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1 INTRODUCTORY NOTES

In applied mathematics one always tries to construct a mdéelis complex
enough to mimic the phenomenon under consideration andesiempugh for
analysis. A complex yet general model might not provide asmyceete results
due to its challenging nature. On the other hand, a very simpdel is per-
haps easy to solve but does not represent the real world egwvats So the
choice of the model is practically always a trade off betwgenerality and
tractability.

In this thesis we use a one-dimensional, or linear, diffusnstead of, say,
a multidimensional Markov process oely process. Linear diffusions often
arise naturally in various many situations and they can led @rsr modelling
a wide range of phenomena from population dynamics to the qieé space
ship. In addition, they can often be used to approximate wilddy behaving
processes, such as multidimensional diffusions @nlLprocesses, or at least
they can offer insights on the behaviour of these more complecesses.
While forming a large and applicable class of processebhgatdme time linear
diffusions are friendly and approachable. The main reasonthis are the
facts that they are continuous, Markovian and one-dimeiagi@and therefore
one can use a wide variety of tools to study them. Additighalmost all
interesting linear diffusions constitute a solution to ackiastic differential
equation, allowing us to pick up additional techniques fridcalculus and
benefit from its intuitivity. All in all, although linear difisions are general
processes, they are surprisingly often simple enough & e¥plicit solutions
to problems and to allow one to analyse the nature of the pnoljuite deeply.
One drawback of linear diffusions is that due to continuitgyt cannot always
represent downside risks, e.g. in financial markets, nltesaurces, etc., as
well as one would desire.

In this thesis, we will tour around the field of stochastic twohtheory.
The tour will necessarily be incomplete, but it illuminatee great variety of
problems encountered in the world of controlling linearfudifons. We will
study four different optimal control problems, namely aveistment problem,
a two-player stochastic game (a Dynkin game), a singulatrabproblem
and a stopping problem involving a maximum process. In @é¢hproblems
the optimal control turns out to be a two-sided control — astaunder some
conditions. In fact, one of our main tasks is to find such cooais.
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One-sided stochastic control problems are widely studretitheir solu-
tions can often be determined explicitly. On the other hamith two-sided
control problems we often find it difficult to even prove thastence and
uniqueness of an optimal solution due to the increase irplae@meters. Thus,
although the main lines of the analysis follow those in oided problems, we
have to adopt new techniques to deal with the new obstacles.

In Figure 1 we see the research subjects of the thesis andréteions
with each other. An ordinary optimal stopping problem ciuoss the base
problem and the investment problem is a special case of ilewthe three
other subjects can be seen as its generalisations. Mordbeevalues of a
Dynkin game and a two-sided singular control problem aresatiorelated, as
we shall see in Chapter 6.

Singular control
problem

Optimal stopping
of a maximum process

Optimal stopping problem

Dynkin game >

Investment problem

Figure 1. Research subjects of the thesis and their refation

The content of the thesis is divided into two parts: the idtictory part and
the research part. In the introductory part we will first presan overview of
the basic theory of linear diffusions. Then we will introéuardinary optimal
stopping problems and present solution methods for themalllFiwe will
introduce more general control problems; namely Dynkin ggand singular
control problems, and state solution methods for them. dginout this first
part of the thesis we will concentrate mainly on the techesgjand theory
needed in the research articles, but the tour also inclugdeaths that open
new perspectives to the considered subjects. The intrimsiuist followed by
the research part, which consists of four independent relseapers.
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2 STOCHASTIC PROCESS

2.1 General remarks on stochastic processes

We shall consider behaviour only on continuous time, anthab énd, let the
interval [0, ) be our time set. Moreover, I€£,.7 P} be a probability space.
A collection of o-algebras{.#;}, t € [0»), on the spacdQ,.#} is called a
filtration if

FsC Fy C.F foreverys<t.

The collection(Q,.#,{.%:},P) is called a filtered probability space, and it is
said to satisfy the usual conditions, if

e 7 is P-complete (i.e. if there exish C Q andAg,A; € .# such that
A1 CAC AyandP(A;) =P(Ap), thenA e ),

e Z( contains allP-null sets of.7;
o {Z} isright-continuous (i.e%s= Zs: ‘= }=s%1)-

In this thesis we always assume the filtered probability sgacsatisfy the
usual conditions.

Consider a random variablg (w) defined on a filtered probability space
(Q,.7,{%},P) and taking values in the state spgcé€,#), where.7 is a
non-empty (topological) space awd is the Borelo-algebra ons. A col-
lection X := {X : Q — .# |t € [0,00)} of such random variables is called a
stochastic procesd~or a fixed scenariw € Q the mapping — X (w) is said
to be asample pattor atrajectory of the proces.

We say thalX is adaptedto the filtration{.%} if X; is #i-measurable for
everyt. Thenatural filtration {o{Xs| 0 < s<t}} is defined to be the smallest
filtration to which X is adapted and it can be interpreted as the information
generated by the history of the procéésip to the datd. We denote byPy
the probability measur conditioned on the initial staté = x and byE the
expectation with respect .

We define a random variable: Q — [0, ] to be astopping timewith
respect to.7) if {t <t} € % for everyt € [0,0). Thus a stopping time
is a random variable, which depends only on the history ofpifteessX.
Furthermore, ift is a stopping time, then thstopping timeo-algebra is
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Fr={Fe.Z |Fn{t <t} € Fforallt >0}, i.e. .%; is simply the his-
tory up to a stopping time.

Example 2.1. e Examples of stopping times are

— the first exit time from an open s€tC .#: 1c =inf{t > 0| X ¢ C};

— the first arrival time to a closed s&tC .#: ¢ =inf{t > 0| X% ¢
G};

— the first hitting time to a point e .#: 1, = inf{t > 0| X =z};

— every deterministic timée [0, o).

e The last exit time from a sé6 C .7, i.e. sudt > 0| X € G}, isnot a
stopping time, since it depends on the future evolution efdtocess.

A stopping time( is said to be dife time, or aterminal time of a process
X if the process is terminated at that time. We understanddiraitation
of the process in the following way: We attach an additicrerhetery state
d ¢ .7 to the state space and le¥ %, %°) = (.# U{d},0{%,{d}}) be this
new state space and its Borelalgebra. Within this state space we understand
the proces<X to be killed at the timg and immediately sent to the cemetery
state where it stays for the rest of the time (see Dynkin 19&6section 3.1).
That is, the process with life timg evolves as

X, t<{

a2, t>{.
We extend an arbitrary functioh: .# — R to the enlarged state spag€ by
defining f(d) = 0. In the sequel, we assume the cemetery state to be attached

to the state space if needed, so thatX; € .#) = 1 for allt € [0,) (i.e. the
process is assumed to benservative

Example 2.2. Typical life times are
e ( = = (so callednon-terminatingprocess);

o ( =inf{t > 0| X ¢ C} for some open s&& C .# (killed at the first exit
time);

e { ~ Exp(r) for somer > 0 (killed at an exponential rate);
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e ( =T for some deterministic tim& & (0, ) (fixed finite time horizon,
e.g. a maturity of an option).

Let us lastly define a few concepts for stochastic procebsesvill be used
throughout the thesis. Firstly, a procegss continuousor sample-continuous
if the sample pathX;(w) are continuous im for P-almost allw. Secondly, a
process is said to kregular, if every state can be reached from any other state,
i.e. if Py(X =y for somet > 0) > 0 for all x,y € .#. Lastly, a process is said
to betime homogeneolikthe future evolution of the process does not depend
on the current time, i.e. for aB € % andt,h > 0 we havéPy (X h € B | X) =
Py, (Xh € B).

From now on, we only consider regular, continuous, time-bgemeous
processes unless otherwise stated.

2.2 Markov property

Consider a filtered probability spa¢®,.7,{.#:},P} and a stochastic process
X on it, taking values on a state spdc€, ).

Definition 2.3. Let f : .# — R be a bounded and measurable function and let
Bec %.

(A) A processX; is said to be a (time-homogeneoldarkov processif for
allt,h>0

Eyx {f(Xen) | F} = Ex{f(Xen) | X} = Ex {f(X)}, or equivalently
Py(Xiih € B| %) =Px(X1h € B| %) =Px (X, €B) forall B A.

(B) A processx; is said to be a (time-homogeneogsipng Markov procesi$
the property above holds for dil> 0 and all finite.#-stopping timeg.

Roughly speaking, the Markov process is memoryless on mgdhat the
future evolution of the process depends only on its curretesnot on how
it got there. Another way to characterise the Markov propertto say that
given the present stak, the past#; and the futures{Xs | s>t} are indepen-
dent. Moreover, since all deterministic times are stoppimgs, obviously a
strong Markov process is also a Markov process, but the @gnis not true in
general.
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Example 2.4. e A one-dimensional Brownian motidron R is a strong
Markov process.

e LetW be a one-dimensional Brownian motion. ftsximum process S
defined by§ = sups; {Ws}, is not a Markov process.

e Let us introduce an example of a Markov process which is mongt
Markov. LetW be a one-dimensional Brownian motion and deipby

W, Xo#0
0, Xo = 0.

On can then show tha¢ is a Markov process, but that it does not sat-
isfy the strong Markov property for hitting times to zerodge 161 in
Wentzell 1981).

An important feature in the general theory of Markov proesss the tran-
sition function, which enables one to interpret the expamat, { f (X))} as
a semi-group operator, operating 6(x); see e.g. Dynkin 1965, Chapter 1
in Blumenthal and Getoor 1968, Chapter 1 in Borodin and Ss&m2002 or
Section 1.4 in Peskir and Shiryaev 2006. However, the maad gf this thesis
is not to deepen the theory of Markov processes, but to stptisnal controls
with respect to linear diffusions, a well-behaving classviafrkov processes.
Hence we shall not directly need the additional properties Markov struc-
ture that the transition functions can provide and so we mall discuss it
further. An interested reader can consult the referencegeab

2.3 Martingale property

Another useful and important property for stochastic psses for applications
are the martingales. In this section we consider a filteretbatility space
{Q,7#,{.7 }+,P} and on it, a proces% which almost surely has sample paths
that are right continuous with left limits (so calleddlagprocesses).

Definition 2.5. Let X be adapted to the filtratiofi%;} and and let it satisfy
Ex{|X|} < forallt > 0.

10ne-dimensional Brownian motid¥ is a process that satisfies Y = 0, (i) path of
W is almost surely continuous, and (M} has independent increments with distributitfn—
W ~ N(0,t —s) for 0 < s<t. See Chapter | of Rogers and Williams 2000a or Chapter IV in
Borodin and Salminen 2002 for basic properties of Browniantiom.
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(A) The process is amartingale if

Ex{Xn| F} =% forallt,h>0andxe .7. 1)

(B) Supermartingalés defined similarly, except that” in (1) is replaced by
” <'H.

(C) Submartingalas defined similarly, except that2” in (1) is replaced by
">

The theory of martingales is wide and deep. For instancee e power-

ful convergence theorems and strong inequalities for snadingales (see e.g.

Rogers and Williams 2000a). There are also weaker versidhe martingale-

property:

Definition 2.6. (A) The processX; is a local martingale if Xo is %o-
measurable and there exists an increasing sequence ofirgjojopes
{Tn}nen such that lim_.. Tn = c almost surely, and for eaahe N the
stopped process

><[_X07 t<T
Xty — Xo = "
XTn_x07 tZTn

is a martingale.

(B) The process is asemi-martingaleif X; = Xo+ M; + N;, whereM; is a
local martingale andi; a finite variation proce$sandMg = No = 0.

Example 2.7. e To get some idea how large the class of semi-martingales
is, notice that all levy processésare semi-martingales (see Theorem
[1.9 in Protter 2004).

2A processN;, which almost surely has sample paths that are right comtiswvith left
limits, is afinite variation proces# its variation over any finite time intervd0,t) is finite, i.e

n
supzi\Ns —Ns_,| < oo,
i=

where the supremum is taken over all partitions & < s < --- < sy =t. Informally we can
say that a finite variation process fluctuates only moderatel

3A processl; is alLevy processif (i) Lt — Ls is independent of#s for all 0 < s <t < o
(independent increments), (i) — Ls~ L;_s for all 0 < s< t < o (stationary increments), and
(iii) lim s Ly = Ls with probability 1 (continuous in probability). See e.g.pfianou 2006 for
a comprehensive treatment of Lévy processes.
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e A Brownian motionW on R is a martingale. Moreovel; := V\42 —t
is also a martingale (cf. Theorem 1.27 in Protter 2004): sME is a
martingale, we havi {WWs | %} = W2 for all s< t, so that

E{M —Ms | Zs} = Ex {W2 — 2MWs+ W2 — (t —5) | Fs}
=E{(Ws—W)?} —(t—9) =0.

e Let f: R — R be a convex function an¥; a martingale process dg.
Then, by Jensen inequality (i.ef (Ex{X}) < Ex{f(X)}), a process
f(X) is a submartingale. Similarly, a concave function of a magie
is a supermartingale.

e Using Fatou’'s lemma one can show that a positive local ngateis
always a supermartingale.

The theory of martingales is meaningful in this thesis sioptmal stop-
ping problems can be approached using martingale theorye-vatlue func-
tion of an optimal stopping problem is the smallest supetimgaile dominat-
ing the reward function. Another important issue for us & the theory of b
calculus (cf. Section 3.9 below), one of the most practicaloepts in stochas-
tics, is essentially based on the martingale propertiesBrfosvnian motion.
For a thorough treatment of local martingales, semi-mgaties, and & cal-
culus, see Rogers and Williams 2000b and Protter 2004.
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3 LINEAR DIFFUSIONS

3.1 The definition of a linear diffusion

For the rest of the monograph, we shall consider only cedginhastic pro-
cesses, namely one-dimensional, or linear, diffusionsantarval.# C R of
the form

S =(a,B), J=la,p), #=(a,p], ors =]a,pl

for some endpoints-o < o < 3 < 0, depending on whether the process can
hit the boundaries or not. For a thorough discussion of siiffas, consult G
and McKean 1974, Chapter Il in Borodin and Salminen 2002 ,lapfer V in
Rogers and Williams 2000b.

Definition 3.1. A sample-continuous stochastic proc&s®n .7 is a (regular
and time-homogeneoubhear diffusion if it is a regular, time-homogeneous,
strong Markov process.

Notice that in its widest definition, linear diffusions areither regular nor
time-homogeneous. However, in this thesis we only congidgular time-
homogeneous processes. Therefore, from now on we undeigiaar diffu-
sions to be regular and time-homogeneous unless othertaisel s

Without any further restrictions, the definition is oftertwide for appli-
cations (cf. Sections V.1-2 in Rogers and Williams 2000b)ces it allows
processes to behave in an unruly manner (e.g. there aresidiifuthat are
not semi-martingales, see Example 3.24). Therefore, ourtask is to find a
more practical class of diffusions, and for this task an itdsimal generator
of a diffusion will be handy.

Definition 3.2. Let X be a diffusion on a filtered probability space
(Q,Z#,{%#},P) evolving on.#. Theinfinitesimal generatorZ of X is de-
fined by

st B0} 1)
t—0 t

wheref : .¢# — R is such that the limit exists forall e .7 .

Intuitively, we can interprets f(x) to be an expected growth rate of the
processf (%) at the pointf (x).
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The generator has a computationally useful close conmettigpartial)
differential equations. This connection becomes visilileraoticing (see Sec-
tion V.5 in Dynkin 1965) that, foff € C?(.#), the infinitesimal generator is in
fact a linear second order differential operator

A f(x) = %GZ(X) (0 + () ' () — () f(x)

for some functionss, u, andc. Hereo(x), c(x) > 0, and so the operator is
elliptic. Now our aim is to create diffusions with given perties, and thus
we would like to know when this connection can be used in therse direc-
tion: For what kinds of functiong, u, andc is the second order differential
equation%az(x)do'—j2 + M(X)d% — ¢(x) an infinitesimal generator of a diffusion?
The following theorem answers to this question and allowtousuild diffu-
sions easily from elliptic differential equations. Befatating the theorem, let
us define arexplosion timeo be the minimum of terminal time and the first
hitting time of the process to its boundaries, i.e{inf 0| X € {a,B,d}}.

Theorem 3.3.Leto: .# - R, u:.# — R, and c: .# — R be continuous
functions. Assume that they satisfy the conditions

e 0(x) >0anddx) >0forallx € .#;and

o for all x € .# there exist€ > 0 such thatf,"} %(S)ld3< o,

Then there exists a filtered probability spaée,.#,{.%:},P) and a diffusion
process Xon it with state space# such that up to an explosion time the
infinitesimal generator of Xs

A E(X) = %oz(x) () + U (X) — cx) F(x) for f € C2.

Furthermore, this diffusion process is unique in faw

This theorem is deep and its proof requires the concept chastic dif-
ferential equations; the assumptions guarantee a (weagfli@isolution to a
certain stochastic differential equation (we talk moreudlbis in Section 3.9
below). However, we observe that the theory defines a unidfusidn process

4Assume thatu, o and ¢ satisfy the conditions of Theorem 3.3. Then a process is
unique in law, if whenever two processi¥sandy; are such that their infinitesimal genera-
2 . . . . .
tors 102(x) 5’7 + u(x)é‘—X — ¢(x) coincide, they have the same distribution as processes.
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up to an termination timé& only on interior points of#. Hence, in order to
make the diffusion process unique everywhere, we need toedédibehaviour
at the boundaries and this is done in Section 3.4 below.

The analysis in this thesis extensively utilises the déffeial aspect of the
infinitesimal generator, and for this reason we shall natysarbitrary general
diffusions. Rather, we will restrict our scope to the difrss which can be
derived using Theorem 3.3 above. Although we exclude a ptigmoof dif-
fusions from the study by doing so, in practice this proporis so small that
the choice is justifiable.

So from now on, unless otherwise stated, we assume thatfthgesimal
parameterso, U, andc are given and satisfy the conditions of Theorem 3.3,
and the linear diffusiorX := {X : Q — . |t € [0,0]} is given by Theorem
3.3 above. The results in this section (as well as in the@eztio come) hold
true for more general diffusions than this. However, theniaation of the
results with this definition is adequate for us. The pararsete u andc are
called, respectively, thmfinitesimal variancetheinfinitesimal mearand the
infinitesimal killing rateof X, since often

nmﬁaﬂm—m%:a%@

t—0t
1
lim Ex {X —x} = p(x),

and %mwz>w—n:_qn

lim
t—0
Example 3.4.Examples of diffusions are

e standard Brownian motion (or Wiener process) for whietf (x) =
117(x) and.¥ =R;

e geometric Brownian motion with killing at an exponentialea, and in
this cases f (x) = 302" (x) + uxf'(x) — rf (x) for somep € R and
o,r>0andy =R,;

e a mean reverting diffusion with killing at an exponentiatera. In this
casez/u(x) = 202" (x) + ux(1— yx) f'(x) — rf (x) for somep € R
andy, o > 0 and.¥ = R.. Here 1y (a state at which the infinitesimal
drift term disappears) is known as the carrying capacityiotolgical
applications. Asy approaches zero, the mean reverting diffusion ap-
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proaches geometric Brownian motion.

Let us end this section with an important result showing theng bonds
between a diffusion and its infinitesimal generator (forpgheof, see e.g. The-
orem 7.4.1 in @ksendal 2007).

Theorem 3.5(Dynkin’s formula) Let % be a diffusion and let £ C?(.#).
Moreover, letr be a stopping time for whicBy {7} < o. Then

B { (X))} = f(x)+Ex{/or,ssz(Xs)ds}.

3.2 Killing a diffusion

Especially in financial applications, the problem settiritem involves dis-
counting. In this section, we shall demonstrate that an&agien with con-
tinuous discounting is, in fact, nothing but an expectatiba killed diffusion.
Let X be a diffusion process with infinitesimal generatdiand letu: . —
R, be a continuous function. Furthermore, define a continuoms;negative

process
M ] e_ f(g U(Xs)ds

and a new diffusion proceséthrough the generator
o = o —Uu(Xx).

Let g be a continuous functiorm, a stopping time, and the terminal time
of the proces¥X. Then we have

]Ex{g(xt)l{kf}} = Ex{®g(%)}

and [y {/OMZ g()N(S)ds} = Eyx {/OT ysg(Xs)ds} : @

wherelE is an expectation taken with respect to the diffusion Especially,
sincey is .#i-measurable, taking(x) = 1_»(x) gives

k=Bt ) | 7} = Ex {1,014 | A} =B ({>t| ), @)

and so the discounting can be interpreted as the conditional probability that
the trajectory o does not terminate before timeFor a more exact and thor-
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ough exposition, see Section X.4 in Dynkin 1965 or ChaptenIBlumenthal
and Getoor 1968.

Example 3.6(Continuous discounting as exponential killinget X be a non-
terminating diffusion (i.e. life tim& = o) associated with the generatef =

%oz(x)dc'—xz2 + u(x)cf—x and introduce a constant killing(t) =r > 0 so that the
generator of the killed diffusioX is o =of —. Now y = e " is independent

of X and hence, using (3), we get
IPBX <Z §t> = 1_e—l’t,

where the right hand side is a cumulative density functiothefdistribution
Exp(r). Therefore, we see that the diffusihis killed at an exponential rate
and we can interpreX as

>~(': X[a t<ZI’
07 tZer

where; ~ Exp(r). Moreover, applying (2), we see that for any continio
functiong(x)

Ex{e "g(x)} =Ex{g(%)},

where we understargld) = 0. In other words, the expected payoff with con-
tinuous discounting can be written as an expectation of disaaunted payoff
with respect to a diffusion killed at an exponential rate.

3.3 Basic characteristics of a diffusion
3.3.1 Introducing the characteristics

Every diffusion has three basic characteristics: scaletfonS, speed measure
mand killing measur&. These can be defined via the infinitesimal parameters
o, 1 andc, forallx e ., as
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whereB(x) := [* Z“E ;dy We can seem andk either as functions or mea-

sures; in the latter case we understamda,b)} = fa m(dz), and analogously
k{(a,b)} = f;k(dz), for all intervals(a,b) C .#.

The scale functiols: .# — R is increasing, and because we assumed that
u and o satisfy the integrability condition of Theorem 3.3, it isaltwice
continuously differentiable. Moreove§ is determined uniquely up to addi-
tive and multiplicative constaritsand it satisfies the equaticé'vz(x)s”(x) +
u(x)S(x) = 0. It is also closely connected to the hitting time distribot
Indeed, ifk((a,b)) = 0 for an interval(a,b) C .#, then forx € (a,b)

S(b) —S(x)
S(b) - S(a)’

wherety = inf{t > 0| X, =y} denotes the first hitting time of to the state

y. In other words, the scale function rescales the state spateat the hit-
ting probabilities become proportional to actual distanc&Ve say that the
diffusion is innatural scaleif S(x) = x. Furthermore, we see a connection to
martingales, as the scaled diffusiBfX;) is a local martingale (see Corollary
V.46.15 in Rogers and Williams 2000b).

Py(Ta<1p) =1—-Px(Th < Ta) =

Example 3.7. A standard Brownian motion is in natural scale. Moreover, fo
each diffusionX;, the scaled diffusior§(X;) is in natural scale on the state

spaceS(.7).

The speed measuren : ¥ — R, satisfies the adjoint equation
%g—;(az(x)m(x)) + %((u(x)m(x)) = 0, whenevew andu are smooth enough.
Furthermorem measures, in some sense, the speed of the process — in the
regions wheranis large, the diffusion moves slowly (cf. I11.16 in Borodindan
Salminen 2002). For each finite interv@,b) C .#, the measuren{(a,b)}
is finite, butm does not necessary have a finite density o¥erHowever, if
this density is finite, then the normalized functigix) := m'(x)/m(.#) con-
stitutes a probability density function defining, for thepessX;, astationary
distribution This distribution can be used to calculate the averagmstaty
behaviour of a process in the following way (see p. 37 in Bor@eshd Salmi-

nen 2002).

Lemma 3.8. For every Borel-measurable bounded function .# — R one

5)f Sis a scale function, then alg9S+ ¢, is for c; > 0 andc; € R.
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has
ImE(1(2)} = [ fyn)dy
—0 5

3.3.2 Creating diffusions from the characteristics

It should be stressed that the characteristics are diffusitated functions and
can be used without any references to the infinitesimal petenst To illus-
trate this fact, let; be a general linear diffusion in widest sense of Definition
3.1 (i.e. it is not necessarily time-homogeneous or reyuara state space
(#,%). Then we can use hitting time probabilities and the meantexi
from an intervak € (a,b) C .

Pab(X) = Px (Ta < Tp)
Poa(X) = Px (Ta > Tp)
€ab(X) = Ex{TaATpA L}

to introduce the characteristics according to the formulas

San(dX) = Pan(X) Ppa(dX) — Poa(X) Pan(dX)

o pla(d
o) =" = P

Map(0X) = €an(X)Kan(dX) — e55(dx),

wheref’+ is a right derivative (see e.g. Section 4.1 i #nd McKean 1974).
Furthermore, this relation can be reversed, which givestasanother way of
creating diffusions. For the proof of the following theoresee e.g. Section
5.6 in 1t and McKean 1974.

Theorem 3.9.Let S: .# — R be a strictly increasing function, and let m and
k be non-negative measures ghsuch that K(a,b)},m{(a,b)} < o for all

a <a< b < B. Then there exists a linear diffusion such that its basiadaba
teristics are S, m, and k.

Using this theorem, one can easily construct diffusionsveltbeless, in
this thesis we favour the construction of a diffusion frora thfinitesimal pa-
rameters, 4, andc. First, by doing so we get well-behaving diffusions whose
characteristics are absolutely continuous. Second, smstaaction method co-
incides better with the formal calculation of stochastifedential equations
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(cf. Section 3.9).

For a more thorough discussion about basic characteristarssult e.g.
Chapter Il in Borodin and Salminen 2002, Chapters 4 and ®iardd McKean
1974, or Chapter IV in Bass 1998.

3.4 Boundary classification

We noticed in Theorem 3.3 that given our assumptions, agidfuis uniquely
determined only up to an explosion tinfe\ 74 A Tg, Wherety is the first hitting
time to the statg. Thus, in order to determine a diffusion uniquely, we need
to specify what happens when the diffusion hits the bouedariand 3. In
this section, we study the boundary behaviour of lineawudifins and divide
the boundaries into four different classes based on basiacteristics. We
shall analyse only the lower boundawy as the properties #& are defined in
a completely analogous way.

Leta < z< 8 and define

z

29 = [ (m(n.2)+K(n.2) S(dn)

and N(2) 1=/ (S(2) = S(n)) (m(dn) +k(dn)).

a

The function® measures, roughly speaking, the time it takes to reach werlo
boundarya starting fromz. On the other handl(z) measures, again roughly
speaking, the time it takes to reach an interior paistarting from the bound-
ary a (see page 231 in Karlin and Taylor 1981). In the boundarysilaation
we are only interested in whether the meas@rasdN are finite or not:

Definition 3.10. Let a < z< . Then the lower boundarny is called
e naturalif ¥(z) = c andN(z) = ;
e exit, or exit-not-entrance, i£(z) < o andN(z) = o;
e entrance or entrance-not-exit, (z) = 0 andN(z) < oo;
e regular, or non-singular, i&(z) < 0o andN(z) < .

The names are intuitive: i is an entrance, then the process can be started
from a, from where it quickly moves to the interior and never comaskb
Analogously the process can exit the state space from thhdenndary, but
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not start from it. A natural boundary is a boundary that ishmesi exit nor
entrance, and a regular boundary is both exit and entrance.

A diffusion can be, a priori, started from a regular boundaryd it can
reach a regular boundary in finite time. However, it turnstbat the measures
> andN are not enough to define a regular boundary uniquely. Thusext n
classify the boundary behaviour of a regular boundary.

Definition 3.11. A regular boundaryr is called

e reflecting if m({a}) =k({a}) =0,

killing, if m({a}) # « andk({a}) = o,

sticky, if o > m({a}) > 0andk({a}) =0,

elastic if m({a}) =0andk({a}) >0,

absorbingif m({a}) =« andk({a}) > 0.

The two most often appearing regular boundaries are thectiefieand
killing ones. This is due to the fact that when the basic dttarestics are
absolutely continuous with respect to the Lebesgue meaaarthey are for
example in this thesis, then these two are the only possblalar boundaries
(see 11.9 in Borodin and Salminen 2002).

Once again, the names of the boundaries are intuitive. Asidh spends
no time at a reflecting boundary (iBx(Leb(s<t | Xs= o) =0) =1) and does
not die in it (i.e.Px(X;_ = a) = 0). At a killing boundary, the diffusion is im-
mediately killed and sent to the cemetery stateln practice, the behaviour
of a diffusion at an exit-not-entrance boundary and at &kjlboundary does
not differ from one another — In both cases the diffusion renieated im-
mediately after hitting the boundary and never comes bagsrogess spends
a positive amount of time (i.ePx(Leb(s <t | Xs= a) > 0) > 0) at a sticky
boundary. At an elastic boundary, a process does not spgntinae, and it
can be killed there (i.ePx(X;_ = a) > 0). Lastly, a diffusion gets stuck in an
absorbing boundary, i.&, (% =a)=1forallt < {.

Furthermore, a boundary is said to beattainable if it can be reached in
a finite time. A boundary that is not attainableuisattainable Hence exit and
regular boundaries are attainable, while entrance andaldioundaries are
unattainable.
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For a more complete discussion on the boundary behaviouiffo$idns,
see pp. 15-21 in Borodin and Salminen 2002 and Section 1%é@rim and
Taylor 1981.

Example 3.12(Killing a diffusion at the first exit time)Let X be a diffusion
on (a,B) with natural boundaries and I€t:= (a,b), a <a< b < 3, be an
open interval and let € C. Consider the diffusioiX, which evolves aX until

it hits the boundary o€ where it is killed (killed at the first exit time from the
setC, cf. Example 2.2). Then, the boundar@éandb of the diffusionX on its
state space€ are regular and killing. The killing measukef X is k+ k, where

k is the killing measure foX andk is the killing measure on boundaries, being
zero onC and infinite at the boundariesandb.

3.5 Maximum processes

Themaximum proces®r therunning maximumS of a diffusionX; is defined
by
S = sup{Xs}.

s<t

Since§ alone is not Markovian, we have to add an additional dimenaiad
keep also record of; to get the two-dimensional proceS§, S ), which again
is Markovian. Although an extra dimension often complisat even hand-
icaps, the analysis of the studied problem, this is not tlse ¢eere. This is
due to the good nature of the maximum process: it is contiswwen for a
more general processes than just diffusions (e.g. for sglgchegative jump
processes, see Subsection 2.6.2 in Kyprianou 2006), itieasing, and, most
significantly, it is constant most of the time sinke< § almost always. In-
deed, between the hitting times ¥f to its maximum, the two-dimensional
procesg X, S) acts as a one-dimensional procésss) for somese .7.

In a similar manner, one can also definargfimum processfs<i{Xs}, and
everything said above holds true with the obvious changes.

3.6 Fundamental solutions

Let X be a diffusion with an infinitesimal generater and letr > 0 be a
constant discounting rate (or a killing rate, cf. Exampk) 3The infinitesimal
generatorZ —r grasps the information about the associated diffusdxilled
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at the exponential rate and, as a differential operator, converts it to the lan-
guage of pure analysis and ordinary differential equatiéusthermore, from
the theory of differential equations we know that the secorder differen-
tial equation(« — r)u(x) = 0 has two independent non-negative solutigns
and¢. We can requirgp to be increasing ang to be decreasing, in which
case they are uniquely determined up to multiplicative tats. Sincez’ —r
describes the behaviour of the diffusion, understanddidyfindamental so-
lutions & and¢ also carry lot of information abou; and thus also abou;.
One of the most important facts is the following hitting timistribution (or
Laplace transform) result (see 11.10 in Borodin and Salmip@02 and Lemma
3.3 in Lamberton and Zervos 2013).

Proposition 3.13.Let ty = inf{t > 0| X =y}.

(A) Thenforallr>0

W0 (0)— (b))

Bde ™} = Sae0) —eme@
@6 - px)b(a)
and E{e™ L in<n)} = Y @p0) — )@

The fundamental solutions also carry information aboutihendary be-
haviour of the diffusion (see p. 19 in Borodin and Salminef20 We con-
sider here only the lower boundaoy, while analogous properties hold @t
with the roles of¢ and ¢ interchanged. Ifx is a regular boundary, then the
boundary condition fory depends on whether € .# or not:

o if a €7, thenry(a)m({a}) = 44 — y(a)k({a}). Especially ifa

(@) _
G

is reflecting, the
o if a ¢ .7, theny(a+) =0 (killing boundary).

On the other hand, ifr is not regular, then we have the following properties at
a:
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e if o is entrance,

T
o if is exit,

w(a+) =0, ‘g((gi)) >0, ¢(a+) < 4o, ‘g((gi)) -
e if  is natural,

om0 §-0 oo 423

Example 3.14.Let X be a diffusion with natural boundaries and@et= (a,b),
a <a<b< B, beanopeninterval and let C. Denote byy(x) and¢ (x) the
fundamental solutions associated with the diffusxrkilled at the rate > 0.

e (Killed at first exit time.) Consider a diffusiorX, which evolves a¥
until it hits the boundary of where itis killed (killed at the first exit time
from the selC). Now the fundamental solutions associated iXtisan
be chosen to bdi(x) = W(x)$(a) — § (X)(a) and(x) = ¢ (x)y(b) -
Y(x)¢(b).

o (Reflected at the boundariesGonsider a diffusiorX, which evolves
as X on C, and that the boundariesandb are reflecting (i.e. let us
definem({a}) = Mm({b}) =k({a}) = k({b}) = 0). Then the fundamental
solutions associated witk can be chosen to b(x) = —(x)¢’(a) +

¢ (x)¢'(a) andd (x) = ¢ ()¢’ (b) — Y(x)¢' (b).

It should be mentioned that the fundamental solutignand ¢ can be
defined also in a more general context when the discounting — R is a
measurable function that is uniformly bounded away frono Zef. Lamberton
and Zervos 2013).
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3.7 Fundamental solutions, the resolvent operator andaleasitions
Fundamental solutions and the scale derivative

Since« —r is an ordinary differential equation, we can calculatedtmétant)
Wronskian determinari (see e.g. p. 116 in Ince 1956)

5. VXX —¥(x)¢'(x)
: S :

Thus, we see that the density of the sc8lés closely connected witiy
and¢. Indeed, each function in the tripl&t, ¢, and¢ can be expressed as a
functional of the other two; using the theory of differehguations one can
deduce the decompositions

S(y)
WA(y)

Wi =Coo00 [ S0y and 09 —Capi) [ >0y

2(

for some constaniS;,C, € R, (cf. p. 122 in Ince 1956).

The resolvent operator and its decomposition

Denote by#1(.#) the class of measurable functiohs.# — R satisfying the
integrability condition

IEX{/ e‘“yf(xt)|dt} <o foralxe.7.
0

Definition 3.15. Define theresolvent(or potential if one prefers the potential
theoretic approach) operatBy by

(R f)(x) ::]EX{/Ome‘”f(Xt)dt} forall f € (7).

It is known (see e.g. @ksendal 2000 or p. 29 in Borodin and Baim
2002) that the resolvent operator can be written as an @ltdgcomposition:

(Rf)(x) =B 1o(x) /a Xw(y>f(y)rrf (y)dy+B (%) /X ’ ¢ (y)f(y)m (y)dy.

This decomposition is computationally very useful (see ethe proof of
Lemma 5.2(B) in Article II). More theory about resolventsidae found e.g.
from Blumenthal and Getoor 1968.
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Integral decompositions

Next, we introduce two further integral decompositionse(&®orollary 3.2 in
Alvarez 2004), which are closely connected to the Martindatary theory.
These will be applied several times in the thesis.

Lemma 3.16.Assume that £ C2(.#) and that(«/ —r)f(x) € Z(.¥).

(A) Assume further thdimy .4 |f(X)| < c. Then

f/(g)(%()() B ”2&(” = /a W) (o 1) )l (y)dy- 5.

whered =0, if a is unattainable, and = B% otherwise.

(B) Assume further thdim, g % =0. Then

, : B
f (;()(i)(x) B f(gsz)(X) __ /X ¢ (y) (o —r)f(y)m (y)dy.

3.8 Excessive and superharmonic functions

The fundamental concepts Bharmonicity and -excessivity will prove to be
the key ingredients in the characterisation of the valuenadtimal stopping
problem. In this section we assumeto be a general regular linear diffusion
in the sense of Definition 3.1.

Definition 3.17. (A) A lower semicontinuou function h: .# — R is r-
harmonicwith respect tox, if it is bounded from below and

]:EX {eﬁrrh(XT)} - h(X) (5)
for all stopping timeg andx € .#.

(B) An r-superharmonidunction is defined similarly, except that" in (5)
is replaced by X",

(C) Anr-subharmonidunction is defined similarly, except that" in (5) is
replaced by >".

6A function f is lower semicontinuouatxq if for every £ > 0 there exists a neighbourhood
U such thatf (x) > f(xg) —e forallxe U.
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As s noticed on p. 16 in Dynkin 1965 vol Il, if a Borel-meashiefunction
his bounded from below and satisfies conditib{e ""h(X;)} < h(x) for all
stopping timest, then it is upper semicontinuous. Thusmasuperharmonic
function is both lower and upper semicontinuous and coresgttyucontinuous.

Definition 3.18. A lower semicontinuous function: .# — R is r-excessive
with respect tox, if

a) lim_oEx{e "h(X)} = h(x) for all x € .#; and
b) Ex{e "h(X)} <h(x) forall xc .7,

Observe that ihis continuous an& is a regular linear diffusion, then item
a) in the definition holds. Furthermore, sincerasuperharmonic function is
continuous, we see at once that any non-negatisaperharmonic function
must ber-excessive. However, for a nice enough process, also thersmis
true; In Dynkin 1965 (p. 16 invol ll) itis remarked that in thiass of quasi-left
continuou$, right continuous strong Markov processes argxcessive func-
tion is also amr-superharmonic function. Further, we see a link to martegya
as for allh € .#* the procesg"h(X) is a (super/sub)martingale whenever
is r-(super/sub)harmonic with respectXp

The fundamental solutions are crucial here, since they eavidwed as
minimal r-harmonic functionsThey span the set of altharmonic mappings
so that every-harmonic mapping is of the form (x) + c2¢ (x) for somecy,
c €R.

It is not convenient to determine directly from the definitiba given func-
tion is r-excessive or not. Hence the following proposition gives twore
applicable characterisations, where the first one is a td@ensequence of
Dynkin's formula (Theorem 3.5) and the second one is Theot@m.B in
Dynkin 1965.

Proposition 3.19.Let X be a regular linear diffusion in a sense of Definition
3.1.

(A) Leth: .# — R, be twice continuously differentiable. (lf7 —r)h(x) <0
for all x € .Z, then h is r-excessive.

A Markov processX; is said to bequasi-left continuoysif for any sequence of stopping
timesty, Ty, ... for which limp . Th = T we have lim_. X;, = X;, forall xe ..
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(B) Let h: .# — R, be a continuous function. Then h is r-excessive with
respect to Xif it satisfies the following condition. For any,p,) =
inf{t > 0| X ¢ (a,b)}, wheret(,y, is the first exit time from an arbi-
trary open interval(a,b) C .# whose compact closure is i&f, one has
E, { e*ff<asb>h(><r<a,b>)} < h(x), forall x € .7

If the inequalities in the proposition are replaced by eitjeal we get con-
ditions forr-harmonicity.

3.9 It diffusion

The so calledtd diffusions which are solutions to certain stochastic differ-
ential equations with respect to Brownian motion, are palairly important
diffusions. In fact, we have usedldiffusions all along without underlining
this fact — the conditions in Theorem 3.3 guarantee the exé&t of a weak
solution to a certain stochastic differential equationhvatBrownian motion
as the source of randomness, as we shall see shortly. Foroatiotreatment
of stochastic differential equations, consult Karatzas &hreve 1988, Rogers
and Williams 2000b, Protter 2004, or @ksendal 2007.

To formally define an & diffusion, letW be a one-dimensional Brownian
motion. Then for a given drifu : .# — R and volatility o : .# — R, the
dynamics of an & diffusionX; can be represented in a stochastic integral form

t t
X :x0+/0 u(xs)ds+/o 0 (Xs)dW,

provided that the stochastic differentidl\ is rigorously defined. Stochas-
tic differential calculus, developed byolin the 40’s (and independently by
Wolfgang Doeblin, see Bru and Yor 2002), describes how tandesiich dif-
ferentials, but we will not go into details. It is adequateus to know that one
can rewrite the equation above astachastic differential equation

dX = HOQ)dt+ O (X)W, Xo=x. (6)

We are interested in two kinds of solutions to this stocladifferential
equation, and we also present two concepts for the unigaarigke solution
(see Chapter V in Karatzas and Shreve 1988).

Definition 3.20. (A) The equation (6) has weak solution if there exists a
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filtered probability spac€Q, .7 ,{.%:},P) carrying a Brownian motiowy
and a stochastic proceXg both adapted tc#;, such that the pai\, X;)
satisfies (6) and

[ {00 +10200) ot < o ™
up to the (possible) explosion tingeA T4 A Tg.

(B) The equation (6) has strong solutionif for any given filtered probabil-
ity space(Q,.#,{%},P) carrying a Brownian motiol\, there exists a
processx; adapted to%; satisfying (6) and (7) up to the explosion time
{NTg A Tg.

(C) The solution to the equation (6) imique in lawor weakly unique if
whenever two processéé andY; are solutions to (6), possibly on dif-
ferent filtered probability spaces, they have the sameildigton as pro-
cesses, i.e. for every Borel sktc 4 we haveP (w |t — X(w) € A) =
Q(w|t — Yi(w) € A), whereP andQ are the probability measures f&r
andY respectively.

(D) The solution to the equation (6) mthwise uniqueif whenever the pro-
cesse andY; are solutions to (6) defined on the same filtered probability
space(Q,.7,{.%},P), they satisfyP (| —Y;| =0 forallt >0)=1.

We have the following sufficient conditions for the existeramnd unique-
ness of a weak and strong solution. The result 3.21(A) carobed e.g in
Chapter V in Karatzas and Shreve 1988 and the result 3.2h(Bgction 5.2
in Pksendal 2007.

Theorem 3.21.Letu : .# — Rando : .# — R, be Borel-measurable func-
tions.

(A) Assume that for all x .# there existss > 0 such that the conditions
a(x) > 0and [} 12‘“(5))‘dy< o are satisfied. Then there is a weak
solution to the stochastic differential equati(@) up to an explosion time

and this solution is unigue in law.

