4: Simulation parameters 4: Particle populations

Vs [km s−1] θBn [deg] Eff(κ = 2) Eff(κ = 15)

1000 15 1.5 · 10−3 3 · 10−6

1000 30 9.7 · 10−4 n/a

1500 0 6.2 · 10−2 6.2 · 10−2

1500 15 1.0 · 10−3 8 · 10−9

1500 30 7.5 · 10−4 n/a

1500 60 1.3 · 10−4 n/a

2000 15 5.9 · 10−4 9 · 10−7

2000 30 4.2 · 10−4 n/a

Table 6.5: Injection efficiencies: Particles entering the simula-
tion as a fraction of tested solar wind particles. Shocks with
θBn = 30◦ or θBn = 60◦ were only tested for injection from the
κ = 2 seed population.

trapping region. As can be seen in the left image, with Vs = 1500 km s−1

and θBn = 0◦, the turbulent trapping region extends to high energies and
encompasses the whole proton population, save for high-energy protons es-
caping in the radial direction. Conversely, in the right-hand image, with
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Vs = 1500 km s−1 and θBn = 15◦, we see significant injection of particles
which are not contained within the turbulent trapping region, and thus,
will not experience significant DSA.

The particle energies associated with boundaries of the turbulent trap-
ping regions are shown in figure 6.2. Within the turbulent trapping region,
particle populations should approach a shape described by a power-law in-
dex ΓE in agreement with acceleration theory (see section 4.3). Outside
the turbulent trapping region, particles are mostly limited to energy gains
from SDA during injection.

Figure 6.1: Contours of omnidirectional proton intensities af-
ter 640 seconds of simulation along with the boundary of the
turbulent trapping region (dashed curve). The left figure, with
shock-normal velocity Vs = 1500 km s−1 and shock-normal an-
gle θBn = 0◦, displays efficient trapping, with only a few far-out
particles escaping. The right figure, with shock-normal velocity
Vs = 1500 km s−1 and shock-normal angle θBn = 15◦, displays
weak trapping, with high-energy particles experiencing negligi-
ble DSA.

6.2 Wave amplification

In figure 6.3, we show a selection of wave amplification results. For all
graphs, the wave amplification coefficient Γw (equation 3.38) was integrated
over the whole simulation time. Results are shown both for the first row
of wave power grid cells in front of the shock (left column), and integrated
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Figure 6.2: Spatially integrated accelerated proton spectra
(dN/dE) after 640 seconds of simulation. Also plotted,
with grey vertical lines, are the near-shock maximum ener-
gies associated with the edge of the turbulent trapping region.
Shown are comparisons for different shock-normal angles using
Vs = 1500 km s−1 (left image), and different shock-normal ve-
locities using θBn = 30◦ (right image). Particle spectra exhibit
build-ups within the turbulent trapping region.

over the whole spatial grid (right column). The results of integrating over
the whole spatial grid should be interpreted carefully, as they do not have
a direct physical counterpart.

As the shock-normal velocity Vs or shock-normal angle θBn increases,
the speed of the shock along the field line increases, and with it, the energy
gained by a particle per particle-shock interaction. This leads to particles
having larger energies, and drives wave amplification to lower (resonant)
frequencies.

The top row in figure 6.3 shows how shock-normal angle θBn can have a
significant effect on Alfvén wave amplification, especially in the near-shock
region. The variation on wave amplification magnitude is directly related
to the injection efficiency of the shock, which has a strong dependence on
the shock-normal angle θBn. The peak amplification values for θBn = 15◦

and θBn = 30◦ are remarkably similar. This can be explained by referring
to Paper III, where the injected flux for these two cases are very similar,
though for θBn = 15◦ it is injection through downstream scatterings that
dominates, and for θBn = 30◦, injection through reflection.
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From the middle and bottom rows, where the shock-normal velocity is
varied for a constant shock-normal angle, we can see that the maximal am-
plification amplitude does not have a strong dependence on shock-normal
velocity, but its peak frequency does. Comparing amplification spectra
near the shock and for the whole spatial range, we see that at low frequen-
cies (i.e. resonant with high energy particles), amplification is weak in the
near-shock region. Over the whole spatial range, however, amplification is
stronger. This is due to fast particles exiting the vicinity of the shock, as
they are not within the turbulent trapping region.

