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ABSTRACT 

Lipid autoxidation is an unwanted process that affects the quality of food and has impact on 

human health. Lipid oxidation has been studied extensively, but oxidation during digestion 

has largely been ignored. Formation of oxidized lipids increases rapidly when protective 

antioxidants are exhausted. On the other hand, the nature of antioxidants can lead to problems 

when fortifying foods with too much antioxidants. Pro-oxidative effects of several 

antioxidants have been observed when used in excessive amounts. 

Methods for studying lipid oxidation are numerous. Among them are unspecific titrimetric 

methods and highly specialized chromatographic and mass spectrometric methods. Nuclear 

magnetic resonance (NMR) spectroscopy, especially the proton (1H) NMR, is a promising 

technique for fast screening of lipid samples as it is non-destructive and because of the large 

dynamic scale of the technique. Drawbacks of NMR are that relatively large amount of 

sample is required for the analysis and that specific molecular structures may be difficult to 

identify from complex spectrum. This thesis focuses on the study of in vitro lipid oxidation by 

different chromatographic, mass spectrometric and nuclear magnetic resonance spectroscopic 

methods. 

The most significant findings of the studies in this thesis centre around oxidation, hydrolysis, 

and behaviour of lipids in an artificial digestion model used in the studies. The model 

simulates the digestion processes of human and can be used to study lipid oxidation in vitro. 

Also of importance, are the lipid analysis techniques developed for the experiments, as the 

techniques can be adopted to other fields of scientific studies as well for industrial uses. 

Four major studies were conducted in this thesis: first an in vitro digestion model was adopted 

to study the behaviour of differently oxidized rapeseed oils. Simultaneously, a novel HPLC–

evaporative light scattering detector–MS analysis technique was developed, which enabled 

the analysis of native and oxidized free fatty acids, monoacylglycerols, diacylglycerols, and 

triacylglycerols in the chyme produced by the digestion model. The main findings of the study 

were that thermally oxidized rapeseed oil, chemically oxidized rapeseed oil and unoxidized 

rapeseed oil were hydrolyzed in a similar manner. No hydroperoxides were detected in the 

digested samples, even though they were present in the undigested oils. Also, the finding of 
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large amounts of sn-1(3) monoacylglycerols was surprising, questioning the long believed 

mechanism of triacylglycerol digestion and absorption. 

In the second study, an ultra-high performance liquid chromatography (UHPLC) analysis 

technique was developed to replace the previous HPLC method. Analysis time was reduced 

by a factor of 5.5 without the loss of chromatographic resolution or detection sensitivity. Over 

150 compounds were detected from digested and undigested oxidized rapeseed oils with the 

method. Most significant finding was that toxic core aldehydes present in the undigested 

oxidized oils were not detected in the extracted chyme. This implies that the aldehydic 

functions were either lost during the hydrolysis of lipids or that the compounds formed 

various complexes with other components of the chyme and were not detectable by the 

analysis technique used. 

In the third study, a series of antioxidants were assessed for the effects in the artificial 

digestion model. An improved UHPLC–ESI–MS analysis method was developed, which used 

lithium salt to greatly enhance the ionization and therefore the detection limits of the low level 

analytes in electrospray ionization–mass spectrometry. The main findings were that native 

(unoxidized) rapeseed oil can be oxidized during the digestion processes and that none of the 

used antioxidants could completely prevent this oxidation. L-ascorbic acid, 6-palmitoyl-O-L-

ascorbic acid, 3,5-di-tert-butyl-4-hydroxytoluene (BHT), DL-α-tocopherol, and DL-α-

tocopheryl acetate had different kinds of effects against this oxidation, as measured by the 

concentration of oxidized lipids in the samples. 

The findings of our second study were supported by the fourth study in where 1H NMR 

spectroscopy was used along UHPLC–ESI–MS analyses to study the behaviour of core 

aldehyde-rich oils in the artificial digestion model. Again, no compounds with aldehydic 

functions were detected by UHPLC–ESI–MS analyses of the digested oils even when high 

amounts of core aldehydes were present in the original oil. However, 1H NMR analyses of 

several samples revealed that there were some remaining carbonyl functions in the digested 

samples. The combined results of these analyses techniques strongly hinted that Schiff bases 

and Michael addition products were formed in the digestion mixture.  Overall, the scientific 

studies conducted in this thesis have increased the knowledge of lipid oxidation and especially 

provided more detailed information on possible oxidation during lipid digestion. The findings 

merit for more research in the field. 
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1 INTRODUCTION 

Unwanted lipid oxidation is a major concern for human health. Lipid oxidation is an almost 

inevitable process taking place during food manufacturing, storage and even consumption. The food 

industry has many ways to lower the oxidation of lipids e.g. by the use of antioxidants, modified 

atmosphere, low temperature storage by freezing etc. Consumers, however, have little ability to 

affect the oxidation of lipids other than using proper food preparation techniques and by using only 

fresh ingredients. It is particularly important to avoid unnecessarily high temperatures while 

cooking and to minimise the time that high fat ingredients are held in elevated temperatures. 

The consumption of unsaturated fats and oils is increasing as the current healthy eating guidelines 

emphasise the avoidance of saturated fats for the prevention of coronary and heart diseases. The 

Finnish nutritional guideline published in 2005 states that fats and oils should constitute 

approximately 25−35% of the daily energy intake (E%). More specifically, saturated fats should 

provide 10 E%, monounsaturated fats 10−15 E% and polyunsaturated fats 5−10 E%. While it is 

certainly true that unsaturated fatty acids have important and essential functions in human 

metabolism, it is also true that saturated fatty acids also do. Palmitic acid is an essential component 

of lung epithelial phosphatidylcholines (Balint et al. 1980, Burnell et al. 1978), and heart muscle cells 

preferentially utilise stearic acid for β-oxidation (Lawson et al. 1979). The one good attribute of 

saturated fats, which is largely overlooked, is that they are much less likely to oxidise than 

unsaturated fats and oils and thus are more suited to high temperature food preparation. 

All food must be eaten if its constituents are to be used in metabolism of the human body. The 

digestion processes of major macronutrients involve a series of hydrolysis reactions taking place in 

the mouth, stomach and intestines. Parietal cells in the stomach wall lining secrete hydrochloric acid 

to begin the hydrolysis of proteins, and abundant amount of oxygen is present in the stomach as 

saliva is ingested constantly (Soll et al. 1979, Dunn et al. 1923, Catalán et al. 2009). This makes the stomach 

a very active site of oxidative reactions, and, indeed, it has been shown that the stomach acts as a 

bioreactor (Kanner et al. 2001). The efficacy of several antioxidants against this oxidation has been 

studied before, but the methods used have been general in nature (Kanner et al. 2001, Lapidot et al. 2005a, 

Lapidot et al. 2005b). The behaviour of oxidised lipids in the stomach and intestines is still largely 

unknown, although it has been shown that the primary oxidation products, hydroperoxides, are 

decomposed to aldehydes and alcohols in the stomach before transfer to the small intestine 

(Kanazawa et al. 2008a, Kanazawa et al. 2008b).  
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This thesis focuses on lipid oxidation, lipid digestion and analysis of lipid oxidation. A brief review 

of the literature on lipid oxidation and digestion, the mammalian antioxidative defence system and 

methods of analysis precedes a summary of the four major studies that were conducted on the topic.  
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2 REVIEW OF THE LITERATURE 

2.1 Fatty acids and triacylglycerols 

The human diet is composed of three major macronutrients: carbohydrates, fats, and proteins. Fats 

contain the highest amount of energy per weight and are mainly composed of triacylglycerols. 

There are three fatty acids (FAs) esterified to a glycerol backbone in a triacylglycerol (TAG) 

molecule (see Figure 1). TAGs are part of larger group of compounds called lipids. Major lipids in 

animal adipose tissues are triacylglycerols (90−95%), different phospholipids, free and esterified 

cholesterol, and, as minor components, lipophilic antioxidants. These compounds serve many 

functions in the body; for example, fatty acids can be used as fuel in energy metabolism (Large et al. 

2004) or as local hormones after transformation to eicosanoids, which can even modulate adipose 

tissue inflammation and oxidative stress (Fan et al. 2012). Cholesterol and phospholipid species are 

essential components of the cell wall lipid bilayer structures (Nagle et al. 2000) and different 

antioxidants protect the unsaturated fatty acids from oxidation (Gutteridge 1995). In addition, it has 

recently been discovered that eicosanoids can be esterified into membrane phospholipids providing 

short-term storage (Hammond et al. 2012). 

 

Figure 1. Example of a triacylglycerol molecule (1-oleoyl-2-α-linolenoyl-3-stearoyl-sn-glycerol). The triacylglycerol 
contains oleic acid (18:1 n−9) in the sn-1 position, α-linolenic acid (18:3 n−3) in the sn-2 position and stearic acid 
(18:0) in the sn-3 position. 

Fats can be divided into several groups according to the physical behaviour of the fat. Fat is called 

oil if it is liquid at room temperature. Natural fats and oils are very rarely, if ever, pure compounds; 

instead, they are mixtures of different length fatty acids with different amounts of double bonds, 

and bound in different positions in the glycerol backbone (see Figure 1). This gives numerous 

possible structures for TAGs composed of some twenty common fatty acids (see Table 1). Sixteen 

and eighteen carbon fatty acids are the most abundant in nature, but many other chain lengths (even 
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and odd numbered) exist as branched and cyclical fatty acids (Shorland et al. 1955, Kaneda 1977). 

Commonly, FAs exist without functional groups other than the carboxyl group; however, some FAs 

do contain, for example, hydroxyl, ketone, and epoxide groups (Prostenik et al. 1978, O'Leary 1962, Stahl 

et al. 1996, Brechany et al. 1994). Unsaturation is common in all animal, vegetable and algae fatty acids, 

although vegetable and algae FAs tend to be more highly unsaturated. Monounsaturated fatty acids 

are a major component of most mammalian milk and fatty tissue triacylglycerols (Månsson 2008, 

Yahas et al. 2008, Rohman et al. 2012, Codex Standard for named vegetable oils 2011). 

Table 1. Common fatty acids 

ACN:DBN1  Trivial name (abbreviation) IUPAC name 

6:0 caproic acid hexanoic acid 

8:0 caprylic acid octanoic acid 

10:0 capric acid decanoic acid 

12:0 lauric acid dodecanoic acid 

14:0 myristic acid tetradecanoic acid 

16:0 palmitic acid (P) hexadecanoic acid 

16:1 (n−7) palmitoleic acid (Po) (Z)-hexadec-7-enoic acid 

18:0 stearic acid (S) octadecanoic acid 

18:1 (n−9) oleic acid (O) (Z)-octadec-9-enoic acid 

18:2 (n−6) linoleic acid (L) (Z,Z)-octadeca-9,12-dienoic acid 

18:3 (n−3) alpha-linolenic acid (Ala) (Z,Z,Z)-octadeca-9,12,15-trienoic acid 

18:3 (n−6) gamma-linolenic acid (Gla) (Z,Z,Z)-octadeca-6,9,12-trienoic acid 

20:0 arachidic acid (A) eicosanoic acid 

20:1 (n−9) gondoic acid (Z)-eicosa-12-enoic acid 

20:3 (n-6) dihomogammalinoleic acid, DGLA (Z,Z,Z)-eicosa-8,11,14-trienoic acid 

20:4 (n−6) arachidonic acid (Aa) (Z,Z,Z,Z)-eicosa-5,8,11,14-tetraenoic 
acid 

20:5 (n−3) timnodonic acid (EPA) (Z,Z,Z,Z,Z)-eicosa- 
5,8,11,14,17-pentaenoic acid 

22:0 behenic acid docosanoic acid 

22:1 (n−9) erucic acid (Z)-docosa-9-enoic acid 

22:6 (n−3) cervonic acid (DHA) (Z,Z,Z,Z,Z,Z)-docosa-4,7,10,13,15,18-
hexaenoic acid 

24:1 (n−9) nervonic acid (Z)-tetracosa-15-enoic acid 

1 Acyl carbon number: double bond number (position of the first double bond calculated from the last carbon) 
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2.2 Rapeseed oil 

Vegetable oils are produced in large amounts around the world (see Figure 2). Rapeseed (spring 

rape/Brassica napus L. v. oleifera subv. annua in Finland) and turnip rapeseed (spring turnip 

rape/Brassica rapa L. v. oleifera subv. annua in Finland) are the second most commonly cultivated 

oilseeds in the world and the most cultivated in Finland (Foreign Agricultural Service/USDA 2010, 

www.agronet.fi 2012). Consequently, low erucic acid rapeseed oils, including both rapeseed and turnip 

rapeseed oils, are commonly consumed oils in the Finnish diet, which contributes to the high intake 

of n-3 polyunsaturated fatty acids in Finns (The national FINDIET 2007 survey). Natural rapeseed oil has 

up to 50% erucic acid in it, but commonly cultivated, low erucic acid rapeseed varieties have very 

low amounts of erucic acid (<1%), and high contents of α-linolenic acid (5−15%), linoleic acid 

(15−30%), and oleic acid (51−70%) (Kallio et al. 1993, Codex standard for named vegetable oils 2011). 

Compared to olive oil, which usually has less than 1% of α-linolenic acid, rapeseed oil is much 

more prone to oxidation. However, natural tocopherols in rapeseed oil protect it from oxidation in 

storage (Isnardy et al. 2003). There is approximately 44−119 mg of γ-tocopherol, 19−69 mg α-

tocopherol, and 0−3 mg of δ-tocopherol in 1 kg of rapeseeds depending on the variety and growth 

conditions (Seker et al. 2008). Commercial oil contains usually between 19 and 30 mg of combined 

tocopherols (calculated as vitamin E equivalents) per 100 g of oil, but cold pressed oil can contain 

up to 51 mg α-tocopherol per 100 g oil (Schwartz et al. 2008, Codex standard for named vegetable oils 2011). 
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Figure 2. Yearly oilseed and vegetable oil production in the world in 2011 (rapeseed production contains all of the 
Brassica species based oilseeds including turnip rapeseed) (Foreign Agricultural Service/USDA 2010). 
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2.3 Lipid oxidation and reactive oxygen species 

Lipid oxidation is an unwanted process in which double bonds of unsaturated fatty acids are 

attacked by reactive oxygen species (ROS), and oxygenated lipids are formed. This alters the 

sensory and physiological properties of the fat or oil, and causes health concerns for individuals 

consuming oxidised fats (Kanner 2007). Usually, lipophilic antioxidants protect the triacylglycerols 

and other lipids from oxidation, but the antioxidants are consumed by ROS after a while and 

primary oxidation products start to form (Kamal-Eldin 2003). This lag period is not present if there are 

no antioxidants in the oil (Isnardy et al. 2003). Oxidation processes can be explained in a more precise 

manner by spin systems in molecular orbitals. Normal atmospheric oxygen, O2, is in the triplet state 

(3O2) that is relatively stable and unreactive. When the dioxygen molecule absorbs energy, it can be 

excited to the so called singlet state (1O2), which is the principal ROS in photo-oxidation (DeRosa et 

al. 2002). In the singlet state, the highest occupied molecular orbitals of 1O2 contain the same amount 

of electrons (two) as in the triplet state, but they are now both located in the same anti-bonding π2px* 

orbital with opposing spins (see Figure 3).  