(B) Assume that for all )y € .# the Lipschitz conditionu(x) — u(y)| +
|lo(x) — o(y)| < C|x—Yy]| is satisfied for some constant€0. Then there
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exists a strong solution to the stochastic differentialan (6) up to an
explosion time and this solution is pathwise unique.

The solutions are defined up to an explosion time, and we cply apg.
Feller’s test for explosions (see e.g. Theorem 5.5.29 iratkas and Shreve
1988) to determine whether a solution to (6) hits either eftibundaries af”
in finite time with a positive probability.

Example 3.22. e Geometric Brownian motion.Choosepu(x) = ux and
o(x) = oxfor some constantg, o > 0. This clearly satisfies the condi-
tions of Theorem 3.21(B) and thus there exists a pathwisguenistrong
solutionX; to the equatiom X = pXdt+ oX.dW.

e No strong solutionClearly a strong solution is always also a weak solu-
tion, but the converse does not hold: Tgke) = 0 ando(x) = sgn(x).
Then there exists a weak solution, but not a strong one, seek-
ample 5.3.2 in @ksendal 2007. For counterexamples withirnoous
0:R— R,y with0< d < o(x) <K, see Barlow 1982.

We can now conclude that Theorem 3.21(A) together with tlayais of
killed diffusions at Section 3.2 justifies Theorem 3.3, whiharacterises a
diffusion through the infinitesimal parameters 1, andc. To make sure that
the weak solution is actually a diffusion it is enough to petihat it is continu-
ous (e.g. Theorem 3.2.5 in @ksendal 2007) and a strong Mamianess (e.g.
Theorem V.21.1. in Rogers and Williams 2000b). Notice thaklheorem 3.3
we required thatt ando are continuous, rather than just measurable, in order
to make the basic characteristics of the diffusion abslylaientinuous.

Now we can interpret a linear diffusion also as a solution gicchastic
differential equation. This enables us to combine the waktheory of linear
diffusions with the theory of stochastic differential etjaas. As a result, we
get a large tool kit for analysing stochastic problems. Ote® most famous
results in stochastic calculus is the following'# formula (e.g. Theorem 4.1.2
in @ksendal 2007), which can be useful, for example, whentibeto verify
that a guessed stopping rule is indeed the optimal one fopimal stopping
problem.

Theorem 3.23.Let X be a (weak) solution t(6), and let dt,x) : [0,0) x . —
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R be C+2-function. Then ¢, %) satisfies the stochastic differential equation

10%g

dgitX) = 20t X)dt+ 2t x)aX + 59 2

2 (t.X)02(X, )l

Another important issue is the fact that a stochastic iefo (Xs)dW,
when it exists, is a local martingale (e.g. Theorem IV.30\7/Riogers and
Williams 2000b), and consequently every solution to a sastih differential
equation of the type (6) is a semi-martingale. Moreove,if fé JZ(XS)ds} <
o for all t > 0, then the integralj o(Xs)dW is in fact a martingale (Corollary
3.2.6 in Pksendal 2007).

We conclude the section with an example that shows thereiffusidns,
in the sense of Definition 3.1, which are ndi Hiffusions.

Example 3.24.A diffusion that is not an & diffusion. Let W be a one-
dimensional Brownian motion and defide:= \/W ThenX; is a diffusion

in the sense of Definition 3.1, sing®4| is a diffusion and — /x is a contin-
uous bijection oiR .. However, it is proven in Yor 1978 (see also Theorem 71
in Protter 2004 and I1.5 in Borodin and Salminen 2002) thatike every 16
diffusion, X; is not a semi-martingale.
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4 OPTIMAL STOPPING

From now on, we assume théfs the non-terminating diffusion process on the
interval .# C R given by Theorem 3.3. In other words, we assumedpgt= 0

for all x € .# and that the infinitesimal parametqts . — R, 0: .4 — R
are continuous and that for ale .# there exist€ > 0 such that the conditions

a(x) > 0and[**f ”'“())|ds< « hold.

4.1 What does "optimal stopping” mean?

Since the path of a stochastic process is different at edssgreation, we need
to clarify what we actually mean by "optimal stopping”. U#lyaas in this
thesis, it means maximising the expectation of a given gay@i all stopping
times. To be more specific, lgf: .# — R be a known payoff. Then we
understand an "optimal stopping problem” as the maxinosatif the expected
net present value

V(x) = SgpIEx{e*”g(Xr)}, (8)

where the supremum is taken over all stopping times. It istlwaobticing
that, unless otherwise stated, we only consider problertsami infinite time
horizon (i.e. there is no upper boundary for stopping times)

There are also other stopping criteria such as the varianieien (see
e.g. Pedersen 2011), where we choos® that the variance Vag(X;)) gets
maximised or minimised, sometimes with respect to othesstaints; e.g.
minimising the variance of a portfolio, so that it expecyegilves at least some
certain profit. More generally we could try to maximidé€Ey {g(X;)}), where
U(x) is any non-linear function. Although variance criterioningportant in
some applications, for instance in portfolio optimisatipmoblems (see e.g.
Zhou and Li 2000), these kinds of criteria are not studiedlpess much as
"normal” stopping criterion (8). One aspect that makes ehegriance crite-
rion problems more complicated is the fact that the nonlinean from the
variance prevents one from using dynamic programming aadthooth fit
principle. As a result, the value function cannot be charésxtd directly using
the greatly developed optimal stopping machinery and eaahlgm needs to
be handled separately.
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The payoff can also include a probability function. For exéanwe may
want to maximise the functioftx(f(X;) > b) — Ex{e ""g(X;)}, whereb is
some exogenously determined level, and the expectatiosuresathe cost of
waiting more. However, since probabilities can be writteneapectations,
these problems can often be re-formulated as (8), see eapt€it1 in Peskir
and Shiryaev 2006 and Theorem 7 in Pedersen 2005.

From now on by "optimal stopping problem” we refer to a prablef the
type (8) stated for a non-terminating linear diffusion. $&&inds of problems
are the simplest stochastic control problems, where thealluwed control is
a straightforward and crude "stop now” -control. Howeverthee same time
these control problems are very important, as they have miauyical and the-
oretical applications. For example analysing optimal é&xitn a market (see
e.g. Alvarez 1998) and determining an optimal investmelet (see Dixit and
Pindyck 1994) can be stated as optimal stopping problemker@xamples
include deriving sharp inequalities arising in stochaatialysis, the quickest
detection of a changed drift, option pricing and optimaldicgon problems
(see Chapters V, VI, VII, and VIII in Peskir and Shiryaev 208&spectively,
and the references therein).

For a brief introduction to the optimal stopping theory sed&zyk 1979,
and for a more comprehensive treatment consult Shiryae8 48d Peskir and
Shiryaev 2006.

4.2 Solving optimal stopping problems
4.2.1 A procedure to reach the solution

A corner stone of the optimal stopping theory for diffusiomgesses is the
following verification result, which dates back to DynkinG® It unambigu-
ously characterises the value and the optimal stoppingdaiitiee problem (8)
(see e.g. Theorem 3.1 in Shiryaev 1978, or Theorem 2.7 tegeilth Re-
mark 2.10 in Peskir and Shiryaev 2006). In fact, this holdsafoeven larger
class of Markov processes than just linear diffusions, eeifollowing form is
adequate for us.

Theorem 4.1 (Verification theorem for an optimal stopping problem)
Let gx) : .# — R be an upper semicontinuous function such that
Ex{supso{e "g(X)}} <eforallx € .7.
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(A) The solution \{x) to (8) is the smallest r-excessive majorant of the func-
tion g(x).

(B) Define the continuation region & {x € .# | g(x) <V(x)}, and lett* =
inf{t > 0| X ¢ C} be the first exit time from C. Iy (T* < o) = 1 for all
x € ., thent* is the optimal stopping time for the problgB).

Besides being-excessive, and consequentiguperharmonic everywhere,
one can show that the value functiwiix) is r-harmonic on the continuation
regionC (see e.g. Lemma 4.2 in Salminen 1985). Theorem 4.1 also stsgyge
that the state spac¢ has a partition{C, S}, whereC is the continuation re-
gion andS= .7 \ C is the stopping region (the optimal strategy is to allow the
diffusion to evolve as long as it stays@ and it is stopped immediately when
it entersS, hence the names).

Also, this theorem allows us to utilise the theory edxcessive functions in
a potential theoretic way, and the Martin integral représt@m theory within
it, to analyse the problem. We use this approach in this shesie Salmi-
nen 1984, 1985 for an excellent exposition on Martin bouypttagory for lin-
ear diffusions, its relation with optimal stopping, and mwhthe representing
measure of am-excessive function can be characterised explicitly byimng|l
on fundamental solutions and the scale function.

There are many other ways to approach an optimal stoppirtggrroand
some of these are surveyd in Subsection 4.2.3 below. Manlgadst includ-
ing the one used in this thesis, could be categorized as $gaed verify”
-methods, the previous theorem being of great help in thiécagion phase.
In these methods, one typically first constructs (by ad hathous) some nec-
essary first order optimality conditions. In the second ,stee searches for a
solution to these optimality conditions, after which theioyality of the pro-
posed solution is validated by applying a verification tke@or In this thesis,
we develop the necessary conditions and search for a sobotibem with the
help of fundamental solutions and the theory of linear difins. We adopt the
namefluctuation theory approacto this method, as it was used in a slightly
different situation in Kyprianou and Pistorius 2003. Themal procedure is
as follows.

Step 1 Guess the nature of the stopping rule (e.g. one- ositest stopping
boundary).
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Step 2 Formulate the value with respect to the guessed sippple using
the Laplace transform of the hitting time(s). Usually théueahas as
many free parameters as there are stopping boundaries gudssed
stopping rule.

Step 3 Derive the necessary first-order optimality condgifor the value with
respect to the guessed stopping rule. This is often thealrsigp, and
one often needs additional assumptions in order to provexiséence
and/or uniqueness of these optimality conditions.

Step 4 Verify that the guessed stopping rule, satisfyingningessary condi
tions from Step 3, indeed is the optimal solution (e.g. udihgorem
4.1).

Using these steps, we have a constructive method to reaatpthmeal exer-
cise strategy without heavy differentiability preconalits. Interestingly, the
celebratedprinciple of smooth fi{i.e. that the value function is continuously
differentiable across the stopping boundary, cf. Subseeti2.3) is here often
a consequence of optimality. We can also use the above medtiproce-
dure in cases where the payoff is not everywhere differblgiand, therefore,
where the principle of smooth fit is not always satisfied. Mwesx, we will see
that this procedure can be applied to other stochastic @gmmoblems as well.

Despite the fact that optimal stopping problems for cordimi time
stochastic processes are well studied, it is often harddaefiplicit solutions to
these problems since the set of admissible strategiesyisarge and might in-
volve rather exotic strategies. However, using the proeethiroduced above
we can often find necessary conditions under which a simpléebatrategy
is the optimal one. Furthermore, this simpler barrier strat’stop as soon as
X; crosses barrier(s) € .#” often enables us to write the value function in a
(quasi)-explicit form. This, in turn, is very helpful whefor example, study-
ing comparative static properties of the value and the agitstmategy (see e.g.
Article 1l and 111). For a discussion on the benefits of barse&ategies, see also
Section 3.5 in Rakkolainen 2009

4.2.2 A concrete example

Let us consider a situation where an investor has the oppitytto invest a
sunk cosk > 0 at any time to a project which then gives a return described by
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the diffusionX; onR .. At any time the investor has the following two options:
Either she invests now or postpones the decision to investhe future. More
specifically, the expected present value of this investmestilem is

N(xt) =E{e " (X —k T},

where(x— k)™ = max{x—k, 0}. A rational investor naturally wants to choose
the best time to make the investment and thus wants to findadppiag time
T* such that

W*(x) :=T(x, T") = supl(x,1). 9)

This problem is known as the pricing of an American call optiath infinite
time horizon, and for the case of geometric Brownian motievass first treated
by Samuelson 1965 and rigorously solved by McKean 1965 (ftiseussion
on American options see Section 25 of Peskir and Shiryae® 200 refer-
ences therein). Here we solve the problem utilising the gmtace introduced
in the previous subsection.

Step 1 We judge that it will not be worthwhile to invest if thalwe of the
underlying diffusion is small, while for sufficiently largealues we
shall exercise the investment opportunity. Hence we guessthe
optimal stopping rule should be a one-sided threshold stigg’above
a certain threshold” and we consider stopping timgs- inf{t > 0 |
Xt >y} wherey > k.

Step 2 Fixy > k. Then

N(x,Ty) =Ex{e ™ (Xg, —k)*}
X—K, X>y (stop immediately
Ex{e "} (y—Kk), X<y (wait until X hitsy)
x—K, X>y
THYm,  x<y,
where in the last equality we used the Laplace transform efhik

ting time from Proposition 3.13. We see tHlatx, 1y) hasy as a free
parameter.



Step 3 Fow* to be the optimal stopping boundary, it must maxirqﬁé and

hence satisfy the first order necessary condi BT = 0. Af-
y=y*—
ter the differentiation, the necessary condition reads as
Yy —'y)y -k =0 (10)

If this equation has a unique solution, it must maximise (@i class
of all one-sided threshold rules. Here we need additioralragtions
to guarantee the unique existence of the solution td®(10)

Step 4 Firstlyry- is an admissible stopping strategy and B, Ty« ) < W*(Xx).
Secondly, to get the opposite inequality, it is enough towslioat
M(x, Ty<) is anr-excessive majorant faix — k)™ and then utilise the
verification theorem 4.1.

Above we also see the link to the Martin boundary theory; Hpeesenta-
tive measureV" of ther-excessive value functio* is given by (see Propo-
sition 3.3 in Salminen 1985)

W (X)P'(x)  Px)W*'(x)
{(O X)} S(X) - S(X)
. WY (x)p(x)  ¢"(xW*(X)
and VW {(x,00)} = O

Furthermore, we can write the functional in (10) as

Vo Yx-K
$09 (&0~ ey )

Now, the function in parentheses is in fact the representimgasure
vW'{(0,x)} for x € [y*,») and we see that it does not charge the optimal con-
tinuation region(0,y*) (cf. Section 4 in Salminen 1985).

To see this procedure in use in more complicated situatgmesthe articles
of this thesis as well as e.g. Alvarez 2003 (a one-sided sigpple), Lempa
2010 (a two-sided stopping rule), Alvarez and Lempa 2008ir(gulse and
a singular control problem) and Alvarez and Rakkolainen®@0spectrally
negative Levy case).

8A sufficient condition is, for example, that there exists 0 such that.eZ —r)(x—k) % 0
for all x§ X (cf. Theorem 6 in Alvarez 2003).
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4.2.3 Other approaches to finding the solution

We only use the above mentioned potential theoretical nadethahis the-
sis, but we shall next briefly discuss some other approacheptimal stop-
ping problems. Figure 2 describes the relationships betvlee different ap-
proaches.

The problem

Markovian approach

‘ Semi-infinite linear programming ‘
Potential theory

‘ Martin representation theory |

Martingale approach

-
Snell's envelope

‘ Beibel-Lerche approach ‘ ‘ Bellman's optimality principle ‘

\ Functional concavity
| Variational inequalities |
| | :
-— Fluctuation theory approach

IFree boundary approach “ (used in this thesis)

Iterative procedure
I

Figure 2:The presented approaches.

Functional concavity

Dayanik and Karatzas 2003 (further developed into a moremgontext in
Dayanik 2008) presented another potential theoretic gmbrbased on works
by Dynkin 1965 and Dynkin and Yushkevich 1969. In thusctional concav-
ity technique it is shown that essentially, every optimal siogproblem can
be transformed into an undiscounted stopping problem faoa/Bian motion.
Moreover, the value function in the Brownian motion caselmanharacterised
as the smallest non-negative concave majorant of the ftnaned) payoff
function. The major benefit in this approach is that one dadsneed any
prior guess about the optimal stopping region, insteadrdnestormed prob-
lem is essentially solved by inspection. Functional coitgas also closely
related to excessivity, which can be seen after realisiiag) e set of non-
negative concave functions coincides with the set of exeeésnctions under
Brownian motion.
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The free boundary approach

A very effective and widely used technique to solve optini@bping problems
is thefree boundary approaghwhich highlights the partitioC, S} of the state

space into continuation and stopping regions. The free daynapproach
works well in linear as well as in multidimensional cases anéspecially

powerful with regards to concrete examples. Here, one firssges the form of
the partition and then transforms the original problem i(®) ia free boundary
problem (a Dirichlet problem):

(& —1)V(x) =0, xeC
X), xedC
X), xeC,

where both the valu€(x) and the continuation regidb are unknown. Notice
that in this Dirichlet problem in order to determine the muC, it is enough
to determine its boundagC (hence the terminology). However, in order to
determine the boundary, one needs to apply non-trivial dapnconditions,
and the so callegrinciple of smooth fits suitable in most cases. This principle
says that the first derivatives of the value function and thyff function agree
at the optimal stopping bounda#, i.e. one can add a boundary condition

V/(x) =d'(x), xeadC

to the Dirichlet problem above. Lastly, after solving thedboundary prob-
lem, one needs to verify the correctness of the initial gussgy a verification
theorem. For a good introduction to the subject and some pelemmnsee Ped-
ersen 2005. For a thorough discussion consult Peskir angle®hi 2006. We
also further illustrate the free boundary approach at tlieaéthis subsection.
Thevariational inequalitiesapproach is closely related to the free bound-

ary approach. Here one gathers a collection of (in)eqgaalithat simultane-
ously serve as a free boundary problem and sufficient camdifor optimality,

see e.g. Theorem 10.4.1 in @ksendal 2007. If one can find ddmrsatisfying

these variational inequalities, it is inevitably the urégolution. However, the
variational inequalities require strong differential goaditions, and in many
cases the value function is not smooth enough for applyiegriequalities.
For these cases, there is fortunately a technique basedecsoticalledvis-
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cosity solutiongfirst introduced in Crandall and Lions 1983. Basically thes
solutions are generalised solutions to a partial diffeatrquation; see e.g.
@ksendal and Reikvam 1998 for their use in optimal stoppiofglems.

Compared to the free boundary approach, the method of iarétin-
equalities is typically more difficult to use with concreteaeples, where we
would like to find explicit solutions. However, it is poweHior finding suffi-
cient conditions for the existence of a solution.

One very recent general method using the variational inéguach-
niqgue was developed by Lamberton and Zervos 2013. They dlieitieavy
differentiability assumptions by showing that a functibn: .# — R is r-
excessive if and only if it is the difference of two convex ¢tinons and
—(%UZF” + UF’ —rF) is a positive measure. Using this characterisation of
r-excessivity, rather than the direct characterisatioretb@s the infinitesimal
generator, they find necessary and sufficient conditionghiexistence of a
value function relying on the arguments of variational in&lifies. Johnson
2012 demonstrates how this general theory can be appliedt&noexplicit
solutions to optimal stopping problems.

Semi-infinite linear programming approach

Another way to find the smallestexcessive majorant is to transform the initial
optimal stopping problem into aemi-infinite linear programwhich in the
linear diffusion case is taken over the coefficients of theimal r-harmonic
functions. In short, in the linear diffusion case one fixesitiitial statexg € .#
and the valu&/ (xo) is a solution to the problem

min - c1y(xo) +C26 (xo)
st. cP(x)+c29(x) >g(x) forallxe.s

C1,C2 > 0.

See Helmes and Stockbridge 2010 for an analytical appraatiChristensen
2012 for a numerical treatment.

A function F : .# — R is a difference of two convex function if and only if its Idfand
side derivativeF’ exists and its second distributional derivative is a mems8ee Bacak and
Borwein 2011 for a survey on difference of two convex funesio
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General methods

Being a dynamic programming problem, an optimal stoppimdplam can also
be approached usirBellman’s optimality principlewhich in this case can be
written asHamilton-Jacobi-Bellman variational inequality

max{(«/ —1)\V(x),g(x) —~V(x)} =0 forallxe .7. (11)

Here, the first component represents the continuation optibile the second
component represents the fact that the process can alwastefyged imme-
diately. This is a very general way to characterise the valaetion, and in
fact we see that the free boundary problem above can be derom this
by applying the partition of the state space into contiraratind stopping re-
gions. For more information on the Hamilton-Jacobi-Belniaequality and
its relation to stopping problems, see e.g. Dixit and Pikdy@94.

The constructive but non-expliciterative proceduremethod, presented
e.g. in Shiryaev 1978, is a general approach that requiresfisoentiability
whatsoever. In this approach, the time is discretised aftéch the easier
discrete-time results can be applied and so the value fumdt{x) can be
characterised as a limiting value

V(x) = lim lim Q\g(x),

n—o0 N—o00

where Qng(X): = max{g(x),EX {e‘r?ng(len)}}

and QN is the Nth power ofQ,. Although this works in very general struc-
tures, unfortunately the iteration typically convergespgowly, and thus this
approach usually provides only existence results.

A recent approach by Christensen et al. 2012 is also worthtioméng
here. There the value function and the optimal stoppingstiulel are found in
a very general setting utilising an expectation of a maxinpuocess killed at
an exponential time.

All the approaches we have considered so far apply analyicds from
the theory of Markov processes and can thus be classifiddagisovian ap-
proaches In these approaches the stochastic problem is often rddioca
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pure analytical problem (e.g. solving Dirichlet problemithout any refer-

ence to any probabilistic construction. So, peculiarlgthlue and the optimal
stopping rule are found as a solution to a deterministic lerakalthough the
problem itself was initially stochastic in nature.

Martingale methods

Besides the Markovian approach, the other main approadieimartingale
approach We notice that am-superharmonic function with respect to a dif-
fusion X additionally constitutes a supermartingale* f (X;), and hence we
could use probabilistic tools provided by the martingaksotly. This approach
was initiated by Snell 1952, and it relies on the fact thatualkeie function
constitutes the minimal supermartingale dominating thefidunction.

If we define the payoff process by = e "g(X), then the problem can be
solved viaSnell's envelope

S :=esssufE{Y; | %#}.
t<t

It can be shown th&k coincides with the value process of the optimal stopping
problem (8) (see Section 2.1 in Peskir and Shiryaev 2006).

The Beibel-Lerche method (see Beibel and Lerche 1997; leewntd
Urusov 2007), which can be viewed as optimal stopping viasmeatrans-
formation, is a more recent method based on the martingalerth In this
method, we are interested in finding a functlg) and a positive martingale
M; such thatMg = 1 and

dQ

Ey {e"g(X)} =EZ{h(X)}, where =M

If one can show thalt(x) attains a unigue maximum value at some paint
thenEL {e"Tg(X;)} < h(x*) for all stopping timeg. The equality is attained
with 7= = inf{t > 0| X; = X"}, which consequently is the optimal stopping
rule. This method is especially powerful at the continuatiegion of a consid-
ered problem. Unfortunately, it does not always work on thging region.

A similar method, adding a touch from the potential theorgs fbeen
utilised recently in Christensen and Irle 2011, where thisp g@roved an
interesting characterisation of the stopping region: afwiis in the stop-
ping region if and only if there exists arharmonic mappind such that
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x = argmax{ 3 }.

Help from time-, space-, or measure changes

There are cases where the considered problem is not solysibig any of the
methods listed above. In these cases, one can try to tramsfar difficult
problem into an easier one by making a time-, space-, or meahange.
These methods are discussed in Sections 10-12 in Peskirényaey 2006,
see also Barndorff-Nielsen and Shiryaev 2010.

4.2.4 Different methods in practice

In a way, categorizing methods and building fences betwleem ts artificial,
since at the heart they all tell the same story from a sligthfferent perspec-
tive.

To give a few explicit examples: Let us consider the Beibetehe method
applied to our concrete problem (9) of pricing an Americal ggtion. We
can now choos#l = e " (%) as the positive martingale so thak) = (x—
k)*/W(x) is the sought function. It follows that, for < x*, we can show
the optimal stopping threshold to &= argmaxXx—k/@(x)}, which is the
same one we got from Step 3 at Subsection 4.2.2, but this hiengistification
comes from measure theoretical techniques and martingafgegies rather
than from analytic techniques.

For another example, let us solve the same problem (9) ubiedréee
boundary approach. Let us again guess that the stoppingsrolethe type
Ty =inf{t > 0| X >y}. The free boundary problem for the unknown value
functionV and the unknown optimal threshold poyitcan now be written as
(cf. Section 25.1 in Peskir and Shiryaev 2006)

(&7 —1)V(x) =0, X >y (12a)
V==K x=y; (12b)
V/(x) =1, x=Yy" (principle of smooth fit);  (12c)
V(x) > (x—k), X >y (12d)
V(X) = (x—Kk)T, 0O<x<Vy" (12e)

It follows from (12a) thatV(x) = ci(X) + c2¢(X), and by (12e) and (12b)
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we get thatc, = 0 andc; = ¢1(y) = 3% The optimal thresholg* is found

by applying the principle of smooth fit (12c)y* satisfiesw/(y*)% =1,
which is the same condition as (10) at Step 3 in our fluctudtieory approach
in Subsection 4.2.2. Finally, we must ensure that this gaesandidate for
the value function and the optimal stopping time are indesdect using an
appropriate verification theorem.

After solving the concrete problem (9) by applying thredetént meth-
ods, we see that irrespective of the chosen method the(satidk) /@ (x) and
its maximum point play central roles. In other words, altjlowach method
bases its justification on different routes and theoriethaexplicit level they
behave more or less in a similar way and lead to the analysieeafame func-
tionals. For a deeper analysis considering the relatiohsdsn martingale
and Markovian approaches (Beibel-Lerche vs. free boundape Gapeev
and Lerche 2011.

4.3 Finite horizon
4.3.1 Fixed time horizon

Introducing a fixed, finite time horizon makes the optimalpging problem
(8) inherently two-dimensional, as one needs to also retiore so that the
studied process i&, X;). Moreover, the infinitesimal generator of the process
(t,X) has an extra term@/dt making the differential operator not only two-
dimensional but also analytically more difficult to handleor example, by
adding a fixed finite time horizon (or maturityf) < o to the problem (9) of
stopping optimally an American call option we end up with fineblem

V(t,x) = sup Eqy{e (Xt -k}

0<t<T-t

= SlTJpE(t,x) {7 Xyt =K Traty }

whereX; = x underP ) andT is a stopping time.

In these kinds of problems the val\ét, x) is typically two-dimensional,
Moreover, the optimal stopping boundary is often a movingrataryy*(t)
which depends on time, instead of being a fixed exerciseliblésas is so
often the case with an infinite time horizon. Unfortunatéihe solutions can
rarely be attained explicitly, and thus with concrete peolrd one must search
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for the solutions numerically. All in all, introducing a fteitime horizon often
means a considerable increase in the complexity of a proldfeman overview
of a fixed finite time horizon, see Peskir and Shiryaev 2006.

4.3.2 Stochastic time horizon

Surprisingly, the stochastic time horizon case is not asptexnas the fixed
finite time horizon problems, at least when the horizon isoeemtially dis-
tributed. For the results of this subsection, see Chakratzerd Guo 2007,
where the effect of random time horizon on optimal stoppiag heen studied
extensively.

LetT ~ Exp(A), A > 0, be an exponentially distributed time horizon of the
problem, independent of the diffusiof§. Furthermore, denote by the set
of all .#-stopping times and, with a slight abuse of notationfet= .7 U {T}
(rigorouslyﬁ should be defined through the enlarged filtration).

We assume that the decision maker is always aware of theepgistof
the terminating event, and we consider two problems: In tisegroblem the
terminal timeT of the terminating event is not observable, and cannot b& use
as a stopping time. In the second problem the terminal Tinsbservable and
decision maker can use it as a stopping time. These problemseapectively,

Vi(X) = supEx{e*”g(XT)]l{KT}}
1€

and V2(X) = supEX{e’”g(XT)]l{TST}},
€T
and they can be simplified into equivalent infinite time honizproblems (cf.
Theorem 1 and 3 in Chakrabarty and Guo 2007)

Vi(x) = suplx {eM1g(x;) |
€7

and Vi(X) = supIEx{/\ /Te(r+)\)sg+(xs)ds+ 9(f+A)Tg(Xr)}-
€T 0

Thanks to this equivalence between random and infinite tionedns, first

noticed in a portfolio optimization setting by Cass and Y4867 and Merton

1971, it is easier to analyse random time horizon probleran fixed finite

time horizon problems. Actually, this equivalence can dsaused for pric-

ing options in the fixed finite time horizon case (originatingCarr 1998 and
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further extended in e.g. Kyprianou and Pistorius 2003).hlsa €anadisation
method one first chooses a random time horizon whose explecigith equals
the fixed maturity under investigation, secondly calcidaealue for this new
problem and finally lets the variance of the random horizopragch zero
while maintaining the mean unchanged.

4.4 Optimal stopping of maximum processes

Let § be the supremum processXfand let us consider the problem
V(x,) = supE s {€ ' f(Xr,S) }, (13)
T

where the exercise payoff(x,s) is assumed to be sufficiently smooth, de-
creasing inx, and increasing irs. Two of the most well-known examples of
the problem (13) are the Russian option for whidlx, s) = s (see e.g. Shepp
and Shiryaev 1993; Lerche and Urusov 2007) and the Americakltack
option with a floating strike for which (x,s) = s— x (see e.g. Conze and
Viswanathan 1991). While both of these are path-depengeinrs, the latter
can also be interpreted as a measure of the risk for a stoek)geady et al.
2000; Magdon-Ismail et al. 2004).

We see at once that, as a two-dimensional problem, this igigely a
more complex problem than the original (8). However, prob(@3) is partly
transformed into a linear problem after recalling that Estwthe hitting times
of X; to its supremum, the two-dimensional proc€ss S) behaves as a one-
dimensional procesgX,s) for somes. This method of conditioning a two-
dimensional problem into a linear one is the main obsermatieded for solv-
ing (13).

Optimal stopping problems of the type (13) are typicallyvedl by free
boundary approach (see Peskir 1998 or Section 13 in PestiiShiryaev
2006) and the Beibel-Lerche method is also applicable i sfiuation (see
Lerche and Urusov 2007). In Article IV of this thesis, we wiltroduce an-
other approach, which is based on the discretisation of #gsémum process.
For a more detailed discussion cocerning the free boundgamoach and the
discretisation method, see Article IV and also Subsectign(Fummary of
Article IV).

Since the minimum process is defined similarly, we can nlyusalve



problems involving the minimum process in the same way, &ed problems
where both the maximum and the minimum processes are pressnPeskir
2010).
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5 DYNKIN GAMES

5.1 Introduction

A Dynkin game, originating from Dynkin 1969, is a stochag#éro-sum game
involving two players who both try to stop the same undedyimocess op-
timally with respect to their own payoff functions. An addital challenge
to this stopping problem comes from the fact that the procaeasbe stopped
only once and hence the players have to take into accountréiiegies of their
opponent.

Let X be a linear diffusion, adapted to the filtratich, and denote by
7 the set of all.#-stopping times. Furthermore, lgt, fori = 1,2,3, be
continuous mappings satisfying the inequaliie&) < ga2(x) < g3(X).

Consider two players, the sup-player and the inf-playen tath choose a
stopping rule, say andy, respectively. The game terminates as soon as either
one of the players decide to stop, that ig aty and at that time the inf-player
pays to the sup-player the amount

91(X0)Lirayy +92(Xy) Lirsyy +093(Xy) Lir—yy-

The expected present value of this Dynkin game is

M(x1,y) = Ex {e—r(r/\y) (gl(xr)]l{r<y} + gZ(XV)]l{Dy} + 93(XV)1{r:Y}) } )

and understandably the sup-player wants to maximise itenthi¢ inf-player
tries to minimise it. The lower- and upper- valdgandV of this Dynkin game
are defined through

V(x) := sup inf M(x;7,y) <V(x) := inf supM(x1,y). (14)
te7 Ve veT reg

We say that the game has a vaM&), if V(x) =V (x) =:V(x), i.e. it has a
Stackelberg equilibrium. Furthermore, a pair of stoppinges (7, y*) forms
a saddle-point solution, or a Nash solution, for the gamihefcondition

O T,y") <NXT5Yy) <O T, Y) (15)

is satisfied for all stopping timess y (concepts of Stackelberg and Nash equi-
libriums are explained in detail in almost any game theoxybteok, e.g. Fu-
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denberg and Tirole 1991). It is worth noticing that the exige of a Nash
equilibrium implies the existence of the Stackelberg elguaim but the con-
verse does not hold in general. However, from a study addge#ss problem

in a general Markovian setting (Ek8tn and Peskir 2008) one gets the follow-
ing result

Theorem 5.1.Let X% be a strong Markov process. If & right-continuous and
left-continuous over stopping times, then both Nash anckBliaerg equilibri-
ums exist and they are equivalent.

One interpretation for the game is the following. Supposé the issuer
(inf-player in this case) has sold an American option withagqif g, to the
the holder (sup-player), but has left herself a right to ehttee option with an
extra costy, > g1. This variant, called an Israeli option, was introduced by
Kifer 2000 and further explicit solutions for some optionsre calculated in
Kyprianou 2004.

Another way to interpret a Dynkin game is to think the supypfeas a risk
averse decision-maker in an optimal stopping problem wistoahastic time
horizon. Being a risk averse, she assumes that while slettricmaximise
her payoff, the market plays against her by choosing the hiorezon which
minimises her payoff.

5.2 Solution methods

A Dynkin game can be seen as a generalised stopping prdSleks. such,
although a Dynkin game includes game theoretical elemsuat$ as Nash and
Stackelberg equilibriums, the solution can nonethelessttaened via optimal
stopping methods.

In the ordinary optimal stopping problem (8) the verificattbeorem char-
acterised the value as the smallestuperharmonic majorant for the payoff
function (see Theorem 4.1). We have a similar kind of vetiiicatheorem for
a Dynkin game, but now the value is characterised as a mixeo$timallest-
superharmonic majorant and the largestibharmonic minorant. The theorem
holds for a class of Markov processes larger than just ddfiss(see Theorem
2.1 in Peskir 2008), but the following form is adequate for lmear diffusion
case.

101 we formally setg, = o, then the inf-player never stops and (14) reduces to theargli
optimal stopping problem (8).
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Theorem 5.2 (Verification theorem for a Dynkin gamel.et X and g, for

i =1,2,3be asin Section 5.1. Moreover, \étbe the smallest r-superharmonic
function lying between;gand @ and letV be the largest r-subharmonic func-
tion lying between gand @. Then

(A) The Nash equilibriunil5)holds if and only itV =V =: V.

(B) If item(A) holds, then the pair
T =inf{t >0|V(X)=aq((X)} and y =inf{t>0]|V(X)=g2(X)}

forms the saddle point solution and V is the value of the game.

According to Theorem 5.1, the Nash equilibrium exists aneqsivalent
to the value of the game in the linear diffusion case. Theesidheorem 5.2
can be used as a verification theorem to characterise the.valu

To find a candidate for the saddle point solution to a Dynkimgawe shall
utilise a fluctuation theory approach similar to the one ibsaction 4.2.1 (for
this approach in Dynkin game setting see e.g. Alvarez 2008) 2nd Article

).

Step 1 Consider stopping policies which can be charactedsehe first exit
time from an open subinterval of the state space.

Step 2 Calculate, with the help of the Laplace transform eftthting times,
the value of the game for this policy. Usually the value hat bound-
ary points of the subinterval as free parameters.

Step 3 Derive the first-order necessary conditions for tddlsgpoint equilib-
rium value in the considered class of stopping policies.

Step 4 Verify that the stopping policy which satisfies the farsler necessary
conditions from Step 3 indeed constitutes the saddle polatien (e.g.
using the verification theorem 5.2(A) above).

The fluctuation theory approach chosen here is by no meanstheay to
approach Dynkin games. Friedman 1973 studied stochastieszen stopping
games and their values using variational inequalities.sBassan and Fried-
man 1977 investigated stochastic stopping games in vergrgesetting both
in nonzero-sum as well as in zero-sum case using quasiteadh inequali-
ties. The functional concavity together witkexcessivity have also been used
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to produce the optimal solution, e.g. in EKstr 2006 and Eksfrm and Vil-
leneuve 2006. These methods, also familiar from the optstegdping scene,
can be classified as direct techniques. In contrast to thgs®aches, with
Dynkin games it is also possible to use an indirect approduihwis not as
common in ordinary optimal stopping problems. In the inclirapproaches
the Dynkin game is shown to be equivalent to another probledtlae latter
one is then solved. This approach has been utilised for eleammBoetius
2005, where the author characterises the value of the spdofieequilibrium
as the derivative of the value function of a singular conpralblent (for this
connection, see also Subsection 6.5).

In Guo and Tomecek 2008a,b the singular control problemsaived by showing one-to-
one correspondence between a singular control and a smgtphdblem. Hence, in principle,
one could leap twice and also use an associated switchifdgpnao solve a Dynkin game.
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6 SINGULAR CONTROL PROBLEMS

6.1 Introducing the problem

In the previous chapter we saw that an optimal stopping prob$ a special
case of a Dynkin game. We shall learn that it can also be sees@scial case
of an optimal control problem, where the only allowed cohigsdahe primitive
control "take the money and run”. To be able to study more eefiprob-
lems like controlling a path of a space ship (see e.g. Jack&)2@dividend
payments problem (Asmussen and Taksar 1997) or rationegstimg (Lande
et al. 1995), we need to include more refined controls.

Assume now that the state spac®iswith natural boundaries and that the
diffusion without controls behaves as a non-terminatidgliffusion

dX = H(X)dt+ o(X)dW,

whereu ando satisfy the conditions of Theorem 3.3. We assume that the con
troller can, at any time, control the course of the process downwards and
upwards. An admissible control policy is defined as a pairoépsses¢D;, U;)
such that both processes are non-negative, non-decreagihgcontinuous,
and.Z*-adapted. Consequently any admissible control has finitiextian.
For an admissible contrg@D;,U;), we define the associated controlled process
by

=X — Dt + Uk,

whereD; represents the cumulative downward control &ladhe cumulative
upward control. For example, in a timber harvesting prohlBynrepresents
harvesting whildJ; can be interpreted as replanting.

Now the problem under investigation is

4
V(x) = supEx{/ e *f(Z d3+/ e '°g1(Zs)dDs— / e‘rsgz(ZS)dUs},
0

(DV)
(16)

where( is the first exit time from the state spade; R, — R is the revenue
function,g1(x) is the gain from downward control agg(x) > g1(X) is the cost
of upward control and the supremum is taken over all admiesitntrols.
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6.2 On admissible controls

An arbitrary admissible contrdl; can be written a€; = Cf + <<t ACs,
whereCf is continuous andCs = Cs— Cs_ is the size of the jump at time In
this thesis, we are only interested in so calsagular or reflecting controls

In these controls the jump part is absent, with the excemif@possible jump

at time zero, and the control measwa@ is singular with respect to Lebesgue
measuredt as a function of tim&, whence the name. The easiest way to
create a singular control is to divide the state space intos®parate regions,
anaction region Aand aninaction region N= .# \ A, and apply the following
rule. FromN, the exit of the process is prevented by reflecting at the dan
JdN to an appropriate direction. Fro# the process is immediately moved
into the boundary/N. For an illustration, see Figure 3, and for a more detailed
introduction see e.g. Chapters 2, 5 and 6 in Harrison 198%atide II.

Figure 3: An illustration of a two-sided singular control policy at vk hereA =
(0,ZU[y,») andN = (z,y).

The so-calledmpulse controlswhere the continuous part is abolished,
have also been widely studied. Impulse control policieften described by
(possibly finite) sequences of the foftry, &) }, wherety prescribes the inter-
vention time (an admissible stopping time) afidhe corresponding impulse
(size of the jump). However, in cases where there are no fraedaction costs
present, such as problem (16), the optimal control raretyahiamp structure.

12A measureu is singular with respect to a measus if there exist two disjoint setd and
B whose union is the whole space such that, for every measusetft, ANE andBNE are
measurable anfi(ANE) = A(BNE) = 0. That is, the sets for which does not vanish are
the ones for whichu does, see p. 126 in Halmos 1950.
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It is worth pointing out that for an arbitrary stopping tinmehe stopping
policy "stop at timer” can be interpreted as a degenerate impulse control pol-
icy, where the sequenddty,éx)} has the paift,X;_) as its only element.
When obeying this impulse control policy one sends the stat@ble into
the cemetery state at the first intervention time. Hence weetlsat optimal
stopping problems are essentially special cases of (impatmtrol problems.

Interestingly, from the impulse control point of view, wendaeuristically
treat singular control as a limiting impulse control, whém timpulse ap-
proaches zero. Let us consider a downward impulse contrichwf activated
at the instance whekg hits a levely e R (i.e. x=inf{t > 1c_1 | Z =Vy})
and let the size of each downward impulse be § <y, so that the impulse
control is the sequencg 1y, &) }. As & — 0, we can heuristically see that the
impulse control tends to the singular control reflected atithrriery (i.e. the
action and inaction regions afe= (0,y) andN = [y, )).

6.3 Control problem types

The problem (16) is called singular control problenbecause the problem
setting allows the control to be singular (and often therogticontrol actually
turns out to be singular).

Let us assume for a moment that there are fixed transactids icogrob-
lem (16), i.e. we must pay a fixed cost every time a controliisaed. Due to
continuity, a singular control policy could easily lead mdimite costs and thus
such control is not a reasonable choice anymore. Consdguiensuch case
the controller should use fixed-sized controls only at @times. There-
fore, in these kind of problems an impulse control policy fig the optimal
one. Accordingly, the problems with fixed transaction caeséscalledmpulse
control problems Although impulse control problems can be approached in
the same way as singular control problems, they are usualhg whifficult to
handle as there are more free parameters; in a singulaotpoticy the only
free parameter is the intervention time, while in an impuisetrol policy one
needs to determine also the size of the intervention. Amested reader finds
more information on impulse control problems, in e.g. Berssan and Lions
1984, which is the seminal textbook on the subject. See digaréz 2004, Al-
varez and Lempa 2008, and a survey on impulse control afipisan finance
by Korn 1999.
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Besides singular, and impulse control problems, therasaigreat variety
of other stochastic control problems, e.g. ergodic conqgroblems (i.e. opti-
mizing a long period stationary behaviour), robust conproblems (optimiz-
ing a risk measure of a controlled process) and stochastjettag problems
(targeting a controlled process as close as possible to serd process at
a termination time). For literature on these problems, aliresg. Pham 2005
and references therein.