In figure 6.4, we show samples of integrated wave amplification coeffi-
cient Γw for different minor ion species. The top left image (amplification in
front of the shock, Vs = 1500 km s−1, θBn = 0◦) is in good agreement with
the results presented in Paper II. With increasing shock-normal angle (the
second and third row, left images), wave amplification in front of the shock
extends well to lower frequencies, where 2He4+ causes turbulence amplifi-
cation of amounts comparable with protons. However, this amplification is
not enough to extend the turbulent trapping region to these frequencies, so
the bootstrapped DSA process does not become effective for high energy
particles.

When assessing turbulence amplification over the whole spatial grid (fig.
6.4, right column), we find that as for protons, minor ions generate negli-
gible wave amplification at low frequencies through escaping particles. In
the parallel shock case (top right), we can distinguish a strong bump of
amplification due to freshly injected particles (from approximately 50 to
200 Hz, resembling the near-shock amplification) in addition to an ampli-
fication bump extending all the way to ∼ 0.1 Hz. This secondary amplifi-
cation region is due to efficient DSA and high-energy particle streaming in
the near-shock region, with the low-frequency edge corresponding with the
boundary of the turbulent trapping region. The differences in minor ion
resonant frequencies are easily distinguished in this picture.
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Figure 6.3: Wave amplification due to streaming protons inte-
grated over 640 seconds of simulation. The left column shows
amplification in front of the shock (at a distance of 3 ·10−4R�),
and the right column shows amplification integrated over the
whole spatial grid. Shown are comparisons for different shock-
normal angles using Vs = 1500 km s−1 (top row), different shock-
normal velocities using θBn = 15◦ (middle row), and different
shock-normal velocities using θBn = 30◦ (bottom row).
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Figure 6.4: Wave amplification due to streaming ions (protons,
3He2+, 4He2+, 16O6+, and 56Fe14+) integrated over 640 seconds
of simulation. The left column shows amplification in front of
the shock (at a distance of 3 · 10−4R�), and the right column
shows amplification integrated over the whole spatial grid. Pre-
sented cases are for shock-normal velocity Vs = 1500 km s−1 and
three different shock-normal angles: θBn = 0◦ (top), θBn = 15◦

(middle), and θBn = 30◦ (bottom).
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6.3 Alfvén wave power spectra

In figure 6.5, we compare the spectra of Alfvénic turbulence in front of
various shocks. In the left figure, we compare three cases with shock-
normal angle θBn = 15◦ and shock-normal velocities Vs = 1000 km s−1,
Vs = 1500 km s−1, and Vs = 2000 km s−1. As the shock-normal velocity in-
creases, the peak of the amplified spectrum moves to smaller frequencies
and becomes narrower. This is a well-understood result, as the momentum
increase a particle receives during each shock interaction, and thus, the en-
ergy of particles after injection into the acceleration process, increases with
the flow speed u1 at the shock.

The results of keeping the shock-normal velocity constant and varying
the shock obliquity angle θBn are shown in the right half of figure 6.5. The
parallel shock (θBn = 0◦) has by far the most wave power, with ampli-
fied wave power extending to frequencies as low as 1 Hz. This extension of
wave power to small frequencies is due to inverse cascading of wave power,
modelled through diffusion (see section 3.5). This is confirmed by calcu-
lating the resonant frequency (equation 3.28) of the largest particle energy
attained (approximately 5 MeV), which, with our solar wind model, gives
fres ≈ 5 Hz.