 

Figure 3. The atomic and molecular orbitals of triplet and singlet oxygen.  
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Oxygen in the singlet state is very reactive and has a lifetime of up to 100 µs in solvents. However, 

in a gas atmosphere, singlet oxygen can have a lifetime of up to 70 minutes (Wilkinson et al. 1995). 

The required energy is brought to the system usually either as heat or UV light. Certain 

photosensitisers and other compounds such as metal ions increase the formation of singlet oxygen 

by lowering the energy required for electron excitation (DeRosa et al. 2002). Oxygen may also be split 

into atomic oxygen, which occurs commonly in the atmosphere. Atomic oxygen is radical and 

radicals have unpaired and extremely reactive outer orbital electrons. In a single bond between 

carbon atoms, σ bonds are formed from sp2 orbitals. Double bonds have, in addition to σ bonds, 

delocalised electrons from p orbitals that form a π orbital. The energy required to interact with a 

double bond is much lower than with a single bond. Furthermore, if the molecule has more than one 

double bond in close proximity with each other, the energy required is even smaller (Flemming 2010). 

Triacylglycerols in saturated fats such as bovine milk fat (butter), pig lard or coconut oil contain 

more fatty acids with no double bonds or only a single double bond than common vegetable oils or 

fish oils. This makes saturated fats more resistant to autoxidation by heat and UV light exposure. 

Docosahexaenoic acid, which is found abundantly in fatty fish species such as salmon and herring, 

oxidises much more easily than α-linolenic acid, and linoleic acid oxidises more easily than oleic 

acid (Cosgrove et al. 1987). Stearic acid is essentially resistant to autoxidation.  

The natural methyl interrupted double bond system is affected by oxidation in such a way that 

conjugated dienes and trienes are also formed, as double bonds are able to migrate during the 

formation of intermediate structures. These intermediate structures in free radical oxidation include 

delocalised carbon-centred radicals (Pratt et al. 2011). In triacylglycerols, the position of fatty acids in 

the glyceryl backbone can have an effect on the susceptibility of an FA to be oxidised. The sn-2 

position may be slightly more protected against oxidation than the sn-1 and sn-3 positions (Neff et al. 

1996). 

There are several ROS that can be formed. The most abundant are singlet oxygen (1O2), ozone (O3), 

superoxide radical (·O2
-), hydrogen peroxide (H2O2) and hydroxyl radical (·OH). The pKa of 

superoxide radical is 4.88, so the more reactive hydroperoxyl (HO2·) form is dominant in acidic 

conditions such as in the stomach (Bielski et al. 1985). While the majority of ROS are hydrophilic, 

hydrogen peroxide is lipid soluble, enabling it to readily cross lipid membranes (Seaver et al. 2001). 

Hydroxyl radicals are very strong and short-lived (10-9 s) oxidising reagents and are formed e.g. by 

Fenton reaction (Lipinski 2011): 
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Fe2+ + H2O2 -> Fe3+ + ·OH + OH- 

Reactive oxygen species are formed constantly e.g. in the atmosphere by UV radiation, in 

mitochondria and endoplasmic reticulum during the normal metabolism of cells, during the action 

of specialised defence cells of the immune system such as macrophages and phagocytes, and during 

apoptosis (Alfadda et al. 2012, Circu et al. 2010). Certain tissues generate ROS to dispose of unwanted 

chemicals and toxins in cell organelles called peroxisomes and lysosomes (Schrader et al. 2008, Nohl et 

al. 2005).  

2.3.1 Formation of lipid hydroperoxides 

After most of the antioxidants in the system are consumed, the formation of hydroperoxides begins. 

The exact mechanism of the beginning of peroxidation is a much debated issue and several 

mechanisms have been proposed. The formation methods of hydroperoxides can be roughly 

separated into three groups: autoxidation by thermal energy, photo-oxidation, and enzymatic 

oxidation (Tejero et al. 2004). Both thermal oxidation and photo-oxidation require catalysts of some 

kind to initiate the peroxidation cascade (Privett et al. 1962). Unfortunately, small amounts of metal 

ions and other compounds are usually present in oil containers and in oils. 

The first step in autoxidation is called initiation; there, a lipid molecule (L) is attacked by an ROS 

that subtracts a hydrogen atom from the lipid molecule, producing a lipid radical (·L). This radical 

then reacts with molecular oxygen in the propagation step, producing a lipid peroxyl radical 

(LOO·). LOO· reacts further with an unoxidised lipid molecule (L) and propagates the peroxidation 

reaction by producing L· and LOOH. This propagation is continued until the termination step, 

where radicals are quenched by other radicals as their concentration increases sufficiently, and 

stable end-products are formed (Porter et al. 1995, Kamal-Eldin 2003, Pratt 2011). 

Autoxidation of oleic acid produces 8-, 9-, 10-, and 11-hydroperoxides in nearly equal amounts. 

The double bond in cis configuration commonly isomerises to trans configuration and the end-

products include 8-hydroperoxy-cis-9-octadecenoic acid, 8-hydroperoxy-trans-9-octadecenoic acid, 

9-hydroperoxy-trans-9-octadecenoic acid, 10-hydroperoxy-trans-9-octadecenoic acid, 11-

hydroperoxy-cis-9-octadecenoic acid, and 11-hydroperoxy-trans-9-octadecenoic acid. Also, some 

rearrangements of the position of the hydroperoxyl group and the double bond are possible after the 

initial formation (Porter et al. 1995). 
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The recent discovery of bis-allylic 11-hydroperoxide along the main oxidation products, conjugated 

diene hydroperoxides, after the autoxidation of linoleic acid, has revealed that antioxidants have an 

active role in some oxidation pathways (Brash 2000). A strong antioxidant such as α-tocopherol is 

required as a hydrogen donor for the formation of bis-allylic 11-hydroperoxide as the intermediate 

bis-allylic peroxyl radical is very fleeting (Schneider 2009). 

Photo-oxidation can happen via two different mechanisms. In type I photo-oxidation the 

photosensitiser gets excited by UV light and extracts an electron from the substrate molecule. A 

photosensitiser radical and substrate radical are formed, which react further with molecular oxygen 

to produce hydrogen peroxide and superoxide radical (Niki et al. 2005, Tejero 2004, Terao 1977). In type 

II photo-oxidation, the singlet oxygen formed by UV radiation directly attacks a double bond in a 

lipid molecule (Rontani 2012). Four hydroperoxide isomers are produced from linoleic acid by type II 

photo-oxidation: (I) 9-hydroperoxy-trans-10-cis-12-octadecadienoic acid, (II) 10-hydroperoxy-

trans-8-cis-12-octadecadienoic acid, (III) 12-hydroperoxy-cis-9-trans-13-octadecadienoic acid, and 

(IV) 13-hydroperoxy-cis-9-trans-11-octadecadienoic acid (see Figure 4.) (Tejero 2004). 

 

Figure 4. Primary photo-oxidation products of linoleic acid.  

The enzymatic peroxidation of fatty acids is common in plant and animal tissues, e.g. for the 

production of eicosanoids in animal cells and the regulation of growth factors in plants (Harizi et al. 

2008, Skórzyńska 2007). The production of eicosanoids from DGLA, AA, EPA and DHA by cyclo-
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oxygenases (COX-1 and COX-2) is regulated and not an auto-oxidative process (Fitzpatrick et al. 

2001). Plant-derived oxygenases (lipoxygenases, LOX) can sometimes be responsible for the 

unwanted peroxidation of vegetable oils, if the oil extraction procedure has not deactivated the 

enzymes (Dwiecki et al. 2012). This is the main problem for different cold pressed oils. Pathogen-

induced oxygenase (PIOX) is a recent discovery among plant enzymes; it closely resembles animal 

cyclooxygenase and produces signalling molecules when plants experience oxidative burst during 

pathogen invasion and cell death (Sanz et al. 1998). 

Also, different bacteria and moulds contain and produce peroxidising and other oxidising enzymes 

(e.g. cyclooxygenase-like enzymes and LOX), but this is not usually an issue for foods as spoiling 

is readily detected by off-flavours (Tsitsigiannis et al. 2005). Fermented cheese is known to contain 

both volatile and non-volatile lipid oxidation products (Arora et al. 1995, Brechany et al. 1992); however, 

these are usually considered the desired aroma compounds. It is, however, unknown how e.g. the 

intestinal microbes affect the small amount of lipids that escape the small intestine unabsorbed and 

enter the large intestine, and what the possible health implications of any bacterial lipid oxidation 

products are. Some common oxidised fatty acids and advanced lipid oxidation products are 

presented in Table 2 and Figure 5. 

Table 2. Common oxidised fatty acids and their degradation productsa. 

ACN:DBN Trivial name IUPAC name Source 

3-OH-4:0 3-hydroxybutyric acid 3-hydroxybutanoic acid bacterial fatty acid 

- 2,4-hexadienal (E,E)-hexa-2,4-dienal heated oil 

- malondialdehyde propanedienal heated oil 

2-diOH-18:0 β-dihydroxystearic 
acid 

2-dihydroxyoctadecanoic acid bacterial fatty acid 

2-OH-18:0 2-hydroxystearic acid 2-hydroxyoctadecanoic acid higher fungi 

12-OH-18:1 (n-9) ricinoleic acid (Z)-12-hydroxyoctadec-9-enoic 
acid 

castor oil 

9-OOH-18:1 (n-9) 9-monohydroperoxy 
oleic acid 

(E)-9-hydroperoxy-octadec-9-
enoic acid 

oxidised sunflower oil 

5-CO-18:0 5-oxostearic acid 5-oxodecanoic acid cheese lipids 

12-O-18:1 (n-9) vernolic acid  (Z)-12,13-epoxy-octadec-(Z)-9-
enoic acid  

Vernonia anthelmintica  

- prostaglandin E2 (5Z,11α,13E,15S)-7-[3-hydroxy-2-
(3-hydroxyoct-1-enyl)- 5-oxo-
cyclopentyl] hept-5-enoic acid  

arachidonic acid metabolite

a Collected from following sources: Prostenik et al. 1978, O'Leary 1962, Stahl et al. 1996, Brechany et al. 1994, Negre-Salvayre et 
al. 2008., Hsu et al. 2006). 
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Figure 5. Selected oxidised fatty acids and advanced lipid oxidation products. (I) 3-hydroxybutyric acid, (II) 2,4-
hexadienal, (III) resonance structure of malondialdehyde, (IV) β-dihydroxystearic acid, (V) ricinoleic acid, (VI) 
vernolic acid, (VII) 5-oxostearic acid, and (VIII) prostaglandin E2. 

2.3.2 Secondary lipid oxidation products 

Secondary lipid oxidation products start to form after the hydroperoxides reach high enough 

concentrations. Formation pathways include the direct decomposition of hydroperoxides by β-

scission (see Figure 6), Hock-cleavage and additional oxidation (Frankel 1983, Frankel 1984). The 

common end-products of peroxidised fatty acids include hydroxy fatty acids, oxo fatty acids, epoxy 

fatty acids, monocyclic peroxides, aldehydes and any combinations of these. Many of the oxidation 

products are volatile, some semi-volatile, and others non-volatile (Frankel 1984). Volatile lipid 

oxidation products give the rancid smell of oxidised fats and oils. Some of these compounds, such 

as malondialdehyde, 4-hydroxy-2-nonenal, 4-hydroxy-2-hexenal, and 4-oxo-2-hexenal, are found 

for example in the cooking vapours of heated oils (Kawai et al. 2006, Esterbauer 1991, Goicoechea et al. 

2010, 2011). 
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Figure 6. 1-Nonanal and 9-oxononanoic acid as end-products of the β-scission of 9-hydroperoxy-(E)-octadec-10-enoic 
acid.  

The non-volatile secondary oxidation products of lipid autoxidation include oxidised 

triacylglycerols, diacylglycerols, monoacylglycerols and fatty acids, triacylglycerol polymers, and 

core aldehydes. Triacylglycerol polymers are a complex group of compounds formed under high 

heat (Byrdwell et al. 1999). The structures of polymerised TAGs may render them unhydrolysable by 

gastric and pancreatic lipases, enabling polymerised TAGs to enter the large intestine (Henderson 

1993). The intestinal microbes may however possess enzymes that are capable of hydrolysing these 

polymer structures and possibly release smaller oxylipids that can then interact with intestinal wall 

cells. 

Core aldehydes represent an important group of non-volatile secondary oxidation products. Core 

aldehydes can be formed from several different lipid classes such as TAGs, phospholipids, and 

cholesteryl esters (Kuksis 1990). Typical core aldehyde structures formed from common lipids can be 

seen in Figure 7. (I) 1-O-hexadecyl-2-(5-oxovaleroyl)-sn-glycerophosphocholine is found in 

human atheromas (Kamido et al. 2002) and (II) cholesterol 9-oxononanoate was detected from human 

lipoproteins after copper-induced peroxidation (Kamido et al. 1995). 
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         (I)              (II) 

Figure 7. Typical core aldehydes formed from different common lipids.  

Cholesterol itself can be oxidised by ozone in a manner that produces cholesteryl aldehydes such as 

(I) cholesterol carboxyaldehyde (3β-hydroxy-5β-hydroxy-B-norcholestane-6β-carboxyaldehyde) 

and (II) cholesterol secocholestenal (3β-hydroxy-5-oxo-5,6-secocholestan-6-al) as seen in Figure 8 

(Mansano et al. 2010). Ozone is produced in atherosclerotic arteries, and a major cholesterol oxidation 

product and precursor for cholesterol carboxyaldehyde is cholesterol 5α-hydroperoxide (Uemi et al. 

2009). 

 

Figure 8. Cholesterol carboxyaldehyde (I) and cholesterol secocholestenal (II). 

Aldehyde groups are generally very reactive. Various carbonyl groups containing oxylipids have 

been observed to rapidly complex with other substances, such as amino acids, proteins, and nucleic 

acid bases in biological environments (Kamido et al. 1995, Kamido et al. 2002, Kikugawa 1987, Kotsovolou 

2002, Kurvinen et al. 1999, Esterbauer 1999), while, in the chyme, aldehydic lipids have the possibility to 

be incorporated into many other compounds by forming adducts with amino acids, peptides, and 

proteins (see Figure 9 for an example of the reduced Schiff base). The covalent bonds formed in the 

adduct molecules are sometimes reversible, depending on the pH and other factors (Kamido et al. 

1995). The resulting Schiff bases and Michael addition products may be partially cleaved by 

digestive enzymes, and possibly absorbed in some form. If the aldehydic functions are retained after 
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absorption, there may be severe health affects as e.g. new covalent bonds between critical enzymes 

or DNA are formed. 

 

Figure 9. A reduced Schiff base formed from 2-(9-oxo)-nonanoyl-sn-glycerol and tyrosine−glycine dipeptide.  

2.4 Antioxidants and their effects 

Antioxidants protect lipids (and proteins) against oxidation by the quenching of radicals. They 

commonly act as electron donors, reducing the ROS that are present (Kamal-Eldin et al. 1996). They 

also form stable end-products with lipid radicals, preventing the propagation of any new radicals 

(Mäkinen et al. 2000, Niki 2005). Common natural antioxidants include carotenoids, tocopherols, 

ascorbic acid, and many phenolic compounds such as polyphenols (see examples in Figure 10). 