From now on we shall concentrate solely on singular controls

6.4 Solution methods for singular control problems

The underlying Markovian structure still enables us to gppipé familiar proce-
dure of fluctuation theory approach from the optimal stoggcene — guess,
apply diffusion tools and verify.

The verification theorem for control problems mainly relgsvariational
arguments and dts formula. However, depending on the problem type and
technical assumptions, its formulation might slightly wdrom problem to
problem. For our singular control problem it can be statethafollowing
way (cf. Theorem 4.4. in Article Il, see also Chapter 6 in ktmm 1985,
Shreve et al. 1984 and Alvarez 1999).

Theorem 6.1(Verification theorem for a singular control probleniet V* be
the solution tq16) and let F be a function satisfying the conditions

() FecC?
(i) (& —r)F(x)+ f(x) <Oforallx € .7;

(i) g1(%) <F'(X) < g2(X).
Then Fx) > V*(x).

6.4.1 A concrete example

In this subsection we will demonstrate the solution procedvith a concrete
example.

Let us consider the simplest optimal dividend payment mob{cf. Sub-
section 3.2 in Alvarez and Virtanen 2006)

Z
K(x) = supIEX{/ e "*dDs},
D 0
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where there is only a downward control, and the controlleat@ss isZ; =
X; — Dy. Let us apply the four step procedure to this problem.

Step 1 Since there is no exercise cost of using control, weyuass that the
optimal control is singular. Let us consider the simplest-trivial
singular control available. Namely, a control reflectingvdavards at
the boundary € R,. Now, the action and inaction regions ake=
[y,e0) andN = (0,y).

Step 2 For afixegt € R it can be shown (see e.g. Lemma 3.1 and the discus-
sion below it in Article II) that with the chosen control thesaciated

value is
Yy
X=Yy+ — X=>y
K(xy) = W(x) V') ‘-
W'(y) Y

Step 3 For* to be the optimal reflecting barrier, it must satisfy the fingter
necessary conditioﬁ%‘ . = 0. After the differentiation, this
y: —

becomesg)” (y*) = 0. Here we need some additional assumptions to
guarantee the unique existenceyt.

Step 4 To confirm thay*, which satisfies the necessary condition from Step
3, leads to the optimal control, one can show &t y*) satisfies the
conditions of Theorem 6.1 (under certain sufficient assionpj.

Specifically, we see that in the procedure above the negesgtmal con-
dition forces, in a natural way, the value function to be viaontinuously
differentiable.

6.4.2 Other methods

Since singular stochastic control problems are dynamignarmaming prob-
lems, Bellman’s optimality principle can be applied to thérhis principle al-
lows one to characterise the value function via Hamiltoreb&Bellman vari-
ational inequalities, which in this case take the form (sge Bham 2005 and

Bsufficient conditions are, for example, that there is a umitjwesholdy* € R, such that
u(x) —rx is increasing on(0,y*) and decreasing ofy*, ) and that lim_op(x) < 0 (cf.
Lemma 3.1. in Alvarez and Virtanen 2006).
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Weerasinghe 2005)
max{ (<« —rF(x)+ f(x), f(x) =F'(x)} =0, forallxe .7,

By splitting the state space into action and stopping regitre Hamilton-
Jacobi-Bellman inequalities give rise to an associateel i@indary problem,
similar to optimal stopping problems. In this case the nonal boundary
condition turns out to be, not tf@-smooth fit continuity as in optimal stop-
ping problems, buE?-smooth fit continuity.

Itis also possible to rely on probabilistic methods. Fomegke in Karatzas
and Shreve 1984, 1985 and Karatzas and Wang 2001 the exisittie opti-
mal control was proved by showing that the optimizing segeexf the consid-
ered problem converges to an admissible control using pititéc reasoning
and a weak compactness argument.

The approaches above can be classified as direct technituesntrast
to these, in an indirect approach the control problem is shtmwbe equiv-
alent with another problem and the latter one is then solvEge standard
equivalence is the connection between singular contrddlpmes and optimal
stopping problems or Dynkin games, see Subsection 6.5 bélois has been
utilised e.g. in Karatzas and Wang 2001. Another indirepraach has been
introduced in Guo and Tomecek 2008a,b, where the authoeslrevone-to-
one correspondence between singular control problems\aitchig prob-
lems. They use this relation in a general multidimensioetirgy to find an
integral representation for the value function and sufficeonditions for the
existence of an optimal control.

Besides the Markovian methods above, Snell’s envelopedoas martin-
gale methods, has also been used successfully, e.g. in B&ak 2

6.5 A link between singular control problems and stoppirappms

The close connection between a one-sided singular comtsblgim (i.e. either
downward or upward control is allowed, but not both) and atinogd stop-
ping problem was already present in the seminal paper byeBatihd Cher-
noff 1966, and later studies have shown it to hold in genese¢ (Karatzas
and Shreve 1984, 1985, and Benth and Reikvam 2004). It is kriawn this
literature that for every one-sided singular control peobithere exists an as-
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sociated optimal stopping problem such that the derivatfthe value of the
one-sided singular control problem is the value of the aased optimal stop-
ping problem.

This connection can also be generalised to concern twatsidgular con-
trol problems (i.e. both downward and upward controls aes@nt). Interest-
ingly, for every two-sided singular control problem thergses an associated
Dynkin gamesuch that the derivative of the two-sided singular controb-
lem constitutes the value of the associated Dynkin gameees Karatzas and
Wang 2001 and Boetius 2005).

This connection partially explains tk&#-smooth fit condition for the value
of a control problem (cf. e.g. Bayraktar and Egami 2008).c8ithe value
of a stopping problem is ofte@! and is a derivative of the value of a control
problem, we can interpret th@?-condition as an inherited condition from a
smooth fit condition of a stopping problem.
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7/ SUMMARIES OF THE INCLUDED ARTICLES

In this chapter we briefly summarise the four studies indluihethe thesis.
Unless otherwise stated, we assume throughout the chhptéhe underlying
dynamicsX; evolves onR, according to a linear @& diffusion. Further, we
assume that it is a weak solution to the stochastic diffeakatuation

dX% = p(X)dt+ o (X)dW,

whereu : R —-Rando :R — R, are as in Theorem 3.3.

7.1 Article I: Optimal timing in a combined investment andtgxob-
lem

In the first paper, we consider a situation where a decisiakemreceives a
revenuery based on an underlyingdtiffusion X; on an intervala,8) C R.
She has the following two options: She can invest irrevirsitio an improved
technology resulting in a new revenue functimnunder a new diffusiory;, or
she can exit the market. Of these two available options, wbie she should
use and when? And if she decides to invest, when is the rigie to exit
afterwards? This problem setting is modelled by

V() = supiy { /0 LTS (Xe)ds e (Vo (8(X0)) — k)+}
= (R'm)(x) +SlTJpEx{efrr [(V2(8(X)) —K) " — (R'ma)(X;)] }

(17)

whereV (X) is the expected maximum present value for the decision maker

Valw) = supts{ [ reivds)

is the expected net present value after the possible ineestiis the fixed
cost of the investment, arfi{ x) is a twice differentiable and increasing boost
function, which describes how much the investment imprquesluctivity.
The second line in (17) is attained by utilising the strongéa property, and
the resolvent operat@®X is taken with respect to the initial diffusiog.

We will show that, under some mild assumptions, if the invesit is even-
tually profitable, i.e. if (denoting bRRY the resolvent with respect to the diffu-
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sionY;)

lim (RrYnz)(e(x))—k>xliﬂr;3 (R'm) (x), (18)

x—f3

then the resulting optimal rule is a two-sided threshold.rith other words, the
decision-maker exits if the proceXsgoes below a lower threshold and invests
if it exceeds an upper threshold. After the possible investnthe decision-
maker faces a normal exit problem (see e.g. Alvarez 1998¢revihe exits
below a certain threshold.

In the proof we will utilise and refine a fixed point method damefing
from Lempa 2010 and Alvarez and Lempa 2008. We will also shwat if
the inequality in 18 is reversed, we end up with either a onex three-sided
threshold rule. In the former case it is never optimal to styevhereas in
the latter case it is, interestingly, optimal to to investyoon a certain finite
interval.

7.2 Article Il: On solvability of a two-sided singular cootproblem

In the second paper we consider singular control problenesavtihe optimal
control is a two-sided singular control. As described in @ka6, we consider
a controlled process

Zy = X% — Dy + U,

whereD; andU; are downward and upward controls (defined in Chapter 6) and
we study a singular control problem

(z rs (z B (z
V<x>=gyUpEx{/o e *n(z)+p [ db-a [ du}. (19)

Here m: R, — R is a non-decreasing revenue function satisfying suitable
growth and smoothness conditions (given in Articledl); p are exogenously
given constants(z = inf{t > 0| Z; ¢ R, } denotes the first exit fro®, and
the supremum is taken over all admissible controls.

The following quasi-concavity assumption is the main ctiadiwhich en-
forces the solution to be a two-sided control.

For everyb € [p,q], there existx, € R such that%(n(x) +b(u(x) —
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rx)) % 0 whenevex § Xp.

In a cash flow management application, the functir) + b(u(x) — rx) can
be seen measuring the expected net return accrued fromopasgpthe divi-
dend payment into the future instead of paying out dividéngwantaneously
(cf. p. 708 in Alvarez and Lempa 2008).

More precisely, we will establish that under the above nogril assump-
tion, and some mild additional conditions, the unique ogtioontrol in prob-
lem (19) is a two-sided singular control. Moreover, underghme conditions,
we will see that the value function can be written in a (qyagplicit form.
Since we can identify the value function and control bouiegaexplicitly, we
are also able to investigate the comparative static priggeotf the solution,
which is the main contribution of the article. We shall seat tknown results
concerning one-sided controls (see e.g. Alvarez 2001)rgése in a natural
way for two-sided controls: we will prove that the value idEsing with
respect to the volatility and cost parameteand increasing with respect to
the gain parametep. We will also show that when volatility increases, the
inactivity region expands.

We shall also compare one-sided and two-sided singularagrbblems,
and notice that the former ones are special cases of the datds. Moreover,
we will show that in the two-sided case the controls are ati earlier.

7.3 Article lll: A Dynkin game with asymmetric information

In the third paper, we consider an otherwise standard Dyg&ime, defined
in Chapter 5, except that we assume the time horizon to béastic with
asymmetric information about it. To be more precise, we rassthat there
exists a terminating event at tinfe~ Exp(A ) which ends the game, amahly
oneof the players observes the occurrence of the expiring Timd@o define
such a game, le be the set of all# stopping times augmented wilth We
make a distinction between the cases where the sup-plagen¢@) or the inf-
player (Game 2) can observe the tiffie The respective values of the games
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are
Vi(x) = sup inf M(x,T,y) = inf supll(x,T,y),
res V7 YeZ 1e g
Va(x) = sup inf F1(x,T,y) = inf_supll(x,T,y),
€T YeT yeT 1€
where

A

A06TY) =B e [0 Loy
+02 (Xv)l{r>y} +93(Xv)l{r:y}} ﬂ{r/\yﬁT}}-

(20)

We will show that these asymmetric random time horizon gaca@sbe sim-
plified to associated perpetual dividend paying games uthdereference fil-
tration .# generated by the underlying diffusiofi More formally, we will

show that the value functions of the games can be written as

Vi(x) = sup inf A1(x,T,y) = inf supfa(x,T,y),

e VET Ve 1eg
Va(x) = sup inf Fla(x,T,y) = inf suplla(x,T,y),
1€TYeT yes 1€

where

M1(x,T,y) = Ex {)\ /Omyefsgf(xs)ds

+ e PRI gy (X0) Lirayy + G2(Xy) Lrsy) +93(X)) Lir—y; ] }
Ma(x,T,y) = Ex {)\ /Omyersgz(xs)ds

+ e AW [y (X) Lirayy +02(X)) Lirsy) +93(X)) L=y ] } ;

with g; = max{g;,0} andg, = min{gy,0}.

Fori=1,2, letz be the optimal exercise thresholds for inf-player in Game
I and lety be the optimal exercise thresholds for the sup-plagek(y; al-
ways). We will show that, assuming that the games attairtisols, V; > Vs,
z; > z; andy; > y; always. Verbally the last two conditions can be stated as
the more you know, the longer you wakurthermore we will compare the
random horizon games with the standard infinite horizon Dyigiame from
Chapter 5 with(z*,y*) as the optimal exercise thresholds &hds the value of
the game. We will see that ¢(X) is non-negative everywhere, then> Vi,
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z* > z; andy* >y;. At the end of the paper we will also give an example
where the valu® of the infinite horizon game can, in fact, be the smallest of
all presented games in caggX) attains also negative values.

We will also present limiting properties of Games 1 and 2, niiee
expected random time horizd{T} goes to infinity or zero. In the case
E{T} — o, there is expectedly no terminating event, and we retrieviafi
nite horizon game. At the other end, whBgT} — 0, the games expectedly
end immediately, and we get a solution where the games aer @itmediately
or never stopped. Especially we will see that Games 1 and idseparable as
E{T} approaches the limits infinity or zero. This is reasonabieesthere is
no advantage in seeing the expiring event if it does not happé both know
that it happens immediately.

7.4 Article IV: Optimal stopping of the maximum process

In the fourth paper, we consider the optimal stopping proble
V(x,8) = SUpE s {€ " f(Xr,S) }, (21)
T

where§ is the maximum process and the exercise pafoffs) is assumed to
be sufficiently smooth, decreasingxnand increasing is.

Typically, these kinds of problems are solved by applyirgftbe boundary
approach together with a non-trivial boundary conditiolhecithemaximality
principle. This principle says that a certain non-linear differdnéiquation
attains a maximal solutioa®(s) which stays below the diagonal (i.&%(s) < s
for all s€ R,). Using the techniques from Peskir 1998 one can prove that
under the maximality principle, the stopping rafe= inf{t > 0| X <a*(S)}
provides an unique solution to (21).

The main contribution of the article is to demonstrate thatdolution can
be attained without the maximality principle. Let us briedigscribe this con-
cept. We first notice that, under mild conditions, the vali{g,s) is finite, so
that it can be written as

V(X7 S) = SUpE(x,s) {e_” f (ers)ﬂ{r<rs} + e_rTSV(37 S)ﬂ{rzrs}} ) (22)
T

where, for a givers € R, V(s,s) is just a (still unknown) finite constant. For
each giversthe problem (22) is linear, and thus we can apply standarchapt
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stopping theory to show that there exists a unique optinmgdpsnhg rule that
maximises the problem (22). This optimal stopping rule psoto be of the

type
" =inf{t > 0| X% <a*(s)}, (23)

where the valuea®(s) are still unknown.

Next we discretise the maximum process, i.e. assume thahaxénum
processS can only attain values from a countable sequence. Then the di
cretised version of the problem (21) can be seen as a coerdaijlence of
relatively easily solvable one-dimensional subproblerféally, as the se-
guence gets denser, the value of the discretised problemagies the value
(22) which is already known to have a unigue solution. Théeditisation ap-
proach is straightforward and easy for achieving an exigteasult as well as
numerical results. Unfortunately it cannot provide expbolutions.

To see why this problem is a two-sided control problem, olesénat the
problem (22) can be seen as a one-dimensional problem ortatee space
(0,s], where the boundargis killing and, once reached, leads to a terminal
valueV(s,s). In other words, we can interpret (22) as a two-sided stappin
problem, where the upper stopping threstmislnot a free parameter.
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OPTIMAL TIMING IN A COMBINED
INVESTMENT AND EXIT PROBLEM

Pekka Matoraki

ABSTRACT

We study optimal timing in a combined investment and exibpem.
We consider a situation where at any given time a companyheafot-
lowing three options: It can make an irreversible investiemrder to
obtain an improved technology resulting to a higher revdtove it can
exit the market or it can postpone making the final decisior. pdve
the existence and uniqueness of an optimal strategy, whiehwvo-sided
threshold rule: exit below one threshold and invest abowetest. We
illustrate our results numerically with geometric Browmiaotion.

keywords: irreversible investment, exit, optimal stopping, linedfusion

AMS Classification: 60G40, 62L15, 60J60

1 Introduction

Consider a company operating in the presence of uncertaimdyfacing fol-
lowing options. Either the company invests irreversiblyian improved tech-
nology or machinery resulting in a higher profit flow, or themmany exits the
market. Of these two available options, which one the comsdiould use
and when? And if the company decides to exercise its oppiyttminvest,
when is the right time to exit afterwards?

Investment decisions are typically assumed to be irrevlersin most ma-
jor investments capital is firm- or industry specific and thygstment expen-
ditures cannot be recovered by using capital in a differam fr industry.
Even if the investment is not firm- or industry specific, it t8l ®ften partly
irreversible, since the resale value is frequently sigaifity below the pur-
chase cost (see p. 8 in Dixit and Pindyck 1994). For more in&ion about
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problems involving an irreversible decision under undetyesee for example
Dixit and Pindyck 1994, Alvarez and Stenbacka 2004, Charmhd Hauss-
mann 2008 and the references therein. For a survey of literatf adopting a
new technology, see Hoppe 2002.

Furthermore a company typically has a choice to exit the ptaakd shut
down the operation. And even in the case of individual inwestt projects,
there are often possibilities of permanent exit or abandaririn contrast to
temporary exit or mothballing. Temporary exit is not a cleoic situations
where the capital disappears quickly after abandonmentiesnflood, ma-
chines rust, brand recognition is lost and teams of skilledkers disband
— all of these are example of definitive exit (Dixit and Pinkyi®94, p. 14).
The literature on exit is extensive: For exit and entry peoid see for example
Dixit 1989, Dixit and Pindyck 1994, Zervos 2003, and Egami &ayrak-
tar 2010 and references therein. For a general linéadiffusion based exit
studies, see Alvarez 1998 and Alvarez 2001.

In most studies concerning irreversible investment prokl¢éhe analysis
overlooks the embedded exiting option which is often a civabée option.
Whether it is an oil company considering opening a new oillfial a com-
pany pondering the possibility of entering a new marketrehg always the
back door possibility to exit the market irrevocably. On titkeer hand studies
focusing on exit problems often neglect, with an exceptiberdry and exit
or switching problems, the role of subsequent investmepbdpnities as a
mechanism which potentially prolongs the operation of thengany. In this
paper, our aim is to combine these two viewpoints and exathi@aituation
where both, the investment and exit options, are presenampany does not
have to just wait for the optimal time to terminate producfid can operate
actively to try to prevent such a situation. For example,dbmpany could
invest into an advertisement campaign to add the recognitiche product to
improve sales, it could invest into an improved machinergdquire a higher
production rate or it can dismissal workers or hire more toa@ase the pro-
ductivity.

The first one to study this question was Kwon in 2010 in Kwon®0He
modelled it as an optimal stopping problem and found thapfitenal stopping
rule is a two-sided threshold rule: invest, if the profit flosvhigh enough
and exit if it is low enough. Between these critical threslsathe company
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continues its operation with the incumbent technology. thermore, if the
investment opportunity is excercised, Kwon discovered itia subsequently
optimal to exit when the profit flow falls below a certain threkl. He also
analysed the sensitivity of the thresholds and observedttimugh previous
studies (see for example Dixit 1992 and Alvarez 2003) sughes it would

be optimal to delay an irreversible action longer when uiaiety increases,
in his model there were cases where this effect is reversed.

The pioneering work by Kwon in Kwon 2010 relies on Browniantion
with negative drift as the underlying diffusion modellifgtprofit flow. This
approach overlooks some typically used diffusions likengetic Brownian
motion or mean-reverting diffusions, not to speak of patdigtmore exotic
profit flows. Another restriction is the assumption that tledatility of the
profit flow is unaffected by the investment. It seems to be mmeasonable
to assume that technological change affects also the stichaof the profit
flow. For example if uncertain production technology is wutgd, then the
risk exposure of the company typically changes. Furtheeritas possible that
mergers and acquisitions make companies more competeotlcped against
random shocks, i.e. their volatility decreases, since #reymore adaptable
to react to different market fluctuations (see Thijssen 200&milar kinds
of shifts in the stochasticity might also occur through mnfiation revelation
(cf. Grenadier 1999) in which a company acquires better kedge of the
market after observing information revelation of other pamies. All in all
investments that affect the volatility capture a large spee of economic ap-
plications (see Alvarez and Stenbacka 2004).

These restrictions raise some questions: Can one be stitheéhao-sided
threshold rule indeed take place beyond the simple caseavirBan motion
with negative drifts? Is the stopping rule still similar,tife volatility is con-
siderably changed after the investment? The aim of thismpage show that
the answer to both of these questions is positive undericartdd assump-
tions. We generalise the results in Kwon 2010 to concerntibbgexmentioned
widely used stochastic processes. To this end the probleppi®ached with a
general linear & diffusion with different drifts and volatilities beforend after
the possible investment and with arbitrary increasingmaedunctions.

Our study is, to some degree, also related to entry and exdiest. In
classical entry and exit studies (see for example Dixit 1888 Duckworth
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and Zervos 2001) the company follows a given fluctuatingeppgmcess and
is either "active” and receives a positive revenue flow basethe price at the
moment, or "inactive” resulting to a zero or constant outeoriurthermore,
the company is allowed to make costly switchings betweeseth®&o states. In
the more general problem adjustments, often called switcpioblems, there
are not necessary two, but many different possible stated, with different
revenue flow and again the company can make costly switchigtygeen these
states. Moreover these problems have typically only on@otteer of the fol-
lowing properties: There exists an irrevocable exit stéde éxample Zervos
2003) or the switch changes the underlying stochastioity gkample Brekke
and @ksendal 1994, Vath and Pham 2007, and Egami and Bayg{kiQ).
Whereas in our model both of these are present; the exitistatfinal absorb-
ing state and the underlying stochastic diffusion changesminvesting, or
switching. We emphasise that although our model has a monplea start-
ing point for a study here, we do not have the richness of sévleractions or
many switching opportunities as is the case in the typicaticiimg problem.
Our study can merely be seen as an irreversible one-stephiugt problem
with discretionary exit option. We have not given up the reilglity and arbi-
trary many switching possibilities for nothing though. Mewitching studies
find sufficient conditions for a general problem, but for tkpliit solution the
needed assumptions are tighten up. In this paper, by fagusirone switch,
we find an unique explicit solution subject to relatively wessumptions.

We will see that with our standing assumptions the optimi to invest
or to exit is a two-sided threshold rule, which is a fairly egfed result: It is
optimal to invest, if the profit flow exceeds an optimal invesht threshold,
exit if it falls below another threshold and continue opemif the profit flow
is between these thresholds. Due to the non-linearity antptexity of the
solution, the sensitivity analysis is somewhat out of thepgscof this study,
and it is done only in a numerical examplegig.

The main results of this paper are the existence and unigaafea well
defined two-sided threshold rule. There are several appesaor achieving
this target, when underlying dynamics are continuous siiffius as here. One
very common approach is the use of variational inequalige® for exam-
ple Brekke and @ksendal 1991, @ksendal 2007, Chapter 1@seTare a set
of sufficient inequalities, which characterise the optistalpping strategy to-
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gether with its value. This is a general approach in the sevadét can be used
in multi-dimensional problems as well. However, in one-dimgional cases it
has strong differentiability requirements. This is somatyroblematic, since
the value does not need to be even differentiable (see fongeadksendal
and Reikvam 1998). Moreover, there exists a rich classtoabry of linear

diffusions and its representation theorems, but the stdnakse of variational
inequalities do not make full use of it.

Here we instead choose another approach, the usexafessive mappings
and the classical theory of linear diffusions. Using thipra@ach we get a
constructive method to reach the optimal exercise stratgthout heavy dif-
ferentiability preconditions. In addition the theory afdiar diffusions enables
us to prove results for very general diffusions using argusat@n with rela-
tively light complexity: we will see that in the end our mairoplem reduces
to obtaining a solution to a pair of non-linear equationsitif@rmore one can
choose whether to rest the analysis on functional concavityexcessive ma-
jorant -argument. The former reasoning is based on thetatgfter a certain
transformation the value function is the smallest non-tieg@oncave majo-
rant for the problem (see for example Dayanik and Karatz&3R0Here we
choose to follow the latter one, which counts on the fact tivaoptimal value
function is minimalr-excessive majorant of the exercise payoff (see for exam-
ple Salminen 1984, 1985, Alvarez 2003, 2004).

Nevertheless, regardless of the used approach, provihghthdwo-sided
threshold rule is the optimal one in the class of all stoppiimgs is not usually
problematic. To prove that there exists a unique optimatsided threshold
rule in the class of all two-sided threshold rules is natyralmore challeng-
ing task. The methodological significance in this paperas tar this purpose
we refine a fixed point argument, a technique first developdcebypa (2010)
Lempa 2010, which is based on a work by Salminen (1985) Saimir985.
Using this argument, one can directly verify the existerfaenique two-sided
thresholds. An advantage of the fixed point argument is thsatiultaneously
results into an algorithm for finding the optimal threshofdsnerically as a
limit of a converging sequence. In this way we not only prdeg there exists
a unigue two-sided threshold rule, we also identify it. Mawer this argumen-
tation might also proved to be useful in other situationserelone tries to find
unique optimal thresholds. This said, it is worth stressireg the main ambi-
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tion of the study is to solve the proposed investment-exibjgm and this is
done by fine tuning already existing methods.

The paper is organised as follows. The problem is repredentan exact
form in §2. The needed assumptions and the necessary conditioriefopt
timal threshold rule are laid down §8. In §4 we will prove that the proposed
two-sided threshold rule is the optimal stopping rule. Tikislone with the
help of minimalr-excessive mappings of the underlying diffusions. In brief
section§5 we shall see that if the state after the investment is onbrtigbim-
provement, we will end up either one- or three-sided thrieshde. In§6 we
will illustrate our results with explicit examples. We wilée what the solution
looks like with geometric Brownian motion and that Kwon’swin 2010) re-
sults can be derived from the model of this paper. The studpmeluded in
§7.

2 The optimal stopping problem

2.1 The system

Denote the complete probability space satisfying the usoalditions by
(Q, %,p) and letW be a standard one-dimensior{& )-Brownian motion.
Assume that the state-spage= (a, 3) is open subset ir with natural bound-
aries and that the underlying dynamics defined@n#,p) evolve on.# ac-

cording to regular linear @ diffusion

dX = p(X)dt+ o (X)dW, Xo=x€ .7,

wherepu(x) ando(x) are the drift and volatility terms respectively. For sim-
plicity we assume thatr(x) > O for all x € .#. We assume further that(x)
ando(x) satisfy the conditiory; " l;‘ZL(S)‘ds< o for all x € .# ande > 0, so
that above-mentioneddtdiffusion has an unique weak solution (see Section
5.5.B—C inKaratzas and Shreve 1988).

Define the basic characteristics X4f hamely the scale functioBand the

speed measuma as

S(x)=e 8% and rrf(x):o2 B,
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whereB(x) = [* i’é—g/idy. We assume that(x) ando(x) are such that the scale
function Sand the speed measureare absolutely continuous with respect to
the Lebesque measure, have smooth derivatives, and thstahefunctiors
is twice continuously differentiable. For a characteitabn linear diffusion

and its basic properties, see Chapter 2 in Borodin and Saim#002.

We denote the differential operator associated to the olbedr diffusion
% by

Furthermore we will denote by and @, respectively, the increasing and de-
creasing fundamental solution of the ordinary second+didear differential
equationeZu = ru, wherer > 0 (for a characterisation and fundamental prop-
erties of ¢y and @, see pages 18-20 in Borodin and Salminen 2002). The as-
sumed boundary classification Xf implies the following limiting properties:

limy g @' (X)/S(x) = 0 and lime o ¢/ (X)/S(x) = —co. Finally,

g YO @YX

denotes the constant Wronskian determinant of the fund@insmiutions.

The problem of this study can be mathematically seen as asieeLir-
reversible decision-making problem with two phases. At five are in one
phase with a certain diffusion and revenue function and weataany time
irreversibly either exit or switch to another phase witHetiént diffusion and
revenue function. Following the principle of dynamic pragning, we study
the problem backwards and start from the second phase:

2. phase:Solve the optimal stopping problem, a pure exit problem:

Vaty) = supsy | [ e v W

2

The underlying diffusion process, a profit flogvafter the possible investment,
is given by the b equation

d¥ = (V) dt+ o2(Y)dW, Yo=Yye€ .7,

whereW denotes standard Brownian motion. The constantO is the dis-
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count rate and the revenue functiog(x) : .# — R, which denotes the profit
per time unit when the system is in the statés a continuous and increasing
Z-function, meaning thafy’ e "|7B(X;)|dt < . In addition, we assume that
there exists € .# such thatp(x) % O for all x % X2. Let yr andg, denote the
increasing and decreasing fundamental solutions of tifierdiftial equation

2
(e —rju= %U%(Y);—ygu(w + Ha(Y) d%,U(y) —ru(y) =0.

We will substitute the value functiow, to the first phase of the problem,
which is the main problem to solve.

1. phase:Solve the optimal stopping problem

Vi(x) = SrlipEX [/0

The underlying diffusion process, a profit flod, is given by the i equation

T

' e m(Xs)ds+ e (V2(8(Xy)) —K) . (2

dX = (X)dt+ o1 (X)dW, Xo=x€ .7,

whereW denotes standard Brownian motion. The paramieterO is the in-
vestment cost which is assumed to be sunk. The boost funétiosf — .7
is twice continuously differentiable, increasing and &6 the inequality
8(x) > x. The function6 describes how much investment improves the pro-
ductivity of the second phase. The revenue functipn? — r, which denotes
the profit per time unit in the first phase, is a continuous aodeiasing?’*-
function. In addition we assume that there exigts .# such thatg (x) % 0
for all x % x1. Let g and @ be the increasing and decreasing fundamental
solutions of the differential equation

(op—r)u= }af(x)d—zu(x) + ul(x)gu(x) —ru(x) =0.

2 dx2 dx

2.2 Solving the phase 2 and rewriting the problem

Denote (R?7B)(y) = Ey[ Jo € "7u(Y;)dt]. This is the expected cumulative
present value of the flom, aka resolvent function of the functiam, taken
with respect to the diffusion of the second phase. Now, thetisa V, to
the problem (1) is known from Theorem 4B in Alvarez 2001 anck#ds as
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follows.

Theorem 2.1. Assume thatp is non-decreasing; thatr, the lower boundary
of the state space, is natural for the diffusion X; thiat,. o 7®(X) < 0; and
thatlim, g 7B(x) > 0. Thentz = inf{t > 0| X(t) < X} is the optimal stopping
time and the value function is

B —\ ®(X) —
Va(x) = (RETR) (X) (R?w)(xz)@()@, X> X @)

0, X< %,

(RETR)(X)
@(X)

This implies thatv,(6(x)) is a non-decreasing and continuous and thus
also (V2(6(x)) — k)™ is non-decreasing and continuous function. Moreover,
there exists a unique= 0 such tha¥/»(8(X)) = k. In other words

wherex, = argmin{ } is the unique optimal stopping boundary.

(V2(6(x)) —k)" =0, forallx<x,
(V2(6(x)) —k)* >0, forallx>x.

One brief word about the boost functidt{x). We assume that when the
company decides to invest the amoumtit gets an additional boost while
switching to a new phase. For example, if the investmenbaps to adver-
tise the products of the company, the boost funcBarould bef(x) = x+ ¢,
where{ > 0. Now the functiorf represents the (expected) demand boost after
the advertising campaign.

Since Theorem 2.1 tells us all the necessary things abouehaviour of
the value function of the second phase, we need to considigtimoptimal
behaviour of the first phase. The first thing is to rewrite orghyem (2) to
a more approachable form. By applying the strong Markopery of the
diffusions, we see that it can be written as (see also (1riBamberton and
Zervos 2013)

Vi) = (RH7) () -+ supex [e T [(Va(8(%)) k) — (Rim) ()]

where(RM8)(X) = Ex[ [ € " (X;)dt] is the resolvent function of the func-
tion r taken with respect to the diffusion of the first phase.
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To ease the notations, Igtx) := (V2(6(x)) — k)™ — (Rtm)(x). We notice,
thatgd is continuous for alk € .# andd'(%+) > § (X—). Moreover ifx < X,
theng(x) = — (R ) (x) and thugy1x) < 0. By the help ofy; our problem can
be rewritten as

Vi(x) = (Rim)(%) +supex [e7G(Xy, )] - (4)

Now, we have the options to exit or invest. In this model thié egtion
simply means that the stopping timein (4) is such thafV>(6(Xy,)) — k)+ =
0, which happens wheK;, is smaller tharx.” Likewise whenX, is greater
thanx; we use the option to invest.

3 Preliminaries and notations

We shall solve the problem (4) in the next section, but befioag, in this sec-
tion, we need to lay down our standing assumptions and pamve swuxiliary
results.

3.1 Assumptions and definitions

First of all two notational remarks: for convenience we oftesefy for f(x).
Secondly for ease of notations, we writg; f)(x) := (RM)(X); & := @4;
S(%) := S1(X); M(X) := my(X); Y(x) := Pa(x) and@(x) := @ ().

Along the lines of Salminen (1985) Salminen 1985 (see alsarklz 2004
and Lempa 2010) we define functiohs.# — r andJ: .# — R as

e, G w2090 d (6,

9= 5 909~ 5100 ¥ =5 ax ) ©
g0, PN, PHd g

200 = S~ 5 9 = 55 )

Now for x < X, we haveg(x) = —(R-mm)(x), and hence Corollary 3.2 in
Alvarez 2004 says that fax < X the functionsl andJ can be written in a
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useful integral form

_ VX (Rm)"(x) §

109 =g R+ ot == [yomontoa
/ / B
309 = & R 09 - CE 000 - [ pmomcyet

it 1im .o S — 0 and lim -5 =X — 0. That these limits hold in our

case follow, in turn, straight from Proposition 4 in Johnsowl Zervos 2007.

Further, we can calculate a pleasant connection betweedettivatives
of | andJ: since the functiong and ¢ are the solutions of the differential
equationszZ'u = ru, we find by straight derivation that

I = @(( = 1)@m= —%I’(xy )

In the proofs to come, we are interested when the funcl?,cma;d% reaches
their local maximum values. For that reason, we define twatpoi

y* =argmax (=) (x) | x < &},

W = argma{(%) (X) | x> X}

» S |

(8)

In other words, pointg* andw* are such that if/* < X, thenJ(y*) = 0 and if
X < w*, thenl (w*) = 0.
We study Problem (4) under the following assumptions.

Assumption 3.1. (i) Assume that there exists a pote [w*, ) such that
(o —r)Gx > 0 for all x € (W*,xg) and (.« —r)@x < O for all x € (xo,B).

(i) Assume that ling ~5 (RETB) (8(X)) — k > limy g (RMTR) (%).

(iii) Fori=1,2, assume that € .#* are continuous and increasing and that
there exist; € .#, such thatrg(x) % O for all x % X. In addition, assume
thatf : .# — 7 is twice continuously differentiable, increasing and sat-
isfiesB(x) > x.

First of all, we make the following simple remark on the asption (i),
which shall be referred later on.

Lemma 3.2. Let Assumption 3() hold. If w* > X, then ¥ = w*.
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Proof. If w* > X (orI(w*) = 0) andxp > w*, then it follows from equations (5)
and (7) that (x) is negative, or(%)'(x) is positive, for allx € (W*,%g), which
contradicts the definition of the poimt*. Thusxg could be greater thaw*
only whenw* = X. O

From the application point of view, Assumption 3.1(i) is tmt restricting:
Forx > %, we haveg™= V,(x) — k— (Rtrm)(x), andV, = (R TB) — %7%2()@@
can be explicitly calculated from Theorem 2.1. MoreoV&15)(x), for
i = 1,2, are twice differentiable in the classical sense as welp#és) and
thus in the applications the validity of the differentiasamption 3.1(i) can be
typically checked. In this study we have taken as generaiogmh as possible
and therefore this condition can hardly be relaxed. It mesthecked sepa-
rately in each case, though some simpler verifiable speagdscexist as we
shall discuss below.

According to Assumption 3.1(ii) investment is eventualipfgtable: ifx is
large enough, then the total revenue flow after the investmigimthe sunk cost
is greater than the total revenue flow if the investment opsamot used. From
this we can predict, that there ought to be an upper thresbolithat we always
invest if profit flow surpasses this threshold. On the othedhae know from
exit studies (for example Alvarez 2001) that typically tleenpany should exit
below a certain threshold. So intuitively it seems that & tonsidered profit
flows and functions are nice enough, then the solution shioeild two-sided
threshold rule: invest above certain threshold and exavwe@nother.

The differential operatof.e/ —r) operating ongcan be calculated and
written in the following form:

(o ~1)3= 5 (V{62 +V26") (02(x) — 5B (X))
+ V56’ (H1(X) — H2(X)) + T8(X) — TB(6(X)) +kr.

From this formulation we see thatd# is considerable greater thamn, then it
might be that(.<” —r)gx > 0 for all x € .# and Assumption 3.1(i) is not valid.
In that case it is never optimal to invest, since high vatgtdf initial diffusion
might lead to very high profit flow, so it encourages the comnypather to wait.
From the representation ¢f7 —r)§ above we also see a simpler verifi-
able conditions for Assumption 3.1(i). To this end assuna éhis convex,
01 < 02, [ < o, thato? — 02, 1 — 2 and 75 — Tk o B are non-increasing,



97

m(X) — m®(6(X)) +kr <0, m < TR0 6, U5 <r and thatre and p, are con-
vex. Assume also that such differentiability conditions satisfied that these
assumptions make sense. Then it is possible to show thaghthtee condi-
tions are sufficient for the convexity ®b (u; < r implies convexity ofg, and
the other two imply the convexity aiR?7e)). Furthermore, by the equation
above it follows that.«Z — r)dx is negative for alk > X and thus Assumption
3.1(i) is satisfied. Although this list is long, it nevertbes demonstrates that
in some cases we can check the inequality in Assumption) Justiby looking
the initial functionsr, ™, 6, g; and y; for i = 1,2. For example geometric
Brownian motion withu) < r, 01 < 02, 41 < Ho, T > T8 and with 6, T and
T as a linear function falls into this class.

3.2 The necessary conditions

The aim of the subsection is to find the necessary conditieqaation (10)
below) for the existence of an optimal two-sided stoppirig ra the interval
.# for the considered problem (4). Later @A) we will show that this two-
sided threshold rule exists uniguely and is the optimal one.

Now, we know from the general theory of optimal stopping (Bmeex-
ample @ksendal 2007, Chapter 10) that the continuatioromegf the op-
timal stopping problenV (x) := Vi(x) — (R-7)(X) = sup Ex[e "§(%)] is
{xe 7 |V(x) >§(x)}. Inthe case of two-sided stopping rule this means
that the continuation region is a finite interv@*,b*) C .# such that the-
harmonic value functiolV (x) satisfies on the intervdla®,b*) the Dirichlet
problem (27 —r)V(x) = 0 subject to the boundary conditio’ga*) = §(a*)
andV(b*) = §(b*).

The Dirichlet problem(.« —r)u(x) = 0, x € (a,b), with boundary condi-
tionsu(a) = §(a) andu(b) = §(b) for arbitrarya <a<y* <xy <b < S (for
the Dirichlet problem, see for example @ksendal 2007, Ghi&)jthas a unique
solution

Fcab) = 5 e g0, )],

wheret(,p) = inf{t > 0| X ¢ (a,b)}. The functionF is a value function con-
stituted by a threshold stopping rule "stop at timgy,)” with free boundaries
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aandb. SinceXT(a_b) is eithera or b almost surely, we find that

F(xab) = [e™ |1, < Ta) §(b) + Ex[€7™ | Tp > Ta] §(a)
@02 — G GbWa— Yola
= +
et — @l U — s ™

—:hy(a,b)y(x) + ha(a,b)p(x) (9)

for all x € (a,b). Note that limx oF (x;a,b) = g(a) and lim,_F(x;a,b) =
d(b). In other words the value-matching condition is satisfiedoth bound-
ariesa andb.

Above we have found anexcessive value functiof(x;a,b) in arbitrary
finite interval (a,b). The next theorem, which is essentially Theorem 4.7 in
Salminen 1985, shows us the necessary condition for thegmandb to be
the boundary points of the optimal continuation regiah b*).

Theorem 3.3.Assume tha%,x, % and% exist in.# \ {X}. Then the boundary
points & and Iy satisfy

I(b*) —1(a*) =0 10)
J(b*) — J(a) = 0.

We can verify by straight calculation that if the maximizipgir (a*,b*)
exists, then the resulting functidh(x; a*, b*) satisfies the smooth pasting con-
ditions lim = 4= (x;a*, b*) = §'(b*) and lime o+ 4 (x;a*,b*) = §(a*). Let
us calculate the limix * b*:

aF A (Ih*
(G0 =G 0) ) (U~ s 02
= Go+ P Yar — G+ bar W + G (W P — Yo By ) — Gy Y P + Gy Yo D
= —ar J(b) S, — Pl (b")S, + GBS,
= (—ard(@) — a1 (") + G B P+ — Y- Par) g

= (@g* [War o — War Pa ] + Gar [lﬂa* ¢é* - L.U:;* ba + w:;* bar — ¢é* Wa*])

=0.

]

S,
g,

The limitx» a* can be calculated similarly. So we see that the smooth astin
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condition is a consequence of the optimality.

3.3 Auxiliary results

The last task in this section is to show some monotonicityperties and
boundary behaviour of andJ. The results are gathered in the following
lemma, which will be used when we prove the optimalityj4h

Lemma 3.4. Let Assumptio3.1hold. Then
(A) ¥ < xq, where x = 1 1(0).
(B) the functions | and J are continuous in the domain {X}. In addition

(i) The function J is monotonically decreasing in the domadn\
lv*.%] = (a,y*) U (X, B). Furthermore Jx) > 0 for all x < y*,
J(a+) =, J(X) < Ofor all x € (y*,X) and J3—) € [0, ).

(i) The function | is monotonically increasing in the domai \

[Y*,%0] = (a,y*) U (xo,B). Furthermore [x) > 0 for x € (a,y"),
l(a+)=0and I(—) = co.

Proof. (A) Let J(x) = ﬁgxx)) (=) (x). (The functiond'is such thatl] q ¢ =
Jl(ax-) We have assumed thag(x) > 0 and that there exist;, such that
m(x) = 0 for all x = x;. Thus using (7) we see that

J(x) = gm () = 0, whenx = x; and s, = argmin{J(x) |x € .7}

Furthermorel(x) = —ff @ (t)mdt by (6), and sincep, M > 0 we see
that forx large enoughly < 0, which especially means that diftx) = J(x;) <
0 and thatl, < O for allx > x;. By the assumptions on the boundaﬂA(aer) =
0. This together with the derivative properties gives thar¢hexistsy < xq,
such thatf% 0 for all x§ y. Now if y < X, theny* =y and otherwise/* =
X— <y<X.