It is also noteworthy, that the cases θBn = 15◦ and θBn = 30◦ do not
differ much. This is in agreement with wave amplification comparison of
these two cases. With increasing obliquity, the HT-frame speed of inflowing
gas increases, which causes the θBn = 60◦ to peak at a lower frequency.
The parallel case of θBn = 0◦, however, does not peak at a larger frequency
than the other cases. This is due to erosion of the peak due to diffusion.
The resonant frequency of the most abundant freshly injected particles
(with E ≈ 30 keV) is fres ≈ 130 Hz, well past the peak of the wave power
spectrum.

The difference in spectral amplitude at low (unenhanced) frequencies is
due to WKB-transport effects and the difference in distance traversed by
the shock after 640 seconds of simulation.
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Figure 6.5: Wave power spectra in front of the shock (at a
distance of 3 · 10−4R�) after 640 seconds of simulation. The
left figure shows shock-normal angle θBn = 15◦ and results
for three different shock-normal velocities: Vs = 1000 km s−1,
Vs = 1500 km s−1, and Vs = 2000 km s−1. The right figure shows
shock-normal velocity Vs = 1500 km s−1 and results for four dif-
ferent shock-normal angles: θBn = 0◦, 15◦, 30◦, and 60◦.

6.4 Accelerated proton spectra

The spectra of accelerated protons, after 640 seconds of acceleration, are
shown in figure 6.6. The left-hand column consists of omnidirectional pro-
ton intensity spectra (dI/dE) in front of the shock, with the right column
displaying spectra of protons upstream of the shock, spatially integrated
over the whole flux tube (dN/dE).

We find apparent power-law spectra for three of the presented omnidi-
rectional intensity spectra: with Vs = 1500 km s−1, the parallel case has a
power-law of approximately −2.5, and with Vs = 1000 km s−1. Cases with
θBn = 15◦ and θBn = 30◦ appear to have power-laws of approximately −3.

Many omnidirectional intensity spectra, however, do not seem to follow
power-laws. At low energies, a soft bump, resulting from particle trapping,
can be seen in the 10 keV to 1 MeV region. At high energies, a power-law
of −2.5 or −3 could fit the data, but weak statistics are a problem.

By investigating infinitesimally short acceleration simulations, we were
able to deduce that the injected omnidirectional intensity spectra of parti-
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cles right in front of oblique shocks do also follow a −2 power-law, but only
for a very short period of time. Within seconds the spectrum begins to
change, as the turbulent trapping region begins to form, increasing particle
intensities at low energies. At high energies, particles are not confined to
the shock vicinity, rapidly escaping further out.

Next, we compare the accelerated population spectra with the power-
laws and analysis methods presented in section 4.3. The equation for the
scattering centre compression ratio (4.8), using upstream and downstream
cross-helicities Hc1 = −1 and Hc2 = 0, becomes rsc = rg(MA − 1)/MA.
This form, despite not reducing to 1 when MA → 1, can be used to estimate
the accelerated population (steady-state) power-law, as an approximation
accounting for injection through both reflection and isotropisation in the
downstream.

The momentum-dependent spectral power-law is found using the re-
lation Γp = (rsc + 2)/(rsc − 1), and the energy-dependent power-law, with
dI/dE ∝ E−ΓE , can be found with ΓE = 1

2Γp. If the power-law of the
source population is harder than the one found from compression ratio
calculations, the accelerated proton population should exhibit the source
population power-law, with amplified intensity. Our source population is
a combination of κ = 2 and κ = 15 populations, with the κ = 2 popula-
tion dominating for oblique shocks. In these cases, and at high energies,
the κ = 2 distribution is injected as is, resulting in particle spectra with
power-laws of ΓE = 2.

