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1 INTRODUCTORY NOTES

In applied mathematics one always tries to construct a modelthat is complex

enough to mimic the phenomenon under consideration and simple enough for

analysis. A complex yet general model might not provide any concrete results

due to its challenging nature. On the other hand, a very simple model is per-

haps easy to solve but does not represent the real world whatsoever. So the

choice of the model is practically always a trade off betweengenerality and

tractability.

In this thesis we use a one-dimensional, or linear, diffusion instead of, say,

a multidimensional Markov process or Lévy process. Linear diffusions often

arise naturally in various many situations and they can be used for modelling

a wide range of phenomena from population dynamics to the path of a space

ship. In addition, they can often be used to approximate morewildly behaving

processes, such as multidimensional diffusions or Lévy processes, or at least

they can offer insights on the behaviour of these more complex processes.

While forming a large and applicable class of processes, at the same time linear

diffusions are friendly and approachable. The main reasonsfor this are the

facts that they are continuous, Markovian and one-dimensional, and therefore

one can use a wide variety of tools to study them. Additionally, almost all

interesting linear diffusions constitute a solution to a stochastic differential

equation, allowing us to pick up additional techniques fromItô calculus and

benefit from its intuitivity. All in all, although linear diffusions are general

processes, they are surprisingly often simple enough to offer explicit solutions

to problems and to allow one to analyse the nature of the problem quite deeply.

One drawback of linear diffusions is that due to continuity they cannot always

represent downside risks, e.g. in financial markets, natural resources, etc., as

well as one would desire.

In this thesis, we will tour around the field of stochastic control theory.

The tour will necessarily be incomplete, but it illuminatesthe great variety of

problems encountered in the world of controlling linear diffusions. We will

study four different optimal control problems, namely an investment problem,

a two-player stochastic game (a Dynkin game), a singular control problem

and a stopping problem involving a maximum process. In all these problems

the optimal control turns out to be a two-sided control — at least under some

conditions. In fact, one of our main tasks is to find such conditions.
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One-sided stochastic control problems are widely studied and their solu-

tions can often be determined explicitly. On the other hand,with two-sided

control problems we often find it difficult to even prove the existence and

uniqueness of an optimal solution due to the increase in freeparameters. Thus,

although the main lines of the analysis follow those in one-sided problems, we

have to adopt new techniques to deal with the new obstacles.

In Figure 1 we see the research subjects of the thesis and their relations

with each other. An ordinary optimal stopping problem constitutes the base

problem and the investment problem is a special case of it, while the three

other subjects can be seen as its generalisations. Moreover, the values of a

Dynkin game and a two-sided singular control problem are closely related, as

we shall see in Chapter 6.

Figure 1: Research subjects of the thesis and their relations.

The content of the thesis is divided into two parts: the introductory part and

the research part. In the introductory part we will first present an overview of

the basic theory of linear diffusions. Then we will introduce ordinary optimal

stopping problems and present solution methods for them. Finally we will

introduce more general control problems; namely Dynkin games and singular

control problems, and state solution methods for them. Throughout this first

part of the thesis we will concentrate mainly on the techniques and theory

needed in the research articles, but the tour also includes bypaths that open

new perspectives to the considered subjects. The introduction is followed by

the research part, which consists of four independent research papers.
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2 STOCHASTIC PROCESS

2.1 General remarks on stochastic processes

We shall consider behaviour only on continuous time, and to that end, let the

interval[0,∞) be our time set. Moreover, let{Ω,F ,P} be a probability space.

A collection of σ -algebras{Ft}, t ∈ [0∞), on the space{Ω,F} is called a

filtration if

Fs ⊂ Ft ⊂ F for everys≤ t.

The collection(Ω,F ,{Ft},P) is called a filtered probability space, and it is

said to satisfy the usual conditions, if

• F is P-complete (i.e. if there existA ⊂ Ω andA1,A2 ∈ F such that

A1 ⊂ A⊂ A2 andP(A1) = P(A2), thenA∈ F );

• F0 contains allP-null sets ofF ;

• {Ft} is right-continuous (i.e.Fs= Fs+ :=
⋂

t>sFt).

In this thesis we always assume the filtered probability space to satisfy the

usual conditions.

Consider a random variableXt(ω) defined on a filtered probability space

(Ω,F ,{Ft},P) and taking values in the state space(I ,B), whereI is a

non-empty (topological) space andB is the Borelσ -algebra onI . A col-

lection X := {Xt : Ω → I | t ∈ [0,∞)} of such random variables is called a

stochastic process. For a fixed scenarioω ∈ Ω the mappingt → Xt(ω) is said

to be asample pathor a trajectoryof the processX.

We say thatX is adaptedto the filtration{Ft} if Xt is Ft-measurable for

everyt. Thenatural filtration{σ{Xs | 0≤ s≤ t}} is defined to be the smallest

filtration to whichX is adapted and it can be interpreted as the information

generated by the history of the processX up to the datet. We denote byPx

the probability measureP conditioned on the initial stateX0 = x and byEx the

expectation with respect toPx.

We define a random variableτ : Ω → [0,∞] to be astopping time(with

respect toF ) if {τ ≤ t} ∈ Ft for every t ∈ [0,∞). Thus a stopping time

is a random variable, which depends only on the history of theprocessX.

Furthermore, ifτ is a stopping time, then thestopping timeσ -algebra is

13



Fτ := {F ∈ F | F ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}, i.e. Fτ is simply the his-

tory up to a stopping timeτ.

Example 2.1. • Examples of stopping times are

– the first exit time from an open setC⊂I : τC = inf{t ≥ 0 |Xt /∈C};

– the first arrival time to a closed setG⊂ I : τG = inf{t ≥ 0 | Xt ∈
G};

– the first hitting time to a pointz∈ I : τz = inf{t ≥ 0 | Xt = z};

– every deterministic timet ∈ [0,∞].

• The last exit time from a setG ⊂ I , i.e. sup{t ≥ 0 | Xt ∈ G}, is not a

stopping time, since it depends on the future evolution of the process.

A stopping timeζ is said to be alife time, or aterminal time, of a process

X if the process is terminated at that time. We understand the termination

of the process in the following way: We attach an additionalcemetery state

∂ /∈ I to the state space and let(I ∂ ,B∂ ) = (I ∪{∂},σ {B,{∂}}) be this

new state space and its Borelσ -algebra. Within this state space we understand

the processX to be killed at the timeζ and immediately sent to the cemetery

state where it stays for the rest of the time (see Dynkin 1965,Subsection 3.1).

That is, the process with life timeζ evolves as







Xt , t < ζ

∂ , t ≥ ζ .

We extend an arbitrary functionf : I → R to the enlarged state spaceI ∂ by

defining f (∂ ) = 0. In the sequel, we assume the cemetery state to be attached

to the state space if needed, so thatPx(Xt ∈ I ) = 1 for all t ∈ [0,∞) (i.e. the

process is assumed to beconservative).

Example 2.2.Typical life times are

• ζ = ∞ (so callednon-terminatingprocess);

• ζ = inf{t ≥ 0 | Xt /∈C} for some open setC⊂ I (killed at the first exit

time);

• ζ ∼ Exp(r) for somer > 0 (killed at an exponential rate);

14



• ζ = T for some deterministic timeT ∈ (0,∞) (fixed finite time horizon,

e.g. a maturity of an option).

Let us lastly define a few concepts for stochastic processes that will be used

throughout the thesis. Firstly, a processXt is continuousor sample-continuous

if the sample pathsXt(ω) are continuous int for P-almost allω . Secondly, a

process is said to beregular, if every state can be reached from any other state,

i.e. if Px(Xt = y for somet > 0) > 0 for all x,y∈ I . Lastly, a process is said

to betime homogeneousif the future evolution of the process does not depend

on the current time, i.e. for allB∈B andt,h> 0 we havePx(Xt+h ∈ B | Xt) =

PXt (Xh ∈ B).

From now on, we only consider regular, continuous, time-homogeneous

processes unless otherwise stated.

2.2 Markov property

Consider a filtered probability space{Ω,F ,{Ft},P} and a stochastic process

Xt on it, taking values on a state space(I ,B).

Definition 2.3. Let f : I → R be a bounded and measurable function and let

B∈ B.

(A) A processXt is said to be a (time-homogeneous)Markov process, if for

all t,h> 0

Ex{ f (Xt+h) | Ft}= Ex{ f (Xt+h) | Xt}= EXt { f (Xh)} , or equivalently

Px(Xt+h ∈ B | Ft) = Px(Xt+h ∈ B | Xt) = PXt (Xh ∈ B) for all B∈ B.

(B) A processXt is said to be a (time-homogeneous)strong Markov processif

the property above holds for allh> 0 and all finiteF -stopping timesτ.

Roughly speaking, the Markov process is memoryless on meaning that the

future evolution of the process depends only on its current state, not on how

it got there. Another way to characterise the Markov property is to say that

given the present stateXt , the pastFt and the futureσ{Xs | s≥ t} are indepen-

dent. Moreover, since all deterministic times are stoppingtimes, obviously a

strong Markov process is also a Markov process, but the contrary is not true in

general.

15



Example 2.4. • A one-dimensional Brownian motion1 on R is a strong

Markov process.

• LetWt be a one-dimensional Brownian motion. Itsmaximum process St ,

defined bySt = sup0≤s≤t {Ws}, is not a Markov process.

• Let us introduce an example of a Markov process which is not strong

Markov. LetWt be a one-dimensional Brownian motion and defineXt by

Xt =







Wt, X0 6= 0

0, X0 = 0.

On can then show thatXt is a Markov process, but that it does not sat-

isfy the strong Markov property for hitting times to zero (see p. 161 in

Wentzell 1981).

An important feature in the general theory of Markov processes is the tran-

sition function, which enables one to interpret the expectation Ex{ f (Xt)} as

a semi-group operator, operating onf (x); see e.g. Dynkin 1965, Chapter 1

in Blumenthal and Getoor 1968, Chapter 1 in Borodin and Salminen 2002 or

Section II.4 in Peskir and Shiryaev 2006. However, the main goal of this thesis

is not to deepen the theory of Markov processes, but to study optimal controls

with respect to linear diffusions, a well-behaving class ofMarkov processes.

Hence we shall not directly need the additional properties of a Markov struc-

ture that the transition functions can provide and so we willnot discuss it

further. An interested reader can consult the references above.

2.3 Martingale property

Another useful and important property for stochastic processes for applications

are the martingales. In this section we consider a filtered probability space

{Ω,F ,{F}t,P} and on it, a processXt which almost surely has sample paths

that are right continuous with left limits (so calledcadlagprocesses).

Definition 2.5. Let Xt be adapted to the filtration{Ft} and and let it satisfy

Ex{|Xt |}< ∞ for all t > 0.
1One-dimensional Brownian motionWt is a process that satisfies (i)W0 = 0, (ii) path of

Wt is almost surely continuous, and (iii)Wt has independent increments with distributionWt −
Ws ∼ N(0, t −s) for 0≤ s≤ t. See Chapter I of Rogers and Williams 2000a or Chapter IV in
Borodin and Salminen 2002 for basic properties of Brownian motion.
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(A) The processXt is amartingale, if

Ex{Xt+h | Ft}= Xt for all t,h> 0 andx∈ I . (1)

(B) Supermartingaleis defined similarly, except that ”=” in (1) is replaced by

”≤”.

(C) Submartingaleis defined similarly, except that ”=” in (1) is replaced by

”≥”.

The theory of martingales is wide and deep. For instance, there are power-

ful convergence theorems and strong inequalities for supermartingales (see e.g.

Rogers and Williams 2000a). There are also weaker versions of the martingale-

property:

Definition 2.6. (A) The processXt is a local martingale if X0 is F0-

measurable and there exists an increasing sequence of stopping times

{τn}n∈N such that limn→∞ τn = ∞ almost surely, and for eachn ∈ N the

stopped process

Xt∧τn −X0 =







Xt −X0, t < τn

Xτn −X0, t ≥ τn

is a martingale.

(B) The processXt is asemi-martingale, if Xt = X0+Mt +Nt, whereMt is a

local martingale andNt a finite variation process2 andM0 = N0 = 0.

Example 2.7. • To get some idea how large the class of semi-martingales

is, notice that all Ĺevy processes3 are semi-martingales (see Theorem

II.9 in Protter 2004).
2A processNt , which almost surely has sample paths that are right continuous with left

limits, is afinite variation processif its variation over any finite time interval[0, t) is finite, i.e

sup
n

∑
i=1

|Nsi −Nsi−1|< ∞,

where the supremum is taken over all partitions 0= s0 < s1 < · · ·< sn = t. Informally we can
say that a finite variation process fluctuates only moderately.

3A processLt is aLevy process, if (i) Lt − Ls is independent ofFs for all 0≤ s< t < ∞
(independent increments), (ii)Lt −Ls∼ Lt−s for all 0≤ s< t < ∞ (stationary increments), and
(iii) lim t→sLt = Ls with probability 1 (continuous in probability). See e.g. Kyprianou 2006 for
a comprehensive treatment of Lévy processes.
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• A Brownian motionWt on R is a martingale. Moreover,Mt := W2
t − t

is also a martingale (cf. Theorem I.27 in Protter 2004): since Wt is a

martingale, we haveE{WtWs | Fs}=W2
s for all s< t, so that

E{Mt −Ms | Fs}= Ex
{

W2
t −2WtWs+W2

s − (t −s) | Fs
}

= E
{

(Ws−Wt)
2}− (t −s) = 0.

• Let f : R→ R be a convex function andXt a martingale process onR.

Then, by Jensen inequality (i.e.f (Ex{Xt}) ≤ Ex{ f (Xt)}), a process

f (Xt) is a submartingale. Similarly, a concave function of a martingale

is a supermartingale.

• Using Fatou’s lemma one can show that a positive local martingale is

always a supermartingale.

The theory of martingales is meaningful in this thesis sinceoptimal stop-

ping problems can be approached using martingale theory — the value func-

tion of an optimal stopping problem is the smallest supermartingale dominat-

ing the reward function. Another important issue for us is that the theory of It̂o

calculus (cf. Section 3.9 below), one of the most practical concepts in stochas-

tics, is essentially based on the martingale properties of aBrownian motion.

For a thorough treatment of local martingales, semi-martingales, and It̂o cal-

culus, see Rogers and Williams 2000b and Protter 2004.
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3 LINEAR DIFFUSIONS

3.1 The definition of a linear diffusion

For the rest of the monograph, we shall consider only certainstochastic pro-

cesses, namely one-dimensional, or linear, diffusions on an intervalI ⊂ R of

the form

I = (α ,β ), I = [α ,β ), I = (α ,β ], or I = [α ,β ],

for some endpoints−∞ ≤ α < β ≤ ∞, depending on whether the process can

hit the boundaries or not. For a thorough discussion of diffusions, consult It̂o

and McKean 1974, Chapter II in Borodin and Salminen 2002, or Chapter V in

Rogers and Williams 2000b.

Definition 3.1. A sample-continuous stochastic processXt on I is a (regular

and time-homogeneous)linear diffusion, if it is a regular, time-homogeneous,

strong Markov process.

Notice that in its widest definition, linear diffusions are neither regular nor

time-homogeneous. However, in this thesis we only considerregular time-

homogeneous processes. Therefore, from now on we understand linear diffu-

sions to be regular and time-homogeneous unless otherwise stated.

Without any further restrictions, the definition is often too wide for appli-

cations (cf. Sections V.1–2 in Rogers and Williams 2000b), since it allows

processes to behave in an unruly manner (e.g. there are diffusions that are

not semi-martingales, see Example 3.24). Therefore, our next task is to find a

more practical class of diffusions, and for this task an infinitesimal generator

of a diffusion will be handy.

Definition 3.2. Let Xt be a diffusion on a filtered probability space

(Ω,F ,{Ft},P) evolving onI . The infinitesimal generatorA of X is de-

fined by

A f := lim
t→0

Ex{ f (Xt)}− f (x)
t

,

where f : I → R is such that the limit exists for allx∈ I .

Intuitively, we can interpretA f (x) to be an expected growth rate of the

processf (Xt) at the pointf (x).
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The generator has a computationally useful close connection to (partial)

differential equations. This connection becomes visible after noticing (see Sec-

tion V.5 in Dynkin 1965) that, forf ∈C2(I ), the infinitesimal generator is in

fact a linear second order differential operator

A f (x) =
1
2

σ2(x) f ′′(x)+µ(x) f ′(x)−c(x) f (x)

for some functionsσ , µ , andc. Hereσ(x), c(x) ≥ 0, and so the operator is

elliptic. Now our aim is to create diffusions with given properties, and thus

we would like to know when this connection can be used in the reverse direc-

tion: For what kinds of functionsσ , µ , andc is the second order differential

equation1
2σ2(x) d2

dx2 + µ(x) d
dx−c(x) an infinitesimal generator of a diffusion?

The following theorem answers to this question and allows usto build diffu-

sions easily from elliptic differential equations. Beforestating the theorem, let

us define anexplosion timeto be the minimum of terminal time and the first

hitting time of the process to its boundaries, i.e. inf{t ≥ 0 | Xt ∈ {α ,β ,∂}}.

Theorem 3.3.Let σ : I → R+, µ : I → R, and c: I → R+ be continuous

functions. Assume that they satisfy the conditions

• σ(x)> 0 and c(x) ≥ 0 for all x ∈ I ; and

• for all x ∈ I there existsε > 0 such that
∫ x+ε

x−ε
1+|µ(s)|

σ2(s)
ds< ∞.

Then there exists a filtered probability space(Ω,F ,{Ft},P) and a diffusion

process Xt on it with state spaceI such that up to an explosion time the

infinitesimal generator of Xt is

A f (x) =
1
2

σ2(x) f ′′(x)+µ(x)u′(x)−c(x) f (x) for f ∈C2.

Furthermore, this diffusion process is unique in law4.

This theorem is deep and its proof requires the concept of stochastic dif-

ferential equations; the assumptions guarantee a (weak) unique solution to a

certain stochastic differential equation (we talk more about this in Section 3.9

below). However, we observe that the theory defines a unique diffusion process

4Assume thatµ , σ and c satisfy the conditions of Theorem 3.3. Then a process is
unique in law, if whenever two processesXt andYt are such that their infinitesimal genera-
tors 1

2σ2(x) d2

dx2 +µ(x) d
dx −c(x) coincide, they have the same distribution as processes.
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up to an termination timeζ only on interior points ofI . Hence, in order to

make the diffusion process unique everywhere, we need to define its behaviour

at the boundaries and this is done in Section 3.4 below.

The analysis in this thesis extensively utilises the differential aspect of the

infinitesimal generator, and for this reason we shall not study arbitrary general

diffusions. Rather, we will restrict our scope to the diffusions which can be

derived using Theorem 3.3 above. Although we exclude a proportion of dif-

fusions from the study by doing so, in practice this proportion is so small that

the choice is justifiable.

So from now on, unless otherwise stated, we assume that theinfinitesimal

parametersσ , µ , andc are given and satisfy the conditions of Theorem 3.3,

and the linear diffusionX := {Xt : Ω → I | t ∈ [0,∞]} is given by Theorem

3.3 above. The results in this section (as well as in the sections to come) hold

true for more general diffusions than this. However, the formulation of the

results with this definition is adequate for us. The parameters σ , µ andc are

called, respectively, theinfinitesimal variance, the infinitesimal meanand the

infinitesimal killing rateof X, since often

lim
t→0

1
t
Ex

{

(Xt −x)2}= σ2(x),

lim
t→0

1
t
Ex{Xt −x}= µ(x),

and lim
t→0

1
t
(Px(ζ > t)−1) =−c(x).

Example 3.4.Examples of diffusions are

• standard Brownian motion (or Wiener process) for whichA f (x) =
1
2 f ′′(x) andI = R;

• geometric Brownian motion with killing at an exponential rate r, and in

this caseA f (x) = 1
2σ2x2 f ′′(x)+ µx f ′(x)− r f (x) for someµ ∈ R and

σ , r > 0 andI = R+;

• a mean reverting diffusion with killing at an exponential rate r. In this

caseA u(x) = 1
2σ2x2 f ′′(x) + µx(1− γx) f ′(x)− r f (x) for someµ ∈ R

andγ , σ > 0 andI = R+. Here 1/γ (a state at which the infinitesimal

drift term disappears) is known as the carrying capacity in biological

applications. Asγ approaches zero, the mean reverting diffusion ap-
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proaches geometric Brownian motion.

Let us end this section with an important result showing the strong bonds

between a diffusion and its infinitesimal generator (for theproof, see e.g. The-

orem 7.4.1 in Øksendal 2007).

Theorem 3.5(Dynkin’s formula). Let Xt be a diffusion and let f∈ C2(I ).

Moreover, letτ be a stopping time for whichEx{τ}< ∞. Then

Ex{ f (Xτ)}= f (x)+Ex

{

∫ τ

0
A f (Xs)ds

}

.

3.2 Killing a diffusion

Especially in financial applications, the problem setting often involves dis-

counting. In this section, we shall demonstrate that an expectation with con-

tinuous discounting is, in fact, nothing but an expectationof a killed diffusion.

Let X be a diffusion process with infinitesimal generatorA and letu : I →
R+ be a continuous function. Furthermore, define a continuous,non-negative

process

γt := e−
∫ t
0 u(Xs)ds

and a new diffusion process̃X through the generator

˜A = A −u(x).

Let g be a continuous function,τ a stopping time, and̃ζ the terminal time

of the process̃X. Then we have

Ẽx

{

g(X̃t)1{t<ζ̃}

}

= Ex{γtg(Xt)}

and Ẽx

{

∫ τ∧ζ̃

0
g(X̃s)ds

}

= Ex

{

∫ τ

0
γsg(Xs)ds

}

,
(2)

whereẼ is an expectation taken with respect to the diffusionX̃. Especially,

sinceγt is Ft-measurable, takingg(x) = 1I (x) gives

γt = Ex{γt1I (Xt) | Ft}= Ẽx

{1I (X̃t)1{t<ζ̃} | Ft

}

= P̃

(

ζ̃ > t | Ft

)

, (3)

and so the discountingγt can be interpreted as the conditional probability that

the trajectory ofX̃t does not terminate before timet. For a more exact and thor-
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ough exposition, see Section X.4 in Dynkin 1965 or Chapter III in Blumenthal

and Getoor 1968.

Example 3.6(Continuous discounting as exponential killing). Let X be a non-

terminating diffusion (i.e. life timeζ = ∞) associated with the generatorA =
1
2σ2(x) d2

dx2 + µ(x) d
dx and introduce a constant killingu(t) ≡ r > 0 so that the

generator of the killed diffusioñX is ˜A =A − r. Now γt = e−rt is independent

of Xt and hence, using (3), we get

P̃x

(

ζ̃ ≤ t
)

= 1−e−rt ,

where the right hand side is a cumulative density function ofthe distribution

Exp(r). Therefore, we see that the diffusionX̃ is killed at an exponential rate

and we can interpret̃X as

X̃ =







Xt , t < ζr

∂ , t ≥ ζr ,

whereζr ∼ Exp(r). Moreover, applying (2), we see that for any continuous

functiong(x)

Ex
{

e−rt g(Xt)
}

= Ẽx
{

g(X̃t)
}

,

where we understandg(∂ ) = 0. In other words, the expected payoff with con-

tinuous discounting can be written as an expectation of an undiscounted payoff

with respect to a diffusion killed at an exponential rate.

3.3 Basic characteristics of a diffusion

3.3.1 Introducing the characteristics

Every diffusion has three basic characteristics: scale functionS, speed measure

mand killing measurek. These can be defined via the infinitesimal parameters

σ , µ andc, for all x∈ I , as

S′(x) = e−B(x), m(x) =
2

σ2(x)
eB(x), andk(x) =

2
σ2(x)

c(x)eB(x), (4)
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whereB(x) :=
∫ x 2µ(y)

σ2(y)
dy. We can seem and k either as functions or mea-

sures; in the latter case we understandm{(a,b)}=
∫ b

a m(dz), and analogously

k{(a,b)}= ∫ b
a k(dz), for all intervals(a,b)⊂ I .

The scale functionS: I → R is increasing, and because we assumed that

µ and σ satisfy the integrability condition of Theorem 3.3, it is also twice

continuously differentiable. Moreover,S is determined uniquely up to addi-

tive and multiplicative constants5 and it satisfies the equation12σ2(x)S′′(x)+

µ(x)S′(x) = 0. It is also closely connected to the hitting time distribution.

Indeed, ifk((a,b)) = 0 for an interval(a,b)⊂ I , then forx∈ (a,b)

Px(τa < τb) = 1−Px(τb < τa) =
S(b)−S(x)
S(b)−S(a)

,

whereτy = inf{t ≥ 0 | Xt = y} denotes the first hitting time ofX to the state

y. In other words, the scale function rescales the state spaceso that the hit-

ting probabilities become proportional to actual distances. We say that the

diffusion is innatural scaleif S(x) = x. Furthermore, we see a connection to

martingales, as the scaled diffusionS(Xt) is a local martingale (see Corollary

V.46.15 in Rogers and Williams 2000b).

Example 3.7.A standard Brownian motion is in natural scale. Moreover, for

each diffusionXt , the scaled diffusionS(Xt) is in natural scale on the state

spaceS(I ).

The speed measurem : I → R+ satisfies the adjoint equation
1
2

d2

dx2(σ2(x)m(x))+ d
dx(µ(x)m(x)) = 0, wheneverσ andµ are smooth enough.

Furthermore,m measures, in some sense, the speed of the process — in the

regions wherem is large, the diffusion moves slowly (cf. II.16 in Borodin and

Salminen 2002). For each finite interval(a,b) ⊂ I , the measurem{(a,b)}
is finite, butm does not necessary have a finite density overI . However, if

this density is finite, then the normalized functionη(x) := m′(x)/m(I ) con-

stitutes a probability density function defining, for the processXt , astationary

distribution. This distribution can be used to calculate the average stationary

behaviour of a process in the following way (see p. 37 in Borodin and Salmi-

nen 2002).

Lemma 3.8. For every Borel-measurable bounded function f: I → R one

5If S is a scale function, then alsoc1S+c2 is for c1 > 0 andc2 ∈ R.
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has

lim
t→∞

Ex{ f (Zt)}=
∫

I

f (y)η(y)dy.

3.3.2 Creating diffusions from the characteristics

It should be stressed that the characteristics are diffusion related functions and

can be used without any references to the infinitesimal parameters. To illus-

trate this fact, letXt be a general linear diffusion in widest sense of Definition

3.1 (i.e. it is not necessarily time-homogeneous or regular) on a state space

(I ,B). Then we can use hitting time probabilities and the mean exittime

from an intervalx∈ (a,b)⊂ I

pab(x) = Px(τa < τb)

pba(x) = Px(τa > τb)

eab(x) = Ex{τa∧ τb∧ζ}

to introduce the characteristics according to the formulas

Sab(dx) = pab(x)pba(dx)− pba(x)pab(dx)

kab(dx) =
p′+ab(dx)

pab(x)
=

p′+ba(dx)

pba(x)

mab(dx) = eab(x)kab(dx)−e′+ab(dx),

where f ′+ is a right derivative (see e.g. Section 4.1 in Itô and McKean 1974).

Furthermore, this relation can be reversed, which gives rise to another way of

creating diffusions. For the proof of the following theorem, see e.g. Section

5.6 in Itô and McKean 1974.

Theorem 3.9.Let S: I → R be a strictly increasing function, and let m and

k be non-negative measures onB such that k{(a,b)} ,m{(a,b)} < ∞ for all

α < a< b< β . Then there exists a linear diffusion such that its basic charac-

teristics are S, m, and k.

Using this theorem, one can easily construct diffusions. Nevertheless, in

this thesis we favour the construction of a diffusion from the infinitesimal pa-

rametersσ , µ , andc. First, by doing so we get well-behaving diffusions whose

characteristics are absolutely continuous. Second, our construction method co-

incides better with the formal calculation of stochastic differential equations
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(cf. Section 3.9).

For a more thorough discussion about basic characteristics, consult e.g.

Chapter II in Borodin and Salminen 2002, Chapters 4 and 5 in Itô and McKean

1974, or Chapter IV in Bass 1998.

3.4 Boundary classification

We noticed in Theorem 3.3 that given our assumptions, a diffusion is uniquely

determined only up to an explosion timeζ ∧τα ∧τβ , whereτy is the first hitting

time to the statey. Thus, in order to determine a diffusion uniquely, we need

to specify what happens when the diffusion hits the boundariesα andβ . In

this section, we study the boundary behaviour of linear diffusions and divide

the boundaries into four different classes based on basic characteristics. We

shall analyse only the lower boundaryα , as the properties atβ are defined in

a completely analogous way.

Let α < z< β and define

Σ(z) :=
∫ z

α
(m(η ,z)+k(η ,z))S(dη)

and N(z) :=
∫ z

α
(S(z)−S(η)) (m(dη)+k(dη)) .

The functionΣ measures, roughly speaking, the time it takes to reach the lower

boundaryα starting fromz. On the other handN(z) measures, again roughly

speaking, the time it takes to reach an interior pointz starting from the bound-

ary α (see page 231 in Karlin and Taylor 1981). In the boundary classification

we are only interested in whether the measuresΣ andN are finite or not:

Definition 3.10. Let α < z< β . Then the lower boundaryα is called

• natural if Σ(z) = ∞ andN(z) = ∞;

• exit, or exit-not-entrance, ifΣ(z)< ∞ andN(z) = ∞;

• entrance, or entrance-not-exit, ifΣ(z) = ∞ andN(z)< ∞;

• regular, or non-singular, ifΣ(z)< ∞ andN(z) < ∞.

The names are intuitive: Ifα is an entrance, then the process can be started

from α , from where it quickly moves to the interior and never comes back.

Analogously the process can exit the state space from the exit boundary, but
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not start from it. A natural boundary is a boundary that is neither exit nor

entrance, and a regular boundary is both exit and entrance.

A diffusion can be, a priori, started from a regular boundary, and it can

reach a regular boundary in finite time. However, it turns outthat the measures

Σ andN are not enough to define a regular boundary uniquely. Thus we next

classify the boundary behaviour of a regular boundary.

Definition 3.11. A regular boundaryα is called

• reflecting, if m({α}) = k({α}) = 0,

• killing, if m({α}) 6= ∞ andk({α}) = ∞,

• sticky, if ∞ > m({α})> 0 andk({α}) = 0,

• elastic, if m({α}) = 0 andk({α})> 0,

• absorbing, if m({α}) = ∞ andk({α})≥ 0.

The two most often appearing regular boundaries are the reflecting and

killing ones. This is due to the fact that when the basic characteristics are

absolutely continuous with respect to the Lebesgue measure, as they are for

example in this thesis, then these two are the only possible regular boundaries

(see II.9 in Borodin and Salminen 2002).

Once again, the names of the boundaries are intuitive. A diffusion spends

no time at a reflecting boundary (i.e.Px(Leb(s≤ t |Xs=α)= 0)= 1) and does

not die in it (i.e.Px(Xζ− = α) = 0). At a killing boundary, the diffusion is im-

mediately killed and sent to the cemetery state∂ . In practice, the behaviour

of a diffusion at an exit-not-entrance boundary and at a killing boundary does

not differ from one another — In both cases the diffusion is terminated im-

mediately after hitting the boundary and never comes back. Aprocess spends

a positive amount of time (i.e.Px(Leb(s≤ t | Xs = α) > 0) > 0) at a sticky

boundary. At an elastic boundary, a process does not spend any time, and it

can be killed there (i.e.Px(Xζ− = α)> 0). Lastly, a diffusion gets stuck in an

absorbing boundary, i.e.Pα(Xt = α) = 1 for all t < ζ .

Furthermore, a boundaryα is said to beattainable, if it can be reached in

a finite time. A boundary that is not attainable isunattainable. Hence exit and

regular boundaries are attainable, while entrance and natural boundaries are

unattainable.
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For a more complete discussion on the boundary behaviour of diffusions,

see pp. 15–21 in Borodin and Salminen 2002 and Section 15.6 inKarlin and

Taylor 1981.

Example 3.12(Killing a diffusion at the first exit time). Let X be a diffusion

on (α ,β ) with natural boundaries and letC := (a,b), α < a < b < β , be an

open interval and letx∈C. Consider the diffusioñX, which evolves asX until

it hits the boundary ofC where it is killed (killed at the first exit time from the

setC, cf. Example 2.2). Then, the boundariesa andb of the diffusionX̃ on its

state spaceC are regular and killing. The killing measurek̃ of X̃ is k+ k̂, where

k is the killing measure forX andk̂ is the killing measure on boundaries, being

zero onC and infinite at the boundariesa andb.

3.5 Maximum processes

Themaximum process, or therunning maximum, St of a diffusionXt is defined

by

St = sup
s≤t

{Xs} .

SinceSt alone is not Markovian, we have to add an additional dimension and

keep also record ofXt to get the two-dimensional process(Xt ,St), which again

is Markovian. Although an extra dimension often complicates, or even hand-

icaps, the analysis of the studied problem, this is not the case here. This is

due to the good nature of the maximum process: it is continuous even for a

more general processes than just diffusions (e.g. for spectrally negative jump

processes, see Subsection 2.6.2 in Kyprianou 2006), it is increasing, and, most

significantly, it is constant most of the time sinceXt < St almost always. In-

deed, between the hitting times ofXt to its maximum, the two-dimensional

process(Xt ,St) acts as a one-dimensional process(Xt ,s) for somes∈ I .

In a similar manner, one can also define aninfimum processinfs≤t{Xs}, and

everything said above holds true with the obvious changes.

3.6 Fundamental solutions

Let Xt be a diffusion with an infinitesimal generatorA and let r > 0 be a

constant discounting rate (or a killing rate, cf. Example 3.6). The infinitesimal

generatorA − r grasps the information about the associated diffusionX̃t killed

28



at the exponential rater, and, as a differential operator, converts it to the lan-

guage of pure analysis and ordinary differential equations. Furthermore, from

the theory of differential equations we know that the secondorder differen-

tial equation(A − r)u(x) = 0 has two independent non-negative solutionsψ
andϕ . We can requireψ to be increasing andϕ to be decreasing, in which

case they are uniquely determined up to multiplicative constants. SinceA − r

describes the behaviour of the diffusion, understandably the fundamental so-

lutionsψ andϕ also carry lot of information about̃Xt and thus also aboutXt .

One of the most important facts is the following hitting timedistribution (or

Laplace transform) result (see II.10 in Borodin and Salminen 2002 and Lemma

3.3 in Lamberton and Zervos 2013).

Proposition 3.13.Let τy = inf{t ≥ 0 | Xt = y}.

(A) Then for all r> 0

Ex
{

e−rτy
}

=







ψ(x)
ψ(y) , x≤ y;
ϕ(x)
ϕ(y) , x> y.

(B) More generally, for x∈ (a,b)⊂ I , one has

Ex
{

e−rτb1{τb<τa}
}

=
ψ(x)ϕ(b)−ψ(b)ϕ(x)
ψ(a)ϕ(b)−ψ(b)ϕ(a)

and Ex
{

e−rτa1{τa<τb}
}

=
ψ(a)ϕ(x)−ψ(x)ϕ(a)
ψ(a)ϕ(b)−ψ(b)ϕ(a)

.

The fundamental solutions also carry information about theboundary be-

haviour of the diffusion (see p. 19 in Borodin and Salminen 2002). We con-

sider here only the lower boundaryα , while analogous properties hold atβ
with the roles ofϕ andψ interchanged. Ifα is a regular boundary, then the

boundary condition forψ depends on whetherα ∈ I or not:

• if α ∈ I , thenrψ(α)m({α}) = ψ ′(α)
S′(α) −ψ(α)k({α}). Especially ifα

is reflecting, thenψ ′(α)
S′(α) = 0;

• if α /∈ I , thenψ(α+) = 0 (killing boundary).

On the other hand, ifα is not regular, then we have the following properties at

α :
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• if α is entrance,

ψ(α+)> 0,
ψ ′(α+)

S′(α+)
= 0, ϕ(α+) = +∞,

ϕ ′(α+)

S′(α+)
>−∞;

• if α is exit,

ψ(α+) = 0,
ψ ′(α+)

S′(α+)
> 0, ϕ(α+)<+∞,

ϕ ′(α+)

S′(α+)
=−∞;

• if α is natural,

ψ(α+) = 0,
ψ ′(α+)

S′(α+)
= 0, ϕ(α+) = +∞,

ϕ ′(α+)

S′(α+)
=−∞.

Example 3.14.Let X be a diffusion with natural boundaries and letC := (a,b),

α < a< b< β , be an open interval and letx∈C. Denote byψ(x) andϕ(x) the

fundamental solutions associated with the diffusionX, killed at the rater > 0.

• (Killed at first exit time.) Consider a diffusionX̃, which evolves asX

until it hits the boundary ofC where it is killed (killed at the first exit time

from the setC). Now the fundamental solutions associated withX̃ can

be chosen to bẽψ(x) = ψ(x)ϕ(a)−ϕ(x)ψ(a) andϕ̃(x) = ϕ(x)ψ(b)−
ψ(x)ϕ(b).

• (Reflected at the boundaries.)Consider a diffusionX̂, which evolves

as X on C, and that the boundariesa and b are reflecting (i.e. let us

definem̂({a})= m̂({b})= k̂({a})= k̂({b})= 0). Then the fundamental

solutions associated witĥX can be chosen to bêψ(x) = −ψ(x)ϕ ′(a)+

ϕ(x)ψ ′(a) andϕ̂(x) = ϕ(x)ψ ′(b)−ψ(x)ϕ ′(b).

It should be mentioned that the fundamental solutionsψ and ϕ can be

defined also in a more general context when the discountingr : I → R+ is a

measurable function that is uniformly bounded away from zero (cf. Lamberton

and Zervos 2013).
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3.7 Fundamental solutions, the resolvent operator and decompositions

Fundamental solutions and the scale derivative

SinceA − r is an ordinary differential equation, we can calculate its (constant)

Wronskian determinantB (see e.g. p. 116 in Ince 1956)

B :=
ψ ′(x)ϕ(x)−ψ(x)ϕ ′(x)

S′(x)
.

Thus, we see that the density of the scaleS′ is closely connected withψ
andϕ . Indeed, each function in the tripletS′, ψ , andϕ can be expressed as a

functional of the other two; using the theory of differential equations one can

deduce the decompositions

ψ(x) =C1ϕ(x)
∫ x S′(y)

ϕ2(y)
dy, and ϕ(x) =C2ψ(x)

∫

x

S′(y)
ψ2(y)

dy,

for some constantsC1,C2 ∈ R+ (cf. p. 122 in Ince 1956).

The resolvent operator and its decomposition

Denote byL 1(I ) the class of measurable functionsf : I →R satisfying the

integrability condition

Ex

{

∫ ∞

0
e−rt | f (Xt)|dt

}

< ∞ for all x∈ I .

Definition 3.15. Define theresolvent(or potential, if one prefers the potential

theoretic approach) operatorRr by

(Rr f )(x) := Ex

{

∫ ∞

0
e−rt f (Xt)dt

}

for all f ∈ L
1(I ).

It is known (see e.g. Øksendal 2000 or p. 29 in Borodin and Salminen

2002) that the resolvent operator can be written as an integral decomposition:

(Rr f )(x) = B−1ϕ(x)
∫ x

α
ψ(y) f (y)m′(y)dy+B−1ψ(x)

∫ β

x
ϕ(y) f (y)m′(y)dy.

This decomposition is computationally very useful (see e.g. the proof of

Lemma 5.2(B) in Article II). More theory about resolvents can be found e.g.

from Blumenthal and Getoor 1968.
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Integral decompositions

Next, we introduce two further integral decompositions (see Corollary 3.2 in

Alvarez 2004), which are closely connected to the Martin boundary theory.

These will be applied several times in the thesis.

Lemma 3.16.Assume that f∈C2(I ) and that(A − r) f (x) ∈ L 1(I ).

(A) Assume further thatlimx→α | f (x)| < ∞. Then

f ′(x)ψ(x)
S′(x)

− f (x)ψ ′(x)
S′(x)

=

∫ x

α
ψ(y)(A − r) f (y)m′(y)dy−δ ,

whereδ = 0, if α is unattainable, andδ = B f (α)
ϕ(α) otherwise.

(B) Assume further thatlimx→β
f (x)
ψ(x) = 0. Then

f ′(x)ϕ(x)
S′(x)

− f (x)ϕ ′(x)
S′(x)

=−
∫ β

x
ϕ(y)(A − r) f (y)m′(y)dy.

3.8 Excessive and superharmonic functions

The fundamental concepts ofr-harmonicity andr-excessivity will prove to be

the key ingredients in the characterisation of the value of an optimal stopping

problem. In this section we assumeXt to be a general regular linear diffusion

in the sense of Definition 3.1.

Definition 3.17. (A) A lower semicontinuous6 function h : I → R is r-

harmonicwith respect toXt , if it is bounded from below and

Ex
{

e−rτh(Xτ)
}

= h(x) (5)

for all stopping timesτ andx∈ I .

(B) An r-superharmonicfunction is defined similarly, except that ”=” in (5)

is replaced by ”≤”.

(C) An r-subharmonicfunction is defined similarly, except that ”=” in (5) is

replaced by ”≥”.

6A function f is lower semicontinuousatx0 if for everyε > 0 there exists a neighbourhood
U such thatf (x) ≥ f (x0)− ε for all x∈U .
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As is noticed on p. 16 in Dynkin 1965 vol II, if a Borel-measurable function

h is bounded from below and satisfies conditionEx{e−rτh(Xτ)} ≤ h(x) for all

stopping timesτ, then it is upper semicontinuous. Thus anr-superharmonic

function is both lower and upper semicontinuous and consequently continuous.

Definition 3.18. A lower semicontinuous functionh : I → R+ is r-excessive

with respect toXt , if

a) limt→0Ex{e−rt h(Xt)}= h(x) for all x∈ I ; and

b) Ex{e−rt h(Xt)} ≤ h(x) for all x∈ I .

Observe that ifh is continuous andX is a regular linear diffusion, then item

a) in the definition holds. Furthermore, since anr-superharmonic function is

continuous, we see at once that any non-negativer-superharmonic function

must ber-excessive. However, for a nice enough process, also the converse is

true; In Dynkin 1965 (p. 16 in vol II) it is remarked that in theclass of quasi-left

continuous7, right continuous strong Markov processes anyr-excessive func-

tion is also anr-superharmonic function. Further, we see a link to martingales,

as for allh∈ L 1 the processe−rt h(Xt) is a (super/sub)martingale wheneverh

is r-(super/sub)harmonic with respect toXt .

The fundamental solutions are crucial here, since they can be viewed as

minimal r-harmonic functions: They span the set of allr-harmonic mappings

so that everyr-harmonic mapping is of the formc1ψ(x)+c2ϕ(x) for somec1,

c2 ∈ R.

It is not convenient to determine directly from the definition if a given func-

tion is r-excessive or not. Hence the following proposition gives two more

applicable characterisations, where the first one is a direct consequence of

Dynkin’s formula (Theorem 3.5) and the second one is Theorem12.4.B in

Dynkin 1965.

Proposition 3.19.Let X be a regular linear diffusion in a sense of Definition

3.1.

(A) Let h: I → R+ be twice continuously differentiable. If(A − r)h(x) ≤ 0

for all x ∈ I , then h is r-excessive.

7A Markov processXt is said to bequasi-left continuous, if for any sequence of stopping
timesτ1,τ2, . . . for which limn→∞ τn = τ we have limn→∞ Xτn = Xτ , for all x∈ I .
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(B) Let h: I → R+ be a continuous function. Then h is r-excessive with

respect to Xt if it satisfies the following condition. For anyτ(a,b) =
inf{t ≥ 0 | Xt /∈ (a,b)}, whereτ(a,b) is the first exit time from an arbi-

trary open interval(a,b) ⊂ I whose compact closure is inI , one has

Ex

{

e−rτ(a,b)h(Xτ(a,b))
}

≤ h(x), for all x ∈ I .

If the inequalities in the proposition are replaced by equalities, we get con-

ditions forr-harmonicity.

3.9 Itô diffusion

The so calledItô diffusions, which are solutions to certain stochastic differ-

ential equations with respect to Brownian motion, are particularly important

diffusions. In fact, we have used Itô diffusions all along without underlining

this fact — the conditions in Theorem 3.3 guarantee the existence of a weak

solution to a certain stochastic differential equation with a Brownian motion

as the source of randomness, as we shall see shortly. For a thorough treatment

of stochastic differential equations, consult Karatzas and Shreve 1988, Rogers

and Williams 2000b, Protter 2004, or Øksendal 2007.

To formally define an It̂o diffusion, letWt be a one-dimensional Brownian

motion. Then for a given driftµ : I → R and volatility σ : I → R+, the

dynamics of an It̂o diffusionXt can be represented in a stochastic integral form

Xt = X0+

∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs,

provided that the stochastic differentialdWt is rigorously defined. Stochas-

tic differential calculus, developed by Itô in the 40’s (and independently by

Wolfgang Doeblin, see Bru and Yor 2002), describes how to define such dif-

ferentials, but we will not go into details. It is adequate for us to know that one

can rewrite the equation above as astochastic differential equation

dXt = µ(Xt)dt+σ(Xt)dWt, X0 = x. (6)

We are interested in two kinds of solutions to this stochastic differential

equation, and we also present two concepts for the uniqueness of the solution

(see Chapter V in Karatzas and Shreve 1988).

Definition 3.20. (A) The equation (6) has aweak solution, if there exists a
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filtered probability space(Ω,F ,{Ft},P) carrying a Brownian motionWt

and a stochastic processXt , both adapted toFt , such that the pair(Wt ,Xt)

satisfies (6) and

∫ t

0

{

|µ(Xt)|+ |σ2(Xt)|
}

dt < ∞ (7)

up to the (possible) explosion timeζ ∧ τα ∧ τβ .

(B) The equation (6) has astrong solution, if for any given filtered probabil-

ity space(Ω,F ,{Ft},P) carrying a Brownian motionWt, there exists a

processXt adapted toFt satisfying (6) and (7) up to the explosion time

ζ ∧ τα ∧ τβ .

(C) The solution to the equation (6) isunique in lawor weakly unique, if

whenever two processesXt andYt are solutions to (6), possibly on dif-

ferent filtered probability spaces, they have the same distribution as pro-

cesses, i.e. for every Borel setA∈ B we haveP(ω | t → Xt(ω) ∈ A) =

Q(ω | t →Yt(ω) ∈ A), whereP andQ are the probability measures forX

andY respectively.

(D) The solution to the equation (6) ispathwise unique, if whenever the pro-

cessesXt andYt are solutions to (6) defined on the same filtered probability

space(Ω,F ,{Ft},P), they satisfyP(|Xt −Yt|= 0 for all t ≥ 0) = 1.

We have the following sufficient conditions for the existence and unique-

ness of a weak and strong solution. The result 3.21(A) can be found e.g in

Chapter V in Karatzas and Shreve 1988 and the result 3.21(B) in Section 5.2

in Øksendal 2007.

Theorem 3.21.Let µ : I → R andσ : I → R+ be Borel-measurable func-

tions.

(A) Assume that for all x∈ I there existsε > 0 such that the conditions

σ(x) > 0 and
∫ x+ε

x−ε
1+|µ(y)|

σ2(y)
dy< ∞ are satisfied. Then there is a weak

solution to the stochastic differential equation(6) up to an explosion time

and this solution is unique in law.

(B) Assume that for all x,y ∈ I the Lipschitz condition|µ(x) − µ(y)|+
|σ(x)−σ(y)| <C|x−y| is satisfied for some constant C> 0. Then there
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exists a strong solution to the stochastic differential equation (6) up to an

explosion time and this solution is pathwise unique.

The solutions are defined up to an explosion time, and we can apply e.g.

Feller’s test for explosions (see e.g. Theorem 5.5.29 in Karatzas and Shreve

1988) to determine whether a solution to (6) hits either of the boundaries ofI

in finite time with a positive probability.

Example 3.22. • Geometric Brownian motion.Chooseµ(x) = µx and

σ(x) = σx for some constantsµ ,σ > 0. This clearly satisfies the condi-

tions of Theorem 3.21(B) and thus there exists a pathwise unique, strong

solutionXt to the equationdXt = µXtdt+σXtdWt.

• No strong solution.Clearly a strong solution is always also a weak solu-

tion, but the converse does not hold: Takeµ(x) ≡ 0 andσ(x) = sgn(x).

Then there exists a weak solution, but not a strong one, see e.g. Ex-

ample 5.3.2 in Øksendal 2007. For counterexamples with continuous

σ : R→ R+ with 0< δ < σ(x)< K, see Barlow 1982.

We can now conclude that Theorem 3.21(A) together with the analysis of

killed diffusions at Section 3.2 justifies Theorem 3.3, which characterises a

diffusion through the infinitesimal parametersσ , µ , andc. To make sure that

the weak solution is actually a diffusion it is enough to notice that it is continu-

ous (e.g. Theorem 3.2.5 in Øksendal 2007) and a strong Markovprocess (e.g.

Theorem V.21.1. in Rogers and Williams 2000b). Notice that in Theorem 3.3

we required thatµ andσ are continuous, rather than just measurable, in order

to make the basic characteristics of the diffusion absolutely continuous.