(B) By Assumption 3.1(iii) the functiog is differentiable in.s \ {X}, and
thus the functions andJ are continuous in# \ {X}. The desired monotonicity
properties follow from (7) observing that singé < x; (part (1)), we have
(o —1)0x = ( —1)(—Rmm)(X) = m(x) < 0 in the intervala,y*) and in the
interval (xg, B) we have(.«/ —r)gx < 0 by Assumption 3.1(i).
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Combining (6) with the assumption on the lower boundarydgé{a+) =
0 andJ(a+) = «. Moreover according to the proof of part (1) we hdix) <
0 for all x < y* andJ(y*) > 0. Combining these facts abalitve conclude that
J(x) >0 forall x € (a,y*). If y* < Xthen the proof of part (1) immediately
implies that)(x) < O for all x € (y*,X). The positiveness dfin (a,y*) follows
from observations(a+) = 0 andl’(x) > 0, forx € (a,y*).

In order to prove limiting properties of the functiorin the boundany,
fix s> xo. The mean value theorem for integrals implies that

+/| t)dt =1 (% /t,ut((ﬂ%—r)@[)nidt
_ —nNg(n) (¢'(s) ¢ (x)
_I(XO)_ r <S(s) a S’(xo)>’

wheren € (xo,8). Thus(</ —r)§(n) < 0 by Assumption 3.1(i). The desired
limit lim , »z1(X) = oo follows now from the limiting property liq g ‘g&) =

00,

To obtain the limiting property of the functiod in the boundary3, we
note that combining Assumption 3.1(ii) with the boundarh&e&our of @
yields lim_»g §(x) > 0, which in turn gives lim »g % = 0. We see from
Assumption 3.1(i), thal'(x) = ¢ ((«7 —r)dx) M, < 0 for allx > xq. If, contrary
to our claim,J(8—) < 0, there would be > X such thaﬂ( X) = %2((")) (9)' (%) <

)
0 for all x > v. This is equivalent to saying thél% ) < 0 for all x > v.
But that would mean tha(tg) (%)(B—) = o0, a contradiction. Thus >
J(B-) = 0. O

4 Finding the solution

In the search of a solution to (10), we will need to get an ewsieb grip on
the functiond andJ. The four points in the following definition will help us
greatly on this task.
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Definition 4.1. Define four auxiliary functions and points as

l1=1(ay) p1=171(12(%0))
l2=1x,8) p2=J; (J2(x0))
leJ‘(a y) qi=l, 1('1(yk))
2=/ (x.8) =05 (%1(y))-

If the pointd, * (J1(y*)) does not exist, then we defing = .

P D2 v Ty ¢

Figure 1: Definition of the pointps, p2, g1 andgq. In the figure(a,pB) =
(0,0), X0 > W*" =X, y* < Xandqp = . We will see that under Assumption 3.1
we always have, > p; andgy > 0.

It will turn out that we can bound the examination to compagion: we
will have (a*,b*) € [p2,Y*] X [Xo, ta]-

4.1 Existence and uniqueness of the pair b*)

Before proceeding to the main proposition about the exigtesf unique so-
lution to (10), we need to make sure that the points in Definid.1 do exist
and that they have certain ordering./. The following lemmata are proved
in Appendix A.

Lemma 4.2. Let Assumption8.1 hold. Then the pointsp p2, 1 and @,
which are defined in Definitiod.1, exist.

Lemma 4.3. Let pi, p2, 1 and @ be as in Definitiom.1 and let Assumption
3.1hold. Then p> p; and @ > Q.

This ordering is vital for the fixed point argument in the maxistence
proposition, since we will look for the fixed point with regpeo a function,
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which would be ill-defined, if this ordering did not hold. Name are ready to
prove our main result on solvability of the necessary cooidif10).

Lemma 4.4. Let Assumptior8.1 hold. Then the necessary conditiofi®)
have a unigue solutiofe*,b*) such that & € (pp,y*) and b € (x0,q1).

Proof. We follow loosely the proof of Lemma 2.2 in Lempa 2010. Retad!
definitions ofl; andJ;, fori = 1, 2, from Definition 4.1 and define the function
K [p2,y*) = (p2,y*) by K(x) = (J;to ol ol1)(x). By Lemma 3.4(B)
we know that the functionk andJ;, i = 1,2, are monotonic in their domains
(a,y*) and(xo, B) and thus we have

K'(x) = 3 (3(13 1 (12(x)))) - B (1 (1(x)) - 1 (12(3)) - 11(x) > 0

for all x € [p2,Y").

By invoking the inequalityg, > g1 (Lemma 4.3) and the monotonicity
of the functions; and J,, we find thatpy = J; 1 (%(x0)) < J;H(&(q)) <
I (%R(q) < y*. HenceK(y*) = J;1(J(a)) € (p2,y*). Furthermore, we
know that for somex € (xo, 1) we haveK (pp) = J; 1(J(x)). Therefore rea-
soning as above, we gkt p2) € (p2,y*). Consequently, the functidf is well
defined and monotonically increasing in the interyal y*).

Let us create a sequeneg = K"(p2)(= (Ko---oK)(pz)). This se-
quence converges by induction: It is clear that= K(p2) > p. Because
K is an increasing function, we hau¢(K(pz)) > K(p2). By induction
K"(p2) > K" (p2). Since the sequena is increasing and bounded from
above, it converges.

Sincea, converges, we can defiaé = lim,_.., a, anda* is the fixed point
of the functionK. Definingb* = J;*(J(a*)) = 1,1 (11(a%)), we get the pair
(a*,b*) that satisfies the necessary conditions (10).

In order to prove the uniqueness, it suffices to establishikHa*) < 1 for
a given fixed poing*. Utilizing the fixed point propert)(a*) = a* and the
monotonicity properties of fundamental solutiafisand ¢, ordinary differen-
tiation yields
e = L) o)

w(b*) p(a*)
This means that whenever the cumkéx) intersects the diagonal of, the
intersection is from above. This observation completeptbef. O
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In Lemma 4.4 we saw how the optimal threshold gair,b*) can be found
when it is identified as a fixed point. Analogous method wae aksed in
Lemma 4.1 in Alvarez and Lempa 2008 on impulse control sinatin the
optimal stopping problem the method was first used by Lempainpa 2010,
where Lempa hag* < X, xo > X and consequently he used the fixed point
method in the case, whe® = a andqgy = 3. Here we generalise this to
concern also cases where= X andxg = X, in which we needed the auxiliary
pointsp; andg;, points which were not needed in Lempa’s presentation.

Lemma 4.4 also shows how we can find the gair, b*) numerically. First
we identify the pointy*, xo and p,. After that, we apply the functioK (x) =
(I ool oly)(x) to the pointp; (actually any point irips, pe] will do) and
calculateKX(py), where we might for example set a stopping limit- 0 and
stop at stefk, when|KK(py) — KK1(p,)| < €. After this we havea* ~ KX(p,)
andb* ~ J;1(Jy(a")).

4.2 Proving the optimality

Now we are ready to represent our main theorem on the valueptihal
stopping rule for the problem (4).

Theorem 4.5.Let Assumptio®.1hold. Then the optimal stopping time to the
problem(4) with §(x) = (V2(8(x)) —k) " — (Rmm)(x) is T* = inf{t > 0| X ¢
(a*,b*)} and the value function is

a(x), xe (a,a]
Vi(x) = (Rrm)(X) + ¢ hy(a*,b*)w(x) + hp(a*,b")@(x), xc (a*,b*)
4(x), x € [b*, B).

Here & < y* and b > xg are the optimal stopping points found in Leméd
and the functions hand I are as defined it§9).

Proof. Since the first ternfR; %) (X) is independent of the stopping time, we
need to consider only the problem

sEpE (e G(Xr)] - (11)
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Let the solution to (11) b¥*(x), and let
V(%) =Va(x) = (Remm) ()

NowV (x) = Ex [€ "T§(X;)] , wheref = inf{t > 0| X ¢ (a*,b")} is a stopping
time. Since the supremum in (11) is taken over all stoppimg$, we observe
thatV*(x) > V(x).

The next step is to show that the inequality> V* holds. Since the optimal
valueV* is the smallest-excessive majorant @f, it is enough to show that
is anr-excessive majorant @. Firstly V(x) > §(x) for all x € (a,): In the
domain(a,a*] U [b*, B) we haveV(x) = §(x) and wherx € (a*,b*), we have
V(x) = F(x,a",b*) > F(x;a*,x) = §(x) by the optimality of the paifa*,b*).

Let us then show that the functioh is r-excessive. We see by straight
calculation that{.<” —r)V(x) < 0 for all x e .# \ {a*,b*}: We haveJ'(x) =
o((«/ —r)g)m, < 0 for all x < a* by Lemma 3.4(B). Or(a*,b*) we have
(¢ —r)V(x) = 0, and lastly on(b*,8) we have(« —r)V(x) < 0 by As-
sumption 3.1(i). Moreover, by the definition of the functovh, m and 6
we know that the functiomy is twice continuously differentiable in the do-
main .# \ {X}. Sincexe (a*,b*) and and ¢ are twice continuously dif-
ferentiable, we can deduce thétx) is twice continuously differentiable in
4\ {a*,b*} and once continuously differentiable oh. Moreover, it is clear
that |V (a*+)|,|V"(b*+)| < . It follows (Theorem D.1 in @ksendal 2007)
that there exist twice continuous functiofys j = 1,2,d,..., such thatf; — V
uniformly on compact subsets of and that ./ —r) fj — (& —r)V uniformly
on compact subsets of \ {a*,b"} asj — . Moreover,{(& —r)fj}7_; is
locally bounded on¢. Applying Itd’s theorem to the mapping ™ f;(x) and
taking expectations, we have, for an arbitrary finite stoggimer, that

mfe %0} = 6509+ 5¢{ [ (o =01}

Letting ] — o, applying Fatou’s theorem, and using the fact that —
rV(x) <0forallxe .7\ {a",b*} give

Ex{€ V(%) } <V(X)

proving ther-excessivity oV (x). O
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Theorem 4.5 establish that the two-sided threshold rulep”st the time
Ta- b+ IS the optimal stopping rule, among all admissible stogpinles. Fol-
lowing the optimal strategy, the stopping intervéds a*| and [b*, 3) are the
exit and investment regions respectively. If we use theooptd exit, we quit
the market once and for all. If we use the investment optiom,mtial profit
flow X; changes tor;, with starting pointYp = 86X+, and we will exit when
the new profit flowY; falls below the threshold, = argmin{%} (see
Theorem 2.1).

Let us compare this strategy to the case where there is ordysitp'lity to
exit. Then the optimal strategy would be to exit belaw argmax — anl))( )}

(cf. Theorem 2.1) and continue above. We recall $fiat argmax — R”Tl))( ) ]

x < X} (Definition (8)) and s@ > y* > a*. In other words the investing op-
portunity brings more value for waiting and gaining moreonmation before
possible exit decision.

5 What if the second phase is only a partial improvement?

In this section we consider a case, where the second phades tihe state
after the investment, does not improve the first phase insgkets. We will
see that in this case, we will end up either to one- or thréeesihreshold rule.

For an example what is meant by partial improvement, let nsider a car
manufacturer. Assume that initially the factory produceisejcheap cars (rev-
enuern) at rather fast paceX(). Further, let us assume that the manufacturer
has an investment possibility to stop altogether manufengjithese low-cost
cars and move into producing individual, almost handmadeirly cars. Now,
these luxury cars provide better outcome, meaning that 7w, but they are
slower to produce, and thig is expected to be smaller thag. The reverse
case is also possible; that the company switches from metiouiiag luxury
cars to produce low-cost cars, so that the revenue funceéds gmaller and
production rate higher.

To study the question attached with this kind of property wedto define
a new pointz* = argma>{(%)(x) | x > X}. Hitherto the right boundary point
of the state space3, has been such a point. (It follows from Assumption
3.1(ii) that lim_, g §(x) > 0. Therefore(%)(ﬁ—) = oo by the assumed boundary
behaviour.) In the following we state our assumptions fig section.
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Assumption 5.1. Assume Assumption 3.1(i) and (iii) to hold, wifhreplaced
by z*. Assume further that

(i) im g (RETR) (8(X)) — k < limy »g (RITR) (X).

Basically, the only difference to Assumption 3.1 is that thequality in
Assumption 3.1(ii) is reversed in (ii"). It means that in tbag run, forx large
enough, the investment is not profitable. Therefore onedqoiddict that there
ought to be an upper threshold, so that we do nothing if thétflaw is over
that threshold.

The following theorem, which is the main result of the saatisolves the
problem (4) under Assumption 5.1. It turns out that locatibthe maximum
point of% dictates whether the outcome is one- or three-sided thicshie.

Theorem 5.2.Let Assumption 5.1 hold.

(A) Assume further that > argma{(%)(x)}(: y*). Then, for the problem
(4), the optimal stopping time is = inf{t > 0| X <y*}, the pointy is
the optimal stopping boundary and the optimal value reads as

aly’)
Rm)(X)+ =—=@(X), X>
vpo — 4 RIRT o0, x>y
0, X <y*.

(B) Assume further that < argma{(%)(x)}(: Z"). Then, for the problem
(4), the optimal stopping time is* = inf{t > 0| X € (a,a*|U [b*,Z*]}
and the optimal value reads as

¢

604, ‘e (a.a]
Vi(X) = (Re7m) (X) + fjl(a*’b*)lﬂ(X)+h2(a*,b*)q,(x)’ X € (a,b")
g(X), X E [b*,Z*]
%(p(x)v X E (Z*vﬁ)

Here & € (a,y*) and b € (xp,Z") are the optimal stopping boundaries
found in Lemma.4 and the functions hand by are as defined if9).

Proof. (A) For the proof, see Theorem 3B in Alvarez 2001.
(B) Replacing the boundary poir@ by z* in §53—4, almost all results
there are valid under Assumption 5.1, the only exceptionagothat now
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0=J(z) #J(B) and1(Z) # 1(B) (the latter is not needed in this proof).
Consequently, it is straightforward to go through the earfiroofs and con-
clude that the existence of an optimal continuation intetsa b*) on (a,z*)
and its uniqueness hold, and the claim follows as previously OJ

According to previous theorem, there are two case(s%]ty*) > (%)(z*),
then we end up to the normal exit rule: exit belgiinvest nowhere. The more
interesting case, though, is Wh(a%)(y*) < (%)(Z*). Then, in addition to the
optimal continuation interval*, b*), there exists another continuation interval
(z°,B). In this case, the optimal stopping strategy itheeesided threshold
rule "stop at timet(z: p- ) = inf{t > 0| X € (a,a"] U [b*,Z']}". Here the
interval (a,a*] is the exit region and the finite intervi@, z°| is the investment
region. The result is also in line with Theorem 5.2(A), whtlggests that the
interval (argma{%},ﬁ) should be a continuation region.

A possible interpretation to our finding is that we may seeptevious
two-sided threshold rule as a special case of the three sideshold rule; if
Assumption 3.1 hold, theri = 3—, as mentioned above, and hence the upper
continuation regioniz*, ) vanishes.

Economically the three-sided stopping region behavioumteresting. If
our profit flow is in the intervala*,b*), we should wait until it surpassés
and then invest. However, if the profit flow is high enough (abp), it is
again profitable to wait and invest only when the profit flow gbelowz".
This can be interpreted as an investment opportunity, wikighofitable to do
only when the company is, in some sense, doing badly, i.epribi flow is
not too large.

Another interesting feature about Theorem 5.2 is that nowcare also
study the reverse investment opportunity. To this endylée again the initial
profit flow andY; the profit flow after the possible investment and let Assump-
tion 3.1 hold, so that there exists an optimal two-sidedstuprule. Consider
then a reverse situation; thétis the initial profit flow andx; the profit flow
after the possible investment. Then it is not too far-fetcteeassume Assump-
tion 3.1(i) &(iii) to hold. Hence we see that depending on edaviour ofd,
it either might be optimal to sometimes reverse the investr{three- or two-
sided rule) or not (one-sided rule). It follows that one cobulvestigate more
deeply the problem of costly reversible investment withial exit utilizing
Theorems 4.5 and 5.2. Unfortunately this is somewhat out@stope of this
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study.

6 Examples

6.1 Geometric Brownian motion

To illustrate the main theorem (Theorem 4.5), let us comsde=xplicit exam-
ple, where the diffusions are

X = HpXedt+ o1 X dW,  Xg=Xx>0;
Y = U2Ydt 4 oo YedW.

HereW is a standard Brownian motion. Thus the diffusions are géaene
Brownian motions and the state spage= (0,). We assume that> u, >
U1. Moreover, let the boost function &x) = {x, where{ > 1 is a constant,
and the revenue functiorg (x) = x— ¢; andre(X) = X— cz. With these choices
our resolvent functions ar@! 75)(x) = r——xu. —4 fori=1,2.

In this case the fundamental solutions of the ordinary se@sder differ-
ential equatiorf{.<7; — r)u = 0 for the first phase arg, = x"1 andyn = X1 . Re-
spectively the fundamental solutions of the differentg&tion(.s2 —r)u=0
for the second phase age = x2 andy, = X% . Here

V== ( u.i\/ +202r>

are the solutions of the characteristic equaéoffyi(yi -1+ uy—r=0,for
i =1, 2. The functiongp are the decreasing solutions agidare the increasing
ones.

6.1.1 Solving the problem

Now we can calculate that

(Rrm)(x) _ x""%2  cx %
®x) T 1
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— Y5 Ca(r—H2)

This functional has a unigue global minimum at the pajnt )
R

C2. Thus the solution to the second phase (Theorem 2.1) is

<

X c X2 Co _
——4+—.——— whenx> x,
Vo(x)={ T—H2 T )zgz r(l—vy,)

0 whenx < Xo.

The problem (4) is nows(x) = (Rt (x) + sup,, Ex[e "™§(Xy,)], where

r—Hz 1 g r(l—y,

. x ¢ x2 (%2cg + X
— _ .~ k) — —. 12
909 ( ) ) r— + r (12)
With straight derivation we see thef(x) > 0 and so there exists a unique
X > 0 such that{V,({x) —k)™ > 0 for all x > X. Let us check that this set up

will satisfy Assumption 3.1.

Firstly Assumption 3.1(i). For every > X we have

21—y S
(A —1)Gx= (% szal o (1=¥) + iy, xY2

Rer(l—vyy)
1 ¢ Co —C1+kr
+X T +C—C1+
r—t

=: a1X"2 + ayX+ as.

Hereay, az € R andap < 0. Sincey, < 0, we see that this satisfy the required
condition.

Secondly Assumption 3.1(ii). We see that

X(H2 — 1) C1—C
(erﬂz)(fx)—(erm)(x)—kz(r_uz)(r_ul)+ — k>0,

for all x > (kr+°2_r‘zﬂz(:fﬁ)(r_“l) +k. Thirdly our choices for functionss,

andO(x) satisfy Assumption 3.1(iii).

This set up satisfies the needed assumptions, and so by Tinddbethe
solution is two-sided threshold rule with optimal stoppjper (a*,b*). This
pair exists uniquely (Lemma 4.4) and it is given by the paiegfiations (10).
The scale density of the geometric Brownian motion of thé¢ fingse reads as
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S (x) = x~2H/ 9% and so (10) can be written as

21 oy 2#1
nyr 1 Vi +=5-1
+Y — +
b* o Lo(yy ) =—a of La(yy)
2 2
H171 Vi Hl

v, +
b o Ly(y)=-a Ot La(VJ),

where
-1+ -c Cob%2 0% (v, —y).
i T A S A T
_ay-1) ay
La(y) = T—m o

Unfortunately solving the optimal boundaries from theseagipns explic-
itly does not seem to be possible. So in the next subsectionake numerical
illustrations.

6.1.2 Numerical results and the sensitivity analysis

Let us choose our parameters as= 0.03, y, = 0.05, r = 0.08, ¢; = 2,
c=3,01=02,0,=0.1,k=3and{ = 1.4. With these we gefa*,b*) =
(0.59,1.54). In Figure 2(a) we see the value function of the problem (4) an
in Figure 2(b) the functio.e/ — r)x.

a) b)

30 -

20

L5 /
L 20 E

A T S H RS SR 1
a* 0.8% 1.2 b* 1.6

Figure 2: With made choices = X—, W* = X+ < Xo. (a) The solution of the
problem is two-sided threshold rule. (b) The functios —r)g(x).

We see that.e/y —r)Gx < O whenx < Xorx > xg and(.« —r)gx > 0, when
X € (W, X0) = (X,X0). Sog behaves as we assume in Assumption 3.1.

In Figure 3 we see how the threshold alters, when we changengders.
We see expectedly that by increasing the boost effect ofrestment (pa-
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rameter() the investment option becomes more attractive. In othedsydhe
exercise threshold of the investment option becomes snalladiminishes)
and the waiting for it to come becomes more attractive (éxigholda* di-
minishes).

a)

2.5 p

A

2.0 F
15F
1.0F

05F e

c) ’

A
25}

20 F
1.5 F

1.0 -

0.5 F

04 F

Figure 3: How the pointa*, b* andy* alters, when we change the parameter
(@) ¢; (b) a1; (©) k; (d) o2. In figures (b) and (c) we also see the change of the
pointXp.

Furthermore by increasing the volatility of the first phagg) (ve increase
the value of the first phase and thus the investment optiasleeme of its
attractiveness. And by increasing the sunk cost of the tmwast k) we pre-
dictably make the investment opportunity less temptingtaedexiting option
more tempting.

Increasing the volatility of the second phase)( the value of the second
phase comes greater (this is known form the previous wode far exam-
ple Dixit and Pindyck 1994). So it is sensible that we wantrivest earlier
(b* diminishes), so that we may reach these greater values isoffs a*
diminishes, so it is more attractive to wait more informatmefore exit.

6.2 Brownian motion with negative drift

In Kwon 2010 Kwon solves the problem (4) in the case, wherautigerlying
diffusions were Brownian motions with negative drift. To peecise, in his
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paper Kwon studies a situation, whemgx) = m(X) = x; 6(x) = x+ {, where

{ > 0 is a constant; the diffusion of the first phabg§ = udt+ odW, where

u < 0 ando > 0 are constants; the diffusion of the second phige= (1 +
0)dt+ odW, whered > 0 is a constant such that+ é < 0 and the diffusion
parametero is the same as in the first phase. The state space in this case
is .# = (—o0,0). It is not difficult to show that the above mentioned setting
satisfies Assumption 3.1, and consequently the theory piex$én this paper

can be seen as a generalisation of the results in Kwon 2010.

6.3 Same volatilities before and after the investment

In Kwon 2010 Kwon discovered that when the boost coefficiéns suffi-
ciently large, at the case where underlying diffusions v&n@vnian motions
with a drift with the same volatilities, then the investmehntesholdb* de-
creases whew increases. This is opposite to what normally happens when
increasing the uncertainty of the future profit streams {geexample Alvarez
2003). However, we must remember that here we had the saratdityofor
both diffusionsX andY;. We see from Figure 3(b) and (d) that if we increase
the volatility of the first phase, then the investment thaddlh* increases, but
if we increase the volatility of the second phase, then thiestment threshold
to decreases.

Suppose that the volatility is the same in both phases. Tdrereases when
this is quite appropriate assumption. For example if oneslauyew computers
to an office, it is sensible to assume that they work as gooties fprecur-
sors. Now, since the boost coefficient affects only the pfiofit of the second
phase, it could be that the adjustment made in the volatifitgcts more like
changing the volatility of the second phase when the boaficient is suffi-
ciently large. In other words, large boost coefficient engides the outcome
of the second phase. This is illustrated in Figure 4 belovn wie geometric
Brownian motion example from Subsection 6.1. We see thdt svitall boost
coefficient, we get increasing investment boundary. More interessrtpat
with large boost coefficient the investment boundary is filstreasing and
then increasing; a phenomenon that was not present in tleeoédrownian
motion with a drift.

Technically this can be explained as follows. The large boosfficient
emphasises the outcome of the second phase, andthsislecreasing i,
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b* (o) b*(o)

101 : : : ; o 0241 : : : : g
02 0.4 0.6 038 02 0.4 0.6 0.8

Figure 4: In figures we have the geometric Brownian motiamasion of Sub-
section 6.1 with the same volatilities for both diffusionse, 01 = 0> =: 7. a)

With small values of] the investment boundalty is increasing iro; b) With

large values of] the boundanp* is first decreasing and then increasingiin
Other parameters:= 0.1, u; = 0.03,u» = 0.04,¢c; = 2.5,co =3, k= 1.

as is predicted from Figure 3(d). But since the lower bounddrthe state
space, 0, is finite in the case of geometric Brownian motideannot decrease
but finitely amount. On the other hand increasing the vitatof the first
phase increasds’, and since the upper boundary is infinity, it can increase
unbounded amount. It follows that with large bodstfirst decreases, as the
second phase is dominant, but after a while the first phass stedominate.
In the case of Brownian motions, the lower boundary is unbedn—o, and
thus this kind of phenomenon did not happen. Economicaly/isheven more
interesting situation thaa-decreasing investment threshold. It means that as
the risk grows, the investment opportunity is at first moref@rable, but after
some critical value, the investment starts to lose it disac So there lies
some kind of trade off how much risk the investor is willingttderate.

Normally one would expect all the changes to be monotonil reispect to
volatility, so this result reveals that the exit problemwémbedded investment
opportunity is highly non-linear resulting to surprisingtcome.

7 Conclusion

In this paper we studied an irreversible decision-makirapfam, where the
options either to invest or to exit were combined. We forrtedathe problem
as two consecutive optimal stopping problems of a lineardiffusion. We
started from relatively weak conditions and with the helglaissical theory
of linear diffusions and a fixed point argument we proved tkistence and
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uniqueness of a well defined optimal solution. We saw thattheation is a
two-sided threshold rule.

Given the novelty of the considered problem, there areratlhy interest-
ing questions left for further research. Firstly it wouldib&eresting to analyse
the situation where there are not only one but several irsésle investment
options, so that after making the investment, the compasyaheays a new
investment option to use. Then we would face a potentialiyite series of
problems of the kind presented in this study. Secondly aljhanany invest-
ments are irreversible, all of them are not. Thus one cowdd #ink how
it would affect the result if the decision would be reversjbéither partly or
wholly. Combining these two enhancements, the problem dvbel a gen-
eral switching problem with possibility to exit irrevocgbto that the analysis
or techniques in this paper could be a stepping stone forlatpdinding a
solution to general switching problem. Thirdly in the pmasstudy the sensi-
tivity analysis has been left to a minor role. It has been hediconly via one
numerical example. It could, however, be possible to do jilieily and it
would be interesting to know, how strongly the stoppingshadds are related
to the diffusions and sunk cost. Fourthly, the investmenoofunities could
also have finite or stochastic time horizon, instead of itéias here. It seems
reasonable to predict that with finite time horizon the solutvould still be
two-sided threshold rule with lower investment threshdldrt in the infinite
horizon case.
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A Proofs of lemmata 4.2 and 4.3

For clarity we denote

A =1(R=) —1(R+) = gEX; (§'(%+)— g (%)) (> 0)
. (13)
ay=334) 33 = 2 (g21) - §2)) (> 0).

S(%)

so thatd, andA; are the sizes of jumps of functiohsandJ atX. Also during
the proofs we will constantly use the fact, thanif > X, thenxg = w* (showed
below Assumption 3.1) and the identity (df{x) = —%I’(x).

Proof of Lemma 4.2Ve will prove that (a)l (xo) < I(y*), and (b)J(Xo) >
J(y*). Furthermore we prove th&fS—) > I(y*) andJ(B—) < J(y*). Once
these inequalities are proved, we know that the pgnt,, g; andqp exist
uniquely by invoking the resuli§a+) = 0, J(a+) = « and the monotonicity
of the functionsl andJ (Lemma 3.4(B)). We will prove above mentioned
inequalities separately.

Sincel (B—) = «, the inequalityl (8—) > 1 (y*) is always true. I9(8—) >
J(y*), then we havey, = B— by Definition 4.1. Thus we need to prove only
(a) and (b).

(@):1(x0) < I(y*). Suppose first that* > X. Thenxo =w* and thud (xo) =
0. Moreover sincé(a+) =0 andl’(x) > 0 for all x < y* (Lemma 3.4(B)), we
havel (y*) > 0=1(Xo).

Assume now that* = X+. We can writd (y*) — I (Xo) = (1(y*) — 1 (X+)) +
(1(%+) —1(%0)). Next we show that both summands are positive. Firstly
I (X+) —1(xo) > 0 by the definition of the point and by the fact that (x) < 0
for all x € (X+,%g) (Assumption 3.1(i)).

In order to prove the positivity dily*) — I (X+) we notice that sincé(y*) >
J(x*—) (proof of Lemma 3.4(A)), we have

0<J(y") —I(x-) :/yiy(x)dx:/i (— &)1 (xdx

for somen € [y*,X). Hencel (y*) — [ (X+) =4 — (I(X—=) — I (y*)) > 0.
(b): I(x0) > J(Y*). Suppose first that* < X. ThenJ(y*) = 0 and we know
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thatJ' (x) = ¢ ((«Z —r)@x)m, < O for all x > Xo by Assumption 3.1(i). These
together withJ(8—) > 0 (Lemma 3.4(B)) implies thal(xg) > 0= J(y*).

Assume now thay* = X—. Thenl(x) — I(X+) < 4;: If w* > X, then
I (Xo) — 1 (X+) = —1(X+), otherwisd (Xg) — I (X+) < 0. Thus we can write

Eg(g’(x )— A(f(—))>/;0I’(x)dx:—/);0%\]’(x)dx
_ _%/H J(x)dx= —%(J(xo) —J(%+)),
for someé € (X,%p]. Multiplying b z(();()) (J(Xo) —I(X+)) >

—Aj, whereK ‘”(E)

— X) > 1. Therefored(xo) — J(R—) = Ay + (£) (I(%0) —
(5)) > By~ g >

Proof of Lemma 4.31) Let us first prove the cag® > p1. Suppose first
thatw* > X. Thenxy = w* and|(Xp) = 0. Moreover sincd (a+) = 0 by
Lemma 3.4(B), we can conclude that= a+. SinceJ(a+) = « by Lemma
3.4(B), we havep; > a = p;.

In the remainder of this proof we assume that= X+, which implies that
| (X+) > I (xo) by the definition of the poinky. By their definition (Definition
4.1), the pointsp; and py satisfy | (p1) = 1(Xp) andJ(p2) = J(Xp). Adding
additional terms in these equalities we see thadnd p, satisfy

[ k= i 1(3) - 100);
8 (14)

Jdx=—A;+I(X+) — I(X0).
P2

We now divide the proof into two cases according to the sigf}fzéﬂ;dx

1° *_I’dx> 0. Using the monotonicity ofp/y and the fact that

X0
e dex< 0, we know that

p2

- G 80015 = [ o [ 3
/pz qo((>)<( /f%l;dx> z(())%(/pz I>’(dx+/kiol)/(dx).
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%)

P(X)

Multiplying this expression b we get

)A(i/ X, ‘-»U()A()A/A Ao _ _27/ X,
/pz IXdXJr/)@r L dx < S®) (§(*+)—g (%)) =4 _/pl dex+/)@r I, dx.

In other wordd (p2) > I(p1). Sincel’(x) > 0 for all x < y* (Lemma 3.4(B)),
we haveps > ps1.

2° fp;’ lydx < 0. This condition means th&fx—) < I(p,). However, it is
true thatl (Xo) < 1(X+) < 1(X—) and sl (xp) < I (p2). By the definition of the
point p1, we havel (p1) = 1(Xo) < 1(p2). The desired resulp, > p; follows
now from the monotonicity of the functionin the interval(a,y).

(2) The proof ofg, > q; is analogously to part (1). Now we just use the
fact that(.«Z —r)@x is negative for alk € (xg, 3) and that it is positive for all
X € (W*,Xp). In addition we need the facts that=I(3—) > I(y*) and that
w* < B.

REFERENCES

Alvarez, L. H. R. (1998) Exit strategies and price uncettaimrA Greenian
approachJournal of Mathematical Economicgol. 29 (1), 43-56.

Alvarez, L. H. R. (2001) Reward functionals, salvage valaesl optimal stop-
ping. Mathematical Methods of Operations Reseanahl. 54 (2), 315-337.

Alvarez, L. H. R. (2003) On the propertieseéxcessive mappings for a class
of diffusions.The Annals of Applied Probabilityol. 13 (4), 1517-1533.

Alvarez, L. H. R. (2004) A class of solvable impulse contnalpems Applied
Mathematics and Optimizatigrol. 49 (3), 265—-295.

Alvarez, L. H. R. — Lempa, J. (2008) On the optimal stochastipulse
control of linear diffusion.SIAM Journal on Control and Optimization
vol. 47 (2), 703-732.

Alvarez, L. H. R. — Stenbacka, R. (2004) Optimal risk adoptié real op-
tions approachEconomic Theoryol. 23 (1), 123-147.

Borodin, A. — Salminen, P. (2002)andbook of Brownian motion - Facts and
formulae Birkhauser, Basel.



118

Brekke, K. A. — @ksendal, B. (1991) The high contact prineipls a suf-
ficiency condition for optimal stopping. I8tochastic Models and Option
Values eds. D.Lund — B. @ksendal, North-Holland.

Brekke, K. A. — @ksendal, B. (1994) Optimal switching in ameomic
activity under uncertaintySIAM Journal on Control and Optimization
vol. 32 (4), 1021-1036.

Chiarolla, M. B. — Haussmann, U. G. (2008) On a stochastrevarsible
investment problenS1AM Journal on Control and Optimizatiowol. 48 (2),
438-462.

Dayanik, S. — Karatzas, |. (2003) On the optimal stoppindofam for one-
dimensional diffusionsStochastic Processes and their Applicatiomsl.
107 (2), 173-212.

Dixit, A. (1989) Entry and exit decisions under uncertainife Journal of
Political Economyvol. 97 (3), 620-638.

Dixit, A. (1992) Investment and hysteresighe Journal of Economic Perspec-
tives vol. 6 (1), 107-132.

Dixit, A. K. — Pindyck, R. S. (1994)nvestment under uncertaintiyrinceton
University Press, New Jersey.

Duckworth, K. — Zervos, M. (2001) A model for investment dgons with
switching costsThe Annals of Applied Probabilityol. 11 (1), 239-260.

Egami, M. — Bayraktar, E. (2010) On the one-dimensionalroptiswitching
problem.Mathematics of Operations Researebl. 35 (1), 140-159.

Grenadier, S. R. (1999) Information revelation through@pexercise The
Review of Financial Studigsol. 12 (1), 95-129.

Hoppe, H. C. (2002) The timing of new technology adoption:edietical
models and empirical evidencBhe Manchester Schqalol. 70 (1), 56—76.

Johnson, T. C. — Zervos, M. (2007) The solution to a secon@rolidear
ordinary differential equation with a non-homogeneousténat is a mea-
sure.Stochastics: An International Journal of Probability antb&hastics
Processesvol. 79 (3-4), 363—382.



119

Karatzas, |. — Shreve, S. E. (198ownian Motion and Stochastic Calculus
Springer-Verlag New York.

Kwon, H. D. (2010) Invest or exit? Optimal decisions in thedaf a declining
profit streamOperations Researchvol. 58 (3), 638—649.

Lamberton, D. — Zervos, M. (2013) On the optimal stopping obree-
dimensional diffusionElectronic Journal of Probabilityvol. 18, 1-49.

Lempa, J. (2010) A note on optimal stopping of diffusionshwat two-sided
optimal rule.Operations Research Lettersol. 38 (1), 11-16.

@ksendal, B. (2007%tochastic Differential Equations An Itroduction with Ap-
plications (Sixth edition)Springer, Berlin.

@ksendal, B. — Reikvam, K. (1998) Viscosity solutions ofiol stopping
problems.Sotchastics and Stochastics Repovtd. 62 (3-4), 285—-301.

Salminen, P. (1984) One-dimensional diffusions and thetrspacesMathe-
matica Scandinavigavol. 54 (2), 209-220.

Salminen, P. (1985) Optimal stopping of one-dimensionilisions. Mathe-
matische Nachrichtervol. 124, 85-101.

Thijssen, J. J. J. (2008) Optimal and strategic timing ofgaes and acquisi-
tions motivated by synergies and risk diversificatidournal of Economic
Dynamics& Control, vol. 32 (5), 1701-1720.

Vath, V. L. — Pham, H. (2007) Explicit solution to an optimalitching prob-
lem in the two-regime cas&IAM Journal on Control and Optimization
vol. 46 (2), 395-426.

Zervos, M. (2003) A problem of sequential entry and exit giecis combined
with discretionary stoppingSIAM Journal on Control and Optimization
vol. 42 (2), 397-421.



120



121

Article 1l

Matomaki, Pekka (2012) On solvability of a two-sided singular ttoh
problem,Mathematical Methods of Operations Research, vol. 76 (3), 239 —
271.

With kind permission from Springer Science and Businessiived



122



123

Math Meth Oper Res (2012) 76:239-271
DOI 10.1007/s00186-012-0398-1

ORIGINAL PAPER

On solvability of a two-sided singular control problem

Pekka Matomaiki

Received: 24 October 2011 / Accepted: 16 June 2012 / Published online: 1 August 2012
© Springer-Verlag 2012

Abstract We study a two-sided singular control problem in a general linear dif-
fusion setting and provide a set of conditions under which an optimal control exists
uniquely and is of singular control type. Moreover, under these conditions the associ-
ated value function can be written in a quasi-explicit form. Furthermore, we investigate
comparative static properties of the solution with respect to the volatility and control
parameters. Lastly we illustrate the results with two explicit examples.

Keywords Singular stochastic control - Two-sided control - Linear diffusion
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1 Introduction

Let (2, F, P) be a complete probability space and F = {F; | t < oo} a right con-
tinuous, completed filtration. Consider the controlled process Z; = X; + U; — D;
where X; is a general, linear time homogeneous It6 diffusion on R := (0, co) and

(Uy, Dy) is a pair of F-adapted, non-decreasing cadlag processes on R.. We consider
the one-dimensional two-sided singular, or reflecting, control problem

{z {z {z
sup E, /e_”n(Zx)ds—i-p/e_”st —q/e_”dUS ,
(Uy,Dy) o s

where m : Ry — R is a revenue function satisfying suitable conditions (given in
Sect. 3),r > 0and g, p € R, g > p, are exogenously given constants, {z =inf{r >
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0] Z; ¢ R} denotes the first exit time from R, and the supremum is taken over all
admissible controls.

In this study we give sufficient conditions under which the above mentioned prob-
lem has a unique two-sided reflecting control as an optimal control. Moreover, under
the same conditions, we see that the value function can be written in a (quasi-)explicit
form. Further, since we can identify the value function and control boundaries explic-
itly, we are also able to investigate the comparative static properties of the value
function with respect to the volatility and the control coefficients p and g.

Since the pioneering work by Bather and Chernoff (1966) appeared, singular sto-
chastic control problems have been subjected to extensive investigation due to their
applicability in various fields. These fields include for example a costly reversible
investment problem, or an irreversible one, depending whether U; = 0 or not. In these
problems the investor has a chance to purchase capital at price ¢ and sell it with lower
price p < g. In different specific forms the irreversible case is studied for example
in Kobila (1993), Oksendal (2000), Chiarolla and Haussmann (2005) and the costly
reversible case in Abel and Eberly (1996), Guo and Pham (2005), Alvarez (2011).
Another example is an optimal dividend payments problem combined to obligative
reinvestment (see Sethi and Taksar 2002; Paulsen 2008). The company pays dividends
to the owners at rate p and on the other hand, the owners are obliged to reinvest if the
value of the income process becomes too small. Without the reinvestment possibility,
the dividend payments problem has been studied for example in Asmussen and Taksar
(2006), Hgjgaard and Taksar (1999), Alvarez and Virtanen (2006). Further applica-
tions include, for example, rational harvesting (see e.g. Lande et al. 1995; Lungu and
Oksendal 1997; Alvarez 2000; Alvarez and Koskela 2007), monotone fuel follower
problem (Chow et al. 1985; Jacka 2002; Bank 2005), exchange rates (Mundaca and
Oksendal 1998), inventory theory (Harrison and Taksar 1983) and controlling a dam
(Faddy 1974).

Singular stochastic control problems can be approached in different ways. The one
used also in this study is based on the theory of partial differential equations and on
variational arguments. In this approach one typically first constructs (by ad hoc meth-
ods) a solution to some necessary (e.g. Hamilton—-Jacobi—Bellman) conditions and
then validates the optimality of the solution by a verification theorem (see Karatzas
1983; Shreve et al. 1984; Chow et al. 1985; Bayraktar 2008; Alvarez and Lempa
2008). Alternatively, it is also possible to rely on probabilistic methods. In Karatzas
and Shreve (1984), Karatzas (1985a), and Karatzas and Wang (2001) the existence of
an optimal control was proved by showing, leaning on a weak compactness argument,
that the optimizing sequence of the considered problem converges to an admissible
control. These two approaches could be classified as direct techniques, as the problem
is approached straightforwardly. In contrast to this, in an indirect approach the control
problem is showed to be equivalent with other type of problem and the latter one is
then solved. For example in recent studies (Guo and Tomecek 2008a,b) the authors
reveal one-to-one correspondence between a singular control and a switching prob-
lem. They then go on to use this relation in a general multidimensional case to find an
integral representation for the value function and, moreover, sufficient conditions for
the existence of an optimal control.
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Although singular control problems have attained lots of attention in general, theory
considering two-sided controls is not yet as vast as the theory of one-sided controls.
There are some general existence results for a two-sided control problem, e.g. Shreve
etal. (1984), Sethi and Taksar (2002), Guo and Tomecek (2008b), and Paulsen (2008),
which provide sufficient conditions or verification theorems for the solution in a gen-
eral diffusion setting. In this paper we also follow this path and give rather easily
verifiable sufficient conditions for the optimality, but in addition we can also give a
(quasi-) explicit form for the value function. To accomplish this task, we have chosen
to combine some existing techniques (from Harrison 1985; Shreve et al. 1984; Alvarez
2008; Lempa 2010) in appropriate way with the classical theory of linear diffusions
and r-excessive mappings.