 

Figure 10. Common antioxidants. (I) α-Tocopherol, (II) epicatechin, (III) ascorbic acid, and (IV) astaxanthin. 

The solubility of an antioxidant is an important property. Biological fluids are aqueous systems in 

which oxygen is readily soluble. Fats on the other hand are mainly hydrophobic, and in the case of 

TAGs they are highly hydrophobic. Oxidised fats commonly have highly polar functional groups in 

the molecular structure, making them amphiphilic. This usually results in a change in the three-
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dimensional structure of the molecule in biological systems. For example, the hydroperoxyl group 

has high affinity to water and can force a normally lipophilic molecule to bend drastically if water–

lipid surfaces are present (Sun et al. 2011). 

2.4.1 Ascorbic acid 

Ascorbic acid or vitamin C (see Figure 10) is probably the most recognised antioxidant. It is 

abundant in fruits and berries and other vegetables (Szeto et al. 2002). As a sole antioxidant, ascorbic 

acid may not be very effective against lipid peroxidation due to its hydrophilic nature, although it is 

an active scavenger of active and stable radicals (Niki 1991). If present with other lipid soluble 

antioxidants, ascorbic acid can regenerate other antioxidants such as tocopherols (Niki 1987). The 

sparing effect has also been observed in vivo, but the interactions are more complex, and move in 

both ways (Tanaka et al. 1997). Interestingly, ascorbic acid has been observed to be able to produce 

nitric oxide from nitrite in acidic environments such as in the stomach (Nagler 2002). This can reduce 

the probability of the formation of carcinogenic nitrosamines.  

The efficacy of ascorbic acid against oxidative stress in vivo is a much debated issue. Liu et al. 

(2010) observed the protecting and restoring effect of ascorbic acid and α-lipoic acid when 

administered together, but not alone, against oxidative stress induced by arsenic exposure in rats. A 

protective effect against alcohol-induced liver and brain toxicity, as shown by decreased 

malondialdehyde levels, was observed when ascorbic acid, quercetin and thiamine were 

administered. Ascorbic acid was found to be the most effective of the tested antioxidants (Ambadath 

et al. 2010). However, Fumeron et al. (2005) did not find any protective effect of oral vitamin C 

supplementation (250 mg three times per week for 2 months) against oxidative stress as measured 

by plasma protein carbonyl compounds or inflammation markers in haemodialysis patients.  

A known interaction between ascorbic acid and glutathione exists. They work as a redox pair in 

which oxidised ascorbic acid, dehydroascorbic acid, is regenerated in two-electron transfer by 

glutathione via the dehydroascorbate reductase enzyme (Wells et al. 1994). Glutathione is thought to 

maintain a reduced cellular environment and its metabolism and homeostasis is important in health 

and many diseases (Townsend et al. 2003). 
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2.4.2 Carotenoids 

Carotenoids are a large group of lipid soluble, colourful antioxidants. They are found in chloroplasts 

and in the light harvesting centres of plant leaves and algae, in many fruits and berries, and in some 

fish and crustaceans (Scheer 2004, Edge et al. 1997). Probably the most abundant carotenoid, β-carotene, 

is a free radical scavenger and acts in a protective role in the plant light harvesting complexes as 

excess light energy is absorbed (Xiao et al. 2011). Carotenoids also work by quenching singlet 

oxygen. The number of conjugated double bonds increases the quenching ability of a carotenoid 

(Hirayama et al. 1994). Dietary β-carotene is considered safe, but as an excessively-consumed 

supplement may pose pro-oxidative effects in certain population groups such as smokers (Paiva et al. 

1999, Goralzyk 2009). 

Lycopene is red carotene found abundantly in tomato and tomato products. Native lycopene is 

usually in the all-trans configuration, but, as it is easily isomerised and oxidised, various cis-

isomers and oxidation products are formed during food preparation and storage. Interestingly, the 

bioavailability of cis-isomerised lycopene is better than the all-trans form (Chi et al. 2000). High 

serum lycopene levels have been discovered to decrease the risk of stroke in men (Karppi et al. 2012). 

Lycopene (from tomatoes) has also been observed to have a positive effect on plasma antioxidant 

enzymes, such as superoxide dismutase, glutathione peroxidase, and glutathione reductase, and the 

lipid peroxidation rate measured as malondialdehyde in patients with grade-I hypertension and 

elevated oxidative stress status (Subhash et al. 2007). In some studies, high dietary lycopene intake is 

negatively correlated with certain cancers such as prostate cancer, but recent critical reviews of 

epidemiological studies have been critical to such claims (Wei et al. 2012). 

Astaxanthin (see Figure 10) is a xanthophyl, oxygen containing carotenoid. It is found e.g. in a 

green algae Haematococcus pluvialis and in many fatty fish such as salmon, trout and char, thus 

protecting the highly unsaturated fats in the fish from oxidation (Boussiba et al. 1991, Lambertsen et al. 

1971). Some evidence exists for the in vivo efficacy of astaxanthin supplementation. Plasma 12- and 

15-hydroxy fatty acids were significantly reduced compared with placebo after daily 4 mg 

astaxanthin administration (Karppi et al. 2007). 

Interactions of carotenoids, phenolic compounds, and tocopherols and tocotrienols have been 

studied and clear synergism was observed by Schroeder et al. (2006). Interestingly, tocotrienols 

had a stronger synergistic antioxidant effect with carotenoids against oxidation as measured by 

conjugated diene formation in phospholipid liposomes than in α-tocopherol. 
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2.4.3 Tocopherols and tocotrienols 

Tocopherols and tocotrienols are a group of lipophilic antioxidants found in many vegetable oils 

and fish (Syväoja et al. 1985, Schwartz et al. 2008). Some tocopherols and tocotrienols also have vitamin 

E activity, while others only possess antioxidant properties. Natural α-tocopherol (RRR-α-

tocopherol, see Figure 10) is the most active as vitamin E, while β-, γ-, δ-tocopherols have only 

part of the activity of the α-form. Tocotrienols differ from tocopherols by possessing an unsaturated 

farnesyl isoprenoid tail in place of saturated phytyl tail (Kamal-Eldin et al. 1996). 

Tocopherols and tocotrienols (tocols) are added to refined oils to restore the lost oxidative stability 

of the oils. In this role, tocols work sufficiently well, as demonstrated by Rossi et al. (2007) by free 

radical scavenging efficacy measurements by 2,2-diphenyl-1-picrylhydrazyl (DPPH) of deep-fried 

vegetable oils. Total tocol concentration correlated strongly to radical scavenging activity. Lampi et 

al. (1999) found that γ-tocopherol is a more potent antioxidant that the α-form, and that they both 

help to protect rapeseed oil triacylglycerols from oxidation in the dark at 40°C. 

α-Tocopherol is known to affect the decomposition pathways of lipid hydroperoxides. Mäkinen et 

al. (2000) discovered that at low levels α-tocopherol inhibited the breakdown of methyl linoleate 

hydroperoxides, and at higher levels inhibited the isomerisation of cis,trans-hydroperoxides to 

trans,trans-hydroperoxides and increased the production of hydroxy compounds. 

Traditionally, tocols are thought to act as simple chain-terminating radical scavengers, but other 

functions also exist (Kamal-Eldin et al. 1996, Kamal-Eldin 2003). Tocols are very likely incorporated in 

biological membranes in non-random ways, and thus may have very different real-life efficacy as 

antioxidants in vivo when compared with in vitro models. It is already known that membranes of 

different tissues contain very different amounts of tocols and that different stereoisomers behave 

differently, especially when stereoselective proteins are present in the membranes (Atkinson et al. 

2008). 

The bioavailability of tocopherols has been observed to vary between individuals. In a study by 

Roxborough et al. (2000) delta-6-α-tocopherol concentrations of plasma were measured after 

vitamin E supplementation; the results showed that 40-fold differences existed between study 

subjects in tocopherol concentration in the blood, which indicates differences in absorption or 

metabolism. 
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Meta-analyses of previous clinical studies have raised concerns over high-dosage vitamin E 

supplementation. All-cause mortality was statistically significantly increased in populations 

consuming high amounts (≥400 IU/d) of vitamin E supplements. The study covered 19 randomised 

controlled trials with more than 135 000 participants. (Miller et al. 2005). In another study covering 

over 35 000 healthy men in North-America, a similar high dose of all-rac-α-tocopherol 

supplementation increased the risk of prostate cancer significantly (Klein et al. 2011). However, some 

researchers claim that diets rich in γ- and δ-tocopherols, and even supplementation with these 

isomers, may provide protection against several cancers, as demonstrated by studies with 

experimental animals (Yang et al. 2012).  

2.4.4 Phenolic compounds 

Phenolic compounds are a diverse and loose group of compounds found mainly in plants. Many 

phenolic compounds can be classified as antioxidants due to their structure and observed effects. 

Phenolic compounds work as antioxidants by scavenging radicals and by binding free metal ions, 

thus preventing the initiation of oxidation (Perron et al. 2009). Such antioxidants include e.g. simple 

phenolic compounds such as caffeic acid (3,4-dihydroxycinammic acid), other hydroxycinammic 

acids, gallic acid (3,4,5-trihydroxybenzoic acid), similar hydroxybenzoic acids, colourful 

anthocyanins (glycosides of anthocyanidins), polyphenols such as ellagitannins (hydrolysable 

tannin), gallotannins and flavonoids such as epicatechin (a flavan-3-ol, see Figure 10) (Dai et al. 

2010). 

Good dietary sources for various phenolic compounds are fruits, berries, vegetables, cereals, cocoa, 

tea, and red wine. The epidemiological studies on high consumption of good sources of phenolic 

compounds are unanimous on the positive effects of these foods in human health. The efficacies of 

several individual phenolic compounds, as also natural mixtures and extracts, have been 

investigated. In a study, polyphenols extracted from extra virgin olive oil were compared with 

artificial antioxidants for the inhibition of lipid oxidation of canned tuna. The peroxide value 

determination and headspace GC analysis of volatiles indicated that polyphenol extract is stronger 

antioxidant than butylated hydroxytoluene (BHT) or butylated hydroxyaniline (BHA) (Medina et al. 

1999). 

Red wine polyphenols include anthocyanins and caffeic acid-rich cathecins. They can increase the 

formation of nitric oxide (·NO) from nitrite in the acidic environment of the stomach (Gago et al. 

2007). As ·NO is a radical molecule, it is regarded as a somewhat harmful compound and may be 
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involved in neurodegenerative diseases. In addition to negative health effects, certain positive health 

effects seem to exist on the human body such as vasodilation. ·NO remains a controversial 

compound (Knott et al. 2009). Red wine polyphenols have been observed to inhibit low-density 

lipoprotein oxidation, possibly explaining the French paradox of the low incidence of 

cardiovascular diseases in France in spite of the high consumption of saturated fats (Frankel et al. 

1993). The antioxidant effect of red wine polyphenols is also observed in the gastric environment, as 

lipid peroxidation was reduced significantly when polyphenols were added to the model simulating 

food digestion (Kanner 2001). Kerem et al. (2006) investigated the effects of epichatechin, trans-

rasveratrol, gallic acid and caffeic acid on lipid oxidation in the intestinal model system. 

Epicatechin was the only antioxidant that prevented the formation of primary oxidation products, 

hydroperoxides, but all of the tested phenolic compounds decreased the amount of hexenal. 

2.4.5 Artificial antioxidants 

Artificial antioxidants that are approved for food use include ascorbyl palmitate (E304) and 

butylated hydroxytoluene (BHT / E321) (Commission regulation (EU) No 1129/2011). Esterification of 

ascorbic acid with long chain fatty acids is performed to change the highly hydrophilic molecule to 

a more lipophilic form. Some evidence exists that ascorbyl palmitate can have advantages over 

regular ascorbic acid. The esterified form has been observed to penetrate the blood-brain barrier and 

access biomembranes that are not normally available to ascorbic acid (Pokorski et al. 2003). BHT is a 

controversial antioxidant, as it has been observed to increase the risk of some cancers based on in 

vitro and animal experiments (Kensler et al. 1985). The risk is, however, not regarded as significant by 

the WHO (IARC monographs 1986). 

Tocopheryl acetate is not currently an approved antioxidant for human food use in the EU, but it is 

widely used in topical applications. The acetate group esterified on the phenolic hydroxyl of α-

tocopherol inhibits any direct antioxidant activity as the hydrogen donor and resonance structure 

formation abilities are lost. The acetate group is however thought to be cleaved slowly, thus 

enabling antioxidant activity in a regulated manner. The acetate form is known to be absorbed by 

humans in a similar manner as free tocopherol but only after pancreatic lipases hydrolyse the 

acetate (Cheeseman et al. 1995). 



Review of the Literature 

 

20

2.4.6 Pro-oxidative effect of antioxidants 

Most antioxidants have upper limits of concentration before negative effects start to take place. 

Tocopherols are known to work both as antioxidants and as pro-oxidants when too much is present. 

Tocopherols increased low-density lipoprotein (LDL) oxidation markedly when tocopherols were 

incubated with isolated LDL particles. The mechanism of pro-oxidative behaviour was speculated 

to arise from the extended presence of tocopheryl radicals inside the LDL particles, thus enabling 

the propagation of peroxides rather than termination reactions with other radicals (Upston et al. 1999).  

Also, carotenoids have been shown to exhibit pro-oxidative effects in certain conditions. It is known 

that the very high intake of supplemental β-carotene can lead to pro-oxidative effects. 

Simultaneously present flavonoids may decrease the pro-oxidative effects markedly. Naringin, rutin 

and quercetin reduced DNA-strand breaks in mouse fibroblasts by UV light in the presence of β-

carotene (Yeh et al. 2005). Also, lycopene has been proven to have pro-oxidative effects on in vitro 

models. In a study with human foreskin fibroblasts (Hs68 cells) that were incubated with lycopene 

and carotene in the presence of known oxidants, both antioxidative and pro-oxidative effects were 

observed after thiobarbituric acid reactive substance (TBARS) measurements (Yeh et al. 2000). 

Ascorbic acid can interact with catalytically active metals such as iron and copper ions and thus can 

contribute to oxidative damage through the production of hydroxyl and alkoxyl radicals (Almaas et al. 

1997, Jansson et al. 2003). In combination with carotene, ascorbic acid showed pro-oxidative effects up 

to concentrations of 10-3 M. Fe3+ and Co2+ ions behaved synergistically with ascorbic acids pro-

oxidative effects (Kanner 2006). Also, in a study by Lapidot et al. (2005a), ascorbic acid demonstrated 

pro-oxidant effects at low levels and when "free" iron was present. This was, however, reversed in 

the presence of metmyoglobin; ascorbic acid then demonstrated antioxidative properties. 

Kanner et al. (2001) studied the efficacy of several antioxidants, including ascorbic acid, in a gastric 

environment. The authors used the ferrous ion oxidation-xylenol orange (FOX2) method for the 

estimation of lipid peroxidation and high performance liquid chromatography (HPLC) for the 

determination of lipid hydroperoxides. Ascorbic acid as the sole antioxidant was found to be pro-

oxidative in the presence of ferrous ions. However, red wine polyphenols were found to be effective 

antioxidants in gastric conditions. 