Now we can interpret a linear diffusion also as a solution to astochastic

differential equation. This enables us to combine the classical theory of linear

diffusions with the theory of stochastic differential equations. As a result, we

get a large tool kit for analysing stochastic problems. One of the most famous

results in stochastic calculus is the following Itô’s formula (e.g. Theorem 4.1.2

in Øksendal 2007), which can be useful, for example, when onetries to verify

that a guessed stopping rule is indeed the optimal one for an optimal stopping

problem.

Theorem 3.23.Let Xt be a (weak) solution to(6), and let g(t,x) : [0,∞)×I →
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R be C1,2-function. Then g(t,Xt) satisfies the stochastic differential equation

dg(t,Xt) =
∂g
∂ t

(t,Xt)dt+
∂g
∂x

(t,Xt)dXt +
1
2

∂ 2g
∂x2(t,Xt)σ2(Xt)dt.

Another important issue is the fact that a stochastic integral
∫ t

0 σ(Xs)dWs,

when it exists, is a local martingale (e.g. Theorem IV.30.7 in Rogers and

Williams 2000b), and consequently every solution to a stochastic differential

equation of the type (6) is a semi-martingale. Moreover, ifEx
{
∫ t

0 σ2(Xs)ds
}

<

∞ for all t ≥ 0, then the integral
∫ t

0 σ(Xs)dWs is in fact a martingale (Corollary

3.2.6 in Øksendal 2007).

We conclude the section with an example that shows there are diffusions,

in the sense of Definition 3.1, which are not Itô diffusions.

Example 3.24.A diffusion that is not an It̂o diffusion. Let Wt be a one-

dimensional Brownian motion and defineXt :=
√

|Wt|. ThenXt is a diffusion

in the sense of Definition 3.1, since|Wt | is a diffusion andx→√
x is a contin-

uous bijection onR+. However, it is proven in Yor 1978 (see also Theorem 71

in Protter 2004 and II.5 in Borodin and Salminen 2002) that, unlike every It̂o

diffusion,Xt is not a semi-martingale.

37



38



4 OPTIMAL STOPPING

From now on, we assume thatX is the non-terminating diffusion process on the

intervalI ⊂R given by Theorem 3.3. In other words, we assume thatc(x)≡ 0

for all x∈ I and that the infinitesimal parametersµ : I → R, σ : I → R+

are continuous and that for allx∈I there existsε > 0 such that the conditions

σ(x)> 0 and
∫ x+ε

x−ε
1+|µ(s)|

σ2(s)
ds< ∞ hold.

4.1 What does ”optimal stopping” mean?

Since the path of a stochastic process is different at every observation, we need

to clarify what we actually mean by ”optimal stopping”. Usually, as in this

thesis, it means maximising the expectation of a given payoff over all stopping

times. To be more specific, letg : I → R be a known payoff. Then we

understand an ”optimal stopping problem” as the maximisation of the expected

net present value

V(x) = sup
τ
Ex

{

e−rτg(Xτ)
}

, (8)

where the supremum is taken over all stopping times. It is worth noticing

that, unless otherwise stated, we only consider problems with an infinite time

horizon (i.e. there is no upper boundary for stopping times).

There are also other stopping criteria such as the variance criterion (see

e.g. Pedersen 2011), where we chooseτ so that the variance Var(g(Xτ)) gets

maximised or minimised, sometimes with respect to other constraints; e.g.

minimising the variance of a portfolio, so that it expectedly gives at least some

certain profit. More generally we could try to maximiseU (Ex{g(Xτ)}), where

U(x) is any non-linear function. Although variance criterion isimportant in

some applications, for instance in portfolio optimisationproblems (see e.g.

Zhou and Li 2000), these kinds of criteria are not studied nearly as much as

”normal” stopping criterion (8). One aspect that makes these variance crite-

rion problems more complicated is the fact that the nonlinear term from the

variance prevents one from using dynamic programming and the smooth fit

principle. As a result, the value function cannot be characterised directly using

the greatly developed optimal stopping machinery and each problem needs to

be handled separately.
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The payoff can also include a probability function. For example, we may

want to maximise the functionPx( f (Xτ) > b)−Ex{e−rτg(Xτ)}, whereb is

some exogenously determined level, and the expectation measures the cost of

waiting more. However, since probabilities can be written as expectations,

these problems can often be re-formulated as (8), see e.g. Chapter 21 in Peskir

and Shiryaev 2006 and Theorem 7 in Pedersen 2005.

From now on by ”optimal stopping problem” we refer to a problem of the

type (8) stated for a non-terminating linear diffusion. These kinds of problems

are the simplest stochastic control problems, where the only allowed control is

a straightforward and crude ”stop now” -control. However, at the same time

these control problems are very important, as they have manypractical and the-

oretical applications. For example analysing optimal exitfrom a market (see

e.g. Alvarez 1998) and determining an optimal investment rule (see Dixit and

Pindyck 1994) can be stated as optimal stopping problems. Other examples

include deriving sharp inequalities arising in stochasticanalysis, the quickest

detection of a changed drift, option pricing and optimal prediction problems

(see Chapters V, VI, VII, and VIII in Peskir and Shiryaev 2006, respectively,

and the references therein).

For a brief introduction to the optimal stopping theory see Zabczyk 1979,

and for a more comprehensive treatment consult Shiryaev 1978 and Peskir and

Shiryaev 2006.

4.2 Solving optimal stopping problems

4.2.1 A procedure to reach the solution

A corner stone of the optimal stopping theory for diffusion processes is the

following verification result, which dates back to Dynkin 1963. It unambigu-

ously characterises the value and the optimal stopping timeof the problem (8)

(see e.g. Theorem 3.1 in Shiryaev 1978, or Theorem 2.7 together with Re-

mark 2.10 in Peskir and Shiryaev 2006). In fact, this holds for an even larger

class of Markov processes than just linear diffusions, but the following form is

adequate for us.

Theorem 4.1 (Verification theorem for an optimal stopping problem).

Let g(x) : I → R be an upper semicontinuous function such that

Ex
{

supt≥0{e−rt g(Xt)}
}

< ∞ for all x ∈ I .
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(A) The solution V(x) to (8) is the smallest r-excessive majorant of the func-

tion g(x).

(B) Define the continuation region C:= {x∈ I | g(x)<V(x)}, and letτ∗ =
inf{t ≥ 0 | Xt /∈C} be the first exit time from C. IfPx(τ∗ < ∞) = 1 for all

x∈ I , thenτ∗ is the optimal stopping time for the problem(8).

Besides beingr-excessive, and consequentlyr-superharmonic everywhere,

one can show that the value functionV(x) is r-harmonic on the continuation

regionC (see e.g. Lemma 4.2 in Salminen 1985). Theorem 4.1 also suggests

that the state spaceI has a partition{C,S}, whereC is the continuation re-

gion andS= I \C is the stopping region (the optimal strategy is to allow the

diffusion to evolve as long as it stays inC, and it is stopped immediately when

it entersS, hence the names).

Also, this theorem allows us to utilise the theory ofr-excessive functions in

a potential theoretic way, and the Martin integral representation theory within

it, to analyse the problem. We use this approach in this thesis; see Salmi-

nen 1984, 1985 for an excellent exposition on Martin boundary theory for lin-

ear diffusions, its relation with optimal stopping, and on how the representing

measure of anr-excessive function can be characterised explicitly by relying

on fundamental solutions and the scale function.

There are many other ways to approach an optimal stopping problem and

some of these are surveyd in Subsection 4.2.3 below. Many methods, includ-

ing the one used in this thesis, could be categorized as ”guess and verify”

-methods, the previous theorem being of great help in the verification phase.

In these methods, one typically first constructs (by ad hoc methods) some nec-

essary first order optimality conditions. In the second step, one searches for a

solution to these optimality conditions, after which the optimality of the pro-

posed solution is validated by applying a verification theorem. In this thesis,

we develop the necessary conditions and search for a solution to them with the

help of fundamental solutions and the theory of linear diffusions. We adopt the

namefluctuation theory approachto this method, as it was used in a slightly

different situation in Kyprianou and Pistorius 2003. The normal procedure is

as follows.

Step 1 Guess the nature of the stopping rule (e.g. one- or two-sided stopping

boundary).
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Step 2 Formulate the value with respect to the guessed stopping rule using

the Laplace transform of the hitting time(s). Usually the value has as

many free parameters as there are stopping boundaries in theguessed

stopping rule.

Step 3 Derive the necessary first-order optimality conditions for the value with

respect to the guessed stopping rule. This is often the crucial step, and

one often needs additional assumptions in order to prove theexistence

and/or uniqueness of these optimality conditions.

Step 4 Verify that the guessed stopping rule, satisfying thenecessary condi-

tions from Step 3, indeed is the optimal solution (e.g. usingTheorem

4.1).

Using these steps, we have a constructive method to reach theoptimal exer-

cise strategy without heavy differentiability preconditions. Interestingly, the

celebratedprinciple of smooth fit(i.e. that the value function is continuously

differentiable across the stopping boundary, cf. Subsection 4.2.3) is here often

a consequence of optimality. We can also use the above mentioned proce-

dure in cases where the payoff is not everywhere differentiable and, therefore,

where the principle of smooth fit is not always satisfied. Moreover, we will see

that this procedure can be applied to other stochastic control problems as well.

Despite the fact that optimal stopping problems for continuous time

stochastic processes are well studied, it is often hard to find explicit solutions to

these problems since the set of admissible strategies is very large and might in-

volve rather exotic strategies. However, using the procedure introduced above

we can often find necessary conditions under which a simple barrier strategy

is the optimal one. Furthermore, this simpler barrier strategy ”stop as soon as

Xt crosses barrier(s)yi ∈ I ” often enables us to write the value function in a

(quasi)-explicit form. This, in turn, is very helpful when,for example, study-

ing comparative static properties of the value and the optimal strategy (see e.g.

Article II and III). For a discussion on the benefits of barrier strategies, see also

Section 3.5 in Rakkolainen 2009

4.2.2 A concrete example

Let us consider a situation where an investor has the opportunity to invest a

sunk costk> 0 at any timet to a project which then gives a return described by
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the diffusionXt onR+. At any time the investor has the following two options:

Either she invests now or postpones the decision to invest into the future. More

specifically, the expected present value of this investmentproblem is

Π(x,t) = Ex
{

e−rt (Xt −k)+
}

,

where(x−k)+ = max{x−k,0}. A rational investor naturally wants to choose

the best time to make the investment and thus wants to find the stopping time

τ∗ such that

W∗(x) := Π(x,τ∗) = sup
τ

Π(x,τ). (9)

This problem is known as the pricing of an American call option with infinite

time horizon, and for the case of geometric Brownian motion it was first treated

by Samuelson 1965 and rigorously solved by McKean 1965 (for adiscussion

on American options see Section 25 of Peskir and Shiryaev 2006 and refer-

ences therein). Here we solve the problem utilising the procedure introduced

in the previous subsection.

Step 1 We judge that it will not be worthwhile to invest if the value of the

underlying diffusion is small, while for sufficiently largevalues we

shall exercise the investment opportunity. Hence we guess that the

optimal stopping rule should be a one-sided threshold rule ”stop above

a certain threshold” and we consider stopping timesτy = inf{t ≥ 0 |
Xt ≥ y} wherey> k.

Step 2 Fixy> k. Then

Π(x,τy) =Ex
{

e−rτy(Xτy −k)+
}

=







x−k, x≥ y (stop immediately)

Ex{e−rτy}(y−k), x< y (wait until Xt hits y)

=







x−k, x≥ y
y−k
ψ(y)ψ(x), x< y,

where in the last equality we used the Laplace transform of the hit-

ting time from Proposition 3.13. We see thatΠ(x,τy) hasy as a free

parameter.
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Step 3 Fory∗ to be the optimal stopping boundary, it must maximisey−k
ψ(y) and

hence satisfy the first order necessary condition∂Π(x,τy)
∂y

∣

∣

∣

y=y∗−
= 0. Af-

ter the differentiation, the necessary condition reads as

ψ(y∗)−ψ ′(y∗)(y∗−k) = 0. (10)

If this equation has a unique solution, it must maximise (9) in the class

of all one-sided threshold rules. Here we need additional assumptions

to guarantee the unique existence of the solution to (10)8.

Step 4 Firstlyτy∗ is an admissible stopping strategy and soΠ(x,τy∗)≤W∗(x).

Secondly, to get the opposite inequality, it is enough to show that

Π(x,τy∗) is an r-excessive majorant for(x− k)+ and then utilise the

verification theorem 4.1.

Above we also see the link to the Martin boundary theory; The representa-

tive measureνW∗
of ther-excessive value functionW∗ is given by (see Propo-

sition 3.3 in Salminen 1985)

νW∗ {(0,x)} = W∗(x)ψ ′(x)
S′(x)

− ψ(x)W∗′(x)
S′(x)

and νW∗ {(x,∞)} = W∗′(x)ϕ(x)
S′(x)

− ϕ ′(x)W∗(x)
S′(x)

.

Furthermore, we can write the functional in (10) as

S′(x)

(

ψ(x)
S′(x)

− ψ ′(x)(x−k)
S′(x)

)

.

Now, the function in parentheses is in fact the representingmeasure

νW∗{(0,x)} for x∈ [y∗,∞) and we see that it does not charge the optimal con-

tinuation region(0,y∗) (cf. Section 4 in Salminen 1985).

To see this procedure in use in more complicated situations,see the articles

of this thesis as well as e.g. Alvarez 2003 (a one-sided stopping rule), Lempa

2010 (a two-sided stopping rule), Alvarez and Lempa 2008 (animpulse and

a singular control problem) and Alvarez and Rakkolainen 2009 (a spectrally

negative Levy case).

8A sufficient condition is, for example, that there exists ˜x> 0 such that(A − r)(x−k)T 0

for all xS x̃ (cf. Theorem 6 in Alvarez 2003).
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4.2.3 Other approaches to finding the solution

We only use the above mentioned potential theoretical method in this the-

sis, but we shall next briefly discuss some other approaches to optimal stop-

ping problems. Figure 2 describes the relationships between the different ap-

proaches.

Figure 2:The presented approaches.

Functional concavity

Dayanik and Karatzas 2003 (further developed into a more general context in

Dayanik 2008) presented another potential theoretic approach based on works

by Dynkin 1965 and Dynkin and Yushkevich 1969. In thisfunctional concav-

ity technique it is shown that essentially, every optimal stopping problem can

be transformed into an undiscounted stopping problem for a Brownian motion.

Moreover, the value function in the Brownian motion case canbe characterised

as the smallest non-negative concave majorant of the (transformed) payoff

function. The major benefit in this approach is that one does not need any

prior guess about the optimal stopping region, instead the transformed prob-

lem is essentially solved by inspection. Functional concavity is also closely

related to excessivity, which can be seen after realising that the set of non-

negative concave functions coincides with the set of excessive functions under

Brownian motion.
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The free boundary approach

A very effective and widely used technique to solve optimal stopping problems

is thefree boundary approach, which highlights the partition{C,S} of the state

space into continuation and stopping regions. The free boundary approach

works well in linear as well as in multidimensional cases andis especially

powerful with regards to concrete examples. Here, one first guesses the form of

the partition and then transforms the original problem (8) into a free boundary

problem (a Dirichlet problem):



















(A − r)V(x) = 0, x∈C

V(x) = g(x), x∈ ∂C

V(x) > g(x), x∈C,

where both the valueV(x) and the continuation regionC are unknown. Notice

that in this Dirichlet problem in order to determine the regionC, it is enough

to determine its boundary∂C (hence the terminology). However, in order to

determine the boundary, one needs to apply non-trivial boundary conditions,

and the so calledprinciple of smooth fitis suitable in most cases. This principle

says that the first derivatives of the value function and the payoff function agree

at the optimal stopping boundary∂C, i.e. one can add a boundary condition

V ′(x) = g′(x), x∈ ∂C

to the Dirichlet problem above. Lastly, after solving the free boundary prob-

lem, one needs to verify the correctness of the initial guessusing a verification

theorem. For a good introduction to the subject and some examples, see Ped-

ersen 2005. For a thorough discussion consult Peskir and Shiryaev 2006. We

also further illustrate the free boundary approach at the end of this subsection.

Thevariational inequalitiesapproach is closely related to the free bound-

ary approach. Here one gathers a collection of (in)equalities that simultane-

ously serve as a free boundary problem and sufficient conditions for optimality,

see e.g. Theorem 10.4.1 in Øksendal 2007. If one can find a function satisfying

these variational inequalities, it is inevitably the unique solution. However, the

variational inequalities require strong differential preconditions, and in many

cases the value function is not smooth enough for applying the inequalities.

For these cases, there is fortunately a technique based on the so calledvis-
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cosity solutions, first introduced in Crandall and Lions 1983. Basically these

solutions are generalised solutions to a partial differential equation; see e.g.

Øksendal and Reikvam 1998 for their use in optimal stopping problems.

Compared to the free boundary approach, the method of variational in-

equalities is typically more difficult to use with concrete examples, where we

would like to find explicit solutions. However, it is powerful for finding suffi-

cient conditions for the existence of a solution.

One very recent general method using the variational inequality tech-

nique was developed by Lamberton and Zervos 2013. They avoidthe heavy

differentiability assumptions by showing that a functionF : I → R is r-

excessive if and only if it is the difference of two convex functions9 and

−(1
2σ2F ′′ + µF ′ − rF ) is a positive measure. Using this characterisation of

r-excessivity, rather than the direct characterisation based on the infinitesimal

generator, they find necessary and sufficient conditions forthe existence of a

value function relying on the arguments of variational inequalities. Johnson

2012 demonstrates how this general theory can be applied to obtain explicit

solutions to optimal stopping problems.

Semi-infinite linear programming approach

Another way to find the smallestr-excessive majorant is to transform the initial

optimal stopping problem into asemi-infinite linear program, which in the

linear diffusion case is taken over the coefficients of the minimal r-harmonic

functions. In short, in the linear diffusion case one fixes the initial statex0 ∈I

and the valueV(x0) is a solution to the problem

min
c1, c2

c1ψ(x0)+c2ϕ(x0)

s.t. c1ψ(x)+c2ϕ(x) ≥ g(x) for all x∈ I

c1,c2 ≥ 0.

See Helmes and Stockbridge 2010 for an analytical approach and Christensen

2012 for a numerical treatment.

9A function F : I → R is a difference of two convex function if and only if its left-hand
side derivativeF ′

− exists and its second distributional derivative is a measure. See Bačák and
Borwein 2011 for a survey on difference of two convex functions.
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General methods

Being a dynamic programming problem, an optimal stopping problem can also

be approached usingBellman’s optimality principle, which in this case can be

written asHamilton-Jacobi-Bellman variational inequality

max{(A − r)V(x),g(x)−V(x)} = 0 for all x∈ I . (11)

Here, the first component represents the continuation option, while the second

component represents the fact that the process can always bestopped imme-

diately. This is a very general way to characterise the valuefunction, and in

fact we see that the free boundary problem above can be derived from this

by applying the partition of the state space into continuation and stopping re-

gions. For more information on the Hamilton-Jacobi-Bellman inequality and

its relation to stopping problems, see e.g. Dixit and Pindyck 1994.

The constructive but non-explicititerative procedure-method, presented

e.g. in Shiryaev 1978, is a general approach that requires nodifferentiability

whatsoever. In this approach, the time is discretised afterwhich the easier

discrete-time results can be applied and so the value function V(x) can be

characterised as a limiting value

V(x) = lim
n→∞

lim
N→∞

QN
n g(x),

where Qng(x) : = max
{

g(x),Ex

{

e−r 1
2n g(X 1

2n
)
}}

andQN
n is theNth power ofQn. Although this works in very general struc-

tures, unfortunately the iteration typically converges very slowly, and thus this

approach usually provides only existence results.

A recent approach by Christensen et al. 2012 is also worth mentioning

here. There the value function and the optimal stopping threshold are found in

a very general setting utilising an expectation of a maximumprocess killed at

an exponential time.

All the approaches we have considered so far apply analytical tools from

the theory of Markov processes and can thus be classified asMarkovian ap-

proaches. In these approaches the stochastic problem is often reduced to a
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pure analytical problem (e.g. solving Dirichlet problem) without any refer-

ence to any probabilistic construction. So, peculiarly, the value and the optimal

stopping rule are found as a solution to a deterministic problem although the

problem itself was initially stochastic in nature.

Martingale methods

Besides the Markovian approach, the other main approach is the martingale

approach; We notice that anr-superharmonic function with respect to a dif-

fusion X additionally constitutes a supermartingalee−rt f (Xt), and hence we

could use probabilistic tools provided by the martingale theory. This approach

was initiated by Snell 1952, and it relies on the fact that thevalue function

constitutes the minimal supermartingale dominating the payoff function.

If we define the payoff process byYt = e−rt g(Xt), then the problem can be

solved viaSnell’s envelope

St := esssup
t≤τ

E{Yτ | Ft} .

It can be shown thatSt coincides with the value process of the optimal stopping

problem (8) (see Section 2.1 in Peskir and Shiryaev 2006).

The Beibel-Lerche method (see Beibel and Lerche 1997; Lerche and

Urusov 2007), which can be viewed as optimal stopping via measure trans-

formation, is a more recent method based on the martingale theory. In this

method, we are interested in finding a functionh(x) and a positive martingale

Mt such thatM0 = 1 and

EP
x

{

e−rt g(Xt)
}

= EQ
x {h(Xt)} , where

dQ
dP

= Mt .

If one can show thath(x) attains a unique maximum value at some pointx∗,

thenEP
x {e−rτg(Xτ)} ≤ h(x∗) for all stopping timesτ. The equality is attained

with τx∗ = inf{t ≥ 0 | Xt = x∗}, which consequently is the optimal stopping

rule. This method is especially powerful at the continuation region of a consid-

ered problem. Unfortunately, it does not always work on the stopping region.

A similar method, adding a touch from the potential theory, has been

utilised recently in Christensen and Irle 2011, where they also proved an

interesting characterisation of the stopping region: a point x is in the stop-

ping region if and only if there exists anr-harmonic mappingh such that
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x= argmax
{g

h

}

.

Help from time-, space-, or measure changes

There are cases where the considered problem is not solvableusing any of the

methods listed above. In these cases, one can try to transform the difficult

problem into an easier one by making a time-, space-, or measure change.

These methods are discussed in Sections 10–12 in Peskir and Shiryaev 2006,

see also Barndorff-Nielsen and Shiryaev 2010.

4.2.4 Different methods in practice

In a way, categorizing methods and building fences between them is artificial,

since at the heart they all tell the same story from a slightlydifferent perspec-

tive.

To give a few explicit examples: Let us consider the Beibel-Lerche method

applied to our concrete problem (9) of pricing an American call option. We

can now chooseMt = e−rt ψ(Xt) as the positive martingale so thath(x) = (x−
k)+/ψ(x) is the sought function. It follows that, forx ≤ x∗, we can show

the optimal stopping threshold to bex∗ = argmax{x− k/ψ(x)}, which is the

same one we got from Step 3 at Subsection 4.2.2, but this time the justification

comes from measure theoretical techniques and martingale properties rather

than from analytic techniques.

For another example, let us solve the same problem (9) using the free

boundary approach. Let us again guess that the stopping ruleis of the type

τy = inf {t ≥ 0 | Xt ≥ y}. The free boundary problem for the unknown value

functionV and the unknown optimal threshold pointy∗ can now be written as

(cf. Section 25.1 in Peskir and Shiryaev 2006)

(A − r)V(x) = 0, x> y∗; (12a)

V(x) = (x−k)+, x= y∗; (12b)

V ′(x) = 1, x= y∗ (principle of smooth fit); (12c)

V(x) > (x−k)+, x> y∗; (12d)

V(x) = (x−k)+, 0< x< y∗. (12e)

It follows from (12a) thatV(x) = c1ψ(x) + c2ϕ(x), and by (12e) and (12b)
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we get thatc2 ≡ 0 andc1 = c1(y) =
y−k
ψ(y) . The optimal thresholdy∗ is found

by applying the principle of smooth fit (12c):y∗ satisfiesψ ′(y∗) y∗−k
ψ(y∗) = 1,

which is the same condition as (10) at Step 3 in our fluctuationtheory approach

in Subsection 4.2.2. Finally, we must ensure that this guessed candidate for

the value function and the optimal stopping time are indeed correct using an

appropriate verification theorem.

After solving the concrete problem (9) by applying three different meth-

ods, we see that irrespective of the chosen method the ratio(x−k)/ψ(x) and

its maximum point play central roles. In other words, although each method

bases its justification on different routes and theories, atthe explicit level they

behave more or less in a similar way and lead to the analysis ofthe same func-

tionals. For a deeper analysis considering the relations between martingale

and Markovian approaches (Beibel-Lerche vs. free boundary), see Gapeev

and Lerche 2011.

4.3 Finite horizon

4.3.1 Fixed time horizon

Introducing a fixed, finite time horizon makes the optimal stopping problem

(8) inherently two-dimensional, as one needs to also recordtime so that the

studied process is(t,Xt). Moreover, the infinitesimal generator of the process

(t,Xt) has an extra term∂/∂ t making the differential operator not only two-

dimensional but also analytically more difficult to handle.For example, by

adding a fixed finite time horizon (or maturity)T < ∞ to the problem (9) of

stopping optimally an American call option we end up with theproblem

V(t,x) = sup
0≤τ≤T−t

E(t,x)

{

e−rτ(Xt+τ −k)+
}

= sup
τ
E(t,x)

{

e−rτ(Xt+τ −k)+1{τ≤T−t}
}

,

whereXt = x underP(t,x) andτ is a stopping time.

In these kinds of problems the valueV(t,x) is typically two-dimensional,

Moreover, the optimal stopping boundary is often a moving boundaryy∗(t)

which depends on time, instead of being a fixed exercise threshold as is so

often the case with an infinite time horizon. Unfortunately,the solutions can

rarely be attained explicitly, and thus with concrete problems one must search
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for the solutions numerically. All in all, introducing a finite time horizon often

means a considerable increase in the complexity of a problem. For an overview

of a fixed finite time horizon, see Peskir and Shiryaev 2006.

4.3.2 Stochastic time horizon

Surprisingly, the stochastic time horizon case is not as complex as the fixed

finite time horizon problems, at least when the horizon is exponentially dis-

tributed. For the results of this subsection, see Chakrabarty and Guo 2007,

where the effect of random time horizon on optimal stopping has been studied

extensively.

Let T ∼Exp(λ ), λ > 0, be an exponentially distributed time horizon of the

problem, independent of the diffusionXt . Furthermore, denote byT the set

of all F -stopping times and, with a slight abuse of notation letT̂ = T ∪{T}
(rigorouslyT̂ should be defined through the enlarged filtration).

We assume that the decision maker is always aware of the existence of

the terminating event, and we consider two problems: In the first problem the

terminal timeT of the terminating event is not observable, and cannot be used

as a stopping time. In the second problem the terminal timeT is observable and

decision maker can use it as a stopping time. These problems are, respectively,

V1(x) = sup
τ∈T̂

Ex
{

e−rτg(Xτ)1{τ<T}
}

and V2(x) = sup
τ∈T̂

Ex
{

e−rτg(Xτ)1{τ≤T}
}

,

and they can be simplified into equivalent infinite time horizon problems (cf.

Theorem 1 and 3 in Chakrabarty and Guo 2007)

V1(x) = sup
τ∈T

Ex

{

e−(r+λ )τg(Xτ)
}

and V2(x) = sup
τ∈T

Ex

{

λ
∫ τ

0
e−(r+λ )sg+(Xs)ds+e−(r+λ )τg(Xτ)

}

.

Thanks to this equivalence between random and infinite time horizons, first

noticed in a portfolio optimization setting by Cass and Yaari 1967 and Merton

1971, it is easier to analyse random time horizon problems than fixed finite

time horizon problems. Actually, this equivalence can alsobe used for pric-

ing options in the fixed finite time horizon case (originatingin Carr 1998 and
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further extended in e.g. Kyprianou and Pistorius 2003). In this Canadisation

method one first chooses a random time horizon whose expectedlength equals

the fixed maturity under investigation, secondly calculates a value for this new

problem and finally lets the variance of the random horizon approach zero

while maintaining the mean unchanged.

4.4 Optimal stopping of maximum processes

Let St be the supremum process ofXt and let us consider the problem

V(x,s) = sup
τ
E(x,s)

{

e−rτ f (Xτ ,Sτ)
}

, (13)

where the exercise payofff (x,s) is assumed to be sufficiently smooth, de-

creasing inx, and increasing ins. Two of the most well-known examples of

the problem (13) are the Russian option for whichf (x,s) = s (see e.g. Shepp

and Shiryaev 1993; Lerche and Urusov 2007) and the American Lookback

option with a floating strike for whichf (x,s) = s− x (see e.g. Conze and

Viswanathan 1991). While both of these are path-dependent options, the latter

can also be interpreted as a measure of the risk for a stock (see Douady et al.

2000; Magdon-Ismail et al. 2004).

We see at once that, as a two-dimensional problem, this is genuinely a

more complex problem than the original (8). However, problem (13) is partly

transformed into a linear problem after recalling that between the hitting times

of Xt to its supremum, the two-dimensional process(Xt ,St) behaves as a one-

dimensional process(Xt ,s) for somes. This method of conditioning a two-

dimensional problem into a linear one is the main observation needed for solv-

ing (13).

Optimal stopping problems of the type (13) are typically solved by free

boundary approach (see Peskir 1998 or Section 13 in Peskir and Shiryaev

2006) and the Beibel-Lerche method is also applicable in this situation (see

Lerche and Urusov 2007). In Article IV of this thesis, we willintroduce an-

other approach, which is based on the discretisation of the maximum process.

For a more detailed discussion cocerning the free boundary approach and the

discretisation method, see Article IV and also Subsection 7.4 (summary of

Article IV).

Since the minimum process is defined similarly, we can naturally solve
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problems involving the minimum process in the same way, and even problems

where both the maximum and the minimum processes are present(see Peskir

2010).
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5 DYNKIN GAMES

5.1 Introduction

A Dynkin game, originating from Dynkin 1969, is a stochasticzero-sum game

involving two players who both try to stop the same underlying process op-

timally with respect to their own payoff functions. An additional challenge

to this stopping problem comes from the fact that the processcan be stopped

only once and hence the players have to take into account the strategies of their

opponent.

Let Xt be a linear diffusion, adapted to the filtrationF , and denote by

T the set of allF -stopping times. Furthermore, letgi, for i = 1,2,3, be

continuous mappings satisfying the inequalitiesg1(x) ≤ g2(x) ≤ g3(x).

Consider two players, the sup-player and the inf-player, who both choose a

stopping rule, sayτ andγ , respectively. The game terminates as soon as either

one of the players decide to stop, that is atτ ∧ γ and at that time the inf-player

pays to the sup-player the amount

g1(Xτ)1{τ<γ}+g2(Xγ)1{τ>γ}+g3(Xγ)1{τ=γ}.

The expected present value of this Dynkin game is

Π(x;τ ,γ) := Ex

{

e−r(τ∧γ) (g1(Xτ)1{τ<γ}+g2(Xγ)1{τ>γ}+g3(Xγ)1{τ=γ}
)

}

,

and understandably the sup-player wants to maximise it while the inf-player

tries to minimise it. The lower- and upper- valuesV andV of thisDynkin game

are defined through

V(x) := sup
τ∈T

inf
γ∈T

Π(x;τ ,γ) ≤V(x) := inf
γ∈T

sup
τ∈T

Π(x;τ ,γ). (14)

We say that the game has a valueV(x), if V(x) = V(x) =: V(x), i.e. it has a

Stackelberg equilibrium. Furthermore, a pair of stopping times(τ∗,γ∗) forms

a saddle-point solution, or a Nash solution, for the game, ifthe condition

Π(x;τ ,γ∗)≤ Π(x;τ∗,γ∗)≤ Π(x;τ∗,γ) (15)

is satisfied for all stopping timesτ ,γ (concepts of Stackelberg and Nash equi-

libriums are explained in detail in almost any game theory textbook, e.g. Fu-
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denberg and Tirole 1991). It is worth noticing that the existence of a Nash

equilibrium implies the existence of the Stackelberg equilibrium but the con-

verse does not hold in general. However, from a study addressing this problem

in a general Markovian setting (Ekström and Peskir 2008) one gets the follow-

ing result

Theorem 5.1.Let Xt be a strong Markov process. If Xt is right-continuous and

left-continuous over stopping times, then both Nash and Stackelberg equilibri-

ums exist and they are equivalent.

One interpretation for the game is the following. Suppose that the issuer

(inf-player in this case) has sold an American option with a payoff g1 to the

the holder (sup-player), but has left herself a right to cancel the option with an

extra costg2 ≥ g1. This variant, called an Israeli option, was introduced by

Kifer 2000 and further explicit solutions for some options were calculated in

Kyprianou 2004.

Another way to interpret a Dynkin game is to think the sup-player as a risk

averse decision-maker in an optimal stopping problem with astochastic time

horizon. Being a risk averse, she assumes that while she tries to maximise

her payoff, the market plays against her by choosing the timehorizon which

minimises her payoff.

5.2 Solution methods

A Dynkin game can be seen as a generalised stopping problem.10 As such,

although a Dynkin game includes game theoretical elements,such as Nash and

Stackelberg equilibriums, the solution can nonetheless beattained via optimal

stopping methods.

In the ordinary optimal stopping problem (8) the verification theorem char-

acterised the value as the smallestr-superharmonic majorant for the payoff

function (see Theorem 4.1). We have a similar kind of verification theorem for

a Dynkin game, but now the value is characterised as a mix of the smallestr-

superharmonic majorant and the largestr-subharmonic minorant. The theorem

holds for a class of Markov processes larger than just diffusions (see Theorem

2.1 in Peskir 2008), but the following form is adequate for our linear diffusion

case.
10If we formally setg2 = ∞, then the inf-player never stops and (14) reduces to the ordinary

optimal stopping problem (8).
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Theorem 5.2 (Verification theorem for a Dynkin game). Let Xt and gi, for

i = 1,2,3 be as in Section 5.1. Moreover, letV̂ be the smallest r-superharmonic

function lying between g1 and g2 and letV̌ be the largest r-subharmonic func-

tion lying between g1 and g2. Then

(A) The Nash equilibrium(15)holds if and only ifV̂ = V̌ =: V.

(B) If item(A) holds, then the pair

τ∗ = inf {t ≥ 0 |V(Xt) = g1(Xt)} and γ∗ = inf {t ≥ 0 |V(Xt) = g2(Xt)}

forms the saddle point solution and V is the value of the game.

According to Theorem 5.1, the Nash equilibrium exists and isequivalent

to the value of the game in the linear diffusion case. Therefore Theorem 5.2

can be used as a verification theorem to characterise the value.

To find a candidate for the saddle point solution to a Dynkin game, we shall

utilise a fluctuation theory approach similar to the one in Subsection 4.2.1 (for

this approach in Dynkin game setting see e.g. Alvarez 2008, 2010 and Article

III).

Step 1 Consider stopping policies which can be characterised as the first exit

time from an open subinterval of the state space.

Step 2 Calculate, with the help of the Laplace transform of the hitting times,

the value of the game for this policy. Usually the value has both bound-

ary points of the subinterval as free parameters.

Step 3 Derive the first-order necessary conditions for the saddle point equilib-

rium value in the considered class of stopping policies.

Step 4 Verify that the stopping policy which satisfies the first order necessary

conditions from Step 3 indeed constitutes the saddle point solution (e.g.

using the verification theorem 5.2(A) above).

The fluctuation theory approach chosen here is by no means theonly way to

approach Dynkin games. Friedman 1973 studied stochastic zero-sum stopping

games and their values using variational inequalities. Bensoussan and Fried-

man 1977 investigated stochastic stopping games in very general setting both

in nonzero-sum as well as in zero-sum case using quasi-variational inequali-

ties. The functional concavity together withr-excessivity have also been used
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to produce the optimal solution, e.g. in Ekström 2006 and Ekström and Vil-

leneuve 2006. These methods, also familiar from the optimalstopping scene,

can be classified as direct techniques. In contrast to these approaches, with

Dynkin games it is also possible to use an indirect approach which is not as

common in ordinary optimal stopping problems. In the indirect approaches

the Dynkin game is shown to be equivalent to another problem and the latter

one is then solved. This approach has been utilised for example in Boetius

2005, where the author characterises the value of the saddlepoint equilibrium

as the derivative of the value function of a singular controlproblem11 (for this

connection, see also Subsection 6.5).

11In Guo and Tomecek 2008a,b the singular control problems aresolved by showing one-to-
one correspondence between a singular control and a switching problem. Hence, in principle,
one could leap twice and also use an associated switching problem to solve a Dynkin game.
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6 SINGULAR CONTROL PROBLEMS

6.1 Introducing the problem

In the previous chapter we saw that an optimal stopping problem is a special

case of a Dynkin game. We shall learn that it can also be seen asa special case

of an optimal control problem, where the only allowed control is the primitive

control ”take the money and run”. To be able to study more refined prob-

lems like controlling a path of a space ship (see e.g. Jacka 2002), dividend

payments problem (Asmussen and Taksar 1997) or rational harvesting (Lande

et al. 1995), we need to include more refined controls.

Assume now that the state space isR+ with natural boundaries and that the

diffusion without controls behaves as a non-terminating Itô diffusion

dXt = µ(Xt)dt+σ(Xt)dWt,

whereµ andσ satisfy the conditions of Theorem 3.3. We assume that the con-

troller can, at any time, control the course of the process both downwards and

upwards. An admissible control policy is defined as a pair of processes(Dt ,Ut)

such that both processes are non-negative, non-decreasing, right-continuous,

andF X-adapted. Consequently any admissible control has finite variation.

For an admissible control(Dt ,Ut), we define the associated controlled process

by

Zt = Xt −Dt +Ut ,

whereDt represents the cumulative downward control andUt the cumulative

upward control. For example, in a timber harvesting problem, Dt represents

harvesting whileUt can be interpreted as replanting.

Now the problem under investigation is

V(x) = sup
(D,U)

Ex

{

∫ ζ

0
e−rs f (Zs)ds+

∫ ζ

0
e−rsg1(Zs)dDs−

∫ ζ

0
e−rsg2(Zs)dUs

}

,

(16)

whereζ is the first exit time from the state space,f : R+ → R is the revenue

function,g1(x) is the gain from downward control andg2(x)> g1(x) is the cost

of upward control and the supremum is taken over all admissible controls.
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6.2 On admissible controls

An arbitrary admissible controlCt can be written asCt = Cc
t +∑0≤s≤t ∆Cs,

whereCc
t is continuous and∆Cs=Cs−Cs− is the size of the jump at times. In

this thesis, we are only interested in so calledsingular or reflecting controls.

In these controls the jump part is absent, with the exceptionof a possible jump

at time zero, and the control measuredC is singular with respect to Lebesgue

measuredt as a function of time12, whence the name. The easiest way to

create a singular control is to divide the state space into two separate regions,

anaction region Aand aninaction region N= I \A, and apply the following

rule. FromN, the exit of the process is prevented by reflecting at the boundary

∂N to an appropriate direction. FromA, the process is immediately moved

into the boundary∂N. For an illustration, see Figure 3, and for a more detailed

introduction see e.g. Chapters 2, 5 and 6 in Harrison 1985 andArticle II.

Figure 3: An illustration of a two-sided singular control policy at work, hereA =

(0,z]∪ [y,∞) andN = (z,y).

The so-calledimpulse controls, where the continuous part is abolished,

have also been widely studied. Impulse control policies areoften described by

(possibly finite) sequences of the form{(τk,ξk)}, whereτk prescribes the inter-

vention time (an admissible stopping time) andξk the corresponding impulse

(size of the jump). However, in cases where there are no fixed transaction costs

present, such as problem (16), the optimal control rarely has a jump structure.

12A measureµ is singularwith respect to a measureλ , if there exist two disjoint setsA and
B whose union is the whole space such that, for every measurable setE, A∩E andB∩E are
measurable andµ(A∩E) = λ (B∩E) = 0. That is, the sets for whichλ does not vanish are
the ones for whichµ does, see p. 126 in Halmos 1950.
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It is worth pointing out that for an arbitrary stopping timeτ the stopping

policy ”stop at timeτ” can be interpreted as a degenerate impulse control pol-

icy, where the sequence{(τk,ξk)} has the pair(τ ,Xτ−) as its only element.

When obeying this impulse control policy one sends the statevariable into

the cemetery state at the first intervention time. Hence we see that optimal

stopping problems are essentially special cases of (impulse) control problems.

Interestingly, from the impulse control point of view, we can heuristically

treat singular control as a limiting impulse control, when the impulse ap-

proaches zero. Let us consider a downward impulse control which is activated

at the instance whenZt hits a levely ∈ R+ (i.e. τk = inf{t ≥ τk−1 | Zt = y})

and let the size of each downward impulse be 0< ξ < y, so that the impulse

control is the sequence{(τk,ξ )}. As ξ → 0, we can heuristically see that the

impulse control tends to the singular control reflected at the barriery (i.e. the

action and inaction regions areA= (0,y) andN = [y,∞)).

6.3 Control problem types

The problem (16) is called asingular control problembecause the problem

setting allows the control to be singular (and often the optimal control actually

turns out to be singular).

Let us assume for a moment that there are fixed transaction costs in prob-

lem (16), i.e. we must pay a fixed cost every time a control is activated. Due to

continuity, a singular control policy could easily lead to infinite costs and thus

such control is not a reasonable choice anymore. Consequently, in such case

the controller should use fixed-sized controls only at discrete times. There-

fore, in these kind of problems an impulse control policy is often the optimal

one. Accordingly, the problems with fixed transaction costsare calledimpulse

control problems. Although impulse control problems can be approached in

the same way as singular control problems, they are usually more difficult to

handle as there are more free parameters; in a singular control policy the only

free parameter is the intervention time, while in an impulsecontrol policy one

needs to determine also the size of the intervention. An interested reader finds

more information on impulse control problems, in e.g. Bensoussan and Lions

1984, which is the seminal textbook on the subject. See also Alvarez 2004, Al-

varez and Lempa 2008, and a survey on impulse control applications in finance

by Korn 1999.
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Besides singular, and impulse control problems, there exists a great variety

of other stochastic control problems, e.g. ergodic controlproblems (i.e. opti-

mizing a long period stationary behaviour), robust controlproblems (optimiz-

ing a risk measure of a controlled process) and stochastic targeting problems

(targeting a controlled process as close as possible to an observed process at

a termination time). For literature on these problems, consult e.g. Pham 2005

and references therein.

From now on we shall concentrate solely on singular controls.

6.4 Solution methods for singular control problems

The underlying Markovian structure still enables us to apply the familiar proce-

dure of fluctuation theory approach from the optimal stopping scene — guess,

apply diffusion tools and verify.

The verification theorem for control problems mainly relieson variational

arguments and Itô’s formula. However, depending on the problem type and

technical assumptions, its formulation might slightly vary from problem to

problem. For our singular control problem it can be stated inthe following

way (cf. Theorem 4.4. in Article II, see also Chapter 6 in Harrison 1985,

Shreve et al. 1984 and Alvarez 1999).

Theorem 6.1(Verification theorem for a singular control problem). Let V∗ be

the solution to(16) and let F be a function satisfying the conditions

(i) F ∈C2;

(ii) (A − r)F(x)+ f (x) ≤ 0 for all x ∈ I ;

(iii) g1(x) ≤ F ′(x) ≤ g2(x).

Then F(x) ≥V∗(x).

6.4.1 A concrete example

In this subsection we will demonstrate the solution procedure with a concrete

example.

Let us consider the simplest optimal dividend payment problem (cf. Sub-

section 3.2 in Alvarez and Virtanen 2006)

K(x) = sup
D

Ex{
∫ ζ

0
e−rsdDs},
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where there is only a downward control, and the controlled process isZt =

Xt −Dt . Let us apply the four step procedure to this problem.

Step 1 Since there is no exercise cost of using control, we canguess that the

optimal control is singular. Let us consider the simplest non-trivial

singular control available. Namely, a control reflecting downwards at

the boundaryy ∈ R+. Now, the action and inaction regions areA =

[y,∞) andN = (0,y).

Step 2 For a fixedy∈R+ it can be shown (see e.g. Lemma 3.1 and the discus-

sion below it in Article II) that with the chosen control the associated

value is

K(x,y) =















x−y+
ψ(y)
ψ ′(y)

x≥ y

ψ(x)
ψ ′(y)

x< y.

Step 3 Fory∗ to be the optimal reflecting barrier, it must satisfy the firstorder

necessary condition∂K(x,y)
∂y

∣

∣

∣

y=y∗−
= 0. After the differentiation, this

becomesψ ′′(y∗) = 0. Here we need some additional assumptions to

guarantee the unique existence ofy∗13.

Step 4 To confirm thaty∗, which satisfies the necessary condition from Step

3, leads to the optimal control, one can show thatK(x,y∗) satisfies the

conditions of Theorem 6.1 (under certain sufficient assumptions).

Specifically, we see that in the procedure above the necessary optimal con-

dition forces, in a natural way, the value function to be twice continuously

differentiable.

6.4.2 Other methods

Since singular stochastic control problems are dynamic programming prob-

lems, Bellman’s optimality principle can be applied to them. This principle al-

lows one to characterise the value function via Hamilton-Jacobi-Bellman vari-

ational inequalities, which in this case take the form (see e.g. Pham 2005 and

13Sufficient conditions are, for example, that there is a unique thresholdy∗ ∈ R+ such that
µ(x)− rx is increasing on(0,y∗) and decreasing on(y∗,∞) and that limx→0 µ(x) ≤ 0 (cf.
Lemma 3.1. in Alvarez and Virtanen 2006).
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Weerasinghe 2005)

max{(A − r)F(x)+ f (x), f (x)−F ′(x)}= 0, for all x∈ I .

By splitting the state space into action and stopping regions, the Hamilton-

Jacobi-Bellman inequalities give rise to an associated free boundary problem,

similar to optimal stopping problems. In this case the non-trivial boundary

condition turns out to be, not theC1-smooth fit continuity as in optimal stop-

ping problems, butC2-smooth fit continuity.

It is also possible to rely on probabilistic methods. For example in Karatzas

and Shreve 1984, 1985 and Karatzas and Wang 2001 the existence of the opti-

mal control was proved by showing that the optimizing sequence of the consid-

ered problem converges to an admissible control using probabilistic reasoning

and a weak compactness argument.

The approaches above can be classified as direct techniques.In contrast

to these, in an indirect approach the control problem is shown to be equiv-

alent with another problem and the latter one is then solved.The standard

equivalence is the connection between singular control problems and optimal

stopping problems or Dynkin games, see Subsection 6.5 below. This has been

utilised e.g. in Karatzas and Wang 2001. Another indirect approach has been

introduced in Guo and Tomecek 2008a,b, where the authors reveal a one-to-

one correspondence between singular control problems and switching prob-

lems. They use this relation in a general multidimensional setting to find an

integral representation for the value function and sufficient conditions for the

existence of an optimal control.

Besides the Markovian methods above, Snell’s envelope, based on martin-

gale methods, has also been used successfully, e.g. in Bank 2005.

6.5 A link between singular control problems and stopping problems

The close connection between a one-sided singular control problem (i.e. either

downward or upward control is allowed, but not both) and an optimal stop-

ping problem was already present in the seminal paper by Bather and Cher-

noff 1966, and later studies have shown it to hold in general (see Karatzas

and Shreve 1984, 1985, and Benth and Reikvam 2004). It is known from this

literature that for every one-sided singular control problem there exists an as-
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sociated optimal stopping problem such that the derivativeof the value of the

one-sided singular control problem is the value of the associated optimal stop-

ping problem.

This connection can also be generalised to concern two-sided singular con-

trol problems (i.e. both downward and upward controls are present). Interest-

ingly, for every two-sided singular control problem there exists an associated

Dynkin game, such that the derivative of the two-sided singular controlprob-

lem constitutes the value of the associated Dynkin game is (see Karatzas and

Wang 2001 and Boetius 2005).

This connection partially explains theC2-smooth fit condition for the value

of a control problem (cf. e.g. Bayraktar and Egami 2008). Since the value

of a stopping problem is oftenC1 and is a derivative of the value of a control

problem, we can interpret theC2-condition as an inherited condition from a

smooth fit condition of a stopping problem.

65



66



7 SUMMARIES OF THE INCLUDED ARTICLES

In this chapter we briefly summarise the four studies included in the thesis.

Unless otherwise stated, we assume throughout the chapter that the underlying

dynamicsXt evolves onR+ according to a linear Itô diffusion. Further, we

assume that it is a weak solution to the stochastic differential equation

dXt = µ(Xt)dt+σ(Xt)dWt,

whereµ : R→ R andσ : R→ R+ are as in Theorem 3.3.

7.1 Article I: Optimal timing in a combined investment and exit prob-

lem

In the first paper, we consider a situation where a decision-maker receives a

revenueπ1 based on an underlying Itô diffusionXt on an interval(α ,β ) ⊂ R.