For the Vs = 1500 km s−1 parallel shock case, we find values of roughly
MA ≈ 2 and rsc ≈ 1.85, which result in a power-law of ΓE ≈ 2.3, which is
a moderately good match with the omnidirectional intensity spectra found
near the shock. This spectrum is a result of efficient injection from the
thermal κ = 15 population, along with efficient DSA within the turbulent
trapping region, extending along the whole accelerated particle spectrum.
A power-law related to the κ = 2 population cannot be seen due to the
efficiency of thermal particle injection and associated DSA.

For Vs = 1500 km s−1 oblique shocks, injection of the thermal κ = 15
population is negligible. Analytical solutions based on scattering centre
compression ratios find ΓE ≈ 3.1 for θBn = 15◦ and ΓE ≈ 3.4 for θBn = 30◦.
These low scattering centre compression ratio should result in a particle
spectrum with the source population power-law of −2. As mentioned, this
was found briefly at the start of the simulation, before turbulent trapping
of low-energy particles alters the shape of the spectrum.
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The right-hand column of figure 6.6, displaying spatially integrated
accelerated proton spectra (dN/dE), is capable of displaying population
power-laws with better statistics, and thus, to higher energies. All cases
with oblique shocks display a clear ΓE ≈ 2 power-law, consistent with in-
jection of a κ = 2 seed population. This population has experienced only
reflection and shock drift acceleration at the shock. The build-up within
the turbulent trapping region is also visible.

The parallel shock Vs = 1500 km s−1 case instead appears to display a
much harder power-law of ΓE ≈ 0.43, which ends abruptly. This power-law,
however, is an artefact of including a far-escaping accelerated population
which consists of only high-energy protons.

One reason for an abrupt cut-off in the parallel shock case is our method
of particle injection - as the shock injects a significant amount of thermal
seed particles, statistics do not allow for many very strongly suprather-
mal particles to be injected. The parallel case did not seed protons above
∼ 1 MeV (still well below the maximum attained energy), whereas for oblique
cases injection continued to ∼ 10 MeV. Thus, further refinement of the im-
plementation of our high-energy particle injection is required in order to
obtain comprehensive energy spectra in cases where low-energy particles
are readily injected.

We also note that in calculating both omnidirectional intensities in front
of the shock, and full-population spectra, we display only particles which
have already been injected into the acceleration process by at least one
shock encounter. For comparison, proton spectra for Vs = 1500 km s−1

along with the ambient seed population are shown in figure 6.7.

6.4.1 Accelerated minor ion spectra

Figure 6.8 shows omnidirectional intensity spectra near the shock and spa-
tially integrated particle spectra for five different ion populations, for three
different acceleration scenarios. Minor ions are seen to have similar resul-
tant accelerated particle spectra as protons. The spectral shapes associated
with injection (for instance, the low energy peak visible for the parallel case)
result from injecting minor ions with velocity profiles equal to those of pro-
tons. The spectral cut-off energies of the parallel shock case (top row) are
in agreement with results presented in Paper II.

The presented oblique shock cases (middle and bottom row) result, as
for protons, in power-laws associated with the seed population. Thus, our
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Figure 6.6: Accelerated proton spectra after 640 seconds of sim-
ulation. The left column shows omnidirectional intensities in
front of the shock, and the right column shows spatially inte-
grated proton spectra (dN/dE). Shown are comparisons for
different shock-normal angles using Vs = 1500 km s−1 (top row),
different shock-normal velocities using θBn = 15◦ (middle row),
and different shock-normal velocities using θBn = 30◦ (bottom
row). Included are sample power-laws for comparison.
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Figure 6.7: Accelerated proton omnidirectional intensities
in front of the shock after 640 seconds of simulation.
Shown are comparisons for different shock-normal angles using
Vs = 1500 km s−1 along with the solar wind source population.
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remarks regarding proton spectra are valid for minor ions as well. In the
left-hand column, with near-shock omnidirectional intensity spectra, the
high-energy portions of the spectra are softer than the seed population
suggests, with ΓE ≈ 3. As for protons, this is a result of the turbulent
trapping region increasing low-energy particle fluxes in the near-shock re-
gion. In the right-hand column, with spectra integrated over the whole
spatial length, spectra approach the value ΓE ≈ 2, associated with the seed
population, experiencing shock drift acceleration with only negligible DSA.