Oliveira et al. (2012) studied the effects of low and high doses of β-carotene, α-tocopherol, and 

ascorbic acid on blood mononuclear cells from healthy donors. The results showed that pro-
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oxidative effects were present in high dose samples, as demonstrated by ROS and interleucine-6 

(IL-6) production. The authors concluded that vitamins can exert both antioxidant and pro-oxidant 

properties depending on the concentration.  

2.4.7 Compartmentalisation of antioxidant systems 

Systemic antioxidants that provide cells and tissues protection against ROS include uric acid, 

catalase, peroxiredoxins, glutathione, glutathione peroxidase, and family of superoxide dismutases 

(SODs). Three different SODs are found in humans: SOD1 is present in the cytoplasm and SOD2 in 

mitochondria; SOD3, however, is secreted to the extracellular matrix. They all perform similar 

functions, and neutralise superoxide radicals that are formed under oxidative stress (Johnson et al. 

2005). SODs are essential for the protection of lungs against ROS, as demonstrated by Kinnula et al. 

(2003). 

Glutathione (GSH) is a three amino acid peptide that effectively neutralises ROS in cytosol and cell 

organelles. It is found in large amounts in the gastric mucosa (Robert et al. 1984, Aw 1997). Glutathione 

is oxidised by ROS to glutathione disulphide (GSSG), which in turn is reverted back to active 

glutathione by glutathione reductase. The active part of glutathione is the sulphydryl residue of 

cysteine, which is able to act as the hydrogen donor, (Shigeoka et al. 1987, Aw 1997). There is evidence 

that the glutathione redox cycle in the intestines, when reducing GSSG back to GSH, receives 

reducing power from nicotinamide adenine dinucleotide phosphate (NADPH), and that it is fuelled 

mainly by exogenous glucose intake (Aw 2005). An important function of glutathione is found in the 

glutathione-ascorbate cycle, where hydrogen peroxide is neutralised to water by glutathione and 

ascorbic acid (Noctor et al. 1998). Glutathione peroxidase 4 is an enzyme that actively reduces 

hydroperoxidised lipids into lipid alcohols; it is mainly active in the phospholipid membranes (Seiler 

et al. 2008). Parenteral glutathione has been observed to significantly reduce ethanol-induced gastric 

mucosal damage in humans (Loguecio et al. 1993). The glutathione levels in the stomach have been 

noted to markedly affect the absorption of peroxidised lipids in a rat model (Aw et al. 1992). The 

glutathione reserves of different tissues can be increased via supplementation (Aw 1997). 

Catalase breaks down hydrogen peroxide to water and oxygen, but is found mainly in peroxisomes 

(Reddan et al. 1996, Zhou et al. 2000). Peroxisomes are vital to all animal cells and any disruption in their 

assembly or faults in the enzymes acting inside the peroxisomes usually leads to severe problems 

(Sheikh et al. 1998). 
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Peroxiredoxins are a group of thiol-containing enzymes that work in a similar manner as glutathione 

and reduce peroxidised lipids by hydrogen donation (Yao et al. 2007, Boulos et al. 2007). Interestingly, 

peroxiredoxin II levels of nerve cells increase simultaneously with amyloid-β-protein and amyloid 

binding alcohol reductase as Alzheimer's disease progresses. This indicates that oxidative damage is 

a major contributor to the disease and that the body tries to combat the deleterious effects of ROS 

(Yao et al. 2007). 

Uric acid is the most abundant antioxidant in the bloodstream and is estimated to possess 60% of 

the antioxidant capacity of plasma antioxidants (Benzie et al. 1996). It is also present in the saliva, 

gastric and intestinal fluids (Inoue et al. 2003, Powell et al. 1992). Uric acid has been found in high 

concentrations in tissues under oxidative stress such as the liver and lungs (Glantzounis et al. 2005, 

Moison et al. 1997). An important function of uric acid is that it can markedly inhibit the formation of 

nitrogen dioxide radical in the stomach (Pietraforte et al. 2006). Nitrogen dioxide radicals are highly 

toxic to cells (Kirsch et al. 2002). Nitric oxide (NO·) on the other hand has been shown to inhibit the 

pro-oxidative effects of uric acid during copper-mediated LDL oxidation in the presence of 

tocopherol (Sanguinetti et al. 2004). The authors proposed that NO·/uric acid could protect the arterial 

wall structures from oxidation. More detailed, it was proposed that uric acid reduces Cu(II) to Cu(I) 

and subsequently enables the Cu(I) to participate in the radical decomposition of lipid peroxides and 

propagation reactions. NO· has also other effects on the human body, such as the modulation of host 

defence, blood flow, mucus formation, and motility (Rocha et al. 2011). 

Aldehyde dehydrogenases (ALDHs) are a family of proteins that serve the function of oxidising a 

variety of aldehydes into corresponding acids. ALDH3A1, ALDH1A1 and ALDH2 are expressed in 

the stomach and cornea of several mammals. Their main function seems to be to neutralise any 

aldehydes that may be present in the stomach or formed e.g. by UV induced oxidation in the cornea 

(Pappa et al. 2002). Despite the presence and activation of aldehyde dehydrogenases in the stomach, 

carcinogenic effects are induced in experimental animals, if e.g. 2,4-hexadienal is consumed for a 

prolonged period of time (Lee et al. 2003, Nyska et al. 2001). 

While not a direct antioxidant, albumin has been noted to clear carbonyl compounds from human 

plasma (Aldini et al. 2008). In the study, human plasma was spiked with 4-hydroxy-trans-2-nonenal 

(HNE) and the initial high concentration of HNE was rapidly decreased while no known 

metabolites were detected. The analysis of the plasma protein fraction revealed the formation of 
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Michael addition products of albumin and HNE. Cys34 and Lys199 were the active adduct-forming 

sites. Albumin is present in the circulating blood and in smaller amounts in the digestive juices. 

Another intrinsic antioxidative mechanism (although not traditionally considered as such) that is 

distributed throughout the body, is based on a group of molecules called plasmalogens. 

Plasmalogens are glycerophospholipids constructed of choline or ethanolamine as the head group 

and ether bound fatty acid in the sn-1 position and esterified fatty acid in the sn-2 position (See 

Figure 11). Plasmalogens are found abundantly in the cardiovascular and nervous system (Maulik et 

al. 1993, Engelman 2004). Recent evidence suggests that plasmalogens may serve as lipophilic 

antioxidants as the vinyl ether bond makes them more susceptible to oxidation than the 

corresponding ester-bound glycerophospholipids (Braverman et al. 2012). Decreased circulating 

plasmalogen levels are strongly correlated to the functional decline of Alzheimer's disease patients 

(Wood et al. 2010).  

 

Figure 11. Plasmalogen phosphatidylethanolamine. 

Epoxide hydrolases are a family of enzymes that are responsible for the oxidation of any epoxide-

containing fatty acids in the cells that need to be discarded. Mammalian epoxide hydrolases are 

mainly found in the liver cells (Newman et al. 2005). Many local hormones, eicosanoids, contain 

epoxide structures; therefore, it is expected that epoxide hydrolases are also found elsewhere. 

Many of these antioxidant systems work in the compartmentalised environments of cells and cannot 

effectively reduce or prevent oxidation in other parts of the body. Also, many functions of enzymes 

must be carefully regulated. Neurons are very sensitive to oxidative damage, for example, and 

mainly have two antioxidant defence mechanisms: the neuronal antioxidant GSH system and 

peroxiredoxins (Dringen et al. 1999). The latter acts as the main hydroperoxide-reducing enzyme in the 

brain. The release of peroxiredoxins in brain tissue after stroke may contribute to the delayed phase 
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of ischemic injury, which is a real life example of the importance of enzyme compartmentalisation 

(Garcia-Bonilla et al. 2012). 

2.5 Lipid digestion and absorption 

Lipid digestion involves a series of hydrolysis reactions catalysed by several specific enzymes. 

Ultimately, free fatty acids (FFAs) and monoacylglycerols (MAGs) are produced from TAG 

precursors (Larson et al. 1991, Lowe et al. 1994). Other lipids, such as cholesteryl esters and 

phospholipids, are also hydrolysed prior to absorption (Howles 2010, Cohn et al. 2010). Lipophilic 

antioxidants, carotenoids, tocopherols and tocotrienols are absorbed along FFAs and MAGs and 

their bioavailability is often influenced by the fat content of a meal and the properties of the food 

matrix (Parker 1996, Jeanes 2004). 

2.5.1 Main stages of lipolysis 

Food needs to be digested to release the principal components, sugars, fatty acids, and amino acids, 

from the more complex macronutrients carbohydrates, glycerolipids, and proteins. Figure 12 shows 

the overview of the human digestive system. The first part of this digestion happens in the mouth. 

The taste and feeling of food affect the secretion of saliva and digestive enzymes from the parotid 

gland (Engelen et al. 2003). Interestingly, contradictory results have been obtained on the stimulating 

effects of odours (Lee et al. 1992, Engelen et al. 2003). There are several specialised receptors for 

different tastes in the mouth. Sweet, bitter, salty, acidic and umami are traditionally recognised 

basic tastes. In addition to these, the mouth also has sensors which register the temperature (and 

pungency) of food and the texture, as well as astringency. The newest receptors found in the human 

mouth are lipid-sensing receptors and certain alkaline earth metal sensitive receptors. The CD36 

gene has been recognised to influence the fat tasting ability of human test subjects (Chevrot et al. 

2012). As food is chewed and eaten, the smell and taste is registered as the combination of these, 

flavour. All of this stimulates the secretion of digestive juices from the specialised cells of the 

mouth, pharynx, stomach and intestines. 

In humans, the digestion of fats begins in the stomach, when gastric and lingual lipase start to 

hydrolyse the fatty acids in triacylglycerols. Lingual lipase is secreted by von Ebner glands in the 

zymogen granules of the tongue. Activity of the lingual lipase is, however, reduced by the neutral 

pH of the saliva and true activity is reached only in the acidic stomach (Fink et al. 1984). Lingual and 
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gastric lipases prefer the sn-3 position over the sn-1 position of TAGs and usually cleave only one 

fatty acid of a TAG molecule, producing diacylglycerols and free fatty acids (Rogalska et al. 1990). 

Also, some fatty acids in the sn-2 position are hydrolysed, but to a much lesser extent (Jensen et al. 

1982). Gastric and lingual lipases differ from other mammalian lipases in a way that they are able to 

penetrate lipid droplets (e.g. milk fat globules) for hydrolysis (Bernbäck et al. 1990). It is estimated that 

10 to 30% of TAGs can be hydrolysed to diacylglycerols in the stomach because of the inhibition 

process induced by the cleaved long chain fatty acids (Pafumi et al. 2002). Lipid hydrolysis in the 

stomach is very important for infants, as pancreatic enzymes are not yet secreted properly (Bernbäck 

et al. 1990). Genetic variance in the expression of gastric lipase as also pancreatic lipases exists and 

there are diseases in which the function of lipases is reduced or completely inhibited (Fieker et al. 

2011). 

Smooth muscles in the stomach contract in a way that siphons the content of the stomach (Schulze-

Delrieu et al. 1998). This starts the emulsification of lipids and water. Food is gradually transformed 

into chyme during this process. The stomach wall has specialised cells called parietal cells that 

secrete hydrochloric acid, and gastric chief cells that release enzymes such as pepsinogen and 

gastric lipase. Bicarbonate is also released into the stomach to regulate the pH and to protect the 

stomach lining (Kopic et al. 2009). The pH of stomach fluid can be as low as 0.8, but depends on the 

secretion of bicarbonate and the buffering capacity of the ingested food; this varies between 1.7−5.0 

(Ovesen et al. 1086). The low pH enables a certain kind of oxidation to take place (Kanner et al. 2001). 

Oxygen is always present in the stomach (Dun et al. 1923). Small quantities of dissolved oxygen and 

gaseous oxygen are swallowed constantly as saliva secreted by the salivary glands in the mouth is 

ingested. Oxygen is also incorporated into chewed food and swallowed. After the formation of 

crude chyme, it is released in small quantities into the small intestine. 

A round muscle named the Pyloric sphincter regulates the release of chyme from the stomach. Only 

small amounts of chyme and only small enough particles are released into the intestines at a time. 

The first part of the small intestine is called the duodenum. Bicarbonate is secreted into the 

duodenum to neutralise the highly acidic chyme. Typical pH of the chyme in duodenum is between 

7.0−8.0 though slightly lower (5.0-6.0) in the duodeno-jejunal junction (Ovesen et al. 1986). To 

enhance the formation of lipid micelles, bile salts are introduced into chyme by the biliary gland via 

a common bile duct (Jones et al. 1979). The pancreas excretes other components, such as digestive 

enzymes. These enzymes include pancreatic triglyceride lipase, which is the main enzyme 

responsible for triacylglycerol digestion (Lowe 1994). Procolipase is also secreted and quickly 
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transformed to active colipase by the removal of the pentapeptide chain (Larsson et al. 1991). TAGs as 

well as diacylglycerols (DAGs) formed in the stomach are emulsified to smaller and smaller 

droplets by the bile salts. Pancreatic lipase cleaves fatty acids from the sn-1 or sn-3 position and 

leaves the sn-2 position intact. Thus, the resulting molecular species are free fatty acids and sn-2-

monoacylglycerols. The most difficult step in lipid absorption is the crossing of hydrophobic 

compounds from the lipid phase of mixed micelles over the water-lipid interface on enterocytes (see 

Figure 13). Bile acids have an essential role in this crossing (Wilde et al. 2011). Enterocytes extend 

glycocalyx-covered microvilli structures into the small intestine, thus enlarging the surface area and 

improving the absorption of compounds (Maury et al. 1995). 

Short- and medium-chain free fatty acids can be absorbed directly by the blood veins in the stomach 

and small intestine walls (Saunders 1991). All of the blood coming from the stomach and intestines 

flows through the liver via the hepatic portal vein; most of the fatty acids transported by albumin 

are transported into the liver and consumed in the beta-oxidation (Guillot et al. 1993). In the intestine, 

specialised lymphatic veins called lacteal absorb the longer-chain free fatty acids and 

monoacylglycerols from the chyme. Triacylglycerols, cholesteryl esters, and phospholipids are 

reassembled in the enterocytes in a non-randomised manner, as proven by studies by Yli-Jokipii et 

al. (2004, 2005). The reassembled triacylglycerols have a larger portion of oleic acid in the sn-2 

position than in the ingested TAGs. The assembly of TAGs and chylomicrons takes place in the 

smooth endoplasmic reticulum (Cartwright et al. 2000). 

         

Figure 12. Overview of human digestive system.   Figure 13. Fatty acid absorption starting from emulsification. 
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2.5.2 Simulating human digestion 

Many methods exist for the simulation of human digestion. The more complicated methods include 

artificial stomachs and intestines equipped with expanding sacks and tubular structures, with 

dedicated lines for the addition of digestive juices and sample collection (Kong et al. 2010). More 

simple approaches utilise test tubes where pre-composed digestive juices are mixed with the study 

material at intervals. An essential part of the simulation is proper mixing and incubation at body 

temperature. 