More specifically, we formulate the problem in exact terms in Sect. 2, after which
we derive necessary first order optimality conditions for the two-sided singular control
in Sect. 3. In Sect. 4, we present our first result, leaning on techniques from Harrison
(1985) and Shreve et al. (1984). We prove that if the derived necessary optimality con-
ditions attain a solution, then under a set of weak assumptions this solution is unique
and the associated reflecting control is the optimal one among all admissible controls.
In Sect. 5 we will find sufficient assumptions under which the above mentioned first
order optimality conditions obtain a solution, after which it follows from the first
result that this solution must be unique. The solution to the optimality conditions is
found by using a fixed point argument, originating from Alvarez and Lempa (2008),
and Lempa (2010), which results directly into the verification of the existence of the
optimal exercise thresholds. An advantage of this approach is that it simultaneously
results into an algorithm for finding the optimal thresholds numerically as a limit of a
converging sequence.

The most important results are presented in Sect. 6, where we consider the com-
parative static properties of the value function. Previously this kind of examination
has been done with one-sided controls (e.g. Alvarez 2001), but the author is not aware
of similar treatment concerning a general two-sided control problem. We show that
the same set of sufficient assumptions as above guarantees that the value function
is unambiguously decreasing with respect to the volatility. This in turn decelerates
the usage of optimal controls by expanding the inactivity region where exerting the
optimal policy is suboptimal. These findings are in line with the previous literature
concerning one-sided policies, see e.g. Alvarez (2001). We also demonstrate the sen-
sitiveness with respect to the control parameters, and in particular that the one-sided
control problem can be attained as a special case of this two-sided problem when
p — 0org — oo. Lastly, we will illustrate our results with two explicit examples in
Sect. 7.

2 Problem formulation
2.1 The underlying dynamics

Let (2, P, {F:}s>0, F) be a complete filtered probability space satisfying the usual
conditions (see Borodin and Salminen 2002, p. 2). We assume that the regular linear
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diffusion process X, is defined on (2, P, {F;};>0, F) and evolves on R according
to the dynamics described by the Itd stochastic differential equation

dX; = p(X)dt + o (X)dW; Xo = x, ey

where W; denotes a standard Brownian motion. We assume that both the drift coeffi-
cient u : Ry +— R and the volatility coefficient o : R4 +— R are once continuously
differentiable and that o (x) > 0 for all x € (0, c0). These conditions are sufficient
for the existence of a weak solution for the stochastic differential equation (1) (cf.
(Karatzas and Shreve, 1988, Section 5.5.B—C)). Moreover, we assume that the bound-
ary oo is unattainable (i.e. natural or entrance-not-exit) for the process X; and that
the boundary O can, in addition to being unattainable, be also attainable (i.e. exit or
regular), and that whenever O is regular we assume that it is killing. Further, if 0
is attainable, we assume in addition that the condition ©(0+) < 0 holds. It is also
worth mentioning here that the assumption that the state space is R is for notational
convenience.

We define the differential operator associated to the underlying diffusion process as

d? d
_ 1.2
A= 30 (x)_dx2 + M(x)—dx.

Let us denote, respectively, by ¥ and ¢ the increasing and decreasing fundamental
solution of the ordinary differential equation (A — r)u = 0, where r > 0 is the dis-
count coefficient (for acomplete characterization and basic properties of these minimal
r-excessive functions, see Borodin and Salminen 2002, pp. 18-20). We know that

BS'(x) = ¥/ (0)p(x) — ¢' ()Y (x), 2

where B is the constant Wronskian of the fundamental solutions 1 and ¢ and

X

2
S’ (x) = exp —/ alggiidy

is the density of the scale function of X;.
We denote by £! the class of measurable mappings f : R, — R satisfying the
absolute integrability condition E, fooo eS| f(Xy)|ds < oo. Forall f € L! write

o0

(R-)(x) = Ex/e_”f(xs)ds

0

for the expected cumulative present value of a flow f. It is known from the literature
on linear diffusion (e.g. Oksendal 2000, Proposition 4.3) that (R, f)(x) can be also
re-expressed as
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(R, f)(x) = B~ p(x) / U () f(y)m' (y)dy
0

+B 'y (x) / () f (m' (y)dy, 3)

where m’(x) = 2/(c2(x)S’(x)) denotes the density of the speed measure of X, .

2.2 The control and the problem

An admissible control policy is defined as a pair of processes (U;, D;) such that
both processes are non-negative, non-decreasing, right-continuous, and {¥; }-adapted.
With admissible control (U;, D;), we define the associated controlled process Z; =
X; + U; — D,. We associate a unit price p to the downward control D; and a unit cost
—q to the upward control U;. For example, in a timber harvesting example, D; repre-
sents the cumulative harvest while U; can be interpreted as the cumulative replanting.
In capital theoretic or natural resource management applications of singular stochastic
control, the unit price p is typically positive and the unit cost —q is negative. However,
there are cases where we may want to use negative values of p as well. For example
if we consider controlling a boat in a stormy sea, with the controls as steering left and
right, then it is sensible that both of these controls are costly, and so p < 0. So in
order to grasp the most general aspect of the problem, we only assume ¢ > p without
specifying their signs (the opposite inequality would lead easily to an infinite value
function).
For an admissible control (U, D) our payoff function gets the form

Lz
HYD (x) = E, / e " (n(Zs)ds + pd Dy — qdUy) |, 4)
0

where {7z = inf{r > 0 : Z; ¢ R,} denotes the first exit time of the controlled dif-
fusion from its state space and 7w : Ry — R captures the state dependent cash flow
accrued from continuing operation, or it can be also interpreted as an utility function
of the controller. Our objective is to solve the problem

V(x) = sup HYP)(x), (5)
(U,D)

where the supremum is taken over all admissible policies (U;, D;). Our purpose is to
delineate a set of fairly general assumptions under which there exists a well-defined
and unique two-sided reflecting control policy for which the supremum (5) is attained.
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3 Assumptions and preliminary results
3.1 Barrier policy and associated value function

For two arbitrary barriers z and y satisfying the inequality 0 < z < y < oo, we
focus on barrier policies which maintain the state between these two barriers at all
times. For given boundaries (z, y) we denote the exerted barrier policies, or reflect-
ing controls, as U? and D”. If the initial state of the controlled process is between
the boundaries, then the barrier policy (U?, DY) is obtained by assigning to the X;
the two-sided regulator so that U* and D” are continuous and increase only when
Z = z and Z = y, respectively. Thus, for x € (z, y), the controlled process evolves
according to the diffusion X; reflected at the boundaries z and y. If x > y, then we
take Dg = x — y resulting into an instantaneous gain p(x — y) and apply the above
mentioned regulator to X — Dg from thereon. Similarly if x < z, we exert the policy
Us = z — x resulting into the instantaneous cost —g(z — x) and apply the regulator
to X 4 U from thereon. We shall see that the optimal control is of this class.

Next we shall write down the associated value function using the following appli-
cation of Ito’s lemma (cf. Harrison 1985, Corollary 5.2.4).

Lemma 3.1 Let f be a twice continuously differentiable function. Fix 7 < x < y and
consider the barrier policy (U%, D). Then

o0

F(x) =E, / ¢ [ — A f(Zo)ds + £/ ()dDY — f'()dU7]
0

Proof By (generalised) Ito’s lemma

t t

T2 = f(Zo) + / A (Z) — 1 / e F(Zy)ds
0 0
t
= F GO+ M, + / e [(A =) f(Zods — ' ()ADY + f')dU7].
0

(6)

where M; = f(; e o (Zs) f(Zs)dWy. Since z < Zg < y forall s > 0, we see that
both f(Z;) and f'(Zy) are bounded and so lim;—, oo e~ f(Z;) = 0 and E, {M,} = 0.
Therefore the claim follows by taking expectation of both sides in (6) and letting
r — oQ. O

Fix barriers z and y, let 7 be an integrable and once continuously differentiable

function, and let H%Y) be the value function associated to the barrier policy (U, DY).
For z < x < y we have, by definition,
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00
H@Y) (x) = E, /e—” (7(Zs)ds + pdD; — qdU}) | . (7)
0

Consider now the function f(x) = (R,7)(x) + c1¥(x) + co¢(x), where ¢| =
c1(z, y) and ca = ¢3(z, y) are such that f/(z) = ¢q and f’(y) = p. This is a twice con-
tinuously differentiable function and consequently, by the lemma above, forx € (z, y),

we have
o0

f(x) =E, /ers [jT(ZS)dS + psty — L]dUSZ]
0

Comparing this to (7) we see that, for x € (z, ¥), we must have H @Y(x) = f(x).
Furthermore, it is clear from the definition of barrier policy rule that for x > y we
have H@Y) (x) = p(x — y) + H®Y)(y), and similarly for x < z we have H &) (x) =
q(x —z)+H@Y)(z). Hence the proposed class of considered barrier policies (U%, D”)
leads to the value function

p(x —y) + HEY (y) x>y,
HEY (x) = 1 (Rem)(x) + c1(z, Y (x) + 2(z, Yg(x) 2 < x <y, ®)
g(x —z2) + H&Y (2) x <z,

where the z and y-dependent factors ¢ and c; are such that

{ (Rr7) () + c1(z, VY (¥) + e2(z, )¢’ (¥) = p,
(Ry) (2) + c1(z, MY'(2) + c2(z, )¢’ (2) = q.

Notice that the value function H %) is once continuously differentiable for all barriers
z<y.

3.2 The first order optimality conditions

A necessary first order condition for a pair (z, y) to be optimal is that ‘% = ‘% =
0= ‘% = ‘% Carrying out the computations we see that these conditions are, in

fact, equivalent to the smooth pasting requirement that the second derivative of H <)
vanishes at z and y, i.e. the requirement that H %) is twice continuously differentiable
everywhere. After performing the differentiations, our necessary optimality conditions
for the two-sided threshold (z*, y*) can be written as

{ Jq(z*) - Jp(y*) =0, )

1q () = I (y*) =0,
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where, forb = p, q,

((Ry)' (x) = b)g" (x) = (R-1)" (x)¢' (x)

Y ()" (x) — 9" ()Y (x) (10)
((Ry) (x) = b)Y (x) — (Ry70)" ()P (x)

Y ()@ (x) — @' ()Y (x)

Jp(x) =

and Ip(x) :=

If the pair of equations (9) is solvable, then the factors ¢ and ¢, are —J,(z*) and
I, (z*) respectively. Furthermore, provided that sufficient differentiability conditions
hold, we get by straight differentiation, and using the harmonicity of (R, ), ¥ and ¢,
that forb = p, g

¢ ()7 () + b () =) @' (x)p,(x)

B0 = BS'(x) = FBS'(x) an
and I} (x) = Y@ @)+ bW ) Y @)px)
= rBS'(x) ~ /BS' ()

where pp(x) = w(x) + b(u(x) — rx).

3.3 Assumptions and auxiliary results

The assumptions presented here are needed to show that the solution is unique and of
two-sided reflecting control type. So, throughout the study we will make the following
assumptions.

Assumption 3.2 For b € [p, ¢q], denote pp(x) := mw(x) + b(u(x) — rx). Assume that

@ g > p,
(i) w(x), m(x),o(x) € CY(R,) and 7 (x), u(x), x € L1,
(iii) w'(x) < r, and if O is attainable, then in addition (0+) < O (these imply that
¥ and ¢ are convex, see Lemma 3.3 below),
(iv) forevery b € [p, q], there is X, € R such that %pb(x) % 0 whenever x § Xp.

Let us make a few remarks on Assumption 3.2. First the differentiability conditions
for m in Assumption (ii) could be relaxed, but it would complicate matters without
gaining any relevant extra insight.

Assumption (iii) seems a little restricting, but it is justified; in the opposite case
(' > r) we would easily end up to an infinite value function, implying an ill-posed
problem setting. Moreover, often w is assumed to be Lipschitz continuous, i.e. that for
some C > 0 we have #/ < C, and hence Assumption (iii) may be seen merely setting
an upper bound for the Lipschitz constant. One could try to relax this assumption by
assuming that i’ > r in some bounded subset of R, but that would complicate the
analysis and possibly lead to a peculiar behaviour (see e.g. Example 5.3 in Shreve
et al. 1984).

The three first assumptions are more or less standard assumptions, setting no strict
restrictions for the problem. It turns out that the last quasi-concavity assumption (iv),
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the only restraining assumption needed, is enough to ensure the uniqueness of a well-
defined solution (cf. Proposition 4.2 and Theorem 4.4). The function pp(x) itself, for
b = p, q, can be seen (cf. Alvarez and Lempa 2008) to measure the expected net
return from postponing the dividend payments (or reinvestments, depending whether
b = p or g) into the future instead of paying out the dividends (or reinvesting) instan-
taneously.

We close this section by revealing vital monotonicity properties, which shall be
used later on several times.

Lemma 3.3 (A) Let Assumption 3.2 (iii) hold and assume that x € L. Then ¥ and
@ are convex functions.
(B) Let Assumption 3.2 hold. Then
(1) forb = p,q, %Jb(x) § 0, whenever x
forall x € Ry.
(2) forb=p,q, %Ib(x) % 0, whenever x § Xp. In addition I,(x) > 1,(x) for
all x € Ry.

VIIA

Xp. In addition J,(x) > J4(x)

Proof See Appendix A.1. O

4 Uniqueness and optimality of the two-sided reflecting control
4.1 Uniqueness of (z*, y*)

Before proving the main proposition about the uniqueness of the solution of (9) we
will show that we can restrict the examination to two disjoint sets on positive real line.

Lemma 4.1 Let Assumption 3.2 hold. Assume further that the necessary condition
(9) has a solution (z*, y*). Then (z*, y*) € (0, X4) X (X, 00), where X4 < X, are as

in Assumption 3.2(iv).
Proof To see that the inequality X; < X, holds, set x < X,. Then
pL(0) = 7' () + g () = 1) < 7' @) + p( (¥) =) = pl(x) <0
by Assumption 3.2(iii) and (i). Thus by Assumption 3.2(iv) we must have x; < X,.

The rest of the proof follows that of Alvarez (2008, Theorem 4.3). For a fixed
y € R4, consider the functional

L{(Z) = Jq(Z) —Jp(y).

By Lemma 3.3(B) we know that Lf(y) < 0 and that L{(z) is z-decreasing on (0, X,)
and z-increasing on (X4, 00). Thus, if there exists a root z;‘, € (0, y) satisfying the

condition L{ (z;",) = 0, it has to be on the interval (0, X;).
Analogously, for a fixed z € R, consider the functional

L3(y) = 14(2) — I, ().
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By Lemma 3.3(B) we know that L5(z) < 0 and that L5(y) is y-decreasing on (0, X,)
and y-decreasing on (X, 00). Thus, if there exists a root y¥ € (z, 00) satisfying the
condition L5(y¥) = 0, it has to be on the interval (X, 00). O

Previous lemma narrows the possible region for the optimal thresholds. We shall
use this information in next proposition, which is our main result on the uniqueness
of the solution to the necessary conditions (9).

Proposition 4.2 Let Assumption 3.2 hold. Assume further that the necessary condi-
tions (9) have a solution (z*, y*). Then the pair (z*, y*) is unique.

Proof Define a function K : (0, %] — (0, %41 by K (x) = (J; 1o J, 0171 0 Iy)(x),
where Jq = Jq|(0,iq], Jp = Jp|[ip,oo)v Iq = Iq|(0,iq] and Ip = Ipl[)?p,oo)-

By Lemma 3.3(B) we know that the functions fb and fb, forb = p, g, are monotonic
in their domains (0, X;] and [X,, 00) and therefore

K'(x) = 07V (T Ug0)) - T, g (0)) - 1V (g () - 1 (x) > 0,

for all x € (0, X;) and thus K is monotonically increasing.

Moreover, we see at once that if there exists a pair (z*, y*) satisfying the necessary
conditions (9), then z* must be a fixed point for K, that is K(z*) = z*. In order to
prove the uniqueness, it suffices to establish that K'(z*) < 1 for any given fixed point
z*. Utilizing the fixed point property K (z*) = z* and the monotonicity properties of
¥’ and ¢’ [Lemma 3.3(A)], ordinary differentiation yields

_ V') OGN
¥ (y*) @' (z*)

<1

K'(z")

This means that whenever the curve K (x) intersects the diagonal of R2, the intersec-
tion is from above. This observation completes the proof. O

Thus, if the first order optimality conditions (9) attain a solution (z*, y*), it must
be unique under Assumption 3.2. Next we shall concentrate on the optimality of the
associated control (U, D¥").

4.2 Proving the optimality of the barrier policy

The two-sided barrier policy (z*, y*), which satisfy the pair of equations (9), leads to
the value function [cf. (8)]

px—=yH)+V(EH x> y¥,
V(x) =1 (Rem)(x) + cJY¥(x) + c5ox) 2% < x < y¥,
qg(x — %)+ V(") x <z¥,

where ¢ = —J,(z*) = —J,(y*) and ¢§ = I, (z*) = I,,(y*) with I and J as in (10).
Using the expressions ¢} = —J,(y*) and ¢5 = I,,(y*), applying the harmonicity of
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(R,m), ¥ and ¢, and using the identity (2) we can calculate the limit in the boundary
y* to get

*

(P23 (R, )" () = 50D (R, 1) (67 + 2 (R, (7)) S' () B

2(y") O]
V(y*-) =~ -
/ *
UZ(y*) S (y )B
= 1P +7 ()],
Similarly, using now the expressions ¢} = —J,(z*) and ¢ = I,(z*), we get

V(') = Hgu) + 7 @],
and so the value function can be written as

px =y + Hpu*) + ()] x = y*,
V(x) =1 (Rm)(x) +c]¥(x) +c5o(x) 28 <x < y*, (12)
q(x — 2% + +qu) + 1(zM)] x <z*.

To prove that the two-sided barrier control (U & DY) isthe optimal control among
all admissible controls and that V (x) above is the optimal value function we shall need
the following concavity result, which is a slight modification of Shreve et al. (1984,
Lemma 4.2).

Lemma 4.3 Let Assumption 3.2 hold, let (z*, y*) be a solution to (9) and let V be as
in (12). Then

(A) V'(x) <0 forall x € (z*, y*).
(B) V is an increasing function.

Proof See Appendix A.2. O
Now we are ready to prove the main result about optimality of a reflecting control.

Theorem 4.4 Let Assumption 3.2 hold and assume in addition that the necessary con-
ditions (9) have a solution (z*, y*). Then the barrier policy (UZ*, Dy*) is the unique
optimal policy to the problem (5) and the optimal value function V (x) is as in (12).

Proof Let V* be the optimal value of the problem (5) and let V be as in (12). Since

V is obtained with an admissible control (U Z*, D,y *), we know that V* > V. The
following properties will be proved to be sufficient for the opposite inequality:

(i) Vec?
(i) A—r)Vx)+m(x) <Oforallx € Ry;
(iii) p < V'(x) < g forallx € R;.

Letus show that V satisfies these. Firstly the case (i) is valid, since (z*, y*) was chosen
so that V is twice continuously differentiable. To show that (ii) hold, we get by straight
differentiation that
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pp(x) — pp(y*) if x > y*,
A-rV@x +r(x)=10 if x € (z%, y%),
Pg(x) — pg(z*) if x < z*.

Here the first and the last expressions are non-positive due to Assumption 3.2(iv)
and Lemma 4.1, and thus the case (ii) follows. The case (iii) is obtained as soon as
we notice that combining the concavity of V from Lemma 4.3(A) with the fact that
Vi(z*4+) = q > p = V' (y*—) yields p < V'(x) < ¢ for z¥ < x < y* and that
V/(x) = pforx > y* and V/(x) = g for x < z*.

To show that these three properties imply V > V*, let (U;, D;) be an arbitrary
admissible control, fix 7 < oo and define

Uf=U— > AU and Df =D, — D AD;,

O<s<t O<s<t
where AU; = Uy — Us— so that Uf and Dy are the continuous parts of U; and D;
respectively. Letting tr = T A {z, which is an almost surely finite stopping time, we

apply generalised Ito’s lemma to the function e ™7V (Z,) to get

T

Ec[e 7V (Zep)] = V(x) + Ex / ¢S (A—r)V(Zy)ds
0
.
VE, / e S V!(Z)(dUS — dDE)
L0

+E, Z e TSAV(ZY) |,

0<s<tr

where AV (Zy) = V(Zs) — V(Z;-).
Let v be the value function corresponding the chosen control (U;, D;). Set

r
v, (x) = Ey /e_”(n(ZS)ds + pdDg — qdUs) +e """V (Zy,) | . (13)
0

This is a compound policy, which follows the arbitrarily chosen policy (U;, D;) until
time 77 and thereafter applies the barrier policy (U & py *) with value function V (x).
Using the expression for Ey [e_”T V(Zfr)] above and utilizing the three properties
of the function V above we can calculate that

Vep (x) = V(x) + Ex /e_” (A=nV(Zs) +7(Zy)) ds
0
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-1 -
+Ex / e " (VI(Zs) — q)dUg
L0 .

T

+E, /ers(l’ - V/(Zs))dDg + Ey Z AV(Zs) —qAUs + pAD;

) i 0<s=<tr

<V +Ec| D AV(Z) —qAUs + pAD;

O0<s=<tr

Here the last sum is non-positive: assume that AU; > 0 and ADg; = 0. Then
AZ; = AU and

AV (Zs) — qAU; + pAD;
=V(Zs) — V(Zs — AUs) — qAU; < gqAU; — gAU; =0,

where the inequality follows from the fact that V'(x) < ¢ for all x > 0. Similar
arguments apply to the case, where AUg; = 0 and AD; > 0 as well as to the case
AUg > 0and ADy>0. Inevery case vy, (x) < V(x). As V(x) is bounded from below,
lim7ooe " TV(Z7) > 0. Letting 7 — ooin (13) weseethat v(x) < vy, (x) < V(x)
for all admissible policies (U;, D;). Therefore also V* < V. Lastly, the uniqueness
follows from Proposition 4.2.

The argument in the proof has been used for example in Harrison (1985, Chapter 6),
where it is called a policy improvement logic. The theorem itself confirms that if we
have already found a solution satisfying the first order optimality conditions (9), then
fairly weak conditions ensure it to be unique and the corresponding control to be
optimal for the problem (5) and the value function can be written explicitly as in
(12). All in all, this is a pleasant result for the applications, since often if a solution
to the necessary conditions (9) exists, it can be found numerically without too much
difficulty.

Moreover we have seen in Lemma 4.3 that under Assumption 3.2 the marginal
value V' (x) is positive but diminishing everywhere. This generalises the known result
from one-sided control, e.g. (Alvarez, 2001, Theorem 5), to two-sided ones.

A connection to the Dynkin game is also worth mentioning. There is a strong con-
nection between one-sided singular control and optimal stopping, which is known
already from the pioneering work (Bather and Chernoff 1966). It says that a derivative
of the value function of a one-sided control problem constitutes the value function
of an associated optimal stopping problem, see also Karatzas and Shreve (1984) and
Karatzas (1985b) and Alvarez (2001). The two-sided control problem, like ours, is
in turn known to have a similar connection with an associated two-player optimal
stopping game known as a Dynkin game, see for example Karatzas and Wang (2001)
and Boetius (2005).
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5 Sufficient conditions for the solution
5.1 Assumptions and auxiliary results

Although one could try to find numerically the solution to the necessary conditions (9),
we are nevertheless in a state of uncertainty whether there does exist a solution or not.
To make things clearer, in this section we shall provide a set of sufficient conditions
under which there exists a unique pair (z*, y*) satisfying the first order optimality
conditions (9). These conditions are summarised in the following.

Assumption 5.1 Assume that Assumption 3.2 hold, that the boundaries 0 and oo are
natural and in addition that for » = p, ¢

(V) pp(o0) = —00 and that p; (04) > 0
(vi) limyyo— f;b @' (@)/S' ()dt = oc.

Basically all these additional assumptions aim to dictate the boundary behaviour
of the auxiliary functions I and J, so that we can be sure they intersect each other. Of
these assumptions, especially (vi) seems a bit bizarre and hard to verify, but it has a
clear interpretation; the assumption that 0 is natural means that it is also not-entrance,
implying that the scale derivative —¢’(x)/S’(x) approaches infinity as x tends to zero.
Now, Assumption (vi) requires the scale derivative to be even steeper at zero, namely
that also the integral — || ; b ¢'(t)/S'(t)dt approaches infinity as x tends to zero. So
loosely speaking one could say that Assumption (vi) makes zero even more forbidden
entrance than the naturality assumption of the boundary. Since this assumption can
be troublesome to verify, we shall give in Lemma 5.2 below two different conditions
which imply the assumption. Before that we need to introduce the associated diffusion

dX, = (W(X) 4 o' (X))o (X))dt + o (X,)dW,,

with killing rate » — i’ (x). (Its infinitesimal generator A— (r— @) =30%(x) % +

(u(x) + d(x)a(x)) % — (r — w/(x)) is got by differentiating the generator A — r.)
Lemma 5.2 Assume that either

(A) W' (x)<rforallx >0, wis concave near zero, and the boundary 0 is not-entrance
for the associated diffusion X;; or
(B) ¥'(0) = 0 and (R,id)’ (0+) > 0.

Then lim, o — [ ¢/ (1)/S'(t)dt = o0 forb = p. q.
Proof See Appendix A.3. O

In previous lemma the condition (A) can be checked from initial functions, while
condition (B) can be convenient, if ¥ and (R,id) can be calculated explicitly. Moving
on, in the following lemma we see that / and J from (10) can be written in a tidy
integral form.
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Lemma 5.3 Let Assumption 5.1 hold. Then, for b = p, q, the functions I and J from
(10) can be written as

o]

1
Jp(x) = 3 /‘Pt(ﬂb(x) — pp(t))m,dt

X

1 X
hx) = & /Wt(pb(X) — pu(1))mydt
L 0

Proof See Appendix A.4 O

We have previously proved (Lemma 3.3) that these auxiliary functions satisfy cer-
tain monotonicity properties, which were adequate for the uniqueness of a solution.
But for the existence we also need to know something about their boundary behaviour.

Lemma 5.4 Let Assumption 5.1 hold. Then

(A) forb = p,q, Jp(0+) = oo and Jp(c0) < 0.
(B) forb = p,q, I,(0+) > 0 and I},(c0) < O.

Proof See Appendix A.5. O

5.2 Proving the existence of (z*, y*)

We already know from Lemma 4.1 that if there exists a pair (z*, y*) satisfying the con-
dition (9), then it must be in the set (0, X;) % (X, 00). Now with stricter assumptions,
we can shrink this acceptable set into a bounded set.

Lemma 5.5 Let Assumption 5.1 hold. Assume further that the necessary conditions
(9) have a solution (z*, y*). Then (z*, y*) € (xqj, Xq) X (Xp, xll,), where xqj, xlI7 e Ry
are the unique interior points for which J, (xqj) =0andI, (xll,) = 0and Xy, X are
as in Assumption 3.2(iv).

Proof The proof follows that of Theorem 4.3 in Alvarez (2008). From Lemma 5.4
we get Jp(0+) > 0 and J,(oc0) <0 for b = p, g. Combining these facts with the
monotonicity properties (Lemma 3.3) we see that there must exist a unique xbl < Xp

such that Jj (x) % 0 for all x § x}f. Especially we see that J,(x) < O for all x > X.
Analogously we see that there exists a unique x}f > Xp such that I (x) % 0 for all

by § xé, and especially that I, (x) > O for all x < xp.

To prove the new lower boundary for z*, we notice first that by Lemma 4.1 we
have y* > X, and thus, since z* satisfies (9), using the sign results above we get
Jy(z*) = Jp(»*) < 0. Moreover utilizing the sign results above once more we get
7* > qu . The new upper boundary for y* follows similarly.

So the possible region for optimal thresholds is narrowed to a compact region. This
information is useful in next theorem, which is our main result on the solvability of
the necessary conditions (9).
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Theorem 5.6 Let Assumption 5.1 hold. Then there exists a unique pair (z*, y*) sat-
isfying the first order optimality conditions (9).

Proof As in proof of Proposition 4.2, define a function K : [xqj , Xg] — [xqj , X4]1 by
K(x) = (J; odpol T oly)(x), where Jy = Jyl0.5,0: Jp = Ipliz, .00 lg = Igl0.%,]
and I, =1 p|[;p,oo). As before, we notice that K is increasing. Notice that now the

domain of K is different.

To ensure that K is well defined, we will show that the endpoints qu , X4 are mapped

J
q

forall x € Ry, there exists a point sy € (X, xII]) such that I, (s1) = 1, (xqj). Moreover,

into the domain of K. Firstly 0 < x; < X4, and so I (x({) > 0. Since I (x) > I;(x)

Jp(s1) < Oandsince J,(x) > J,(x) forall x € R, there exists a point s, € (qu, )Eq)
such that J,(s1) = J;(s2), so especially K(xqj) =5 € (xqj, X4). For the upper end-
point, since I,(x) > I;(x) for all x € Ry, we know that there exists 11 € (X, x[’,)
such that 1,,(#;) = I;(X,). Reasoning as above, we get that there exists #, € (qu , Xq)
such that J,(t;) = J,(t2) so in particularly K(x;) =t € (qu , Xg) and K is well
defined.

Let us define a sequence z, = K" (xqj)(z (Ko---0o K)(xqf)). This sequence con-
verges by induction: It is clear that z; = K(z9) > zo. Because K is an increasing
function, we have K(K (z())) > K (zp). By induction K" (zp) > K" (z0). Since the
sequence z, is increasing and bounded from above, it converges.

Writing z* = lim,— o0 24, We see that z* is the fixed point of the function K.
Defining y* = JAp_l(JAq ") (= i[jl(fq(z*))), we get a pair (z*, y*) that satisfies
the necessary conditions (9). The uniqueness of such a pair follows directly from
Proposition 4.2. O

In the previous theorem we saw that under Assumption 5.1 the unique pair (z*, y*)
satisfying (9) always exists. Furthermore we saw how it can be found when it is
identified as a fixed point. Analogous fixed point argument is used also in Alvarez
and Lempa (2008) in an impulse control situation and in Lempa (2010) in a tradi-
tional optimal stopping situation. Theorem 5.6 also shows how we can find the pair
(z*, y*) numerically. First we identify the point x(; . After that, we apply the function
K(x)=(J; o Jyol " oly)(x) to that point (actually any point in (0, x;/] will do)
and calculate K¥ (xqj ), where we might for example set a stopping limit ¢ > 0 and
stop at the first step step k, for which | K k (xqj ) — Kkl (xqj )| < &. After this we have

2~ KR(xd) and y* ~ I3 (KR Ge))).

6 Comparative analysis

Let us next study the sensitiveness of the value function and the optimal barriers, firstly
and most importantly with respect to the volatility, and secondly with respect to the
control parameters. We shall also compare the differences between the solutions of
two-sided and one-sided control problems.
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6.1 Volatility sensitiveness

Our main results on the effect of the increased volatility are summarised in the
following.

Theorem 6.1 Let Assumption 3.2 hold and let (z*, y*) be a solution to (9). Then

(A) V(x) is non-increasing in o.
(B) if we assume further that the inequalities concerning py, in Assumption 3.2(iv)
are strict, the inactivity region (z*, y*) widens as o increases.

Proof Let 6 (x) > o(x) forall x > 0 and let A = %82(x)£ + ,u(x)% be the infin-

itesimal generator, V the optimal value function and (£*, $*) the optimal inactivity
region with respect to the volatility &.

(A) We have
A pp(xX) — pp(3*) <0 if x > y*
A—rV@) +m@x) =13 (6%x) —0?@) V'(x) <0ifx € (2%, y*)
Pq(x) — pg(z*) =0 ifx <z%,

the first and the last expressions being non-positive due to Assumption 3.2(iv) and
the middle expression due to the concavity of V (Lemma 4.3). Hence V satisfies the
property (ii) in the proof of Theorem 4.4 with respect to &, while the properties (i)
and (iii) can be handled as previously. Therefore analysis similar to that in the proof
of Theorem 4.4 shows that V > V.

(B) Let us first prove the ordering for the lower boundaries. Suppose, contrary to
our claim, that z* < Z*. Now from the value function expression (12) we see that

1 1. . X R .
V(") = ~Pa (2)+qz* < ;Pq(Z*)Jrqz* = V(@) —q @ =2 +q("-2") = V ("),

where the inequality follow from strict inequality in Assumption 3.2(iv). This con-
tradicts the fact V. > V (item (A)). The same reasoning applies also to the case
y* < 3. O

According to our theorem, increased volatility affects negatively both the opti-
mal policy and its value. Put differently, our theorem shows that increased volatility
expands the inactivity region and postpones the usage of singular policies by decreas-
ing the marginal value of the optimal policy. This result generalises previous findings
based on one-sided policies (e.g. Theorem 6 in Alvarez 2001) to a two-sided setting.

6.2 Comparing the two-sided and one-sided solutions
It is also of interest to study the relationship between two-sided and one-sided con-

trols. Obviously, since not using a control is an admissible control, the optimal value
function is greater in the two-sided case. But are the reflected barriers from these two

@ Springer



140

256 P. Matomaki

problems ordered consistently, and if so, how? To this end let Assumption 5.1 hold
and let (z*, y*) be the optimal reflecting barriers in two-sided control problem.

Consider first the case where the dynamics are controlled only downwards, so that
Z = X—D.Inthatcase the valuereads as sup, E, fogz e’ (n(Zs)ds —l—pst) .Under
Assumption 5.1 this one-sided control problem is known to have solution (actually,
weaker assumptions are sufficient, see Lemma 3.4 in Alvarez and Lempa 2008) and
the optimal control is reflecting control with the reflecting barrier at xll, (the unique
point for which 7, (x{,) = 0, cf. Lemma 5.5), and we know from Lemma 5.5 that
v < xll,. So, in the harvest example, in the absence of a replanting opportunity we
harvest later.

Similarly, consider the case where the dynamics are controlled only upwards, so
that Z = X 4 U. In this case the value reads as supy; E, fOCZ e s (JT(ZS)CZS — qus).
Going through the reasoning in Alvarez and Lempa (2008), one could verify that under
Assumption 5.1 this one-sided control problem has a solution, where the optimal con-
trol is a reflecting control with the reflecting barrier at qu (the unique point for which
Jy (x(;) = 0, cf. Lemma 5.5), and from Lemma 5.5 we know that z* > xqj. Now, in a
dividend payments problem with obligative reinvestment example, in the absence of
dividend payments we reinvest later.

6.3 Sensitiveness on control parameters

Next we shall consider the sensitiveness with respect to the control parameters p and
q in the following two propositions.

Proposition 6.2 Let Assumption 5.1 hold. Then

(A) V(x) is p-increasing and q-decreasing.
(B) the inactivity region (z*, y*) shrinks as p increases and widens as q increases.

Proof Fix p; < pa(< q) andlet V;(x) := V(x; p;) and (2}, y;") be the value function
and optimal reflecting barriers, respectively, with respect to p;.

(A) We see that
- _
Vi(x) = E, /e”(n(Zt)dt + p1dD,yT — qutZT)
Lo i
o0
<E, | [ oot + padD]’ - qau)
Lo |
o0
< (sup)lEx /e‘”(ﬂ(Z;)dz + p2dD; — qdUy) | = Va(x).
DU

Proving that V (x; g2) < V(x; ¢q1) for all g» > ¢ is analogous.
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(B) Let us first study the sensitiveness with respect to p. Fix again p; < p2(< q)
and let (z, y) be the optimal reflecting barriers with respect to p;. Furthermore
let K;(x) = (fq_l o Jp o IAp_l,1 o fq)(x), for i = 1,2, be as in Theorem 5.6. Since
¥"”,¢” > 0 by Lemma 3.3(A) we can use the expression (10) to obtain inequali-
ties 15, (x) < Ip,(x) and Jp,(x) < Jp, (x). Combining these with the monotonicity
properties of Jand I yields

ity @) = I3 g @)
s Jp (N @) > Tp (BN @) > T ()
= Iy By g G < T (0, g D).

where all the inequalities are strict. In other words K»(z}) > K (z}) = z}. Now pro-
ceeding as in the proof of Theorem 5.6, we can deduce that as a limit of an increasing
sequence z; = lim, o Kf(z’f)( = (Kyo---o0 Kz)(z’f)) > z}. Moreover by the
monotonicity of functions / we get

i =1 ) > 1) > 1y 3) = v3

Let us then consider the sensitiveness with respect to g. Same arguments as above
with slight changes applies to this case. Fix g2 > ¢1 and let (2}, y/') be the opti-
mal continuation region with respect to g;. Now we need to define functions H; :
[Xp, xllj) — [Xp, xll,) (for the definitions of x, and )cll7 see Lemma 5.5) as H;(y) =

(IAP_] o fqi o qul o fp)(y), fori = 1,2, so that H;(y{) = y}. Reasoning as above we
can deduce that H>(yy) > yi. Now HJ(y]) is an bounded increasing sequence and

therefore y; = lim, .o H3 (y]) > y. Lastly by monotonicity of functions J we get
=1, o0 > TN 00 = 0 U (05) = 25
|

Proposition 6.2 verifies intuitively clear facts: increasing the income (p) from using
an upper barrier, the value is understandably also increasing and the controller is
encouraged to use the controls, thus the inactivity region is narrowing. The contrary
is true when the cost g of using control at the lower barrier is increased.

Subsequent questions are the limiting properties, which are considered in the
following.

Proposition 6.3 Let Assumption 5.1 hold. Then

(A) z* N\ 0 and y* /’x{, asq /1 oo;

(B) if in addition 1 is increasing, we have 7* | qu and y* /tooas p \( 0

(C) the inactivity region (z*, y*) shrinks arbitrary small as g — p \y 0. Moreover
Xp —Xg \Oandz* /" X4, y* \{ X4 and the value function approaches, from
below, a function q(x — X4) + % (qu()?q) + n(iq)) .
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(D) if in addition 7 is increasing, we have (z*,y*) \{ (0,0) as g, p — 00 and
(%, y*) /' (00, 00) as q, p — 0.
Proof (A) Let g1 < g2. Then

Pg () = 7' () + (' (x) — 1) > 7'(0) + @2 (W (x) — 1) = py, (x).

Therefore we can deduce that X;, > X,,. Now p/ (x) = —oo for all x > 0, and so
limg_ iq = 0.By Lemma4.1 we know that z* < )Zq, and therefore we can conclude
that z* — 0 as ¢ — o0.

Since zero was assumed to be natural, the process never reaches the state 0, and it
follows that Utz* = UtO = 0asg — 00. And so, when g — o0, the problem reduces to

¢z
supE, / e " (n(Zs)ds + pdDy) .
D

0

But this is the one-sided control problem introduced in Sect. 6.2, and its optimal
1

policy is known to be Df” (see Lemma 3.4 in Alvarez and Lempa (2008)), and so
lim, o0 y* = xll,. Moreover, from Lemma 5.5 we know that y* < xé for all ¢, and
so the convergence must be from below.

(B) Let 0 < p1 < p2. Then

P, (X) = 7' (X) + p2 (W (x) = 1) < 7' (x) + p1('(x) = 1) = pl, (x).

Therefore we can deduce that X, > X,, and this holds for all 7 (x). Now if 7 is
increasing, then p{(x) = 7'(x) > O forall x > 0, and so lim,_,¢ X, = co. And since
y* > X, (by Lemma 5.5), the rest of the reasoning is similar to the one in (A).

(C) First of all, Proposition 6.2(B) implies that the inactivity region (z*, y*) shrinks
as ¢ — p \( 0. Moreover, above we saw that X, is decreasing in g and X, is increasing
in p. Furthermore, since pp(x) is b-continuous, it is clear that as ¢ — p \ 0, we get
in fact X, — X, \( 0 (X, > X, always by Lemma 4.1).

Without lost of generality, we from now on fix ¢ and let p approach ¢g. Forall p < ¢
we know from Theorem 5.6 that there exist z*(p) < X, and y*(p) > X,. Further,
z*(p) is p-increasing and y*(p) is p-decreasing by Proposition 6.2(B). Moreover
from the proof of Proposition 6.2(B) we see that z*(p) is p-continuous, since the
functions I, Jp, 11;1, bel, for b = p, ¢, are. Similarly also y*(p) is p-continuous.

It follows that there exist Z* = lim, », z*(p) and Y* = lim, ~, y*(p), which
satisfy the fixed point properties in the proof of Theorem 5.6 at the limit p 7 ¢; i.e.
properties K (Z*) = Z*, Y* = (Iq_1|[);q’oo) o 1q|[x({jq])(z*) and K'(Z*) < 1. But
now since the pair (X,, X,) also satisfies these properties at the limit p g, and the
fixed point is unique, we must have (Z*, Y*) = (X, X,).

The value V (x) is p-increasing by Proposition 6.2(A). Moreover, from the value
function expression (12), we see that since z*, y* — )Zq as p — ¢, we have limit
lim,_, V(x) =qx —%y) + % (qu(iq) + n(iq)) for x > y* and x < z*. And since
7* — y* — 0, as p — g, this expression holds everywhere.
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(D) Consider first the case g, p — 0. We have already shown that z* N\ 0 as
q — 00, so we are left to prove that y* N\, 0 as p — oo. Since y* < x{, (by

Lemma 5.5), it is sufficient to show that lim,_, » xll, = 0. Now

. x
I,(x) = E/l/fz(,op(x) — pp(1)mydt,
0

and since lim,, X, = 0, we know that p,,(x) — p,(¢) < Oforall# < x as p — oo.
Hence I, (x) < 0 for all x > 0 at the limit p — oo. Consequently xé — 0.

Let us then turn to the case g, p — 0. We already know that lim .o y* = o0, and
thus it remains to prove that lim, . z* = oc. Since z* > x; (by Lemma 5.5), it is

sufficient to show that lim,_, xqj = 00. Now

o0

1
J(¥) = = / ¢1(pq(x) — pg())midt,

X

and since limy o X, — 00, we know that p, (x) — p4(t) < Oforallz > x asg — 0.
Hence J,;(x) > O for all x > 0 at the limit g — 0, and consequently xlf — 00.

In Proposition 6.3(A)—(B) we see that at the limits ¢ — oo and p — 0 we get
the solutions of the associated one-sided control problems (cf. Sect. 6.2), so that the
theory presented in this paper can be seen as a natural generalisation of the one-sided
problem. Moreover, we see that the upper boundary x 117 is approached from below and

the lower boundary x qJ from above. It is also worth stressing that in Proposition 6.3(B)
the requirement that 77 is increasing is necessary; we shall see an example in Sect. 7.2
where a concave revenue function 7 enables the upper threshold y* to be finite even
with negative values of p.