As presented in Paper II, minor ion trapping is caused by the same
amplified Alfvén wave spectrum which traps protons, and the high-energy
boundaries of minor ion trapping regions are related to the shape of the
power spectrum. The right-hand column images of figure 6.8 include max-
imum energies for which the minor ion in question is still within the tur-
bulent trapping region, as denoted by grey vertical lines. As can be seen,
these maximum energies coincide with the low-energy intensity increase,
just as was seen for protons.

6.5 Time-dependence of acceleration

SEP acceleration, wave amplification, and trapping of energetic particles are
dynamic processes, the properties of which can change rapidly over time. In
figure 6.9 we show time evolution of omnidirectional proton intensities and
wave power spectra for shock-normal velocity Vs = 1500 km s−1 and three
different shock-normal angles: θBn = 0◦, θBn = 15◦, and θBn = 30◦.

The parallel case can be seen to generate significant turbulence am-
plification within the first 10 seconds of simulation, which results in the
enhanced particle intensity spectrum forming, albeit only up to ca. 1 MeV.
This corresponds with the very steep rise in the power spectrum at approx-
imately 20 Hz. Accordingly, the resonant frequency (equation 3.28) for a 1
MeV particle at the beginning of the simulation is fres ≈ 23 Hz

As the simulation proceeds, inverse cascading (see section 3.5), modelled
through diffusion in wavenumber space, causes enhanced wave power to
spread to smaller frequencies, which pushes the turbulent trapping bound-
ary to higher energies. Extension of the turbulent trapping boundary and
maximum particle energies are strongly correlated, and an abundance of
high energy particles helps amplified wave power extend to smaller fre-
quencies, and vice versa. As stated previously, the resonant frequency for a
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Figure 6.8: Accelerated proton and minor ion spectra after 640
seconds of simulation. The left column shows omnidirectional
intensities in front of the shock, and the right column shows spa-
tially integrated particle spectra (dN/dE). Presented cases are
for shock-normal velocity Vs = 1500 km s−1 and three different
shock-normal angles: θBn = 0◦ (top), θBn = 15◦ (middle), and
θBn = 30◦ (bottom). The right-hand column shows also, with
grey vertical lines, the near-shock maximum energies for each
ion population still within the turbulent trapping region.
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5 MeV particle at the end of the simulation is fres ≈ 5 Hz, and thus, inverse
cascading must be responsible for the amplification of wave power below
this frequency.

In the oblique cases (θBn = 15◦ and θBn = 30◦), build-up of wave
power amplification is much slower, with maximal amplification found at
160 s of elapsed simulation. The enhanced region of wave power spreads
to smaller frequencies with elapsed simulation time. In the beginning of
the simulation, with little turbulence amplification present, the observed
spectra of accelerated protons follow relatively clear injection power-laws.
Only as wave power is amplified and the turbulent trapping region forms
do we see enhancement of low-energy particle intensities.
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Figure 6.9: Time evolution for particle acceleration and trap-
ping scenarios: The left column shows wave power in front of the
shock, and the right column shows omnidirectional proton inten-
sities in front of the shock. Presented cases are for shock-normal
velocity Vs = 1500 km s−1 and three different shock-normal an-
gles: θBn = 0◦ (top), θBn = 15◦ (middle), and θBn = 30◦ (bot-
tom).
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Chapter 7

Summary & Conclusions

The topics presented in this thesis include theoretical descriptions of parti-
cle transport theory, wave transport and evolution, and energetic particle
acceleration in the solar corona. In addition, the geometry and parame-
ters of coronal shocks have been discussed. The software suite introduced
in chapter 5 has been used to simulate SEP acceleration through DSA at
coronal shocks.