Much of the early work was done by Miller et al. (1981) for studying the bioavailability of iron from 

meals. More recently, extensive work on the simulation of human digestion has been done by 

Versantwoort et al. (2004, 2005). The in vitro model accounts most of the components found in 

digestive juices and takes into account the changing composition of the digestive juices between 

fasting and fed states. A recent review by McClements et al. (2010) covers many of the protocols 

that are used in the literature. 

2.5.3 Absorption of oxidised lipids 

Several experiments have been conducted to study the possible absorption of oxidised lipids. 

Burhke et al. (2012) found that furan fatty acids that are formed by the oxidation of conjugated 

linoleic acid (CLA), are readily absorbed into Caco-2 cells. There seemed to be no toxic effects 

against the intestinal cells up to a level of 100 µM. Interestingly, the 9,11-furan fatty acid was 

incorporated and stored as triglycerides in cellular lipid droplets. In a previous study, carbon-14-

labelled 13-hydroperoxylinoleic acid and 13-hydroxylinoleic acid were incubated with Caco-2 cells 

(Penumetcha et al. 2000). Absorption was dependent on brush border structure, and the authors 

concluded that both hydroperoxy and hydroxy fatty acids were absorbed. However, the technique 

used for quantitation was radioactivity measurement and thus cannot reveal the exact structures of 

absorbed molecules. 

Kanazawa et al. (1998a, 1998b) have studied the fate of dietary hydroperoxides of linoleic acid 

trilinoleoylglycerol in rat intestines. They found that the hydroperoxides were extensively 

decomposed to different aldehydes and fatty acid hydroxyls, and that hexenal and 4-

hydroxynonenal were detected in liver from administration after 15h. Previously, α,β-unsaturated 

aldehydes were determined to be absorbed, metabolised and secreted to the urine of experimental 

rats after administration of these compounds via gavage tube (Grootveld 1997). More recently, the 

absorption of 4-hydroxy-2-hexenal was observed from the intestines of experimental rats after the 
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consumption of meal containing oxidised oil. 4-Hydroxy-2-hexenal was detected both in the 

intestines and in circulating plasma (Awada et al. 2012).  

In another study, pigs were fed with oxidised sunflower oil and the levels of oxidised 

triacylglycerols were studied in the plasma lipoproteins (Suomela et al. 2004). Oxidised TAGs were 

detected both in chylomicrons and very-low-density lipoprotein (VLDL) particles, thus reflecting 

the oxidised dietary fats. The authors estimated the levels of several oxidised TAG species with 

attached oxo-, hydroxy-, and epoxy groups. Also, core aldehydes were detected in the samples. In a 

similar study, Suomela et al. (2005) investigated the fate of hydroperoxidised TAGs after the feeding 

of oxidised oils to pigs and the harvesting of small intestine epithelia. No hydroperoxidised TAGs 

were detected, but other oxidised TAGs were found in the epithelia. 

A limited number of human experiments have been done on the absorption of specific oxidised 

lipids. Wilson et al. (2002) studied the fate of dietary U-13C-labelled monoepoxy and diepoxy 

stearic acids (as TAGs containing two oxidised FAs) and discovered that they are indeed absorbed. 

The absorption of monoepoxy stearic acid was greater than the diepoxy form (17% vs. 8% of dose). 

In another study, Wilson et al. (2002b) determined the absorption rate of monohydroxy and 

dihydroxy fatty acids. Both forms were found to be bioavailable, but monohydroxy fatty acids were 

absorbed more. 

The effects of carbonyl compounds on digestive enzymes have also been studied. Synthesised 

lipophilic aldehydes inhibited gastric lipase and pancreatic lipases (Kotsovolou et al. 2002). Oxidised 

oils contain carbonyl compounds, which may inhibit the lipolysis of fats and some intact oxidised 

lipids may be left unabsorbed and enter the large intestine. 

2.5.4 Oxidative potential of the digestive system 

The gastrointestinal tract is thought to be a major site for antioxidant action (Halliwell et al. 2002). The 

inside of a stomach is a highly unfavourable place for any enzyme activity other than select 

specialised enzymes evolved for acidic environments. Antioxidative enzymes such as SODs can 

function only in environments where the enzymes are not deactivated e.g. by low pH. The buffering 

mechanisms in cellular compartments normally protect the enzymes, but not in the gastric 

environment. This limits the systemic antioxidant activity in the gut and intestines. Furthermore, the 

extremely low pH denatures most proteins, releasing and ionising any metals that are present in 

food components such as meat and blood. Copper, zinc, and ferrous ions are always present at 
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fluctuating concentrations in gastric juice (Powell et al. 1992). At low pH, these ions can function as a 

catalyst for oxidation reactions (Kanner 1977, Kanner 1994). Oxygen is present abundantly in the gut 

and the continuous siphon of ingested and chewed food in the stomach generates smaller and 

smaller lipid droplets mixed with high-oxygen-containing digestive juices (Dun et al. 1923). As the 

lipid droplets get smaller, their surface area increases, and this increases the probability of lipids 

interacting with ROS. 

Lipid peroxidation in digested red muscle tissue is catalysed by an iron-redox cycle formed by 

ferrous ions and ascorbic acid or metmyoglobin; the oxidising effect is significantly increased in 

acidic environments, such as the stomach (Kanner 1994, Kanner et al. 2001, Lapidot 2005a). Gorelik et al. 

(2005) studied lipid peroxidation and coupled vitamin oxidation in simulated and human gastric 

fluids, and found that vitamin E and β-carotene were depleted in low pH in the presence of red meat 

homogenate. Red wine polyphenols worked synergistically with ascorbic acid and prevented lipid 

peroxidation and β-carotene degradation. Lapidot et al. (2005b) studied the effects of metmyoglobin 

and phenolic antioxidants on lipid peroxidation in simulated gastric fluid. Metmyoglobin was found 

to behave as both a pro-oxidant and antioxidant, depending on the pH and concentration. At high 

concentration, and especially when coupled with phenolic antioxidants (catechin and quercetin), 

metmyoglobin demonstrated antioxidative properties, decomposing linoleate hydroperoxides and 

keeping the hydroperoxide levels at zero for extended periods. 

Aqueous infusions from Capparis spinosa L. and Crithmum maritimum L., which contained several 

phenolic compounds (including rutin, kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, 

chlorogenic acid), showed good antioxidant activity as measured by the DPPH method, the β-

carotene bleaching method, and copper-induced oxidation of human LDL. However, after 

submission to two-step in vitro digestion model a significant reduction of antioxidant activity was 

observed (Siracusa et al. 2011). 

Saliva has dual roles in the oxidative reactions in the stomach. As saliva contains several different 

antioxidative properties, such as uric acid and peroxidase and superoxide dismutase enzymes, but 

the amounts vary significantly between the fed and starved states in humans, there may not always 

be enough antioxidative potential to prevent oxidation (Nagler 2002). Furthermore, Gorelik et al. 

(2007) discovered that common saliva components such as lactoperoxidase had pro-oxidative effects 

on simulated gastric fluid and that thiocyanate and nitrite reduced peroxidation. Peroxidation was 
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estimated by FOX2 (estimates hydroperoxides) and TBARS (estimated malondialdehyde) 

measurements.  

2.6 Methods for measuring lipid oxidation 

Several types of techniques are available for the measurement of lipid oxidation. They range from 

specialised tandem mass spectrometric methods to general titrimetric methods and even simple 

sensory evaluation (Kuksis et al. 2009a, Kuksis et al. 2009b, Gray 1978). A problem with measuring lipid 

oxidation is that there are several pathways for the formation of oxidised lipids and the end-

products of secondary oxidation reactions are numerous (Frankel 1983, 1984). A single method for 

complete lipid oxidation determination does not exist. General methods may be affected by 

unknown substances and the results should be interpreted carefully. 

2.6.1 Antioxidant activity tests 

Strongly related to the measurement of lipid oxidation is the measurement of different antioxidants 

present in the samples under investigation. Antioxidant activity and capacity tests aim to measure 

the potential of antioxidants in biological fluids. The tests can be divided into two main categories: 

assays based on hydrogen atom transfer (HAT) reactions and assays based on electron transfer (ET) 

reactions (Huang et al. 2005). There are, however, significant problems with one-dimensional methods 

for evaluating multidimensional biological systems composed of lipid bilayers, colloids, emulsions, 

and where multitude of factors affect the activity of different antioxidants (Frankel et al. 2000). 

Authors of the paper suggested that, in addition to general tests, much more specific methods 

should be used and the results compared. 

The ferric-reducing antioxidant power (FRAP) test is claimed to measure the antioxidant, or 

reducing, potential of biological fluids. In the method, ferric ion that is added into the samples is 

reduced to ferrous ion by antioxidants and the resulting absorbance change at 593 nm is measured. 

(Benzie et al. 1996). There are both supporting and critical studies of general antioxidant activity 

methods. In one study, FRAP values decreased by 37% along with actual plasma malondialdehyde 

(MDA) concentration (−53%) in haemodialytic patients after dialysis. The authors, however, used 

creatinine concentration-corrected MDA values in their analysis and only then obtained the 

expected negative correlation. The authors concluded that the measurement of individual 

antioxidants in plasma is the preferred method for assessing the antioxidant status of patients (Reddy 
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et al. 2010). Katalinic et al. (2007) had a significantly higher minimum level of plasma FRAP of 

healthy adult males than Benzie et al. (1996). The authors concluded that it is vital to also measure 

other biochemical variables such as plasma triglycerides and bilirubin as these can significantly 

affect the FRAP measurements.  

The oxygen radical absorbance capacity (ORAC) is a widely used assay for the measurement of 

antioxidant capacity of antioxidants, "super foods", purified fractions and biological fluids. The test 

can, however, give varying results when compared with other similar tests. Villano et al. (2005) 

compared three different antioxidant activity tests: the ORAC, 2,2´-azinobis(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS or TEAC), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) values of wine 

phenolic compounds and metabolites in vitro and found that ORAC values had poor correlation 

with the other tests. The ORAC test usually measures only hydrophilic antioxidants, but the 

modified method has been developed for the measurement of lipophilic antioxidants present in 

biological fluids and foods (Prior et al. 2003). 

The modified Trolox equivalent antioxidant capacity (TEAC) test was used to evaluate the efficacy 

of the test on various solvents for both hydrophilic and lipophilic antioxidants (van den Berg et al. 

1999). The investigators found that different solvents had very different effects on the TEAC values 

of different antioxidants. Tetrahydrofurane (THF) seemed to be the most reliable and gave, on 

average, the highest TEAC values for α-tocopherol, β-carotene, quercetin and ascorbic acid. 

Acetone failed to show any antioxidant activity for β-carotene, proving that it is vital to standardise 

different methods and to be aware of the shortcomings of specific tests. 

Total peroxyl radical trapping potential (TRAP) is a commonly used antioxidant activity test that 

aims to measure the ability of antioxidants to trap peroxyl radicals (Wayner et al. 1985). Mulholland et 

al. (1993) investigated whether high doses of α-tocopherol and ascorbic acid affect the TRAP values 

of plasma from healthy young volunteers. The supplementation failed to show any statistical 

difference in plasma TRAP values at the end of the supplementation (29 days) despite markedly 

increased plasma antioxidant concentrations. 

2.6.2 Unspecific methods for measuring lipid oxidation 

A recent review by Barriuso et al. (2013) covers most of the standard methods used in the 

determination of lipid oxidation. Official Methods and Recommended Practices of the AOCS 

(Firestone 2009) is a detailed method book of most of the common protocols used. Common methods 
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for generalised lipid oxidation measurement include peroxide value (PV) measurement by 

iodometric titration or by ferrous oxide xylenol orange (FOX) measurements or by Fourier 

transform infrared (FTIR) spectroscopy determination. Conjugated dienes (CDs) and trienes (CTs) 

can be measured with UV spectroscopy by measuring the absorbance at 234 nm and 268 nm, 

respectively, of samples dissolved in isooctane. Aldehydes are commonly determined by reaction 

with p-anisidine and subsequent absorbance measurement at 350 nm (AnV). Carbonyl compounds 

in oils and fats can also be determined by measuring absorbance at 420 nm after reaction with 2,4-

dinitrophenylhydrazine (DNPH) (Endo et al. 2001). DNPH-derivatisation is useful as it stabilises the 

reactive carbonyls. The presence of malondialdehyde can be determined by thiobarbituric acid 

reactive substance (TBARS) measurements.  

2.6.3 Specific methods for measuring lipid oxidation 

The specific measurement of lipid oxidation aims to determine the specific constituents in oxidised 

lipid samples. Usually, any method used has to be very sensitive as the concentrations of the 

oxidised components are often low. Measurements can be done qualitatively and quantitatively, but 

the quantitative results are frequently not well correlated to non-specific methods and underestimate 

the level of oxidation. The reason for this is that the numerous oxidation products are not always at 

sufficient concentration to be detected and quantified individually. 

2.6.3.1 Chromatographic methods 

Chromatography offers the possibility to separate, identify and quantify individual oxidised 

molecules, and thus provides a much more detailed view of lipid oxidation. Thin layer 

chromatography (TLC) is not covered in this review, although it can be used in preparative steps, 

when purifying oxidised fractions and even in the rough identification of oxidised lipid species 

(Oette 1965). High performance liquid chromatography (HPLC) and more recently ultra-high 

performance liquid chromatography (UHPLC) are used to study non-volatile lipid oxidation 

products. Gas chromatography (GC), on the other hand, is used for the analysis of volatile oxidation 

products. GC analyses are routinely performed with the flame ionisation detector (FID), which does 

not give any additional structural information about the detected molecules. Possible complimentary 

detectors include the photo ionisation detector (PID) that is very sensitive to carbon double bonds 

and aromatics (Driscoll 1977). Unoxidised fatty acids are routinely analysed by GC, but only after 

methylation to more volatile methyl esters. Primary oxidation products, hydroperoxides, are heat 

sensitive, so the use of derivatising reactions such as trimethylsilylation (TMS) is preferred when 

GC analysis is used (Turnipseed et al. 1993). Carbonyl compounds may be derivatised to corresponding 
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thiazolidines to increase the sensitivity and improve chromatographic separation (Yasuhara et al. 

1998). Costa et al. (1998) used trifluoroacetylation of hydroxyl groups and tert-

butyldimethylsilylation of the carboxyl groups when analysing 3-hydroxy fatty acids in plasma. 

Derivatisation enabled the baseline separation of many oxidised and unoxidised fatty acids by GC 

analysis. The common stationary phases of GC columns used in fatty acid methyl ester analyses 

include mid to highly polar polyester based columns such as Carbowax and SP-2340 (Christie 1989). 

Analysis of sterols requires derivatisation to either TMS ethers or acetylation prior to separation 

with polysiloxane phase columns such as ones composed of 95% dimethylpolysiloxane and 5% 

phenyl groups (Laakso et al. 2005). 