From case (C) we see that as p and ¢ approach each other, the inactivity region
(z*, y*) becomes arbitrarily small. Noteworthy is that, although technically at the
limit p ' g we get reflecting barriers (z*, y*) = (X4, X;), the corresponding pair of
controls (U*, D) are no longer admissible policies.

In the last case (D) we see that when both control parameters are set to the same
limit, either 0 or oo, we, respectively, either raise both of the thresholds z* and y*
up toward infinity, or lower them down toward zero. Noteworthy is that in the limit
neither the control U nor D° are admissible, since they usher the diffusion to the
state oo or 0, respectively, which are not in the state space.

6.4 Stationary distribution

The controlled process Z; = X; + U,Z* - D} " is well defined on the finite interval
[z*, y*], and so it follows that M := m(z*, y*) = f;: m’(u)du < oo. Moreover,
since the boundaries of the controlled process are reflecting, we can define a station-
ary probability distribution for controlled process Z; as n(x) := m’(x)/M. Now, for
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every Borel-measurable bounded function f : [z*, y*] — R we have (see Borodin
and Salminen 2002, p. 37)

y*
lim E. [f(Z0)] = / f@mn@du.

7 Examples
7.1 Geometric Brownian motion

To illustrate our results explicitly, assume that the underlying uncontrolled diffusion
evolves as geometric Brownian motion, i.e.

dX(t) = uX@)dt + o X (t)dW (1),
where 0 € Ry, u € (—o0o, r) are exogenously given constants. Furthermore, assume

that the revenue flow is 7 (x) = x% — ¢, witha € (0, 1) and ¢ € R, so that

a

X C

(Rym)(x) = - -
' r+%02(a—a2)—a,u r
Itis worth mentioning that with linear payoff function (a = 1), there would not emerge
atwo-sided reflecting barrier as an optimal rule due to invalidity of Assumption 3.2(iv).
Furthermore let us still assume that g > p.

With geometric Brownian motion our fundamental solutions of the ordinary differ-

ential equation (A — r)u = 0 are ¥ (x) = x7" and o(x) = x7 , where

1
rt=— (%02 k- \/(%02 —w?+ 202r) (14)

are the solutions of the characteristic equation %azy (y = 1)+ py —r = 0. Especially
we see that y ™ > 1 since u < r.

7.1.1 Solution to the problem

Let us check that this setup satisfies Assumption 5.1. Now the boundaries are natural
and Assumption (i) is already assumed to hold, and clearly conditions in (ii) are sat-
isfied. Furthermore, we assumed @ < r and so (iii) holds. By straight differentiation
,olg(x) =ax? 1 4 b(u — r), which satisfies assumption (iv) since 0 < a < 1. Fur-
thermore ,0;(0—{—) = o0 and pp(00) = —o0, thus (v) is valid. Lastly ¥/ (0) = 0 since
y* > 1,and (R,id)(x) = x/(r — 1) so that (R,id)’(0) > 0 and therefore we can
conclude by Lemma 5.2 that also Assumption (vi) is valid.

Hence the results from Sect. 5 can be applied, so especially the optimal solution
to (5) is a two-sided reflected control. The optimal reflecting barriers (z*, y*) are the
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Fig.1 Optimal value function
for a control problem, dashed

lines are tangents at the points
z* and y*

unique solution to the necessary conditions (9), which can now be written as

77 [2az%a —y ) + Agz(y™ — D] =y [2ay%a —y ) + Apy(y~ — 1)]
2V [2az%(a —y ) + Aqziy T = D] =y [2ay“(a —y ) + Apy(yT = D],

where A = 2r + a(o2(1 — a) — 2u). Unfortunately this seems impossible to solve
explicitly, but we shall illustrate the optimal barriers numerically below.
With optimal barriers, the value function gets the form

plx —y*) + Hpuy* + y** — b)] PR

)X + X I <x<
r+ %oz(afaz)fau r Jq( ) q(Z ) M)

q(x — %) + L[quz* + 2" — b] x <z,

Vx) =

where J,; and I, are as in (10).
7.1.2 Numerical illustration

Let us illustrate numerically the results under the parameter configuration u = 0.05,
o =02r =008,a =1/3,c =1, p = 3 and ¢ = 10. With these choices
(z*, y*) &~ (0.28, 9.45), and the value function is drawn in Fig. 1. As was shown in
Lemma 4.3, V(x) is concave.

In Fig. 2 we see how the thresholds are altered, when we change parameter values.
By increasing a we increase the payoff function w (for x > 1), so that it is sensible
that the upper barrier y* increases. As was proved in Theorem 6.1, higher volatility
(0) leads to a wider inactivity region. Moreover the impact of a change in p and ¢
affects as proved in Propositions 6.2 and 6.3 (now (xg, Xg» x;,) ~ (0.26, 1.17,9.453)).
What is not seen from those propositions though, is the exceptional rapid widening
of the interval (z*, y*) with respect to ¢, when ¢ is near p: With p = ¢ = 3, we
have z* = y*, but already with ¢ = 3.02, we have y* — z* ~ 3.0 and with ¢ = 3.1,
y* — z* &~ 4.8. Consequently ¢ reaches its upper barrier xll7 rather quickly. On the
other hand, a change in p does not affect the boundaries so strongly. This suggests that
the optimal policy is more sensitive with respect to changes in costs than in revenues.
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Fig. 2 Sensitivity of the inactivity region with respect to the parametersaa; b o; ¢ p;d g

2(L—1 . .
. Furtheqnorg now m'(x) = %x (02 ) Thus, if u # %02, the stationary proba-
bility distribution is

2u —o? 2(4 -1
nx) = » ” x (02 )
o2 (y*az_l _ Z*"2_1>

Using Sect. 6.4, we can calculate that, with the chosen numerical values,
lim;—, oo E[Z;] = 5.70 (the midpoint of the interval (z*, y*) is 4.9), and that the vari-
ance of the long run stationary state is lim;_, o, Var(Z;) = 6.00. Moreover, choosing
A = [6.4, y*] (the upper third of the interval [z*, y*]), we get lim;_, oo E[14(Z;)] =
lim;, o P (Z; € A) = 0.45. All this advocates that, in the long run, the controlled
process spends more time near the upper threshold y* than near the lower threshold

z*.

7.2 Mean reverting diffusion

As a slightly more challenging setting, consider that without a control the underlying
diffusion X; follows a mean reverting diffusion:

dthl;LXt(l—ﬂXt)dt—’—O'X[dW[, X()=x,

where i > 0 is exogenous constant and § > 0 is the degree of the mean-reversion
and o > 0 is the volatility coefficient. In this subsection we shall demonstrate a case,
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where the “gain” p from downward control can also be negative. An example, where
this kind of behaviour might arouse is the following.

Let us consider a house owner who wants to control the inside temperature of her
home and dislikes both cold and hot temperature, so that her temperature dependent
utility function, represented by 7, is a concave function. The house owner can naturally
control the temperature of her home either by heating or cooling, by paying a fixed
cost g and p for it, respectively. Since both heating and cooling are costly operations,
we must have g > 0 > p.

To carry on to a more specific analysis, fix ¢ > 0 > p and the utility function
7(x) = —x? 4 ax, where a > 0 is an exogenously given constant. Let us next check
that this structure satisfies Assumption 5.1(i)—(vi). We notice that Assumption (i) is
already assumed and that the smoothness conditions in Assumption (ii) are valid. To
see that the integrability Assumption (ii) holds, observe first that by 1t6’s Lemma

t t
X2 = x? +/2 (o2 +ui- ,BXS)) X2ds + / 20 X2dW;.
0 0

It is now straightforward to show that

2(0% 4 1)

2, 2(0% + )t
3up

, andthus E,[X?] <
and thus X7 <x 3P

2 (02 4 n (1= X)) X2 <

Thus, it follows that E, [ e X7dt = [;° e ""Ex [X}?] dt < oo, and consequently
7, w(x), x € £! and assumption (ii) holds.

By straight calculations, Assumption (iii)—(v) hold under the sufficient conditions
n<r,q < ;% and p> — u_lﬂ Finally, since Assumption (iii) is valid and the drift
ux(l — Bx) is concave, the last Assumption (vi) follows from Lemma 5.2 if O is
non-entrance for the associated diffusion X +, which in this case is

dX, = (u(1 — BX,) + o) X,dt + o X, dW,

and we observe that 0 is non-entrance for it.

It follows that under the above mentioned conditions, the results from Sect. 5 can
be applied. Unfortunately, due to complicated nature of vy and ¢ in this case (see
Section 6.5 in Dayanik and Karatzas 2003), we cannot solve explicitly any results, but
an illustrative numerical solution is seen in Fig. 3.

Furthermore, in this case the speed density is

2 1) _2ws
() = 2523
o
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Fig. 3 A numerical illustration \ N .
of the solution to (5) with the proas N V(z)
mean reverting set up, [ RN N @ — 2*) + V(=)
introduced above, w1.th the 250k B NN . e pE—y) V()
parameter configuration i ;
n=0.04,8=0.050 =0.3, 27k
r =0.08,a =10,g =4 and r

=-2 L
P 276

274F
3 % 4 5 6 y* 7 8

n(x) = = ,
2 \oZ 2 2 2 2
(25)7 (T -1 -1 —1,24y)

where I'(s, x) = || XOO 157%™ dt is the upper incomplete gamma function.
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Appendix A: Omitted proofs

Firstly, we introduce the following general integral representation result (Corollary
3.2 in Alvarez 2004), which will be referred later on.

Lemma 7.1 A Assume that f € C*(Ry), that limy_o4 | f(x)| < oo and that
(A—=r)f(x) e L. Then

FEOUE Y k)
S’ (x) S’ (x)

= / (O ((A—=r)f)Om')dr -8,
0

where § = 0 if O is unattainable and § = Bf(0)/¢(0) if O is attainable for X;.
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B Assume that f € C2(R+), that limy_, o0 f(x)/¥(x) =0, and that (A—r) f(x) €
LY. Then

e ¢wre [ /
S'x)  S'(x) __/‘P(’)((A—’”)f)(t)M(t)dt

X

Proof of Lemma 3.3

(A) This follows directly from Corollary 1 in Alvarez (2003), if the so called transver-
sality condition lim; _, oo B, [¢ 7' X;; 1 < 70] = 0 holds. Here 79 = inf{r > 0 | X; ¢
R+}. But we assumed that x € £!, meaning that E, [fooo e_”Xtdt] < 00, and so the
transversality condition must hold.

(B) The derivative properties follow from the derivative form (11) by using Assump-
tion 3.2 (iv) together with the facts ¢’ < 0 and ¥’ > 0. Furthermore, from straight
calculation we get
(g — )@ (x)o?(x)

2rBS’(x)

which is positive due to the fact ¢ > p [Assumption 3.2(i)] and convexity of ¢
(item (A) of this lemma). Similarly, from straight calculation we get [,,(x) — I;(x) =

" 2
%W, which is positive due to the fact ¢ > p [Assumption 3.2(i)] and con-

vexity of ¢ (item (A) of this lemma). O

Jp(x) = Jg(x) =

’

Proof of Lemma 4.3

(A) The function V satisfies the differential equation (A — r)V + 7 (x) = 0 on the
interval (z*, y*). Differentiating this we obtain

1
EGZ(X)VW(X) = (r = 1))V (x) = (1(x) + 0 (x)a’ (x)) V" (x) — 7' (x).

We begin by proving the claim in the case u(x) + o (x)o’(x) = 0. Since the necessary
conditions (9) hold, V is twice continuously differentiable, and V" (z*) = V" (y*) =0
and V'(z*) = q > p = V'(y*), s0

1
SOHEOVE) == W@V -7 (@) = —p (") <0
1

and Eaz(y*)VW(y*) =@ =NV -7 (") =—p,0") >0,

where the inequalities follow from the facts that z* < X, and y* > X, (Lemma
4.1). Therefore V”(x) < 0 for all x in the neighbourhoods of z* and y*. Let y =
sup{y € (z*,y*) | V”(x) < Oforall z* < x < y}. Then, since V”(x) < 0 for
all x < y, we have V'(x) < ¢ for all x < y. Further, since for all x < X, and
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b < g wehave 0 < p,(x) = (W (x) —r)g +7'(x) < (W(x) —r)b + 7' (x), and
V" (x) = —Uzimp@,(x)(x), we must have y > X,.

If V" < Oforall x € (z*, y*), then the lemma is proved. So consider for a moment,
contrary to our claim, that there exists at least one point for which V" > 0 and let
w; < y* be the supremum of such points and let wy < w; be the supremum of
the points for which V" intersects x-axis from below. In other words V" (wy) = 0,
V" (wy) > 0and V"’ (wy) =0, V”(w;) < 0and V/(wy) > p. In fact we also have
V/(wy) < g; If this would not be true, we would have 0 < —%az(wl)V”’(wl) =
p{,/ (wl)(wl) < pt’] (w1), which contradicts Assumption 3.2(iv), since above we have
shown that x; <y < wy.

Since V”(x) > 0 for all wp < x < w;, we have V/(w;) < V/(w;). Thus we can
calculate that 0 > —%Jz(wz)V”’(wz) = PV/(wy) (W2) > Py, (w2), but above we
chose wy so that 0 < —%Gz(wl)V”’(wl) = p{/,(wl)(wl). Since V'(w;) € (p, q), this
contradicts Assumption 3.2(iv), since wy < wj. Therefore we must have V" (x) < 0
forall x € (z*, y*).

We now turn to the case §(x) := u(x) +o(x)o’(x) # 0. Let us introduce a change
of variable f(x) = [; exp(fy 8(v)dv)du and define a function!’(y) = Vo f~Hy).
Then by straight derivation

(r—@ o f~HmM)I' =@ o fFH(y)
(f" o f=H2(y) '

1
5(02 o fTHMI"(y) =

Since I” (f(x)) = V"(x)/f’(x), we see that [” (f (x)) has the same sign as V" (x) and
thus the claimed property of V follows from that of /.

(B) From (12) we see that V/(x) > 0 for all x < z* and x > y*. Since, by item
(A) V”(x) < 01in between, we must also have V/(x) > 0 for x € (z*, y*). O

Proof of Lemma 5.2

(A) Let y, € (0, xp) be such that p(x) is concave forall 0 < x < y, and let x < yy.
We can write

Xp Vb Xp

_/dmmz_/wmm_/WWm
S'(1) S'(r) §'(1)

* * Vb

Here the latter integral in the right-hand side is finite, so we need to show that former
one tends to infinity when x tends to zero. To that end let us inspect more closely the
associated diffusion X ¢- Straight calculation shows the density of the scale function
and the density of the speed measure to be §'(x) = §'(x)/o2(x) and i (x) = 2/5 (x).
Moreover, by convexity of ¢ [Lemma 3.3(A)], we can verify the decreasing funda-
mental solution to be ¢(x) = —¢’(x). Utilizing these together with the concavity of
 allows us to write
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Vb

Yb
O N B T ) R U
- St =3[ = o

X

W / (W (v) =@yt (v)dv.

We can now use Lemma 7.1(B) for the diffusion X ; to obtain

/ (W () — PP (w)dv = o @’(iw) |

2w (0) 2(u'(0) —r) (S"(x) ' (5)

Assumed boundary behaviour for X ¢ at 0 and the fact that ©/(0) — r < 0 guarantee
that this approach to infinity as x approach to zero, which was desired.
(B) Derivating (3) we get

B(R,id)' (x) = ¢'(x) / Y()tm' (H)dt + ¢ (x) / @(t)rm' (t)dt.
0 X

We know that limy o ¢ (x) f(;‘ vtm'(tH)dt < 0, so we must have
lim, o ¥'(x) fxoo o(®)tm'(t)dt > 0, for otherwise (R,id)’(0) cannot be positive. But
Y’ (04+) = 0, so lim, o fxoo @()tm'(t)dt = oo. The proof is completed by showing
that this integral is smaller than the claimed one. To see this, apply Fubini’s Theorem:

o0 o t oo o0
/<p(t)tm’(t)dt:/ /<p(t)m’(t)dtdv§ lir%/ /<p(t)m’(t)dtdv
X t=x v=0 v=u t=v

1 T
— lim ——/(p(v)dv,
u—0 r S’(v)

u

where the last equality follows from Lemma 7.1 (B). Now, since

o0 Xp o0
/w(v)dvz/cp(v)dv+/<p(v)dv
S’ (v) S'(v) S'(v)

u u i

and the last integral in the right hand side is finite, this completes the proof. O
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Proof of Lemma 5.3

Let us first prove the integral form for the function Jp (x). Since ¢ satisfies the differ-
ential equation (A — r)¢ = 0 and (R, 7)(x) satisfies (4 — r)(R,m) = —m, we can
write Jp from (10) as

) = — ; 5 [l 20" () =7 ()¢’ () +r (R ) (x)¢’ (x)— (R, ) <x><p(x))}
L ba*(x ) v +r 7) o) (T (x)—7(1))m' (H)dt
Br S’ (x) ’

X

where the integral representation follows from Lemma 7.1. Now to cope with the first
term observe that since (A — r)¢ = 0, we can write

o0
r§0x Dy _(Mx_rx)‘p_x:ru+(ux—rx)r/(pzm;dt

1 "
_JZ(X)(p_X —
2 St S’ S S’

X

e
so that we need an integral form to %S#. But choosing f(x) = x in Lemma 7.1,

we get %‘—* = — fxoo @i (e — rt)m;dt. Combining all these forms together gives
the de51red integral representation for Jj(x). The proof for I (x) is similar. m|

Proof of Lemma 5.4

(A) To calculate the value at the upper boundary, let x > Xxj, for b = p, ¢q. Using the
integral representation from Lemma 5.3 we can calculate that

lim Jp(x) = lim
X—>0Q X—>00

00 00
1 . 1
—-— /fpt(pb(X)—pb(t))midt < lim —— /(pt(pb(t)—pb(t))médt =0,
B x—oo B
X X

where the inequality follows from Assumption 3.2(iv).

To calculate the value at the lower boundary, let y;, € (0, X») and ¢ > 0 be such that
,o;(x) > ¢ for all 0 < x < yp. This is possible for some constant & since pg O+) >0
[Assumption 5.1(v)]. Let x < ¥y, and apply Fubini’s Theorem, Lemma 7.1(B) and
inequality pj, (x) > € to get

o0 t o0 o0
1 1
e = [ [ eomwswdar= [ [ oomoswdd

t=x v=x V=X =V
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() L o )
(/’ v g, ¢ v
- - dv— —
Br | S P4 = Br/S’(v)'Ob(U) 0 Br/S’( AR
X X y
7o (oo
R o0 ¢ .
S'(v) ')
X y

Here the last integral term is finite and lim, o — [ xy b ‘g;gz;dv = 00 by Assump-
tion 5.1(vi), so J,(0+) = o0
(B) To calculate the value at the lower boundary, let x < Xxp, for b = p, g. Using
the integral representation from Lemma 5.3 we can calculate that

lim Ip(x) = lim — /%(pb(X) = pp(t))m;dt

A%
= —

/ Vi (op(t) — pp(t))mydt | =0,
0

where the inequality follows from Assumption 3.2(iv).
To calculate the value at the upper boundary, let x > x;,. We can write

Xb X
1 1
Ip(x) = 3 / Vi (op(x) — pp (0))mydt + E/lﬂz (o6 (x) — pp(t))m;dt
) J

wl

1
= —(op(x) — pb(n)) /1//: pp(x) — pp(1))m;dt,

Br

for some n € (0, Xp) by mean value theorem for integrals. The last term in the last
row is always negative, since pp(x) < pp(t) for all # > x > X; and the first term in
the last row tends to minus infinity as x tends to infinity since by Assumption 5.1(v)
pp(00) = —o0. Hence I (c0) = —o0. |
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We study a Dynkin game with asymmetric information. The game has a random expiry
time, which is exponentially distributed and independent of the underlying process.
The players have asymmetric information on the expiry time, namely only one of the
players is able to observe its occurrence. We propose a set of conditions under which
we solve the saddle point equilibrium and study the implications of the information
asymmetry. Results are illustrated with an explicit example.
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1. Introduction

Dynkin games are game variants of optimal stopping problems, for the seminal study see
[12]. Such a game has two players, ‘buyer’ and ‘issuer’, and both of them can stop the
underlying process prior to the terminal time. In this paper, we study the following
formulation of the game. First, we assume that the underlying process X is a time
homogenous diffusion; we will elaborate the assumptions on X in the next section. At the
initial time # = 0, the players choose their own stopping times 7 (buyer) and vy (issuer) and
at the time of the first exercise, i.e. at 7 A vy, the issuer pays the buyer the amount

81X 7<) + 22X )1 (=y) + 83X )1 {7=y}; (1.1)

we will pose assumptions on the pay-off functions g; in the next section. An interpretation
of this is that, at any stopping time v, the issuer can cancel the buyer’s right to exercise, but
she has to pay the cost g>(X) to do so. Now, it is the buyer’s (issuer’s) objective to choose
the stopping time 7 (vy) such that the expected present value of the exercise pay-off

1(x, 7, 9) = Ee{e "™ [g1(X )1 (r<y) + 82X =gy + 83X (=] } (1.2)

is maximized (minimized). Here, r > 0 is the constant rate of discounting.

The objective of this paper is to study a version of this game with random time horizon,
the infinite horizon game given by the expression (1.2) being already analysed
comprehensively, e.g. in [2] and [14]. To introduce the random time horizon, we assume

*Corresponding author. Email: pjsila@utu.fi

© 2013 Taylor & Francis
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that, in addition to the diffusion X, there is also an independent Poisson process N defined
on the underlying probability space. Furthermore, we assume that the game expires at the
first jump time of the Poisson process, in other words we assume that the game has an
exponentially distributed random time horizon. The existence of the terminating event and
its rate is assumed to be known to the players, while the information of it is asymmetric:
we assume that the occurrence of the expiring event is observable only to one of the
players. Here, the information asymmetry has an interpretation as inside information.
Indeed, the player who observes the default taking place has more information than is
commonly available on the market and can be considered as an insider. We make a
distinction between the cases when either buyer (Game 1) or issuer (Game 2) observes the
jump of the Poisson process and study both of these cases separately.

Optimal stopping games are relevant for financial applications. For instance, a game
variant of an American option, where the issuer has the possibility to terminate the contract
early by making a payment, is introduced in [20] by Kifer. He shows that the pricing and
hedging of this contract reduces to solving a saddle point of an associated Dynkin game
and coins the contract as a game or an Israeli option. Explicit solutions for some perpetual
Israeli options are computed in [21]. Furthermore, a characterization of the value function
of a perpetual game option in terms of excessive functions is provided in [13] for general
one-dimensional diffusion dynamics along with a further discussion on explicitly solvable
games. For the pricing theory of Israeli options in a general semimartingale framework, see
e.g. [18] and [4]. There is also a branch of literature that studies convertible bonds (or more
general contingent claims) in terms of defaultable Israeli options, see e.g. [19] and the
series of papers including [4] and [5] for more recent references. A convertible bond is a
derivative security which can be converted into a given number of stocks by the holder and
cancelled for a charge by the issuer. Thus, the pricing of such contract has a natural game-
theoretic character. Our study touches this branch, since our random time horizon can be
naturally interpreted as a default time of the game. In addition, a Dynkin game with
random time horizon can be regarded also as a Canadized version of a finite horizon Israeli
option. Canadization is a method for pricing options with finite maturity introduced
originally in [9] and further extended in, for example, [21] and [22]. The concept of
Canadization was extended in [7] to handle stochastic control problems.

In economic applications of game theory, asymmetric information is an important
concept and, as we mentioned, our specification is compatible with the notion of inside
information. Obviously, this is not the only way one can formulate asymmetric
information in a game. For example, in [8] the game is set up such that neither of the
players know the true pay-off but they have only partial information on it whereas, in
contrast to our game, the time horizon is deterministic and known to both players. So in
general the information sets of the players are separate. However, if the pay-off matrix (g;;)
defined in Section 1 in [8] is reduced to a vector, be it row or column, then one of the
players will have full information as she knows the true pay-off. In this case, there is an
inclusion of the information sets and the interpretation of inside information applies.

Our approach to the problem is built on Markovian approach to Dynkin games. There
is a substantial literature in this area highlighting various parts of the theory. For instance,
studies [2] and [3] are concerned with deriving explicit characterization for the value and
saddle point equilibrium using classical theory of diffusions and standard nonlinear
programming techniques. A generalized concavity approach is used in [13] and [14] to
produce the optimal solution via the theory of excessive functions. In [15] and [25], the
authors study equilibrium properties of Dynkin games under very general Markovian set-
up. Our set-up and approach is closely related to [2] and can be regarded as a partial
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extension of it. We start our analysis by first deriving partly heuristically a free boundary
problem which gives us a candidate for the solution. To set up the free boundary problem,
we assume that the optimal continuation region is an interval with compact closure with
constant thresholds. Given the time homogeneity of the diffusion X and the fact that the
discount rate r and the jump rate of N are constants, this is indeed a reasonable assumption.

We derive necessary and sufficient conditions for the existence of a unique Nash
equilibrium for Games 1 and 2 under which the value functions can be expressed in a
(quasi-)explicit form. These values admit a decomposition on continuation region into
terminal pay-off and early exercise premium. We also carry out a comparison of the
solutions showing that whenever Games 1 and 2 have a saddle point solution, the value of
Game 1 dominates the value of Game 2. Furthermore, we show that if the pay-off g, is
non-negative, the value of the infinite horizon game dominates both the value of Games 1
and 2. Interestingly, we find that if g, admits also negative values, then the value of the
infinite horizon game can even be the smallest of the three. We discuss also the symmetric
information case where the expiring event is not observable to either of the players —
denote this as Game 3. In this case, we find that the value is in between the values of Game
1 and Game 2. We also show that the optimal continuation regions of Games 1-3 are
related in a way that can be described as follows: If you are able to observe the terminating
event, you will wait longer — The more you know, the longer you wait.

The reminder of the paper is organized as follows. In Section 2, we set up the
underlying dynamics and introduce the Dynkin games. In Sections 3 and 4, we study the
solvability of the games and discuss some implications of the information asymmetry.
In Section 5, we compare the optimal solutions of the games and study limiting behaviour
of the solutions. In Section 6, we illustrate the main results of the study with an explicit
example.

2. The games
2.1. Underlying dynamics

Let (Q, F,F,P), with F = {F,},~, be a complete filtered probability space satisfying the
usual conditions, see [6], p. 2. In addition, let W be a Wiener process on (), F, [, P). We
assume that the state process X is a regular linear diffusion defined on (Q, F,[F,P),
evolving on R, and given as the solution of the It6 equation

dX, = wX)dr + o (X)dW,;,  Xo = x, 2.1

where the coefficients u: Ry — R and o : Ry — R, are assumed to be sufficiently
smooth to guarantee the existence of a unique (weak) solution of (2.1), see [6], pp. 46—47.
In line with the most economical and financial applications, we assume that X does not die
inside the state space Ry, i.e., that killing of X is possible only at the boundaries 0 and oo.
Therefore, the boundaries 0 and oo are either natural, entrance, exit or regular. In the case a
boundary is regular, it is assumed to be killing, see [6], pp. 1820, for a characterization of
the boundary behaviour of diffusions. The assumption that the state space is R, is done for
reasons of notational convenience. In fact, we could assume that the state space is any
interval Z in R and all our subsequent analysis would hold with obvious modifications.
Denote as .o/ = (1/2)0 *(x)(d?/dx?) + w(x)(d/dx) the differential operator associated
with the process X. For notational convenience we denote Gg = ./ — 8 for a given
constant 8 > 0.
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For any given constant 8 > 0, we denote as Ef the class of real-valued measurable
functions f on R, satisfying the condition

{
E{j e‘B’If(X»Idr} < oo,
0

where ¢ := inf{r > 0: X, & R} denotes the lifetime of X. In addition, for any given
constant 8 > 0, we denote, respectively, as iz and g the increasing and the decreasing
solution of the ordinary second-order linear differential equation Ggu(x) = 0 defined on
the domain of the characteristic operator of X — for the characterization and fundamental
properties of the minimal B-excessive functions g and ¢g, see [6], pp. 18—-20. Denote as
Bg = tp/B(x)goB(x) /S8 (x) — go/B(x)lpB(x) /S'(x) the Wronskian determinant, where

2
S'(x) = exp (—J oﬁiyy)) dy>

denotes the density of the scale function of X, see [6], p. 19. We remark that the value of
the Wronskian does not depend on the initial state x but on the constant . For a function
fE EIB, the resolvent Rgf : R — R is defined as

¢
Ref)(x) = Ex{ J eﬁf(Xt)dt}, 2.2
0

for all x € R.. The resolvent Rz and the solutions ¢z and ¢g are connected in a
computationally very useful way. Indeed, we know from the literature, see [6], pp. 17-20
and p. 29, that for a given f € [,f the resolvent Rgf can be expressed as

(Ref 00 = By a0 | a0 )y + 85 0| gatrromi )y,
0 X

for all x € R, where n'(x) = 2/(0 *(x)S'(x)) denotes the speed density of X.

To close the subsection, we denote as N a Poisson process with intensity A > 0, and
assume that N is independent of the underlying X. Now, the first jump time 7 of N is an
exponentially distributed random time with mean 1/A. Denote as F = {.7A-' + },=0 the enlarged
filtration defined as F =F; Vo({T = s} : s = 1). In other words, the filtration F carries
the information of the evolution of underlying X and the first jump of the Poisson process
N. We denote as 7, the set of all F-stopping times and as 7, the set 7, augmented with 7,
i.e., the set of all [F-stopping times.

2.2. The games

Dynkin game is an optimal stopping game between two players, ‘buyer’ and ‘issuer’.
In contrast to classical optimal stopping problems, also the issuer can now exercise. Recall
now the definition of the expected present value of the exercise pay-off from (1.2).
We make the following standing assumptions for the pay-offs g;.

Assumption 2.1. We assume that the pay-offs g; : R — R, i = 1,2, 3, are continuous and
non-decreasing functions satisfying the ordering g; = g3 = g» and that g; is bounded
from below. Furthermore, we assume that g; € L',I and g; € CI(R+) nc 2(R+\D),
where the set D is finite and |g/(y=)| < oo for all y € D.

We make some remarks on Assumptions 2.1. First, the integrability condition is posed
to guarantee that the resolvent A(R,4,g1) is well defined for all A > 0. This assumption is
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integral for our study as the resolvent gives us a necessary tool to handle the random time
horizon. Second, our smoothness assumptions are stricter than those in [14] where only
continuity of the pay-offs is required initially. However, in [14], Section 4, where the
authors study the saddle point property (which is the main focus of our study), they assume
that g; € C TRA\D) N CHRL\D). A potential approach to reduce our smoothness
assumptions to this case could the convolution approximation method introduced in [1].
This analysis is, however, out of the scope of our study.

In order to propose a value and notions of equilibrium for the considered games, define
first the lower and upper values V and V as

V(x) = sup inf H(x T,v), V() = 1nf supH(x 7,7), 2.3)
€TYE TreT
where 7is the class of admissible stopping times. Following [14], pp. 1578, we remark that
g1 =V = V = g,. If, on the other hand, the values satisfy V = V, we say that the game
has the value V :=V =V, i.e. has a Stackelberg equilibrium. Moreover, if there exists
stopping times 7" and y " such that

H(x’ T? ‘y*) S H('x) 7*7 ‘y*) S H('x7 T*’ ‘Y)a

for all x € R, then the pair (7%, y") constitutes a saddle point, i.e., a Nash equilibrium of
the game. We remark that the existence of a saddle point implies the existence of the value
but the converse does not hold in general — for a study addressing this problem in a general
Markovian setting, see [15]. However, in our setting the underlying process is nice enough
so that Stackelberg equilibrium is equivalent to Nash equilibrium.

The main objective of this paper is to study two Dynkin games which are associated
via a certain type of information asymmetry. To make a precise statement, recall the
Poisson process N from the previous section. At the initial time # = 0, the underlying X and
exogenous N are both started. At the first jump time 7, the game ends. Thus, the considered
games have an exponentially distributed random time horizon which is independent of X.
The information asymmetry is introduced as follows: we assume that the occurrence of the
expiring event is observable only fo one of the players. Let us formalize this setting first in
the case when T is observable to the buyer; later this case will be referred to as Game 1.
First, recall the definitions of the sets 7 and 7, from the previous subsection. At the start of
the game, issuer chooses a stopping time from the set 7, and the buyer from the set 7;.
The expected present value I1; of the exercise pay-off is written as

Hl(xa 7 7) = Ex{eir(w\w [gl(XT)l{'r<y} + gZ(Xy)1{7>y} + g3(Xy)1{7:7}] 1{’T/\’)/ST}})
2.4)

and the upper and lower values are defined as

V,(x) = sup 1nf Hl(x 7,v), Vix)= inf supIl;(x, 7, y). 2.5)

€T\ YE Y€ToreT,
For Game 1, we denote the value function as V; and a saddle point equilibrium as (7}, ¥;).
The set-up of the second game, which will be referred to as Game 2, is completely
analogous. For Game 2, we assume that the random time 7 is a stopping time to issuer.
Similarly to Game 1, we define the expected present value II, of the exercise pay-off as

HZ(xa T, )’) = Ex{eir(ﬂ\w [gl(XT)l{‘r<y} + gZ(Xy)l {7>7v} + g3(Xy)1{7=7]] l{yATST] }7
(2.6)
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and the upper and lower values are defined as

V,(x) = sup inf Hz(x 7,v), Vo(x)= inf supIl(x, T, y). 2.7)
€T VT V€T 1T,

Analogously to Game 1, the value function of Game 2 is denoted as V, and a saddle point
equilibrium as (75, 7;).

3. Game 1l
3.1. Egquivalent formulation of the game
First, we introduce some additional definitions and notations. Following [2] (see also

[27]), define the operators Lﬁ and Lg for sufficiently smooth functions f : R; — R as

(28) @ = 58 w0 - B0,

(287) @ = 58 a0 — S £,

3.1

for a given constant 8 > 0. In order to simplify the upcoming notation, define the
functions g; : Ry —= R, i= 1,2, as

210 = g1(0) = AR ) ),

2200 = £200 = A(Rrag ) (0. G2
where g (x) = max{g(x),0}. We remark that since we assumed g; = g, also g = 2.
In this subsection, we transform Game 1 into an adjusted perpetual game and study its
solvability. To this end, we derive first a candidate G, for the optimal value function in a
partly heuristic way — for a related study in a different context, see [16]. We start with the
ansatz that the game has a saddle point equilibrium. Because the exponential distribution
has memoryless property and the underlying dynamic structure is time homogeneous, we
assume that the state space R, is partitioned into continuation and action regions, where
the continuation region (z},y}) C Ry has compact closure. If x € (z},y}), the players
wait by definition. Now, in an infinitesimal time interval df, the Poisson process jumps
(expiring the exercise opportunities) with probability Ads. Because the buyer can exercise
at time 7, she will exercise at that time if and only if g; = 0; this yields the terminal pay-
off gf(x). On the other hand, with probability 1 — Adz the contract lives on yielding
additional expected present value. Denote as G; the candidate for the value function.
Formally, this suggests with a heuristic use of Dynkin’s theorem, see e.g. [24], that

G (x) = gf (DAt + (1 — ANE, [e "G (X4)]
= Ag{ (0)dz 4 (1 = AdD)[G(x) + G, G (x)d1]
= G1(x) + G,G (x)dt + A(g] () — G1(x))dr,

for all x € (z],y]) under the intuition d¢? = 0. This yields the condition
GriaGi(x) = —Ag{ (%), (3.3)

for all x € (z],y]) — for an analogous result, see Equation (10) in [9]. The solutions of
equation (3.3) can be expressed as Gi(x) = )L(R,Hgf)(x) + 12 (X) + 2040 (x) for
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some positive constants ¢; and c,. We assume that the candidate G, satisfies that the value-
matching condition, i.e., is continuous over the boundary of (zT , y]) This condition can be
expressed as

MR8l ) (2]) + 1 (2)) + 2040 (2]) = £2(2),
A(Rr+AgT) (yf) + 1 (yT) + c2@r4a ()’T) =81 (yT)

Using the notation from (3.2), it is a matter of elementary algebra to show that

_ §0r+/\(y>lk)92 (ZT) — gDr-H\(ZT)é]()ﬁ) by
Cl (Pr+A(yT)¢’r+/\(ZT) - go,ﬂ(z]“)d,rﬂ(y]k) 1(z1,y1)
¢r+A(ZT)§1(yI§ - l;l’rJr/\Ey ))gz (ZT)

) -

(3.4)
— 1
“ Pr+A (yT) Uria (Z Pr+a ZT Uria (yT

y = (@,0)-

To proceed, denote as T ) the first exit time of X from the interval (z’l‘, yI) . We know from

Theorem 13.11 in [11], that the function x — E, ei(rH)T‘ZT"'T) solves the boundary value

problem G, \u(x) = O on (z], y]) with boundary conditions u(Z}) = u(y}) = 1. Using this,
we find that

—(r+A) | 7= *
Ex{e (+)("IMZI)1

—(r+A) | 7= *
Ex{e (“(“IA’Z])l

)

_ Cra(X)Prya (ZD — Prya (ZT) Yra(x)
Dr+-1 (yT) d’r-&-/\ (ZT) — Pria (ZT) dl”""/\ (yT)

} e () = e (5])

('rv»,r <y}
1

K> )
(Ty‘ 7:'}

1 1

B Pr+a ()’T) d’r-&-/\ (ZT) = Pr+a (ZT) dlr-&-/\ (yT)
see also [23]. Consequently, the candidate G can be rewritten as

. —(HA(7 s Ay
Gi(x) = )\(R,-+Ag1+)(x)+g1(y1)Ex{e A 1w<m}

(3.5)
o —(rH (T Ay)
—i—gz(zl)Ex{e 1 74 1{7'\,*>7.*}}7
1

for all x € (z],y;). Since the sample paths of X are (almost surely) continuous, an
application of the strong Markov property of the underlying X yields

T # A

VAT
G1<x>=Ex{AJ e g (X, )ds
0

—(r+ (T AY) [
1 °1

+e 81X ) (ro<yy + gz(ij)l{Tv*>yj}] } (3.6)
1 1 “1 ‘1 71 1

for all x € R;. This result indicates the form of the equivalent perpetual game. The next
proposition confirms that this partly heuristic derivation gives the correct form of the
adjusted perpetual problem. For a rigorous proof we though need an auxiliary lemma.

LemMA 3.1. For 7 € T, there exists 7 € Ty suchthat TAT =7 AT as.



166
770 J. Lempa and P. Matomdiki

Proof. See [26], Lemma, Section V1.3, p. 378. O
ProposITION 3.2. The upper and lower values for Game 1 can be rewritten as

‘71 ()C) = inf sup 1zll(xa T, Y)a Zl(x) = Ssup inf 1:[1()6, T, 7)7
Y€To7eT, €T, €70

where

- T/\‘y
(x, 7,9) = E{AJ e Vet (X)ds + e TN o (X)L ey
0

+ g2(X'y)1{T>y} + g3(X')')1(7_“/}:| }

for all x € R

Proof. Let 7, denote the set containing @—stopping times satisfying 7 = T for all w. We
know that for all 7 &€ TA‘], there is a 7 € 7| for which 7 = 7 A T. Because buyer’s
objective is to maximize the expected present value of the pay-off and she is aware that
after the observable expiry time 7 the pay-off will be zero, we reason that
Vi(x) = sup inf Ex{eir(TA‘y)[gl(XT)l[7<y} + 82X )1 (329} + 83X D =y 1L {ray=7) }
reT,vET0

= sup inf Ex{efr(my) [(gl(X’r)l{T<T} + 8 XD =11 r<y) + 82(X ) 1>
’TET]’}/ETO

+ 83X Dy W {ray=1}
= sup inf E{e™ " [(g1(X)1(2<r) + & XD 12211 (5<y) + &2X)] ()
e, Y€
+ &3(X ) 1=y 11 (3ay=1y}
= Sellff yiél;UEx{efr(fM) [(g1(X A 71y + 8T XD L (=1 7ey) + 82X D {75y
o 1
+ g3(X )=y 1}

= sup inf E.{e ™ D" [(g)(X )1 <1y + &7 X)L {r=1)) 1 (saT<)
€T YETo

+ gZ(X'y)l{TAT>'y} + g3(X7)1{TAT:‘y}]}-
(3.7)

Now, it follows from Lemma 3.1 that the last expression is equivalent with the form

sup inf E {e™ "V [(g\ (X)) (rer) + &7 XP)1 (=) Lizar<y)
TET(]‘VETO

+ gZ(X‘y)l{TAT>‘y} + gS(X‘y)l{T/\T:y}] }

Finally, let 7, y € 7. Since T is independent of X, we conclude that

E {7 DM [(e\(X )1 r<1y + &7 XD L r=1)) L za1<9) + 82X )1 (zaT5)
+ 83X D rar=9y | (L =) + Lzt }

=E {e g XD iray=r) + €™V [g1(XD) (7<) + 82X ) {r>y)
+ 83(X7)1{7=y}] 1{7/\'y<T}}

T/\‘y
= E{AJ e Vg (Xds + e VI [gy (X ) L ray) + 82X )1 (52
0

+ g3(X'y)1{1=y}] }a
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for all x € R. This computation proves the claimed result for the lower value V.
The result for the upper value V; is proved completely similarly. ]

In Proposition 3.2, we showed that the random horizon game can be transformed into
an equivalent adjusted perpetual game. In particular, the existence of the value function for
Game 1 follows now from [14] even when the pay-offs are assumed only to be continuous.
Moreover, we observe that the form of the value function (3.6) associated with constant
threshold policy is consistent with Proposition 3.2. It is also worth mentioning that the
buyer follows actually a stopping rule ‘Stop at time T A T which results into the pay-off
g1(X)1(z<1) + g7 (X7)1{+=7). This property was used in (3.7).

Put slightly different, Proposition 3.2 essentially shows that the value of the random
time horizon game under the extended filtration F can be determined via an associated
perpetual dividend paying game under the reference filtration F generated by the
underlying asset price X. The same idea appears in varying contexts in the series of papers
by Bielecki et al. including [4] and [5]. In particular, Proposition 3.2 resembles Lemma 3.6.
in [5] where asset prices follow general semimartingale processes and the default of game
option is modelled using a hazard process. In our case, the hazard process would be the
independent Poisson process N. We also refer to [10], where an analogous result is proved
for optimal stopping problems with underlying diffusion dynamics.