She has the following two options: She can invest irreversibly into an improved

technology resulting in a new revenue functionπ2 under a new diffusionYt, or

she can exit the market. Of these two available options, which one she should

use and when? And if she decides to invest, when is the right time to exit

afterwards? This problem setting is modelled by

V(x) = sup
τ

Ex

{

∫ τ

0
e−rsπ1(Xs)ds+e−rτ (V2(θ (Xτ))−k)+

}

= (RX
r π1)(x)+sup

τ
Ex

{

e−rτ [(V2(θ (Xτ))−k)+− (RX
r π1)(Xτ)

]}

,
(17)

whereV(x) is the expected maximum present value for the decision maker,

V2(x) = sup
τ2

Ex

{

∫ τ2

0
e−rsπ2(Ys)ds

}

is the expected net present value after the possible investment, k is the fixed

cost of the investment, andθ (x) is a twice differentiable and increasing boost

function, which describes how much the investment improvesproductivity.

The second line in (17) is attained by utilising the strong Markov property, and

the resolvent operatorRX
r is taken with respect to the initial diffusionXt .

We will show that, under some mild assumptions, if the investment is even-

tually profitable, i.e. if (denoting byRY
r the resolvent with respect to the diffu-
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sionYt)

lim
x→β

(RY
r π2)(θ (x))−k> lim

x→β

(

RX
r π1

)

(x), (18)

then the resulting optimal rule is a two-sided threshold rule. In other words, the

decision-maker exits if the processXt goes below a lower threshold and invests

if it exceeds an upper threshold. After the possible investment the decision-

maker faces a normal exit problem (see e.g. Alvarez 1998), where she exits

below a certain threshold.

In the proof we will utilise and refine a fixed point method originating

from Lempa 2010 and Alvarez and Lempa 2008. We will also show that if

the inequality in 18 is reversed, we end up with either a one- or a three-sided

threshold rule. In the former case it is never optimal to invest, whereas in

the latter case it is, interestingly, optimal to to invest only on a certain finite

interval.

7.2 Article II: On solvability of a two-sided singular control problem

In the second paper we consider singular control problems where the optimal

control is a two-sided singular control. As described in Chapter 6, we consider

a controlled process

Zt = Xt −Dt +Ut ,

whereDt andUt are downward and upward controls (defined in Chapter 6) and

we study a singular control problem

V(x) = sup
D,U

Ex

{

∫ ζZ

0
e−rsπ(Zs)+ p

∫ ζZ

0
dDt −q

∫ ζZ

0
dUt

}

. (19)

Here π : R+ → R is a non-decreasing revenue function satisfying suitable

growth and smoothness conditions (given in Article II),q> p are exogenously

given constants,ζZ = inf{t ≥ 0 | Zt /∈ R+} denotes the first exit fromR+, and

the supremum is taken over all admissible controls.

The following quasi-concavity assumption is the main condition which en-

forces the solution to be a two-sided control.

For everyb ∈ [p,q], there exists ˜xb ∈ R+ such thatd
dx(π(x)+b(µ(x)−
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rx)) T 0 wheneverxS x̃b.

In a cash flow management application, the functionπ(x)+b(µ(x)− rx) can

be seen measuring the expected net return accrued from postponing the divi-

dend payment into the future instead of paying out dividendsinstantaneously

(cf. p. 708 in Alvarez and Lempa 2008).

More precisely, we will establish that under the above mentioned assump-

tion, and some mild additional conditions, the unique optimal control in prob-

lem (19) is a two-sided singular control. Moreover, under the same conditions,

we will see that the value function can be written in a (quasi-)explicit form.

Since we can identify the value function and control boundaries explicitly, we

are also able to investigate the comparative static properties of the solution,

which is the main contribution of the article. We shall see that known results

concerning one-sided controls (see e.g. Alvarez 2001) generalise in a natural

way for two-sided controls: we will prove that the value is decreasing with

respect to the volatility and cost parameterq and increasing with respect to

the gain parameterp. We will also show that when volatility increases, the

inactivity region expands.

We shall also compare one-sided and two-sided singular control problems,

and notice that the former ones are special cases of the latter ones. Moreover,

we will show that in the two-sided case the controls are activated earlier.

7.3 Article III: A Dynkin game with asymmetric information

In the third paper, we consider an otherwise standard Dynkingame, defined

in Chapter 5, except that we assume the time horizon to be stochastic with

asymmetric information about it. To be more precise, we assume that there

exists a terminating event at timeT ∼ Exp(λ ) which ends the game, andonly

oneof the players observes the occurrence of the expiring timeT. To define

such a game, letT̂ be the set of allF stopping times augmented withT. We

make a distinction between the cases where the sup-player (Game 1) or the inf-

player (Game 2) can observe the timeT. The respective values of the games
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are

V1(x) = sup
τ∈T̂

inf
γ∈T

Π̂(x,τ ,γ) = inf
γ∈T

sup
τ∈T̂

Π̂(x,τ ,γ),

V2(x) = sup
τ∈T

inf
γ∈T̂

Π̂(x,τ ,γ) = inf
γ∈T̂

sup
τ∈T

Π̂(x,τ ,γ),

where

Π̂(x,τ ,γ) = Ex

{

e−r(τ∧γ) [g1(Xτ)1{τ<γ}

+g2 (Xγ)1{τ>γ}+g3(Xγ)1{τ=γ}
]1{τ∧γ≤T}

}

.
(20)

We will show that these asymmetric random time horizon gamescan be sim-

plified to associated perpetual dividend paying games underthe reference fil-

tration F generated by the underlying diffusionX. More formally, we will

show that the value functions of the games can be written as

V1(x) = sup
τ∈T̂

inf
γ∈T

Π̃1(x,τ ,γ) = inf
γ∈T

sup
τ∈T̂

Π̃1(x,τ ,γ),

V2(x) = sup
τ∈T

inf
γ∈T̂

Π̃2(x,τ ,γ) = inf
γ∈T̂

sup
τ∈T

Π̃2(x,τ ,γ),

where

Π̃1(x,τ ,γ) = Ex

{

λ
∫ τ∧γ

0
e−rsg+1 (Xs)ds

+ e−(r+λ )(τ∧γ) [g1(Xτ)1{τ<γ}+g2(Xγ)1{τ>γ}+g3(Xγ)1{τ=γ}
]

}

Π̃2(x,τ ,γ) = Ex

{

λ
∫ τ∧γ

0
e−rsg−2 (Xs)ds

+ e−(r+λ )(τ∧γ) [g1(Xτ)1{τ<γ}+g2(Xγ)1{τ>γ}+g3(Xγ)1{τ=γ}
]

}

,

with g+1 = max{g1,0} andg−2 = min{g2,0}.

For i = 1,2, letz∗i be the optimal exercise thresholds for inf-player in Game

i and lety∗i be the optimal exercise thresholds for the sup-player (z∗i < y∗i al-

ways). We will show that, assuming that the games attain solutions,V1 ≥ V2,

z∗1 ≥ z∗2 andy∗1 ≥ y∗2 always. Verbally the last two conditions can be stated as

the more you know, the longer you wait. Furthermore we will compare the

random horizon games with the standard infinite horizon Dynkin game from

Chapter 5 with(z∗,y∗) as the optimal exercise thresholds andV as the value of

the game. We will see that ifg2(x) is non-negative everywhere, thenV ≥ V1,
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z∗ ≥ z∗1 andy∗ ≥ y∗1. At the end of the paper we will also give an example

where the valueV of the infinite horizon game can, in fact, be the smallest of

all presented games in caseg2(x) attains also negative values.

We will also present limiting properties of Games 1 and 2, when the

expected random time horizonE{T} goes to infinity or zero. In the case

E{T} → ∞, there is expectedly no terminating event, and we retrieve an infi-

nite horizon game. At the other end, whenE{T} → 0, the games expectedly

end immediately, and we get a solution where the games are either immediately

or never stopped. Especially we will see that Games 1 and 2 areinseparable as

E{T} approaches the limits infinity or zero. This is reasonable, since there is

no advantage in seeing the expiring event if it does not happen or if both know

that it happens immediately.

7.4 Article IV: Optimal stopping of the maximum process

In the fourth paper, we consider the optimal stopping problem

V(x,s) = sup
τ
E(x,s)

{

e−rτ f (Xτ ,Sτ)
}

, (21)

whereSt is the maximum process and the exercise payofff (x,s) is assumed to

be sufficiently smooth, decreasing inx, and increasing ins.

Typically, these kinds of problems are solved by applying the free boundary

approach together with a non-trivial boundary condition called themaximality

principle. This principle says that a certain non-linear differential equation

attains a maximal solutiona∗(s) which stays below the diagonal (i.e.a∗(s)< s

for all s∈ R+). Using the techniques from Peskir 1998 one can prove that

under the maximality principle, the stopping ruleτ∗ = inf{t ≥ 0 | Xt ≤ a∗(St)}
provides an unique solution to (21).

The main contribution of the article is to demonstrate that the solution can

be attained without the maximality principle. Let us brieflydescribe this con-

cept. We first notice that, under mild conditions, the valueV(x,s) is finite, so

that it can be written as

V(x,s) = sup
τ
E(x,s)

{

e−rτ f (Xτ ,s)1{τ<τs}+e−rτsV(s,s)1{τ≥τs}
}

, (22)

where, for a givens∈ R+, V(s,s) is just a (still unknown) finite constant. For

each givens the problem (22) is linear, and thus we can apply standard optimal
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stopping theory to show that there exists a unique optimal stopping rule that

maximises the problem (22). This optimal stopping rule proves to be of the

type

τ∗ = inf{t ≥ 0 | Xt ≤ a∗(s)}, (23)

where the valuesa∗(s) are still unknown.

Next we discretise the maximum process, i.e. assume that themaximum

processSt can only attain values from a countable sequence. Then the dis-

cretised version of the problem (21) can be seen as a countable sequence of

relatively easily solvable one-dimensional subproblems.Finally, as the se-

quence gets denser, the value of the discretised problem approaches the value

(22) which is already known to have a unique solution. This discretisation ap-

proach is straightforward and easy for achieving an existence result as well as

numerical results. Unfortunately it cannot provide explicit solutions.

To see why this problem is a two-sided control problem, observe that the

problem (22) can be seen as a one-dimensional problem on the state space

(0,s], where the boundarys is killing and, once reached, leads to a terminal

valueV(s,s). In other words, we can interpret (22) as a two-sided stopping

problem, where the upper stopping thresholds is not a free parameter.
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OPTIMAL TIMING IN A COMBINED
INVESTMENT AND EXIT PROBLEM

Pekka Matom̈aki

ABSTRACT

We study optimal timing in a combined investment and exit problem.

We consider a situation where at any given time a company has the fol-

lowing three options: It can make an irreversible investment in order to

obtain an improved technology resulting to a higher revenueflow, it can

exit the market or it can postpone making the final decision. We prove

the existence and uniqueness of an optimal strategy, which is a two-sided

threshold rule: exit below one threshold and invest above another. We

illustrate our results numerically with geometric Brownian motion.

keywords: irreversible investment, exit, optimal stopping, linear diffusion

AMS Classification: 60G40, 62L15, 60J60

1 Introduction

Consider a company operating in the presence of uncertaintyand facing fol-

lowing options. Either the company invests irreversibly into an improved tech-

nology or machinery resulting in a higher profit flow, or the company exits the

market. Of these two available options, which one the company should use

and when? And if the company decides to exercise its opportunity to invest,

when is the right time to exit afterwards?

Investment decisions are typically assumed to be irreversible; in most ma-

jor investments capital is firm- or industry specific and thusinvestment expen-

ditures cannot be recovered by using capital in a different firm or industry.

Even if the investment is not firm- or industry specific, it is still often partly

irreversible, since the resale value is frequently significantly below the pur-

chase cost (see p. 8 in Dixit and Pindyck 1994). For more information about
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problems involving an irreversible decision under uncertainty see for example

Dixit and Pindyck 1994, Alvarez and Stenbacka 2004, Chiarolla and Hauss-

mann 2008 and the references therein. For a survey of literature of adopting a

new technology, see Hoppe 2002.

Furthermore a company typically has a choice to exit the market and shut

down the operation. And even in the case of individual investment projects,

there are often possibilities of permanent exit or abandonment, in contrast to

temporary exit or mothballing. Temporary exit is not a choice in situations

where the capital disappears quickly after abandonment: mines flood, ma-

chines rust, brand recognition is lost and teams of skilled workers disband

— all of these are example of definitive exit (Dixit and Pindyck 1994, p. 14).

The literature on exit is extensive: For exit and entry problems see for example

Dixit 1989, Dixit and Pindyck 1994, Zervos 2003, and Egami and Bayrak-

tar 2010 and references therein. For a general linear Itô diffusion based exit

studies, see Alvarez 1998 and Alvarez 2001.

In most studies concerning irreversible investment problems the analysis

overlooks the embedded exiting option which is often a conceivable option.

Whether it is an oil company considering opening a new oil field or a com-

pany pondering the possibility of entering a new market, there is always the

back door possibility to exit the market irrevocably. On theother hand studies

focusing on exit problems often neglect, with an exception of entry and exit

or switching problems, the role of subsequent investment opportunities as a

mechanism which potentially prolongs the operation of the company. In this

paper, our aim is to combine these two viewpoints and examinethe situation

where both, the investment and exit options, are present. A company does not

have to just wait for the optimal time to terminate production, it can operate

actively to try to prevent such a situation. For example, thecompany could

invest into an advertisement campaign to add the recognition of the product to

improve sales, it could invest into an improved machinery toacquire a higher

production rate or it can dismissal workers or hire more to increase the pro-

ductivity.

The first one to study this question was Kwon in 2010 in Kwon 2010. He

modelled it as an optimal stopping problem and found that theoptimal stopping

rule is a two-sided threshold rule: invest, if the profit flow is high enough

and exit if it is low enough. Between these critical thresholds the company
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continues its operation with the incumbent technology. Furthermore, if the

investment opportunity is excercised, Kwon discovered that it is subsequently

optimal to exit when the profit flow falls below a certain threshold. He also

analysed the sensitivity of the thresholds and observed that although previous

studies (see for example Dixit 1992 and Alvarez 2003) suggest that it would

be optimal to delay an irreversible action longer when uncertainty increases,

in his model there were cases where this effect is reversed.

The pioneering work by Kwon in Kwon 2010 relies on Brownian motion

with negative drift as the underlying diffusion modelling the profit flow. This

approach overlooks some typically used diffusions like geometric Brownian

motion or mean-reverting diffusions, not to speak of potentially more exotic

profit flows. Another restriction is the assumption that the volatility of the

profit flow is unaffected by the investment. It seems to be morereasonable

to assume that technological change affects also the stochasticity of the profit

flow. For example if uncertain production technology is upgraded, then the

risk exposure of the company typically changes. Furthermore it is possible that

mergers and acquisitions make companies more competently protected against

random shocks, i.e. their volatility decreases, since theyare more adaptable

to react to different market fluctuations (see Thijssen 2008). Similar kinds

of shifts in the stochasticity might also occur through information revelation

(cf. Grenadier 1999) in which a company acquires better knowledge of the

market after observing information revelation of other companies. All in all

investments that affect the volatility capture a large spectrum of economic ap-

plications (see Alvarez and Stenbacka 2004).

These restrictions raise some questions: Can one be sure that the two-sided

threshold rule indeed take place beyond the simple case of Brownian motion

with negative drifts? Is the stopping rule still similar, ifthe volatility is con-

siderably changed after the investment? The aim of this paper is to show that

the answer to both of these questions is positive under certain mild assump-

tions. We generalise the results in Kwon 2010 to concern the above-mentioned

widely used stochastic processes. To this end the problem isapproached with a

general linear It̂o diffusion with different drifts and volatilities before and after

the possible investment and with arbitrary increasing revenue functions.

Our study is, to some degree, also related to entry and exit studies. In

classical entry and exit studies (see for example Dixit 1989and Duckworth
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and Zervos 2001) the company follows a given fluctuating price process and

is either ”active” and receives a positive revenue flow basedon the price at the

moment, or ”inactive” resulting to a zero or constant outcome. Furthermore,

the company is allowed to make costly switchings between these two states. In

the more general problem adjustments, often called switching problems, there

are not necessary two, but many different possible states, each with different

revenue flow and again the company can make costly switchingsbetween these

states. Moreover these problems have typically only one or another of the fol-

lowing properties: There exists an irrevocable exit state (for example Zervos

2003) or the switch changes the underlying stochasticity (for example Brekke

and Øksendal 1994, Vath and Pham 2007, and Egami and Bayraktar 2010).

Whereas in our model both of these are present; the exit stateis a final absorb-

ing state and the underlying stochastic diffusion changes when investing, or

switching. We emphasise that although our model has a more complex start-

ing point for a study here, we do not have the richness of reversible actions or

many switching opportunities as is the case in the typical switching problem.

Our study can merely be seen as an irreversible one-step switching problem

with discretionary exit option. We have not given up the reversibility and arbi-

trary many switching possibilities for nothing though. Most switching studies

find sufficient conditions for a general problem, but for the explicit solution the

needed assumptions are tighten up. In this paper, by focusing on one switch,

we find an unique explicit solution subject to relatively weak assumptions.

We will see that with our standing assumptions the optimal rule to invest

or to exit is a two-sided threshold rule, which is a fairly expected result: It is

optimal to invest, if the profit flow exceeds an optimal investment threshold,

exit if it falls below another threshold and continue operation if the profit flow

is between these thresholds. Due to the non-linearity and complexity of the

solution, the sensitivity analysis is somewhat out of the scope of this study,

and it is done only in a numerical example in§6.

The main results of this paper are the existence and uniqueness of a well

defined two-sided threshold rule. There are several approaches for achieving

this target, when underlying dynamics are continuous diffusions as here. One

very common approach is the use of variational inequalities(see for exam-

ple Brekke and Øksendal 1991, Øksendal 2007, Chapter 10). These are a set

of sufficient inequalities, which characterise the optimalstopping strategy to-
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gether with its value. This is a general approach in the sensethat it can be used

in multi-dimensional problems as well. However, in one-dimensional cases it

has strong differentiability requirements. This is somewhat problematic, since

the value does not need to be even differentiable (see for example Øksendal

and Reikvam 1998). Moreover, there exists a rich classical theory of linear

diffusions and its representation theorems, but the standard use of variational

inequalities do not make full use of it.

Here we instead choose another approach, the use ofr-excessive mappings

and the classical theory of linear diffusions. Using this approach we get a

constructive method to reach the optimal exercise strategywithout heavy dif-

ferentiability preconditions. In addition the theory of linear diffusions enables

us to prove results for very general diffusions using argumentation with rela-

tively light complexity: we will see that in the end our main problem reduces

to obtaining a solution to a pair of non-linear equations. Furthermore one can

choose whether to rest the analysis on functional concavityor r-excessive ma-

jorant -argument. The former reasoning is based on the fact that after a certain

transformation the value function is the smallest non-negative concave majo-

rant for the problem (see for example Dayanik and Karatzas 2003). Here we

choose to follow the latter one, which counts on the fact thatthe optimal value

function is minimalr-excessive majorant of the exercise payoff (see for exam-

ple Salminen 1984, 1985, Alvarez 2003, 2004).

Nevertheless, regardless of the used approach, proving that the two-sided

threshold rule is the optimal one in the class of all stoppingtimes is not usually

problematic. To prove that there exists a unique optimal two-sided threshold

rule in the class of all two-sided threshold rules is naturally a more challeng-

ing task. The methodological significance in this paper is that for this purpose

we refine a fixed point argument, a technique first developed byLempa (2010)

Lempa 2010, which is based on a work by Salminen (1985) Salminen 1985.

Using this argument, one can directly verify the existence of unique two-sided

thresholds. An advantage of the fixed point argument is that it simultaneously

results into an algorithm for finding the optimal thresholdsnumerically as a

limit of a converging sequence. In this way we not only prove that there exists

a unique two-sided threshold rule, we also identify it. Moreover this argumen-

tation might also proved to be useful in other situations, where one tries to find

unique optimal thresholds. This said, it is worth stressingthat the main ambi-
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tion of the study is to solve the proposed investment-exit problem and this is

done by fine tuning already existing methods.

The paper is organised as follows. The problem is represented in an exact

form in §2. The needed assumptions and the necessary conditions for the op-

timal threshold rule are laid down in§3. In §4 we will prove that the proposed

two-sided threshold rule is the optimal stopping rule. Thisis done with the

help of minimalr-excessive mappings of the underlying diffusions. In brief

section§5 we shall see that if the state after the investment is only a partial im-

provement, we will end up either one- or three-sided threshold rule. In §6 we

will illustrate our results with explicit examples. We willsee what the solution

looks like with geometric Brownian motion and that Kwon’s (Kwon 2010) re-

sults can be derived from the model of this paper. The study isconcluded in

§7.

2 The optimal stopping problem

2.1 The system

Denote the complete probability space satisfying the usualconditions by

(Ω,Ft ,P) and letWt be a standard one-dimensional(Ft)-Brownian motion.

Assume that the state-spaceI =(α ,β ) is open subset inR with natural bound-

aries and that the underlying dynamics defined on(Ω,Ft ,P) evolve onI ac-

cording to regular linear Itô diffusion

dXt = µ(Xt)dt+σ(Xt)dWt, X0 = x∈ I ,

whereµ(x) andσ(x) are the drift and volatility terms respectively. For sim-

plicity we assume thatσ(x) > 0 for all x ∈ I . We assume further thatµ(x)
andσ(x) satisfy the condition

∫ x+ε
x−ε

1+|µ(s)|
σ2(s)

ds< ∞ for all x∈ I andε > 0, so

that above-mentioned Itô diffusion has an unique weak solution (see Section

5.5.B–C inKaratzas and Shreve 1988).

Define the basic characteristics ofXt , namely the scale functionSand the

speed measuremas

S′(x) = e−B(x) and m′(x) =
2

σ2(x)
eB(x),
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whereB(x) =
∫ x 2µ(y)

σ2(y)
dy. We assume thatµ(x) andσ(x) are such that the scale

functionSand the speed measurem are absolutely continuous with respect to

the Lebesque measure, have smooth derivatives, and that thescale functionS

is twice continuously differentiable. For a characterisation on linear diffusion

and its basic properties, see Chapter 2 in Borodin and Salminen 2002.

We denote the differential operator associated to the controlled diffusion

Xt by

A =
1
2

σ2(x)
d2

dx2 +µ(x)
d
dx

.

Furthermore we will denote byψ andφ , respectively, the increasing and de-

creasing fundamental solution of the ordinary second-order linear differential

equationA u= ru, wherer > 0 (for a characterisation and fundamental prop-

erties ofψ andφ , see pages 18–20 in Borodin and Salminen 2002). The as-

sumed boundary classification ofXt implies the following limiting properties:

limxրβ ψ ′(x)/S′(x) = ∞ and limxցα φ ′(x)/S′(x) =−∞. Finally,

B=
ψ ′(x)φ(x)

S′(x)
− φ ′(x)ψ(x)

S′(x)

denotes the constant Wronskian determinant of the fundamental solutions.

The problem of this study can be mathematically seen as a recursive ir-

reversible decision-making problem with two phases. At first we are in one

phase with a certain diffusion and revenue function and we can at any time

irreversibly either exit or switch to another phase with different diffusion and

revenue function. Following the principle of dynamic programing, we study

the problem backwards and start from the second phase:

2. phase:Solve the optimal stopping problem, a pure exit problem:

V2(y) = sup
τ2

Ey

[

∫ τ2

0
e−rsπ2(Ys)ds

]

. (1)

The underlying diffusion process, a profit flowYt after the possible investment,

is given by the It̂o equation

dYt = µ2(Yt)dt+σ2(Yt)dWt, Y0 = y∈ I ,

whereWt denotes standard Brownian motion. The constantr > 0 is the dis-
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count rate and the revenue functionπ2(x) : I → R, which denotes the profit

per time unit when the system is in the statex, is a continuous and increasing

L 1-function, meaning that
∫ ∞

0 e−rt |π2(Xt)|dt < ∞. In addition, we assume that

there existsx2 ∈I such thatπ2(x)T 0 for all xT x2. Let ψ2 andφ2 denote the

increasing and decreasing fundamental solutions of the differential equation

(A2− r)u=
1
2

σ2
2(y)

d2

dy2u(y)+µ2(y)
d
dy

u(y)− ru(y) = 0.

We will substitute the value functionV2 to the first phase of the problem,

which is the main problem to solve.

1. phase:Solve the optimal stopping problem

V1(x) = sup
τ1

Ex

[

∫ τ1

0
e−rsπ1(Xs)ds+e−rτ1

(

V2
(

θ (Xτ1)
)

−k
)+
]

. (2)

The underlying diffusion process, a profit flowXt , is given by the It̂o equation

dXt = µ1(Xt)dt+σ1(Xt)dWt, X0 = x∈ I ,

whereWt denotes standard Brownian motion. The parameterk > 0 is the in-

vestment cost which is assumed to be sunk. The boost functionθ : I → I

is twice continuously differentiable, increasing and satisfies the inequality

θ (x) ≥ x. The functionθ describes how much investment improves the pro-

ductivity of the second phase. The revenue functionπ1 : I → R, which denotes

the profit per time unit in the first phase, is a continuous and increasingL 1-

function. In addition we assume that there existsx1 ∈ I such thatπ1(x) T 0

for all x T x1. Let ψ1 andφ1 be the increasing and decreasing fundamental

solutions of the differential equation

(A1− r)u=
1
2

σ2
1(x)

d2

dx2u(x)+µ1(x)
d
dx

u(x)− ru(x) = 0.

2.2 Solving the phase 2 and rewriting the problem

Denote(R2
r π2)(y) = Ey

[
∫ ∞

0 e−rt π2(Yt)dt
]

. This is the expected cumulative

present value of the flowπ2, aka resolvent function of the functionπ2, taken

with respect to the diffusion of the second phase. Now, the solution V2 to

the problem (1) is known from Theorem 4B in Alvarez 2001 and itreads as
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follows.

Theorem 2.1.Assume thatπ2 is non-decreasing; thatα , the lower boundary

of the state space, is natural for the diffusion X; thatlimxցα π2(x) < 0; and

that limxրβ π2(x)> 0. Thenτ̄2 = inf{t ≥ 0 |X(t)≤ x̄2} is the optimal stopping

time and the value function is

V2(x) =











(R2
r π2)(x)− (R2

r π2)(x̄2)
φ2(x)
φ2(x̄2)

, x> x̄2

0, x≤ x̄2,

(3)

wherex̄2 = argmin

{

(R2
r π2)(x)
φ2(x)

}

is the unique optimal stopping boundary.

This implies thatV2
(

θ (x)
)

is a non-decreasing and continuous and thus

also (V2
(

θ (x)
)

− k)+ is non-decreasing and continuous function. Moreover,

there exists a unique ˆx> 0 such thatV2
(

θ (x̂)
)

= k. In other words

(V2
(

θ (x)
)

−k)+ = 0, for all x≤ x̂,

(V2
(

θ (x)
)

−k)+ > 0, for all x> x̂.

One brief word about the boost functionθ (x). We assume that when the

company decides to invest the amountk, it gets an additional boost while

switching to a new phase. For example, if the investment option is to adver-

tise the products of the company, the boost functionθ could beθ (x) = x+ζ ,

whereζ > 0. Now the functionθ represents the (expected) demand boost after

the advertising campaign.

Since Theorem 2.1 tells us all the necessary things about thebehaviour of

the value function of the second phase, we need to consider only the optimal

behaviour of the first phase. The first thing is to rewrite our problem (2) to

a more approachable form. By applying the strong Markov-property of the

diffusions, we see that it can be written as (see also (1.13) in Lamberton and

Zervos 2013)

V1(x) = (R1
r π1)(x)+sup

τ1

Ex

[

e−rτ1
[(

V2
(

θ (Xτ1)
)

−k
)+− (R1

r π1)(Xτ1)
]

]

,

where(R1
r π1)(x) = Ex

[
∫ ∞

0 e−rt π1(Xt)dt
]

is the resolvent function of the func-

tion π1 taken with respect to the diffusion of the first phase.
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To ease the notations, let ˆg(x) := (V2
(

θ (x)
)

−k)+− (R1
r π1)(x). We notice,

that ĝ is continuous for allx ∈ I and ĝ′(x̂+) > ĝ′(x̂−). Moreover ifx < x̂,

thenĝ(x) =−(R1
r π1)(x) and thus ˆg′(x)< 0. By the help of ˆg, our problem can

be rewritten as

V1(x) = (R1
r π1)(x)+sup

τ1

Ex
[

e−rτ1ĝ(Xτ1)
]

. (4)

Now, we have the options to exit or invest. In this model the exit option

simply means that the stopping timeτ1 in (4) is such that
(

V2
(

θ (Xτ1)
)

−k
)+

=

0, which happens whenXτ1 is smaller than ˆx. Likewise whenXτ1 is greater

thanx̂, we use the option to invest.

3 Preliminaries and notations

We shall solve the problem (4) in the next section, but beforethat, in this sec-

tion, we need to lay down our standing assumptions and prove some auxiliary

results.

3.1 Assumptions and definitions

First of all two notational remarks: for convenience we often use fx for f (x).

Secondly for ease of notations, we write(Rr f )(x) := (R1
r f )(x); A := A1;

S(x) := S1(x); m(x) := m1(x); ψ(x) := ψ1(x) andφ(x) := φ1(x).

Along the lines of Salminen (1985) Salminen 1985 (see also Alvarez 2004

and Lempa 2010) we define functionsI : I → R andJ : I → R as

I(x) =
ψ ′(x)
S′(x)

ĝ(x)− ĝ′(x)
S′(x)

ψ(x) =−ψ2(x)
S′(x)

d
dx

( ĝ
ψ

)

(x);

J(x) =
ĝ′(x)
S′(x)

φ(x)− φ ′(x)
S′(x)

ĝ(x) =
φ2(x)
S′(x)

d
dx

( ĝ
φ

)

(x).

(5)

Now for x < x̃, we have ˆg(x) = −(Rrπ1)(x), and hence Corollary 3.2 in

Alvarez 2004 says that forx < x̃ the functionsI and J can be written in a
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useful integral form

I(x) =
−ψ ′(x)
S′(x)

(Rrπ1)(x)+
(Rrπ1)

′(x)
S′(x)

ψ(x) =−
∫ x

α
ψ(t)π1(t)m

′(t)dt;

J(x) =
ϕ ′(x)
S′(x)

(Rrπ1)(x)−
(Rrπ1)

′(x)
S′(x)

ϕ(x) =−
∫ β

x
φ(t)π1(t)m

′(t)dt,

(6)

if lim xցα
−(Rrπ1)(x)

φ(x) = 0 and limxրβ
−(Rr π1)(x)

ψ(x) = 0. That these limits hold in our

case follow, in turn, straight from Proposition 4 in Johnsonand Zervos 2007.

Further, we can calculate a pleasant connection between thederivatives

of I andJ: since the functionsφ andψ are the solutions of the differential

equationsA u= ru, we find by straight derivation that

J′(x) = φx
(

(A − r)ĝx
)

m′
x =− φx

ψx
I ′(x). (7)

In the proofs to come, we are interested when the functionsĝ
φ and ĝ

ψ reaches

their local maximum values. For that reason, we define two points

y∗ = argmax{
( ĝ

φ
)

(x) | x< x̂},

w∗ = argmax{
( ĝ

ψ
)

(x) | x> x̂}.
(8)

In other words, pointsy∗ andw∗ are such that ify∗ < x̂, thenJ(y∗) = 0 and if

x̂< w∗, thenI(w∗) = 0.

We study Problem (4) under the following assumptions.

Assumption 3.1. (i) Assume that there exists a pointx0 ∈ [w∗,β ) such that

(A − r)ĝx > 0 for all x∈ (w∗,x0) and(A − r)ĝx < 0 for all x∈ (x0,β ).

(ii) Assume that limxրβ
(

R2
r π2
)(

θ (x)
)

−k> limxրβ
(

R1
r π1
)

(x).

(iii) For i = 1,2, assume thatπi ∈ L 1 are continuous and increasing and that

there existxi ∈ I , such thatπi(x) T 0 for all xT xi. In addition, assume

thatθ : I → I is twice continuously differentiable, increasing and sat-

isfiesθ (x)≥ x.

First of all, we make the following simple remark on the assumption (i),

which shall be referred later on.

Lemma 3.2. Let Assumption 3.1(i) hold. If w∗ > x̂, then x0 = w∗.
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Proof. If w∗ > x̂ (or I(w∗) = 0) andx0 > w∗, then it follows from equations (5)

and (7) thatI(x) is negative, or
( ĝ

ψ
)′
(x) is positive, for allx∈ (w∗,x0), which

contradicts the definition of the pointw∗. Thusx0 could be greater thanw∗

only whenw∗ = x̂.

From the application point of view, Assumption 3.1(i) is nottoo restricting:

For x> x̂, we have ˆg=V2(x)−k−
(

R1
r π1)(x), andV2 = (R2

r π2)− (R2
r π2)(x̄2)
φ2(x̄2)

φ2

can be explicitly calculated from Theorem 2.1. Moreover(Ri
rπi)(x), for

i = 1,2, are twice differentiable in the classical sense as well asφ2(x) and

thus in the applications the validity of the differential assumption 3.1(i) can be

typically checked. In this study we have taken as general approach as possible

and therefore this condition can hardly be relaxed. It must be checked sepa-

rately in each case, though some simpler verifiable special cases exist as we

shall discuss below.

According to Assumption 3.1(ii) investment is eventually profitable: ifx is

large enough, then the total revenue flow after the investment with the sunk cost

is greater than the total revenue flow if the investment option is not used. From

this we can predict, that there ought to be an upper threshold, so that we always

invest if profit flow surpasses this threshold. On the other hand we know from

exit studies (for example Alvarez 2001) that typically the company should exit

below a certain threshold. So intuitively it seems that if the considered profit

flows and functions are nice enough, then the solution shouldbe a two-sided

threshold rule: invest above certain threshold and exit below another.

The differential operator(A − r) operating on ˆg can be calculated and

written in the following form:

(A − r)ĝx =
1
2

(

V ′′
2 θ ′2+V ′2

2 θ ′′)(σ2
1(x)−σ2

2 (x))

+V ′
2θ ′(µ1(x)−µ2(x)

)

+π1(x)−π2
(

θ (x)
)

+kr.

From this formulation we see that ifσ1 is considerable greater thanσ2, then it

might be that(A − r)ĝx > 0 for all x∈ I and Assumption 3.1(i) is not valid.

In that case it is never optimal to invest, since high volatility of initial diffusion

might lead to very high profit flow, so it encourages the company rather to wait.

From the representation of(A − r)ĝ above we also see a simpler verifi-

able conditions for Assumption 3.1(i). To this end assume that θ is convex,

σ1 < σ2, µ1 < µ2, thatσ2
1 −σ2

2 , µ1− µ2 andπ1− π2◦ θ are non-increasing,
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π1(x̂)− π2(θ (x̂)) + kr < 0, π1 < π2 ◦ θ , µ ′
2 < r and thatπ2 and µ2 are con-

vex. Assume also that such differentiability conditions are satisfied that these

assumptions make sense. Then it is possible to show that the last three condi-

tions are sufficient for the convexity ofV2 (µ ′
2 < r implies convexity ofφ2 and

the other two imply the convexity of(R2
r π2)). Furthermore, by the equation

above it follows that(A − r)ĝx is negative for allx> x̂ and thus Assumption

3.1(i) is satisfied. Although this list is long, it nevertheless demonstrates that

in some cases we can check the inequality in Assumption 3.1(i) just by looking

the initial functionsπ1, π2, θ , σi andµi for i = 1,2. For example geometric

Brownian motion withµ ′
2 < r, σ1 < σ2, µ1 < µ2, π2 > π1 and withθ , π1 and

π2 as a linear function falls into this class.

3.2 The necessary conditions

The aim of the subsection is to find the necessary conditions (equation (10)

below) for the existence of an optimal two-sided stopping rule in the interval

I for the considered problem (4). Later (in§4) we will show that this two-

sided threshold rule exists uniquely and is the optimal one.

Now, we know from the general theory of optimal stopping (seefor ex-

ample Øksendal 2007, Chapter 10) that the continuation region of the op-

timal stopping problemV(x) := V1(x) − (Rrπ1)(x) = supτ Ex[e−rt ĝ(Xt)] is

{x ∈ I | V(x) > ĝ(x)}. In the case of two-sided stopping rule this means

that the continuation region is a finite interval(a∗,b∗) ⊂ I such that ther-

harmonic value functionV(x) satisfies on the interval(a∗,b∗) the Dirichlet

problem(A − r)V(x) = 0 subject to the boundary conditionsV(a∗) = ĝ(a∗)

andV(b∗) = ĝ(b∗).

The Dirichlet problem(A − r)u(x) = 0, x ∈ (a,b), with boundary condi-

tionsu(a) = ĝ(a) andu(b) = ĝ(b) for arbitraryα < a< y∗ < x0 < b< β (for

the Dirichlet problem, see for example Øksendal 2007, Chapter 9) has a unique

solution

F(x;a,b) = Ex

[

e−rτ(a,b)ĝ(Xτ(a,b))
]

,

whereτ(a,b) = inf{t ≥ 0 | Xt /∈ (a,b)}. The functionF is a value function con-

stituted by a threshold stopping rule ”stop at timeτ(a,b)” with free boundaries
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a andb. SinceXτ(a,b) is eithera or b almost surely, we find that

F(x;a,b) = Ex
[

e−rτb | τb < τa
]

ĝ(b)+Ex
[

e−rτa | τb > τa
]

ĝ(a)

=
φbĝa− ĝbφa

ψaφb−φaψb
ψx+

ĝbψa−ψbĝa

ψaφb−φaψb
φx

=: h1(a,b)ψ(x)+h2(a,b)φ(x) (9)

for all x ∈ (a,b). Note that limxցaF(x;a,b) = ĝ(a) and limxրbF(x;a,b) =

ĝ(b). In other words the value-matching condition is satisfied onboth bound-

ariesa andb.

Above we have found anr-excessive value functionF(x;a,b) in arbitrary

finite interval (a,b). The next theorem, which is essentially Theorem 4.7 in

Salminen 1985, shows us the necessary condition for the points a andb to be

the boundary points of the optimal continuation region(a∗,b∗).

Theorem 3.3.Assume thatĝ
′
x

S′x
, ψ ′

x
S′x

and φ ′
x

S′x
exist inI \ {x̂}. Then the boundary

points a∗ and b∗ satisfy











I(b∗)− I(a∗) = 0

J(b∗)−J(a∗) = 0.
(10)

We can verify by straight calculation that if the maximizingpair (a∗,b∗)

exists, then the resulting functionF(x;a∗,b∗) satisfies the smooth pasting con-

ditions limxրb∗
∂F
∂x (x;a∗,b∗) = ĝ′(b∗) and limxցa∗

∂F
∂x (x;a∗,b∗) = ĝ′(a∗). Let

us calculate the limitxր b∗:

(

∂F
∂x

(b∗−;a∗,b∗)− ĝ′(b∗)

)

(ψa∗ϕb∗ −ψb∗ϕa∗)

= ĝb∗ϕ ′
b∗ψa∗ − ĝb∗ϕa∗ψ ′

b∗ + ĝa∗(ψ ′
b∗ϕb∗ −ψb∗ϕ ′

b∗)− ĝ′b∗ψa∗ϕb∗ + ĝ′b∗ψb∗ϕa∗

=−ψa∗J(b
∗)S′b∗ −ϕa∗I(b

∗)S′b∗ + ĝa∗BS′b∗

= (−ψa∗J(a
∗)−ϕa∗ I(a

∗)+ ĝa∗Bψa∗ϕb∗ −ψb∗ϕa∗)
S′b∗
S′a∗

=
(

ĝ′a∗ [ψa∗ϕa∗ −ψa∗ϕa∗ ]+ ĝa∗
[

ψa∗ϕ ′
a∗ −ψ ′

a∗ϕa∗ +ψ ′
a∗ϕa∗ −ϕ ′

a∗ψa∗
]) S′b∗

S′a∗

= 0.

The limit xց a∗ can be calculated similarly. So we see that the smooth pasting
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condition is a consequence of the optimality.

3.3 Auxiliary results

The last task in this section is to show some monotonicity properties and

boundary behaviour ofI and J. The results are gathered in the following

lemma, which will be used when we prove the optimality in§4.

Lemma 3.4. Let Assumption3.1hold. Then

(A) y∗ < x1, where x1 = π−1
1 (0).

(B) the functions I and J are continuous in the domainI \{x̂}. In addition

(i) The function J is monotonically decreasing in the domainI \
[y∗,x0] = (α ,y∗)∪ (x0,β ). Furthermore J(x) > 0 for all x < y∗,

J(α+) = ∞, J(x) < 0 for all x ∈ (y∗, x̂) and J(β−) ∈ [0,∞).

(ii) The function I is monotonically increasing in the domain I \
[y∗,x0] = (α ,y∗)∪ (x0,β ). Furthermore I(x) > 0 for x ∈ (α ,y∗),

I(α+) = 0 and I(β−) = ∞.

Proof. (A) Let Ĵ(x) = φ2(x)
S′(x)

(−(Rr π1)
φ

)′
(x). (The functionĴ is such thatĴ|(α ,x̂) =

J|(α ,x̂).) We have assumed thatπ ′
1(x) > 0 and that there existx1, such that

π1(x) S 0 for all xS x1. Thus using (7) we see that

Ĵ′(x) = φxπ1(x)m
′
x S 0, whenxS x1 and sox1 = argmin{Ĵ(x) | x∈ I }.

FurthermoreĴ(x) = −
∫ β

x φtπ1(t)m′
tdt by (6), and sinceφ , m′ > 0 we see

that forx large enough,̂Jx < 0, which especially means that minĴ(x) = Ĵ(x1)<

0 and thatĴx < 0 for all x> x1. By the assumptions on the boundariesĴ(α+)=

∞. This together with the derivative properties gives that there existsy < x1,

such thatĴ T 0 for all x S y. Now if y < x̂, theny∗ = y and otherwisey∗ =

x̂−≤ y< x1.

(B) By Assumption 3.1(iii) the function ˆg is differentiable inI \{x̂}, and

thus the functionsI andJ are continuous inI \{x̂}. The desired monotonicity

properties follow from (7) observing that sincey∗ < x1 (part (1)), we have

(A − r)ĝx = (A − r)(−Rrπ1)(x) = π1(x)< 0 in the interval(α ,y∗) and in the

interval(x0,β ) we have(A − r)ĝx < 0 by Assumption 3.1(i).
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Combining (6) with the assumption on the lower boundary yieldsI(α+)=

0 andJ(α+)= ∞. Moreover according to the proof of part (1) we haveJ′(x)<

0 for all x< y∗ andJ(y∗)≥ 0. Combining these facts aboutJ we conclude that

J(x) > 0 for all x ∈ (α ,y∗). If y∗ < x̂ then the proof of part (1) immediately

implies thatJ(x)< 0 for all x∈ (y∗, x̂). The positiveness ofI in (α ,y∗) follows

from observationsI(α+) = 0 andI ′(x) > 0, for x∈ (α ,y∗).

In order to prove limiting properties of the functionI in the boundaryβ ,

fix s> x0. The mean value theorem for integrals implies that

I(s) = I(x0)+
∫ s

x0

I ′(t)dt = I(x0)−
∫ s

x0

ψt
(

(A − r)ĝt
)

m′
tdt

= I(x0)−
(A − r)ĝ(η)

r

(ψ ′(s)
S′(s)

− ψ ′(x0)

S′(x0)

)

,

whereη ∈ (x0,s). Thus(A − r)ĝ(η) < 0 by Assumption 3.1(i). The desired

limit lim xրβ I(x) = ∞ follows now from the limiting property limxրβ
ψ ′(x)
S′(x) =

∞.

To obtain the limiting property of the functionJ in the boundaryβ , we

note that combining Assumption 3.1(ii) with the boundary behaviour of φ2

yields limxրβ ĝ(x) > 0, which in turn gives limxրβ
ĝ(x)
φ(x) = ∞. We see from

Assumption 3.1(i), thatJ′(x) = φx
(

(A −r)ĝx
)

m′
x<0 for all x> x0. If, contrary

to our claim,J(β−)< 0, there would bev> x̂ such thatJ(x) = φ2(x)
S′(x)

( ĝ
φ
)′
(x)<

0 for all x > v. This is equivalent to saying that
( ĝ

φ
)′
(x) < 0 for all x > v.

But that would mean that
( ĝ

φ
)

(v) >
( ĝ

φ
)

(β−) = ∞, a contradiction. Thus∞ >

J(β−) ≥ 0.

4 Finding the solution

In the search of a solution to (10), we will need to get an even better grip on

the functionsI andJ. The four points in the following definition will help us

greatly on this task.
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Definition 4.1. Define four auxiliary functions and points as

I1=I |(α ,y∗)

I2=I |(x0,β )

J1=J|(α ,y∗)

J2=J|(x0,β )

p1=I−1
1

(

I2(x0)
)

p2=J−1
1

(

J2(x0)
)

q1=I−1
2

(

I1(y∗)
)

q2=J−1
2

(

J1(y∗)
)

.

If the pointJ−1
2

(

J1(y∗)
)

does not exist, then we defineq2 = β−.

x
0

I(x)

J(x)

q1p2p1 y∗ x0

Figure 1: Definition of the pointsp1, p2, q1 andq2. In the figure(α ,β ) =
(0,∞), x0 > w∗ = x̂, y∗ < x̂ andq2 = ∞. We will see that under Assumption 3.1
we always havep2 > p1 andq2 > q1.

It will turn out that we can bound the examination to compact region: we

will have (a∗,b∗) ∈ [p2,y∗]× [x0,q1].

4.1 Existence and uniqueness of the pair(a∗,b∗)

Before proceeding to the main proposition about the existence of unique so-

lution to (10), we need to make sure that the points in Definition 4.1 do exist

and that they have certain ordering inI . The following lemmata are proved

in Appendix A.

Lemma 4.2. Let Assumptions3.1 hold. Then the points p1, p2, q1 and q2,

which are defined in Definition4.1, exist.

Lemma 4.3. Let p1, p2, q1 and q2 be as in Definition4.1and let Assumption

3.1hold. Then p2 > p1 and q2 > q1.

This ordering is vital for the fixed point argument in the mainexistence

proposition, since we will look for the fixed point with respect to a function,
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which would be ill-defined, if this ordering did not hold. Nowwe are ready to

prove our main result on solvability of the necessary condition (10).

Lemma 4.4. Let Assumption3.1 hold. Then the necessary conditions(10)

have a unique solution(a∗,b∗) such that a∗ ∈ (p2,y∗) and b∗ ∈ (x0,q1).

Proof. We follow loosely the proof of Lemma 2.2 in Lempa 2010. Recallthe

definitions ofIi andJi , for i = 1,2, from Definition 4.1 and define the function

K : [p2,y∗) → (p2,y∗) by K(x) =
(

J−1
1 ◦ J2 ◦ I−1

2 ◦ I1
)

(x). By Lemma 3.4(B)

we know that the functionsIi andJi , i = 1,2, are monotonic in their domains

(α ,y∗) and(x0,β ) and thus we have

K′(x) = J−1′
1 (J2(I

−1
2 (I1(x)))) ·J′2(I−1

2 (I1(x))) · I−1′
2 (I1(x)) · I ′1(x) > 0

for all x∈ [p2,y∗).

By invoking the inequalityq2 > q1 (Lemma 4.3) and the monotonicity

of the functionsJ1 and J2, we find thatp2 = J−1
1 (J2(x0)) < J−1

1 (J2(q1)) <

J−1
1 (J2(q2)) ≤ y∗. HenceK(y∗) = J−1

1 (J2(q1)) ∈ (p2,y∗). Furthermore, we

know that for somex ∈ (x0,q1) we haveK(p2) = J−1
1 (J2(x)). Therefore rea-

soning as above, we getK(p2)∈ (p2,y∗). Consequently, the functionK is well

defined and monotonically increasing in the interval[p2,y∗).

Let us create a sequencean = Kn(p2)(= (K ◦ · · · ◦ K)(p2)). This se-

quence converges by induction: It is clear thata1 = K(p2) > p2. Because

K is an increasing function, we haveK
(

K(p2)
)

> K(p2). By induction

Kn(p2) > Kn−1(p2). Since the sequencean is increasing and bounded from

above, it converges.

Sincean converges, we can definea∗ = limn→∞ an anda∗ is the fixed point

of the functionK. Definingb∗ = J−1
2 (J1(a∗)) = I−1

2 (I1(a∗)), we get the pair

(a∗,b∗) that satisfies the necessary conditions (10).

In order to prove the uniqueness, it suffices to establish that K′(a∗)< 1 for

a given fixed pointa∗. Utilizing the fixed point propertyK(a∗) = a∗ and the

monotonicity properties of fundamental solutionsψ andφ , ordinary differen-

tiation yields

K′(a∗) =
ψ(a∗)
ψ(b∗)

φ(b∗)
φ(a∗)

< 1.