Non-volatile lipid oxidation products can be analysed by HPLC or UHPLC coupled with 

appropriate detectors. Simple UV or diode array detectors (DAD/PAD) are not suited for analysing 

lipids without chromophores. Nevertheless, when combined with other, more universal detectors, 

the UV detector and DAD can give additional information e.g. of conjugated dienes and trienes, 

which absorb at 234 nm and 268 nm. The evaporative light scattering detector (ELSD) is a 

universal detector that detects most compounds suitable for liquid chromatography. Reverse phase 

(RP) columns (e.g. C18) are commonly utilised for lipid analyses (Kuksis et al. 2009a, 2009b), but some 

methods rely on normal phase silica columns. For example hydroperoxidised fatty acids can be 

separated with normal phase LC, although some oxidised isomers usually overlap with each other 

(Gardner 1975, Rayner et al. 2004). Normal phase (NP) LC is also typically used for the separation of 

different lipid classes (Hamilton et al. 1988).  

Oxidised lipids can also be initially separated into groups with RP LC and subsequently with NP 

LC to produce pure isomers. Neff et al. (1990) used preparative RP LC (methylene 

chloride/acetonitrile, 30:70, v/v; 5 µm, 25 x 2.14 cm silica column) for subsequent analysis with NP 

LC (isopropanol/hexane, 0.5:99.5, v/v; 5 µm, 25 x 0.49 cm C18 column) to first separate mono-, 

bis-, and tris-hydroperoxidised trilinoleoylglycerols and then the positional isomers of those 

hydroperoxides. Interestingly, UV and refractive index (RI) detectors were used for the detection. 

Gladovič et al. (1997) used HPLC–UV (234 nm) to analyse primary lipid oxidation products of 

linoleic acid and triacylglycerols. The presence of hydroperoxides was confirmed with the fast atom 

bombardment (FAB)–MS and NMR. The authors also performed an organoleptic evaluation of the 

oxidised oils, and the rancid taste correlated well with PV and hydroperoxide determinations. 
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2.6.3.2 Mass spectrometric methods 

Mass spectrometry (MS) is a powerful detection method for the analysis of a wide range of 

unoxidised and oxidised lipids. Direct injection and infusion MS and different matrix-assisted laser 

desorption ionisation (MALDI)–MS equipment enable the simple and quick analysis of oxidised 

lipid samples. Hsu et al. (1998) utilised direct infusion ESI–MS/MS to analyse 

glycerophosphocholine (GPC) lipids as lithium adducts. Lithium hydroxide was added to the 

infusion solution and the cationic GPC molecules (quaternary nitrogen in the structure) readily 

formed positive lithium adducts, which were easily fragmented in collision-assisted dissociation 

(CAD), forming characteristic fragments for the identification of GPCs. Hsu et al. (1999) also 

utilised the same method successfully for the investigation of positional isomers of triacylglycerols. 

The resulting ESI–MS/MS spectra contained [M + Li – (RnCO2H)]+, [M + Li – (RnCO2Li)]+, and 

[RnCO]+ ions that enabled the assignment of positional isomers of TAGs when the relative 

abundances of those characteristic ions were considered. The locations of double bonds were 

assigned by CAD–MS2 experiments. 

Duffin et al. (1991) analysed different acylglycerols (MAGs, DAGs, and TAGs) with electrospray 

ionisation tandem mass spectrometry. The study revealed that sodium adducts and ammonium 

adducts behave differently in MS/MS analyses. Ammonium adducts are much more easily 

fragmented and thus better suited for analysis aimed at structural elucidation. Vu et al. (2012) used 

direct infusion ESI tandem mass spectrometry for analysing intact oxylipin-containing Arabidopsis 

thaliana membrane lipids. The authors identified and quantified a large group of oxidised membrane 

lipids: phosphatidylcholines, phosphatidylethanolamines, monogalactosyldiacylglycerols, 

digalactosyldiacylglycerols, and phosphatidylglycerols. In addition to quadrupole equipment, they 

used Fourier transform ion cyclotron resonance mass spectrometry for the determination of accurate 

masses. Stübiger et al. (2010) used MALDI–MS to analyse major oxidised phospholipid classes such 

as ox-phosphatidylcholines, ox-phosphatidylethanolamines, and ox-phophatidylserines found e.g. in 

human plasma and other biological samples. 

Coupling MS detectors to chromatography systems increases the specificity of the analysis and 

enables the separation of oxidised molecules with the same nominal mass. Complex lipidomic 

analyses have greatly advanced from modern combined techniques. GC–MS and LC–MS are 

nowadays routinely used in the analysis of oxidised lipids. Electrospray ionisation (ESI) and 

atmospheric pressure chemical ionisation (APCI) interfaces are the most used ones when coupling 
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LC to MS equipment (Kuksis 2009a, 2009b). TLC–MS systems were reviewed recently by Cheng et al. 

(2011). 

Volatile lipid oxidation products were determined among other compounds by solid phase micro-

extraction followed by GC–MS analysis in a study aiming to differentiate virgin and refined oils 

according to their botanical origins (Uriarte 2011). Wilson et al. (2002) reported the simultaneous 

determination of epoxy and hydroxy fatty acids as their methoxy derivatives by GC–MS. The 

authors used solid phase extraction (SPE) to purify oxidised fatty acid methyl esters from 

unoxidised fatty acid methyl esters (epoxy groups were transformed to vicinal hydroxy and 

methoxy groups in borontrifluoride catalysed methylation), after which the hydroxy groups of 

oxidised FAMEs were derivatised by tetramethylammonium to single methoxy and vicinal 

dimethoxy groups. Methoxy FAMEs were analysed by GC–MS (30 m x 0.25 mm i.d. x 0.25 µm HP 

5MS column), which produced distinct fragment ions for positional hydroxy and epoxy isomers. 

Goicoechea et al. (2008) used solid phase micro-extraction (SPME) and GC–MS to analyse several 

toxic aldehydes arising from oxidation n-6 fatty acid-rich oils after in vitro digestion. They 

identified several volatile oxygenated α,β-unsaturated aldehydes, such as 4-hydroxy-2-nonenal 

(HNE), 4-oxo-2-nonenal (ONE), and 4,5-epoxy-2-decenal (EDE), which were bioaccessible after 

incubation in the digestion model. Later, Goicoechea et al. (2010) continued this work by identifying 

more toxic aldehydes from other heated vegetable oils. In addition to those aldehydes mentioned 

previously, 4-hydroxy-2-hexenal, 4-oxo-2-hexenal, and 4,5-epoxy-2-heptenals were bioavailable in 

the digestion model. 

Neff et al. (1998) analysed the autoxidation products of trilinolenin via RP HPLC–APCI–MS. They 

detected e.g. mono- and bishydroperoxide TAGs, mono- and diepoxidised TAGs, hydroxy TAGs, 

and TAGs with epoxy and hydroperoxy groups. Byrdwell et al. (1999) used RP HPLC–APCI–MS 

for the characterisation of non-volatile oxidation products of triolein formed after heating to frying 

temperatures (190°C) for 6 hours. The investigators identified several oxidation products such as 

epoxy-TAGs, keto-TAGs, hydroperoxy-TAGs, and dimers of TAGs. APCI is commonly used for 

the ionisation of neutral lipids such as TAGs (Beermann et al. 2007, Byrdwell et al. 2001a, 2001b, Holčapek 

2003, Lisa et al. 2008) and ESI for the ionisation of more polar oxidised molecules (Byrdwell et al. 2004b, 

Sjövall et al. 1997, 2001, 2002, 2003). If possible, they should both be used simultaneously to cover 

larger areas of ionisable compounds (Byrdwell 2004a). The use of ESI e.g. enables the ionisation of 
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TAG oligomers, which are produced after the prolonged oxidation of unsaturated oils (Byrdwell et al. 

2004b). 

In addition to reversed phase HPLC, which commonly utilises octadecylsilyl (C18) columns, 

normal phase HPLC has also been used to determine the lipid profiles of oils. Kalo et al. (2006) 

developed a comprehensive method for analysing sterols, sterol esters, FFAs, MAGs, DAGs, and 

TAGs in oils with NP HPLC–ESI–MS2. Ammonia was used to enhance the ionisation of molecules 

and to produce characteristic fragment ions from the parent [M + NH4]
+ ions in tandem mass 

spectrometric analysis. Multistep binary gradient elution with hexane and hexane/methyl-tert-butyl 

ether/acetic acid was used with two silica columns (100 x 2.0 mm, 3 µm particle size) to enable 

separation of the analytes. More recently, Cífková et al. (2012) developed a new non-targeted 

identification and quantitation method for major lipid classes present in complex biological samples 

such as human plasma by using hydrophilic interaction (HILIC) LC–ESI–MS. The authors used 

positive ionisation and single internal standard (sphingosyl phosphoethanolamine (PE), d17:1/12:0) 

for all polar lipids. 

Ammonia (post column infusion) was also used by Giuffrida et al. (2004a) to enhance the ionisation 

of hydroperoxy and epoxy triacylglycerols in RP HPLC–ESI–MS/MS analyses. The authors 

identified clear fragmentation pathways for hydroperoxidised and epoxidised TAGs, which enabled 

the identification of regio-isomers of oxidised TAGs. Giuffrida et al. (2004b) studied the formation 

of epoxides from pure TAGs, cholesterol and phytosterols under a controlled atmosphere. 18O2 was 

used in the experiments to reveal how oxygen is attached and transferred during secondary 

oxidation reactions. The authors used HPLC–ESI–MS/MS, infusion ion-trap MS and infusion 

MS/MS to study the fragmentation of epoxidised compounds. Results showed that after the 

formation of hydroperoxides, epoxidation can proceed in the absence of molecular oxygen. In 

addition, they investigated how epoxidised lipids are affected by the acidic conditions of model 

gastric medium, and found that epoxides are readily decomposed to vicinal dihydroxides.  

Reverse phase HPLC–ESI–MS has been used to identify phospholipid oxidation in oxidatively 

stressed cells (Spickett 2001). Combined LC–MS analyses enabled the detection of intact 

hydroperoxidised phosphatidyl cholines (PCs) for the first time. More recently, Suomela et al. 

(2011) investigated the regioisomeric structures of several oxidised TAGs with UHPLC–ESI–MS. 

The authors used positive ionisation ESI with ammonia supplemented via nebulising gas to produce 

the ammonia adducts of the oxidised TAGs. They also utilised two small particle size core shell 
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columns (100 x 2.1 mm, 1.7 µm) in series to improve the separation of isomers. The method 

enabled e.g. the separation of sn-2 and sn-1/3 isomers of hydroxy 50:1 TAG (two palmitic acids and 

one hydroxy oleic acid), epoxy 50:0 TAG (two palmitic acids and one epoxystearic acid) and the 

method also separated fully or partially some geometric isomers (the position of oxidised group 

within a single fatty acid) of the same positional isomer.  

Hutchins et al. (2011) investigated cholesterol ester (CE) oxidation in human peripheral vascular 

lesions. Normal phase HPLC–MS/MS (1/5th of the LC eluent modified with 10 mM ammonium 

acetate in acetonitrile/water, 95:5, v/v was directed to AB Sciex API 3200 triple quadrupole mass 

spectrometer) was used to identify and quantify unoxidised and oxidised CEs in MRM mode. The 

internal standard (17:1-CE) was used for the quantitation. Reverse phase HPLC–ion trap MS/MS 

(Thermo Finnigan LTQ) was used to identify hydrolysed fatty acids from the cholesterol esters. 

Several oxidised CEs were identified, of which the most abundant were: cholesteryl 

hydroxyoctadecenoate (13-(Z,E)-HODE-CE, 9-(E,Z)-HODE-CE, 13-(E,E)-HODE-CE, 9-(E,E)-

HODE-CE), cholesteryl epoxyoctadecenoate (12,13-(E)-EpOME-CE, 9,10-(E)-EpOMe, cholesteryl 

hydroperoxyoctadecenoate (13-(Z,E)-HpODE-CE, 9-(E,Z)-HpODE-CE), and cholesteryl oxo-

octadecenoate (13-(Z,E)-oxoODE-CE, 9-(E,Z)-oxoODE). Of the three major unsaturated CEs, 18:2-

CE, 20:4-CE and 22:6-CE were 23%, 16% and 12% oxidised, respectively, and 40% of all of the 

CEs were oxidised in total. 

Ronsein et al. (2010) used dopant-assisted atmospheric pressure photoionisation tandem mass 

spectrometry coupled with HPLC to analyse cholesterol oxidation products. The use of selected 

reaction monitoring mode (SRM) increased the sensitivity, and MS/MS revealed specific 

fragmentation patterns for oxidised cholesteryl molecules. Tomono et al. (2011) used 2-hydrazino-1-

methylpyridine (HMP) to derivatise cholesteryl ozonisation products prior to LC–ESI–MS/MS 

analysis. HMP derivatisation increased the sensitivity of the method 400 to 2000 times compared 

with native molecules and enabled the determination of minute amounts of oxidised cholesterol 

species in the plasma of experimental animals. 

Feldstein et al. (2010) used LC–ESI–MS/MS in the negative ionisation mode and multiple reaction 

monitoring (MRM) to profile arachidonic and linoleic acid oxidation products from biopsies and 

plasma samples of patients with non-alcoholic fatty liver disease. The investigators used gradient 

elution starting from 10 min elution with methanol/water/acetic acid (85:15:0.2, by vol), then over 2 

minutes to the final composition of 100:0:0.2 (by vol), which was held for 15 min (5 µm, 150 x 2 
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mm, Phenomenex ODS column). Several hydroxy-eicosatetraenoic acids (5-, 8-, 9-, 11-, 12-, and 

15-HETEs), epoxy-eicosatetraenoic acids (11,12- and 8,9-EETs), hydroxy-octadecadienoic acids 

(9- and 13-HODEs), and oxo-octadecadienoic acids (9- and13-oxoODEs) were identified and 

quantified. 

2.6.3.3 Nuclear magnetic resonance spectroscopic methods  

Nuclear magnetic resonance (NMR) spectroscopy is based on the electromagnetic interactions of 

sample molecules nuclei such as 1H, 13C, 31P (or other NMR active nuclei) with radio frequency (rf) 

pulses. Each nucleus in each molecule is slightly different in relation to its surroundings; this causes 

an effect known as the chemical shift. The sample, which is usually dissolved in deuterated solvent, 

is placed inside a very homogenous and strong magnetic field in a special thin walled glass tubes, 

and excited with rf pulses (Friebolin 2005). 

NMR spectroscopy is increasingly used not only to identify isolated pure compounds but to profile 

mixtures and complex biological fluids. Metabolomics has largely been driven by advances in NMR 

technology. Lipid analysis with NMR has been done for many years, but more recently, via higher 

magnetic strengths and higher resolution equipment, NMR has started to truly reveal its potential 

(Guillén et al. 2001). Related to NMR spectroscopy, electron spin resonance (ESR) spectrometry has 

the ability to measure the concentration and type of free radicals, which is very difficult by other 

conventional techniques (Lund et al. 2011).  