3.2.  Necessary conditions

Having the expression (3.6) at hand, we proceed with the derivation of necessary
conditions. Define the function Q; : Ri — Ry as

Q1(x,2,y) = E{e” "™V [21(X )] (1<) + 82(X3) 155y, ] }
= (2, V) Pra(X) + ho(2, Y) @ria (),

recall the definition of the functions g; and h;, i = 1,2, from (3.2) and (3.4), respectively
(cf. [2], expression (15)). We assume now that the thresholds zI and yT give rise to an
extremal expression for Q; in the sense that for all fixed (initial) states x, the point (z’l‘, yT)
is a saddle point for the surface (z,y) — Q;(x,z,y). Using Lemma 4.1 in [2], we conclude
that the thresholds z| and y| must then satisfy the conditions

L8 — @800 = 0,

ANk FAA g 3.8
L) — L8007 = 0. 69
Define now the candidate
21(x), X =y,
Gl(-x) = )\(Rr-&-/\gii»)(x) + Ql(xa ZTayT)7 x € (ZTayT)a (39)
gZ(x)7 X = ZT&

where 7z} and y| are given by (3.8). We point out that it follows from Lemma 4.1 in [2] that
G, is continuously differentiable over the exercise boundaries.

It is interesting to note from (3.9) that the candidate G; admits a value decomposition
on the continuation region. The resolvent term A(R,;,g]") gives the expected present value
of the terminal pay-off at the exponentially distributed independent random time T
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(pay-off of a randomized European contingent claim) and the term @, has the natural
interpretation as the early exercise premium, cf. [9], p. 604. This decomposition is
analogous to Equation (12) in [9], where a Canadian put option is considered in the
classical Black—Scholes framework.

Having the candidate G, formulated, the next proposition contains our main result on
the necessary conditions for the optimal solution for Game 1.

ProposITION 3.3. Assume that there is a pair (z,y;) satisfying conditions (3.8) and that
there exist thresholds X;, i = 1,2, such that

Gr128i(x) £ 0, wheneverx = %;. (3.10)

Then the pair (z},y;) is unique and z; < %, and &; < y;. Moreover the value of Game 1
reads as V(x) = Gi(x) for all x € R, where G is defined in (3.9).

Proof. We know from [2], Theorem 4.3, that under assumption (3.10) a pair satisfying
(3.8) is necessary unique and that z; < %, and %; < y]. The proof that the value of the
game reads as in (3.9) is similar to that of Theorem 4.3 in [2], the only difference being that
g is replaced by g;, for i = 1,2. O

In Proposition 3.3, we showed that given the additional condition (3.10) a solution of
the pair (3.8) is necessarily unique. From a practical point of view, this is a convenient
result. Indeed, if we attempt to solve the pair (3.8) numerically for a particular example
and our scheme converges to a solution, we can be sure that it is the unique optimal one.
Condition (3.10) was needed in the proof of Proposition 3.3 to assure that functionals
L ™g; behave nicely enough for the uniqueness result to hold — remember that
(" “g )Y (x) oc (QH_ Ag,) (x). We propose in the next lemma a set of sufficient conditions for
the assumption (3.10).

LEMMA 3.4. Assume that there are thresholds %;, i = 1,2, such that
Grgi(x) = 0, wheneverx = ;.

In addition, assume that

® g(x) =0 for all x > 0 or that G,g; is non-increasing, and
e (gf — g2) and G,g, are non-increasing.

Then condition (3.10) holds.

Proof. The result follows from the expressions G181 = G,g1 + A(g] — g1), where g — g;
is non-increasing and G,1\8> = G,&>» + A(g] — g2). u

We note also from Proposition 3.3 that the stopping times 7,» and Ve do not tell the
entire story about the optimal stopping rules. Indeed, the optlmal stoppmg rule for the
issuer is ‘stop at time Yo = = inf{tr = 0|X, = z|'}", but for the buyer optimal rule is ‘stop at
time 7, = inf{t = 0|X, = yl} but if T < 7+, stop at time T whenever g,(X7) > 0’ so the
optlmal rule for the buyer is not a pure threshold rule. However, it is analogous to the
exercise rule of a finite horizon American option. Consider, for example, American call
option in classical Black—Scholes framework. Then it is well known that the optimal
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exercise boundary is given by a decreasing, concave curve in space-time truncated at the
fixed terminal time. In our case, the buyer’s optimal exercise boundary is of rectangular
shape in space-time, but its length in time is random — see [9], p. 605, for the same
observation for a Canadian put option.

While Proposition 3.3 catches a relatively large range of problems, our assumptions
are not usually satisfied if exercise pay-offs have option characteristics — for example if
gi(x) = (x — ¢;))*, where ¢; > ¢, > 0. In the next result, we propose a set of necessary
conditions for a class of simple option type problems.

COROLLARY 3.5. Assume that there exists X; < X; so that g;(x) = 0 on (0, %;), (G428 >0
on (X;,%;), and (G,422;) < 0 on (X;,00), i = 1,2. Assume also that the threshold

$: = argmax &)
» v ) — 2 e 0)

exists. If there exists a pair (z},y}) € (%2, %) X (&1, J;, ) satisfying the first-order conditions
(3.8), then the conclusion of Proposition 3.3 is satisfied and the value of the game reads
as in (3.9).

Proof. The result follows from Proposition 3.3 after noticing that y;z is the corner solution
to the lower equation of (3.8) (or its alternative formulation, see (20) in [2]). ([

If there does not exist an internal solution, then the pair (X,, 5);7) constitutes a corner
solution, which is a saddle point solution and the solution reads as

gl(-x)7 X = j\};zu
V](X) == )\(Rr+AgT)(x) + Ql (-x;)_cbj};z)v x € ()_5275);2>7
0, X = X».

As mentioned before, one possible way to generalize the result above to a more general
class of option type pay-offs would be the use of convolution approximation method from
[1], but this is out of the scope of this study.

3.3.  Sufficient conditions
The main objective of this section is to propose a set of sufficient conditions for the
solvability of the game. To this end, we prove first the following lemma.

Ur(0) ~ Prpa(x) ; Prea®) =
5 = v for all x < b and the function x — S/ is

LeEMMA 3.6. Let b € R,. Then
monotonically increasing.

Proof. Let x<b < co. From [6], p. 18, we have E,{e”’"}= {‘/’jg)), where
7, = inf{t = 0| X, = b}. Then

P _ —r —(r+NTy Prpa(x)
—E{e™) > E, vy = Yt
oy Drle T = Ede TR =0 T )

From this, we also see that % is monotonically increasing. (]
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The next theorem, which is the main result of this subsection, gives a set of conditions
under which the optimal solution for Game 1 is given by (3.8) and (3.9).

THEOREM 3.7. Assume that the boundaries 0 and oo are natural for the underlying X, that
condition (3.10) holds, and that for i = 1,2,

(1) Grgi g2 € Ly,

: &)
(2) limy—e e

(3) G,g1(x) > G,g>(x) for all x € R, \D.

)

Then there exist a unique pair (z],y]) satisfying the first-order conditions (3.8) and the
value V, of Game 1 reads as in (3.9).

Proof. First, we find by coupling assumption (3) with the inequality g» = g that

(Gra81) @) = (GrgD(X) + Mg (x) — g1(x) > (Gr82)(x) + A(g] (x) — g2(x))
= (Grird2) ), 3.11)

for all x € R, \D. Furthermore, since the functions g; € L7, assumption (1) implies that
Griadi = Grgi + Mgl — 8) € L, (3.12)
for i = 1,2. Our next objective is to show that
Tim (L™ g)(x) = Hm(Ly™g)(x) = 0. (3.13)

To this end, let » € R .. Since the function % is decreasing, see Lemma 3.6, we find

8i(x)
‘»[fr-k—)\(x)

_ i)

gi) = AR 28))|
= im =
Pria(b) x—e

(%)

0= lim

X—00

0, (3.14)

for i = 1,2. Here, the last inequality follows from assumption (2) and Proposition 4 from
[17]. By coupling (3.14) with (2.1) and (3.12), we find that

o0

(L)) = _J @ria(Gra8) () (y)dy — 0, as x — oo,

X

where the integral representation follows from [2], Corollary 3.2. In addition, since g; and
g» are bounded from below, Corollary 3.2 from [2] implies that

(LT#HAI')(X) = J B A )G 28I (y)dy — 0, asx — 0.
0

Thus, we have established condition (3.13). Now, conditions (3.10) and (3.11)—(3.13)
guarantee that the claimed result follows from [2], Theorem 4.4. U

Theorem 3.7 states a set of conditions under which a unique pair (z;, y;) satisfying the
first-order conditions (3.8) exists and under which the value of Game 1 can be written as
(3.9). We remark that these conditions do not depend on the jump rate A. Furthermore,
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we know from Lemma 3.4 that condition (3.10) can be substituted with a set of conditions
that are also independent of A. Thus, when using our results to check whether a particular
example of Game 1 has a (unique) solution, the value of A does not play any role.

4. Game 2
4.1 Equivalent formulation of the game

This section is devoted to the study of the solvability of Game 2. The analysis is
completely analogous to Section 3. Again, we begin with the ansatz that the game has a
saddle point equilibrium and that the continuation region (z,,y,) C R4 has compact
closure. Now, because the terminal date 7 is observable to the issuer and she knows that
after that time the buyer cannot exercise, it is clear that she will exercise at time 7 if and
only if g»(X7) < 0. Thus, in an infinitesimal time interval dz, the Poisson process jumps
with probability Adr leaving the buyer with pay-off g; (x) = min{g(x),0}. With
probability 1 — Adr there is no jump which results in additional expected present value.
Analogously to Game 1, we deduce that the candidate G, must satisfy the condition
GriaGa(x) = —Ag, (x) for all x € (z5,y5) and, consequently, the candidate can be
represented as
TNy

V. ’YZ*
Gar(x) = EX{AJ PPt Nse (X )ds + e
0

82065175} @.1)

—(r+/\)(7'v« Ay.#)
2R e (X ) <y
2 72 2

for all x € R;. As in Game 1, this form is the correct form of the value function for the
associated perpetual game.

PROPOSITION 4.1. The upper and lower values can for Game 2 be rewritten as

Va(x) = inf sup[(x, 7, 9), V,(x) = sup inf IL(x, 7, 7),
€T oreT, €T YETo

where

- T/\’)/
L, 7,9 = E{AJ e "Vg (Xds + e TN [y (X)L r<y) + 82X ) (12
0
+ g3(Xy)1 {1=y]]}

forallx € R ..

Proof. Completely similar to the proof of Proposition 3.2. (]

Similarly to Game 1, we remark that the issuer follows now a stopping rule ‘Stop at
time y A T’ which results into the pay-off g>(X,)1{y<r) + &, (X7)1(y=1}.

4.2. Necessary conditions
In order to simplify the notations, we denote
210 = g1(0) — A(R4a83 ) (),

Z(0) = g2(x) = A(Rr4285 ) (). (4.2)
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Moreover define the function Q5 : Ri — R, as

Ox(x,z,y) = Ex{e_(rﬂ)(ﬂm‘") I:(gl(XTy)l{Ty<')’z} + gZ(X*/z)l{‘er:}]}
= k12, V)2 (X) + k2 (2, ) @ria (%),

where the functions & : Ri — R are defined as

_ o (0082 — @ (281 (y)
K1@Y) = G @ = e @A)’

_ l/jr (Z)g (y) —_ lpr (y)gZ(Z)
k223 = G @) = oAU

(4.3)

Analogously to Section 3, we assume that for every fixed x, the surface (z,y) — Qa(x, z,y)
has a unique saddle point (z;,y,), which does not depend on x. Then the first-order
necessary conditions for this saddle point can be written as

LM E(5) — L gD = 0,

: 5 4.4
L)) — (L 30)(3) = 0. 4.4

The next proposition contains our main result on the necessary conditions for the optimal
solution for Game 2.

PROPOSITION 4.2. Assume that there is a pair (25, ,) satisfying conditions (4.4) and that
there are thresholds X;, i = 1,2, such that

G,28:(x) = 0, whenever x = x;. 4.5)

Then the pair (z3, y5) is unique and z; < X; and ¥; < y;. Furthermore the value V, of Game
2 reads as

1(x), X =y,
Vo) = 4 MR8 + Qa(x,25,¥5), X € (23,)5), (4.6)
gZ(x)7 X = Z;

where the functions k;, i = 1,2, are defined in (4.3).

Proof. Completely analogous to the proof of Proposition 3.3. (I

Similarly to Proposition 3.3, we posed in Proposition 4.2 the additional assumption
(4.5) to assure that the functionals L' **g; behave well enough so that the uniqueness of the
solution is guaranteed. In this case, as in Game 1, we propose sufficient conditions to (4.5)
which do not depend on A. These conditions are listed in the next lemma.

Lemma 4.3. Assume that there are thresholds X, = 1,2, such that
(G,g)(x) = 0, whenever x = %;. In addition, assume that

e (G,g1) and g, — g; are non-increasing, and
e (G,g») is non-increasing or g» = 0 for all x > 0.

Then condition (4.5) holds.
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Proof. Similar to the proof of Lemma 3.4. ]

Similar to Proposition 3.3, the stopping times Ty and Yz, do not tell the whole truth
about the optimal stopping rules. The optimal stopping rule for the issuer is now ‘stop at
time Vi butif T < Y, and g,(X1) < 0, stop at time T, else do not stop.’, whilst the optimal
stopping rule for the buyer is ‘stop at time T = inf{r = 0|X, = y,} . Analogously to
Game 1, the value is decomposed in continuation region into the terminal pay-off
A(R,+g5 ) and the early exercise premium Q> (x, Z5, y5).

COROLLARY 4.4. Assume that there exists X; < X; so that g;(x) = 0 on (0, %;), (G,+2&:) > 0
on (%;,x;), and (Gr+2&i) < 0on (Xj, ), i = 1,2. Assume also that the threshold

¥i = argmax §10)
- v 0) — L e 0)
exists. If there exists a pair (z3,,) € (%2, %) X (X1, V, ) satisfying the first-order conditions

(4.4), then the conclusion of Proposition 4.2 is satisfied and the value of the game reads as
in (4.6).

Proof. Proof is similar to that of Corollary 3.5. O

If there does not exist an internal solution, then the pair (X;, j);z) constitutes a corner
solution, which is a saddle point solution and the solution reads as

gl(-x)7 x = 5];:‘2’
Vo(x) = A(Rr+Ag£)(x) + QZ(x7x255§2)7 x € (-)_C275);:’2)5
0, X = X.

4.3. Sufficient conditions

The next theorem contains a set of sufficient conditions for the optimal solution for Game 2.

THEOREM 4.5. Assume that the boundaries 0 and oo are natural for the underlying X, that
condition (4.5) hold, and that conditions 1—-3 in Theorem 3.7 holds for i = 1,2. Then there
exist a unique pair (z;, yZ) satisfying the first-order conditions (4.4) and the value V, of
Game 2 reads as in (4.6).

Proof. The proof is analogous to that of Theorem 3.7. (I

Theorem 4.5 states sufficient conditions under which an optimal pair (z5, y5) uniquely
exists and under which the value of Game 2 can be expressed as in (4.6). Using Lemma 4.3
condition (4.5) can be expressed independently of A. Therefore, similarly to Game 1, we
remark that for a particular example, the conditions of the theorem can be checked without
any reference to the jump rate A.

5. Comparison and asymptotics

In the previous sections, we studied the solvability of Games 1 and 2. In particular, we
derived necessary and sufficient conditions for the solutions to be given by (3.9) and (4.6).
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In this section, we study further the properties of these solutions. In particular, we are
interested in finding orderings of the stopping thresholds and the value functions.
Furthermore, we study the asymptotic behaviour of the optimal characteristics with
respect to jump rate A. To this end, we define two more Dynkin games. First of these is the
infinite horizon Dynkin game, which is defined using (1.2) and (2.3) in the absence of
terminating event taking place at time 7. For a comprehensive analysis of this game, see
[2]. Denote the value of this game as V and the optimal exercise thresholds as (z*,y").
The second additional game is the game with random time horizon in the case where the
terminating event is not observable to either of the players — we refer to this game as
Game 3. The upper and lower values of Game 3 are infygffosupTgf[Ol:h(x, 7,7y) and
supTeTOinf,/eq—Ol:h (x, 7, y), respectively, where

Ma(x, 7,9) = Eo{e” "™ g1 (X) 72y + 82X )1 (r29) + 83X ) =y }-

In fact, Game 3 is an infinite horizon game with discount rate r + A. Hence, we know from
[2] that under certain assumptions this game has a Nash equilibrium given by the unique
thresholds (zz7 yz). We denote the value of this game as V3. It is worth pointing out that
Proposition 3.2 implies that if the function g; is non-positive, the value of Game 1
coincides with the value of Game 3. Similarly, Proposition 4.1 implies that if the function
g» 1s non-negative, the value of Game 2 coincides with the value of Game 3.

5.1. Ordering of the thresholds and the values

The following proposition is our main result on the ordering of optimal characteristics of
the games.

PROPOSITION 5.1.

(A) Assume that Game 1, Game 2 and Game 3 have unique saddle point solutions. Then
the following orderings hold
o Vi(x) = Vi(x) = V,(x) everywhere.
e z; =7z, =7 and y, = y; =y, always.

(B) If in addition the infinite horizon game has a unique saddle point solution and g, is
non-negative, then

e V(x) =Vi(x) =V3(x) = V,(x)forallx ER,.
e == =handy =y =y, =y,

Proof.

(A) Let us first prove the orderings between Game 1 and Game 2. Recall the definitions
of Iy (x, 7, y) and I, (x, 7, y) from Propositions 3.2 and 4.1, respectively. Now

5 TAY
I(x, m,y) = EX{AJ e UTsgt(X)ds + e~ rtAEAY) [gl(X7)1{7'<1/}
0
+82(X ) =y} + 83X )=y ] }
TAY
= Ex{/\J ef(r+)\)sg2* (X,)ds + e*(r-‘r)x)(‘r/\)’) [gl X1 (7<)

0
+8 XDy + 83X D =] } = [L(x, 7, 9),
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forallx € Ry and 7,7y € 7. Thus,

Vi(x) = sup inf Hl(x T,7y) = sup 1nf Hz(x 7,7y) = Va(x) 5.1)
€T Y YET €T, YE

Suppose now, contrary to our claim, that y; < y; and let x € (y},y5) so that x is in
the stopping region of Game 1, and in the continuation region of Game 2. Then
Vix) = g1(x) < Vy(x), contrary to (5.1). The same reasoning applies to the case
2z, = z,. Next, recall the definition of I15 from beginning of the section. We see that
ﬁ] = l:[3 = l:[2 and using reasoning as above we find that V; = V3 = V,. The claimed
inequalities for the thresholds follow as above.

(B) Let g, be non-negative and recall the definition of I1(x, 7, y) from (1.2). We
shall compare it to II; from (2.4). We know that the value function satisfies V(x) =
sup,et,inf,e7,IL(x, 7, y) and similarly V(x) = sup,e7,infye7,11(x, 7,y). To prove
the claim, we first write

Vi(x) = maxq sup inf II;(x,7A T, y); sup inf H](x TV T,y (5.2)
€T, VE S €T Y YET

Now, for the first term on the right-hand side of (5.2) we observe that

sup inf IIy(x, 7A T, y) = sup inf II(x,7A T, ). (5.3)
TETIYETO TET]YG 0

For the second term, we find the following

sup inf Il y(x,7Vv T
Te'JPIVETO 1( 13’)

= max{ inf II;(x, T, y); inf Hl(x,OO,y)} = max{ inf II(x, T, y); inf Hl(x,OO,y)}
¥€To ¥€To Y€Ty ¥ETo

= max{ inf II(x, T, vy); inf II(x, oo, 'y)} = sup inf II(x, 7V T, ). 5.4)
¥€To ¥€To <7,7€To
Here, the first inequality holds since g, is non-negative. Furthermore, the second

inequality holds since the stopping times 0 and oo belong to 7;. By substituting (5.3)
and (5.4) into (5.2) we obtain

Vi(x) = maxq sup inf II(x, 7 A T,~); sup 1nf H(x TVT,7y)
eT,Y€To €7, 7€

= sup inf Il(x, 7, y) = V(x), (5.5)

€T, ‘yE 0

where the last equality follows from the fact that 7| = 7 in the absence of terminating
event.

Suppose, contrary to our claim, that y* < y’{ and let x € (y*,y’f), so that x is in the
continuation region of stochastic time horizon case, and in the stopping region of
infinite time horizon case. Then V(x) = g;(x) < V(x), contrary to (5.5). The same
reasoning applies to the case z; = z". [

Intuitively, item (A) of Proposition 5.1 is not surprising. Indeed, if the issuer has inside
information about the terminating event, it will make the value of the game smaller as
there is one additional stopping time in the set over which the issuer minimizes. Similarly,
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if the buyer has inside information about the terminating event, the value will be larger.
In Game 3, the value is naturally in between these two extremes. Furthermore, the exercise
thresholds are ordered as one could guess from orderings of the value functions, the
principal idea being: The more you know, the longer you wait.

The item (B) is also intuitively quite clear. Since g, = 0, there is no risk of ending up
on trajectory leading inevitably into negative pay-off. By coupling this with the fact that
Game 1 will end in finite time almost surely, the ordering V = V| becomes evident as
there is less time to maximize the pay-off which is bound to be non-negative. We stress
here that the positiveness of g5 is indeed required for the inequalities V = V4, z* = 7] and
y* =] to hold. We will give a numerical example at the end of Section 6 where these
inequalities are reversed for a function g, that takes also negative values.

5.2. Some asymptotics

In this subsection, we study the limiting behaviour of the optimal characteristics of Games
1 and 2 when the jump rate A tends to infinity as well as when it tends to zero. The next
proposition is our main result on this matter.

PrOPOSITION 5.2. Let X; be the greatest point such that g;(x;) = 0. The value functions V,
i = 1,2, and the corresponding optimal thresholds satisfy the limiting properties

g1, x=Xx
lim Vi(x) = Vo) =< 0, x € (X2,%1)
ox) x=x.

and
limz; =z*
A—0

}%V[(x) = V(x) and }‘in(l)y:f —

Proof. We will prove the proposition only for Game 1; Game 2 is handled similarly. Let
us first prove the case A — oo. Recall from (2.4) and (2.5) that the value of the Game 1
reads as

Vi(x) = sup inf I1y(x, 7,7y) = inf supll;(x, T, ),
1(x) Tejpﬂe% 1(x, 7, 7) yETUHQ] 1(x, 7,y)

where Hl(xa T, ’y) = EX{eir(TAw [gl(X’r)l{’r<7} + g2(Xy)1{T>y} + g3(X7)1{7=7]] l{TAyST} }
Letting A — o0, we see that

ILx,7,yy=0, if 7,y>0

Hl(xa77’y>:gl(x)a 1fT:O<’y

H]()C, T, 7) =g2(x), ifr>0= Y

Hi(x, 7)) = g3(x0), ifr=0=y. (5.6)
In light of these findings, let us show that the claimed function V* is indeed a saddle point
solution when A approaches to infinity. There are three cases to be considered depending
whether x = X, x € (¥;,X;) or x = X. (Note that since g» = g, we always have X, = ).

Let x = X,. Now g(x) = g3(x) = g»(x) = 0 and so we can check straightforwardly,

using  (5.6), that sup,er inf,er ILi(x, 7, y) = g2(x) = inf e sup,er 1L (x, 7, y).
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The same reasoning applies also to the cases x € (X,,X;) and x = X, and the claimed
limiting property follows.

Next, we turn our eyes on the case A — 0. Since g/ € L}, we find that A(R,+Ag])
(x)— 0as A— O for all x € R . Given this limiting property together with the definition
of Vi in (3.9), we find that the claimed limiting property holds. Finally, given the
convergence result of value function V, the claimed convergence results hold also for the
thresholds z} and y;. O

It is interesting to observe that the values of Game 1 and Game 2 are the same at the
limit A — 0 and also at A — oo, In the limit A — 0, this result is intuitively plausible: if the
expected waiting time for the Poisson process to jump is infinite, the game will not expire
unexpectedly, and as a result we get the solution of an infinite horizon game. Also the limit
A — o0 has a natural explanation: there is no advantage of observing the jump, since both
players already know that the jump will occur at the time zero. While our asymptotic
analysis is general in terms of the underlying dynamics and pay-off structure, it does not,
unfortunately, answer the interesting question about the rate of this convergence.

6. Explicit example with geometric Brownian motion

We illustrate the main results of the study in this section with an explicit example. Let the
underlying diffusion be a geometric Brownian motion, that is, let X be the solution of the
It6 equation

dX, = uX,dt + o X,dW,, 6.1)

where W is a Wiener process. Furthermore, we assume w € R, o > 0 and that r > .
Further let g;(x) =x —c¢; and g(x) =x — ¢, and assume that ¢; > ¢, > 0, so that
g2 > g1. Given this set-up, we find that (R,4,g)(x) = x/(r + A — ) — ¢;/(r + A). Also
clearly g,,2>» € L].

In this case, the decreasing and increasing fundamental solutions of the ordinary
second-order differential equation (o — Bu =0 are @g(x) = x” and Pp(x) = X%
respectively. Here

1 [1 !
%ﬁ:p<§02 _M+(_1)l\/(§0'2_lb)2+20'23>,

for i = 1,2, are the solutions of the characteristic equation %a'zyi(y,- — D+ py; —r=0.
Finally, the scale density reads as §'(x) = x 2%/ ",

6.1. Game 1 has a solution

We know that (R,4rg7)(x) satisfies the differential equation §o Xx*(R.1ag])"(x)+
x(Rr4ag) (xX) — (r + MN)(Rr4ag7)(x) = —gf (x). Therefore (R,1\g]) satisfies the
following conditions:

a1 (x) + a2 (%), X =c

-+ —
(Rreag 1)) = { B3 Urr (D) + W@rir () + Rrarg)), x> ci.

Since (R,+187)(0+) # co, we must have a, =0 and since lim o ((R418])(x)—
(Rr+281)(x)) = 0+, we must have az = 0. Furthermore (R,Hgf) is continuous and
differentiable. Thus, the coefficients a; and a4 can be solved from conditions
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1imx—>cl+(Rr+/\g;r)(x) = limx—vcl—(Rr+)\gfr)(x) and 1imx—>c1+(Rr+AgT)/(x) = lim,—, -
(Ry+ )‘gr)’ (x). It is a matter of elementary calculation to show that

(R1281) (c)DYra(c) = Rrag)(c)Y,,\(c)
OraaleDP, \ (1) — @)\ (c)Prialcr)

(Rr281) (c)Pria(c) = Rrag)(e)DP, \(c1)
@r+A(Cl)¢/r+A(Cl) - QDIH_)\(Cl)l//rJr)\(Cl) '

a) = m ((Rr+A81)(61) + €0r+A(01)>

as =

Next, we show that the presented set-up satisfies the sufficient conditions of Theorem 3.7.

Since G,gi(x) = (w — r)x+rc;, for i =12, we find that G.g; € L], for i = 1,2. The

assumption ¢; > ¢, implies that G,g; > G,g, — thus conditions (1) and (3) in Theorem (3.7)

hold. Moreover, since we assumed r > u, we have that 7, > 1, therefore g;(x)/i,(x) =

x!7% + ¢ix 7%, fori = 1,2, satisfy condition (2) in Theorem 3.7. Finally, for condition (3.10)
recall that §; = g; — A(R,+ag7)- Thus, G128 = G.gi + A(g] — g and we get

(w—r—=Mx+F+n1c;, x<c

Grag1(0) = (m — r)x + rey, X =cy,

(U =71 = x+(r+ Aca, x<c¢

Gria&2(x) = (= Pt (4 Nes — e, 12,

From these expressions, we see that condition (3.10) holds and x| > c;.

It follows that we can apply Theorem 3.7 and, consequently, that there exists a unique
pair (z},y;) satisfying the necessary optimality conditions (3.8). If z; < ¢;, conditions
(3.8) can be written as (to simplify notation, we write y; := y{“)

(vo — 1)(r— . 2 2
(y7hastn = 7o) + 20500 = Pm)y WA = B o, = 1) = )

oy —D)(r— 2 24— ;
(e — )y WS = P (o = 1) = s + 2P (e = ).

If, on the other hand, z]k = ¢, conditions (3.8) take the form

—Dr— +2-1 +2—1 (= D—w2z e
(y”)tm(% — ) ) ’Zi—;')y” 27l =gt (W+% —yer 2"y — 72)/\04)
Yon=Do=w _ e\ -1 -1 (dn Do) | e .
(W rJr_)\)y o= - T ez )

Now y; > &, > ¢ (see Proposition 3.3), but we do not know whether z; < ¢; or the other
way around. Therefore, we have two alternative formulation for (3.8). Nevertheless, only
one of these has solution, since Theorem 3.7 guarantees the uniqueness of the solution.
Furthermore at the point z = c;, these two pairs of equations become the same.
Unfortunately, solving the optimal boundaries from these equations explicitly does not
seem to be possible. Therefore, we illustrate the results numerically. But before that, let us
see through the solvability of Game 2.
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6.2. Game 2 has a solution

Similarly to Game 1, we find that
asPra(x) + (Rr4282)(x),  x <3
a6+ (X), X = ey,

(Rr428 )(x) = {

where

=1 (- (Ry-4282) ()42 (c2) = (R 82) ()W ria(c2)
5= e~ Beasoen  RegEms e Chastiinfonle e )

dg= (Rr£282) () Prea(€2) = (Rr1282) (€)W r1a(c2)
&rac)ra(c) = @rale) P rpalcr) -

In particular as, ag < 0.

Next, we verify that the sufficient conditions in Theorem 4.5 hold. We already showed
with Game 1 that conditions (1)—(3) hold, so it suffices to check whether condition (4.5)
holds. Recall that §; = g; — A(R,4,1g; ) so that G,,8; = G,gi + A(g, — &i). Thus,

(LW=—rx+T+MNc; —Acy, x<cp

gr+A§1(x):{ (w—r=Nx+0+Na, x=c,

(w—r)x+re, x <

Greaga(x) = { (mL=—r=Mx++Nec2, x=c.

From these expressions, we see that condition (4.5) holds and X; > c¢;.

Again, we can apply Theorem 4.5 and there exists a unique pair (z3, y,) which satisfies
the necessary optimality condition (4.4). This time, if z; < ¢, the condition can be written
as (to simplify notation we write 7, :== /™)

o+ — 2 (w1 —7
(V" (y1 = y2)Aag + y(y — 1) = yocy )y Her T = 27 1(% - 7%)
20 28y or— _ i~
(yy1 = 1) = yrep)y"Hor = s 1(% — D& 4 g% (y, — vl)Aas)

If, on the other hand, z; = ¢, condition (4.4) takes the form

2 2p
(Y (v = yAas +y(y2 = 1) = yaer )y =225 2y — D) = yaea + 27 (0 — 2)Aas)

28 28
l+,z 1 y|+‘72

(Yo = D= mer)y” =" @ = D= mew).

Similarly to Game 1, we know that y; > X| > ¢, (cf. Proposition 4.2), but we do not know
whether z; < ¢, or not. Therefore, we have two alternative formulations of (4.4), but only
one of these has a solution. Again, solving the optimal boundaries from these equations
explicitly does not seem to be possible and so we are prompted to do numerical

illustrations.

6.3. Numerical illustration

To illustrate the optimal characteristics numerically, we fix the parameter configuration
n=0.03,r=0.08,0 =0.35,c; =3,¢, =2 and A = 0.1. Under this choice, the value
functions for Game 1 and Game 2 are given in Figure 1(a),(b).
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()

2 3 4 s 6 1 8w

Figure 1. (a) The solution of Game 1; (b) The solution of Game 2. Now (zsf7 yT) = (1.52,8.34),
whereas (z;y;) = (1.34,5.68). For comparison in infinite horizon game (z*,y") = (1.60, 8.99) so
that now z; < z; <z* and y; <y} <y".

The values V, Vi, V, and V3 are compared graphically in Figure 2, recall the definition

of V and V5 from Section 5.
In line with Proposition 5.1, we observe that the inequalities V = V| = V3 = V; hold

in this case. We point out that V = V in this case even though g, takes also negative
values. The values V, V| and V, appear to differ quite significantly from each others,
which indicates that the mere existence of the expiry time and the inside information on it
can have substantial impact on the optimal exercise rule. For example, if x = 4 for the
given parameters, we have V(4) = 1.55 and V(4) = 1.41 the difference being 0.14, so
that V(4) is about 10% greater. However, we observe that the value V3 does not differ
much from V,. This means that in this example when the issuer has inside knowledge
about Poisson clock (Game 2), she rarely takes advantage of this information. This, in turn,
is because she exercises at the jump time 7 only if g2(X7) < 0. This happens rarely, since
g> is usually positive.

0.35
0.30
0.25
0.20
0.15
0.10

0.05

Y

Figure 2. The differences V — V,, V| — V, and V3 — V,.
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0 10 20 30 40 0 10 20 30 40

Figure 3. The changes of thresholds in Game 1 and in infinite horizon game, when changing o and A.

In Figure 3, we illustrate the sensitivities of the exercise thresholds with respect to
parameters o and A in Game 1 and in the infinite horizon game. We notice that the order of
the lower thresholds change as o increases. This is possible, since g, takes also negative
values (cf. Proposition 5.1). Moreover we see that as o increases, the continuation region
gets wider. This result is in line with the literature. Furthermore, we observe that the
continuation region shrinks as A increases which is again natural in the current example. In
particular, the issuer lets her exercise threshold grow towards ¢, so that she could increase
her chances of exercising with negative pay-off.

6.4. Counterexample for inequalities V, <V, z, =z  and y|, = y"*

In Proposition 5.1, we prove that if g» = 0, then for the optimal stopping boundaries we
have the inequalities z] = z" and y’f = y* and for the values we have V(x) = V;(x). In this
subsection, we show that if g, is allowed to be negative, then these inequalities are not
necessary true, a hint of this can also be seen from Figure 3.

Let the underlying diffusion still be a geometric Brownian motion and the parameter
configuration as u = 0.03, o = 1.0, A = 0.1 and r = 0.08. Furthermore, let g; = J/x — 3
and g» = /x — 2; in particular, g, > g;. It is a straightforward task to check that there
exist unique saddle point solutions for Game 1, Game 2 and infinite time horizon game and
that the optimal thresholds read as (z;,y;) = (0.56,44.7); (z5,y,) = (0.24,39.4) and
(z*,y") = (0.21,30.0). Now contrary to Proposition 5.1(B), we have z; > z* and y| > y*.
Moreover, we have also z, > z* and y, > y*. On the other hand, the boundaries of Game 2
are lower than the ones of Game 1, see Proposition 5.1(A). Moreover, we find that
V(x) = V,(x) = V(x) which is illustrated in Figure 4.

It is interesting to observe that the value of a random time horizon game can dominate
the value of an infinite horizon game. In fact, it can be that the infinite horizon game can
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0.10

0.05

-0.05

-0.10

-0.15

Figure4. ThedifferencesV — V,and V| — V,. Wehave V = V, = V| incontrast to Proposition 5.1.

have the smallest value of the games considered in this paper, which seems first rather
counterintuitive. However, this is all due to the ‘sufficient negativeness’ of g,. Indeed, as
the game will end almost surely in finite time, the issuer’s chances of exercising with a
very negative payoff are reduced in comparison to the infinite horizon game.

6.5. Option type example

In this subsection, we examine an option type example, where the pay-offs g; are not
continuously differentiable. We illustrate our results only for Game 1, Games 2 and 3
being analogous. To begin with, set ¢; > ¢, > 0 and define g; = (x — ¢;), so that the pay-
offs are compatible with Corollary 3.5. Moreover, let the underlying diffusion follow the
geometric Brownian motion (6.1) with » > p > 0. Under these choices we set up the
optimal stopping game

Vi(x) = sup 1nf Hl(x 7,7y) = inf suplli(x, T, ).
€T, Y€ Y€ToreT,

Since G,128; = G,gi + A(g1 — &), it is a matter of straightforward calculus to show that

0, X =
Gria81(x) = ot ptre x> e and

0, X=o0
Griporx)={ —r+Ax+u+r+Me, ca>x>c

—rx+p+reo+Ace —cp), x=cy.

We see immediately that since r > u > 0, there exists a unique X; > c¢; satisfying
(3.10). Moreover, since G,1,g; is decreasing for all x > ¢, and is continuous over cl,
there exist also a unique X, > ¢; satisfying (3.10). Finally, to show the existence of y yx s
we know that g;(c;) <0. It can be calculated that ¢/(2(x) = a(x) —

Yria(€2) P40 (X)) @r4a(c2) is increasing for all x > ¢, and that it tends to zero as x
tends to ¢,. Thus g1(c2)/ 1[/62 (c2) = —o0, and it is increasing in a neighbourhood of ¢,. On
the other hand, it can be shown that there exists K > ¢, such that 2(x)/ dA/Cz(x) is
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101

ol e P T " P T P P >
T [

Z s 10 15 20 y

Figure 5. The solution of Game l with c1=06,¢c=3,0=0.2, u=0.05r=0.08 and A = 0.03.
Now the continuation region (z;,¥)) = (3.1,21.00). With this parameter selection, the state
y;z ~ 21.01.

decreasing for all x > K. Thus, we conclude that g (x)/ z,/;c2 (x) attains its maximum on the
compact interval [cy, K].

It follows that the conditions of Corollary 3.5 are met, and we know that if there exists
an internal solution (z;, y}) for the necessary conditions (3.8) (i.e. z;,y; & {c1,c2}), then it
must be unique and the value of the game reads as in (3.9). If this is not the case, then the
solution is a corner solution with the exercise boundaries ¢, and )7;2. Finally, we illustrate
the value function graphically for a particular parameter configuration in Figure 5.
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OPTIMAL STOPPING OF THE MAXIMUM PROCESS

LUIS H. R. ALVAREZ,* Turku school of Economics, University of Turku
PEKKA MATOMAKL** Turku school of Economics, University of Turku

Abstract

We consider a class of optimal stopping problems involving both the running
maximum as well as the prevailing state of a linear diffusion. Instead of
tackling the problem directly via the standard free boundary approach, we
take an alternative route and present a parameterized family of standard
stopping problems of the underlying diffusion. We apply this family to delineate
circumstances under which the original problem admits a unique well-defined
solution. We then develop a discretized approach resulting into a numerical
algorithm for solving the considered class of stopping problems. The algorithm
is illustrated in two different cases for a GBM and a mean reverting diffusion.
Keywords: Optimal stopping, linear diffusions, maximum process
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1. Introduction

Let X; be an It6 diffusion evolving on the state space Ry and denote as S, =
sup,<;{ Xt} its running supremum. In this paper our objective is to analyze and solve

the infinite horizon optimal stopping problem

sup E(, ) {e_TTf(XT,ST)} , (1.1)

where the exercise payoff f(z,s) is assumed to be decreasing in z, increasing in s,

r > 0 denotes the exogenously given constant discount rate, and 7 is a stopping time.
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Two well-known examples belonging to this class of stopping problems are the Russian
option for which f(x,s) = s (see e.g. [27, 19]) and the American lookback option with
a floating strike for which f(z,s) = s — x (see e.g. [9, 19]). While both of these cases
constitute perpetual path-dependent options, the latter problem has also an alternative
interpretation as a measure of a risk for a stock (see [10, 20]).

Typically optimal stopping problems of the type (1.1) are solved by considering
an associated free boundary problem (for a pioneering treatment, see [25]; for a
comprehensive treatment of these problems see Chapter III and Section 13 in [26]).

In [25] the considered stopping problem was of the form

SupE(m,s) {F(ST) */ C(Xs)ds}a
T 0

where F' is an increasing function, ¢ a positive function and X; Brownian motion. In
that study, a powerful mazimality principle was developed. According to that principle,
the first-order differential equation characterizing the optimal exercise boundary admits
a maximal solution which stays strictly below the diagonal in Ri. It was then shown
that the maximality principle is equivalent to the existence of a finite solution, and
that the optimal stopping strategy can be characterized as the first time the process
X, falls below the maximal solution. More recently this technique has been further
refined in [22] extending the original results of [25] to a more general setting. The
optimal stopping of the running minimum within an optimal prediction of the ultimate
minimum setting has recently been investigated and solved in [12] by relying on a
free boundary approach. Further, the maximality principle has also been adapted
to problems involving spectrally negative Lévy processes (see e.g. [18, 23], and the
references therein).

In this paper, we address the optimal stopping problem (1.1) under a set of
reasonable basic regularity and smoothness assumptions on exercise payoff and the
underlying diffusion. Instead of relying on a free boundary approach, we take an
alternative route and present a parameterized family of associated standard stopping
problems which we solve explicitly by relying on ordinary optimization techniques.
We subsequently apply our findings in deriving, independently of the free boundary
problem, a set of sufficient conditions under which (1.1) indeed attains a finite solution.

Our approach relies on the r-excessivity of the values of the associated stopping
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problems. In that way it avoids the immediate application of the smooth pasting
and instantaneous reflection conditions even though especially the former of these
conditions is to some extent embedded in the considered class of optimization problems.

Having established the existence of a solution for the considered class of stopping
problems, we then develop a discretized approach which can be applied for determining
the optimal policy and its value. In a finite horizon case of the problem, one can
discretize time, leading to a familiar binomial tree framework similar to the well known
CRR-model (see eg. [4, 16]). However, within an infinite time horizon setting this
approach is no longer possible and a somewhat different discretization is required.
As our study demonstrates, discretizing the state of the supremum process is an
appropriate technique leading to a desired outcome. In the chosen discretization
framework, the supremum process can only take values from an arithmetic sequence.
Since the supremum process increases only at states where it coincides with the
underlying diffusion, we notice that at any given date the underlying process has hit
only finitely many times its discretized supremum. Between these hitting times, the
two-dimensional process (X, S¢) behaves as one-dimensional. It then follows that the
discretized problem can be seen as a countable sequence of relatively easily solvable
one-dimensional subproblems. Since this sequence is shown to converge to the optimal
solution under a set of typically satisfied conditions, our study complements the existing
approaches by presenting a technique which does not require the analysis of the
ordinary differential equation characterizing the optimal boundary. This discretization
simultaneously results into an algorithm for finding the optimal threshold and value
numerically as a limit of a converging sequence. In this way we do not only prove that
there exists a unique threshold rule, we also identify it. For the sake of generality,
we also consider an extension of the original problem (1.1) in a case where there are
no monotonicity requirements for the exercise payoff f(x,s). It turns out that our
approach applies in that case as well, leading to a convergent sequence approaching
the solution.