This means that whenever the curveK(x) intersects the diagonal ofR2
+, the

intersection is from above. This observation completes theproof.
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In Lemma 4.4 we saw how the optimal threshold pair(a∗,b∗) can be found

when it is identified as a fixed point. Analogous method was also used in

Lemma 4.1 in Alvarez and Lempa 2008 on impulse control situation. In the

optimal stopping problem the method was first used by Lempa inLempa 2010,

where Lempa hady∗ < x̂, x0 > x̂ and consequently he used the fixed point

method in the case, wherep1 = α andq2 = β . Here we generalise this to

concern also cases wherey∗ = x̂ andx0 = x̂, in which we needed the auxiliary

pointspi andqi, points which were not needed in Lempa’s presentation.

Lemma 4.4 also shows how we can find the pair(a∗,b∗) numerically. First

we identify the pointsy∗, x0 andp2. After that, we apply the functionK(x) =
(

J−1
1 ◦J2◦ I−1

2 ◦ I1
)

(x) to the pointp2 (actually any point in[p1, p2] will do) and

calculateKk(p2), where we might for example set a stopping limitε > 0 and

stop at stepk, when|Kk(p2)−Kk−1(p2)|< ε. After this we havea∗ ≈ Kk(p2)

andb∗ ≈ J−1
2 (J1(a∗)).

4.2 Proving the optimality

Now we are ready to represent our main theorem on the value andoptimal

stopping rule for the problem (4).

Theorem 4.5.Let Assumption3.1hold. Then the optimal stopping time to the

problem(4) with ĝ(x) =
(

V2
(

θ (x)
)

−k
)+− (Rrπ1)(x) is τ∗ = inf{t ≥ 0 | Xt /∈

(a∗,b∗)} and the value function is

V1(x) = (Rrπ1)(x)+



















ĝ(x), x∈ (α ,a∗]

h1(a∗,b∗)ψ(x)+h2(a∗,b∗)φ(x), x∈ (a∗,b∗)

ĝ(x), x∈ [b∗,β ).

Here a∗ < y∗ and b∗ > x0 are the optimal stopping points found in Lemma4.4

and the functions h1 and h2 are as defined in(9).

Proof. Since the first term(Rrπ1)(x) is independent of the stopping time, we

need to consider only the problem

sup
τ
E

[

e−rτ ĝ(Xτ)
]

. (11)

103

103



Let the solution to (11) beV∗(x), and let

V(x) =V1(x)− (Rrπ1)(x)

NowV(x) = Ex
[

e−r τ̂ ĝ(Xτ̂)
]

, whereτ̂ = inf{t ≥ 0 | Xt /∈ (a∗,b∗)} is a stopping

time. Since the supremum in (11) is taken over all stopping times, we observe

thatV∗(x) ≥V(x).

The next step is to show that the inequalityV ≥V∗ holds. Since the optimal

valueV∗ is the smallestr-excessive majorant of ˆg, it is enough to show thatV

is anr-excessive majorant of ˆg. Firstly V(x) ≥ ĝ(x) for all x ∈ (α ,β ): In the

domain(α ,a∗]∪ [b∗,β ) we haveV(x) = ĝ(x) and whenx∈ (a∗,b∗), we have

V(x) = F(x,a∗,b∗)> F(x;a∗,x) = ĝ(x) by the optimality of the pair(a∗,b∗).

Let us then show that the functionV is r-excessive. We see by straight

calculation that(A − r)V(x) ≤ 0 for all x ∈ I \ {a∗,b∗}: We haveJ′(x) =

φx((A − r)ĝx)m′
x < 0 for all x < a∗ by Lemma 3.4(B). On(a∗,b∗) we have

(A − r)V(x) = 0, and lastly on(b∗,β ) we have(A − r)V(x) ≤ 0 by As-

sumption 3.1(i). Moreover, by the definition of the functions V2, π1 and θ
we know that the function ˆg is twice continuously differentiable in the do-

main I \ {x̂}. Since ˆx ∈ (a∗,b∗) and ψ and ϕ are twice continuously dif-

ferentiable, we can deduce thatV(x) is twice continuously differentiable in

I \ {a∗,b∗} and once continuously differentiable onI . Moreover, it is clear

that |V ′′(a∗±)|, |V ′′(b∗±)| < ∞. It follows (Theorem D.1 in Øksendal 2007)

that there exist twice continuous functionsf j , j = 1,2,d, . . ., such thatf j →V

uniformly on compact subsets ofI and that(A − r) f j → (A − r)V uniformly

on compact subsets ofI \ {a∗,b∗} as j → ∞. Moreover,{(A − r) f j}∞
j=1 is

locally bounded onI . Applying Itô’s theorem to the mappinge−rt f j(x) and

taking expectations, we have, for an arbitrary finite stopping timeτ, that

Ex
{

e−rτ f j(Xτ)
}

= f j(x)+Ex

{

∫ τ

0
(A − r) f j(Xs)ds

}

.

Letting j → ∞, applying Fatou’s theorem, and using the fact that(A −
r)V(x) ≤ 0 for all x∈ I \{a∗,b∗} give

Ex
{

e−rτV(Xτ)
}

≤V(x)

proving ther-excessivity ofV(x).
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Theorem 4.5 establish that the two-sided threshold rule ”stop at the time

τ(a∗,b∗)” is the optimal stopping rule, among all admissible stopping rules. Fol-

lowing the optimal strategy, the stopping intervals(α ,a∗] and [b∗,β ) are the

exit and investment regions respectively. If we use the option to exit, we quit

the market once and for all. If we use the investment option, our initial profit

flow Xt changes toYt, with starting pointY0 = θXτ∗, and we will exit when

the new profit flowYt falls below the threshold ¯x2 = argmin
{

(R2
r π2)(x)
φ2(x)

}

(see

Theorem 2.1).

Let us compare this strategy to the case where there is only a possibility to

exit. Then the optimal strategy would be to exit below ˆa= argmax{−(R1
r π1)(x)

φ1(x)
}

(cf. Theorem 2.1) and continue above. We recall thaty∗ = argmax{−(R1
r π1)(x)

φ1(x)
|

x < x̂} (Definition (8)) and so ˆa ≥ y∗ > a∗. In other words the investing op-

portunity brings more value for waiting and gaining more information before

possible exit decision.

5 What if the second phase is only a partial improvement?

In this section we consider a case, where the second phase, that is the state

after the investment, does not improve the first phase in all aspects. We will

see that in this case, we will end up either to one- or three-sided threshold rule.

For an example what is meant by partial improvement, let us consider a car

manufacturer. Assume that initially the factory produces quite cheap cars (rev-

enueπ1) at rather fast pace (Xt). Further, let us assume that the manufacturer

has an investment possibility to stop altogether manufacturing these low-cost

cars and move into producing individual, almost handmade, luxury cars. Now,

these luxury cars provide better outcome, meaning thatπ2 > π1, but they are

slower to produce, and thusYt is expected to be smaller thanXt . The reverse

case is also possible; that the company switches from manufacturing luxury

cars to produce low-cost cars, so that the revenue function gets smaller and

production rate higher.

To study the question attached with this kind of property we need to define

a new pointz∗ = argmax{
( ĝ

φ
)

(x) | x > x̂}. Hitherto the right boundary point

of the state space,β , has been such a point. (It follows from Assumption

3.1(ii) that limx→β ĝ(x)>0. Therefore( ĝ
ϕ )(β−) =∞ by the assumed boundary

behaviour.) In the following we state our assumptions for this section.
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Assumption 5.1.Assume Assumption 3.1(i) and (iii) to hold, withβ replaced

by z∗. Assume further that

(ii’) lim xրβ
(

R2
r π2
)(

θ (x)
)

−k< limxրβ
(

R1
r π1
)

(x).

Basically, the only difference to Assumption 3.1 is that theinequality in

Assumption 3.1(ii) is reversed in (ii’). It means that in thelong run, forx large

enough, the investment is not profitable. Therefore one could predict that there

ought to be an upper threshold, so that we do nothing if the profit flow is over

that threshold.

The following theorem, which is the main result of the section, solves the

problem (4) under Assumption 5.1. It turns out that locationof the maximum

point of ĝ
φ dictates whether the outcome is one- or three-sided threshold rule.

Theorem 5.2.Let Assumption 5.1 hold.

(A) Assume further that̂x > argmax{( ĝ
φ )(x)}(= y∗). Then, for the problem

(4), the optimal stopping time isτ = inf{t ≥ 0 | Xt ≤ y∗}, the point y∗ is

the optimal stopping boundary and the optimal value reads as

V1(x) =











(Rrπ1)(x)+
ĝ(y∗)
φ(y∗)

φ(x), x> y∗

0, x≤ y∗.

(B) Assume further that̂x < argmax{( ĝ
φ )(x)}(= z∗). Then, for the problem

(4), the optimal stopping time isτ∗ = inf{t ≥ 0 | Xt ∈ (α ,a∗]∪ [b∗,z∗]}
and the optimal value reads as

V1(x) = (Rrπ1)(x)+































ĝ(x), x∈ (α ,a∗]

h1(a∗,b∗)ψ(x)+h2(a∗,b∗)φ(x), x∈ (a∗,b∗)

ĝ(x), x∈ [b∗,z∗]
ĝ(z∗)
φ(z∗)φ(x), x∈ (z∗,β ).

Here a∗ ∈ (α ,y∗) and b∗ ∈ (x0,z∗) are the optimal stopping boundaries

found in Lemma4.4and the functions h1 and h2 are as defined in(9).

Proof. (A) For the proof, see Theorem 3B in Alvarez 2001.

(B) Replacing the boundary pointβ by z∗ in §§3–4, almost all results

there are valid under Assumption 5.1, the only exceptions being that now
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0 = J(z∗) 6= J(β ) and I(z∗) 6= I(β ) (the latter is not needed in this proof).

Consequently, it is straightforward to go through the earlier proofs and con-

clude that the existence of an optimal continuation interval (a∗,b∗) on (α ,z∗)

and its uniqueness hold, and the claim follows as previously.

According to previous theorem, there are two cases. If( ĝ
ϕ )(y

∗)> ( ĝ
ϕ )(z

∗),

then we end up to the normal exit rule: exit belowy∗, invest nowhere. The more

interesting case, though, is when( ĝ
ϕ )(y

∗) < ( ĝ
ϕ )(z

∗). Then, in addition to the

optimal continuation interval(a∗,b∗), there exists another continuation interval

(z∗,β ). In this case, the optimal stopping strategy is athree-sided threshold

rule ”stop at timeτ(a∗,b∗,z∗) = inf{t ≥ 0 | Xt ∈ (α ,a∗]∪ [b∗,z∗]}”. Here the

interval(α ,a∗] is the exit region and the finite interval[b∗,z∗] is the investment

region. The result is also in line with Theorem 5.2(A), whichsuggests that the

interval(argmax{ ĝ
ϕ},β ) should be a continuation region.

A possible interpretation to our finding is that we may see theprevious

two-sided threshold rule as a special case of the three-sided threshold rule; if

Assumption 3.1 hold, thenz∗ = β−, as mentioned above, and hence the upper

continuation region(z∗,β ) vanishes.

Economically the three-sided stopping region behaviour isinteresting. If

our profit flow is in the interval(a∗,b∗), we should wait until it surpassesb∗

and then invest. However, if the profit flow is high enough (above z∗), it is

again profitable to wait and invest only when the profit flow goes belowz∗.

This can be interpreted as an investment opportunity, whichis profitable to do

only when the company is, in some sense, doing badly, i.e. theprofit flow is

not too large.

Another interesting feature about Theorem 5.2 is that now wecan also

study the reverse investment opportunity. To this end, letXt be again the initial

profit flow andYt the profit flow after the possible investment and let Assump-

tion 3.1 hold, so that there exists an optimal two-sided stopping rule. Consider

then a reverse situation; thatYt is the initial profit flow andXt the profit flow

after the possible investment. Then it is not too far-fetched to assume Assump-

tion 3.1(i) &(iii) to hold. Hence we see that depending on thebehaviour ofĝϕ ,

it either might be optimal to sometimes reverse the investment (three- or two-

sided rule) or not (one-sided rule). It follows that one could investigate more

deeply the problem of costly reversible investment with optional exit utilizing

Theorems 4.5 and 5.2. Unfortunately this is somewhat out of the scope of this
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study.

6 Examples

6.1 Geometric Brownian motion

To illustrate the main theorem (Theorem 4.5), let us consider an explicit exam-

ple, where the diffusions are

Xt = µ1Xtdt+σ1XtdWt, X0 = x> 0;

Yt = µ2Ytdt+σ2YtdWt.

HereWt is a standard Brownian motion. Thus the diffusions are geometric

Brownian motions and the state spaceI = (0,∞). We assume thatr > µ2 >

µ1. Moreover, let the boost function beθ (x) = ζx, whereζ ≥ 1 is a constant,

and the revenue functionsπ1(x) = x−c1 andπ2(x) = x−c2. With these choices

our resolvent functions are(Ri
rπi)(x) = x

r−µi
− ci

r , for i = 1, 2.

In this case the fundamental solutions of the ordinary second order differ-

ential equation(A1− r)u= 0 for the first phase areφ1= xγ−1 andψ1= xγ+1 . Re-

spectively the fundamental solutions of the differential equation(A2− r)u= 0

for the second phase areφ2 = xγ−2 andψ2 = xγ+2 . Here

γ±i =
1

σ2
i

(

1
2σ2

i −µi ±
√

(1
2σ2

i −µi)2+2σ2
i r

)

are the solutions of the characteristic equation1
2σ2

i γi(γi −1)+µiγi − r = 0, for

i = 1, 2. The functionsφi are the decreasing solutions andψi are the increasing

ones.

6.1.1 Solving the problem

Now we can calculate that

(R2
r π2)(x)
φ2(x)

=
x1−γ−2

r −µ2
− c2x−γ−2

r
.
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This functional has a unique global minimum at the point ¯x2 =− γ−2 c2(r−µ2)

r(1−γ−2 )
<

c2. Thus the solution to the second phase (Theorem 2.1) is

V2(x) =















x
r −µ2

− c2

r
+

xγ−2

x̄
γ−2
2

· c2

r(1− γ−2 )
whenx> x̄2,

0 whenx≤ x̄2.

The problem (4) is nowV1(x) = (R1
r π1)(x)+supτ1

Ex
[

e−rτ1ĝ(Xτ1)
]

, where

ĝ(x) =
( ζx

r −µ2
− c2

r
+

xγ−2

x̃γ−2
· ζ γ−2 c2

r(1− γ−2 )
−k
)+

− x
r −µ1

+
c1

r
. (12)

With straight derivation we see thatV ′
2(x) > 0 and so there exists a unique

x̂> 0 such that(V2(ζx)− k)+ > 0 for all x > x̂. Let us check that this set up

will satisfy Assumption 3.1.

Firstly Assumption 3.1(i). For everyx> x̂ we have

(A1− r)ĝx = ζ γ−2 c2

1
2σ2

1γ−2 (1− γ−2 )+µ1γ−2 − r

x̃γ−2 r(1− γ−2 )
xγ−2

+x

(

1− ζ
r−µ2
r−µ1

)

+c2−c1+kr

=: a1xγ−2 +a2x+a3.

Herea1, a3 ∈ R anda2 < 0. Sinceγ−2 < 0, we see that this satisfy the required

condition.

Secondly Assumption 3.1(ii). We see that

(R2
r π2)(ζx)− (R1

r π1)(x)−k ≥ x(µ2−µ1)

(r −µ2)(r −µ1)
+

c1−c2

r
−k> 0,

for all x > (kr+c2−c1)(r−µ2)(r−µ1)
r(µ2−µ1)

+ k. Thirdly our choices for functionsπ1, π2

andθ (x) satisfy Assumption 3.1(iii).

This set up satisfies the needed assumptions, and so by Theorem 4.5 the

solution is two-sided threshold rule with optimal stoppingpair (a∗,b∗). This

pair exists uniquely (Lemma 4.4) and it is given by the pair ofequations (10).

The scale density of the geometric Brownian motion of the first phase reads as
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S′1(x) = x−2µ1/σ2
1 , and so (10) can be written as















b
γ+1 +

2µ1
σ2

1
−1

Lb(γ+1 ) =−a
γ+1 +

2µ1
σ2

1
−1

La(γ+1 )

b
γ−1 +

2µ1
σ2

1
−1

Lb(γ−1 ) =−a
γ−1 +

2µ1
σ2

1
−1

La(γ−1 ),

where

Lb(y) =
r(ζ −1)−ζ µ1+µ2

(r −µ1)(r −µ2)
b(y−1)+y

(c1−c2

r
−k
)

+
c2bγ−2 ζ γ−2 (γ−2 −y)

rx̄γ−2 (γ−2 −1)
;

La(y) =
a(y−1)
r −µ1

− c1y
r
.

Unfortunately solving the optimal boundaries from these equations explic-

itly does not seem to be possible. So in the next subsection wemake numerical

illustrations.

6.1.2 Numerical results and the sensitivity analysis

Let us choose our parameters asµ1 = 0.03, µ2 = 0.05, r = 0.08, c1 = 2,

c2 = 3, σ1 = 0.2, σ2 = 0.1, k = 3 andζ = 1.4. With these we get(a∗,b∗) =

(0.59,1.54). In Figure 2(a) we see the value function of the problem (4) and

in Figure 2(b) the function(A1− r)ĝx.

1.5

(A1 − r)(ĝ)(x)

b∗x0

x̂

a∗

0.5

1.0

0.5

x
1.5

b)a)

–0.5

–2.0

–1.5

–1.0

x

(Rrπ1)(x) + ĝ(x)

(Rrπ1)(x) + V (x)

a∗ b∗x̂

10

20

30

0

0.8 1.2 1.6

Figure 2: With made choicesy∗ = x̂−, w∗ = x̂+ < x0. (a) The solution of the
problem is two-sided threshold rule. (b) The function(A1− r)ĝ(x).

We see that(A1− r)ĝx < 0 whenx< x̂ or x> x0 and(A1− r)ĝx > 0, when

x∈ (w∗,x0) = (x̂,x0). Soĝ behaves as we assume in Assumption 3.1.

In Figure 3 we see how the threshold alters, when we change parameters.

We see expectedly that by increasing the boost effect of the investment (pa-
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rameterζ ) the investment option becomes more attractive. In other words, the

exercise threshold of the investment option becomes smaller (b∗ diminishes)

and the waiting for it to come becomes more attractive (exit thresholda∗ di-

minishes).

c)

a) b)

d)

2.0

1.5

1.0

0.5

2.5

1.4

1.2

1.0

0.8

0.6

0.4

0.5

1.0

1.5

2.0

2.5

1

4

3

2

5

0.60.50.40.30.20.12 64 1412108

2.0 3.53.02.51.5 0.1 0.60.50.40.30.2

ζ

a∗
y∗
x0

b∗

k σ2

σ1

Figure 3: How the pointsa∗, b∗ andy∗ alters, when we change the parameter
(a) ζ ; (b) σ1; (c) k; (d) σ2. In figures (b) and (c) we also see the change of the
pointx0.

Furthermore by increasing the volatility of the first phase (σ1) we increase

the value of the first phase and thus the investment option loses some of its

attractiveness. And by increasing the sunk cost of the investment (k) we pre-

dictably make the investment opportunity less tempting andthe exiting option

more tempting.

Increasing the volatility of the second phase (σ2), the value of the second

phase comes greater (this is known form the previous works, see for exam-

ple Dixit and Pindyck 1994). So it is sensible that we want to invest earlier

(b∗ diminishes), so that we may reach these greater values sooner. Also a∗

diminishes, so it is more attractive to wait more information before exit.

6.2 Brownian motion with negative drift

In Kwon 2010 Kwon solves the problem (4) in the case, where theunderlying

diffusions were Brownian motions with negative drift. To beprecise, in his
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paper Kwon studies a situation, whereπ1(x) = π2(x) = x; θ (x) = x+ζ , where

ζ > 0 is a constant; the diffusion of the first phasedXt = µdt+σdWt, where

µ < 0 andσ > 0 are constants; the diffusion of the second phasedYt = (µ +

δ )dt+σdWt, whereδ > 0 is a constant such thatµ +δ < 0 and the diffusion

parameterσ is the same as in the first phase. The state space in this case

is I = (−∞,∞). It is not difficult to show that the above mentioned setting

satisfies Assumption 3.1, and consequently the theory presented in this paper

can be seen as a generalisation of the results in Kwon 2010.

6.3 Same volatilities before and after the investment

In Kwon 2010 Kwon discovered that when the boost coefficientζ is suffi-

ciently large, at the case where underlying diffusions wereBrownian motions

with a drift with the same volatilities, then the investmentthresholdb∗ de-

creases whenσ increases. This is opposite to what normally happens when

increasing the uncertainty of the future profit streams (seefor example Alvarez

2003). However, we must remember that here we had the same volatility for

both diffusionsXt andYt. We see from Figure 3(b) and (d) that if we increase

the volatility of the first phase, then the investment threshold b∗ increases, but

if we increase the volatility of the second phase, then the investment threshold

to decreases.

Suppose that the volatility is the same in both phases. Thereare cases when

this is quite appropriate assumption. For example if one buys a new computers

to an office, it is sensible to assume that they work as good as their precur-

sors. Now, since the boost coefficient affects only the profitflow of the second

phase, it could be that the adjustment made in the volatilityaffects more like

changing the volatility of the second phase when the boost coefficient is suffi-

ciently large. In other words, large boost coefficient emphasises the outcome

of the second phase. This is illustrated in Figure 4 below with the geometric

Brownian motion example from Subsection 6.1. We see that with small boost

coefficientζ , we get increasing investment boundary. More interesting is that

with large boost coefficient the investment boundary is firstdecreasing and

then increasing; a phenomenon that was not present in the case of Brownian

motion with a drift.

Technically this can be explained as follows. The large boost coefficient

emphasises the outcome of the second phase, and thusb∗ is decreasing inσ ,
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Figure 4: In figures we have the geometric Brownian motion situation of Sub-
section 6.1 with the same volatilities for both diffusions,i.e. σ1 = σ2 =: σ . a)
With small values ofζ the investment boundaryb∗ is increasing inσ ; b) With
large values ofζ the boundaryb∗ is first decreasing and then increasing inσ .
Other parameters:r = 0.1, µ1 = 0.03,µ2 = 0.04,c1 = 2.5, c2 = 3, k= 1.

as is predicted from Figure 3(d). But since the lower boundary of the state

space, 0, is finite in the case of geometric Brownian motion,b∗ cannot decrease

but finitely amount. On the other hand increasing the volatility of the first

phase increasesb∗, and since the upper boundary is infinity, it can increase

unbounded amount. It follows that with large boost,b∗ first decreases, as the

second phase is dominant, but after a while the first phase starts to dominate.

In the case of Brownian motions, the lower boundary is unbounded,−∞, and

thus this kind of phenomenon did not happen. Economically this is even more

interesting situation thanσ -decreasing investment threshold. It means that as

the risk grows, the investment opportunity is at first more preferable, but after

some critical value, the investment starts to lose it attraction. So there lies

some kind of trade off how much risk the investor is willing totolerate.

Normally one would expect all the changes to be monotonic with respect to

volatility, so this result reveals that the exit problem with embedded investment

opportunity is highly non-linear resulting to surprising outcome.

7 Conclusion

In this paper we studied an irreversible decision-making problem, where the

options either to invest or to exit were combined. We formulated the problem

as two consecutive optimal stopping problems of a linear Itô diffusion. We

started from relatively weak conditions and with the help ofclassical theory

of linear diffusions and a fixed point argument we proved the existence and
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uniqueness of a well defined optimal solution. We saw that thesolution is a

two-sided threshold rule.

Given the novelty of the considered problem, there are stillmany interest-

ing questions left for further research. Firstly it would beinteresting to analyse

the situation where there are not only one but several irreversible investment

options, so that after making the investment, the company has always a new

investment option to use. Then we would face a potentially infinite series of

problems of the kind presented in this study. Secondly although many invest-

ments are irreversible, all of them are not. Thus one could also think how

it would affect the result if the decision would be reversible, either partly or

wholly. Combining these two enhancements, the problem would be a gen-

eral switching problem with possibility to exit irrevocably, so that the analysis

or techniques in this paper could be a stepping stone for a path to finding a

solution to general switching problem. Thirdly in the present study the sensi-

tivity analysis has been left to a minor role. It has been touched only via one

numerical example. It could, however, be possible to do it explicitly and it

would be interesting to know, how strongly the stopping thresholds are related

to the diffusions and sunk cost. Fourthly, the investment opportunities could

also have finite or stochastic time horizon, instead of infinite as here. It seems

reasonable to predict that with finite time horizon the solution would still be

two-sided threshold rule with lower investment threshold than in the infinite

horizon case.
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A Proofs of lemmata 4.2 and 4.3

For clarity we denote

∆I = I(x̂−)− I(x̂+) =
ψ(x̂)
S′(x̂)

(

ĝ′(x̂+)− ĝ′(x̂−)
)

(> 0)

∆J = J(x̂+)−J(x̂−) =
φ(x̂)
S′(x̂)

(

ĝ′(x̂+)− ĝ′(x̂−)
)

(> 0),
(13)

so that∆I and∆J are the sizes of jumps of functionsI andJ at x̂. Also during

the proofs we will constantly use the fact, that ifw∗ > x̂, thenx0 = w∗ (showed

below Assumption 3.1) and the identity (7):J′(x) =− φx
ψx

I ′(x).

Proof of Lemma 4.2We will prove that (a)I(x0) < I(y∗), and (b)J(x0) >

J(y∗). Furthermore we prove thatI(β−) > I(y∗) andJ(β−) < J(y∗). Once

these inequalities are proved, we know that the pointsp1, p2, q1 andq2 exist

uniquely by invoking the resultsI(α+) = 0, J(α+) = ∞ and the monotonicity

of the functionsI and J (Lemma 3.4(B)). We will prove above mentioned

inequalities separately.

SinceI(β−) = ∞, the inequalityI(β−)> I(y∗) is always true. IfJ(β−)>

J(y∗), then we haveq2 = β− by Definition 4.1. Thus we need to prove only

(a) and (b).

(a): I(x0)< I(y∗)I(x0)< I(y∗)I(x0)< I(y∗). Suppose first thatw∗> x̂. Thenx0=w∗ and thusI(x0) =

0. Moreover sinceI(α+) = 0 andI ′(x)> 0 for all x< y∗ (Lemma 3.4(B)), we

haveI(y∗)> 0= I(x0).

Assume now thatw∗= x̂+. We can writeI(y∗)− I(x0) =
(

I(y∗)− I(x̂+)
)

+
(

I(x̂+)− I(x0)
)

. Next we show that both summands are positive. Firstly

I(x̂+)− I(x0)> 0 by the definition of the pointx0 and by the fact thatI ′(x)< 0

for all x∈ (x̂+,x0) (Assumption 3.1(i)).

In order to prove the positivity ofI(y∗)− I(x̂+) we notice that sinceJ(y∗)≥
J(x∗−) (proof of Lemma 3.4(A)), we have

0≤ J(y∗)−J(x̂−) =

∫ x̂−

y∗
J′(x)dx=

∫ x̂−

y∗

(

− φx

ψx

)

I ′(x)dx

=
(

− φη

ψη

)(

I(x̂−)− I(y∗)
)

,

for someη ∈ [y∗, x̂). HenceI(y∗)− I(x̂+) = ∆I − (I(x̂−)− I(y∗))> 0.

(b): J(x0)> J(y∗)J(x0)> J(y∗)J(x0)> J(y∗). Suppose first thaty∗ < x̂. ThenJ(y∗) = 0 and we know
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thatJ′(x) = φx((A − r)ĝx)m′
x < 0 for all x> x0 by Assumption 3.1(i). These

together withJ(β−) ≥ 0 (Lemma 3.4(B)) implies thatJ(x0)> 0= J(y∗).

Assume now thaty∗ = x̂−. Then I(x0)− I(x̂+) < ∆I : If w∗ > x̂, then

I(x0)− I(x̂+) =−I(x̂+), otherwiseI(x0)− I(x̂+)≤ 0. Thus we can write

∆I =
ψ(x̂)
S′(x̂)

(ĝ′(x̂+)− ĝ′(x̂−))>
∫ x0

x̂+
I ′(x)dx=−

∫ x0

x̂+

ψx

φx
J′(x)dx

=−ψ(ξ )
φ(ξ )

∫ x0

x̂+
J′(x)dx=−ψ(ξ )

φ(ξ )
(

J(x0)−J(x̂+)
)

,

for someξ ∈ (x̂,x0]. Multiplying by − φ(x̂)
ψ(x̂)

we get K(J(x0)− J(x̂+)) >

−∆J, whereK = ψ(ξ )
ψ(x̂)

φ(x̂)
φ(ξ ) ≥ 1. ThereforeJ(x0)− J(x̂−) = ∆J +

(

k
k

)(

J(x0)−
J(x̂+)

)

> ∆J− 1
k∆J ≥ 0.

Proof of Lemma 4.3(1) Let us first prove the casep2 > p1. Suppose first

that w∗ > x̂. Thenx0 = w∗ and I(x0) = 0. Moreover sinceI(α+) = 0 by

Lemma 3.4(B), we can conclude thatp1 = α+. SinceJ(α+) = ∞ by Lemma

3.4(B), we havep2 > α = p1.

In the remainder of this proof we assume thatw∗ = x̂+, which implies that

I(x̂+) ≥ I(x0) by the definition of the pointx0. By their definition (Definition

4.1), the pointsp1 and p2 satisfy I(p1) = I(x0) andJ(p2) = J(x0). Adding

additional terms in these equalities we see thatp1 andp2 satisfy

∫ x̂−

p1

I ′xdx= ∆I + I(x̂+)− I(x0);
∫ x̂−

p2

J′xdx=−∆J+J(x̂+)−J(x0).
(14)

We now divide the proof into two cases according to the sign of
∫ x̂−

p2
I ′xdx.

1◦
∫ x̂−

p2
I ′xdx > 0. Using the monotonicity ofφ/ψ and the fact that

∫ x0
x̂+ I ′xdx≤ 0, we know that

∆J =
φ(x̂)
S′(x̂)

(

ĝ′(x̂+)− ĝ′(x̂−)
)

=−
∫ x̂−

p2

J′xdx−
∫ x0

x̂+
J′xdx

=
∫ x̂−

p2

φ(x)
ψ(x)

I ′xdx+
∫ x0

x̂+

φ(x)
ψ(x)

I ′xdx>
φ(x̂)
ψ(x̂)

(

∫ x̂−

p2

I ′xdx+
∫ x0

x̂+
I ′xdx

)

.
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Multiplying this expression by
ψ(x̂)
φ(x̂)

we get

∫ x̂−

p2

I ′xdx+
∫ x0

x̂+
I ′xdx<

ψ(x̂)
S′(x̂)

(

ĝ′(x̂+)− ĝ′(x̂−)
)

= ∆I =

∫ x̂−

p1

I ′xdx+
∫ x0

x̂+
I ′xdx.

In other wordsI(p2) > I(p1). SinceI ′(x) > 0 for all x< y∗ (Lemma 3.4(B)),

we havep2 > p1.

2◦
∫ x̂−

p2
I ′xdx≤ 0. This condition means thatI(x̂−) ≤ I(p2). However, it is

true thatI(x0)≤ I(x̂+)< I(x̂−) and soI(x0)< I(p2). By the definition of the

point p1, we haveI(p1) = I(x0) < I(p2). The desired resultp2 > p1 follows

now from the monotonicity of the functionI in the interval(α ,y).

(2) The proof ofq2 > q1 is analogously to part (1). Now we just use the

fact that(A − r)ĝx is negative for allx ∈ (x0,β ) and that it is positive for all

x ∈ (w∗,x0). In addition we need the facts that∞ = I(β−) > I(y∗) and that

w∗ < β .
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Abstract We study a two-sided singular control problem in a general linear dif-
fusion setting and provide a set of conditions under which an optimal control exists
uniquely and is of singular control type. Moreover, under these conditions the associ-
ated value function can be written in a quasi-explicit form. Furthermore, we investigate
comparative static properties of the solution with respect to the volatility and control
parameters. Lastly we illustrate the results with two explicit examples.

Keywords Singular stochastic control · Two-sided control · Linear diffusion

Mathematics Subject Classification (1991) 93E20 · 60J60

1 Introduction

Let (�,F ,P) be a complete probability space and F = {Ft | t < ∞} a right con-
tinuous, completed filtration. Consider the controlled process Zt = Xt + Ut − Dt

where Xt is a general, linear time homogeneous Itô diffusion on R+ := (0,∞) and
(Ut , Dt ) is a pair of F-adapted, non-decreasing cádlág processes on R+. We consider
the one-dimensional two-sided singular, or reflecting, control problem

sup
(Ut ,Dt )

Ex

⎧
⎨

⎩

ζZ∫

0

e−rsπ(Zs)ds + p

ζZ∫

0

e−rsd Ds − q

ζZ∫

0

e−rsdUs

⎫
⎬

⎭
,

where π : R+ → R is a revenue function satisfying suitable conditions (given in
Sect. 3), r > 0 and q, p ∈ R, q > p, are exogenously given constants, ζZ =inf{t ≥

P. Matomäki (B)
Department of Accounting and Finance, Turku School of Economics, University of Turku,
20014 Turku, Finland
e-mail: pjsila@utu.fi
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240 P. Matomäki

0 | Zt /∈ R+} denotes the first exit time from R+, and the supremum is taken over all
admissible controls.

In this study we give sufficient conditions under which the above mentioned prob-
lem has a unique two-sided reflecting control as an optimal control. Moreover, under
the same conditions, we see that the value function can be written in a (quasi-)explicit
form. Further, since we can identify the value function and control boundaries explic-
itly, we are also able to investigate the comparative static properties of the value
function with respect to the volatility and the control coefficients p and q.

Since the pioneering work by Bather and Chernoff (1966) appeared, singular sto-
chastic control problems have been subjected to extensive investigation due to their
applicability in various fields. These fields include for example a costly reversible
investment problem, or an irreversible one, depending whether Ut ≡ 0 or not. In these
problems the investor has a chance to purchase capital at price q and sell it with lower
price p < q. In different specific forms the irreversible case is studied for example
in Kobila (1993), Oksendal (2000), Chiarolla and Haussmann (2005) and the costly
reversible case in Abel and Eberly (1996), Guo and Pham (2005), Alvarez (2011).
Another example is an optimal dividend payments problem combined to obligative
reinvestment (see Sethi and Taksar 2002; Paulsen 2008). The company pays dividends
to the owners at rate p and on the other hand, the owners are obliged to reinvest if the
value of the income process becomes too small. Without the reinvestment possibility,
the dividend payments problem has been studied for example in Asmussen and Taksar
(2006), Højgaard and Taksar (1999), Alvarez and Virtanen (2006). Further applica-
tions include, for example, rational harvesting (see e.g. Lande et al. 1995; Lungu and
Oksendal 1997; Alvarez 2000; Alvarez and Koskela 2007), monotone fuel follower
problem (Chow et al. 1985; Jacka 2002; Bank 2005), exchange rates (Mundaca and
Oksendal 1998), inventory theory (Harrison and Taksar 1983) and controlling a dam
(Faddy 1974).

Singular stochastic control problems can be approached in different ways. The one
used also in this study is based on the theory of partial differential equations and on
variational arguments. In this approach one typically first constructs (by ad hoc meth-
ods) a solution to some necessary (e.g. Hamilton–Jacobi–Bellman) conditions and
then validates the optimality of the solution by a verification theorem (see Karatzas
1983; Shreve et al. 1984; Chow et al. 1985; Bayraktar 2008; Alvarez and Lempa
2008). Alternatively, it is also possible to rely on probabilistic methods. In Karatzas
and Shreve (1984), Karatzas (1985a), and Karatzas and Wang (2001) the existence of
an optimal control was proved by showing, leaning on a weak compactness argument,
that the optimizing sequence of the considered problem converges to an admissible
control. These two approaches could be classified as direct techniques, as the problem
is approached straightforwardly. In contrast to this, in an indirect approach the control
problem is showed to be equivalent with other type of problem and the latter one is
then solved. For example in recent studies (Guo and Tomecek 2008a,b) the authors
reveal one-to-one correspondence between a singular control and a switching prob-
lem. They then go on to use this relation in a general multidimensional case to find an
integral representation for the value function and, moreover, sufficient conditions for
the existence of an optimal control.
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On solvability of a two-sided singular control problem 241

Although singular control problems have attained lots of attention in general, theory
considering two-sided controls is not yet as vast as the theory of one-sided controls.
There are some general existence results for a two-sided control problem, e.g. Shreve
et al. (1984), Sethi and Taksar (2002), Guo and Tomecek (2008b), and Paulsen (2008),
which provide sufficient conditions or verification theorems for the solution in a gen-
eral diffusion setting. In this paper we also follow this path and give rather easily
verifiable sufficient conditions for the optimality, but in addition we can also give a
(quasi-) explicit form for the value function. To accomplish this task, we have chosen
to combine some existing techniques (from Harrison 1985; Shreve et al. 1984; Alvarez
2008; Lempa 2010) in appropriate way with the classical theory of linear diffusions
and r-excessive mappings.

More specifically, we formulate the problem in exact terms in Sect. 2, after which
we derive necessary first order optimality conditions for the two-sided singular control
in Sect. 3. In Sect. 4, we present our first result, leaning on techniques from Harrison
(1985) and Shreve et al. (1984). We prove that if the derived necessary optimality con-
ditions attain a solution, then under a set of weak assumptions this solution is unique
and the associated reflecting control is the optimal one among all admissible controls.
In Sect. 5 we will find sufficient assumptions under which the above mentioned first
order optimality conditions obtain a solution, after which it follows from the first
result that this solution must be unique. The solution to the optimality conditions is
found by using a fixed point argument, originating from Alvarez and Lempa (2008),
and Lempa (2010), which results directly into the verification of the existence of the
optimal exercise thresholds. An advantage of this approach is that it simultaneously
results into an algorithm for finding the optimal thresholds numerically as a limit of a
converging sequence.

The most important results are presented in Sect. 6, where we consider the com-
parative static properties of the value function. Previously this kind of examination
has been done with one-sided controls (e.g. Alvarez 2001), but the author is not aware
of similar treatment concerning a general two-sided control problem. We show that
the same set of sufficient assumptions as above guarantees that the value function
is unambiguously decreasing with respect to the volatility. This in turn decelerates
the usage of optimal controls by expanding the inactivity region where exerting the
optimal policy is suboptimal. These findings are in line with the previous literature
concerning one-sided policies, see e.g. Alvarez (2001). We also demonstrate the sen-
sitiveness with respect to the control parameters, and in particular that the one-sided
control problem can be attained as a special case of this two-sided problem when
p → 0 or q → ∞. Lastly, we will illustrate our results with two explicit examples in
Sect. 7.

2 Problem formulation

2.1 The underlying dynamics

Let (�,P, {Ft }t≥0,F) be a complete filtered probability space satisfying the usual
conditions (see Borodin and Salminen 2002, p. 2). We assume that the regular linear
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242 P. Matomäki

diffusion process Xt is defined on (�,P, {Ft }t≥0,F) and evolves on R+ according
to the dynamics described by the Itô stochastic differential equation

d Xt = μ(Xt )dt + σ(Xt )dWt X0 = x, (1)

where Wt denotes a standard Brownian motion. We assume that both the drift coeffi-
cient μ : R+ �→ R and the volatility coefficient σ : R+ �→ R+ are once continuously
differentiable and that σ(x) > 0 for all x ∈ (0,∞). These conditions are sufficient
for the existence of a weak solution for the stochastic differential equation (1) (cf.
(Karatzas and Shreve, 1988, Section 5.5.B–C)). Moreover, we assume that the bound-
ary ∞ is unattainable (i.e. natural or entrance-not-exit) for the process Xt and that
the boundary 0 can, in addition to being unattainable, be also attainable (i.e. exit or
regular), and that whenever 0 is regular we assume that it is killing. Further, if 0
is attainable, we assume in addition that the condition μ(0+) ≤ 0 holds. It is also
worth mentioning here that the assumption that the state space is R+ is for notational
convenience.

We define the differential operator associated to the underlying diffusion process as

A = 1
2σ

2(x)
d2

dx2 + μ(x)
d

dx
.

Let us denote, respectively, by ψ and ϕ the increasing and decreasing fundamental
solution of the ordinary differential equation (A − r)u = 0, where r > 0 is the dis-
count coefficient (for a complete characterization and basic properties of these minimal
r -excessive functions, see Borodin and Salminen 2002, pp. 18–20). We know that

BS′(x) = ψ ′(x)ϕ(x)− ϕ′(x)ψ(x), (2)

where B is the constant Wronskian of the fundamental solutions ψ and ϕ and

S′(x) = exp

⎛

⎝−
x∫

2μ(y)

σ 2(y)
dy

⎞

⎠

is the density of the scale function of Xt .
We denote by L1 the class of measurable mappings f : R+ → R satisfying the

absolute integrability condition Ex
∫∞

0 e−rs | f (Xs)|ds < ∞. For all f ∈ L1 write

(Rr f )(x) = Ex

∞∫

0

e−rs f (Xs)ds

for the expected cumulative present value of a flow f . It is known from the literature
on linear diffusion (e.g. Oksendal 2000, Proposition 4.3) that (Rr f )(x) can be also
re-expressed as
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On solvability of a two-sided singular control problem 243

(Rr f )(x) = B−1ϕ(x)

x∫

0

ψ(y) f (y)m′(y)dy

+B−1ψ(x)

∞∫

x

ϕ(y) f (y)m′(y)dy, (3)

where m′(x) = 2/(σ 2(x)S′(x)) denotes the density of the speed measure of Xt .

2.2 The control and the problem

An admissible control policy is defined as a pair of processes (Ut , Dt ) such that
both processes are non-negative, non-decreasing, right-continuous, and {Ft }-adapted.
With admissible control (Ut , Dt ), we define the associated controlled process Zt =
Xt + Ut − Dt . We associate a unit price p to the downward control Dt and a unit cost
−q to the upward control Ut . For example, in a timber harvesting example, Dt repre-
sents the cumulative harvest while Ut can be interpreted as the cumulative replanting.
In capital theoretic or natural resource management applications of singular stochastic
control, the unit price p is typically positive and the unit cost −q is negative. However,
there are cases where we may want to use negative values of p as well. For example
if we consider controlling a boat in a stormy sea, with the controls as steering left and
right, then it is sensible that both of these controls are costly, and so p < 0. So in
order to grasp the most general aspect of the problem, we only assume q > p without
specifying their signs (the opposite inequality would lead easily to an infinite value
function).

For an admissible control (U, D) our payoff function gets the form

H (U,D)(x) = Ex

⎡

⎣

ζZ∫

0

e−rs(π(Zs)ds + pd Ds − qdUs)

⎤

⎦ , (4)

where ζZ = inf{t ≥ 0 : Zt 
∈ R+} denotes the first exit time of the controlled dif-
fusion from its state space and π : R+ → R captures the state dependent cash flow
accrued from continuing operation, or it can be also interpreted as an utility function
of the controller. Our objective is to solve the problem

V (x) = sup
(U,D)

H (U,D)(x), (5)

where the supremum is taken over all admissible policies (Ut , Dt ). Our purpose is to
delineate a set of fairly general assumptions under which there exists a well-defined
and unique two-sided reflecting control policy for which the supremum (5) is attained.
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3 Assumptions and preliminary results

3.1 Barrier policy and associated value function

For two arbitrary barriers z and y satisfying the inequality 0 < z < y < ∞, we
focus on barrier policies which maintain the state between these two barriers at all
times. For given boundaries (z, y) we denote the exerted barrier policies, or reflect-
ing controls, as U z and Dy . If the initial state of the controlled process is between
the boundaries, then the barrier policy (U z, Dy) is obtained by assigning to the Xt

the two-sided regulator so that U z and Dy are continuous and increase only when
Z = z and Z = y, respectively. Thus, for x ∈ (z, y), the controlled process evolves
according to the diffusion Xt reflected at the boundaries z and y. If x > y, then we
take Dy

0 = x − y resulting into an instantaneous gain p(x − y) and apply the above
mentioned regulator to X − Dy

0 from thereon. Similarly if x < z, we exert the policy
U z

0 = z − x resulting into the instantaneous cost −q(z − x) and apply the regulator
to X + U z

0 from thereon. We shall see that the optimal control is of this class.
Next we shall write down the associated value function using the following appli-

cation of Ito’s lemma (cf. Harrison 1985, Corollary 5.2.4).

Lemma 3.1 Let f be a twice continuously differentiable function. Fix z < x < y and
consider the barrier policy (U z, Dy). Then

f (x) = Ex

⎡

⎣

∞∫

0

e−rs [(r − A) f (Zs)ds + f ′(y)d Dy
s − f ′(z)dU z

s

]

⎤

⎦ .

Proof By (generalised) Ito’s lemma

e−r t f (Zt ) = f (Z0)+
t∫

0

e−rsd f (Zs)− r

t∫

0

e−rs f (Zs)ds

= f (x)+ Mt +
t∫

0

e−rs [(A − r) f (Zs)ds − f ′(y)d Dy
s + f ′(z)dU z

s

]
,

(6)

where Mt = ∫ t
0 e−rsσ(Zs) f ′(Zs)dWs . Since z < Zs < y for all s > 0, we see that

both f (Zs) and f ′(Zs) are bounded and so limt→∞ e−r t f (Zt ) = 0 and Ex {Mt } = 0.
Therefore the claim follows by taking expectation of both sides in (6) and letting
t → ∞. ��

Fix barriers z and y, let π be an integrable and once continuously differentiable
function, and let H (z,y) be the value function associated to the barrier policy (U z, Dy).
For z < x < y we have, by definition,
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On solvability of a two-sided singular control problem 245

H (z,y)(x) = Ex

⎡

⎣

∞∫

0

e−rs (π(Zs)ds + pd Dy
s − qdU z

s

)

⎤

⎦ . (7)

Consider now the function f (x) = (Rrπ)(x) + c1ψ(x) + c2ϕ(x), where c1 =
c1(z, y) and c2 = c2(z, y) are such that f ′(z) = q and f ′(y) = p. This is a twice con-
tinuously differentiable function and consequently, by the lemma above, for x ∈ (z, y),
we have

f (x) = Ex

⎡

⎣

∞∫

0

e−rs [π(Zs)ds + pd Dy
s − qdU z

s

]

⎤

⎦ .

Comparing this to (7) we see that, for x ∈ (z, y), we must have H (z,y)(x) = f (x).
Furthermore, it is clear from the definition of barrier policy rule that for x ≥ y we
have H (z,y)(x) = p(x − y)+ H (z,y)(y), and similarly for x ≤ z we have H (z,y)(x) =
q(x −z)+ H (z,y)(z). Hence the proposed class of considered barrier policies (U z, Dy)

leads to the value function

H (z,y)(x) =
⎧
⎨

⎩

p(x − y)+ H (z,y)(y) x ≥ y,
(Rrπ)(x)+ c1(z, y)ψ(x)+ c2(z, y)ϕ(x) z < x < y,
q(x − z)+ H (z,y)(z) x ≤ z,

(8)

where the z and y-dependent factors c1 and c2 are such that

{
(Rrπ)

′(y)+ c1(z, y)ψ ′(y)+ c2(z, y)ϕ′(y) = p,
(Rrπ)

′(z)+ c1(z, y)ψ ′(z)+ c2(z, y)ϕ′(z) = q.

Notice that the value function H (z,y) is once continuously differentiable for all barriers
z < y.

3.2 The first order optimality conditions

A necessary first order condition for a pair (z, y) to be optimal is that dc1
dz = dc1

dy =
0 = dc2

dz = dc2
dy . Carrying out the computations we see that these conditions are, in

fact, equivalent to the smooth pasting requirement that the second derivative of H (z,y)

vanishes at z and y, i.e. the requirement that H (z,y) is twice continuously differentiable
everywhere. After performing the differentiations, our necessary optimality conditions
for the two-sided threshold (z∗, y∗) can be written as

{
Jq(z∗)− Jp(y∗) = 0,
Iq(z∗)− Ip(y∗) = 0,

(9)
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where, for b = p, q,

Jb(x) :=
(
(Rrπ)

′(x)− b
)
ϕ′′(x)− (Rrπ)

′′(x)ϕ′(x)
ψ ′(x)ϕ′′(x)− ϕ′(x)ψ ′′(x)

and Ib(x) :=
(
(Rrπ)

′(x)− b
)
ψ ′′(x)− (Rrπ)

′′(x)ψ ′(x)
ψ ′(x)ϕ′′(x)− ϕ′(x)ψ ′′(x)

.

(10)

If the pair of equations (9) is solvable, then the factors c1 and c2 are −Jq(z∗) and
Iq(z∗) respectively. Furthermore, provided that sufficient differentiability conditions
hold, we get by straight differentiation, and using the harmonicity of (Rrπ), ψ and ϕ,
that for b = p, q

J ′
b(x) = ϕ′(x)

(
π ′(x)+ b(μ′(x)− r)

)

r BS′(x)
= ϕ′(x)ρ′

b(x)

r BS′(x)

and I ′
b(x) = ψ ′(x)

(
π ′(x)+ b(μ′(x)− r)

)

r BS′(x)
= ψ ′(x)ρ′

b(x)

r BS′(x)
,

(11)

where ρb(x) = π(x)+ b(μ(x)− r x).