Knothe et al. (2004) used 1H-NMR to quantify fatty acids in oil samples as methyl esters and as 

TAGs, and compared the NMR method for GC analyses. The results of both techniques were in 

good agreement. Standard lipid oxidation determinations and proton NMR (300 MHz) experiments 

were compared by Wanasundara et al. (1995). Fatty acid composition, PV, TBARS, AnV, CD, CT, 

and total oxidation (TOTOX, defined as PV+AnV) measurements of oxidised canola and soybean 

oils were conducted according to AOCS and IUPAC protocols. Changes in the aliphatic proton to 

diallylmethylene proton ratio and the aliphatic proton to olefinic proton ratio correlated well with 

TOTOX values (R2 0.926–0.985). PV alone had slightly worse correlations (R2 0.623–0.880). The 

chemical shifts of many major and minor components of unoxidised and oxidised edible oils have 

been reviewed by Guillén et al. (2001). Kuklev et al. (1997) synthesised and measured the proton and 

carbon NMR spectra of ketodienoic (9-KODE and 13-KODE) and hydroxydienoic (9-HODE and 

13-HODE) fatty acid methyl esters. 
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Guillén et al. (2008) investigated the degradation of edible oils subjected to high temperature 

(190°C) oxidation by proton NMR spectroscopy (400 MHz). The authors did not detect any primary 

lipid oxidation products, hydroperoxides, from the oils, but secondary oxidation products were 

detected. The carbonyl proton signals of aldehydes were detected and several of them were 

identified. Trans-2-alkenals, trans,trans-2,4-alkenals, 4,5-epoxy-trans-alkenals, 4-hydroxy-trans-

alkenals comprised majority of the carbonyl peaks in oxidised virgin olive, corn, and linseed oils. 

The lack of hydroperoxides was attributed to the high temperature used in the oxidation, which 

rapidly degrades heat labile lipid hydroperoxides to secondary oxidation products. Previously, 

hydroperoxy and hydroxyalkenals were identified from thermally oxidised (70°C) vegetable oils 

(Guillén et al. 2004, 2005a, 2005b). Also, Goichoechea et al. (2010) used lower temperatures (70 

and 100°C) and found abundant amounts of hydroperoxidised lipids in oxidised sunflower oil 

samples. In addition to hydroperoxides, several other oxidised functions such as conjugated dienic 

systems of hydroperoxy acyl groups, aldehydes including the genotoxic and cytotoxic oxygenated 

α,β-unsaturated aldehydes, and mono- and diepoxides were monitored by NMR. The authors were 

the first to report the formation of diepoxides in the autoxidised oils. The heating of vegetable oil by 

microwave until the temperature reaches 190°C produced less hydroperoxides than oxidation at 

70°C. Oil with the least amount of linolenic and linoleic acids was the most resistant to microwave 

heat induced oxidation and produced the least amounts of toxic aldehydes (Guillén et al. 2006). 

Claxson et al. (1994) measured lipid peroxidation products in culinary oils and fats during the 

normal episodes of thermal stressing (30–90 min at 180°C) by one- and two-dimensional 1H NMR. 

The authors identified several carbonyl compounds from heated oils used in restaurants. 

Hydroperoxides were detected even though the high temperature strongly favoured the 

decomposition of hydroperoxides to secondary oxidation products. 

Silwood et al. (1999) used high resolution, two-dimensional 1H and 13C NMR techniques to 

characterise lipid oxidation products from autoxidised linoleoyl and linolenoylglycerols. 1H-1H J-

resolved, 1H-1H total correlation (TOCSY), 1H-13C transfer heteronuclear multiple quantum 

coherence (HMQC) experiments were conducted on 600 MHz equipment, while 1H-1H relayed 

coherence transfer (RCT) experiments were conducted on a 400 MHz spectrometer. The two-

dimensional experiments enabled the resolution of several vinylic and aldehydic resonances of lipid 

oxidation products, which appear as complex overlapping patterns in conventional one-dimensional 

spectra.  
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Pajunen et al. (2008) measured one- and two-dimensional proton and carbon NMR spectra of 10 

isolated hydroperoxide isomers from autoxidised methyl 9-cis,11-trans-octadecadienoate (Me 

9c,11t-CLA) and methyl 10-trans,12-cis-octadecadienoate (Me 10t,12c-CLA). The 

hydroperoxidised FAMEs were first purified by SPE and preparative NP HPLC. Seven isomers of 

Me 9c,11t-CLA and six isomers from Me 10t,12c-CLA were separated by preparative HPLC, which 

used 250 x 10 mm, 5 µm particle size semi-preparative column, and isocratic isopropanol/heptane 

(0.65:100, v/v) elution. 5 mm broadband inverse probe with z-gradient was used with 500 MHz 

NMR. 1H NMR spectra was measured with 45° excitation pulse and 13C{1H} NMR spectra was 

measured with 30° excitation pulse. Other experiments performed included 1H–1H correlated 

spectroscopy (COSY), long range COSY (LR-COSY), total correlation spectroscopy (TOCSY), 

gradient heteronuclear single quantum coherence (gHSQC), and gradient heteronuclear multiple 

bond correlation (gHMBC). The conjugated diene allylic hydroperoxides were stable during the 

NMR experiments, which lasted on average for 16 h. Extensive data for chemical shifts, including 

solvent effects, were collected and analysed. The authors also used PERCH to simulate NMR 

spectra and the simulations were in good agreement with the measurements. 

2.6.3.4 Analysis of core aldehydes and related compounds 

Core aldehydes and other aldehydes can be detected from physiological samples and oxidised oils 

by many methods. Analysis of underivatised core aldehydes has been done previously by HPLC–

APCI–MS analyses (Byrdwell et al. 2001). Core aldehydes were detected among other lipid oxidation 

products such as hydroperoxidised and epoxidised TAGs. Two distinct classes of epoxides were 

identified: ones where the epoxy group had replaced the site of unsaturation and ones with the 

epoxy group attached adjacent to the double bond. 

The most convenient methods for analysing aldehydes include derivatisation with 2,4-

dinitrophenylhydrazine and the subsequent detection of DNPH derivatives by LC–UV and/or LC–

ESI–MS because of the increased detector response and specificity. DNPH-derivatives of common 

core aldehydes behave very similarly as free aldehydes in chromatographic systems enabling the 

comparison of underivatised and derivatised samples. The acidic derivatisation reaction is strong 

enough to revert Schiff bases back to free aldehydes and convert them to DNPH derivatives (Kamido 

et al. 1995). This enables the detection of bound aldehydes from complex samples.  

Kamido et al. (1995) used HPLC–ESI–MS to identify lipid ester bound aldehydes from human 

plasma lipoproteins after copper-catalysed peroxidation. They used DNPH to release the aldehydes 
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from their adducts, and to enable more sensitive detection. Several phosphatidylcholine-derived 

core aldehydes were identified (1-palmitoyl-2-(9-oxononanoyl)-, 1-palmitoyl-2-(8-oxooctanoyl)-, 

and 1-palmitoyl-2-(5-oxovaleroy1)-sn-glycerols and similar 1-stearoyl-2-(oxoacyl)-sn-glycerols). In 

addition, several cholesterol ester derived aldehydes were identified (9-oxononanoyl, 8-

oxooctanoy1, and 5-oxovaleroyl esters of cholesterol and 7-ketocholesterol). Previously, Kamido et 

al. (1992) synthesised cholesteryl esters, diacylglycerols and glycerophospholipids containing 

aldehyde functions, and later identified several core aldehydes from the in vitro peroxidation 

products of cholesteryl esters (Kamido et al. 1993). 

Kurvinen et al. (1999) synthesised several Schiff base reference compounds from 2-[9-

oxo]nonanoyl-sn-glycerol and different amino acids, peptides and aminophospholipids. They 

characterised the synthesised compounds with NP HPLC–ESI–MS and RP HPLC–ESI–MS after 

reducing the lipid adducts with cyanoborohydride to corresponding reduced Schiff bases. The RP 

LC system utilised gradient elution with 0.5% ammonium hydroxide in water/methanol/hexane 

(12:88:0 to 0:88:12, by vol; 100 x 2.1mm, 5 µm ODS column), and was used for the identification 

of peptide based Schiff bases. The normal phase LC method was based on a binary gradient 

consisting of (A) chloroform/methanol/30% ammonium hydroxide (80:19.5:0.5, by vol) and (B) 

chloroform/methanol/water/30% ammonium hydroxide (60:34:5.5:05, by vol), and was eluted from 

100% A to 100% B in 14 min after 3 min initial 100% A with the final hold of 100% B for 10 min 

(250 x 4.6 mm, 5 µm particle size silica column). The NP LC system was used for the identification 

of aminophospholipid- and amino acid-derived Schiff bases.  

Sn-1-alkyl- and sn-1-acyl type glycerophosphocholine (GPC) core aldehydes have been detected in 

human atheromas (Kamido et al. 2002). The study revealed that certain GPC core aldehydes can 

induce platelet aggregation and shape changes in biologically significant concentrations. The GPC 

core aldehydes also inhibited the endothelium-dependent relaxation of the artery. Tissue 

homogenates were treated with DNPH to convert all bound and unbound core aldehydes to DNPH 

derivatives, which were later identified with RP HPLC–ESI–MS. 

1-palmitoyl-2-(5-hydroxy-8-oxo-oct-6-enoyl)-sn-glycero-3-phosphocholine (HOOA-PC) was found 

to regulate the inflammatory functions of endothelial cells in a study investigating polar lipid 

components of minimally modified/oxidised LDL (Subbanagounder et al. 2002). HOOA-PC was 

identified and quantified from ox LDL with RP HPLC–ESI–MS and HPLC–ESI–MS/MS analyses, 

and the structure was confirmed with identical chromatographic and mass spectrometric 
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characteristics of synthetic HOOA-PC. Synthetic HOOA-PC dose-dependently activated human 

aortic endothelial cells to bind monocytes. HPLC–ESI–MS analysis was performed with C8 column 

(250 x 2 mm, 5 µm particle size), which was eluted with methanol/water containing 1 mM 

ammonium acetate (linear gradient from 60% to 100% methanol in 60 min). 

Sjövall et al. (2003) identified and quantified a large group of TAG core aldehydes as 

dinitrophenylhydrazones in autoxidised sunflower oil by RP HPLC–ESI–MS. They also used UV 

(358 nm) and a light scattering detector for the detection and compared the responses of MS and 

UV detections. A linear gradient elution with 20% to 80% isopropanol in methanol was used along 

with a 250 x 4.6 mm, 5 µm particle size ODS column. DNPH derivatives were detected in the 

negative ionisation mode as [M–H]– ions. After autoxidation for 18 days (60°C), the content of 

hydroperoxides and core aldehydes was estimated to be approx. 5% of the total acylglycerols. The 

authors identified several multifunctional dihydroxy and diepoxy core aldehydes. Previously, 

several core aldehydes were identified after the rapid oxidation of corn oil with tert-butyl 

hydroperoxide/Fe2+ by HPLC–ESI–MS (Sjövall et al. 2002).  

Enoiu et al. (2000) used GC–MS and LC–ESI–MS to identify aldehydes produced from the ascorbic 

acid/FeSO4 induced autoxidation of linoleic and linolenic acids after initial separation to polar and 

non-polar aldehydes with TLC. The polar fraction contained toxic hydroxyaldehydes e.g. several 

mono- and dihydroxy substituted alkanals, alkenals, and alkadienals such as 2-hydroxy-nona-3,5-

dienal. Malondialdehyde was found to be a major oxidation product of linolenic acid but not 

linoleic acid. The LC separation of DNPH derivatives was achieved by elution with 

acetonitrile/water (50% to 95% acetonitrile in 30 min) and C18 column (125 x 2 mm, 5 µm particle 

size).  

Zhang et al. (2010) developed a fast UHPLC–UV method for the analysis of several carbonyl 

compounds as DNPH derivatives. The method used stepwise gradient elution with 

water/acetonitrile (initially 68:32 and at the end 18:82, v/v) in 2.1 x 100 mm, 1.9 µm particle size 

C18 column. The method was linear over a large range (98–50000 ng/mL) for most of the 

compounds tested.  

Handelman et al. (1998) investigated the changes of bovine insulin structure after hypochlorite-

induced oxidation. They estimated that 5% of the hypochlorite-modified insulin reacted to DNPH, 

which specifically reacts with carbonyls. After total amino acid analysis, tryptic digestion and 
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HPLC–ESI–MS/MS analyses, amino-terminal pheynylalanine of the insulin B-chain was revealed 

to be the target of carbonyl modification. The authors hypothesised that the terminal amino groups 

of proteins are highly vulnerable to carbonyl formation. HPLC analyses of insulin and insulin 

derivatives were carried out with water/acetonitrile (95:5 to 50:50 in 20 min, v/v) and 250 x 4.6 

mm, 5 µm particle size C4 column. 

Also, derivatising reagents other than DNPH have been used for the analysis of aldehydes. 

Derivatisation of cholesteryl aldehydes with fluorescent 1-pyrenebutyric hydrazine enables the use 

of a highly sensitive fluorescence detector when performing HPLC analysis of oxidised cholesterol 

species. The method is quantitative, highly sensitive (femtomole range) and specific (Mansano et al. 

2010). 

Macrophages have been observed to increase LDL oxidation and even internalise core aldehydes in 

certain experimental settings (Karten et al. 1999). 5% of CE 18:2 and 4% of CE 20:4 in LDL were 

converted to 9-oxononanoyl (9-ONC) and 5-oxovaleroyl (5-OVC) cholesteryl ester core aldehydes, 

respectively. 9-ONC and 5-OVC were first derivatised with 1,3-cyclohexanedione and concentrated 

with SPE, and then analysed by HPLC equipped with the fluorescent detector (366 nm excitation 

and 455 nm emission). A C18 column (250 x 2.1 mm, 5 µm particle size) was used and eluted with 

the isocratic solvent system of acetonitrile/methanol/isopropanol (68:17:15, by vol).  

2.7 Summary 

Unsaturated fatty acids (UFAs) compose an important and essential part of human nutrition. 

Unfortunately, the double bonds in the UFAs make them susceptible to oxidation by reactive 

oxygen species (ROS). The formation of oxidised lipids increases rapidly when protective 

antioxidants are exhausted. On the other hand, the nature of antioxidants can lead to problems when 

fortifying foods with too many antioxidants. Pro-oxidative effects of several antioxidants have been 

observed when used in excessive amounts. The primary oxidation products of lipids are usually 

hydroperoxides, which ultimately decompose to secondary oxidation products with numerous end-

products. Volatile oxidation products not only degrade the sensory quality of oils and fats but in 

many cases have also been found to be carcinogenic. Non-volatile lipid oxidation products contain 

typically hydroperoxy, hydroxyl, aldehyde, oxo, and epoxy groups. These functional groups alter 

the chemical and physiological properties of lipids. Core aldehydes, which are formed after the 
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breakdown of hydroperoxidised glycerolipids, can form adducts with amino acids, peptides, 

proteins, phospholipids, and DNA. Ingestion of these oxidised lipids can eventually lead to serious 

health effects. 

Lipid digestion begins in the stomach when lingual and gastric lipases start to hydrolyse 

triacylglycerols, which are the main components of edible oils and fats. Sn-1 and sn-3 positions and 

shorter chain fatty acids are preferred by the two lipases. The stomach also contains oxygen, a low 

pH, and possibly abundant amounts of iron ions from any consumed meat. All of these enable the 

formation of ROS. Smooth muscles constrict the stomach and the formation of emulsion begins. 

The surface area of lipid droplets increases and oxygen can more easily attack the double bonds. 