7.1 Paper I

The starting point for this study was an extension of analytical simplified
solar wind transport combined with Monte Carlo simulated particles and
wave amplification. In Paper I, we transformed the model to take full
advantage of semi-empirical formulations of the solar wind. We attached
all tracking grids to the propagating shock, which helped curb numerical
instabilities in the near-shock region. Additionally, this allowed us to better
optimise the shape of the grid, resulting in increased spatial grid extent and
decreased memory and data transfer bandwidth. The method of wave ad-
vection on this grid allows for radially varying wave phase speeds, and could
be used to implement multiple wave modes, travelling in both directions in
the solar wind plasma frame.

The topic of research presented in Paper I was decreasing shock prop-
agation speed. We limited our analysis to parallel shocks and applied an
approximation of constant gas compression ratio rg = 4. We used a pre-
scribed injection instead of testing the incident solar wind distribution for
shock interactions. We found that, for a decelerating shock, acceleration
efficiency was slightly decreased, but only when the total amount of par-
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ticles taking part in the acceleration process was small. Efficient injection
leads to strong trapping of particles to the near-shock region, which leads
to repeated shock encounters and acceleration in both cases.

We also note that although a rapidly propagating shock can easily over-
take isotropised particles (see section 4.2), it also overtakes generated tur-
bulence rapidly, requiring ongoing amplification of waves. The difference
in near-shock spectra is clearly visible in Paper I, figure 3. These results
do not, however, take into account the differing injection efficiencies of the
two shock-velocity profiles.

7.2 Paper II

In Paper II, we reported on the acceleration of heavier ions through
DSA at coronal shocks. We expanded our model to calculate particle in-
jection through Monte Carlo tests. Seed particle populations supported
κ-distributions and were connected to the ambient solar wind density. We
limited our study to parallel shocks, and calculated the shock compression
ratio according to the hydrodynamic form of equation (2.14) instead of
simulating wave pressure with a small shock-normal angle.

We simulated the amplification of waves by minor ions as well as pro-
tons, with protons expectedly dominating. Protons are especially impor-
tant for the launch of the acceleration process, as their charge-to-mass
ratio is smallest, and thus, their resonant frequencies are higher than for
other particle species. Since slow, thermal particles are resonant with high
frequencies, the amplification caused by streaming protons can decrease ac-
celeration time of heavier ions. Through analytical assessment, we found
the acceleration time of ions (up to intermediate rigidities) to be propor-
tional to Q/A. Acceleration times up to maximum energies (limited by the
turbulent trapping region) were found to be proportional to (Q/A)3/2.

As shown in figure 1 of Paper II, at low frequencies, the turbulence
amplification by minor ions approaches or even overtakes that of protons.
Theoretically, this should facilitate better proton acceleration at high en-
ergies, as lower energy ions participate in generating suitable trapping in
front of the propagating shock.

We assessed parallel shocks with shock-normal velocities Vs = 1250 km s−1,
Vs = 1500 km s−1, and Vs = 1750 km s−1. We found that faster shocks re-
sulted in a stronger rise of spectrum at low frequencies. Ion spectral cut-off
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energy increased with the mass-to-charge ratio, with all three shock-normal
velocities showing a similar relation. We showed how minor ion accelera-
tion times lead to very hard ion spectra, especially during early stages of
the acceleration process.

7.3 Paper III

Paper III considered injection efficiency without any bootstrapped wave
amplification or actual acceleration. We assessed the importance of cor-
rectly accounting for anisotropy of transmitted seed populations. We com-
pared Monte Carlo simulations where we either assumed instant particle
isotropy in the downstream or isotropisation through small-angle scatter-
ings. We found that parallel and quasi-parallel shocks can efficiently inject
slow, thermal seed particles. It is these slow, thermal particles for which
anisotropy is greatest, and in their case the diffusive approximation is most
likely to be incorrect. We found that properly accounting for downstream
isotropisation through scatterings results in decreased injection efficiency
of thermal particles, and that it caused the elimination of the thermal in-
jection component to take place at smaller shock-normal angles. These
differences decreased injection of thermal particles but did not completely
prevent it.