3.3 Assumptions and auxiliary results

The assumptions presented here are needed to show that the solution is unique and of
two-sided reflecting control type. So, throughout the study we will make the following
assumptions.

Assumption 3.2 For b ∈ [p, q], denote ρb(x) := π(x)+ b(μ(x)− r x). Assume that

(i) q > p,
(ii) μ(x), π(x), σ (x) ∈ C1(R+) and π(x), μ(x), x ∈ L1,

(iii) μ′(x) < r , and if 0 is attainable, then in addition μ(0+) ≤ 0 (these imply that
ψ and ϕ are convex, see Lemma 3.3 below),

(iv) for every b ∈ [p, q], there is x̃b ∈ R+ such that d
dx ρb(x) � 0 whenever x � x̃b.

Let us make a few remarks on Assumption 3.2. First the differentiability conditions
for π in Assumption (ii) could be relaxed, but it would complicate matters without
gaining any relevant extra insight.

Assumption (iii) seems a little restricting, but it is justified; in the opposite case
(μ′ > r ) we would easily end up to an infinite value function, implying an ill-posed
problem setting. Moreover, oftenμ is assumed to be Lipschitz continuous, i.e. that for
some C > 0 we have μ′ < C , and hence Assumption (iii) may be seen merely setting
an upper bound for the Lipschitz constant. One could try to relax this assumption by
assuming that μ′ > r in some bounded subset of R+, but that would complicate the
analysis and possibly lead to a peculiar behaviour (see e.g. Example 5.3 in Shreve
et al. 1984).

The three first assumptions are more or less standard assumptions, setting no strict
restrictions for the problem. It turns out that the last quasi-concavity assumption (iv),
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the only restraining assumption needed, is enough to ensure the uniqueness of a well-
defined solution (cf. Proposition 4.2 and Theorem 4.4). The function ρb(x) itself, for
b = p, q, can be seen (cf. Alvarez and Lempa 2008) to measure the expected net
return from postponing the dividend payments (or reinvestments, depending whether
b = p or q) into the future instead of paying out the dividends (or reinvesting) instan-
taneously.

We close this section by revealing vital monotonicity properties, which shall be
used later on several times.

Lemma 3.3 (A) Let Assumption 3.2 (iii) hold and assume that x ∈ L1. Then ψ and
ϕ are convex functions.

(B) Let Assumption 3.2 hold. Then
(1) for b = p, q, d

dx Jb(x) � 0, whenever x � x̃b. In addition Jp(x) > Jq(x)
for all x ∈ R+.

(2) for b = p, q, d
dx Ib(x) � 0, whenever x � x̃b. In addition Ip(x) > Iq(x) for

all x ∈ R+.

Proof See Appendix A.1. ��

4 Uniqueness and optimality of the two-sided reflecting control

4.1 Uniqueness of (z∗, y∗)

Before proving the main proposition about the uniqueness of the solution of (9) we
will show that we can restrict the examination to two disjoint sets on positive real line.

Lemma 4.1 Let Assumption 3.2 hold. Assume further that the necessary condition
(9) has a solution (z∗, y∗). Then (z∗, y∗) ∈ (0, x̃q)× (x̃ p,∞), where x̃q ≤ x̃ p are as
in Assumption 3.2(iv).

Proof To see that the inequality x̃q ≤ x̃ p holds, set x < x̃ p. Then

ρ′
q(x) = π ′(x)+ q(μ′(x)− r) ≤ π ′(x)+ p(μ′(x)− r) = ρ′

p(x) ≤ 0

by Assumption 3.2(iii) and (i). Thus by Assumption 3.2(iv) we must have x̃q ≤ x̃ p.
The rest of the proof follows that of Alvarez (2008, Theorem 4.3). For a fixed

y ∈ R+, consider the functional

L y
1(z) = Jq(z)− Jp(y).

By Lemma 3.3(B) we know that L y
1(y) < 0 and that L y

1(z) is z-decreasing on (0, x̃q)

and z-increasing on (x̃q ,∞). Thus, if there exists a root z∗
y ∈ (0, y) satisfying the

condition L y
1(z

∗
y) = 0, it has to be on the interval (0, x̃q).

Analogously, for a fixed z ∈ R+, consider the functional

Lz
2(y) = Iq(z)− Ip(y).
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By Lemma 3.3(B) we know that Lz
2(z) < 0 and that Lz

2(y) is y-decreasing on (0, x̃ p)

and y-decreasing on (x̃ p,∞). Thus, if there exists a root y∗
z ∈ (z,∞) satisfying the

condition Lz
2(y

∗
z ) = 0, it has to be on the interval (x̃ p,∞). ��

Previous lemma narrows the possible region for the optimal thresholds. We shall
use this information in next proposition, which is our main result on the uniqueness
of the solution to the necessary conditions (9).

Proposition 4.2 Let Assumption 3.2 hold. Assume further that the necessary condi-
tions (9) have a solution (z∗, y∗). Then the pair (z∗, y∗) is unique.

Proof Define a function K : (0, x̃q ] → (0, x̃q ] by K (x) = (
Ĵ−1

q ◦ Ĵp ◦ Î −1
p ◦ Îq

)
(x),

where Ĵq = Jq |(0,x̃q ], Ĵp = Jp|[x̃ p,∞), Îq = Iq |(0,x̃q ] and Î p = Ip|[x̃ p,∞).

By Lemma 3.3(B) we know that the functions Ĵb and Îb, for b = p, q, are monotonic
in their domains (0, x̃q ] and [x̃ p,∞) and therefore

K ′(x) = Ĵ−1′
q ( Ĵp( Î

−1
p ( Îq(x)))) · Ĵ ′

p( Î
−1
p ( Îq(x))) · Î −1′

p ( Îq(x)) · Î ′
q(x) > 0,

for all x ∈ (0, x̃q) and thus K is monotonically increasing.
Moreover, we see at once that if there exists a pair (z∗, y∗) satisfying the necessary

conditions (9), then z∗ must be a fixed point for K , that is K (z∗) = z∗. In order to
prove the uniqueness, it suffices to establish that K ′(z∗) < 1 for any given fixed point
z∗. Utilizing the fixed point property K (z∗) = z∗ and the monotonicity properties of
ψ ′ and ϕ′ [Lemma 3.3(A)], ordinary differentiation yields

K ′(z∗) = ψ ′(z∗)
ψ ′(y∗)

ϕ′(y∗)
ϕ′(z∗)

< 1.

This means that whenever the curve K (x) intersects the diagonal of R
2+, the intersec-

tion is from above. This observation completes the proof. ��
Thus, if the first order optimality conditions (9) attain a solution (z∗, y∗), it must

be unique under Assumption 3.2. Next we shall concentrate on the optimality of the
associated control (U z∗

, Dy∗
).

4.2 Proving the optimality of the barrier policy

The two-sided barrier policy (z∗, y∗), which satisfy the pair of equations (9), leads to
the value function [cf. (8)]

V (x) =
⎧
⎨

⎩

p(x − y∗)+ V (y∗) x ≥ y∗,
(Rrπ)(x)+ c∗

1ψ(x)+ c∗
2ϕ(x) z∗ < x < y∗,

q(x − z∗)+ V (z∗) x ≤ z∗,

where c∗
1 = −Jq(z∗) = −Jp(y∗) and c∗

2 = Iq(z∗) = Ip(y∗) with I and J as in (10).
Using the expressions c∗

1 = −Jp(y∗) and c∗
2 = Ip(y∗), applying the harmonicity of

123
132

132



On solvability of a two-sided singular control problem 249

(Rrπ), ψ and ϕ, and using the identity (2) we can calculate the limit in the boundary
y∗ to get

V (y∗−) =
(

p 2μ(y∗)
σ 2(y∗)−(Rrπ)

′′(y∗)− 2μ(y∗)
σ 2(y∗) (Rrπ)

′(y∗)+ 2r
σ 2(y∗) (Rrπ)(y∗)

)
S′(y∗)B

2r
σ 2(y∗) S′(y∗)B

= 1
r

[
pμ(y∗)+ π(y∗)

]
.

Similarly, using now the expressions c∗
1 = −Jq(z∗) and c∗

2 = Iq(z∗), we get

V (z∗+) = 1
r

[
qμ(z∗)+ π(z∗)

]
,

and so the value function can be written as

V (x) =
⎧
⎨

⎩

p(x − y∗)+ 1
r

[
pμ(y∗)+ π(y∗)

]
x ≥ y∗,

(Rrπ)(x)+ c∗
1ψ(x)+ c∗

2ϕ(x) z∗ < x < y∗,
q(x − z∗)+ 1

r

[
qμ(z∗)+ π(z∗)

]
x ≤ z∗.

(12)

To prove that the two-sided barrier control (U z∗
, Dy∗

) is the optimal control among
all admissible controls and that V (x) above is the optimal value function we shall need
the following concavity result, which is a slight modification of Shreve et al. (1984,
Lemma 4.2).

Lemma 4.3 Let Assumption 3.2 hold, let (z∗, y∗) be a solution to (9) and let V be as
in (12). Then

(A) V ′′(x) ≤ 0 for all x ∈ (z∗, y∗).
(B) V is an increasing function.

Proof See Appendix A.2. ��
Now we are ready to prove the main result about optimality of a reflecting control.

Theorem 4.4 Let Assumption 3.2 hold and assume in addition that the necessary con-
ditions (9) have a solution (z∗, y∗). Then the barrier policy (U z∗

, Dy∗
) is the unique

optimal policy to the problem (5) and the optimal value function V (x) is as in (12).

Proof Let V ∗ be the optimal value of the problem (5) and let V be as in (12). Since
V is obtained with an admissible control (U z∗

t , Dy∗
t ), we know that V ∗ ≥ V . The

following properties will be proved to be sufficient for the opposite inequality:

(i) V ∈ C2;
(ii) (A − r)V (x)+ π(x) ≤ 0 for all x ∈ R+;

(iii) p ≤ V ′(x) ≤ q for all x ∈ R+.

Let us show that V satisfies these. Firstly the case (i) is valid, since (z∗, y∗)was chosen
so that V is twice continuously differentiable. To show that (ii) hold, we get by straight
differentiation that
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(A − r)V (x)+ π(x) =
⎧
⎨

⎩

ρp(x)− ρp(y∗) if x ≥ y∗,
0 if x ∈ (z∗, y∗),
ρq(x)− ρq(z∗) if x ≤ z∗.

Here the first and the last expressions are non-positive due to Assumption 3.2(iv)
and Lemma 4.1, and thus the case (ii) follows. The case (iii) is obtained as soon as
we notice that combining the concavity of V from Lemma 4.3(A) with the fact that
V ′(z∗+) = q > p = V ′(y∗−) yields p ≤ V ′(x) ≤ q for z∗ ≤ x ≤ y∗ and that
V ′(x) = p for x > y∗ and V ′(x) = q for x < z∗.

To show that these three properties imply V ≥ V ∗, let (Ut , Dt ) be an arbitrary
admissible control, fix T < ∞ and define

U c
t = Ut −

∑

0<s≤t

	Us and Dc
t = Dt −

∑

0<s≤t

	Ds,

where 	Us = Us − Us− so that U c
t and Dc

t are the continuous parts of Ut and Dt

respectively. Letting τT = T ∧ ζZ , which is an almost surely finite stopping time, we
apply generalised Ito’s lemma to the function e−rτT V (ZτT ) to get

Ex
[
e−rτT V (ZτT )

] = V (x)+ Ex

⎡

⎣

τT∫

0

e−rs(A − r)V (Zs)ds

⎤

⎦

+Ex

⎡

⎣

τT∫

0

e−rs V ′(Zs)(dU c
s − d Dc

s )

⎤

⎦

+Ex

⎡

⎣
∑

0≤s≤τT

e−rs	V (Zs)

⎤

⎦ ,

where 	V (Zs) = V (Zs)− V (Zs−).
Let v be the value function corresponding the chosen control (Ut , Dt ). Set

vτT (x) = Ex

⎡

⎣

τT∫

0

e−rs(π(Zs)ds + pd Ds − qdUs)+ e−rτT V (ZτT )

⎤

⎦ . (13)

This is a compound policy, which follows the arbitrarily chosen policy (Ut , Dt ) until
time τT and thereafter applies the barrier policy (U z∗

, Dy∗
)with value function V (x).

Using the expression for Ex
[
e−rτT V (ZτT )

]
above and utilizing the three properties

of the function V above we can calculate that

vτT (x) = V (x)+ Ex

⎡

⎣

τT∫

0

e−rs ((A − r)V (Zs)+ π(Zs)) ds

⎤

⎦
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+Ex

⎡

⎣

τT∫

0

e−rs(V ′(Zs)− q)dU c
s

⎤

⎦

+Ex

⎡

⎣

τT∫

0

e−rs(p − V ′(Zs))d Dc
s

⎤

⎦ + Ex

⎡

⎣
∑

0≤s≤τT

	V (Zs)− q	Us + p	Ds

⎤

⎦

≤ V (x)+ Ex

⎡

⎣
∑

0≤s≤τT

	V (Zs)− q	Us + p	Ds

⎤

⎦ .

Here the last sum is non-positive: assume that 	Us > 0 and 	Ds = 0. Then
	Zs = 	Us and

	V (Zs)− q	Us + p	Ds

= V (Zs)− V (Zs −	Us)− q	Us ≤ q	Us − q	Us = 0,

where the inequality follows from the fact that V ′(x) ≤ q for all x > 0. Similar
arguments apply to the case, where 	Us = 0 and 	Ds > 0 as well as to the case
	Us > 0 and	Ds>0. In every case vτT (x) ≤ V (x). As V (x) is bounded from below,
limT →∞ e−rT V (ZT ) ≥ 0. Letting T → ∞ in (13) we see that v(x) ≤ vτT (x) ≤ V (x)
for all admissible policies (Ut , Dt ). Therefore also V ∗ ≤ V . Lastly, the uniqueness
follows from Proposition 4.2.

The argument in the proof has been used for example in Harrison (1985, Chapter 6),
where it is called a policy improvement logic. The theorem itself confirms that if we
have already found a solution satisfying the first order optimality conditions (9), then
fairly weak conditions ensure it to be unique and the corresponding control to be
optimal for the problem (5) and the value function can be written explicitly as in
(12). All in all, this is a pleasant result for the applications, since often if a solution
to the necessary conditions (9) exists, it can be found numerically without too much
difficulty.

Moreover we have seen in Lemma 4.3 that under Assumption 3.2 the marginal
value V ′(x) is positive but diminishing everywhere. This generalises the known result
from one-sided control, e.g. (Alvarez, 2001, Theorem 5), to two-sided ones.

A connection to the Dynkin game is also worth mentioning. There is a strong con-
nection between one-sided singular control and optimal stopping, which is known
already from the pioneering work (Bather and Chernoff 1966). It says that a derivative
of the value function of a one-sided control problem constitutes the value function
of an associated optimal stopping problem, see also Karatzas and Shreve (1984) and
Karatzas (1985b) and Alvarez (2001). The two-sided control problem, like ours, is
in turn known to have a similar connection with an associated two-player optimal
stopping game known as a Dynkin game, see for example Karatzas and Wang (2001)
and Boetius (2005).
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5 Sufficient conditions for the solution

5.1 Assumptions and auxiliary results

Although one could try to find numerically the solution to the necessary conditions (9),
we are nevertheless in a state of uncertainty whether there does exist a solution or not.
To make things clearer, in this section we shall provide a set of sufficient conditions
under which there exists a unique pair (z∗, y∗) satisfying the first order optimality
conditions (9). These conditions are summarised in the following.

Assumption 5.1 Assume that Assumption 3.2 hold, that the boundaries 0 and ∞ are
natural and in addition that for b = p, q

(v) ρb(∞) = −∞ and that ρ′
b(0+) > 0

(vi) limx↓0 − ∫ x̃b
x ϕ′(t)/S′(t)dt = ∞.

Basically all these additional assumptions aim to dictate the boundary behaviour
of the auxiliary functions I and J , so that we can be sure they intersect each other. Of
these assumptions, especially (vi) seems a bit bizarre and hard to verify, but it has a
clear interpretation; the assumption that 0 is natural means that it is also not-entrance,
implying that the scale derivative −ϕ′(x)/S′(x) approaches infinity as x tends to zero.
Now, Assumption (vi) requires the scale derivative to be even steeper at zero, namely
that also the integral − ∫ x̃b

x ϕ′(t)/S′(t)dt approaches infinity as x tends to zero. So
loosely speaking one could say that Assumption (vi) makes zero even more forbidden
entrance than the naturality assumption of the boundary. Since this assumption can
be troublesome to verify, we shall give in Lemma 5.2 below two different conditions
which imply the assumption. Before that we need to introduce the associated diffusion

d X̂t = (μ(X̂t )+ σ ′(X̂t )σ (X̂t ))dt + σ(X̂t )dWt ,

with killing rate r−μ′(x). (Its infinitesimal generator Â−(
r − μ′(x)

) = 1
2σ

2(x) d2

dx2 +
(
μ(x)+ σ ′(x)σ (x)

) d
dx − (

r − μ′(x)
)

is got by differentiating the generator A − r .)

Lemma 5.2 Assume that either

(A) μ′(x)< r for all x ≥ 0,μ is concave near zero, and the boundary 0 is not-entrance
for the associated diffusion X̂t ; or

(B) ψ ′(0) = 0 and (Rr id)′(0+) > 0.

Then limx↓0 − ∫ x̃b
x ϕ′(t)/S′(t)dt = ∞ for b = p, q.

Proof See Appendix A.3. ��
In previous lemma the condition (A) can be checked from initial functions, while
condition (B) can be convenient, if ψ and (Rr id) can be calculated explicitly. Moving
on, in the following lemma we see that I and J from (10) can be written in a tidy
integral form.
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Lemma 5.3 Let Assumption 5.1 hold. Then, for b = p, q, the functions I and J from
(10) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jb(x) = − 1

B

⎛

⎝

∞∫

x

ϕt (ρb(x)− ρb(t))m
′
t dt

⎞

⎠

Ib(x) = 1

B

⎛

⎝

x∫

0

ψt (ρb(x)− ρb(t))m
′
t dt

⎞

⎠

Proof See Appendix A.4 ��
We have previously proved (Lemma 3.3) that these auxiliary functions satisfy cer-

tain monotonicity properties, which were adequate for the uniqueness of a solution.
But for the existence we also need to know something about their boundary behaviour.

Lemma 5.4 Let Assumption 5.1 hold. Then

(A) for b = p, q, Jb(0+) = ∞ and Jb(∞) ≤ 0.
(B) for b = p, q, Ib(0+) ≥ 0 and Ib(∞) < 0.

Proof See Appendix A.5. ��

5.2 Proving the existence of (z∗, y∗)

We already know from Lemma 4.1 that if there exists a pair (z∗, y∗) satisfying the con-
dition (9), then it must be in the set (0, x̃q)× (x̃ p,∞). Now with stricter assumptions,
we can shrink this acceptable set into a bounded set.

Lemma 5.5 Let Assumption 5.1 hold. Assume further that the necessary conditions
(9) have a solution (z∗, y∗). Then (z∗, y∗) ∈ (x J

q , x̃q)× (x̃ p, x I
p), where x J

q , x I
p ∈ R+

are the unique interior points for which Jq(x J
q ) = 0 and Ip(x I

p) = 0 and x̃q , x̃ p are
as in Assumption 3.2(iv).

Proof The proof follows that of Theorem 4.3 in Alvarez (2008). From Lemma 5.4
we get Jb(0+) > 0 and Jb(∞)≤ 0 for b = p, q. Combining these facts with the
monotonicity properties (Lemma 3.3) we see that there must exist a unique x J

b < x̃b

such that Jb(x) � 0 for all x � x J
b . Especially we see that Jb(x) < 0 for all x > x̃b.

Analogously we see that there exists a unique x I
b > x̃b such that Ib(x) � 0 for all

x � x I
b , and especially that Ib(x) > 0 for all x < x̃b.

To prove the new lower boundary for z∗, we notice first that by Lemma 4.1 we
have y∗ > x̃ p, and thus, since z∗ satisfies (9), using the sign results above we get
Jq(z∗) = Jp(y∗) < 0. Moreover utilizing the sign results above once more we get
z∗ > x J

q . The new upper boundary for y∗ follows similarly.

So the possible region for optimal thresholds is narrowed to a compact region. This
information is useful in next theorem, which is our main result on the solvability of
the necessary conditions (9).
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Theorem 5.6 Let Assumption 5.1 hold. Then there exists a unique pair (z∗, y∗) sat-
isfying the first order optimality conditions (9).

Proof As in proof of Proposition 4.2, define a function K : [x J
q , x̃q ] → [x J

q , x̃q ] by

K (x) = (
Ĵ−1

q ◦ Ĵp ◦ Î −1
p ◦ Îq

)
(x),where Ĵq = Jq |(0,x̃q ], Ĵp = Jp|[x̃ p,∞), Îq = Iq |(0,x̃q ]

and Î p = Ip|[x̃ p,∞). As before, we notice that K is increasing. Notice that now the
domain of K is different.

To ensure that K is well defined, we will show that the endpoints x J
q , x̃q are mapped

into the domain of K . Firstly 0 < x J
q < x̃q , and so Iq(x J

q ) > 0. Since Ip(x) > Iq(x)

for all x ∈ R+, there exists a point s1 ∈ (x̃ p, x I
p) such that Ip(s1) = Iq(x J

q ). Moreover,
Jp(s1) < 0 and since Jp(x) > Jq(x) for all x ∈ R+, there exists a point s2 ∈ (x J

q , x̃q)

such that Jp(s1) = Jq(s2), so especially K (x J
q ) = s2 ∈ (x J

q , x̃q). For the upper end-
point, since Ip(x) > Iq(x) for all x ∈ R+, we know that there exists t1 ∈ (x̃ p, x I

p)

such that Ip(t1) = Iq(x̃q). Reasoning as above, we get that there exists t2 ∈ (x J
q , x̃q)

such that Jp(t1) = Jq(t2) so in particularly K (x̃q) = t2 ∈ (x J
q , x̃q) and K is well

defined.
Let us define a sequence zn = K n(x J

q )(= (K ◦ · · · ◦ K )(x J
q )). This sequence con-

verges by induction: It is clear that z1 = K (z0) > z0. Because K is an increasing
function, we have K

(
K (z0)

)
> K (z0). By induction K n(z0) > K n−1(z0). Since the

sequence zn is increasing and bounded from above, it converges.
Writing z∗ = limn→∞ zn , we see that z∗ is the fixed point of the function K .

Defining y∗ = Ĵ−1
p ( Ĵq(z∗))(= Î −1

p ( Îq(z∗))), we get a pair (z∗, y∗) that satisfies
the necessary conditions (9). The uniqueness of such a pair follows directly from
Proposition 4.2. ��

In the previous theorem we saw that under Assumption 5.1 the unique pair (z∗, y∗)
satisfying (9) always exists. Furthermore we saw how it can be found when it is
identified as a fixed point. Analogous fixed point argument is used also in Alvarez
and Lempa (2008) in an impulse control situation and in Lempa (2010) in a tradi-
tional optimal stopping situation. Theorem 5.6 also shows how we can find the pair
(z∗, y∗) numerically. First we identify the point x J

q . After that, we apply the function

K (x) = (
Ĵ−1

q ◦ Ĵp ◦ Î −1
p ◦ Îq

)
(x) to that point (actually any point in (0, x J

q ] will do)
and calculate K k(x J

q ), where we might for example set a stopping limit ε > 0 and
stop at the first step step k, for which |K k(x J

q )− K k−1(x J
q )| < ε. After this we have

z∗ ≈ K k(x J
q ) and y∗ ≈ J−1

2 (J1(K k(x J
q ))).

6 Comparative analysis

Let us next study the sensitiveness of the value function and the optimal barriers, firstly
and most importantly with respect to the volatility, and secondly with respect to the
control parameters. We shall also compare the differences between the solutions of
two-sided and one-sided control problems.
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6.1 Volatility sensitiveness

Our main results on the effect of the increased volatility are summarised in the
following.

Theorem 6.1 Let Assumption 3.2 hold and let (z∗, y∗) be a solution to (9). Then

(A) V (x) is non-increasing in σ .
(B) if we assume further that the inequalities concerning ρ′

b in Assumption 3.2(iv)
are strict, the inactivity region (z∗, y∗) widens as σ increases.

Proof Let σ̂ (x) ≥ σ(x) for all x ≥ 0 and let Â = 1
2 σ̂

2(x) d2

dx2 +μ(x) d
dx be the infin-

itesimal generator, V̂ the optimal value function and (ẑ∗, ŷ∗) the optimal inactivity
region with respect to the volatility σ̂ .

(A) We have

(Â − r)V (x)+ π(x) =
⎧
⎨

⎩

ρp(x)− ρp(y∗) ≤ 0 if x ≥ y∗
1
2

(
σ̂ 2(x)− σ 2(x)

)
V ′′(x) ≤ 0 if x ∈ (z∗, y∗)

ρq(x)− ρq(z∗) ≤ 0 if x ≤ z∗,

the first and the last expressions being non-positive due to Assumption 3.2(iv) and
the middle expression due to the concavity of V (Lemma 4.3). Hence V satisfies the
property (ii) in the proof of Theorem 4.4 with respect to σ̂ , while the properties (i)
and (iii) can be handled as previously. Therefore analysis similar to that in the proof
of Theorem 4.4 shows that V ≥ V̂ .

(B) Let us first prove the ordering for the lower boundaries. Suppose, contrary to
our claim, that z∗ < ẑ∗. Now from the value function expression (12) we see that

V (z∗) = 1

r
ρq(z

∗)+qz∗ < 1

r
ρq(ẑ

∗)+qz∗ = V̂ (z∗)−q(z∗−ẑ∗)+q(z∗−ẑ∗) = V̂ (z∗),

where the inequality follow from strict inequality in Assumption 3.2(iv). This con-
tradicts the fact V ≥ V̂ (item (A)). The same reasoning applies also to the case
y∗ < ŷ∗. ��

According to our theorem, increased volatility affects negatively both the opti-
mal policy and its value. Put differently, our theorem shows that increased volatility
expands the inactivity region and postpones the usage of singular policies by decreas-
ing the marginal value of the optimal policy. This result generalises previous findings
based on one-sided policies (e.g. Theorem 6 in Alvarez 2001) to a two-sided setting.

6.2 Comparing the two-sided and one-sided solutions

It is also of interest to study the relationship between two-sided and one-sided con-
trols. Obviously, since not using a control is an admissible control, the optimal value
function is greater in the two-sided case. But are the reflected barriers from these two
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problems ordered consistently, and if so, how? To this end let Assumption 5.1 hold
and let (z∗, y∗) be the optimal reflecting barriers in two-sided control problem.

Consider first the case where the dynamics are controlled only downwards, so that
Z = X−D. In that case the value reads as supD Ex

∫ ζZ
0 e−rs

(
π(Zs)ds+pd Ds

)
. Under

Assumption 5.1 this one-sided control problem is known to have solution (actually,
weaker assumptions are sufficient, see Lemma 3.4 in Alvarez and Lempa 2008) and
the optimal control is reflecting control with the reflecting barrier at x I

p (the unique
point for which Ip(x I

p) = 0, cf. Lemma 5.5), and we know from Lemma 5.5 that
y∗ < x I

p. So, in the harvest example, in the absence of a replanting opportunity we
harvest later.

Similarly, consider the case where the dynamics are controlled only upwards, so
that Z = X + U . In this case the value reads as supU Ex

∫ ζZ
0 e−rs

(
π(Zs)ds − qdUs

)
.

Going through the reasoning in Alvarez and Lempa (2008), one could verify that under
Assumption 5.1 this one-sided control problem has a solution, where the optimal con-
trol is a reflecting control with the reflecting barrier at x J

q (the unique point for which
Jq(x J

q ) = 0, cf. Lemma 5.5), and from Lemma 5.5 we know that z∗ > x J
q . Now, in a

dividend payments problem with obligative reinvestment example, in the absence of
dividend payments we reinvest later.

6.3 Sensitiveness on control parameters

Next we shall consider the sensitiveness with respect to the control parameters p and
q in the following two propositions.

Proposition 6.2 Let Assumption 5.1 hold. Then

(A) V (x) is p-increasing and q-decreasing.
(B) the inactivity region (z∗, y∗) shrinks as p increases and widens as q increases.

Proof Fix p1 < p2(< q) and let Vi (x) := V (x; pi ) and (z∗
i , y∗

i ) be the value function
and optimal reflecting barriers, respectively, with respect to pi .

(A) We see that

V1(x) = Ex

⎡

⎣

∞∫

0

e−r t (π(Zt )dt + p1d D
y∗

1
t − qdU

z∗
1

t )

⎤

⎦

≤ Ex

⎡

⎣

∞∫

0

e−r t (π(Zt )dt + p2d D
y∗

1
t − qdU

z∗
1

t )

⎤

⎦

≤ sup
(D,U )

Ex

⎡

⎣

∞∫

0

e−r t (π(Zt )dt + p2d Dt − qdUt )

⎤

⎦ = V2(x).

Proving that V (x; q2) ≤ V (x; q1) for all q2 > q1 is analogous.
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(B) Let us first study the sensitiveness with respect to p. Fix again p1 < p2(< q)
and let (z∗

i , y∗
i ) be the optimal reflecting barriers with respect to pi . Furthermore

let Ki (x) = (
Ĵ−1

q ◦ Ĵpi ◦ Î −1
pi

◦ Îq
)
(x), for i = 1, 2, be as in Theorem 5.6. Since

ψ ′′, ϕ′′ > 0 by Lemma 3.3(A) we can use the expression (10) to obtain inequali-
ties Ip2(x) < Ip1(x) and Jp2(x) < Jp1(x). Combining these with the monotonicity
properties of Ĵ and Î yields

Î −1
p1
( Îq(z

∗
1)) > Î −1

p2
( Îq(z

∗
1))

�⇒ Ĵp1( Î
−1
p1
( Îq(z

∗
1))) > Ĵp1( Î

−1
p2
( Îq(z

∗
1))) > Ĵp2( Î

−1
p2
( Îq(z

∗
1)))

�⇒ Ĵ−1
q ( Ĵp1( Î

−1
p1
( Îq(z

∗
1)))) < Ĵ−1

q ( Ĵp2( Î
−1
p2
( Îq(z

∗
1)))),

where all the inequalities are strict. In other words K2(z∗
1) > K1(z∗

1) = z∗
1. Now pro-

ceeding as in the proof of Theorem 5.6, we can deduce that as a limit of an increasing
sequence z∗

2 = limn→∞ K n
2 (z

∗
1)
( = (K2 ◦ · · · ◦ K2)(z∗

1)
)
> z∗

1. Moreover by the

monotonicity of functions Î we get

y∗
1 = Î −1

p1
( Îq(z

∗
1)) > Î −1

p2
( Îq(z

∗
1)) > Î −1

p2
( Îq(z

∗
2)) = y∗

2 .

Let us then consider the sensitiveness with respect to q. Same arguments as above
with slight changes applies to this case. Fix q2 > q1 and let (z∗

i , y∗
i ) be the opti-

mal continuation region with respect to qi . Now we need to define functions Hi :
[x̃ p, x I

p) → [x̃ p, x I
p) (for the definitions of x̃ p and x I

p see Lemma 5.5) as Hi (y) =
( Î −1

p ◦ Îqi ◦ Ĵ−1
qi

◦ Ĵp)(y), for i = 1, 2, so that H1(y∗
1 ) = y∗

1 . Reasoning as above we
can deduce that H2(y∗

1 ) > y∗
1 . Now Hn

2 (y
∗
1 ) is an bounded increasing sequence and

therefore y∗
2 = limn→∞ Hn

2 (y
∗
1 ) > y∗

1 . Lastly by monotonicity of functions Ĵ we get

z∗
1 = Ĵ−1

q1
( Ĵp(y

∗
1 )) > Ĵ−1

q2
( Ĵp(y

∗
1 )) > Ĵ−1

q2
( Ĵp(y

∗
2 )) = z∗

2.

��
Proposition 6.2 verifies intuitively clear facts: increasing the income (p) from using

an upper barrier, the value is understandably also increasing and the controller is
encouraged to use the controls, thus the inactivity region is narrowing. The contrary
is true when the cost q of using control at the lower barrier is increased.

Subsequent questions are the limiting properties, which are considered in the
following.

Proposition 6.3 Let Assumption 5.1 hold. Then

(A) z∗ ↘ 0 and y∗ ↗ x I
p as q ↗ ∞;

(B) if in addition π is increasing, we have z∗ ↘ x J
q and y∗ ↗ ∞ as p ↘ 0

(C) the inactivity region (z∗, y∗) shrinks arbitrary small as q − p ↘ 0. Moreover
x̃ p − x̃q ↘ 0 and z∗ ↗ x̃q , y∗ ↘ x̃q and the value function approaches, from
below, a function q(x − x̃q)+ 1

r

(
qμ(x̃q)+ π(x̃q)

)
.
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(D) if in addition π is increasing, we have (z∗, y∗) ↘ (0, 0) as q, p → ∞ and
(z∗, y∗) ↗ (∞,∞) as q, p → 0.

Proof (A) Let q1 < q2. Then

ρ′
q1
(x) = π ′(x)+ q1(μ

′(x)− r) > π ′(x)+ q2(μ
′(x)− r) = ρ′

q2
(x).

Therefore we can deduce that x̃q1 > x̃q2 . Now ρ′∞(x) = −∞ for all x > 0, and so
limq→∞ x̃q = 0. By Lemma 4.1 we know that z∗ < x̃q , and therefore we can conclude
that z∗ → 0 as q → ∞.

Since zero was assumed to be natural, the process never reaches the state 0, and it
follows that U z∗

t = U 0
t ≡ 0 as q → ∞. And so, when q → ∞, the problem reduces to

sup
D

Ex

ζZ∫

0

e−rs (π(Zs)ds + pd Ds) .

But this is the one-sided control problem introduced in Sect. 6.2, and its optimal

policy is known to be D
x I

p
t (see Lemma 3.4 in Alvarez and Lempa (2008)), and so

limq→∞ y∗ = x I
p. Moreover, from Lemma 5.5 we know that y∗ < x I

p for all q, and
so the convergence must be from below.

(B) Let 0 < p1 < p2. Then

ρ′
p2
(x) = π ′(x)+ p2(μ

′(x)− r) < π ′(x)+ p1(μ
′(x)− r) = ρ′

p1
(x).

Therefore we can deduce that x̃ p1 > x̃ p2 , and this holds for all π(x). Now if π is
increasing, then ρ′

0(x) = π ′(x) ≥ 0 for all x > 0, and so lim p→0 x̃ p = ∞. And since
y∗ > x̃ p (by Lemma 5.5), the rest of the reasoning is similar to the one in (A).

(C) First of all, Proposition 6.2(B) implies that the inactivity region (z∗, y∗) shrinks
as q − p ↘ 0. Moreover, above we saw that x̃q is decreasing in q and x̃ p is increasing
in p. Furthermore, since ρb(x) is b-continuous, it is clear that as q − p ↘ 0, we get
in fact x̃ p − x̃q ↘ 0 (x̃ p ≥ x̃q always by Lemma 4.1).

Without lost of generality, we from now on fix q and let p approach q. For all p < q
we know from Theorem 5.6 that there exist z∗(p) < x̃q and y∗(p) > x̃q . Further,
z∗(p) is p-increasing and y∗(p) is p-decreasing by Proposition 6.2(B). Moreover
from the proof of Proposition 6.2(B) we see that z∗(p) is p-continuous, since the
functions Ib, Jb, I −1

b , J−1
b , for b = p, q, are. Similarly also y∗(p) is p-continuous.

It follows that there exist Z∗ = lim p↗q z∗(p) and Y ∗ = lim p↗q y∗(p), which
satisfy the fixed point properties in the proof of Theorem 5.6 at the limit p ↗ q; i.e.
properties K (Z∗) = Z∗, Y ∗ = (I −1

q |[x̃q ,∞) ◦ Iq |[x J
q ,x̃q ])(Z∗) and K ′(Z∗) < 1. But

now since the pair (x̃q , x̃q) also satisfies these properties at the limit p ↗ q, and the
fixed point is unique, we must have (Z∗,Y ∗) = (x̃q , x̃q).

The value V (x) is p-increasing by Proposition 6.2(A). Moreover, from the value
function expression (12), we see that since z∗, y∗ → x̃q as p → q, we have limit
lim p→q V (x) = q(x − x̃q)+ 1

r

(
qμ(x̃q)+ π(x̃q)

)
for x ≥ y∗ and x ≤ z∗. And since

z∗ − y∗ → 0, as p → q, this expression holds everywhere.
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(D) Consider first the case q, p → ∞. We have already shown that z∗ ↘ 0 as
q → ∞, so we are left to prove that y∗ ↘ 0 as p → ∞. Since y∗ < x I

p (by
Lemma 5.5), it is sufficient to show that lim p→∞ x I

p = 0. Now

Ip(x) = 1

B

x∫

0

ψt (ρp(x)− ρp(t))m
′
t dt,

and since lim p→∞ x̃ p = 0, we know that ρp(x)−ρp(t) < 0 for all t < x as p → ∞.
Hence Ip(x) < 0 for all x > 0 at the limit p → ∞. Consequently x I

p → 0.
Let us then turn to the case q, p → 0. We already know that lim p→0 y∗ = ∞, and

thus it remains to prove that limq→0 z∗ = ∞. Since z∗ > x J
q (by Lemma 5.5), it is

sufficient to show that limq→0 x J
q = ∞. Now

Jq(x) = − 1

B

∞∫

x

ϕt (ρq(x)− ρq(t))m
′
t dt,

and since limq→0 x̃q → ∞, we know that ρq(x)− ρq(t) < 0 for all t > x as q → 0.
Hence Jq(x) > 0 for all x > 0 at the limit q → 0, and consequently x J

p → ∞.

In Proposition 6.3(A)–(B) we see that at the limits q → ∞ and p → 0 we get
the solutions of the associated one-sided control problems (cf. Sect. 6.2), so that the
theory presented in this paper can be seen as a natural generalisation of the one-sided
problem. Moreover, we see that the upper boundary x I

p is approached from below and
the lower boundary x J

q from above. It is also worth stressing that in Proposition 6.3(B)
the requirement that π is increasing is necessary; we shall see an example in Sect. 7.2
where a concave revenue function π enables the upper threshold y∗ to be finite even
with negative values of p.

From case (C) we see that as p and q approach each other, the inactivity region
(z∗, y∗) becomes arbitrarily small. Noteworthy is that, although technically at the
limit p ↗ q we get reflecting barriers (z∗, y∗) = (x̃q , x̃q), the corresponding pair of
controls (U x̃q , Dx̃q ) are no longer admissible policies.

In the last case (D) we see that when both control parameters are set to the same
limit, either 0 or ∞, we, respectively, either raise both of the thresholds z∗ and y∗
up toward infinity, or lower them down toward zero. Noteworthy is that in the limit
neither the control U∞ nor D0 are admissible, since they usher the diffusion to the
state ∞ or 0, respectively, which are not in the state space.

6.4 Stationary distribution

The controlled process Zt = Xt + U z∗
t − Dy∗

t is well defined on the finite interval

[z∗, y∗], and so it follows that M := m(z∗, y∗) = ∫ y∗
z∗ m′(u)du < ∞. Moreover,

since the boundaries of the controlled process are reflecting, we can define a station-
ary probability distribution for controlled process Zt as η(x) := m′(x)/M . Now, for
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every Borel-measurable bounded function f : [z∗, y∗] → R we have (see Borodin
and Salminen 2002, p. 37)

lim
t→∞ Ex [ f (Zt )] =

y∗
∫

x∗
f (u)η(u)du.

7 Examples

7.1 Geometric Brownian motion

To illustrate our results explicitly, assume that the underlying uncontrolled diffusion
evolves as geometric Brownian motion, i.e.

d X (t) = μX (t)dt + σ X (t)dW (t),

where σ ∈ R+, μ ∈ (−∞, r) are exogenously given constants. Furthermore, assume
that the revenue flow is π(x) = xa − c, with a ∈ (0, 1) and c ∈ R, so that

(Rrπ)(x) = xa

r + 1
2σ

2
(
a − a2

) − aμ
− c

r
.

It is worth mentioning that with linear payoff function (a = 1), there would not emerge
a two-sided reflecting barrier as an optimal rule due to invalidity of Assumption 3.2(iv).
Furthermore let us still assume that q > p.

With geometric Brownian motion our fundamental solutions of the ordinary differ-
ential equation (A − r)u = 0 are ψ(x) = xγ

+
and ϕ(x) = xγ

−
, where

γ± = 1

σ 2

(
1
2σ

2 − μ±
√

( 1
2σ

2 − μ)2 + 2σ 2r

)

(14)

are the solutions of the characteristic equation 1
2σ

2γ (γ −1)+μγ −r = 0. Especially
we see that γ+ > 1 since μ < r .

7.1.1 Solution to the problem

Let us check that this setup satisfies Assumption 5.1. Now the boundaries are natural
and Assumption (i) is already assumed to hold, and clearly conditions in (ii) are sat-
isfied. Furthermore, we assumed μ < r and so (iii) holds. By straight differentiation
ρ′

b(x) = axa−1 + b(µ − r), which satisfies assumption (iv) since 0 < a < 1. Fur-
thermore ρ′

b(0+) = ∞ and ρb(∞) = −∞, thus (v) is valid. Lastly ψ ′(0) = 0 since
γ+ > 1, and (Rr id)(x) = x/(r − μ) so that (Rr id)′(0) > 0 and therefore we can
conclude by Lemma 5.2 that also Assumption (vi) is valid.

Hence the results from Sect. 5 can be applied, so especially the optimal solution
to (5) is a two-sided reflected control. The optimal reflecting barriers (z∗, y∗) are the
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Fig. 1 Optimal value function
for a control problem, dashed
lines are tangents at the points
z∗ and y∗

unique solution to the necessary conditions (9), which can now be written as

{
z−γ− [

2aza(a − γ−)+ Aqz(γ− − 1)
] = y−γ+ [

2aya(a − γ−)+ Apy(γ− − 1)
]

z−γ− [
2aza(a − γ+)+ Aqz(γ+ − 1)

] = y−γ− [
2aya(a − γ+)+ Apy(γ+ − 1)

]
,

where A = 2r + a(σ 2(1 − a) − 2μ). Unfortunately this seems impossible to solve
explicitly, but we shall illustrate the optimal barriers numerically below.

With optimal barriers, the value function gets the form

V (x) =

⎧
⎪⎨

⎪⎩

p(x − y∗)+ 1
r

[
pμy∗ + y∗a − b)

]
x ≥ y∗,

xa

r+ 1
2 σ

2(a−a2)−aμ
− c

r − Jq(z∗)xγ+ + Iq(z∗)xγ−
z∗ < x < y∗,

q(x − z∗)+ 1
r

[
qμz∗ + z∗a − b

]
x ≤ z∗,

where Jq and Iq are as in (10).

7.1.2 Numerical illustration

Let us illustrate numerically the results under the parameter configuration μ = 0.05,
σ = 0.2 r = 0.08, a = 1/3, c = 1, p = 3 and q = 10. With these choices
(z∗, y∗) ≈ (0.28, 9.45), and the value function is drawn in Fig. 1. As was shown in
Lemma 4.3, V (x) is concave.

In Fig. 2 we see how the thresholds are altered, when we change parameter values.
By increasing a we increase the payoff function π (for x > 1), so that it is sensible
that the upper barrier y∗ increases. As was proved in Theorem 6.1, higher volatility
(σ ) leads to a wider inactivity region. Moreover the impact of a change in p and q
affects as proved in Propositions 6.2 and 6.3 (now (x J

q , x̃q , x I
p) ≈ (0.26, 1.17, 9.453)).

What is not seen from those propositions though, is the exceptional rapid widening
of the interval (z∗, y∗) with respect to q, when q is near p: With p = q = 3, we
have z∗ = y∗, but already with q = 3.02, we have y∗ − z∗ ≈ 3.0 and with q = 3.1,
y∗ − z∗ ≈ 4.8. Consequently q reaches its upper barrier x I

p rather quickly. On the
other hand, a change in p does not affect the boundaries so strongly. This suggests that
the optimal policy is more sensitive with respect to changes in costs than in revenues.
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(a) (b)

(c) (d)

Fig. 2 Sensitivity of the inactivity region with respect to the parameters a a; b σ ; c p; d q

Furthermore now m′(x) = 2
σ 2 x

2
(
μ

σ2 −1
)

. Thus, if μ 
= 1
2σ

2, the stationary proba-
bility distribution is

η(x) = 2μ− σ 2

σ 2

(

y∗ 2μ
σ2 −1 − z∗ 2μ

σ2 −1
) x

2
(
μ

σ2 −1
)

.

Using Sect. 6.4, we can calculate that, with the chosen numerical values,
limt→∞ E [Zt ] = 5.70 (the midpoint of the interval (z∗, y∗) is 4.9), and that the vari-
ance of the long run stationary state is limt→∞ Var(Zt ) = 6.00. Moreover, choosing
A = [6.4, y∗] (the upper third of the interval [z∗, y∗]), we get limt→∞ E [1A(Zt )] =
limt→∞ P (Zt ∈ A) = 0.45. All this advocates that, in the long run, the controlled
process spends more time near the upper threshold y∗ than near the lower threshold
z∗.

7.2 Mean reverting diffusion

As a slightly more challenging setting, consider that without a control the underlying
diffusion Xt follows a mean reverting diffusion:

d Xt = μXt (1 − βXt )dt + σ Xt dWt , X0 = x,

where μ > 0 is exogenous constant and β > 0 is the degree of the mean-reversion
and σ > 0 is the volatility coefficient. In this subsection we shall demonstrate a case,
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where the “gain” p from downward control can also be negative. An example, where
this kind of behaviour might arouse is the following.

Let us consider a house owner who wants to control the inside temperature of her
home and dislikes both cold and hot temperature, so that her temperature dependent
utility function, represented byπ , is a concave function. The house owner can naturally
control the temperature of her home either by heating or cooling, by paying a fixed
cost q and p for it, respectively. Since both heating and cooling are costly operations,
we must have q > 0 > p.

To carry on to a more specific analysis, fix q > 0 > p and the utility function
π(x) = −x2 + ax , where a > 0 is an exogenously given constant. Let us next check
that this structure satisfies Assumption 5.1(i)–(vi). We notice that Assumption (i) is
already assumed and that the smoothness conditions in Assumption (ii) are valid. To
see that the integrability Assumption (ii) holds, observe first that by Itô’s Lemma

X2
t = x2 +

t∫

0

2
(
σ 2 + μ (1 − βXs)

)
X2

s ds +
t∫

0

2σ X2
s dWs .

It is now straightforward to show that

2
(
σ 2 + μ (1 − βXs)

)
X2

s ≤ 2(σ 2 + μ)

3μβ
, and thus Ex [X2

t ] ≤ x2 + 2(σ 2 + μ)t

3μβ
.

Thus, it follows that Ex
∫∞

0 e−r t X2
t dt = ∫∞

0 e−r t
Ex

[
X2

t

]
dt < ∞, and consequently

π,μ(x), x ∈ L1 and assumption (ii) holds.
By straight calculations, Assumption (iii)–(v) hold under the sufficient conditions

μ < r , q < a
r−μ and p> − 1

μβ
. Finally, since Assumption (iii) is valid and the drift

μx(1 − βx) is concave, the last Assumption (vi) follows from Lemma 5.2 if 0 is
non-entrance for the associated diffusion X̂t , which in this case is

d X̂t = (μ(1 − β X̂t )+ σ 2)X̂t dt + σ X̂t dWt

and we observe that 0 is non-entrance for it.
It follows that under the above mentioned conditions, the results from Sect. 5 can

be applied. Unfortunately, due to complicated nature of ψ and ϕ in this case (see
Section 6.5 in Dayanik and Karatzas 2003), we cannot solve explicitly any results, but
an illustrative numerical solution is seen in Fig. 3.

Furthermore, in this case the speed density is

m′(x) = 2

σ 2 x
2
(
μ

σ2 −1
)

e− 2μβ
σ2 x

,
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Fig. 3 A numerical illustration
of the solution to (5) with the
mean reverting set up,
introduced above, with the
parameter configuration
μ = 0.04, β = 0.05, σ = 0.3,
r = 0.08, a = 10, q = 4 and
p = −2

and thus the stable stationary distribution on (z∗, y∗) is

η(x) = x
2
(
μ

σ2 −1
)

e− 2μβ
σ2 x

(
σ 2

2μβ

) 2μ
σ2 −1 (

�(
2μ
σ 2 − 1, 2μβ

σ 2 z∗)− �(
2μ
σ 2 − 1, 2μβ

σ 2 y∗)
) ,

where �(s, x) = ∫∞
x t s−ae−t dt is the upper incomplete gamma function.
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Appendix A: Omitted proofs

Firstly, we introduce the following general integral representation result (Corollary
3.2 in Alvarez 2004), which will be referred later on.