In order to illustrate our findings explicitly, we solve the value and optimal exercise
strategy of a lookback option with a floating strike for a general It6 diffusion. We also
determine the value and optimal stopping strategy of a m-option (f(z,s) = z"s" —

K, with k,n7, K > 0) introduced in [14]. The efficiency of the developed discrete
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algorithm is then illustrated for these two option models under two different dynamic
specifications for the underlying diffusion process. All in all, our examples seem to
indicate that the discretization method can be successfully used to solve a great variety
of different stopping problems involving a running supremum process, the primary
restrictive factor being an s-Holder-continuity of f.

It is at this point worth mentioning that there are also other approaches that
avoid the use of the free boundary conditions and the maximality principle. In [5] an
alternative technique based on a measure transform was introduced. This technique,
known as the Beibel-Lerche approach, has been successfully applied in the solution of
some optimal stopping problems of the running supremum of a geometric Brownian
motion (see [19]). Another alternative approach was developed in [15]. Instead of
analyzing the free boundary problem subject to appropriate boundary conditions, [15]
computes directly the expected value of stopping strategies defined with respect to a
suitable class of boundaries and then chooses the optimal one by relying on arguments
familiar form the calculus of variations.

The contents of this study are as follows. The problem and the basic assumptions are
represented in an exact form in Section 2. In Section 3, we then prove the existence of
a solution to (1.1) by solving a parameterized family of associated stopping problems.
We show in Section 4 that the optimal value and stopping boundary can be found also
by using the discretization method. Our findings are then illustrated numerically in

Section 5 and 6.

2. The Optimal Stopping Problem

Let (Q,P,{F;}1>0,F) be a complete filtered probability space satisfying the usual
conditions (see p. 2 in [7]). Let X; be a regular linear diffusion defined on
(Q,P,{Fi}i>0,F) and evolving on Ry according to the dynamics described by the

Ito differential equation
dX; = p(Xp)dt + o(Xe)dWe, Xo = .

Here W, denotes the standard Brownian motion and both the drift term p : Ry — R
and volatility term o : Ry — R are assumed to be sufficiently smooth for guaranteeing

the existence and uniqueness of a (weak) solution for the above stochastic differential
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equation (for example, if the conditions of Theorem 5.15 in [17] are met). Especially
we assume that o(z) > 0 for x € Ry in order to avoid interior singularities. We
also assume that the boundaries of the state space are natural for the process X;.
Furthermore, given the underlying diffusion X;, we denote as
Sy = max{s, sup {X,}}, So=s>=z
0<u<t

the supremum up to date ¢t of the underlying diffusion. The time ¢ = 0 can be
interpreted as the time when the considered optimal stopping problem arises, e.g.
as the time when the lookback option is issued. In this light s can be seen as the
historical supremum of X, reached before the stopping problem aroused, explaining
the case s > z.

As usually, we define the differential operator associated with the underlying

diffusion as

1 5 d? d
A= 57 (1’)@ + u(z)%
and denote as G, := A — r the differential operator associated with the underlying

diffusion killed at the constant rate r. Given these differential operators, we denote
as 1 and ¢ the increasing and the decreasing fundamental solutions of the ordinary
differential equation (G,u)(z) = 0, respectively. As is well-known from the literature on
linear diffusions, BL'(z) = ¢/ (z)¢(z) — ¢’ (x)1(x), where B is the constant Wronskian

of the fundamental solutions and

vr-on(- | )

denotes the density of the scale function of X;. Moreover m'(x) = 2/(c?(x)L (z))

denotes the density of the speed measure of X;. For a complete characterization of the
basic characteristics of a linear diffusion and the associated fundamental solutions, see
Chapter 2 in [7].

Given the underlying diffusion and its running maximum, our objective is to analyze

and solve the infinite horizon optimal stopping problem
Viz,s) = supE(, o) {e*”Tf(XT,ST)} (1.1)

under the following standing assumptions:



192
6 L. H. R. ALVAREZ AND P. MATOMAKI

Assumption 2.1. We assume that the exercise payoff f : Ri — R is z-non-increasing,

s-increasing and satisfies the following conditions
(a) f(z,s) € C*HR3) for all 0 < x < s < 0o and 0 < f(0+,s) < oo for all s > 0;

(b) for a given s > 0, there exists T € (0, s] such that (G, f)(x,s) § 0 for all x § T
and that (G, f)(0+,s) < 0.

3. Associated Stopping Problem

3.1. The auxiliary problem and its solution

Instead of tackling the considered two dimensional optimal stopping problem directly
via variational inequalities, we now take an alternative approach and consider first
an associated parameterized family of one dimensional stopping problems of the
underlying linear diffusion process. To that end, let Q(s) be a (finite) nonnegative
continuous function satisfying the inequality Q(s) > f(s,s) for all s € R;. Our first

aim is to solve, for z < s, the auxiliary problem
VQ (Iv 5) = sup E, {eirTf(XTv S)]l{T<'Ys} + 6*7"75@(5)]1{72%}} ) (31)

where v, = inf{t > 0 | X; = s}. This problem can be seen as a one-dimensional
problem on the state space (0, s], where the boundary s is killing and once reached,
it leads to a terminal value Q(s). In what follows, we will show that the set {V?}
generates a family of r-excessive majorants for the payoff f, from which we can later
choose the specific V¥ constituting the solution to the original problem (1.1). Tt is
worth pointing out that an approach based on first exit times from open intervals has
also been utilized in [13].

To attain our objective, denote by

the increasing and by

the decreasing minimal r-excessive mappings for X killed at the boundaries y and s,

y < s (cf. pp. 18-20 in [7]). Moreover, for the sake of notational simplicity we also
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define for any twice continuously differentiable r-harmonic function v and sufficiently

smooth function g the functional (£,g) as

(Cus)os) = 20 ) = 18 g(o.0) (52)

Especially, we notice that differentiating (3.2) with respect to the current state = yields

(Lug)y(z,8) = (Grg) (@, s)u(z)m (2)

due to the assumed r-harmonicity of the function u(x).
We now restrict our analysis to ordinary first passage time type stopping rules
1, = inf{t > 0 | X; < y} and consider for a given upper boundary s € R} and initial

state x € [y, s] the functional

U(ya Z, 5) = ]E(ac,s) {eirTyf(XTyvs)]]-{Ty<'ys} + eir’ysQ(S)]]-{TyZ'ys}}

@) @),
= S )+ Q0 (33)

Having stated the associated valuation (3.3), we will show that there exists a unique

threshold a% = a(s, Q) € (0, s] maximizing the functional v(y, x,s) as a function of the
boundary y. Moreover, we will prove that the associated stopping rule T o constitute
the optimal one to the auziliary problem (3.1). We first observe by differentiating the

functional v(y, z, s) with respect to y that

dly.z8) _ @) (0 o po
ay &) {(LeF)(y,s) — BQ(s)} .

Consequently, we find that a maximizing threshold exists provided that the difference

in the brackets changes sign from positive to negative only once on the state space

(0, s]. This result is established in the following auxiliary lemma.

Lemma 3.1. There exists a unique mazimizing threshold a@ € (0,Z,] satisfying the

ordinary first order condition (Lyf)(a2,s) = BQ(s).

Proof. Consider the functional H(xz,s) = (Lsf)(z,s) — BQ(s). We first notice that
limg4s H(z,s) < 0 demonstrating that H(z, s) is non-positive at the upper boundary
s. On the other hand, since H.(x,s) = (G.f)(z, s)p(z)m’(z), the functional H(z,s)

can be re-expressed as

S

H(r.s) = B(f(s,5) — Q(s)) — / (G ) (1, 8)p(tym (1)t

x
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showing that H(z,s) < 0 for all z € (&s,s] by Assumption 2.1(b). Moreover, for

r < x1 < Ty, applying the mean value theorem for integrals, we get
x1
Hzs) = Hows) - [ (@0)(Es)otm 0

e e

where ¢ € (z,x1). The assumed boundary behavior together with Assumption 2.1(b)

guarantees that H(0+,s) = oco. Combining this observation with the continuity and
monotonicity of the functional H(x,s) then completes the proof of the existence and

uniqueness of the maximizing boundary a% € (0, Z).

Having demonstrated that there is a unique boundary maximizing the functional

(3.3), we are now in position to prove the following:

Theorem 3.1. Let Assumption 2.1 hold. Then, for a given s, T, =inf{t > 0| X; <

a®@} is the optimal stopping time for the problem (3.1) and the value is

UGQ.’IJS T CLQS
VQ(z,s) = (05,09) (0] (3.4)

f(z,s) x € (0,a9].

Moreover, if Q(s) is differentiable, then

~9 GQ
im 20D () — (a2, ) ), 9

where ®(x) = p(x)Y'(s) — @' (s)(x) denotes the minimal decreasing r-excessive

function for the underlying diffusion reflected at s.

Proof. Let V9(z,s) be the solution to (3.1) and denote by J(z,s) the value given
n (3.4). Obviously J(z,s) is obtained by following an admissible stopping strategy
and, therefore, V@(z,s) > J(z,s). In order to prove the opposite inequality, we first
observe that it is clear by construction that J(z,s) is continuous on (0, s] and that

J (a9~ s) = f'(a¥,s). Furthermore, since

du(a,z,5) _ p(a?)Q(s) — p(s)f(a2,5) o o B(s)f(af,5) ~ h(aD)Q(s)
o2 =8 o ¥ (@) + ) ?/(x)

we find by letting « | ¥ and invoking the optimality condition (L4 f)(a2,s) = BQ(s)
that J!(a@+,s) = f.(a?,s) proving the continuous differentiability of J(z,s). Next,
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let x € (a2,s]. Then v(a¥,z,s) > v(z—,x,s) = f(,s) the inequality following from
the optimality of a%. This shows that J(x, s) is a continuously differentiable majorant
of f(x,s).

It remains to establish that J(z, s) is r-excessive for the underlying diffusion X killed
at s. To see that this is indeed the case, we first observe that (G,..J)(x, s) = 0 on (a2, 5]
and (G, J)(x,s) = (G, f)(z,s) < 0 on (0,a?). The alleged result then follows from the
inequality | £/, (a%4+, s)| < co. We have thus established that J(z,s) is an r-excessive
majorant of f(x,s). Since the optimal value V¢ is the smallest of such majorants, we
conclude that J > V@,

Finally, differentiating the value J(z, s) with respect to s and invoking the optimality
condition (L4 f)(a¥,s) = Q(s)B then yields (3.5).

Given the assumed differentiability of the exercise payoff, we notice by implicit
differentiation that the sensitivity of the optimal threshold with respect to changes in
the exogenous upper boundary s can be expressed as

,Q — BQU(s) = (Laf)(ad,s) = (Lofs)(ads)
’ (G- f)(ag, 5)p(as)m (aF)

On the other hand, Theorem 3.1 guarantees that V?(z,s) constitutes an excessive
majorant of the exercise payoff as long as the inequality Q(s) > f(s,s) is fulfilled.
Combining these observations show that if Q(s) is chosen so that also condition
(Laf)(a?,s) = BQ'(s) is satisfied, then the value V?(x, s) satisfies the instantaneous
reflection condition V.'(s—, s) = 0 as well and the optimal exercise boundary satisfies

the differential equation

2040y P 0102, 5) — Pa?)f1 (a2, 5) 26
T e T e®) o0

It’s worth pointing out that utilizing the standard free boundary approach for solving

Q' _

1
a; =
‘ 2

the considered stopping problem results into the differential equation (3.6) as well (cf.
Section 13 in [26]).
3.2. The solution to the main problem

Before proving our main existence theorem for (1.1), we first need to assure the

finiteness of the value of the stopping problem.
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Lemma 3.2. Let Assumption 2.1 hold and assume that [ E 5 {e" f(0,5;)} dt <

oo for all 0 < x < s < 0o. Then the value function (1.1) is finite.

Proof. Fix 0 < 2 < s < oo and denote by T,. ~ Exp(r) an exponentially distributed
random time, independent of W;. Since f is continuous and (X;, S;) is a strong Markov

process, it is known (see e.g. Proposition 2.1 in [11] and also Lemma 2.2 in [8]) that

u(x, 8) = IE:(ac,s) {0 sup f(Ov St)} = ]E(ac,s) {f(oa ST,«>}

<t<T.

is r-excessive. Moreover, it is clear that

f(xa S) S f(07 5) = IIE(z,s) {f(ov S)} S E(m,s) {f(oa STT)} = U((E, 8)7

demonstrating that u dominates f. Since V constitutes the minimal r-excessive
majorant of f, we notice that V < u.

Furthermore, by straight calculations

U(IE, 8) = IE(ac,s) {f(07 STT)} = IE(ac,s) {TA eirtf(oa St)dt}
= - E s —rt ,S¢) b dt.
r/o () 1€ f(0,8,)} dt

The last term on the right hand side of this equality is finite by assumption and thus

V(z,s) <u(zx,s) < oc.

Having established the finiteness of the value of the optimal stopping strategy we
are now in position to state our main theorem characterizing the value and optimal

exercise policy of problem (1.1).

Theorem 3.2. Let Assumption 2.1 hold and assume that [ E ¢ {e™"" f(0,5;)} dt <
0o. Then there exists a unique function a} € (0,Z), such that 7, = inf{t > 0| X; <
agt} is the optimal stopping time for the considered problem (1.1). Moreover, there

exists a unique Q(s) for which the value V(x,s) reads as in (3.4).

Proof. For x < s, the problem (1.1) can be re-written as

sup E(z,s) {G_TTf(Xw $)liraqyy +e Sup Efosy {7 f(Xe, Se) } 1{72%}} ;
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where v5 = inf{t > 0 | X; = s}, so that it is of the form of the auxiliary problem (3.1),
with

Q(s) = Sup Eosy {e7f(Xe, Se) } -

Obviously Q(s) > f(s,s) and by Lemma 3.2 Q(s) < oo for all s < co. Therefore, the

alleged claim now follows from Theorem 3.1.

Theorem 3.2 states a set of sufficient conditions under which the auxiliary stopping
problem constitutes the value of the optimal stopping problem (1.1). The sensitivity
of the value and optimal boundary with respect to changes in the volatility of the

underlying diffusion are now summarized in the following.

Theorem 3.3. Assume that the conditions of Theorem 8.2 are satisfied, that
the difference p(x) — rx is non-increasing, and that a transversality condition
lim; oo E; {7 X} = 0 holds. Then, the value function is strictly convez as a function
of the current state x on the continuation set (a¥,s] and increased volatility increases

the value V(x,s) and decreases the optimal stopping boundary a*.

Proof. Fix s < oo and let o1(x) < og(x), for all z. For i = 1,2, denote by V;
and a} the value function and the optimal stopping boundary for the problem (1.1),
respectively, with respect to ;. The assumed monotonicity of the difference p(z) — ra
together with the transversality condition guarantee that the fundamental solutions
are convex (see Corollary 1 in [2]). Furthermore, the r-excessivity of the value V(z, s)
implies that it constitutes a positive affine transformation of the minimal solutions
(z) and p(z) on the set (af, s) where it is r-harmonic and consequently it is convex
there. Since the sign of the relationship between increased volatility and the value of
an r-excessive mapping is positive on the set where it is r-harmonic (cf. Theorem 4
in [2]), we find that Vi (z,s) < Va(z,s). Suppose, contrary to our claim, that a} < a3,
and let = € (af,a}) so that z is in the continuation region with respect to Vi, and
in the stopping region with respect to Vo. Then Va(z,s) = f(z,s) < Vi(z,s), which

contradicts the inequality derived above.

Theorem 3.3 states a set of conditions under which increased volatility unambigu-
ously increases the value of the optimal stopping policy and postpones exercise by

lowering the optimal boundary.



198
12 L. H. R. ALVAREZ AND P. MATOMAKI

3.3. A useful extension

It turns out that our existence result can be directly generalized to also cover a
general class of continuous exercise payoffs satisfying a boundedness condition. To this

end, we consider the problem (1.1) under the following weakened assumptions.

Assumption 3.1. For each s > 0, let z, € [0,s] be the point at which f(z,s) is
maximized. Assume also that the exercise payoff f : Ri — R satisfies the following

conditions

(a) f(z,s) € C(R%) forall 0 <z < s < oo and 0 < f(z,,s) < oo for all s > 0.

(b) E(%S) {supOStSTT f@st»St)} dt < oo.

Under this assumption, we can again constitute the auxiliary problem (3.1) for a
non-negative, continuous Q(s) satisfying Q(s) > f(s, s), and the following proposition
holds. (Denote by 7¢, and 7* the optimal stopping times for auxiliary problem (3.1)
and (1.1), respectively.)

Proposition 3.1. Let Assumption 3.1 hold. Then
(A) the value V(z,s) is finite;

(B) there exists a unique Q(s) such that V9 (x,s) = V(x,s). Moreover, if TH < 00

*x %
a.s., TV =14

Proof. (A) The proof is completely analogous with the one of Lemma 3.2. (B) For
each finite Q(s) the linear auxiliary problem (3.1) has a solution by general existence
results concerning linear diffusions (see e.g. [26]). Establishing the alleged claim is

analogous with the proof of Theorem 3.2.

Interestingly, the unique existence of solution to a general problem involving a
maximum process can be reduced to a search of a unique solution to a linear diffusion
problem. However, with general assumptions we cannot, naturally, guarantee the shape
of the stopping region. The following corollary presents an example how this existence

result can be used (cf. Proposition 6.1).

Corollary 3.1. Let Assumption 3.1 hold. Further, assume that for all s > 0 and
Q(s) there exists a unique stopping region &% such that TH = {t >0|X; € GSQ} 18
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the optimal stopping time for the auxiliary problem (3.1). Then for each s > 0 there
exists a unique stopping region &, C [0, s] such that 7 = {t > 0| X, € Sg,}, where
&, = &? for some Q.

4. The discretization

Our objective is now to develop a sequence of optimal stopping problems by
discretizing the state of the supremum process and to show that the sequence converges
in the limit to the original stopping problem (1.1). To this end, we need the following

two additional assumptions.

Assumption 4.1. Assume, in addition to Assumption 2.1, that
(c) fooo Bz {e77f(0,S)}dt < oo forall 0 <z < s < oo;

(d) f(x,s) is s-Holder-continuous, i.e. there exist M > 0 and 0 < a < 1 such that

|f(z,s1) — fx,s2)| < M|sy — s2|* for all s1,82 € Ry and < min{sy, sa2}.

First of all, let us prove an equivalent condition to Assumption 4.1(c).

Lemma 4.1. Let Assumption 2.1 hold. Then [ fi)((ou’q;) du < oo for all s € Ry, if and
only if Assumption 4.1(c) holds.

Proof. Let T ~ Exp(r). From the proof of Lemma 3.2 we know that
E(a,s) {£(0,S7)} =7 [7° Bz sy {e7 7 £(0,5:)} dt.

Observe that (see p. 26 in [7]) for all z < y we have P, (S <y) =P, (1, >T) =
1 —¢(z)/¢¥(y), where 7, = inf{t > 0 | X; > y}. Using this fact and Fubini’s theorem,

we can calculate

, / Ep) (e £(0,8)} dt = By {£(0,57)) = / £(0, y)dB(Sr < )
0 s

- / 0, YY) g,

P2 (y)
= 0.5) + o) [ E0

du,

whence the claim follows.
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4.1. Introducing the recursive algorithm

Fix a step size z > 0, number of steps n € N and starting points (Xo,Sy) = (z, s)
with 0 < = < s and, for all s, fix a terminal payoff function Q(s), which satisfies
Q(s) > f(s,s) and limy o B¢y 5) {e7""Q(S:)} = 0. Denote s := s + kz, for k € N.
From now on in this section we assume that the supremum process S; can only take
values si, k = 0,1,2...,n (for convenience we denote s := sg). That is, as we start
from (z,s), the supremum process S; jumps to the state s; when the diffusion X,
reaches the point s and we "restart” (X, S¢) from the state (s,s1). Again, when X,
reaches the new supremum value s1, the process S; jumps to s and we again "restart”
(X4, St), now from (s1, s2). The discretization is graphically illustrated in Figure 1. It
is worth mentioning that since S; takes values from a finite arithmetic sequence, we
know that at any time ¢ > 0 there has been only finitely many jumps in the path of the
discretized supremum. Furthermore, we consider s, to be the highest possible level
for Xy, and consequently for S;. This means that when X; reaches s,, the process is
stopped (killed) and we receive the terminal payoff Q(s,) at that state.

Having presented the discretized version of the running supremum of the underlying
diffusion, we now apply the findings of our Theorem 3.1 and define recursively
a sequence of continuously differentiable r-excessive values dominating the exercise
payoff. To this end, we first define the terminal value of the sequence as V,,11 = Q(s,,).
Given the terminal value V;,+1, we now define recursively for any index 1 < k < n the

values Vi as Vi 1= J(sg—1, Sk),

J(x,s1) = supE(p ) {e_rTf(Xn si)lir<ny,y T e T Vit by, }} (4.1)

o(x)(sk) = (x)e(sk) ~
P(as ) (sk)—0(asy, )@ (58 Fasys sx)

P(@)p(as), ) —p(@)P(as, )
d’(sk)‘)@(dsk )_Sp(sk)w(ﬁsk)

f(z, sk) x € (0,as,],

= +

Vk+1 T € (flsk,sk]

Here 5, = inf{t > 0 | X; = s}, for k = 1,...,n, denotes the first hitting time of
X to the state s, and as, € (0,5,) constitutes the unique root of the ordinary first
order condition (Lyf)(as,,Sk) = BVit1 (cf. Theorem 3.1). Finally, the initial value
is chosen as Vy = J(x,s). It is clear that these identities completely characterize the

sequence of values {V}}7 1) and the sequence of optimal exercise boundaries {a, }7_,.
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Moreover, we also observe that for z > 0 and n € N this discretized problem can be

written in a compact form
J(z,n,x,s) =

n—1
= SL71_p Ez.s) {e—rTf (X.,., s+ z Z ]1{75k<"'}> ]1{7'<’>’sn} + e_T’Ys,LQ(sn)]l{.,-Z%n}}

k=1
= SEP]E(LS) {e_rTf(X’m ST)]l{T<"ySn} +e e Q(sn)]l{TZ"/sn}} ’

(4.2)

where S; denotes the discretized supremum process.

A

A\

FIGURE 1: An illustrative example of how a sample path evolves in constructed discretized
problem. Here n =4 and as, is the optimal stopping boundary at step k, for £ =0,1,2,3,4.
We stop immediately after the diffusion hits either the lower boundary as, , when we receive a
payoff f(ax, sx), or the maximum level s4 implying payoff Q(s4) (exogenously given terminal

function).

Lastly a notational remark. In this section, we shall denote by S; a discretized

supremum process, whereas the normal continuous one is denoted by S7.

4.2. Proving that the algorithm works

Let us first establish that the limiting value function of the sequence does not depend

on the choice of terminal value function Q(s).
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Lemma 4.2. Let Assumption 4.1 hold and fix s,z > 0. Furthermore, let
Q(s) > f(s,5) be such that lim; o By {e‘”Q(S?)} = 0. Then, the limit

lim,, o J(z,n,2,5) does not depend on the choice of Q(s).

Proof. Fix n € N and Q1(s) > Q2(s). For i = 1,2, denote as J' the value
function associated to the terminal payoff Q;(s), and let 7 be the optimal stopping
rule maximizing the dicsretised problem with Q1(s) as a terminal value (this exists by
Theorem 3.1). Since Q1(s) > Q2(s), we know that J'(z,n,z,s) — J2(z,n,x,s) > 0.

On the other hand we can apply (4.2) to make an estimate

JYz,n,x,8) — J*(z,n,,5) =
= ]E(m,s) {eirTlf(Xﬁ ) STl)]]'{ﬁ <Vsn } + eir’yanl(Sn)]‘{ﬁZ’st}}

—sup Bz {7 f(Xr, Sr)Lran, y + 77 Qalsn) Lz, )

<Ea,o) (€7 F(Xr, S limana,y + €777 Qusn) L >, 1 )
— B0 {7 f(Xr, Sr) Lim<y + €77 Q2(80) Ly >,
=Eqs {777 (Q1(sn) — Qa(sn))Lir, >, 1}
(

1S
< B {77 (Q1(5n) — Qa2(sn)) } -
Since limy, o0 Bz 5y {7777 Qi(s,)} = 0, for i = 1,2, by assumption, we notice that

the last term tends to zero as n approaches infinity.

According to Lemma 4.2 the algorithm results into the same value irrespective of
the chosen terminal value Q(s) as long as it satisfies the relatively weak conditions
of our lemma. Hence, depending on the precise form of the exercise payoff and its
behavior at the upper boundary s, natural choices for Q(s) are, for example, additive
forms Q(s) = f(s,s) + a, a > 0, or multiplicative forms Q(s) = bf(s,s), b > 1.

It remains to establish that the sequence of optimal boundaries and value functions
converge towards the corresponding ones of the original problem (1.1) as n — oo and

z — 0. This property is established in our next theorem.

Theorem 4.1. Let Assumption 4.1 hold.

(a) Fix z > 0. Then the limit J(z,x,8) = lim,_ o J(2,n,2,8) exists finitely.
Furthermore lim,_,o J(2,x,8) = sup, E(, ) {e*”f(XT, S‘T))}.
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(b) Fiz s > 0. Then a5 approaches the optimal stopping boundary a’ as n — oo and

z— 0.

Proof. (a) Choose the terminal value function as Q(s;) = f(sk, sx). We see at once
that this choice satisfies the conditions of Lemma 4.2 under Assumption 4.1. Moreover,
with this choice, the value J(z,n,z,s) constitutes an increasing sequence in n. To see
this fix N € N and let {V;V}Y_ | be a sequence with respect to the number of steps N.

Then VY = Q(sn-1) = f(sn—1,5n-1). On the other hand, with the number of steps

being N + 1 we get V]f,vj'll = Q(sn) = f(sn,sn) leading to

VJ<IV+1 = Sup]E(SN—lasN) {eiTTf(XT’ SN)]l{T<'YSN} +em Q(SN)]I{Tz%N}}
> f(sn-1,5n) = f(sn—1,5n-1) = Vi

Consequently VkNJrl > VkN for all £ < N, so that especially VOJ\H'1 =J(z,N+1,2,8) >
J(z,N,z,s) = V.
Moreover, utilizing the expression (4.2) and applying the assumed s-Holder-

continuity we can make the following estimation for an arbitrary n € N

J(z,n,2,5) < supE(y,s) {e7 (X, 80+ 2) Lran, 3 + € Q(s0) Lz 2n., 3
< SWEp ) {e77F (X7, 57+ 2)} + By {77 Qlsn)}
< sup {Eq) {77 (X7, 57) } + Ea) {€77 M2} } 4 Eas) {77 Qsn) }
< SUpE(r0) {€777S (X7, S0)} + M2 + By ) {7770 Q(sn)} < 00,

where the finiteness follows from Lemma 3.2. Since J(z,n, z, s) is a bounded increasing

sequence, it converges as n — 0o. Since limy, ;o0 B¢z ) {772 Q(s,)} = 0, we get

J(z,x,8) = lim J(z,n,2,5) <supE, {efrTf (XT,SE)} + Mz® (4.3)

n—roo

On the other hand, utilizing again expression (4.2) we also obtain the inequality

J(z,2,5) =supE(, 4 {e_”f (XT, s+ ZZ 1y, <T}> }

k=1

> sup E(m,s) {e_TTf (Xq—, S,? — Z)}

>supE(, o) {77 f (X-,8%)} — Mz~
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Combining this with (4.3) we see that

sup E(; 5 {e‘”f (XT7 SE)} —Mz* < J(z,2,5) <supE, {e_”f (XT, Sg)} + Mz,
(4.4)
so that by letting z — 0 we get J(z,2,s) — sup, E¢, 5 {e7"7 f (X, 52) }.

(b) The value function V of the original problem (1.1) can be written as (cf. Theorem

3.2)

V(LE, 5) = SupE(x,s) {erTf(X'rv )]1{7'<'yq} +e " Sup IE:(s s) {e r X&; Sg } ]1{7—>'y }}
(4.5)

where 7 and £ are admissible stopping times, and the supremum is attained with
Tar = inf{t > 0| X; < a}}, where a} € (0,Z,) is the unique stopping boundary from
Theorem 3.2.

On the other hand, the discretized problem can be written as

hm J(z,x,8) = ln%supE(w 9 {€TTTH (X ) I rany e Vil frnn )

z—0

= sup o) {67 F(Xr )Ly + €7 U rnn ) i VA ]

where the supremum is attained with 7, , where ds; € (0,Z;) is the unique stopping
boundary. Now J(z,s—,s) = V; and according to part (a) lim,_,oJ(z,s—,8) =
sup, E(s ) {77 f(X7,52)}. Hence, we get the equality

?_r)nJ(z x,8) =

= supE(,q) {e_”f( rs8) L rayy +e SupE(e 9 {eT  (Xe, S} Lrnny }

which coincides with (4.5). It follows that we have a, = a?.

Theorem 4.1 demonstrates that the developed algorithm indeed converges to the
proposed limit. However, it does not characterize the speed of convergence to the limit

as the discretization step becomes smaller. This subject is addressed in the following.

Corollary 4.1. Let Assumption 4.1 hold. Then, the rate of convergence
lim, o J(z,2,8) = V(x,s) is of order O(z%).
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Proof. From (4.4) we see straight that J(z,x,s) = V(z,s) + O(z%).

Unfortunately, Corollary 4.1 characterizes the convergence of the algorithm only in
terms of the denseness of the applied discretization and not in terms of the number of
steps. In order to characterize that, we would have to be able to estimate the difference

|V (z,s) — J(z,n,x,s)|, which is a highly process dependent quantity.

4.3. A useful extension

Let us present a discretization associated to the generalization introduced in
Subsection 3.3. The proofs are analogous to those in Subsection 4.2, and are thus

omitted.

Theorem 4.2. Let Assumption 3.1 hold. In addition, assume that
(c) f(x,s) is s-Holder-continuous.

(d) Q(s) = f(s,s) is such that lim;_,oc By ) {e7"Q(SP)} = 0;
Then lim, o0 limy, o0 J (2,0, 2, 5) = V(z,5), where J is defined through (4.1).

Proposition 4.1. Let the assumptions of Theorem 4.2 hold. In addition, assume
that for all s > 0 and Q there exists a unique stopping region &% such that TH =
{t >0|X; € 6?} provides the value for the auxiliary problem (3.1). Then

(a) im,_ o0 lim, oo J(2,m,2,8) = V(x,s);

(b) lim,_olim, oo Ts, = Ts, wheretg = inf{t >0]| X; € és} and & is the stopping
region for the discretized problem with a state s, and 7; s the optimal stopping

time for the problem (1.1) with a state s.

Theorem 4.2 illustrates that under the stated assumptions the discretization
approaches the value irrespectively on whether the value is attained with a finite
stopping time or not. In addition, if we know that for all admissible Q(s) the value of
the auxiliary problem is attained with an admissible stopping time, then the stopping
region ”approaches” the stopping region of the initial problem as well. All in all, the
generalization in Subsection 3.3 assures that the proof of the existence of a solution to

problem (1.1) reduces to the proof of the existence of a solution for a linear problem
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(3.1). On top of this, the results above guarantees that these solutions can be attained

numerically.

5. Explicit Illustration: Perpetual Lookback with Floating Strike

In order to illustrate the algorithm developed in our paper, we now consider the
valuation and optimal exercise of a perpetual lookback option with a floating strike.
In that case the exercise payoff reads as f(x,s) = (s — kx), where k € Ry is a
known exogenously given constant. Therefore, our objective is to analyze and solve
the stopping problem (cf. [9, 10, 19, 20, 24])

V(z,s) =supEq qle” " (Sr — kX;)]. (5.1)
It is clear that by letting k£ | O the problem becomes the valuation of a perpetual
Russian option (cf. [27]). As our general findings indicate, in this case we have the

following result.

Proposition 5.1. Assume that fooo E(z,s) {e7 S, } dt < oo, that there is a single state

Zs € Ry so that k(rz — p(z)) = s forx § Zs, and that limy o p(x) > 0. Then, the

>
value function of the problem (5.1) reads as

(s = ka)y' (ag) + ki (ag) o

BL'(a?) (z)
Volws) = ¢ BEm AU Ry pue @)
s —kx if x € (0, a’],

where a} can be seen either as the limit boundary stated in Theorem 4.1 or,

alternatively, as the solution of the ordinary differential equation

r_ ¢'(as)o’(as)

s 2¢(as)(r(kas —8) — ku(as)) ’

subject to the mazimality principle. The optimal stopping time is 7* = inf{t > 0 |
Xt S agt}.

a

5.1. Geometric Brownian motion example

Assume now that X; evolves according to a geometric Brownian motion character-

ized by the stochastic differential equation dX; = uX;dt+ o XdW}, where u € (—o0,r)
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and o > 0. In this case, the decreasing and increasing fundamental solutions read as

p(x) =" and Y(x) = 272, where

y=—= <;a it <—1>i\/ (507 — P + 2a2r> (5.2)

==
are the solutions of the characteristic equation %0’2’)/(")/ - 4+puy—r=0,fori=1,2.

Notice that y; < 0 and, since p < r, we have 5 > 1. Under this setting, the problem
(5.1) can be solved explicitly (see [19, 24]):

Proposition 5.2. When X; is a geometric Brownian motion, the value of the

perpetual lookback (5.1) is

212 { (oo k80 - 1) (5)"
Vi(z,s) = — (1 —kB(m —1)) (gs)w_l} if Bs<x <s
s —kx if 0 <z < PBs

and the optimal stopping time is given by 7* = inf{t > 0| X; < BS;}, where 8 is the

unique solution to the equation

B’Y27’Yl — (72 — 1)(’}/1 — kﬂ(’yl — 1))
(m = D(y2 = kB(y2 — 1))

The comparison between the exact and an approximate result are summarized in

Table 1. We see from it that a is decreasing while Vs increasing in n (as proof
of Theorem 4.1 indicates) and that the computing time is linear. Another positive
feature is that the algorithm simultaneously produces approximations for the optimal
boundary a} for other s’s as well along the discretized supremum process.

In Table 2 we see that while the original approximation for aj, was very good,
also other estimates for aj;,...,a%, are quite good, every single one being under half

percent away from the exact value.

5.2. Mean reverting diffusion

To illustrate our findings in a somewhat more complicated setting, let dX; = pX, (60—
X;)dt + 0 X:dWy, where 11, 6,0 > 0 are exogenously given constants. The fundamental
solutions are now ¥(x) = "2 M (y2,1 + 2 — 71, 20%033) and p(x) = 2" U(y1,1 4+ 7 —

Y2, %;—‘fx), where M : Rt — R, and U : R, — R, denote the confluent hypergeometric
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n V*—V a-—a* Time
100 0.89 1.0 0.2sec
1000 0.27 0.21 3sec

10000 0.049 0.036 29sec
100000 0.0020  0.0014 288sec

TABLE 1: The values for the model are (o, u, 7, k) = (0.2,0.05,0.08,1), (z,s) = (7,10), and for
the approximation we chose Q(s) = f(s,s) =0, z = 0.1. The exact values are: V(7,10) = 4.03
and ajg = 5.34.

a—a”*
o

s a* a—a*

15 8.0 0.0099 0.12%
20 10.7 0.021 0.19%
25 134 0.034 0.25%
30 16.0 0.048 0.30%
40 21.3 0.084  0.39%
50 26.7 0.13 0.47%

TABLE 2: A comparison of the exact values a; with the approximate values.

functions of the first and second kind, respectively (cf. p. 504 in [1]), and v;, i = 1,2 are
as in (5.2). These functions are very difficult to handle analytically and, therefore, we
analyze numerically the solution to (5.1) under the following parameter specifications:

uw=0.05,0=0.1,0=0.15r=0.08, k=1.

Let us apply the algorithm. From table 3 we see that it has only a minor impact
to the solution whether we choose the highest possible state for X; to be s, = 75 or
Sn = 200. Therefore, the choice s,, = 75 is adequate for the estimation when s < 10.
Moreover, since the f(z,s) is now s-Lipschitz-continuous with Lipschitz constant 1, we
see from Corollary 4.1 that we can quite surely say that |J(z,s) — V(z,s)| < z, for
s < 10, where J is our approximative and V the (unknown) optimal value function.
In table 4 we see the effect of changing the grid parameter z. The impact of increased

volatility on the optimal boundary and the value are, in turn, illustrated in Figure 2.
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Differences |J(0.1,711,9.9,10) — J(0.1,n2,9.9, 10)]

Sn 50 75 100 200

50 - 4.3-1075 43-107® 43-107°

75 - 6.6-107° 6.6-107°

100 - 5.2-.10713
Time | 50sec 118sec 234sec 598sec

TABLE 3: The grid z = 0.1 is fixed, and the differences |J(0.1,71,9.9,10) — J(0.1,n2,9.9, 10)|

are calculated, where n; is such that the the highest state for X is sn,.

z J(2, 3) dg d7 &10 Time

0.1  1.000889 1.97771 4.57640 6.44145  95sec
0.01 1.000233 1.98858 4.58651 6.45046  958sec
0.005 1.000209 1.98917 4.58707 6.45096 18T75sec

TABLE 4: The initial point (z,s) = (2, 3) and the highest state s, = 75 is fixed. We compare

how the solution change as we change z (in each case n is chosen such that s, = 75).

J(s—z,8)

— NN W s N

FIGURE 2: The stopping boundaries as and the values J(s— z, s) are calculated for s € (3,10),
and o = 0.15, 0.25, 0.35. We have chosen z = 0.01 and s,, to be 75 (with o = 0.15), 100 (with
o =0.25) and 150 (with o = 0.35).

6. Explicit Illustration: mw-option

In order to utilize our findings on the generalized case introduced in Subsections

3.3 and 4.3, we will now consider the valuation and optimal exercise of a m-option
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introduced in [14]. In that case the exercise payoff reads as f(x,s) = 2"s" — K, where
k,m, K > 0 are known exogenously given constant. That is, we plan to analyze and

solve the stopping problem
V(z,s) = supIE(x 9 {e T (XEST-K)}. (6.1)

Let Q(s) >  f(s,s) be a continuous function and assume that

limy o0 E(z.s) {€7"Q(St)} = 0. Consider an auxiliary problem
V@(z,s) = supE {e7 T (XEST — K) Lraqy +€ 7 Q(5) 1751} - (6.2)

Applying our tools, we get the following result (cf. Section 4 in [14]).

Proposition 6.1. Assume that [ B, {e™"" f(S:, S¢)} dt < oo and that for each s > 0
there exists T € (0, s] such that (A—r)f(z,s) % 0 for all x § Zs. Then, for each s > 0,
the value for (6.1) is finite and the optimal stopping time is T, = inf{t > 0 | X; € &},
where S is s-dependent and is either O or of the form [u¥, y*], where 0 < u* < y* <'s

are uniquely determined.

Proof. Let us apply Proposition 3.1 and Corollary 3.1 and let us show that for
each s > 0 and Q(s) the stopping region &€ of the auxiliary problem (6.2) is of the
claimed form. Denote by C% the continuation region at a fixed state s > 0. Clearly
f(0,s) <0, for all s > 0, which implies that the region near the boundary 0 belongs to

the continuation region. It follows from Corollary 4 in [21] (see also Theorem 2 in [6])

that (0, min{u?, s}) belongs to a continuation region, where u¥ = = argmax,cp, { fﬁ;f}

Moreover, under our assumptions, u* is unique (cf. Lemma 3.6 in [3]). If u} > s,
then (0,s) C C9 and &% = (). Assume now that s is such that u* < s. We know by
Dynkin’s formula that u} > Z,. Now, proceeding as in the proof of Lemma 3.1, we see
that there exists a unique y* € [u¥, s) maximizing v(y, z, s) (see (3.3)) for all x € (y¥, s).
Moreover, either the derivative vy (y;,z,s) = 0 and y; > uj or v, (y;,r,s) < 0 and
y: = ui. In the former case &9 = [u},y!] and in the latter case G2 = . The
optimality of the stopping time TsQ for the auxiliary problem follows after noticing

that the resulting value is a r-excessive majorant of the exercise payoff. The alleged

results now follow from Proposition 3.1 and Corollary 3.1.

The stopping region G, and its dependence on s can be characterized more closely
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under more restricting assumptions. However, since our purpose is not to provide an

exhaustive treatment of this subject, we will not go deeper into the analysis of m-option.

6.1. Numerical example

By Theorem 4.2 our discretization works for the m-option. In our numerical
illustration we have chosen k = 0.9, n = 1, K = 9, and Q(s) = f(s,s). Although
the numerics indicate that the algorithm converges also for > 1, we were not able to

prove the convergence in Theorem 4.1 without Holder continuity.

6.1.1. Geometric Brownian motion Let the setting be as in Subsection 5.1. In [14] the
valuation of m-option has been solved under the geometric Brownian motion, which

gives us a baseline for our numerical approximations.

n V=V ¢g—yis Time
400 7.50 0.6 0.7sec
4000 2.5 0.18 4.7sec
40000 0.70 0.050 47sec
400000 0.07 0.0053  467sec

TABLE 5: The value of m-option for geometric Brownian motion. The values for the model are
(o, p,7m) = (0.2,0.03,0.1), (z,s) = (10,13), and z = 0.25. The exact values are: V(10,13) =
115.4 and yi3 = 7.076.

The table shows that in about 50 seconds, we were able to attain results that are
within 1% error margin. Notice that ujs := argmax{%} = 1.29 is independent of

Q(s), z, and n and is always exact.

6.1.2. Mean reverting diffusion Let the setting be as in Subsection 5.2. Now, there
is no known exact solution. As was the case earlier (Subsection 5.2), it has only a
minor impact to the solution whether we choose the highest possible state for X; to
be s, = 70 or s,, = 200. Therefore, the choice s, = 75 is adequate for our estimation.

The results are summarized in Table 6.
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z V(11,13) U13 U15 U20 Time

0.1 105.470 9.9854 11.8577 16.5847  38sec
0.01 105.342 10.0184 11.8919 16.6212  300sec
0.005  105.335 10.0202 11.8938 16.6233  600sec

0.0025 105.332 10.0211 11.8947 16.6243 1200sec

TABLE 6: The value of m-option in the case of mean reverting diffusion. The values for the
model are (o,v,u,r) = (0.2,0.1,0.03,0.08), (x,s) = (11,13). The highest state s, = 75 is
fixed. We compare how the solution change as we change z (in each case n is chosen such

that s, = 75). Now ujz = 1.40.
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