We also considered the effects of cross-field diffusion and a cross-shock
electrostatic potential on particle injection. However, we did this within the
constraints of guiding centre motion, choosing to exclude field-line random
walk and full-orbit calculations from Paper III. Cross-field diffusion was
found to be of minor effect at small shock-normal angles. At large values of
θBn, we found that cross-field diffusion could, with a minor adjustment of
boundary conditions, be seen to approximately double or halve the injec-
tion of fast particles. However, at large shock-normal angles, the primary
method of injection was reflection, and cross-field diffusion had a significant
effect on total injection efficiency only at a very small range of values for
θBn.

We found that the presence of an electrostatic cross-shock potential
increased the probability of reflection and decreased the probability of
injection of transmitted particles. Properly accounting for downstream
isotropisation through scatterings increased the prohibiting effect of the
cross-shock potential on thermal particles, and caused thermal particles to
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be eliminated from injection at smaller shock-normal angles. Suprathermal
particles, with a higher chance of being reflected, displayed a weaker corre-
lation between cross-shock potential strength and injection probability of
transmitted particles.

In conclusion, in Paper III, we presented how injection of thermal
and quasi-thermal particles is a complex process, and how downstream
isotropisation of particles requires delicate consideration. We found that the
presence of a cross-shock potential had a non-negligible effect on injection
efficiency, but that cross-field diffusion did not drastically alter injection
probabilities.

7.4 Paper IV

Paper IV considered the limitations of QLT in comparison with full-orbit
simulations. We presented full-orbit simulations of particle scattering in
a turbulent plasma and compared them with simplified analytical calcu-
lations of Fokker-Planck coefficients. Three-dimensional incompressible
MHD simulations were used to describe coronal plasmas with non-linear
wave interactions and energy cascading to high wavenumbers. This was ac-
complished by using a pseudo-spectral method and the Gismo simulation
software package (see, e.g., Lange & Spanier 2012).

We simulated the effect of proton streaming on Alfvén waves by inject-
ing an amplified peak of energy, representing a peaked spectrum generated
by a mono-energetic particle beam, into the three-dimensional plasma sim-
ulation. This energised plasma was then used for simulated test particle
propagation and scattering. The change in particle pitch-angles over the
simulation time was used to infer an estimate for the pitch-angle diffusion
coefficient Dµµ.

As an alternative approach, we decomposed plasma turbulence data
into three-dimensional wave spectra, which were used in calculating the
Fokker-Planck scattering coefficients Dµµ according to SQLT. These SQLT
coefficients were then compared with the full-orbit coefficients. We found
that for peaked turbulence, full-orbit simulations and SQLT showed sim-
ilarities at resonant pitch-angles, but at non-resonant frequencies SQLT
greatly underestimated scattering frequency. We note that, especially when
the strength of turbulence δB/B0 is strong, full-orbit simulations indicated
pitch-angle scattering to be only weakly dependent on µ, which suggests
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that the simplifications described in section 3.3 are reasonable.

7.5 Additional results of DSA at coronal shocks

In chapter 6, we presented additional simulation results of DSA at coronal
shocks. We found that most of our simulations were in fact incapable
of generating meaningful trapping, except at energies below 1 MeV. The
presented cases resulted in small scattering centre compression ratios, with
the resultant high-energy particle spectra power-laws being equal to those
of the injected seed populations.

Our solar wind model predicts very high Alfvén speeds and low gas
compression ratios in the spatial region of our simulations, which is a source
of low Alfvénic Mach numbers, and thus, softer predicted spectra (or the
spectra of the seed population). Simulating acceleration at shocks with
larger shock-normal velocities and smaller Alfvén speeds might result in
more efficient acceleration.