Lemma 7.1 A Assume that f ∈ C2(R+), that limx→0+ | f (x)| < ∞ and that
(A − r) f (x) ∈ L1. Then

f ′(x)ψ(x)
S′(x)

− ψ ′(x) f (x)

S′(x)
=

x∫

0

ψ(t)
(
(A − r) f

)
(t)m′(t)dt − δ,

where δ = 0 if 0 is unattainable and δ = B f (0)/ϕ(0) if 0 is attainable for Xt .
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B Assume that f ∈ C2(R+), that limx→∞ f (x)/ψ(x) = 0, and that (A−r) f (x) ∈
L1. Then

f ′(x)ϕ(x)
S′(x)

− ϕ′(x) f (x)

S′(x)
= −

∞∫

x

ϕ(t)
(
(A − r) f

)
(t)m′(t)dt

Proof of Lemma 3.3

(A) This follows directly from Corollary 1 in Alvarez (2003), if the so called transver-
sality condition limt→∞ Ex

[
e−r t Xt ; t < τ0

] = 0 holds. Here τ0 = inf{t ≥ 0 | Xt /∈
R+}. But we assumed that x ∈ L1, meaning that Ex

[∫∞
0 e−r t Xt dt

]
< ∞, and so the

transversality condition must hold.
(B) The derivative properties follow from the derivative form (11) by using Assump-

tion 3.2 (iv) together with the facts ϕ′ < 0 and ψ ′ > 0. Furthermore, from straight
calculation we get

Jp(x)− Jq(x) = (q − p)ϕ′′(x)σ 2(x)

2r BS′(x)
,

which is positive due to the fact q > p [Assumption 3.2(i)] and convexity of ϕ
(item (A) of this lemma). Similarly, from straight calculation we get Ip(x)− Iq(x) =
(q−p)ψ ′′(x)σ 2(x)

2r BS′(x) , which is positive due to the fact q > p [Assumption 3.2(i)] and con-
vexity of ψ (item (A) of this lemma). ��

Proof of Lemma 4.3

(A) The function V satisfies the differential equation (A − r)V + π(x) = 0 on the
interval (z∗, y∗). Differentiating this we obtain

1

2
σ 2(x)V ′′′(x) = (r − μ′(x))V ′(x)− (

μ(x)+ σ(x)σ ′(x)
)

V ′′(x)− π ′(x).

We begin by proving the claim in the caseμ(x)+σ(x)σ ′(x) ≡ 0. Since the necessary
conditions (9) hold, V is twice continuously differentiable, and V ′′(z∗) = V ′′(y∗) = 0
and V ′(z∗) = q > p = V ′(y∗), so

1

2
σ 2(z∗)V ′′′(z∗) = (r − μ′(z∗))V ′(z∗)− π ′(z∗) = −ρ′

q(z
∗) < 0

and
1

2
σ 2(y∗)V ′′′(y∗) = (r − μ′(y∗))V ′(y∗)− π ′(y∗) = −ρ′

p(y
∗) > 0,

where the inequalities follow from the facts that z∗ < x̃q and y∗ > x̃ p (Lemma
4.1). Therefore V ′′(x) ≤ 0 for all x in the neighbourhoods of z∗ and y∗. Let ȳ =
sup{y ∈ (z∗, y∗) | V ′′′(x) < 0 for all z∗ < x < y}. Then, since V ′′(x) < 0 for
all x < ȳ, we have V ′(x) < q for all x < ȳ. Further, since for all x ≤ x̃q and
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b < q we have 0 < ρ′
q(x) = (μ′(x) − r)q + π ′(x) < (μ′(x) − r)b + π ′(x), and

V ′′′(x) = − 2
σ 2(x)

ρ′
V ′(x)(x), we must have ȳ > x̃q .

If V ′′ ≤ 0 for all x ∈ (z∗, y∗), then the lemma is proved. So consider for a moment,
contrary to our claim, that there exists at least one point for which V ′′ > 0 and let
w1 < y∗ be the supremum of such points and let w2 < w1 be the supremum of
the points for which V ′′ intersects x-axis from below. In other words V ′′(w2) = 0,
V ′′′(w2) > 0 and V ′′(w1) = 0, V ′′′(w1) < 0 and V ′(w1) > p. In fact we also have
V ′(w1) ≤ q; If this would not be true, we would have 0 < − 1

2σ
2(w1)V ′′′(w1) =

ρ′
V ′(w1)

(w1) < ρ′
q(w1), which contradicts Assumption 3.2(iv), since above we have

shown that x̃q < ȳ < w1.
Since V ′′(x) ≥ 0 for all w2 < x < w1, we have V ′(w2) < V ′(w1). Thus we can

calculate that 0 > − 1
2σ

2(w2)V ′′′(w2) = ρV ′(w2)(w2) > ρV ′(w1)(w2), but above we
chosew1 so that 0 < − 1

2σ
2(w1)V ′′′(w1) = ρ′

V ′(w1)
(w1). Since V ′(w1) ∈ (p, q), this

contradicts Assumption 3.2(iv), since w2 < w1. Therefore we must have V ′′(x) ≤ 0
for all x ∈ (z∗, y∗).

We now turn to the case δ(x) := μ(x)+σ(x)σ ′(x) 
≡ 0. Let us introduce a change
of variable f (x) = ∫ x

0 exp(
∫ u

0 δ(v)dv)du and define a function l ′(y) = (V ′◦ f −1)(y).
Then by straight derivation

1

2
(σ 2 ◦ f −1)(y)l ′′′(y) =

(
r − (μ′ ◦ f −1)(y)

)
l ′(y)− (π ′ ◦ f −1)(y)

( f ′ ◦ f −1)2(y)
.

Since l ′′( f (x)) = V ′′(x)/ f ′(x), we see that l ′′( f (x)) has the same sign as V ′′(x) and
thus the claimed property of V follows from that of l.

(B) From (12) we see that V ′(x) > 0 for all x ≤ z∗ and x ≥ y∗. Since, by item
(A) V ′′(x) ≤ 0 in between, we must also have V ′(x) > 0 for x ∈ (z∗, y∗). ��

Proof of Lemma 5.2

(A) Let ỹb ∈ (0, x̃b) be such that μ(x) is concave for all 0 < x ≤ ỹb and let x < ỹb.
We can write

−
x̃b∫

x

ϕ′(t)
S′(t)

dt = −
ỹb∫

x

ϕ′(t)
S′(t)

dt −
x̃b∫

ỹb

ϕ′(t)
S′(t)

dt.

Here the latter integral in the right-hand side is finite, so we need to show that former
one tends to infinity when x tends to zero. To that end let us inspect more closely the
associated diffusion X̂t . Straight calculation shows the density of the scale function
and the density of the speed measure to be Ŝ′(x) = S′(x)/σ 2(x) and m̂′(x) = 2/S′(x).
Moreover, by convexity of ϕ [Lemma 3.3(A)], we can verify the decreasing funda-
mental solution to be ϕ̂(x) = −ϕ′(x). Utilizing these together with the concavity of
μ allows us to write
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−
ỹb∫

x

ϕ′(v)
S′(v)

dv = 1

2

ỹb∫

x

μ′(v)− r

μ′(v)− r
ϕ̂(v)m̂′(v)dv

<
1

2(μ′(0)− r)

ỹb∫

x

(μ′(v)− r)ϕ̂(v)m̂′(v)dv.

We can now use Lemma 7.1(B) for the diffusion X̂t to obtain

1

2(μ′(0)− r)

ỹb∫

x

(μ′(v)− r)ϕ̂(v)m̂′(v)dv = 1

2(μ′(0)− r)

(
ϕ̂′(x)
Ŝ′(x)

− ϕ̂′(ỹb)

Ŝ′(ỹb)

)

.

Assumed boundary behaviour for X̂t at 0 and the fact that μ′(0) − r < 0 guarantee
that this approach to infinity as x approach to zero, which was desired.

(B) Derivating (3) we get

B(Rr id)′(x) = ϕ′(x)
x∫

0

ψ(t)tm′(t)dt + ψ ′(x)
∞∫

x

ϕ(t)tm′(t)dt.

We know that limx↓0 ϕ
′(x)

∫ x
0 ψ(t)tm

′(t)dt ≤ 0, so we must have
limx↓0 ψ

′(x)
∫∞

x ϕ(t)tm′(t)dt > 0, for otherwise (Rr id)′(0) cannot be positive. But
ψ ′(0+) = 0, so limx↓0

∫∞
x ϕ(t)tm′(t)dt = ∞. The proof is completed by showing

that this integral is smaller than the claimed one. To see this, apply Fubini’s Theorem:

∞∫

x

ϕ(t)tm′(t)dt =
∞∫

t=x

t∫

v=0

ϕ(t)m′(t)dtdv ≤ lim
u→0

∞∫

v=u

∞∫

t=v
ϕ(t)m′(t)dtdv

= lim
u→0

−1

r

∞∫

u

ϕ′(v)
S′(v)

dv,

where the last equality follows from Lemma 7.1 (B). Now, since

∞∫

u

ϕ′(v)
S′(v)

dv =
x̃b∫

u

ϕ′(v)
S′(v)

dv +
∞∫

x̃b

ϕ′(v)
S′(v)

dv

and the last integral in the right hand side is finite, this completes the proof. ��
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Proof of Lemma 5.3

Let us first prove the integral form for the function Jb(x). Since ϕ satisfies the differ-
ential equation (A − r)ϕ = 0 and (Rrπ)(x) satisfies (A − r)(Rrπ) = −π , we can
write Jb from (10) as

Jb(x) = 1

r BS′(x)

[
1

2
bσ 2(x)ϕ′′(x)−π(x)ϕ′(x)+r

(
(Rrπ)(x)ϕ

′(x)−(Rrπ)
′(x)ϕ(x)

)
]

= 1

Br

⎡

⎣
1

2
bσ 2(x)

ϕ′′(x)
S′(x)

+r

∞∫

x

ϕ(t)
(
π(x)−π(t))m′(t)dt

⎤

⎦ ,

where the integral representation follows from Lemma 7.1. Now to cope with the first
term observe that since (A − r)ϕ = 0, we can write

1

2
σ 2(x)

ϕ′′
x

S′
x

= r
ϕx − xϕ′

x

S′ − (μx − r x)
ϕ′

x

S′
x

= r
ϕx − xϕ′

x

S′ + (μx − r x)r

∞∫

x

ϕt m
′
t dt

so that we need an integral form to ϕx −xϕ′
x

S′ . But choosing f (x) = x in Lemma 7.1,

we get ϕx −xϕ′
x

S′ = − ∫∞
x ϕt (μt − r t)m′

t dt . Combining all these forms together gives
the desired integral representation for Jb(x). The proof for Ib(x) is similar. ��

Proof of Lemma 5.4

(A) To calculate the value at the upper boundary, let x > x̃b, for b = p, q. Using the
integral representation from Lemma 5.3 we can calculate that

lim
x→∞ Jb(x) = lim

x→∞

− 1

B

⎛

⎝

∞∫

x

ϕt (ρb(x)−ρb(t))m
′
t dt

⎞

⎠ ≤ lim
x→∞ − 1

B

⎛

⎝

∞∫

x

ϕt (ρb(t)−ρb(t))m
′
t dt

⎞

⎠ = 0,

where the inequality follows from Assumption 3.2(iv).
To calculate the value at the lower boundary, let ỹb ∈ (0, x̃b) and ε > 0 be such that

ρ′
b(x) > ε for all 0 ≤ x ≤ ỹb. This is possible for some constant ε since ρ′

b(0+) > 0
[Assumption 5.1(v)]. Let x < ỹb and apply Fubini’s Theorem, Lemma 7.1(B) and
inequality ρ′

b(x) > ε to get

Jb(x) = 1

B

∞∫

t=x

t∫

v=x

ϕ(t)m′(t)ρ′
b(v)dvdt = 1

B

∞∫

v=x

∞∫

t=v
ϕ(t)m′(t)ρ′

b(v)dtdv
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= − 1

Br

∞∫

x

ϕ′(v)
S′(v)

ρ′
b(v)dv = − 1

Br

ỹb∫

x

ϕ′(v)
S′(v)

ρ′
b(v)dv − 1

Br

∞∫

ỹb

ϕ′(v)
S′(v)

ρ′
b(v)dv

> − ε

Br

ỹb∫

x

ϕ′(v)
S′(v)

dv − 1

Br

∞∫

ỹb

ϕ′(v)
S′(v)

ρ′
b(v)dv.

Here the last integral term is finite and limx↓0 − ∫ ỹb
x

ϕ′(v)
S′(v)dv = ∞ by Assump-

tion 5.1(vi), so Jb(0+) = ∞.
(B) To calculate the value at the lower boundary, let x < x̃b, for b = p, q. Using

the integral representation from Lemma 5.3 we can calculate that

lim
x→0

Ib(x) = lim
x→0

1

B

⎛

⎝

x∫

0

ψt (ρb(x)− ρb(t))m
′
t dt

⎞

⎠

≥ lim
x→0

1

B

⎛

⎝

x∫

0

ψt (ρb(t)− ρb(t))m
′
t dt

⎞

⎠ = 0,

where the inequality follows from Assumption 3.2(iv).
To calculate the value at the upper boundary, let x > x̃b. We can write

Ib(x) = 1

B

x̃b∫

0

ψt
(
ρb(x)− ρb(t)

)
m′

t dt + 1

B

x∫

x̃b

ψt
(
ρb(x)− ρb(t)

)
m′

t dt

= 1

Br

(
ρb(x)− ρb(η)

)ψ ′(x̃b)

S′(x̃b)
+ 1

B

x∫

x̃b

ψt
(
ρb(x)− ρb(t)

)
m′

t dt,

for some η ∈ (0, x̃b) by mean value theorem for integrals. The last term in the last
row is always negative, since ρb(x) < ρb(t) for all t > x > x̃b and the first term in
the last row tends to minus infinity as x tends to infinity since by Assumption 5.1(v)
ρb(∞) = −∞. Hence Ib(∞) = −∞. ��

References

Abel AB, Eberly JC (1996) Optimal investment with costly reversibility. Rev Econ Stud 63:581–593
Alvarez LHR (2000) On the option interpretation of rational harvesting planning. J Math Biol 40(5):

383–405
Alvarez LHR (2001) Singular stochastic control, linear diffusions, and optimal stopping: a class of solvable

problems. SIAM J Control Optim 39:1697–1710
Alvarez LHR (2003) On the properties of r -excessive mappings for a class of diffusions. Ann Appl Probab

13:1517–1533
Alvarez LHR (2004) A class of solvable impulse control problems. Appl Math Optim 49:265–295

123
153

153



270 P. Matomäki

Alvarez LHR (2008) A class of solvable stopping games. Appl Math Optim 58:291–314
Alvarez LHR (2011) Optimal capital accumulation under price uncertainty and costly reversibility. J Econ

Dyn Control 35:1769–1788
Alvarez LHR, Koskela E (2007) Optimal harvesting under resource stock and price uncertainty. J Econ

Dyn Control 31(7):2461–2485
Alvarez LHR, Lempa J (2008) On the optimal stochastic impulse control of linear diffusion. SIAM J

Control Optim 47:703–732
Alvarez LHR, Virtanen J (2006) A class of solvable stochastic dividend optimization problems: on the

general impact of flexibility on valuation. Econ Theory 28(2):373–398
Asmussen S, Taksar M (1997) Controlled diffusion models for optimal dividend pay-out. Insurance Math

Econ 20:1–115
Bank P (2005) Optimal control under a dynamic fuel constraint. SIAM J Control Optim 44:1529–1541

(electronic)
Bather JA, Chernoff H (1966) Sequential decisions in the control of a spaceship. In: Proceedings of the fifth

Berkeley symposium on mathematical statistics and probability, vol 3, pp 181–207
Bayraktar E, Egami M (2008) An analysis of monotone follower problems for diffusion processes. Math

Oper Res 33:336–350
Boetius F (2005) Bounded variation singular stochastic control and Dynkin game. SIAM J Control Optim

44:1289–1321
Borodin A, Salminen P (2002) Handbook on Brownian motion—facts and formulae. Birkhauser, Basel
Chiarolla MB, Haussmann UG (2005) Explicit solution of a stochastic irreversible investment problem and

its moving threshold. Math Oper Res 30:91–108
Chow PL, Menaldi JL, Robin M (1985) Additive control of stochastic linear systems with finite horizon.

SIAM J Control Optim 23(6):858–899
Dayanik S, Karatzas I (2003) On the optimal stopping problem for one-dimensional diffusions. Stochast

Process Appl 107:173–212
Faddy MJ (1974) Optimal control of finite dams: continuous output procedure. Adv Appl Probab 6:689–710
Guo X, Pham H (2005) Optimal partially reversible investment with entry decision and general production

function. Stochast Process Appl 115:705–736
Guo X, Tomecek P (2008a) A class of singular control problems and the smooth fit principle. SIAM J

Control Optim 47:3076–3099
Guo X, Tomecek P (2008b) Connections between singular control and optimal switching. SIAM J Control

Optim 47:421–443
Harrison JM (1985) Brownian motion and stochastic flow systems. Wiley, New York
Harrison JM, Taksar M (1983) Instantaneous control of Brownian motion. Math Oper Res 8(3):439–453
Højgaard B, Taksar M (1999) Controlling risk exposure and dividends payout schemes: insurance company

example. Math Finance 2:153–182
Jacka S (2002) Avoiding the origin: a finite-fuel stochastic control problem. Ann Appl Probab 12:

1378–1389
Karatzas I (1983) A class of singular stochastic control problems. Adv Appl Probab 15(2):225–254
Karatzas I (1985a) Probabilistic aspects of finite-fuel stochastic control. Proc Natl Acad Sci USA 82:

5579–5581
Karatzas I (1985b) Connections between optimal stopping and singular stochastic control II. Reflected

follower problems. SIAM J Control Optim 23(3):433–451
Karatzas I, Shreve SE (1984) Connections between optimal stopping and singular stochastic control I.

Monotone follower problems. SIAM J Control Optim 22(6):856–877
Karatzas I, Shreve SE (1988) Brownian motion and stochastic calculus. Springer, New York
Karatzas I, Wang H (2001) Connections between bounded-variation control and dynkin games. In: Menaldi

JL, Sulem A, Rofman E (eds) Optimal control and partial differential equations volume in Honor of
Professor Alain Bensoussan’s 60th birthday. IOS Press, Amsterdam, pp 353–362

Kobila TO (1993) A class of solvable stochastic investment problems involving singular controls. Stochast
Stochast Rep 43(1–2):29–63

Lande R, Engen S, Saether BE (1995) Optimal harvesting of fluctuating populations with a risk of extinction.
Am Nat 145:728–745

Lempa J (2010) A note on optimal stopping of diffusions with a two-sided optimal rule. Oper Res Lett
38:11–16

123
154

154



On solvability of a two-sided singular control problem 271

Lungu EM, Øksendal B (1997) Optimal harvesting from a population in a stochastic crowded environment.
Math Biosci 145(1):47–75

Mundaca G, Øksendal B (1998) Optimal stochastic intervention control with application to the exchange
rate. J Math Econ 29:225–243

Øksendal A (2000) Irreversible investment problems. Finance Stochast 4:223–250
Paulsen J (2008) Optimal dividend payments and reinvestments of diffusion processes with fixed and pro-

portional costs. SIAM J Control Optim 47:2201–2226
Sethi SP, Taksar MI (2002) Optimal financing of a corporation subject to random returns. Math Finance

Int J Math Stat Financ Econ 12:155–172
Shreve SE, Lehoczky JP, Gaver DP (1984) Optimal consumption for general diffusion with absorbing and

reflecting barriers. SIAM J Control Optim 22:55–75

123
155

155



156

156



Article III

Lempa, Jukka — Matom̈aki, Pekka (2013) A Dynkin game with asymmetric

information,Stochastics, vol. 85 (5), 763 – 788.

With a kind permission of Taylor & Francis.

157



158



A Dynkin game with asymmetric information

Jukka Lempaa1 and Pekka Matomäkib*
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We study a Dynkin game with asymmetric information. The game has a random expiry
time, which is exponentially distributed and independent of the underlying process.
The players have asymmetric information on the expiry time, namely only one of the
players is able to observe its occurrence. We propose a set of conditions under which
we solve the saddle point equilibrium and study the implications of the information
asymmetry. Results are illustrated with an explicit example.

Keywords: Dynkin game; Nash equilibrium; Israeli option; default risk; linear
diffusion; resolvent operator
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1. Introduction

Dynkin games are game variants of optimal stopping problems, for the seminal study see

[12]. Such a game has two players, ‘buyer’ and ‘issuer’, and both of them can stop the

underlying process prior to the terminal time. In this paper, we study the following

formulation of the game. First, we assume that the underlying process X is a time

homogenous diffusion; we will elaborate the assumptions on X in the next section. At the

initial time t ¼ 0, the players choose their own stopping times t (buyer) and g (issuer) and

at the time of the first exercise, i.e. at t ^ g, the issuer pays the buyer the amount

g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}; ð1:1Þ

we will pose assumptions on the pay-off functions gi in the next section. An interpretation

of this is that, at any stopping time g, the issuer can cancel the buyer’s right to exercise, but

she has to pay the cost g2ðXgÞ to do so. Now, it is the buyer’s (issuer’s) objective to choose

the stopping time t (g) such that the expected present value of the exercise pay-off

Pðx; t; gÞ ¼ Ex e2rðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

� �� �
ð1:2Þ

is maximized (minimized). Here, r . 0 is the constant rate of discounting.

The objective of this paper is to study a version of this game with random time horizon,

the infinite horizon game given by the expression (1.2) being already analysed

comprehensively, e.g. in [2] and [14]. To introduce the random time horizon, we assume

q 2013 Taylor & Francis
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that, in addition to the diffusion X, there is also an independent Poisson process N defined

on the underlying probability space. Furthermore, we assume that the game expires at the

first jump time of the Poisson process, in other words we assume that the game has an

exponentially distributed random time horizon. The existence of the terminating event and

its rate is assumed to be known to the players, while the information of it is asymmetric:

we assume that the occurrence of the expiring event is observable only to one of the

players. Here, the information asymmetry has an interpretation as inside information.

Indeed, the player who observes the default taking place has more information than is

commonly available on the market and can be considered as an insider. We make a

distinction between the cases when either buyer (Game 1) or issuer (Game 2) observes the

jump of the Poisson process and study both of these cases separately.

Optimal stopping games are relevant for financial applications. For instance, a game

variant of an American option, where the issuer has the possibility to terminate the contract

early by making a payment, is introduced in [20] by Kifer. He shows that the pricing and

hedging of this contract reduces to solving a saddle point of an associated Dynkin game

and coins the contract as a game or an Israeli option. Explicit solutions for some perpetual

Israeli options are computed in [21]. Furthermore, a characterization of the value function

of a perpetual game option in terms of excessive functions is provided in [13] for general

one-dimensional diffusion dynamics along with a further discussion on explicitly solvable

games. For the pricing theory of Israeli options in a general semimartingale framework, see

e.g. [18] and [4]. There is also a branch of literature that studies convertible bonds (or more

general contingent claims) in terms of defaultable Israeli options, see e.g. [19] and the

series of papers including [4] and [5] for more recent references. A convertible bond is a

derivative security which can be converted into a given number of stocks by the holder and

cancelled for a charge by the issuer. Thus, the pricing of such contract has a natural game-

theoretic character. Our study touches this branch, since our random time horizon can be

naturally interpreted as a default time of the game. In addition, a Dynkin game with

random time horizon can be regarded also as a Canadized version of a finite horizon Israeli

option. Canadization is a method for pricing options with finite maturity introduced

originally in [9] and further extended in, for example, [21] and [22]. The concept of

Canadization was extended in [7] to handle stochastic control problems.

In economic applications of game theory, asymmetric information is an important

concept and, as we mentioned, our specification is compatible with the notion of inside

information. Obviously, this is not the only way one can formulate asymmetric

information in a game. For example, in [8] the game is set up such that neither of the

players know the true pay-off but they have only partial information on it whereas, in

contrast to our game, the time horizon is deterministic and known to both players. So in

general the information sets of the players are separate. However, if the pay-off matrix (gij)

defined in Section 1 in [8] is reduced to a vector, be it row or column, then one of the

players will have full information as she knows the true pay-off. In this case, there is an

inclusion of the information sets and the interpretation of inside information applies.

Our approach to the problem is built on Markovian approach to Dynkin games. There

is a substantial literature in this area highlighting various parts of the theory. For instance,

studies [2] and [3] are concerned with deriving explicit characterization for the value and

saddle point equilibrium using classical theory of diffusions and standard nonlinear

programming techniques. A generalized concavity approach is used in [13] and [14] to

produce the optimal solution via the theory of excessive functions. In [15] and [25], the

authors study equilibrium properties of Dynkin games under very general Markovian set-

up. Our set-up and approach is closely related to [2] and can be regarded as a partial
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extension of it. We start our analysis by first deriving partly heuristically a free boundary

problem which gives us a candidate for the solution. To set up the free boundary problem,

we assume that the optimal continuation region is an interval with compact closure with

constant thresholds. Given the time homogeneity of the diffusion X and the fact that the

discount rate r and the jump rate of N are constants, this is indeed a reasonable assumption.

We derive necessary and sufficient conditions for the existence of a unique Nash

equilibrium for Games 1 and 2 under which the value functions can be expressed in a

(quasi-)explicit form. These values admit a decomposition on continuation region into

terminal pay-off and early exercise premium. We also carry out a comparison of the

solutions showing that whenever Games 1 and 2 have a saddle point solution, the value of

Game 1 dominates the value of Game 2. Furthermore, we show that if the pay-off g2 is

non-negative, the value of the infinite horizon game dominates both the value of Games 1

and 2. Interestingly, we find that if g2 admits also negative values, then the value of the

infinite horizon game can even be the smallest of the three. We discuss also the symmetric

information case where the expiring event is not observable to either of the players –

denote this as Game 3. In this case, we find that the value is in between the values of Game

1 and Game 2. We also show that the optimal continuation regions of Games 1–3 are

related in a way that can be described as follows: If you are able to observe the terminating

event, you will wait longer – The more you know, the longer you wait.

The reminder of the paper is organized as follows. In Section 2, we set up the

underlying dynamics and introduce the Dynkin games. In Sections 3 and 4, we study the

solvability of the games and discuss some implications of the information asymmetry.

In Section 5, we compare the optimal solutions of the games and study limiting behaviour

of the solutions. In Section 6, we illustrate the main results of the study with an explicit

example.

2. The games

2.1. Underlying dynamics

Let ðV;F ; F;PÞ, with F ¼ {F t}t$0, be a complete filtered probability space satisfying the

usual conditions, see [6], p. 2. In addition, let W be a Wiener process on (V, F, F, P). We

assume that the state process X is a regular linear diffusion defined on ðV;F ; F;PÞ,
evolving on Rþ, and given as the solution of the Itô equation

dXt ¼ mðXtÞdt þ s ðXtÞdWt; X0 ¼ x; ð2:1Þ

where the coefficients m : Rþ ! R and s : Rþ ! Rþ are assumed to be sufficiently

smooth to guarantee the existence of a unique (weak) solution of (2.1), see [6], pp. 46–47.

In line with the most economical and financial applications, we assume that X does not die

inside the state space Rþ, i.e., that killing of X is possible only at the boundaries 0 and 1.

Therefore, the boundaries 0 and 1 are either natural, entrance, exit or regular. In the case a

boundary is regular, it is assumed to be killing, see [6], pp. 18–20, for a characterization of

the boundary behaviour of diffusions. The assumption that the state space is Rþ is done for

reasons of notational convenience. In fact, we could assume that the state space is any

interval I in R and all our subsequent analysis would hold with obvious modifications.

Denote as A ¼ ð1=2Þs 2ðxÞðd 2=dx2Þ þ mðxÞðd=dxÞ the differential operator associated

with the process X. For notational convenience we denote Gb ¼ A2 b for a given

constant b . 0.
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For any given constant b . 0, we denote as Lb
1 the class of real-valued measurable

functions f on Rþ satisfying the condition

Ex

ðz
0

e2btj f ðXtÞjdt

� �
, 1;

where z :¼ inf{t . 0 : Xt � Rþ} denotes the lifetime of X. In addition, for any given

constant b . 0, we denote, respectively, as cb and wb the increasing and the decreasing

solution of the ordinary second-order linear differential equation GbuðxÞ ¼ 0 defined on

the domain of the characteristic operator of X – for the characterization and fundamental

properties of the minimal b-excessive functions cb and wb, see [6], pp. 18–20. Denote as

Bb ¼ c 0
bðxÞwbðxÞ=S

0ðxÞ 2 w0
bðxÞcbðxÞ=S

0ðxÞ the Wronskian determinant, where

S0ðxÞ ¼ exp 2

ðx 2mðyÞ

s 2ðyÞ
dy

� �

denotes the density of the scale function of X, see [6], p. 19. We remark that the value of

the Wronskian does not depend on the initial state x but on the constant b. For a function

f [ Lb
1 , the resolvent Rbf : Rþ ! R is defined as

ðRbf ÞðxÞ ¼ Ex

ðz
0

e2btf ðXtÞdt

� �
; ð2:2Þ

for all x [ Rþ. The resolvent Rb and the solutions cb and wb are connected in a

computationally very useful way. Indeed, we know from the literature, see [6], pp. 17–20

and p. 29, that for a given f [ Lb
1 the resolvent Rbf can be expressed as

ðRbf ÞðxÞ ¼ B21
b wbðxÞ

ðx
0

cbðyÞf ðyÞm
0ðyÞdyþ B21

b cbðxÞ

ð1
x

wbðyÞf ðyÞm
0ðyÞdy;

for all x [ Rþ, where m0ðxÞ ¼ 2=ðs 2ðxÞS0ðxÞÞ denotes the speed density of X.

To close the subsection, we denote as N a Poisson process with intensity l . 0, and

assume that N is independent of the underlying X. Now, the first jump time T of N is an

exponentially distributed random time with mean 1/l. Denote as F̂ ¼ {F̂ t}t$0 the enlarged

filtration defined as F̂ t ¼ F t _ s ð{T # s} : s # tÞ. In other words, the filtration F̂ carries

the information of the evolution of underlying X and the first jump of the Poisson process

N. We denote as T0 the set of all F-stopping times and as T1 the set T0 augmented with T,

i.e., the set of all F̂-stopping times.

2.2. The games

Dynkin game is an optimal stopping game between two players, ‘buyer’ and ‘issuer’.

In contrast to classical optimal stopping problems, also the issuer can now exercise. Recall

now the definition of the expected present value of the exercise pay-off from (1.2).

We make the following standing assumptions for the pay-offs gi.

Assumption 2.1. We assume that the pay-offs gi : Rþ ! R, i ¼ 1; 2; 3, are continuous and

non-decreasing functions satisfying the ordering g1 # g3 # g2 and that g1 is bounded

from below. Furthermore, we assume that g1 [ Lr
1 and gi [ C 1ðRþÞ> C 2ðRþnDÞ,

where the set D is finite and jg00i ðy^Þj , 1 for all y [ D.

We make some remarks on Assumptions 2.1. First, the integrability condition is posed

to guarantee that the resolvent lðRrþlg1Þ is well defined for all l . 0. This assumption is
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integral for our study as the resolvent gives us a necessary tool to handle the random time

horizon. Second, our smoothness assumptions are stricter than those in [14] where only

continuity of the pay-offs is required initially. However, in [14], Section 4, where the

authors study the saddle point property (which is the main focus of our study), they assume

that gi [ C 1ðRþnDÞ> C 2ðRþnDÞ. A potential approach to reduce our smoothness

assumptions to this case could the convolution approximation method introduced in [1].

This analysis is, however, out of the scope of our study.

In order to propose a value and notions of equilibrium for the considered games, define

first the lower and upper values V and �V as

VðxÞ ¼ sup
t[T

inf
g[T

Pðx; t; gÞ; �VðxÞ ¼ inf
g[T

sup
t[T

Pðx; t; gÞ; ð2:3Þ

where T is the class of admissible stopping times. Following [14], pp. 1578, we remark that

g1 # V # �V # g2. If, on the other hand, the values satisfy V $ �V, we say that the game

has the value V U V ¼ �V, i.e. has a Stackelberg equilibrium. Moreover, if there exists

stopping times t * and g * such that

Pðx; t; g*Þ # Pðx; t*; g*Þ # Pðx; t*; gÞ;

for all x [ Rþ, then the pair ðt*; g*Þ constitutes a saddle point, i.e., a Nash equilibrium of

the game. We remark that the existence of a saddle point implies the existence of the value

but the converse does not hold in general – for a study addressing this problem in a general

Markovian setting, see [15]. However, in our setting the underlying process is nice enough

so that Stackelberg equilibrium is equivalent to Nash equilibrium.

The main objective of this paper is to study two Dynkin games which are associated

via a certain type of information asymmetry. To make a precise statement, recall the

Poisson process N from the previous section. At the initial time t ¼ 0, the underlying X and

exogenous N are both started. At the first jump time T, the game ends. Thus, the considered

games have an exponentially distributed random time horizon which is independent of X.

The information asymmetry is introduced as follows: we assume that the occurrence of the

expiring event is observable only to one of the players. Let us formalize this setting first in

the case when T is observable to the buyer; later this case will be referred to as Game 1.

First, recall the definitions of the sets T0 and T1 from the previous subsection. At the start of

the game, issuer chooses a stopping time from the set T0 and the buyer from the set T1.

The expected present value P1 of the exercise pay-off is written as

P1ðx; t; gÞ ¼ Ex e2rðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

� �
1{t^g#T}

� �
;

ð2:4Þ

and the upper and lower values are defined as

V1ðxÞ ¼ sup
t[T 1

inf
g[T 0

P1ðx; t; gÞ; �V1ðxÞ ¼ inf
g[T 0

sup
t[T 1

P1ðx; t; gÞ: ð2:5Þ

For Game 1, we denote the value function as V1 and a saddle point equilibrium as t*
1; g

*
1

	 

.

The set-up of the second game, which will be referred to as Game 2, is completely

analogous. For Game 2, we assume that the random time T is a stopping time to issuer.

Similarly to Game 1, we define the expected present value P2 of the exercise pay-off as

P2ðx; t; gÞ ¼ Ex e2rðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

� �
1{g^t#T}

� �
;

ð2:6Þ
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and the upper and lower values are defined as

V2ðxÞ ¼ sup
t[T 0

inf
g[T 1

P2ðx; t; gÞ; �V2ðxÞ ¼ inf
g[T 1

sup
t[T 0

P2ðx; t; gÞ: ð2:7Þ

Analogously to Game 1, the value function of Game 2 is denoted as V2 and a saddle point

equilibrium as t*
2;g

*
2

	 

.

3. Game 1

3.1. Equivalent formulation of the game

First, we introduce some additional definitions and notations. Following [2] (see also

[27]), define the operators L
b
c and Lbw for sufficiently smooth functions f : Rþ ! R as

L
b
cf

� �
ðxÞ ¼ f 0ðxÞ

S0ðxÞ
cbðxÞ2

c 0
b
ðxÞ

S0ðxÞ
f ðxÞ;

Lbwf
� �

ðxÞ ¼ f 0ðxÞ
S0ðxÞ

wbðxÞ2
w0
b
ðxÞ

S0ðxÞ
f ðxÞ;

8>><
>>: ð3:1Þ

for a given constant b . 0. In order to simplify the upcoming notation, define the

functions ĝi : Rþ ! R, i ¼ 1,2, as

ĝ1ðxÞ ¼ g1ðxÞ2 l Rrþlg
þ
1

	 

ðxÞ;

ĝ2ðxÞ ¼ g2ðxÞ2 l Rrþlg
þ
1

	 

ðxÞ;

8<
: ð3:2Þ

where gþ1 ðxÞ ¼ max{g1ðxÞ; 0}. We remark that since we assumed g1 # g2, also ĝ1 # ĝ2.

In this subsection, we transform Game 1 into an adjusted perpetual game and study its

solvability. To this end, we derive first a candidate G1 for the optimal value function in a

partly heuristic way – for a related study in a different context, see [16]. We start with the

ansatz that the game has a saddle point equilibrium. Because the exponential distribution

has memoryless property and the underlying dynamic structure is time homogeneous, we

assume that the state space Rþ is partitioned into continuation and action regions, where

the continuation region z*
1; y

*
1

	 

, Rþ has compact closure. If x [ z*

1; y
*
1

	 

, the players

wait by definition. Now, in an infinitesimal time interval dt, the Poisson process jumps

(expiring the exercise opportunities) with probability ldt. Because the buyer can exercise

at time T, she will exercise at that time if and only if g1 $ 0; this yields the terminal pay-

off gþ1 ðxÞ. On the other hand, with probability 1 2 ldt the contract lives on yielding

additional expected present value. Denote as G1 the candidate for the value function.

Formally, this suggests with a heuristic use of Dynkin’s theorem, see e.g. [24], that

G1ðxÞ ¼ gþ1 ðxÞldt þ ð1 2 ldtÞEx e2rdtG1ðXdtÞ
� �

¼ lgþ1 ðxÞdt þ ð1 2 ldtÞ½G1ðxÞ þ GrG1ðxÞdt�

¼ G1ðxÞ þ GrG1ðxÞdt þ l gþ1 ðxÞ2 G1ðxÞ
	 


dt;

for all x [ z*
1; y

*
1

	 

under the intuition dt 2 ¼ 0. This yields the condition

GrþlG1ðxÞ ¼ 2lgþ1 ðxÞ; ð3:3Þ

for all x [ z*
1; y

*
1

	 

– for an analogous result, see Equation (10) in [9]. The solutions of

equation (3.3) can be expressed as G1ðxÞ ¼ l Rrþlg
þ
1

	 

ðxÞ þ c1crþlðxÞ þ c2wrþlðxÞ for
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some positive constants c1 and c2. We assume that the candidate G1 satisfies that the value-

matching condition, i.e., is continuous over the boundary of z*
1; y

*
1

	 

. This condition can be

expressed as

l Rrþlg
þ
1

	 

z*

1

	 

þ c1crþl z*

1

	 

þ c2wrþl z*

1

	 

¼ g2 z*

1

	 

;

l Rrþlg
þ
1

	 

y*

1

	 

þ c1crþl y*

1

	 

þ c2wrþl y*

1

	 

¼ g1 y*

1

	 

:

8<
:

Using the notation from (3.2), it is a matter of elementary algebra to show that

c1 ¼
wrþl y*

1

	 

ĝ2 z*

1

	 

2 wrþl z*

1

	 

ĝ1 y*

1

	 

wrþl y*

1

	 

crþl z*

1

	 

2 wrþl z*

1

	 

crþl y*

1

	 
 V h1 z*
1; y

*
1

	 


c2 ¼
crþl z*

1

	 

ĝ1 y*

1

	 

2 crþl y*

1

	 

ĝ2 z*

1

	 

wrþl y*

1

	 

crþl z*

1

	 

2 wrþl z*

1

	 

crþl y*

1

	 
 V h2 z*
1; y

*
1

	 

:

8>>>><
>>>>:

ð3:4Þ

To proceed, denote as t z*
1
;y*

1ð Þ the first exit time ofX from the interval z*
1; y

*
1

	 

. We know from

Theorem 13.11 in [11], that the function x 7! Ex e
2ðrþlÞt

ðz*
1
;y*

1
Þ

h i
solves the boundary value

problem GrþluðxÞ ¼ 0 on z*
1; y

*
1

	 

with boundary conditions u z*

1

	 

¼ u y*

1

	 

¼ 1. Using this,

we find that

Ex e
2ðrþlÞ t

y*
1
^g

z*
1

� �
1

{t
y*
1

,g
z*
1

}

( )
¼

wrþlðxÞcrþl z*
1

	 

2 wrþl z*

1

	 

crþlðxÞ

wrþl y*
1

	 

crþl z*

1

	 

2 wrþl z*

1

	 

crþl y*

1

	 
 ;
Ex e

2ðrþlÞ t
y*
1
^g

z*
1

� �
1

{t
y*
1

.g
z*
1

}

( )
¼

wrþl y*
1

	 

crþlðxÞ2 wrþlðxÞcrþl y*

1

	 

wrþl y*

1

	 

crþl z*

1

	 

2 wrþl z*

1

	 

crþl y*

1

	 
 ;
see also [23]. Consequently, the candidate G1 can be rewritten as

G1ðxÞ ¼ lðRrþlg
þ
1 ÞðxÞ þ ĝ1 y*

1

	 

Ex e

2ðrþlÞðt
y*
1

^g
z*
1

Þ
1{t

y*
1

,g
z*
1

}

� �

þ ĝ2 z*
1

	 

Ex e

2ðrþlÞðt
y*
1

^g
z*
1

Þ
1{t

y*
1

.g
z*
1

}

� �
;

ð3:5Þ

for all x [ ðz*
1; y

*
1Þ. Since the sample paths of X are (almost surely) continuous, an

application of the strong Markov property of the underlying X yields

G1ðxÞ ¼ Ex l

ðt
y*
1

^g
z*
1

0

e2ðrþlÞsgþ1 ðXsÞds

�

þe
2ðrþlÞðt

y*
1

^g
z*
1

Þ
g1ðXt

y*
1

Þ1{t
y*
1

,g
z*
1

} þ g2ðXg
z*
1

Þ1{t
y*
1

.g
z*
1

}


 ��
ð3:6Þ

for all x [ Rþ. This result indicates the form of the equivalent perpetual game. The next

proposition confirms that this partly heuristic derivation gives the correct form of the

adjusted perpetual problem. For a rigorous proof we though need an auxiliary lemma.

Lemma 3.1. For t [ T 1, there exists t0 [ T 0 such that t ^ T ¼ t0 ^ T a.s.
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Proof. See [26], Lemma, Section VI.3, p. 378. A

Proposition 3.2. The upper and lower values for Game 1 can be rewritten as

�V1ðxÞ ¼ inf
g[T 0

sup
t[T 0

~P1ðx; t; gÞ; V1ðxÞ ¼ sup
t[T 0

inf
g[T 0

~P1ðx; t; gÞ;

where

~P1ðx; t; gÞ ¼ Ex l

ðt^g
0

e2ðrþlÞsgþ1 ðXsÞds

�
þ e2ðrþlÞðt^gÞ g1ðXtÞ1{t,g}

�
þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

��
for all x [ Rþ.

Proof. Let T̂ 1 denote the set containing F̂-stopping times satisfying t # T for all v. We

know that for all t [ T̂ 1, there is a t0 [ T 1 for which t0 ¼ t ^ T . Because buyer’s

objective is to maximize the expected present value of the pay-off and she is aware that

after the observable expiry time T the pay-off will be zero, we reason that

V1ðxÞ ¼ sup
t[T 1

inf
g[T 0

Ex e2rðt^gÞ½g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}�1{t^g#T}

� �
¼ sup

t[T 1

inf
g[T 0

Ex e2rðt^gÞ ðg1ðXtÞ1{t,T} þ gþ1 ðXT Þ1{t$T}Þ1{t,g} þ g2ðXgÞ1{t.g}

��
þ g3ðXgÞ1{t¼g}�1{t^g#T}g

¼ sup
t̂[T̂ 1

inf
g[T 0

Ex e2rðt̂^gÞ ðg1ðXt̂Þ1{t̂,T} þ gþ1 ðXT Þ1{t̂$T}Þ1{t̂,g} þ g2ðXgÞ1{t̂.g}

��
þ g3ðXgÞ1{t̂¼g}�1{t̂^g#T}g

¼ sup
t̂[T̂ 1

inf
g[T 0

Ex e2rðt̂^gÞ ðg1ðXt̂Þ1{t̂,T} þ gþ1 ðXT Þ1{t̂$T}Þ1{t̂,g} þ g2ðXgÞ1{t̂.g}

��
þ g3ðXgÞ1{t̂¼g}�g

¼ sup
t[T 1

inf
g[T 0

Ex e2rððt^TÞ^gÞ ðg1ðXtÞ1{t,T} þ gþ1 ðXT Þ1{t$T}Þ1{t^T,g}

��
þ g2ðXgÞ1{t^T.g} þ g3ðXgÞ1{t^T¼g}�g:

ð3:7Þ

Now, it follows from Lemma 3.1 that the last expression is equivalent with the form

sup
t[T 0

inf
g[T 0

Ex e2rððt^TÞ^gÞ g1ðXtÞ1{t,T} þ gþ1 ðXT Þ1{t$T}Þ
	 


1{t^T,g}

��
þ g2ðXgÞ1{t^T.g} þ g3ðXgÞ1{t^T¼g}

��
:

Finally, let t; g [ T 0. Since T is independent of X, we conclude that

Ex e2rððt^TÞ^gÞ g1ðXtÞ1{t,T} þ gþ1 ðXT Þ1{t$T}Þ
	 


1{t^T,g} þ g2ðXgÞ1{t^T.g}

��
þ g3ðXgÞ1{t^T¼g}

�
ð1{t$T} þ 1{t,T}Þ

�
¼ Ex e2rTgþ1 ðXT Þ1{t^g$T} þ e2rðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g}

��
þ g3ðXgÞ1{t¼g}

�
1{t^g,T}

�
¼ Ex l

ðt^g
0

e2ðrþlÞsgþ1 ðXsÞdsþ e2ðrþlÞðt^gÞ
�
g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g}

�

þ g3ðXgÞ1{t¼g}

�
};
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for all x [ Rþ. This computation proves the claimed result for the lower value V1.

The result for the upper value �V1 is proved completely similarly. A

In Proposition 3.2, we showed that the random horizon game can be transformed into

an equivalent adjusted perpetual game. In particular, the existence of the value function for

Game 1 follows now from [14] even when the pay-offs are assumed only to be continuous.

Moreover, we observe that the form of the value function (3.6) associated with constant

threshold policy is consistent with Proposition 3.2. It is also worth mentioning that the

buyer follows actually a stopping rule ‘Stop at time t ^ T’ which results into the pay-off

g1ðXtÞ1{t,T} þ gþ1 ðXT Þ1{t$T}. This property was used in (3.7).

Put slightly different, Proposition 3.2 essentially shows that the value of the random

time horizon game under the extended filtration F̂ can be determined via an associated

perpetual dividend paying game under the reference filtration F generated by the

underlying asset price X. The same idea appears in varying contexts in the series of papers

by Bielecki et al. including [4] and [5]. In particular, Proposition 3.2 resembles Lemma 3.6.

in [5] where asset prices follow general semimartingale processes and the default of game

option is modelled using a hazard process. In our case, the hazard process would be the

independent Poisson process N. We also refer to [10], where an analogous result is proved

for optimal stopping problems with underlying diffusion dynamics.

3.2. Necessary conditions

Having the expression (3.6) at hand, we proceed with the derivation of necessary

conditions. Define the function Q1 : R3
þ ! Rþ as

Q1ðx; z; yÞ ¼ Ex{e2ðrþlÞðty^gzÞ
�
ĝ1ðXty Þ1{ty,gz} þ ĝ2ðXgz Þ1{ty.gz}

�
}

¼ h1ðz; yÞcrþlðxÞ þ h2ðz; yÞwrþlðxÞ;

recall the definition of the functions ĝi and hi, i ¼ 1,2, from (3.2) and (3.4), respectively

(cf. [2], expression (15)). We assume now that the thresholds z*
1 and y*

1 give rise to an

extremal expression for Q1 in the sense that for all fixed (initial) states x, the point ðz*
1; y

*
1Þ

is a saddle point for the surface ðz; yÞ 7! Q1ðx; z; yÞ. Using Lemma 4.1 in [2], we conclude

that the thresholds z*
1 and y*

1 must then satisfy the conditions

ðLrþl
w ĝ2Þðz

*
1Þ2 ðLrþl

w ĝ1Þðy
*
1Þ ¼ 0;

ðLrþl
c ĝ2Þðz

*
1Þ2 ðLrþl

c ĝ1Þðy
*
1Þ ¼ 0:

8<
: ð3:8Þ

Define now the candidate

G1ðxÞ ¼

g1ðxÞ; x $ y*
1;

lðRrþlg
þ
1 ÞðxÞ þ Q1ðx; z

*
1; y

*
1Þ; x [ ðz*

1; y
*
1Þ;

g2ðxÞ; x # z*
1;

8>><
>>: ð3:9Þ

where z*
1 and y*

1 are given by (3.8). We point out that it follows from Lemma 4.1 in [2] that

G1 is continuously differentiable over the exercise boundaries.

It is interesting to note from (3.9) that the candidate G1 admits a value decomposition

on the continuation region. The resolvent term lðRrþlg
þ
1 Þ gives the expected present value

of the terminal pay-off at the exponentially distributed independent random time T
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(pay-off of a randomized European contingent claim) and the term Q1 has the natural

interpretation as the early exercise premium, cf. [9], p. 604. This decomposition is

analogous to Equation (12) in [9], where a Canadian put option is considered in the

classical Black–Scholes framework.

Having the candidate G1 formulated, the next proposition contains our main result on

the necessary conditions for the optimal solution for Game 1.

Proposition 3.3. Assume that there is a pair ðz*
1; y

*
1Þ satisfying conditions (3.8) and that

there exist thresholds x̂i, i ¼ 1,2, such that

GrþlĝiðxÞ v 0; whenever x b x̂i: ð3:10Þ

Then the pair ðz*
1; y

*
1Þ is unique and z*

1 , x̂2 and x̂1 , y*
1. Moreover the value of Game 1

reads as V1ðxÞ ¼ G1ðxÞ for all x [ Rþ, where G1 is defined in (3.9).

Proof. We know from [2], Theorem 4.3, that under assumption (3.10) a pair satisfying

(3.8) is necessary unique and that z*
1 , x̂2 and x̂1 , y*

1. The proof that the value of the

game reads as in (3.9) is similar to that of Theorem 4.3 in [2], the only difference being that

gi is replaced by ĝi, for i ¼ 1,2. A

In Proposition 3.3, we showed that given the additional condition (3.10) a solution of

the pair (3.8) is necessarily unique. From a practical point of view, this is a convenient

result. Indeed, if we attempt to solve the pair (3.8) numerically for a particular example

and our scheme converges to a solution, we can be sure that it is the unique optimal one.

Condition (3.10) was needed in the proof of Proposition 3.3 to assure that functionals

Lrþl
� ĝi behave nicely enough for the uniqueness result to hold – remember that

ðLrþl
� ĝiÞ

0ðxÞ / Grþlĝi
	 


ðxÞ. We propose in the next lemma a set of sufficient conditions for

the assumption (3.10).

Lemma 3.4. Assume that there are thresholds ~xi, i ¼ 1,2, such that

GrgiðxÞ v 0; whenever x b ~xi:

In addition, assume that

. g1ðxÞ $ 0 for all x . 0 or that Grg1 is non-increasing, and

. ðgþ1 2 g2Þ and Grg2 are non-increasing.

Then condition (3.10) holds.

Proof. The result follows from the expressionsGrþlĝ1 ¼ Grg1 þ lðgþ1 2 g1Þ, where gþ1 2 g1

is non-increasing and Grþlĝ2 ¼ Grg2 þ lðgþ1 2 g2Þ. A

We note also from Proposition 3.3 that the stopping times ty*
1

and gz*
1

do not tell the

entire story about the optimal stopping rules. Indeed, the optimal stopping rule for the

issuer is ‘stop at time gz*
1
¼ inf{t $ 0jXt # z*

1}’, but for the buyer optimal rule is ‘stop at

time ty*
1
¼ inf{t $ 0jXt $ y*

1}, but if T , ty*
1
, stop at time T whenever g1ðXT Þ . 0’ so the

optimal rule for the buyer is not a pure threshold rule. However, it is analogous to the

exercise rule of a finite horizon American option. Consider, for example, American call

option in classical Black–Scholes framework. Then it is well known that the optimal
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D
ow

nl
oa

de
d 

by
 [

T
ur

ku
 U

ni
ve

rs
ity

],
 [

Pe
kk

a 
M

at
om

äk
i]

 a
t 0

0:
33

 0
8 

O
ct

ob
er

 2
01

3 

168



exercise boundary is given by a decreasing, concave curve in space-time truncated at the

fixed terminal time. In our case, the buyer’s optimal exercise boundary is of rectangular

shape in space-time, but its length in time is random – see [9], p. 605, for the same

observation for a Canadian put option.

While Proposition 3.3 catches a relatively large range of problems, our assumptions

are not usually satisfied if exercise pay-offs have option characteristics – for example if

giðxÞ ¼ ðx2 ciÞ
þ, where c1 . c2 . 0. In the next result, we propose a set of necessary

conditions for a class of simple option type problems.

Corollary 3.5. Assume that there exists �xi , x̂i so that giðxÞ ¼ 0 on ð0; �xiÞ, ðGrþlĝiÞ . 0

on ð�xi; x̂iÞ, and ðGrþlĝiÞ , 0 on ðx̂i;1Þ, i ¼ 1,2. Assume also that the threshold

ŷ*
�x2
¼ argmax

y

ĝ1ðyÞ

crþlðyÞ2
crþlð�x2Þ
wrþlð�x2Þ

wrþlðyÞ

( )

exists. If there exists a pair ðz*
1; y

*
1Þ [ ð�x2; x̂2Þ £ ðx̂1; ŷ*

�x2
Þ satisfying the first-order conditions

(3.8), then the conclusion of Proposition 3.3 is satisfied and the value of the game reads

as in (3.9).

Proof. The result follows from Proposition 3.3 after noticing that ŷ*
�x2

is the corner solution

to the lower equation of (3.8) (or its alternative formulation, see (20) in [2]). A

If there does not exist an internal solution, then the pair ð�x2; ŷ*
�x2
Þ constitutes a corner

solution, which is a saddle point solution and the solution reads as

V1ðxÞ ¼

g1ðxÞ; x $ ŷ*
�x2
;

l Rrþlg
þ
1

	 

ðxÞ þ Q1 x; �x2; ŷ*

�x2

� �
; x [ �x2; ŷ*

�x2

� �
;

0; x # �x2:

8>>><
>>>:

As mentioned before, one possible way to generalize the result above to a more general

class of option type pay-offs would be the use of convolution approximation method from

[1], but this is out of the scope of this study.

3.3. Sufficient conditions

The main objective of this section is to propose a set of sufficient conditions for the

solvability of the game. To this end, we prove first the following lemma.

Lemma 3.6. Let b [ Rþ. Then crðxÞ
crðbÞ

. crþlðxÞ
crþlðbÞ

for all x , b and the function x 7! crþlðxÞ
crðxÞ

is

monotonically increasing.

Proof. Let x , b , 1. From [6], p. 18, we have Ex{e2rtb} ¼ crðxÞ
crðbÞ

, where

tb ¼ inf{t $ 0 jXt ¼ b}. Then

crðxÞ

crðbÞ
¼ Ex{e2rtb} . Ex{e2ðrþlÞtb} ¼

crþlðxÞ

crþlðbÞ
:

From this, we also see that crþl

cr
is monotonically increasing. A
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The next theorem, which is the main result of this subsection, gives a set of conditions

under which the optimal solution for Game 1 is given by (3.8) and (3.9).

Theorem 3.7. Assume that the boundaries 0 and 1 are natural for the underlying X, that

condition (3.10) holds, and that for i ¼ 1,2,

(1) Grgi; g2 [ Lr
1,

(2) limx!1
giðxÞ
crðxÞ

��� ��� ¼ 0,

(3) Grg1ðxÞ . Grg2ðxÞ for all x [ RþnD.

Then there exist a unique pair ðz*
1; y

*
1Þ satisfying the first-order conditions (3.8) and the

value V1 of Game 1 reads as in (3.9).

Proof. First, we find by coupling assumption (3) with the inequality g2 $ g1 that

Grþlĝ1

	 

ðxÞ ¼ ðGrg1ÞðxÞ þ lðgþ1 ðxÞ2 g1ðxÞÞ . ðGrg2ÞðxÞ þ lðgþ1 ðxÞ2 g2ðxÞÞ

¼ Grþlĝ2

	 

ðxÞ; ð3:11Þ

for all x [ RþnD. Furthermore, since the functions gi [ Lr
1, assumption (1) implies that

Grþlĝi ¼ Grgi þ lðgþ1 2 giÞ [ Lrþl
1 ; ð3:12Þ

for i ¼ 1; 2. Our next objective is to show that

lim
x!1

ðLrþl
w ĝiÞðxÞ ¼ lim

x!0
ðLrþl

c ĝiÞðxÞ ¼ 0: ð3:13Þ

To this end, let b [ Rþ. Since the function crðxÞ
crþlðxÞ

is decreasing, see Lemma 3.6, we find

0 # lim
x!1

ĝiðxÞ

crþlðxÞ

����
���� # crðbÞ

crþlðbÞ
lim
x!1

giðxÞ2 lðRrþlg
þ
1 ÞðxÞ

crðxÞ

����
���� ¼ 0; ð3:14Þ

for i ¼ 1,2. Here, the last inequality follows from assumption (2) and Proposition 4 from

[17]. By coupling (3.14) with (2.1) and (3.12), we find that

ðLrþl
w ĝiÞðxÞ ¼ 2

ð1
x

wrþlðyÞðGrþlĝiÞðyÞm
0ðyÞdy! 0; as x!1;

where the integral representation follows from [2], Corollary 3.2. In addition, since g1 and

g2 are bounded from below, Corollary 3.2 from [2] implies that

ðLrþl
c ĝiÞðxÞ ¼

ðx
0

crþlðyÞðGrþlĝiÞðyÞm
0ðyÞdy! 0; as x! 0:

Thus, we have established condition (3.13). Now, conditions (3.10) and (3.11)–(3.13)

guarantee that the claimed result follows from [2], Theorem 4.4. A

Theorem 3.7 states a set of conditions under which a unique pair ðz*
1; y

*
1Þ satisfying the

first-order conditions (3.8) exists and under which the value of Game 1 can be written as

(3.9). We remark that these conditions do not depend on the jump rate l. Furthermore,
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we know from Lemma 3.4 that condition (3.10) can be substituted with a set of conditions

that are also independent of l. Thus, when using our results to check whether a particular

example of Game 1 has a (unique) solution, the value of l does not play any role.

4. Game 2

4.1 Equivalent formulation of the game

This section is devoted to the study of the solvability of Game 2. The analysis is

completely analogous to Section 3. Again, we begin with the ansatz that the game has a

saddle point equilibrium and that the continuation region ðz*
2; y

*
2Þ , Rþ has compact

closure. Now, because the terminal date T is observable to the issuer and she knows that

after that time the buyer cannot exercise, it is clear that she will exercise at time T if and

only if g2ðXT Þ , 0. Thus, in an infinitesimal time interval dt, the Poisson process jumps

with probability ldt leaving the buyer with pay-off g22 ðxÞ ¼ min{g2ðxÞ; 0}. With

probability 1 2 ldt there is no jump which results in additional expected present value.

Analogously to Game 1, we deduce that the candidate G2 must satisfy the condition

GrþlG2ðxÞ ¼ 2lg22 ðxÞ for all x [ ðz*
2; y

*
2Þ and, consequently, the candidate can be

represented as

G2ðxÞ ¼ Ex l

ðt
y*
2

^g
z*
2

0

e2ðrþlÞsg22 ðXsÞdsþ e
2ðrþlÞðt

y*
2
^g

z*
2
Þ
g1ðXt

y*
2

Þ1{t
y*
2
,g

z*
2
}


�
þ g2ðXg

z*
2

Þ1{t
y*
2

.g
z*
2

}�g ð4:1Þ

for all x [ Rþ. As in Game 1, this form is the correct form of the value function for the

associated perpetual game.

Proposition 4.1. The upper and lower values can for Game 2 be rewritten as

�V2ðxÞ ¼ inf
g[T 0

sup
t[T 0

~P2ðx; t; gÞ;V2ðxÞ ¼ sup
t[T 0

inf
g[T 0

~P2ðx; t; gÞ;

where

~P2ðx; t; gÞ ¼ Ex l

ðt^g
0

e2ðrþlÞsg22 ðXsÞdsþ e2ðrþlÞðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g}

��
þ g3ðXgÞ1{t¼g}�g

for all x [ Rþ.

Proof. Completely similar to the proof of Proposition 3.2. A

Similarly to Game 1, we remark that the issuer follows now a stopping rule ‘Stop at

time g ^ T’ which results into the pay-off g2ðXgÞ1{g,T} þ g22 ðXT Þ1{g$T}.

4.2. Necessary conditions

In order to simplify the notations, we denote

�g1ðxÞ ¼ g1ðxÞ2 l Rrþlg
2
2

	 

ðxÞ;

�g2ðxÞ ¼ g2ðxÞ2 l Rrþlg
2
2

	 

ðxÞ:

8<
: ð4:2Þ
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Moreover define the function Q2 : R3
þ ! Rþ as

Q2ðx; z; yÞ ¼ Ex e2ðrþlÞðty^gzÞ ð�g1ðXty Þ1{ty,gz} þ �g2ðXgzÞ1{ty.gz}

� �� �
¼ k1ðz; yÞcrþlðxÞ þ k2ðz; yÞwrþlðxÞ;

where the functions k1 : R2
þ ! R are defined as

k1ðz; yÞ ¼
wrþlðyÞ�g2ðzÞ2 wrþlðzÞ�g1ðyÞ

wrþlðyÞcrþlðzÞ2 wrþlðzÞcrþlðyÞ
;

k2ðz; yÞ ¼
crþlðzÞ�g1ðyÞ2 crþlðyÞ�g2ðzÞ

wrþlðyÞcrþlðzÞ2 wrþlðzÞcrþlðyÞ
:

8>><
>>: ð4:3Þ

Analogously to Section 3, we assume that for every fixed x, the surface ðz; yÞ! Q2ðx; z; yÞ
has a unique saddle point ðz*

2; y
*
2Þ, which does not depend on x. Then the first-order

necessary conditions for this saddle point can be written as

ðLrþl
w �g2Þðz

*
2Þ2 ðLrþl

w �g1Þðy
*
2Þ ¼ 0;

ðLrþl
c �g2Þðz

*
2Þ2 ðLrþl

c �g1Þðy
*
2Þ ¼ 0:

8<
: ð4:4Þ

The next proposition contains our main result on the necessary conditions for the optimal

solution for Game 2.

Proposition 4.2. Assume that there is a pair ðz*
2; y

*
2Þ satisfying conditions (4.4) and that

there are thresholds �xi, i ¼ 1,2, such that

Grþlg
�
iðxÞ v 0; whenever x b x� i: ð4:5Þ

Then the pair ðz*
2; y

*
2Þ is unique and z*

2 , �x2 and �x1 , y*
2. Furthermore the value V2 of Game

2 reads as

V2ðxÞ ¼

g1ðxÞ; x $ y*
2;

lðRrþlg
2
2 ÞðxÞ þ Q2ðx; z

*
2; y

*
2Þ; x [ ðz*

2; y
*
2Þ;

g2ðxÞ; x # z*
2;

8>><
>>: ð4:6Þ

where the functions ki, i ¼ 1,2, are defined in (4.3).

Proof. Completely analogous to the proof of Proposition 3.3. A

Similarly to Proposition 3.3, we posed in Proposition 4.2 the additional assumption

(4.5) to assure that the functionals Lrþl
� �gi behave well enough so that the uniqueness of the

solution is guaranteed. In this case, as in Game 1, we propose sufficient conditions to (4.5)

which do not depend on l. These conditions are listed in the next lemma.

Lemma 4.3. Assume that there are thresholds ~xi, i ¼ 1,2, such that

ðGrgiÞðxÞ v 0; whenever x b ~xi. In addition, assume that

. ðGrg1Þ and g22 2 g1 are non-increasing, and

. ðGrg2Þ is non-increasing or g2 # 0 for all x . 0.

Then condition (4.5) holds.
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Proof. Similar to the proof of Lemma 3.4. A

Similar to Proposition 3.3, the stopping times ty*
2

and gz*
2

do not tell the whole truth

about the optimal stopping rules. The optimal stopping rule for the issuer is now ‘stop at

time gz*
2
, but if T , gz*

2
and g2ðXT Þ , 0, stop at time T, else do not stop’, whilst the optimal

stopping rule for the buyer is ‘stop at time ty*
2
¼ inf{t $ 0jXt $ y*

2}’. Analogously to

Game 1, the value is decomposed in continuation region into the terminal pay-off

lðRrþlg
2
2 Þ and the early exercise premium Q2ðx; z*

2; y
*
2Þ.

Corollary 4.4. Assume that there exists �xi , �xi so that giðxÞ ¼ 0 on ð0; �xiÞ, ðGrþl �giÞ . 0

on ð�xi; x
�
iÞ, and ðGrþl �giÞ , 0 on ð�xi;1Þ, i ¼ 1; 2. Assume also that the threshold

�y*
�x2
¼ argmax

y

�g1ðyÞ

crþlðyÞ2
crþlð�x2Þ
wrþlð�x2Þ

wrþlðyÞ

( )

exists. If there exists a pair ðz*
2; y

*
2Þ [ ð�x2; �x2Þ £ ð�x1; �y*

�x2
Þ satisfying the first-order conditions

(4.4), then the conclusion of Proposition 4.2 is satisfied and the value of the game reads as

in (4.6).

Proof. Proof is similar to that of Corollary 3.5. A

If there does not exist an internal solution, then the pair ð�x2; �y*
�x2
Þ constitutes a corner

solution, which is a saddle point solution and the solution reads as

V2ðxÞ ¼

g1ðxÞ; x $ �y*
�x2
;

lðRrþlg
2
2 ÞðxÞ þ Q2ðx; �x2; �y*

�x2
Þ; x [ ð�x2; �y*

�x2
Þ;

0; x # �x2:

8>><
>>:

4.3. Sufficient conditions

The next theorem contains a set of sufficient conditions for the optimal solution for Game 2.

Theorem 4.5. Assume that the boundaries 0 and 1 are natural for the underlying X, that

condition (4.5) hold, and that conditions 1–3 in Theorem 3.7 holds for i ¼ 1,2. Then there

exist a unique pair ðz*
2; y

*
2Þ satisfying the first-order conditions (4.4) and the value V2 of

Game 2 reads as in (4.6).

Proof. The proof is analogous to that of Theorem 3.7. A

Theorem 4.5 states sufficient conditions under which an optimal pair ðz*
2; y

*
2Þ uniquely

exists and under which the value of Game 2 can be expressed as in (4.6). Using Lemma 4.3

condition (4.5) can be expressed independently of l. Therefore, similarly to Game 1, we

remark that for a particular example, the conditions of the theorem can be checked without

any reference to the jump rate l.

5. Comparison and asymptotics

In the previous sections, we studied the solvability of Games 1 and 2. In particular, we

derived necessary and sufficient conditions for the solutions to be given by (3.9) and (4.6).
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In this section, we study further the properties of these solutions. In particular, we are

interested in finding orderings of the stopping thresholds and the value functions.

Furthermore, we study the asymptotic behaviour of the optimal characteristics with

respect to jump rate l. To this end, we define two more Dynkin games. First of these is the

infinite horizon Dynkin game, which is defined using (1.2) and (2.3) in the absence of

terminating event taking place at time T. For a comprehensive analysis of this game, see

[2]. Denote the value of this game as V and the optimal exercise thresholds as ðz*; y*Þ.

The second additional game is the game with random time horizon in the case where the

terminating event is not observable to either of the players – we refer to this game as

Game 3. The upper and lower values of Game 3 are infg[T 0
supt[T 0

~P3ðx; t; gÞ and

supt[T 0
infg[T 0

~P3ðx; t; gÞ, respectively, where

~P3ðx; t; gÞ ¼ Ex e2ðrþlÞðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

� �� �
:

In fact, Game 3 is an infinite horizon game with discount rate r þ l. Hence, we know from

[2] that under certain assumptions this game has a Nash equilibrium given by the unique

thresholds ðz*
3; y

*
3Þ. We denote the value of this game as V3. It is worth pointing out that

Proposition 3.2 implies that if the function g1 is non-positive, the value of Game 1

coincides with the value of Game 3. Similarly, Proposition 4.1 implies that if the function

g2 is non-negative, the value of Game 2 coincides with the value of Game 3.

5.1. Ordering of the thresholds and the values

The following proposition is our main result on the ordering of optimal characteristics of

the games.

Proposition 5.1.

(A) Assume that Game 1, Game 2 and Game 3 have unique saddle point solutions. Then

the following orderings hold

† V1ðxÞ $ V3ðxÞ $ V2ðxÞ everywhere.

† z*
1 $ z*

3 $ z*
2 and y*

1 $ y*
3 $ y*

2 always.

(B) If in addition the infinite horizon game has a unique saddle point solution and g2 is

non-negative, then

† VðxÞ $ V1ðxÞ $ V3ðxÞ $ V2ðxÞ for all x [ Rþ.

† z* $ z*
1 $ z*

3 $ z*
2 and y* $ y*

1 $ y*
3 $ y*

2.

Proof.

(A) Let us first prove the orderings between Game 1 and Game 2. Recall the definitions

of ~P1ðx; t; gÞ and ~P2ðx; t; gÞ from Propositions 3.2 and 4.1, respectively. Now

~P1ðx; t; gÞ ¼ Ex l

ðt^g
0

e2ðrþlÞsgþ1 ðXsÞdsþ e2ðrþlÞðt^gÞ g1ðXtÞ1{t,g}

��
þg2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

��
$ Ex l

ðt^g
0

e2ðrþlÞsg22 ðXsÞdsþ e2ðrþlÞðt^gÞ g1ðXtÞ1{t,g}

��
þg2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

��
¼ ~P2ðx; t; gÞ;
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for all x [ Rþ and t; g [ T 0. Thus,

V1ðxÞ ¼ sup
t[T 0

inf
g[T 0

~P1ðx; t; gÞ $ sup
t[T 0

inf
g[T 0

~P2ðx; t; gÞ ¼ V2ðxÞ ð5:1Þ

Suppose now, contrary to our claim, that y*
1 , y*

2 and let x [ ðy*
1; y

*
2Þ so that x is in

the stopping region of Game 1, and in the continuation region of Game 2. Then

V1ðxÞ ¼ g1ðxÞ , V2ðxÞ, contrary to (5.1). The same reasoning applies to the case

z*
2 # z*

1. Next, recall the definition of ~P3 from beginning of the section. We see that
~P1 $ ~P3 $ ~P2 and using reasoning as above we find that V1 $ V3 $ V2. The claimed

inequalities for the thresholds follow as above.

(B) Let g2 be non-negative and recall the definition of Pðx; t; gÞ from (1.2). We

shall compare it to P1 from (2.4). We know that the value function satisfies VðxÞ ¼

supt[T 0
infg[T 0

Pðx; t; gÞ and similarly V1ðxÞ ¼ supt[T 1
infg[T 0

P1ðx; t; gÞ. To prove

the claim, we first write

V1ðxÞ ¼ max sup
t[T 1

inf
g[T 0

P1ðx; t ^ T ; gÞ; sup
t[T 1

inf
g[T 0

P1ðx; t _ T ; gÞ

( )
: ð5:2Þ

Now, for the first term on the right-hand side of (5.2) we observe that

sup
t[T 1

inf
g[T 0

P1ðx; t ^ T; gÞ ¼ sup
t[T 1

inf
g[T 0

Pðx; t ^ T; gÞ: ð5:3Þ

For the second term, we find the following

sup
t[T 1

inf
g[T 0

P1ðx; t _ T; gÞ

¼ max inf
g[T 0

P1ðx; T ; gÞ; inf
g[T 0

P1ðx;1; gÞ

� �
¼ max inf

g[T 0

Pðx;T ; gÞ; inf
g[T 0

P1ðx;1; gÞ

� �

# max inf
g[T 0

Pðx; T; gÞ; inf
g[T 0

Pðx;1; gÞ

� �
# sup

t[T 1

inf
g[T 0

Pðx; t _ T; gÞ: ð5:4Þ

Here, the first inequality holds since g2 is non-negative. Furthermore, the second

inequality holds since the stopping times 0 and 1 belong to T1. By substituting (5.3)

and (5.4) into (5.2) we obtain

V1ðxÞ # max sup
t[T 1

inf
g[T 0

Pðx; t ^ T; gÞ; sup
t[T 1

inf
g[T 0

Pðx; t _ T ; gÞ

( )

¼ sup
t[T 1

inf
g[T 0

Pðx; t; gÞ ¼ VðxÞ; ð5:5Þ

where the last equality follows from the fact that T 1 ¼ T 0 in the absence of terminating

event.

Suppose, contrary to our claim, that y* , y*
1 and let x [ ðy*; y*

1Þ, so that x is in the

continuation region of stochastic time horizon case, and in the stopping region of

infinite time horizon case. Then VðxÞ ¼ g1ðxÞ , V1ðxÞ, contrary to (5.5). The same

reasoning applies to the case z*
1 # z*. A

Intuitively, item (A) of Proposition 5.1 is not surprising. Indeed, if the issuer has inside

information about the terminating event, it will make the value of the game smaller as

there is one additional stopping time in the set over which the issuer minimizes. Similarly,
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if the buyer has inside information about the terminating event, the value will be larger.

In Game 3, the value is naturally in between these two extremes. Furthermore, the exercise

thresholds are ordered as one could guess from orderings of the value functions, the

principal idea being: The more you know, the longer you wait.

The item (B) is also intuitively quite clear. Since g2 $ 0, there is no risk of ending up

on trajectory leading inevitably into negative pay-off. By coupling this with the fact that

Game 1 will end in finite time almost surely, the ordering V $ V1 becomes evident as

there is less time to maximize the pay-off which is bound to be non-negative. We stress

here that the positiveness of g2 is indeed required for the inequalities V $ V1, z* $ z*
1 and

y* $ y*
1 to hold. We will give a numerical example at the end of Section 6 where these

inequalities are reversed for a function g2 that takes also negative values.

5.2. Some asymptotics

In this subsection, we study the limiting behaviour of the optimal characteristics of Games

1 and 2 when the jump rate l tends to infinity as well as when it tends to zero. The next

proposition is our main result on this matter.

Proposition 5.2. Let �xi be the greatest point such that gið�xiÞ ¼ 0. The value functions Vi,

i ¼ 1; 2, and the corresponding optimal thresholds satisfy the limiting properties

lim
l!1

ViðxÞ ¼ V 1ðxÞ U

g1ðxÞ; x $ �x1

0; x [ ð�x2; �x1Þ

g2ðxÞ x # �x2:

8>><
>>:

and

lim
l!0

ViðxÞ ¼ VðxÞ and

lim
l!0

z*
i ¼ z*

lim
l!0

y*
i ¼ y *:

8><
>:

Proof. We will prove the proposition only for Game 1; Game 2 is handled similarly. Let

us first prove the case l!1. Recall from (2.4) and (2.5) that the value of the Game 1

reads as

V1ðxÞ ¼ sup
t[T 1

inf
g[T 0

P1ðx; t; gÞ ¼ inf
g[T 0

sup
t[T 1

P1ðx; t; gÞ;

where P1ðx; t; gÞ ¼ Ex e2rðt^gÞ g1ðXtÞ1{t,g} þ g2ðXgÞ1{t.g} þ g3ðXgÞ1{t¼g}

� �
1{t^g#T}

� �
:

Letting l!1, we see that

P1ðx; t; gÞ ¼ 0; if t; g . 0

P1ðx; t; gÞ ¼ g1ðxÞ; if t ¼ 0 , g

P1ðx; t; gÞ ¼ g2ðxÞ; if t . 0 ¼ g

P1ðx; t; gÞ ¼ g3ðxÞ; if t ¼ 0 ¼ g: ð5:6Þ

In light of these findings, let us show that the claimed function V 1 is indeed a saddle point

solution when l approaches to infinity. There are three cases to be considered depending

whether x # �x2, x [ ð�x2; �x1Þ or x $ �x1. (Note that since g2 $ g1, we always have �x2 # �x1).

Let x # �x2. Now g1ðxÞ # g3ðxÞ # g2ðxÞ # 0 and so we can check straightforwardly,

using (5.6), that supt[T 1
infg[T 0

P1ðx; t; gÞ ¼ g2ðxÞ ¼ infg[T 0
supt[T 1

P1ðx; t; gÞ.
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The same reasoning applies also to the cases x [ ð�x2; �x1Þ and x $ �x1, and the claimed

limiting property follows.

Next, we turn our eyes on the case l! 0. Since gþ1 [ Lr1, we find that lðRrþlg
þ
1 Þ

ðxÞ! 0 as l ! 0 for all x [ Rþ. Given this limiting property together with the definition

of V1 in (3.9), we find that the claimed limiting property holds. Finally, given the

convergence result of value function V1, the claimed convergence results hold also for the

thresholds z*
1 and y*

1. A

It is interesting to observe that the values of Game 1 and Game 2 are the same at the

limit l ! 0 and also at l ! 1. In the limit l ! 0, this result is intuitively plausible: if the

expected waiting time for the Poisson process to jump is infinite, the game will not expire

unexpectedly, and as a result we get the solution of an infinite horizon game. Also the limit

l ! 1 has a natural explanation: there is no advantage of observing the jump, since both

players already know that the jump will occur at the time zero. While our asymptotic

analysis is general in terms of the underlying dynamics and pay-off structure, it does not,

unfortunately, answer the interesting question about the rate of this convergence.

6. Explicit example with geometric Brownian motion

We illustrate the main results of the study in this section with an explicit example. Let the

underlying diffusion be a geometric Brownian motion, that is, let X be the solution of the

Itô equation

dXt ¼ mXtdt þ sXtdWt; ð6:1Þ

where W is a Wiener process. Furthermore, we assume m [ Rþ, s . 0 and that r . m.

Further let g1ðxÞ ¼ x2 c1 and g2ðxÞ ¼ x2 c2 and assume that c1 . c2 . 0, so that

g2 . g1. Given this set-up, we find that ðRrþlgiÞðxÞ ¼ x=ðr þ l2 mÞ2 ci=ðr þ lÞ. Also

clearly g1,g2 [ L1
r .

In this case, the decreasing and increasing fundamental solutions of the ordinary

second-order differential equation ðA2 bÞu ¼ 0 are wbðxÞ ¼ xg
b

1 and cbðxÞ ¼ xg
b

2

respectively. Here

g
b
i ¼

1

s 2

1

2
s 2 2 mþ ð21Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
1

2
s 2 2 mÞ2 þ 2s 2b

r !
;

for i ¼ 1,2, are the solutions of the characteristic equation 1
2
s 2giðgi 2 1Þþ mgi 2 r ¼ 0.

Finally, the scale density reads as S0ðxÞ ¼ x22m=s 2

.

6.1. Game 1 has a solution

We know that ðRrþlg
þ
1 ÞðxÞ satisfies the differential equation 1

2
s 2x2ðRrþlg

þ
1 Þ

00ðxÞþ

mxðRrþlg
þ
1 Þ

0ðxÞ 2 ðr þ lÞðRrþlg
þ
1 ÞðxÞ ¼ 2gþ1 ðxÞ. Therefore ðRrþlg

þ
1 Þ satisfies the

following conditions:

ðRrþlg
þ
1 ÞðxÞ ¼

a1crþlðxÞ þ a2wrþlðxÞ; x # c1

a3crþlðxÞ þ a4wrþlðxÞ þ ðRrþlg1ÞðxÞ; x . c1:

(

Since ðRrþlg
þ
1 Þð0þÞ – 1, we must have a2 ¼ 0 and since limx!1 ðRrþlg

þ
1 ÞðxÞ2

	
ðRrþlg1ÞðxÞÞ ¼ 0þ, we must have a3 ¼ 0. Furthermore ðRrþlg

þ
1 Þ is continuous and

differentiable. Thus, the coefficients a1 and a4 can be solved from conditions
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limx!c1þðRrþlg
þ
1 ÞðxÞ ¼ limx!c12ðRrþlg

þ
1 ÞðxÞ and limx!c1þðRrþlg

þ
1 Þ

0ðxÞ ¼ limx!c12

ðRrþlg
þ
1 Þ

0ðxÞ. It is a matter of elementary calculation to show that

a1 ¼ 1
crþlðc1Þ

ðRrþlg1Þðc1Þ þ
ðRrþlg1Þ

0ðc1Þcrþlðc1Þ2 ðRrþlg1Þðc1Þc
0
rþlðc1Þ

wrþlðc1Þc
0
rþlðc1Þ2 w 0

rþlðc1Þcrþlðc1Þ
wrþlðc1Þ

� �

a4 ¼
ðRrþlg1Þ

0ðc1Þcrþlðc1Þ2 ðRrþlg1Þðc1Þc
0
rþlðc1Þ

wrþlðc1Þc
0
rþlðc1Þ2 w 0

rþlðc1Þcrþlðc1Þ
:

Next, we show that the presented set-up satisfies the sufficient conditions of Theorem 3.7.

Since GrgiðxÞ ¼ ðm2 rÞxþ rci, for i ¼ 1,2, we find that Grgi [ Lr
1, for i ¼ 1,2. The

assumption c1 . c2 implies that Grg1 . Grg2 – thus conditions (1) and (3) in Theorem (3.7)

hold. Moreover, since we assumed r . m, we have that gr2 . 1, therefore giðxÞ=crðxÞ ¼

x12gr
2 þ cix

2gr
2 , for i ¼ 1,2, satisfy condition (2) in Theorem 3.7. Finally, for condition (3.10)

recall that ĝi ¼ gi 2 lðRrþlg
þ
1 Þ. Thus, Grþlĝi ¼ Grgi þ lðgþ1 2 giÞ and we get

Grþlĝ1ðxÞ ¼
ðm2 r 2 lÞxþ ðr þ lÞc1; x , c1

ðm2 rÞxþ rc1; x $ c1;

(

Grþlĝ2ðxÞ ¼
ðm2 r 2 lÞxþ ðr þ lÞc2; x , c1

ðm2 rÞxþ ðr þ lÞc2 2 lc1; x $ c1:

(

From these expressions, we see that condition (3.10) holds and x̂1 . c1.

It follows that we can apply Theorem 3.7 and, consequently, that there exists a unique

pair ðz*
1; y

*
1Þ satisfying the necessary optimality conditions (3.8). If z*

1 , c1, conditions

(3.8) can be written as (to simplify notation, we write gi U grþl
i )

yg1la4ðg1 2 g2Þ þ
yðg221Þðr2mÞ

rþl2m
2 rg2c1

rþl

� �
y g2þ

2m

s 221
¼ zg2þ

2m

s 221
ðzðg2 2 1Þ2 g2c2Þ

yðg121Þðr2mÞ
rþl2m

2 rg1c1

rþl

� �
y
g1þ

2m

s 221
¼ z

g1þ
2m

s 221
zðg1 2 1Þ2 g1c2 þ zg2la1ðg2 2 g1Þ
	 


:

8>><
>>:
If, on the other hand, z*

1 $ c1, conditions (3.8) take the form

y g1la4ðg1 2 g2Þ þ
yðg221Þðr2mÞ

rþl2m
2 rg2c1

rþl

� �
y
g2þ

2m

s 221
¼ z

g2þ
2m

s 221 ðg221Þðr2mÞz
rþl2m

þ g2lc1

rþl
2 g2c2 þ z g1 ðg1 2 g2Þla4

� �
yðg121Þðr2mÞ

rþl2m
2 rg1c1

rþl

� �
y
g1þ

2m

s 221
¼ z

g1þ
2m

s 221 zðg121Þðr2mÞ
rþl2m

þ g1lc1

rþl
2 g1c2

� �
:

8>><
>>:

Now y*
1 . x̂1 . c1 (see Proposition 3.3), but we do not know whether z*

1 , c1 or the other

way around. Therefore, we have two alternative formulation for (3.8). Nevertheless, only

one of these has solution, since Theorem 3.7 guarantees the uniqueness of the solution.

Furthermore at the point z ¼ c1, these two pairs of equations become the same.

Unfortunately, solving the optimal boundaries from these equations explicitly does not

seem to be possible. Therefore, we illustrate the results numerically. But before that, let us

see through the solvability of Game 2.

J. Lempa and P. Matomäki782
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6.2. Game 2 has a solution

Similarly to Game 1, we find that

ðRrþlg
2
2 ÞðxÞ ¼

a5crþlðxÞ þ ðRrþlg2ÞðxÞ; x , c2

a6wrþlðxÞ; x $ c2;

(

where

a5¼
1

crþlðc2Þ
2ðRrþlg2Þðc2Þþ

ðRrþlg2Þ
0ðc2Þcrþlðc2Þ2ðRrþlg2Þðc2Þc

0
rþlðc2Þ

w0
rþlðc2Þcrþlðc2Þ2wrþlðc2Þc

0
rþlðc2Þ

wrþlðc2Þ

� �

a6¼
ðRrþlg2Þ

0ðc2Þcrþlðc2Þ2ðRrþlg2Þðc2Þc
0
rþlðc2Þ

w0
rþlðc2Þcrþlðc2Þ2wrþlðc2Þc

0
rþlðc2Þ

:

In particular a5; a6 , 0.

Next, we verify that the sufficient conditions in Theorem 4.5 hold. We already showed

with Game 1 that conditions (1)–(3) hold, so it suffices to check whether condition (4.5)

holds. Recall that �gi ¼ gi 2 lðRrþlg
2
2 Þ so that Grþl �gi ¼ Grgi þ lðg22 2 giÞ. Thus,

Grþl �g1ðxÞ ¼
ðm2 rÞxþ ðr þ lÞc1 2 lc2; x , c2

ðm2 r 2 lÞxþ ðr þ lÞc1; x $ c2;

(

Grþl �g2ðxÞ ¼
ðm2 rÞxþ rc2; x , c2

ðm2 r 2 lÞxþ ðr þ lÞc2; x $ c2:

(

From these expressions, we see that condition (4.5) holds and �x1 . c2.

Again, we can apply Theorem 4.5 and there exists a unique pair ðz*
2; y

*
2Þ which satisfies

the necessary optimality condition (4.4). This time, if z*
2 , c2, the condition can be written

as (to simplify notation we write gi U grþl
i )

y g1 ðg1 2 g2Þla6 þ yðg2 2 1Þ2 g2c1

	 

yg2þ

2m

s 221
¼ zg2þ

2m

s 221 zðr2mÞð12g2Þ
rþl2m

2 rg2c2

rþl

� �
yðg1 2 1Þ2 g1c1

	 

y g1þ

2m

s 221
¼ zg1þ

2m

s 221 zðr2mÞðg121Þ
rþl2m

2 rg1c2

rþl
þ zg2 ðg2 2 g1Þla5

� �
8>><
>>:
If, on the other hand, z*

2 $ c2, condition (4.4) takes the form

yg1 ðg1 2 g2Þla6 þ yðg2 2 1Þ2 g2c1

	 

y
g2þ

2m

s 221
¼ z

g2þ
2m

s 221
zðg2 2 1Þ2 g2c2 þ zg1 ðg1 2 g2Þla6

	 

yðg1 2 1Þ2 g1c1

	 

y
g1þ

2m

s 221
¼ z

g1þ
2m

s 221
ðzðg1 2 1Þ2 g1c2Þ:

8><
>:
Similarly to Game 1, we know that y*

2 . �x1 . c2 (cf. Proposition 4.2), but we do not know

whether z*
2 , c2 or not. Therefore, we have two alternative formulations of (4.4), but only

one of these has a solution. Again, solving the optimal boundaries from these equations

explicitly does not seem to be possible and so we are prompted to do numerical

illustrations.

6.3. Numerical illustration

To illustrate the optimal characteristics numerically, we fix the parameter configuration

m ¼ 0:03; r ¼ 0:08;s ¼ 0:35; c1 ¼ 3; c2 ¼ 2 and l ¼ 0.1. Under this choice, the value

functions for Game 1 and Game 2 are given in Figure 1(a),(b).
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The values V, V1, V2 and V3 are compared graphically in Figure 2, recall the definition

of V and V3 from Section 5.

In line with Proposition 5.1, we observe that the inequalities V $ V1 $ V3 $ V2 hold

in this case. We point out that V $ V1 in this case even though g2 takes also negative

values. The values V, V1 and V2 appear to differ quite significantly from each others,

which indicates that the mere existence of the expiry time and the inside information on it

can have substantial impact on the optimal exercise rule. For example, if x ¼ 4 for the

given parameters, we have Vð4Þ < 1:55 and V1ð4Þ < 1:41 the difference being 0.14, so

that V(4) is about 10% greater. However, we observe that the value V3 does not differ

much from V2. This means that in this example when the issuer has inside knowledge

about Poisson clock (Game 2), she rarely takes advantage of this information. This, in turn,

is because she exercises at the jump time T only if g2ðXT Þ , 0. This happens rarely, since

g2 is usually positive.

(a) (b)

Figure 1. (a) The solution of Game 1; (b) The solution of Game 2. Now ðz*
1; y

*
1Þ ¼ ð1:52; 8:34Þ,

whereas ðz*
2; y

*
2Þ ¼ ð1:34; 5:68Þ. For comparison in infinite horizon game ðz *; y *Þ ¼ ð1:60; 8:99Þ so

that now z*
2 , z*

1 , z * and y*
2 , y*

1 , y *.

Figure 2. The differences V 2 V2, V1 2 V2 and V3 2 V2.
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In Figure 3, we illustrate the sensitivities of the exercise thresholds with respect to

parameters s and l in Game 1 and in the infinite horizon game. We notice that the order of

the lower thresholds change as s increases. This is possible, since g2 takes also negative

values (cf. Proposition 5.1). Moreover we see that as s increases, the continuation region

gets wider. This result is in line with the literature. Furthermore, we observe that the

continuation region shrinks as l increases which is again natural in the current example. In

particular, the issuer lets her exercise threshold grow towards c2 so that she could increase

her chances of exercising with negative pay-off.

6.4. Counterexample for inequalities V1 # V, z*
1 # z* and y*

1 # y*

In Proposition 5.1, we prove that if g2 $ 0, then for the optimal stopping boundaries we

have the inequalities z*
1 # z* and y*

1 # y* and for the values we have VðxÞ $ V1ðxÞ. In this

subsection, we show that if g2 is allowed to be negative, then these inequalities are not

necessary true, a hint of this can also be seen from Figure 3.

Let the underlying diffusion still be a geometric Brownian motion and the parameter

configuration as m ¼ 0.03, s ¼ 1.0, l ¼ 0.1 and r ¼ 0.08. Furthermore, let g1 ¼
ffiffiffi
x3

p
2 3

and g2 ¼
ffiffiffi
x

p
2 2; in particular, g2 . g1. It is a straightforward task to check that there

exist unique saddle point solutions for Game 1, Game 2 and infinite time horizon game and

that the optimal thresholds read as ðz*
1; y

*
1Þ < ð0:56; 44:7Þ; ðz*

2; y
*
2Þ < ð0:24; 39:4Þ and

ðz*; y*Þ < ð0:21; 30:0Þ. Now contrary to Proposition 5.1(B), we have z*
1 . z* and y*

1 . y*.

Moreover, we have also z*
2 . z* and y*

2 . y*. On the other hand, the boundaries of Game 2

are lower than the ones of Game 1, see Proposition 5.1(A). Moreover, we find that

VðxÞ # V2ðxÞ # V1ðxÞ which is illustrated in Figure 4.

It is interesting to observe that the value of a random time horizon game can dominate

the value of an infinite horizon game. In fact, it can be that the infinite horizon game can

Figure 3. The changes of thresholds in Game 1 and in infinite horizon game, when changings and l.
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have the smallest value of the games considered in this paper, which seems first rather

counterintuitive. However, this is all due to the ‘sufficient negativeness’ of g2. Indeed, as

the game will end almost surely in finite time, the issuer’s chances of exercising with a

very negative payoff are reduced in comparison to the infinite horizon game.

6.5. Option type example

In this subsection, we examine an option type example, where the pay-offs gi are not

continuously differentiable. We illustrate our results only for Game 1, Games 2 and 3

being analogous. To begin with, set c1 . c2 . 0 and define gi ¼ ðx2 ciÞ
þ, so that the pay-

offs are compatible with Corollary 3.5. Moreover, let the underlying diffusion follow the

geometric Brownian motion (6.1) with r . m . 0. Under these choices we set up the

optimal stopping game

V1ðxÞ ¼ sup
t[T 1

inf
g[T 0

P1ðx; t; gÞ ¼ inf
g[T 0

sup
t[T 1

P1ðx; t; gÞ:

Since Grþlĝi ¼ Grgi þ lðg1 2 giÞ, it is a matter of straightforward calculus to show that

Grþlĝ1ðxÞ ¼

0; x # c1

2rxþ mþ rc1; x . c1

8<
: and

Grþlĝ2ðxÞ ¼

0; x # c2

2ðr þ lÞxþ mþ ðr þ lÞc2; c1 . x . c2

2rxþ mþ rc2 þ lðc2 2 c1Þ; x $ c1:

8>>><
>>>:

We see immediately that since r . m . 0; there exists a unique x̂1 . c1 satisfying

(3.10). Moreover, since Grþlĝ2 is decreasing for all x . c2 and is continuous over c1,

there exist also a unique x̂2 . c2 satisfying (3.10). Finally, to show the existence of ŷ*
�x2

,

we know that ĝ1ðc2Þ , 0. It can be calculated that ĉc2
ðxÞ U crþlðxÞ2

crþlðc2ÞwrþlðxÞ=wrþlðc2Þ is increasing for all x . c2 and that it tends to zero as x

tends to c2. Thus ĝ1ðc2Þ=ĉc2
ðc2Þ ¼ 21, and it is increasing in a neighbourhood of c2. On

the other hand, it can be shown that there exists K . c2 such that ĝ1ðxÞ=ĉc2
ðxÞ is

Figure 4. The differencesV 2 V2 andV1 2 V2. We haveV # V2 # V1 in contrast to Proposition 5.1.
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decreasing for all x . K. Thus, we conclude that ĝ1ðxÞ=ĉc2
ðxÞ attains its maximum on the

compact interval ½c2;K�.
It follows that the conditions of Corollary 3.5 are met, and we know that if there exists

an internal solution ðz*
1; y

*
1Þ for the necessary conditions (3.8) (i.e. z*

1; y
*
1 � {c1; c2}), then it

must be unique and the value of the game reads as in (3.9). If this is not the case, then the

solution is a corner solution with the exercise boundaries c2 and ŷ*
�x2

. Finally, we illustrate

the value function graphically for a particular parameter configuration in Figure 5.
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Abstract

We consider a class of optimal stopping problems involving both the running

maximum as well as the prevailing state of a linear diffusion. Instead of

tackling the problem directly via the standard free boundary approach, we

take an alternative route and present a parameterized family of standard

stopping problems of the underlying diffusion. We apply this family to delineate

circumstances under which the original problem admits a unique well-defined

solution. We then develop a discretized approach resulting into a numerical

algorithm for solving the considered class of stopping problems. The algorithm

is illustrated in two different cases for a GBM and a mean reverting diffusion.

Keywords: Optimal stopping, linear diffusions, maximum process
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1. Introduction

Let Xt be an Itô diffusion evolving on the state space R+ and denote as St =

sups≤t{Xt} its running supremum. In this paper our objective is to analyze and solve

the infinite horizon optimal stopping problem

sup
τ

E(x,s)

{
e−rτf(Xτ , Sτ )

}
, (1.1)

where the exercise payoff f(x, s) is assumed to be decreasing in x, increasing in s,

r > 0 denotes the exogenously given constant discount rate, and τ is a stopping time.
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∗∗ Postal address: Turku School of Economics, Department of Accounting and Finance, 20014
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2 L. H. R. ALVAREZ AND P. MATOMÄKI

Two well-known examples belonging to this class of stopping problems are the Russian

option for which f(x, s) = s (see e.g. [27, 19]) and the American lookback option with

a floating strike for which f(x, s) = s− x (see e.g. [9, 19]). While both of these cases

constitute perpetual path-dependent options, the latter problem has also an alternative

interpretation as a measure of a risk for a stock (see [10, 20]).

Typically optimal stopping problems of the type (1.1) are solved by considering

an associated free boundary problem (for a pioneering treatment, see [25]; for a

comprehensive treatment of these problems see Chapter III and Section 13 in [26]).

In [25] the considered stopping problem was of the form

sup
τ

E(x,s)

{
F (Sτ )−

∫ τ

0

c(Xs)ds

}
,

where F is an increasing function, c a positive function and Xt Brownian motion. In

that study, a powerfulmaximality principle was developed. According to that principle,

the first-order differential equation characterizing the optimal exercise boundary admits

a maximal solution which stays strictly below the diagonal in R2
+. It was then shown

that the maximality principle is equivalent to the existence of a finite solution, and

that the optimal stopping strategy can be characterized as the first time the process

Xt falls below the maximal solution. More recently this technique has been further

refined in [22] extending the original results of [25] to a more general setting. The

optimal stopping of the running minimum within an optimal prediction of the ultimate

minimum setting has recently been investigated and solved in [12] by relying on a

free boundary approach. Further, the maximality principle has also been adapted

to problems involving spectrally negative Lévy processes (see e.g. [18, 23], and the

references therein).

In this paper, we address the optimal stopping problem (1.1) under a set of

reasonable basic regularity and smoothness assumptions on exercise payoff and the

underlying diffusion. Instead of relying on a free boundary approach, we take an

alternative route and present a parameterized family of associated standard stopping

problems which we solve explicitly by relying on ordinary optimization techniques.

We subsequently apply our findings in deriving, independently of the free boundary

problem, a set of sufficient conditions under which (1.1) indeed attains a finite solution.

Our approach relies on the r-excessivity of the values of the associated stopping
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Optimal stopping of the maximum process 3

problems. In that way it avoids the immediate application of the smooth pasting

and instantaneous reflection conditions even though especially the former of these

conditions is to some extent embedded in the considered class of optimization problems.

Having established the existence of a solution for the considered class of stopping

problems, we then develop a discretized approach which can be applied for determining

the optimal policy and its value. In a finite horizon case of the problem, one can

discretize time, leading to a familiar binomial tree framework similar to the well known

CRR-model (see eg. [4, 16]). However, within an infinite time horizon setting this

approach is no longer possible and a somewhat different discretization is required.

As our study demonstrates, discretizing the state of the supremum process is an

appropriate technique leading to a desired outcome. In the chosen discretization

framework, the supremum process can only take values from an arithmetic sequence.