We show how wave amplification dynamics can vary greatly based on
shock obliquity, and thus, injection efficiency. We find that efficient injec-
tion of thermal particles can result in significant wave amplification in front
of the shock, generating a very large turbulent trapping region in front of
the shock. The parallel case resulted in rapid deposition of particle energy
into wave power, after which cascading, and especially inverse cascading,
modified the shape of the power spectrum, extending the turbulent trap-
ping region to high energies, i.e., low frequencies. The full dynamics of
this region cannot be explained with the results presented in chapter 6,
but they are exhibited as build-up at low energies for oblique shocks and
efficient acceleration to high energies at parallel shocks. Particle spectra
extending beyond the turbulent trapping region exhibit power-laws com-
patible with the source population, where particles have experienced only
negligible DSA.

We show that minor ion acceleration at oblique shocks is as expected,
with turbulent trapping region dynamics comparable with those of protons,
as can be extrapolated from the results published in Paper II.
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Chapter 8

Future prospects

The work presented in this thesis is a comprehensive report on SEP ac-
celeration through DSA at coronal shocks, especially from the viewpoint
of numerical simulations and the CSA software suite. In this chapter, we
present some ideas on how to address limitations of the approaches taken
in this research, as well as plans for further parameter studies and improve-
ments.

CSA uses a number of simplifications and approximations when consid-
ering wave-particle interactions, resonance conditions and wave cascading.
Although the results presented in Paper IV suggest an isotropic scatter-
ing condition can be applied to acceleration at coronal plasmas, a proper
anisotropic consideration would be preferable. Afanasiev & Vainio (2013)
have prepared an anisotropic scattering formulation, which could be imple-
mented into CSA. This would, however, require wave amplification tracking
through particle streaming not in spatial wave frame coordinates, but in
pitch-angle space. Additionally, the question of the resonance gap (see,
e.g., Ng & Reames 1995) must be considered carefully.

As was shown in chapter 6, wave cascading has a major impact on the
spectral shape of Alfvénic turbulence. Our linear diffusive approximation
is stable and results in near-Earth spectra which are compatible with ob-
servations, but it could be replaced with a more accurate method using a
non-linear power-dependent flux function or diffusion coefficient. In order
to properly model interactions between waves, the CSA framework could
be extended to encompass multiple parallel wave modes and a cascading
function which considers interactions of waves propagating in opposite di-
rections. Inclusion of oblique wave modes remains likely outside the scope
of this type of simulation.
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As was shown in Paper III, particle-shock interactions and the injec-
tion process must be modelled with great care. The near-shock region of
CSA simulation could possibly be replaced with a full-orbit model, with
possible future expansions being downstream field-line random walk, spa-
tial shock profile modelling, shock front velocity profile modification, and
perhaps even wave transmission into the downstream including particle and
wave transport therein.

An additional future prospect is connecting the shock and injection
parameters of CSA to coronal MHD simulations. This would allow fitting
MHD simulations to EUV observations of CME expansion, feeding these
parameters into CSA and comparing acceleration and transport results with
particle detector observations.

Reworking of shock parametrisation to better model shock fronts as-
sociated with observed CME expansion, along with associated parameter
studies, are likely topics of near-future studies. In addition, a parameter
study aimed at modelling shocks with high Alfvénic mach numbers and
high scattering centre compression ratios, resulting in efficient trapping, is
of high interest. If these simulations are to include quasi-parallel shocks,
with strong injection of thermal particles, the seed particle selection rou-
tines should be amended to encompass injection of highly suprathermal
particles in addition to the abundant thermal population.

In conclusion, although CSA can still be improved in a number of ways,
it presents a numerically efficient way to simulate long-term DSA within the
solar corona and the inner heliosphere, using only reasonable and justified
approximations. As such, it is a useful tool, the results of which should be
of interest to the whole solar physics community.
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