Since the supremum process increases only at states where it coincides with the

underlying diffusion, we notice that at any given date the underlying process has hit

only finitely many times its discretized supremum. Between these hitting times, the

two-dimensional process (Xt, St) behaves as one-dimensional. It then follows that the

discretized problem can be seen as a countable sequence of relatively easily solvable

one-dimensional subproblems. Since this sequence is shown to converge to the optimal

solution under a set of typically satisfied conditions, our study complements the existing

approaches by presenting a technique which does not require the analysis of the

ordinary differential equation characterizing the optimal boundary. This discretization

simultaneously results into an algorithm for finding the optimal threshold and value

numerically as a limit of a converging sequence. In this way we do not only prove that

there exists a unique threshold rule, we also identify it. For the sake of generality,

we also consider an extension of the original problem (1.1) in a case where there are

no monotonicity requirements for the exercise payoff f(x, s). It turns out that our

approach applies in that case as well, leading to a convergent sequence approaching

the solution.

In order to illustrate our findings explicitly, we solve the value and optimal exercise

strategy of a lookback option with a floating strike for a general Itô diffusion. We also

determine the value and optimal stopping strategy of a π-option (f(x, s) = xκsη −

K, with κ, η,K ≥ 0) introduced in [14]. The efficiency of the developed discrete
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4 L. H. R. ALVAREZ AND P. MATOMÄKI

algorithm is then illustrated for these two option models under two different dynamic

specifications for the underlying diffusion process. All in all, our examples seem to

indicate that the discretization method can be successfully used to solve a great variety

of different stopping problems involving a running supremum process, the primary

restrictive factor being an s-Hölder-continuity of f .

It is at this point worth mentioning that there are also other approaches that

avoid the use of the free boundary conditions and the maximality principle. In [5] an

alternative technique based on a measure transform was introduced. This technique,

known as the Beibel-Lerche approach, has been successfully applied in the solution of

some optimal stopping problems of the running supremum of a geometric Brownian

motion (see [19]). Another alternative approach was developed in [15]. Instead of

analyzing the free boundary problem subject to appropriate boundary conditions, [15]

computes directly the expected value of stopping strategies defined with respect to a

suitable class of boundaries and then chooses the optimal one by relying on arguments

familiar form the calculus of variations.

The contents of this study are as follows. The problem and the basic assumptions are

represented in an exact form in Section 2. In Section 3, we then prove the existence of

a solution to (1.1) by solving a parameterized family of associated stopping problems.

We show in Section 4 that the optimal value and stopping boundary can be found also

by using the discretization method. Our findings are then illustrated numerically in

Section 5 and 6.

2. The Optimal Stopping Problem

Let (Ω,P, {Ft}t≥0,F) be a complete filtered probability space satisfying the usual

conditions (see p. 2 in [7]). Let Xt be a regular linear diffusion defined on

(Ω,P, {Ft}t≥0,F) and evolving on R+ according to the dynamics described by the

Itô differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x.

Here Wt denotes the standard Brownian motion and both the drift term µ : R+ → R

and volatility term σ : R+ → R+ are assumed to be sufficiently smooth for guaranteeing

the existence and uniqueness of a (weak) solution for the above stochastic differential
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Optimal stopping of the maximum process 5

equation (for example, if the conditions of Theorem 5.15 in [17] are met). Especially

we assume that σ(x) > 0 for x ∈ R+ in order to avoid interior singularities. We

also assume that the boundaries of the state space are natural for the process Xt.

Furthermore, given the underlying diffusion Xt, we denote as

St = max{s, sup
0<u≤t

{Xu}}, S0 = s ≥ x

the supremum up to date t of the underlying diffusion. The time t = 0 can be

interpreted as the time when the considered optimal stopping problem arises, e.g.

as the time when the lookback option is issued. In this light s can be seen as the

historical supremum of X, reached before the stopping problem aroused, explaining

the case s > x.

As usually, we define the differential operator associated with the underlying

diffusion as

A =
1

2
σ2(x)

d2

dx2
+ µ(x)

d

dx

and denote as Gr := A − r the differential operator associated with the underlying

diffusion killed at the constant rate r. Given these differential operators, we denote

as ψ and φ the increasing and the decreasing fundamental solutions of the ordinary

differential equation (Gru)(x) = 0, respectively. As is well-known from the literature on

linear diffusions, BL′(x) = ψ′(x)φ(x)−φ′(x)ψ(x), where B is the constant Wronskian

of the fundamental solutions and

L′(x) = exp

(
−
∫ x 2µ(y)

σ2(y)
dy

)
denotes the density of the scale function of Xt. Moreover m′(x) = 2/(σ2(x)L′(x))

denotes the density of the speed measure of Xt. For a complete characterization of the

basic characteristics of a linear diffusion and the associated fundamental solutions, see

Chapter 2 in [7].

Given the underlying diffusion and its running maximum, our objective is to analyze

and solve the infinite horizon optimal stopping problem

V (x, s) = sup
τ

E(x,s)

{
e−rτf(Xτ , Sτ )

}
(1.1)

under the following standing assumptions:
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6 L. H. R. ALVAREZ AND P. MATOMÄKI

Assumption 2.1. We assume that the exercise payoff f : R2
+ 7→ R is x-non-increasing,

s-increasing and satisfies the following conditions

(a) f(x, s) ∈ C2,1(R2
+) for all 0 < x ≤ s <∞ and 0 < f(0+, s) <∞ for all s > 0;

(b) for a given s > 0, there exists x̃s ∈ (0, s] such that (Grf)(x, s) S 0 for all x S x̃s

and that (Grf)(0+, s) < 0.

3. Associated Stopping Problem

3.1. The auxiliary problem and its solution

Instead of tackling the considered two dimensional optimal stopping problem directly

via variational inequalities, we now take an alternative approach and consider first

an associated parameterized family of one dimensional stopping problems of the

underlying linear diffusion process. To that end, let Q(s) be a (finite) nonnegative

continuous function satisfying the inequality Q(s) ≥ f(s, s) for all s ∈ R+. Our first

aim is to solve, for x ≤ s, the auxiliary problem

V Q(x, s) = sup
τ

Ex
{
e−rτf(Xτ , s)1{τ<γs} + e−rγsQ(s)1{τ≥γs}

}
, (3.1)

where γs = inf{t ≥ 0 | Xt = s}. This problem can be seen as a one-dimensional

problem on the state space (0, s], where the boundary s is killing and once reached,

it leads to a terminal value Q(s). In what follows, we will show that the set {V Q}

generates a family of r-excessive majorants for the payoff f , from which we can later

choose the specific V Q constituting the solution to the original problem (1.1). It is

worth pointing out that an approach based on first exit times from open intervals has

also been utilized in [13].

To attain our objective, denote by

ψ̂(x) = φ(y)ψ(x)− ψ(y)φ(x)

the increasing and by

φ̂(x) = φ(x)ψ(s)− ψ(x)φ(s)

the decreasing minimal r-excessive mappings for X killed at the boundaries y and s,

y < s (cf. pp. 18–20 in [7]). Moreover, for the sake of notational simplicity we also
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Optimal stopping of the maximum process 7

define for any twice continuously differentiable r-harmonic function u and sufficiently

smooth function g the functional (Lug) as

(Lug)(x, s) =
g′x(x, s)

L′(x)
u(x)− u′(x)

L′(x)
g(x, s). (3.2)

Especially, we notice that differentiating (3.2) with respect to the current state x yields

(Lug)′x(x, s) = (Grg)(x, s)u(x)m′(x)

due to the assumed r-harmonicity of the function u(x).

We now restrict our analysis to ordinary first passage time type stopping rules

τy = inf{t ≥ 0 | Xt ≤ y} and consider for a given upper boundary s ∈ R+ and initial

state x ∈ [y, s] the functional

v(y, x, s) = E(x,s)

{
e−rτyf(Xτy , s)1{τy<γs} + e−rγsQ(s)1{τy≥γs}

}
=
φ̂(x)

φ̂(y)
f(y, s) +

ψ̂(x)

ψ̂(s)
Q(s). (3.3)

Having stated the associated valuation (3.3), we will show that there exists a unique

threshold aQs = a(s,Q) ∈ (0, s] maximizing the functional v(y, x, s) as a function of the

boundary y. Moreover, we will prove that the associated stopping rule τaQs constitute

the optimal one to the auxiliary problem (3.1). We first observe by differentiating the

functional v(y, x, s) with respect to y that

∂v(y, x, s)

∂y
=
φ̂(x)L′(y)

φ̂2(y)
{(Lφ̂f)(y, s)−BQ(s)} .

Consequently, we find that a maximizing threshold exists provided that the difference

in the brackets changes sign from positive to negative only once on the state space

(0, s]. This result is established in the following auxiliary lemma.

Lemma 3.1. There exists a unique maximizing threshold aQs ∈ (0, x̃s] satisfying the

ordinary first order condition (Lφ̂f)(aQs , s) = BQ(s).

Proof. Consider the functional H(x, s) = (Lφ̂f)(x, s)−BQ(s). We first notice that

limx↑sH(x, s) ≤ 0 demonstrating that H(x, s) is non-positive at the upper boundary

s. On the other hand, since H ′
x(x, s) = (Grf)(x, s)φ̂(x)m′(x), the functional H(x, s)

can be re-expressed as

H(x, s) = B(f(s, s)−Q(s))−
∫ s

x

(Grf)(t, s)φ̂(t)m′(t)dt
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showing that H(x, s) < 0 for all x ∈ (x̃s, s] by Assumption 2.1(b). Moreover, for

x < x1 < x̃s, applying the mean value theorem for integrals, we get

H(x, s) = H(x1, s)−
∫ x1

x

(Grf)(t, s)φ̂(t)m′(t)dt

= H(x1, s)−
1

r
(Grf)(ξ, s)

{
φ̂′(x1)

L′(x1)
− φ̂′(x)

L′(x)

}
,

where ξ ∈ (x, x1). The assumed boundary behavior together with Assumption 2.1(b)

guarantees that H(0+, s) = ∞. Combining this observation with the continuity and

monotonicity of the functional H(x, s) then completes the proof of the existence and

uniqueness of the maximizing boundary aQs ∈ (0, x̃s).

Having demonstrated that there is a unique boundary maximizing the functional

(3.3), we are now in position to prove the following:

Theorem 3.1. Let Assumption 2.1 hold. Then, for a given s, τaQs = inf{t ≥ 0 | Xt ≤

aQs } is the optimal stopping time for the problem (3.1) and the value is

V Q(x, s) =

v(a
Q
s , x, s) x ∈ (aQs , s],

f(x, s) x ∈ (0, aQs ].

(3.4)

Moreover, if Q(s) is differentiable, then

lim
x↑s

∂V Q(x, s)

∂s
=
{
Q′(s)B − (LΦf)(a

Q
s , s)

} φ̂2(aQs )

B
, (3.5)

where Φ(x) = φ(x)ψ′(s) − φ′(s)ψ(x) denotes the minimal decreasing r-excessive

function for the underlying diffusion reflected at s.

Proof. Let V Q(x, s) be the solution to (3.1) and denote by J(x, s) the value given

in (3.4). Obviously J(x, s) is obtained by following an admissible stopping strategy

and, therefore, V Q(x, s) ≥ J(x, s). In order to prove the opposite inequality, we first

observe that it is clear by construction that J(x, s) is continuous on (0, s] and that

J ′
x(a

Q
s −, s) = f ′x(a

Q
s , s). Furthermore, since

∂v(aQs , x, s)

∂x
=
φ(aQs )Q(s)− φ(s)f(aQs , s)

φ̂(aQs )
ψ′(x) +

ψ(s)f(aQs , s)− ψ(aQs )Q(s)

φ̂(aQs )
φ′(x)

we find by letting x ↓ aQs and invoking the optimality condition (Lφ̂f)(aQs , s) = BQ(s)

that J ′
x(a

Q
s +, s) = f ′x(a

Q
s , s) proving the continuous differentiability of J(x, s). Next,

194



Optimal stopping of the maximum process 9

let x ∈ (aQs , s]. Then v(aQs , x, s) ≥ v(x−, x, s) = f(x, s) the inequality following from

the optimality of aQs . This shows that J(x, s) is a continuously differentiable majorant

of f(x, s).

It remains to establish that J(x, s) is r-excessive for the underlying diffusionX killed

at s. To see that this is indeed the case, we first observe that (GrJ)(x, s) = 0 on (aQs , s]

and (GrJ)(x, s) = (Grf)(x, s) < 0 on (0, aQs ). The alleged result then follows from the

inequality |f ′′xx(aQs ±, s)| < ∞. We have thus established that J(x, s) is an r-excessive

majorant of f(x, s). Since the optimal value V Q is the smallest of such majorants, we

conclude that J ≥ V Q.

Finally, differentiating the value J(x, s) with respect to s and invoking the optimality

condition (Lφ̂f)(aQs , s) = Q(s)B then yields (3.5).

Given the assumed differentiability of the exercise payoff, we notice by implicit

differentiation that the sensitivity of the optimal threshold with respect to changes in

the exogenous upper boundary s can be expressed as

aQs
′
=
BQ′(s)− (LΦf)(a

Q
s , s)− (Lφ̂fs)(aQs , s)

(Grf)(aQs , s)φ̂(aQs )m′(aQs )
.

On the other hand, Theorem 3.1 guarantees that V Q(x, s) constitutes an excessive

majorant of the exercise payoff as long as the inequality Q(s) ≥ f(s, s) is fulfilled.

Combining these observations show that if Q(s) is chosen so that also condition

(LΦf)(a
Q
s , s) = BQ′(s) is satisfied, then the value V Q(x, s) satisfies the instantaneous

reflection condition V Qs
′(s−, s) = 0 as well and the optimal exercise boundary satisfies

the differential equation

aQs
′
=

1

2
σ2(aQs )

φ̂′(aQs )f
′
s(a

Q
s , s)− φ̂(aQs )f

′′
xs(a

Q
s , s)

(Grf)(aQs , s)φ̂(aQs )
. (3.6)

It’s worth pointing out that utilizing the standard free boundary approach for solving

the considered stopping problem results into the differential equation (3.6) as well (cf.

Section 13 in [26]).

3.2. The solution to the main problem

Before proving our main existence theorem for (1.1), we first need to assure the

finiteness of the value of the stopping problem.
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Lemma 3.2. Let Assumption 2.1 hold and assume that
∫∞
0

E(x,s) {e−rtf(0, St)} dt <

∞ for all 0 < x ≤ s <∞. Then the value function (1.1) is finite.

Proof. Fix 0 < x ≤ s <∞ and denote by Tr ∼ Exp(r) an exponentially distributed

random time, independent ofWt. Since f is continuous and (Xt, St) is a strong Markov

process, it is known (see e.g. Proposition 2.1 in [11] and also Lemma 2.2 in [8]) that

u(x, s) := E(x,s)

{
sup

0≤t≤Tr

f(0, St)

}
= E(x,s) {f(0, STr )}

is r-excessive. Moreover, it is clear that

f(x, s) ≤ f(0, s) = E(x,s) {f(0, s)} ≤ E(x,s) {f(0, STr )} = u(x, s),

demonstrating that u dominates f . Since V constitutes the minimal r-excessive

majorant of f , we notice that V ≤ u.

Furthermore, by straight calculations

u(x, s) = E(x,s) {f(0, STr )} = E(x,s)

{
r

∫ ∞

0

e−rtf(0, St)dt

}
= r

∫ ∞

0

E(x,s)

{
e−rtf(0, St)

}
dt.

The last term on the right hand side of this equality is finite by assumption and thus

V (x, s) ≤ u(x, s) <∞.

Having established the finiteness of the value of the optimal stopping strategy we

are now in position to state our main theorem characterizing the value and optimal

exercise policy of problem (1.1).

Theorem 3.2. Let Assumption 2.1 hold and assume that
∫∞
0

E(x,s) {e−rtf(0, St)} dt <

∞. Then there exists a unique function a∗s ∈ (0, x̃s), such that τa∗s = inf{t ≥ 0 | Xt ≤

a∗St
} is the optimal stopping time for the considered problem (1.1). Moreover, there

exists a unique Q(s) for which the value V (x, s) reads as in (3.4).

Proof. For x ≤ s, the problem (1.1) can be re-written as

sup
τ

E(x,s)

{
e−rτf(Xτ , s)1{τ<γs} + e−rγs sup

ξ
E{s,s}

{
e−rξf(Xξ, Sξ)

}
1{τ≥γs}

}
,
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where γs = inf{t ≥ 0 | Xt = s}, so that it is of the form of the auxiliary problem (3.1),

with

Q(s) = sup
ξ

E{s,s}
{
e−rξf(Xξ, Sξ)

}
.

Obviously Q(s) ≥ f(s, s) and by Lemma 3.2 Q(s) < ∞ for all s < ∞. Therefore, the

alleged claim now follows from Theorem 3.1.

Theorem 3.2 states a set of sufficient conditions under which the auxiliary stopping

problem constitutes the value of the optimal stopping problem (1.1). The sensitivity

of the value and optimal boundary with respect to changes in the volatility of the

underlying diffusion are now summarized in the following.

Theorem 3.3. Assume that the conditions of Theorem 3.2 are satisfied, that

the difference µ(x) − rx is non-increasing, and that a transversality condition

limt→∞ Ex {e−rtXt} = 0 holds. Then, the value function is strictly convex as a function

of the current state x on the continuation set (a∗s, s] and increased volatility increases

the value V (x, s) and decreases the optimal stopping boundary a∗s.

Proof. Fix s < ∞ and let σ1(x) ≤ σ2(x), for all x. For i = 1, 2, denote by Vi

and a∗i the value function and the optimal stopping boundary for the problem (1.1),

respectively, with respect to σi. The assumed monotonicity of the difference µ(x)− rx

together with the transversality condition guarantee that the fundamental solutions

are convex (see Corollary 1 in [2]). Furthermore, the r-excessivity of the value V (x, s)

implies that it constitutes a positive affine transformation of the minimal solutions

ψ(x) and φ(x) on the set (a∗s, s) where it is r-harmonic and consequently it is convex

there. Since the sign of the relationship between increased volatility and the value of

an r-excessive mapping is positive on the set where it is r-harmonic (cf. Theorem 4

in [2]), we find that V1(x, s) ≤ V2(x, s). Suppose, contrary to our claim, that a∗1 < a∗2,

and let x ∈ (a∗1, a
∗
2) so that x is in the continuation region with respect to V1, and

in the stopping region with respect to V2. Then V2(x, s) = f(x, s) < V1(x, s), which

contradicts the inequality derived above.

Theorem 3.3 states a set of conditions under which increased volatility unambigu-

ously increases the value of the optimal stopping policy and postpones exercise by

lowering the optimal boundary.
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3.3. A useful extension

It turns out that our existence result can be directly generalized to also cover a

general class of continuous exercise payoffs satisfying a boundedness condition. To this

end, we consider the problem (1.1) under the following weakened assumptions.

Assumption 3.1. For each s > 0, let xs ∈ [0, s] be the point at which f(x, s) is

maximized. Assume also that the exercise payoff f : R2
+ 7→ R satisfies the following

conditions

(a) f(x, s) ∈ C(R2
+) for all 0 < x ≤ s <∞ and 0 < f(xs, s) <∞ for all s > 0.

(b) E(x,s)

{
sup0≤t≤Tr

f(xSt
, St)

}
dt <∞.

Under this assumption, we can again constitute the auxiliary problem (3.1) for a

non-negative, continuous Q(s) satisfying Q(s) ≥ f(s, s), and the following proposition

holds. (Denote by τ∗Q and τ∗ the optimal stopping times for auxiliary problem (3.1)

and (1.1), respectively.)

Proposition 3.1. Let Assumption 3.1 hold. Then

(A) the value V (x, s) is finite;

(B) there exists a unique Q(s) such that V Q(x, s) = V (x, s). Moreover, if τ∗Q < ∞

a.s., τ∗ = τ∗Q.

Proof. (A) The proof is completely analogous with the one of Lemma 3.2. (B) For

each finite Q(s) the linear auxiliary problem (3.1) has a solution by general existence

results concerning linear diffusions (see e.g. [26]). Establishing the alleged claim is

analogous with the proof of Theorem 3.2.

Interestingly, the unique existence of solution to a general problem involving a

maximum process can be reduced to a search of a unique solution to a linear diffusion

problem. However, with general assumptions we cannot, naturally, guarantee the shape

of the stopping region. The following corollary presents an example how this existence

result can be used (cf. Proposition 6.1).

Corollary 3.1. Let Assumption 3.1 hold. Further, assume that for all s > 0 and

Q(s) there exists a unique stopping region SQ
s such that τ∗Q =

{
t ≥ 0 | Xt ∈ SQ

s

}
is

198



Optimal stopping of the maximum process 13

the optimal stopping time for the auxiliary problem (3.1). Then for each s > 0 there

exists a unique stopping region Ss ⊂ [0, s] such that τ∗ = {t ≥ 0 | Xt ∈ SSt}, where

Ss = SQ
s for some Q.

4. The discretization

Our objective is now to develop a sequence of optimal stopping problems by

discretizing the state of the supremum process and to show that the sequence converges

in the limit to the original stopping problem (1.1). To this end, we need the following

two additional assumptions.

Assumption 4.1. Assume, in addition to Assumption 2.1, that

(c)
∫∞
0

E(x,s) {e−rtf(0, St)} dt <∞ for all 0 < x ≤ s <∞;

(d) f(x, s) is s-Hölder-continuous, i.e. there exist M > 0 and 0 < α ≤ 1 such that

|f(x, s1)− f(x, s2)| ≤M |s1 − s2|α for all s1, s2 ∈ R+ and x < min{s1, s2}.

First of all, let us prove an equivalent condition to Assumption 4.1(c).

Lemma 4.1. Let Assumption 2.1 hold. Then
∫∞
s

f ′
s(0,u)
ψ(u) du <∞ for all s ∈ R+, if and

only if Assumption 4.1(c) holds.

Proof. Let T ∼ Exp(r). From the proof of Lemma 3.2 we know that

E(x,s) {f(0, ST )} = r
∫∞
0

E(x,s) {e−rtf(0, St)} dt.

Observe that (see p. 26 in [7]) for all x < y we have Px (ST ≤ y) = Px (τy > T ) =

1− ψ(x)/ψ(y), where τy = inf{t ≥ 0 | Xt ≥ y}. Using this fact and Fubini’s theorem,

we can calculate

r

∫ ∞

0

E(x,s)

{
e−rtf(0, St)

}
dt = E(x,s) {f(0, ST )} =

∫ ∞

s

f(0, y)dP(ST ≤ y)

=

∫ ∞

s

f(0, y)
ψ(x)ψ′(y)

ψ2(y)
dy

= f(0, s) + ψ(x)

∫ ∞

s

f ′s(0, u)

ψ(u)
du,

whence the claim follows.
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4.1. Introducing the recursive algorithm

Fix a step size z > 0, number of steps n ∈ N and starting points (X0, S0) = (x, s)

with 0 < x < s and, for all s, fix a terminal payoff function Q(s), which satisfies

Q(s) ≥ f(s, s) and limt→∞ E(x,s) {e−rtQ(St)} = 0. Denote sk := s + kz, for k ∈ N.

From now on in this section we assume that the supremum process St can only take

values sk, k = 0, 1, 2 . . . , n (for convenience we denote s := s0). That is, as we start

from (x, s), the supremum process St jumps to the state s1 when the diffusion Xt

reaches the point s and we ”restart” (Xt, St) from the state (s, s1). Again, when Xt

reaches the new supremum value s1, the process St jumps to s2 and we again ”restart”

(Xt, St), now from (s1, s2). The discretization is graphically illustrated in Figure 1. It

is worth mentioning that since St takes values from a finite arithmetic sequence, we

know that at any time t > 0 there has been only finitely many jumps in the path of the

discretized supremum. Furthermore, we consider sn to be the highest possible level

for Xt, and consequently for St. This means that when Xt reaches sn, the process is

stopped (killed) and we receive the terminal payoff Q(sn) at that state.

Having presented the discretized version of the running supremum of the underlying

diffusion, we now apply the findings of our Theorem 3.1 and define recursively

a sequence of continuously differentiable r-excessive values dominating the exercise

payoff. To this end, we first define the terminal value of the sequence as Vn+1 ≡ Q(sn).

Given the terminal value Vn+1, we now define recursively for any index 1 ≤ k ≤ n the

values Vk as Vk := J(sk−1, sk),

J(x, sk) = sup
τ

E(x,sk)

{
e−rτf(Xτ , sk)1{τ<γsk} + e−rγskVk+11{τ≥γsk}

}
(4.1)

=


φ(x)ψ(sk)−ψ(x)φ(sk)

φ(âsk )ψ(sk)−ψ(âsk )φ(sk)
f(âsk , sk)

+
ψ(x)φ(âsk )−φ(x)ψ(âsk )
ψ(sk)φ(âsk )−φ(sk)ψ(âsk )

Vk+1 x ∈ (âsk , sk]

f(x, sk) x ∈ (0, âsk ],

Here γsk = inf{t ≥ 0 | Xt = sk}, for k = 1, . . . , n, denotes the first hitting time of

X to the state sk, and âsk ∈ (0, x̃sk) constitutes the unique root of the ordinary first

order condition (Lφ̂f)(âsk , sk) = BVk+1 (cf. Theorem 3.1). Finally, the initial value

is chosen as V0 = J(x, s). It is clear that these identities completely characterize the

sequence of values {Vk}n+1
k=0 and the sequence of optimal exercise boundaries {âsk}nk=0.
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Moreover, we also observe that for z > 0 and n ∈ N this discretized problem can be

written in a compact form

J(z, n, x, s) :=

:= sup
τ

E(x,s)

{
e−rτf

(
Xτ , s+ z

n−1∑
k=1

1{γsk<τ}

)
1{τ<γsn} + e−rγsnQ(sn)1{τ≥γsn}

}

= sup
τ

E(x,s)

{
e−rτf(Xτ , Sτ )1{τ<γsn} + e−rγsnQ(sn)1{τ≥γsn}

}
,

(4.2)

where St denotes the discretized supremum process.

Figure 1: An illustrative example of how a sample path evolves in constructed discretized

problem. Here n = 4 and âsk is the optimal stopping boundary at step k, for k = 0, 1, 2, 3, 4.

We stop immediately after the diffusion hits either the lower boundary âsk , when we receive a

payoff f(âk, sk), or the maximum level s4 implying payoff Q(s4) (exogenously given terminal

function).

Lastly a notational remark. In this section, we shall denote by St a discretized

supremum process, whereas the normal continuous one is denoted by S0
t .

4.2. Proving that the algorithm works

Let us first establish that the limiting value function of the sequence does not depend

on the choice of terminal value function Q(s).

201



16 L. H. R. ALVAREZ AND P. MATOMÄKI

Lemma 4.2. Let Assumption 4.1 hold and fix s, z > 0. Furthermore, let

Q(s) ≥ f(s, s) be such that limt→∞ E(x,s)

{
e−rtQ(S0

t )
}

= 0. Then, the limit

limn→∞ J(z, n, x, s) does not depend on the choice of Q(s).

Proof. Fix n ∈ N and Q1(s) > Q2(s). For i = 1, 2, denote as J i the value

function associated to the terminal payoff Qi(s), and let τ1 be the optimal stopping

rule maximizing the dicsretised problem with Q1(s) as a terminal value (this exists by

Theorem 3.1). Since Q1(s) > Q2(s), we know that J1(z, n, x, s) − J2(z, n, x, s) ≥ 0.

On the other hand we can apply (4.2) to make an estimate

J1(z, n, x, s)− J2(z, n, x, s) =

= E(x,s)

{
e−rτ1f(Xτ1 , Sτ1)1{τ1<γsn} + e−rγsnQ1(sn)1{τ1≥γsn}

}
− sup

τ
E(x,s)

{
e−rτf(Xτ , Sτ )1{τ<γsn} + e−rγsnQ2(sn)1{τ≥γsn}

}
≤ E(x,s)

{
e−rτ1f(Xτ1 , Sτ1)1{τ1<γsn} + e−rγsnQ1(sn)1{τ1≥γsn}

}
− E(x,s)

{
e−rτ1f(Xτ1 , Sτ1)1{τ1<γsn} + e−rγsnQ2(sn)1{τ1≥γsn}

}
= E(x,s)

{
e−rγsn (Q1(sn)−Q2(sn))1{τ1≥γsn}

}
≤ E(x,s)

{
e−rγsn (Q1(sn)−Q2(sn))

}
.

Since limn→∞ E(x,s) {e−rγsnQi(sn)} = 0, for i = 1, 2, by assumption, we notice that

the last term tends to zero as n approaches infinity.

According to Lemma 4.2 the algorithm results into the same value irrespective of

the chosen terminal value Q(s) as long as it satisfies the relatively weak conditions

of our lemma. Hence, depending on the precise form of the exercise payoff and its

behavior at the upper boundary s, natural choices for Q(s) are, for example, additive

forms Q(s) = f(s, s) + a, a ≥ 0, or multiplicative forms Q(s) = bf(s, s), b ≥ 1.

It remains to establish that the sequence of optimal boundaries and value functions

converge towards the corresponding ones of the original problem (1.1) as n → ∞ and

z → 0. This property is established in our next theorem.

Theorem 4.1. Let Assumption 4.1 hold.

(a) Fix z > 0. Then the limit J(z, x, s) := limn→∞ J(z, n, x, s) exists finitely.

Furthermore limz→0 J(z, x, s) = supτ E(x,s)

{
e−rτf(Xτ , S

0
τ )
}
.
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(b) Fix s > 0. Then âs approaches the optimal stopping boundary a∗s as n → ∞ and

z → 0.

Proof. (a) Choose the terminal value function as Q(sk) = f(sk, sk). We see at once

that this choice satisfies the conditions of Lemma 4.2 under Assumption 4.1. Moreover,

with this choice, the value J(z, n, x, s) constitutes an increasing sequence in n. To see

this fix N ∈ N and let {V Nk }Nk=0 be a sequence with respect to the number of steps N .

Then V NN = Q(sN−1) = f(sN−1, sN−1). On the other hand, with the number of steps

being N + 1 we get V N+1
N+1 = Q(sN ) = f(sN , sN ) leading to

V N+1
N = sup

τ
E(sN−1,sN )

{
e−rτf(Xτ , sN )1{τ<γsN } + e−rγsNQ(sN )1{τ≥γsN }

}
≥ f(sN−1, sN ) ≥ f(sN−1, sN−1) = V NN

Consequently V N+1
k ≥ V Nk for all k ≤ N , so that especially V N+1

0 = J(z,N+1, x, s) ≥

J(z,N, x, s) = V N0 .

Moreover, utilizing the expression (4.2) and applying the assumed s-Hölder-

continuity we can make the following estimation for an arbitrary n ∈ N

J(z, n, x, s) ≤ sup
τ

E(x,s)

{
e−rτf

(
Xτ , S

0
τ + z

)
1{τ<γsn} + e−rγsnQ(sn)1{τ≥γsn}

}
≤ sup

τ
E(x,s)

{
e−rτf

(
Xτ , S

0
τ + z

)}
+ E(x,s)

{
e−rγsnQ(sn)

}
≤ sup

τ

{
E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
+ E(x,s)

{
e−rτMzα

}}
+ E(x,s)

{
e−rγsnQ(sn)

}
≤ sup

τ
E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
+Mzα + E(x,s)

{
e−rγsnQ(sn)

}
<∞,

where the finiteness follows from Lemma 3.2. Since J(z, n, x, s) is a bounded increasing

sequence, it converges as n→ ∞. Since limn→∞ E(x,s) {e−rγsnQ(sn)} = 0, we get

J(z, x, s) = lim
n→∞

J(z, n, x, s) ≤ sup
τ

E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
+Mzα (4.3)

On the other hand, utilizing again expression (4.2) we also obtain the inequality

J(z, x, s) = sup
τ

E(x,s)

{
e−rτf

(
Xτ , s+ z

∞∑
k=1

1{γsk<τ}

)}

≥ sup
τ

E(x,s)

{
e−rτf

(
Xτ , S

0
τ − z

)}
≥ sup

τ
E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
−Mzα.
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Combining this with (4.3) we see that

sup
τ

E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
−Mzα ≤ J(z, x, s) ≤ sup

τ
E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
+Mzα,

(4.4)

so that by letting z → 0 we get J(z, x, s) → supτ E(x,s)

{
e−rτf

(
Xτ , S

0
τ

)}
.

(b) The value function V of the original problem (1.1) can be written as (cf. Theorem

3.2)

V (x, s) = sup
τ

E(x,s)

{
e−rτf(Xτ , s)1{τ<γs} + e−rγs sup

ξ
E(s,s)

{
e−rξf(Xξ, S

0
ξ )
}
1{τ≥γs}

}
,

(4.5)

where τ and ξ are admissible stopping times, and the supremum is attained with

τa∗s = inf{t ≥ 0 | Xt ≤ a∗s}, where a∗s ∈ (0, x̃s) is the unique stopping boundary from

Theorem 3.2.

On the other hand, the discretized problem can be written as

lim
z→0

J(z, x, s) = lim
z→0

sup
τ

E(x,s)

{
e−rτf(Xτ , s)1{τ<γs} + e−rγsV11{τ≥γs}

}
= sup

τ
E(x,s)

{
e−rτf(Xτ , s)1{τ<γs} + e−rγs1{τ≥γs} lim

z→0
V1

}
,

where the supremum is attained with τâs , where âs ∈ (0, x̃s) is the unique stopping

boundary. Now J(z, s−, s) = V1 and according to part (a) limz→0 J(z, s−, s) =

supτ E(s,s)

{
e−rτf(Xτ , S

0
τ )
}
. Hence, we get the equality

lim
z→0

J(z, x, s) =

= sup
τ

E(x,s)

{
e−rτf(Xτ , s)1{τ<γs} + e−rγs sup

ξ
E(s,s)

{
e−rξf(Xξ, S

0
ξ )
}
1{τ≥γs}

}
,

which coincides with (4.5). It follows that we have âs = a∗s.

Theorem 4.1 demonstrates that the developed algorithm indeed converges to the

proposed limit. However, it does not characterize the speed of convergence to the limit

as the discretization step becomes smaller. This subject is addressed in the following.

Corollary 4.1. Let Assumption 4.1 hold. Then, the rate of convergence

limz→0 J(z, x, s) = V (x, s) is of order O(zα).
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Proof. From (4.4) we see straight that J(z, x, s) = V (x, s) +O(zα).

Unfortunately, Corollary 4.1 characterizes the convergence of the algorithm only in

terms of the denseness of the applied discretization and not in terms of the number of

steps. In order to characterize that, we would have to be able to estimate the difference

|V (x, s)− J(z, n, x, s)|, which is a highly process dependent quantity.

4.3. A useful extension

Let us present a discretization associated to the generalization introduced in

Subsection 3.3. The proofs are analogous to those in Subsection 4.2, and are thus

omitted.

Theorem 4.2. Let Assumption 3.1 hold. In addition, assume that

(c) f(x, s) is s-Hölder-continuous.

(d) Q(s) ≥ f(s, s) is such that limt→∞ E(x,s)

{
e−rtQ(S0

t )
}
= 0;

Then limz→∞ limn→∞ J(z, n, x, s) = V (x, s), where J is defined through (4.1).

Proposition 4.1. Let the assumptions of Theorem 4.2 hold. In addition, assume

that for all s > 0 and Q there exists a unique stopping region SQ
s such that τ∗Q ={

t ≥ 0 | Xt ∈ SQ
s

}
provides the value for the auxiliary problem (3.1). Then

(a) limz→∞ limn→∞ J(z, n, x, s) = V (x, s);

(b) limz→0 limn→∞ τ̂Ŝs
= τ∗s , where τ̂Ŝs

= inf{t ≥ 0 | Xt ∈ Ŝs} and Ŝs is the stopping

region for the discretized problem with a state s, and τ∗s is the optimal stopping

time for the problem (1.1) with a state s.

Theorem 4.2 illustrates that under the stated assumptions the discretization

approaches the value irrespectively on whether the value is attained with a finite

stopping time or not. In addition, if we know that for all admissible Q(s) the value of

the auxiliary problem is attained with an admissible stopping time, then the stopping

region ”approaches” the stopping region of the initial problem as well. All in all, the

generalization in Subsection 3.3 assures that the proof of the existence of a solution to

problem (1.1) reduces to the proof of the existence of a solution for a linear problem
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(3.1). On top of this, the results above guarantees that these solutions can be attained

numerically.

5. Explicit Illustration: Perpetual Lookback with Floating Strike

In order to illustrate the algorithm developed in our paper, we now consider the

valuation and optimal exercise of a perpetual lookback option with a floating strike.

In that case the exercise payoff reads as f(x, s) = (s − kx), where k ∈ R+ is a

known exogenously given constant. Therefore, our objective is to analyze and solve

the stopping problem (cf. [9, 10, 19, 20, 24])

V (x, s) = sup
τ

E(x,s)[e
−rτ (Sτ − kXτ )]. (5.1)

It is clear that by letting k ↓ 0 the problem becomes the valuation of a perpetual

Russian option (cf. [27]). As our general findings indicate, in this case we have the

following result.

Proposition 5.1. Assume that
∫∞
0

E(x,s) {e−rtSt} dt <∞, that there is a single state

x̃s ∈ R+ so that k(rx − µ(x)) S rs for x S x̃s, and that limx↓0 µ(x) ≥ 0. Then, the

value function of the problem (5.1) reads as

Va∗(x, s) =



(s− ka∗s)ψ
′(a∗s) + kψ(a∗s)

BL′(a∗s)
φ(x)

+
(ka∗s − s)φ′(a∗s)− kφ(a∗s)

BL′(a∗s)
ψ(x) if x ∈ (a∗s, s)

s− kx if x ∈ (0, a∗s],

where a∗s can be seen either as the limit boundary stated in Theorem 4.1 or,

alternatively, as the solution of the ordinary differential equation

a′s =
φ̂′(as)σ

2(as)

2φ̂(as)
(
r(kas − s)− kµ(as)

) ,
subject to the maximality principle. The optimal stopping time is τ∗ = inf{t ≥ 0 |

Xt ≤ a∗St
}.

5.1. Geometric Brownian motion example

Assume now that Xt evolves according to a geometric Brownian motion character-

ized by the stochastic differential equation dXt = µXtdt+σXtdWt, where µ ∈ (−∞, r)
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and σ > 0. In this case, the decreasing and increasing fundamental solutions read as

φ(x) = xγ1 and ψ(x) = xγ2 , where

γi =
1

σ2

(
1

2
σ2 − µ+ (−1)i

√
(
1

2
σ2 − µ)2 + 2σ2r

)
(5.2)

are the solutions of the characteristic equation 1
2σ

2γ(γ − 1) + µγ − r = 0, for i = 1, 2.

Notice that γ1 < 0 and, since µ < r, we have γ2 > 1. Under this setting, the problem

(5.1) can be solved explicitly (see [19, 24]):

Proposition 5.2. When Xt is a geometric Brownian motion, the value of the

perpetual lookback (5.1) is

V ∗(x, s) =



x/β
γ2−γ1

{
(γ2 − kβ(γ2 − 1))

(
x
βs

)γ1−1

− (γ1 − kβ(γ1 − 1))
(
x
βs

)γ2−1
}

if βs < x ≤ s

s− kx if 0 < x ≤ βs

and the optimal stopping time is given by τ∗ = inf{t ≥ 0 | Xt ≤ βSt}, where β is the

unique solution to the equation

βγ2−γ1 =
(γ2 − 1)(γ1 − kβ(γ1 − 1))

(γ1 − 1)(γ2 − kβ(γ2 − 1))

The comparison between the exact and an approximate result are summarized in

Table 1. We see from it that â is decreasing while V̂ is increasing in n (as proof

of Theorem 4.1 indicates) and that the computing time is linear. Another positive

feature is that the algorithm simultaneously produces approximations for the optimal

boundary a∗s for other s’s as well along the discretized supremum process.

In Table 2 we see that while the original approximation for a∗10 was very good,

also other estimates for a∗15, . . . , a
∗
50 are quite good, every single one being under half

percent away from the exact value.

5.2. Mean reverting diffusion

To illustrate our findings in a somewhat more complicated setting, let dXt = µXt(θ−

Xt)dt+ σXtdWt, where µ, θ, σ > 0 are exogenously given constants. The fundamental

solutions are now ψ(x) = xγ2M(γ2, 1 + γ2 − γ1,
2µθ
σ2 x) and φ(x) = xγ1U(γ1, 1 + γ1 −

γ2,
2µθ
σ2 x), whereM : R+ → R+ and U : R+ → R+ denote the confluent hypergeometric
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n V ∗ − V̂ â− a∗ Time

100 0.89 1.0 0.2sec

1 000 0.27 0.21 3sec

10 000 0.049 0.036 29sec

100 000 0.0020 0.0014 288sec

Table 1: The values for the model are (σ, µ, r, k) = (0.2, 0.05, 0.08, 1), (x, s) = (7, 10), and for

the approximation we chose Q(s) = f(s, s) ≡ 0, z = 0.1. The exact values are: V (7, 10) = 4.03

and a∗
10 = 5.34.

s a∗ â− a∗ â−a∗
a∗

15 8.0 0.0099 0.12%

20 10.7 0.021 0.19%

25 13.4 0.034 0.25%

30 16.0 0.048 0.30%

40 21.3 0.084 0.39%

50 26.7 0.13 0.47%

Table 2: A comparison of the exact values a∗
s with the approximate values.

functions of the first and second kind, respectively (cf. p. 504 in [1]), and γi, i = 1, 2 are

as in (5.2). These functions are very difficult to handle analytically and, therefore, we

analyze numerically the solution to (5.1) under the following parameter specifications:

µ = 0.05, θ = 0.1, σ = 0.15, r = 0.08, k = 1.

Let us apply the algorithm. From table 3 we see that it has only a minor impact

to the solution whether we choose the highest possible state for Xt to be sn = 75 or

sn = 200. Therefore, the choice sn = 75 is adequate for the estimation when s ≤ 10.

Moreover, since the f(x, s) is now s-Lipschitz-continuous with Lipschitz constant 1, we

see from Corollary 4.1 that we can quite surely say that |J(x, s) − V (x, s)| < z, for

s ≤ 10, where J is our approximative and V the (unknown) optimal value function.

In table 4 we see the effect of changing the grid parameter z. The impact of increased

volatility on the optimal boundary and the value are, in turn, illustrated in Figure 2.
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Differences |J(0.1, n1, 9.9, 10)− J(0.1, n2, 9.9, 10)|

sn 50 75 100 200

50 - 4.3 · 10−5 4.3 · 10−5 4.3 · 10−5

75 - 6.6 · 10−9 6.6 · 10−9

100 - 5.2 · 10−13

Time 50sec 118sec 234sec 598sec

Table 3: The grid z = 0.1 is fixed, and the differences |J(0.1, n1, 9.9, 10)− J(0.1, n2, 9.9, 10)|

are calculated, where ni is such that the the highest state for Xt is sni .

z J(2, 3) â3 â7 â10 Time

0.1 1.000889 1.97771 4.57640 6.44145 95sec

0.01 1.000233 1.98858 4.58651 6.45046 958sec

0.005 1.000209 1.98917 4.58707 6.45096 1875sec

Table 4: The initial point (x, s) = (2, 3) and the highest state sn = 75 is fixed. We compare

how the solution change as we change z (in each case n is chosen such that sn = 75).

Figure 2: The stopping boundaries âs and the values J(s−z, s) are calculated for s ∈ (3, 10),

and σ = 0.15, 0.25, 0.35. We have chosen z = 0.01 and sn to be 75 (with σ = 0.15), 100 (with

σ = 0.25) and 150 (with σ = 0.35).

6. Explicit Illustration: π-option

In order to utilize our findings on the generalized case introduced in Subsections

3.3 and 4.3, we will now consider the valuation and optimal exercise of a π-option
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introduced in [14]. In that case the exercise payoff reads as f(x, s) = xκsη −K, where

κ, η,K ≥ 0 are known exogenously given constant. That is, we plan to analyze and

solve the stopping problem

V (x, s) = sup
τ

E(x,s)

{
e−rτ (Xκ

τ S
η
τ −K)

}
. (6.1)

Let Q(s) ≥ f(s, s) be a continuous function and assume that

limt→∞ E(x,s) {e−rtQ(St)} = 0. Consider an auxiliary problem

V Q(x, s) = sup
τ

Ex
{
e−rτ (Xκ

τ S
η
τ −K)1{τ<γs} + e−rγsQ(s)1{τ≥γs}

}
. (6.2)

Applying our tools, we get the following result (cf. Section 4 in [14]).

Proposition 6.1. Assume that
∫∞
0

Ex {e−rtf(St, St)} dt <∞ and that for each s > 0

there exists x̃s ∈ (0, s] such that (A−r)f(x, s) T 0 for all x S x̃s. Then, for each s > 0,

the value for (6.1) is finite and the optimal stopping time is τSs = inf{t ≥ 0 | Xt ∈ Ss},

where Ss is s-dependent and is either ∅ or of the form [u∗s, y
∗
s ], where 0 < u∗s ≤ y∗s < s

are uniquely determined.

Proof. Let us apply Proposition 3.1 and Corollary 3.1 and let us show that for

each s > 0 and Q(s) the stopping region SQ
s of the auxiliary problem (6.2) is of the

claimed form. Denote by CQs the continuation region at a fixed state s > 0. Clearly

f(0, s) < 0, for all s > 0, which implies that the region near the boundary 0 belongs to

the continuation region. It follows from Corollary 4 in [21] (see also Theorem 2 in [6])

that (0,min{u∗s, s}) belongs to a continuation region, where u∗s = argmaxx∈R+
{ f(x,s)ψ(x) }.

Moreover, under our assumptions, u∗s is unique (cf. Lemma 3.6 in [3]). If u∗s > s,

then (0, s) ⊂ CQ and SQ
s = ∅. Assume now that s is such that u∗s < s. We know by

Dynkin’s formula that u∗s > x̃s. Now, proceeding as in the proof of Lemma 3.1, we see

that there exists a unique y∗s ∈ [u∗s, s) maximizing v(y, x, s) (see (3.3)) for all x ∈ (y∗s , s).

Moreover, either the derivative v′y(y
∗
s , x, s) = 0 and y∗s ≥ u∗s or v′y(y

∗
s , x, s) < 0 and

y∗s = u∗s. In the former case SQ
s = [u∗s, y

∗
s ] and in the latter case SQ

s = ∅. The

optimality of the stopping time τSQ
s

for the auxiliary problem follows after noticing

that the resulting value is a r-excessive majorant of the exercise payoff. The alleged

results now follow from Proposition 3.1 and Corollary 3.1.

The stopping region Ss and its dependence on s can be characterized more closely
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under more restricting assumptions. However, since our purpose is not to provide an

exhaustive treatment of this subject, we will not go deeper into the analysis of π-option.

6.1. Numerical example

By Theorem 4.2 our discretization works for the π-option. In our numerical

illustration we have chosen κ = 0.9, η = 1, K = 9, and Q(s) = f(s, s). Although

the numerics indicate that the algorithm converges also for η > 1, we were not able to

prove the convergence in Theorem 4.1 without Hölder continuity.

6.1.1. Geometric Brownian motion Let the setting be as in Subsection 5.1. In [14] the

valuation of π-option has been solved under the geometric Brownian motion, which

gives us a baseline for our numerical approximations.

n V ∗ − V̂ ŷ − y∗13 Time

400 7.50 0.6 0.7sec

4 000 2.5 0.18 4.7sec

40 000 0.70 0.050 47sec

400 000 0.07 0.0053 467sec

Table 5: The value of π-option for geometric Brownian motion. The values for the model are

(σ, µ, r) = (0.2, 0.03, 0.1), (x, s) = (10, 13), and z = 0.25. The exact values are: V (10, 13) =

115.4 and y∗
13 = 7.076.

The table shows that in about 50 seconds, we were able to attain results that are

within 1% error margin. Notice that u∗13 := argmax{ f(x,13)ψ(x) } = 1.29 is independent of

Q(s), z, and n and is always exact.

6.1.2. Mean reverting diffusion Let the setting be as in Subsection 5.2. Now, there

is no known exact solution. As was the case earlier (Subsection 5.2), it has only a

minor impact to the solution whether we choose the highest possible state for Xt to

be sn = 70 or sn = 200. Therefore, the choice sn = 75 is adequate for our estimation.

The results are summarized in Table 6.
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z V̂ (11, 13) ŷ13 ŷ15 ŷ20 Time

0.1 105.470 9.9854 11.8577 16.5847 38sec

0.01 105.342 10.0184 11.8919 16.6212 300sec

0.005 105.335 10.0202 11.8938 16.6233 600sec

0.0025 105.332 10.0211 11.8947 16.6243 1200sec

Table 6: The value of π-option in the case of mean reverting diffusion. The values for the

model are (σ, γ, µ, r) = (0.2, 0.1, 0.03, 0.08), (x, s) = (11, 13). The highest state sn = 75 is

fixed. We compare how the solution change as we change z (in each case n is chosen such

that sn = 75). Now u∗
13 = 1.40.
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[12] Glover, K., Hulley, G. and Peškir, G. (2013). Three-dimensional brownian

motion and the golden ratio rule. Annals of Applied Probability 23, 895–922.
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