Lipolysis continues in the intestine when pancreatic lipase along with co-lipase hydrolyses the 

remaining intact triacylglycerols and previously formed diacylglycerols to sn-2 monoacylglycerols 

and free fatty acids. Lipid absorption takes place mainly in the duodenum and jejunum. 

Several antioxidative enzymes are found in the mammalian system. Glutathione peroxidases (GPx) 

are probably the most important lipid peroxide neutralising enzymes. Gastrointestinal GPx is active 

in the digestive system and likely eliminates most of the ROS present. Several superoxide 

dismutases (SOD) exist, but their action during digestion is unknown. Extracellular SOD is the 

most likely candidate of the SOD family of enzymes to neutralise ROS formed in the digestive 

system.  

Methods for studying lipid oxidation are numerous. They range from unspecific titrimetric methods 

to highly specialised chromatographic and mass spectrometric methods. ROS can be measured in 

various matrices by luminescence and fluorescence methods. General antioxidant capacity tests give 

some idea of the protective capacity of different antioxidants, but fail to identify any possible 

oxidised lipids that may be formed. Gas chromatography (GC) or high performance liquid 

chromatography (HPLC) coupled with mass spectrometry (MS), on the other hand, can give very 

detailed information about the lipid oxidation products. Some tandem mass spectrometric methods 

even enable the determination of the exact placement of oxidised groups in the lipid molecules. 

Nuclear magnetic resonance (NMR) spectroscopy, especially proton (1H) NMR, is a promising 

technique for the fast screening of lipid samples, as it is non-destructive and because of the large 

dynamic scale of the technique. Drawbacks of NMR are that a relatively large amount of sample is 

required for the analysis and that specific molecular structures may be difficult to identify from 

complex spectra. 
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3 AIMS OF THE CURRENT STUDIES 

Previous experiments by different research groups have established deep knowledge of lipid 

autoxidation by different mechanisms outside the human body, while some limited studies have 

started to enlighten the less researched area of the in vivo and in vitro oxidation of lipids. The aims 

of the experiments in this thesis were defined as: 

i) To study how lipid oxidation is affected by an in vitro digestion model 

 

ii) To develop novel comprehensive analysis techniques for the analysis of lipid oxidation in 

complex biological samples such as in vitro digestion samples 

 

iii) To develop faster and more sensitive methods for the analysis of lipid oxidation 

 

iv) To study the efficacy of common antioxidants against autoxidation during digestion 

 

v) To study the fate of toxic core aldehydes and the formation of Schiff bases during digestion  
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4 MATERIALS AND METHODS 

4.1 Oxidation of rapeseed oil 

Kultasula branded rapeseed oil (Raisio Oy, Raisio, Finland) was oxidised in several ways to 

produce oxidised oils for the experiments. Thermal oxidation in a convection oven was used to 

create mildly and highly oxidised oils. Two oxidised oils were produced by heating fresh oil at 

60°C and at 100°C for 48h. Chemical oxidation was done according to Harry-O’Kuru et al. (2002) 

by mixing fresh rapeseed oil with formic acid and slowly adding hydrogen peroxide while 

constantly stirring the mixture for 15h at 70°C. Water and HCl was added and the mixture was 

heated for another 15h at 70°C. The resulting oxidised oil was purified with liquid-liquid extraction. 

Oxidised oil in ethyl acetate was transferred into a separatory funnel and washed sequentially first 

with saturated NaCl solution, then with saturated NaHCO3 solution and finally with purified water 

(Millipore, Molsheim, France). The oxidised oil was recovered from the lower organic phase and 

dried in a rotary evaporator under vacuum. Peroxide values for the oxidised oils were determined 

according to AOCS protocol Cd 8-53 (Firestone 2009) and they were 100 meqO2/kg for the oil heated 

at 100°C and 20 meqO2/kg for the chemically treated oil. 

Special ozonisation procedure was used for the synthesis of core aldehyde rich oils. Rapeseed oil 

was bubbled with freshly prepared O3 to produce triacylglycerol ozonides, which in turn were 

converted to core aldehydes by reducing the ozonide groups with triphenylphosphine (TPP). 

Several reaction times with ozone were tested, as the oxidation proceeded from mono-ozonides to 

diozonides and triozonides very quickly. TLC was used to monitor the formation of ozonides. The 

presence of core aldehydes was confirmed with UHPLC−ESI−MS analyses after derivatisation to 

core aldehyde 2,4-dinitrophenyl hydrazones with DNPH. 

4.2 Synthesis of oxidised reference compounds 

Free fatty acids (oleic acid, linoleic acid, and α-linolenic acid) were oxidised by the method of Neff 

et al. (1982) to produce hydroperoxidised fatty acids. Briefly, fresh free fatty acid was dissolved in 

dichloromethane containing 0.1 mM methylene blue as photosensitiser. The mixture was held under 

250W UV light for 15h (distance from the light 20 cm) in an ice bath. In addition to free fatty acid 
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hydroperoxides, also hydroperoxidised monoacylglycerols and diacylglycerols were prepared from 

1(3)-monooleoyl-sn-glycerol, 1(3)-monolinoleoyl-sn-glycerol, 1(3)-monolinolenoyl-sn-glycerol, 

1,2(2,3)-dioleoyl-sn-glycerol, and 1,2(2,3)-dilinoleoyl-sn-glycerol. The hydroxy derivatives of the 

hydroperoxidised oxylipids were prepared by treating the previously synthesised peroxidised lipids 

with triphenylphospine, which reduces the hydroperoxy groups to hydroxyl groups. The epoxy 

derivatives of free fatty acids were prepared by the method of Deffense (1993) by mixing 15 mg of 

free fatty acid in dichloromethane with 3-chloroperoxybenzoic acid. 

Reference Schiff bases were prepared as previously described by Kurvinen et al. (1999). First, 2-(9-

oxo)-nonanoyl-sn-glycerol was prepared from 2-oleyl-sn-glycerol by ozonolysis and TPP reduction, 

and purified with TLC (heptane/isopropyl ether/acetic acid, 60:40:4, by vol). Several Schiff bases 

were then prepared by reacting 2-(9-oxo)-nonanoyl-sn-glycerol with valine, glycine−glycine, and 

leucine−glycine−glycine. The reactions were done in the dark at 0°C, after which the resulting 

Schiff bases were converted to stable reduced Schiff bases by reaction with cyanoborohydride. 

4.3 Adaptation of artificial digestion model (I−IV) 

The artificial digestion model was adopted from Versantvoort et al. (2009a). The composition of the 

digestive juices was adjusted as in the fed state in the human stomach Versantvoort et al. (2009b). 

The model was down-scaled to enable work with multiple parallel samples. Table 1 describes the 

composition of the model and Scheme 1 all the different stages of digestion and extraction. Dry 

reagents were weighed into 25 mL volumetric bottles, purified water was added and after the 

mixing of the enzymes, other reagents added. Digestive juices were prepared just before the 

experiments and warmed to 37°C before use. Incubation was performed in an angled (45°) mixing 

device at 800 rpm in a 37°C heat room. 

The standard meal was composed of milk protein isolate, potato starch, and fibre preparation (cereal 

hull mix). All lipids were extracted away from the protein isolate and fibre preparation by 48 hour 

chloroform/methanol (2:1, v/v) extraction in a Soxhlet apparatus. Fibre preparation was milled to 

fine powder prior to use. 
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Table 1. Composition of the digestive juices in the artificial digestion model. 
Reagents Stock solution Saliva Gastric juice Intestinal juice Bile

 (mg/25mL) (µL/25mL) (µL/25mL) (µL/25mL) (µL/25mL)
KCl 2240 500 460 315 210
KSCN 500 500 − − − 
NaH2PO4*2H2O 2889 500 150 − − 
Na2SO4 1425 500 − − − 
NaCl 4382.5 85 785 2000 1500
NaHCO3 2117.5 1000 − 2000 3415
CaCl2*2H2O 555 − 900 450 500
NH4Cl 765 − 500 − − 
HCl (37%) −  − 325 9 7.5
KH2PO4 200 − − 500 − 
MgCl2*6H2O 266.9 − − 500 − 
Urea 625 400 170 200 500
Glucose 1625 − 500 − − 
Glucuronic acid 50 − 500 − − 
Glucoseamine*HCl 825  − 500 − − 

 (mg/25mL) (mg/25mL) (mg/25mL) (mg/25mL)
α-amylase   14.5  −  −  −
BSA   − 50 50 90
Uric acid   0.75 − −  −
Mucin   1.25 150 −  −
Pepsin   − 125 −  −
Pancreatin   − − 450  −
Lipase   − − 75  −
Bile    −  −  − 1500

 
 

 
Scheme 1. The artificial digestion and extraction processes. 
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4.4 Sample preparation for experiments with different antioxidants (III) 

Two sets of experiments were performed with antioxidants. A preliminary experiment was 

conducted using an UHPLC-ESI-MS method (Tarvainen et al. 2011) and a second, complimentary 

experiment was done with the improved lithium adduct UHPLC-ESI-MS method (Tarvainen et al. 

2012). For the preliminary experiments, three different oils were incubated in the artificial digestion 

model with L-ascorbic acid, 6-palmitoyl-O-L-ascorbic acid, 3,5-di-tert-butyl-4-hydroxytoluene 

(BHT), DL-α-tocopherol, and DL-α-tocopheryl acetate in different concentrations and combinations 

(see Table 2). For the second experiment, only fresh unoxidised rapeseed oil was incubated with 

the mentioned antioxidants (see Table 3). 

Table 2. Samplesa prepared in the preliminary in vitro digestion study 
for mixing with the standard meal. 
___________________________________________________________          

I. Fresh rapeseed oil (40 mg)b  
II. Chemically oxidised rapeseed oil 
III. Thermally oxidised rapeseed oil 
___________________________________________________________ 

Antioxidant addition          Amount of added  
               antioxidant (% of oil) 
___________________________________________________________ 
 
1.   No added antioxidant        – 
2.   FFAs and DAGs without added antioxidantc  – 
3.   FFAs and DAGs with DL-α-tocopherolc    0.0125 
4.   DL-α-tocopherol, high        1.2500 
5.   DL-α-tocopherol (T)         0.0125 
6.   DL-α-tocopheryl acetate (TA)      0.0125 
7.   3,5-di-tert-butyl-4-hydroxytoluene (BHT)   0.0125 
8.   6-palmitoyl-O-L-ascorbic acid (PA)    0.0125 
9.   T + PA             0.0250d 
10. T + TA            0.0250d 
11. T + BHT            0.0250d 
12. TA + BHT           0.0250d 
13. TA + PA            0.0250d 
14. PA + BHT           0.0250d 
__________________________________________________________ 

a 3 replicates of each antioxidant combination. (12 x 3 + 2) x 3 separate 
  digestions in total. 
b Natural vitamin E content in the rapeseed oil was 0.025%. 
c Free fatty acids (FFAs) and diacylglycerols (DAGs) added to fresh 
   rapeseed oil (I.) only. 
d Combined concentration of the added antioxidants. 
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Table 3. Samplesa prepared in the second in vitro digestion study 
with fresh rapeseed oil for mixing with the standard meal. 
_______________________________________________________ 

Antioxidant addition         Amount of added  
              antioxidant (% of oil) 
_______________________________________________________ 
 
1. No added antioxidantb        -    - 
2. DL-α-tocopherol (T)        0.01   0.10 
3. DL-α-tocopheryl acetate       0.01   0.10 
4. 3,5-di-tert-butyl-4-hydroxytoluene (BHT)  0.01   0.10 
5. L-ascorbic acid (AA)        0.01   0.10 
6. 6-palmitoyl-O-L-ascorbic acid (PA)    0.01   0.10 
7. T + AA            0.01c   0.10c 
8. T + BHT           0.01c   0.10c 
9. T + PA            0.01c   0.10c 
_______________________________________________________ 

a 10 replicates of each antioxidant level. 17 x 10 digestions in total.  
b Natural vitamin E content in the rapeseed oil was 0.025%. 
c Combined concentration of the added antioxidants. 

4.5 Extraction of samples (I−IV) 

A modified Folch (1956) extraction was used to extract all of the lipophilic components from the 

digestion samples. 750 µL duplicate samples were taken from the digestion tubes and placed in 

disposable glass test tubes; 2 mL of chloroform and 1 mL of methanol was added. After thorough 

mixing, the tubes were centrifuged at 1000 g (3500 rpm) and the lower phase was collected. The 

pure lower phase was added (2 mL) and the extraction was repeated. The lower phases were 

combined and evaporated to dryness. For LC analysis, the residue was dissolved into 1 mL of 

isopropanol. 

In the studies with core aldehydes and Schiff’s bases, the upper, more hydrophilic phase was also 

examined. First, 2 mL of chloroform and 1 mL of methanol was added to 750 µL duplicate samples. 

After thorough mixing and centrifugation, the upper and lower phases were carefully collected 

separately into new disposable glass test tubes. Pure upper and lower phases were added into the 

original extract tube, mixed, and centrifuged. The upper and lower phases were again collected and 

combined separately. The solvents were removed by nitrogen stream and the upper phase residue 

was dissolved into methanol:acetonitrile (50:50, v/v) and the lower phase residue into isopropanol 

for UHPLC analyses or into deuterated chloroform for 1H NMR analysis. 
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4.6 HPLC−ELSD−ESI−MS analysis of digested unoxidised and oxidised rapeseed 

oils (I) 

A high performance liquid chromatography−evaporative light scattering detector−electrospray 

ionisation−mass spectrometric method (HPLC−ELSD−ESI−MS) was developed for the analysis of 

the digested lipid components in the chyme. The method enabled the separation of nearly all of the 

individual free fatty acids, monoacylglycerols, diacylglycerols, triacylglycerols and their oxidised 

equivalents. Previous works by Hsu et al. (2007) and Sjövall et al. (1997) were used as the basis for 

the combined method for analysing free fatty acids and acylglycerols. A Waters Acquity UPLC 

equipped with a column oven and a reversed phase Nucleodur ISIS C-18 column (250 x 4.6 mm, 5 

µm particle size; Macherey-Nagel, Betlehem, PA, USA) was used as an LC inlet. The flow line was 

split to a Sedex LT-75 evaporative light scattering detector (Sedere Inc., Lawrencewille, NJ, USA) 

and to a Waters Quattro Premier tandem mass spectrometer equipped with electrospray ionisation 

(ESI) probe (Waters Corp., Milford, MA, USA) with an adjustable tee. Total flow-rate was 1.0 

mL/min, of which 20% was directed to the mass spectrometer. A solvent gradient program was 

used for the separation of analytes after 10 µL full loop injections. Solvent B was increased from 

initial 10% to 60% in 40 min and to 95% in 85 min. Solvent A was composed of 

acetonitrile/H2O/formic acid (50:50:0.1, by vol) and solvent B of isopropanol/acetone/formic acid 

(90:10:0.1, by vol). The ELSD was operated at 40 psi and 70°C and the column oven at 60°C. 

The mass spectrometer was mass calibrated by the infusion of 0.1% TFA. The resulting water 

clusters [H3O + nH2O]+ peaks (31 peaks) were used for the accurate mass calibration of each 

quadrupole for mass range of 50−1,800 Da with scanning and static scans. Scan speed 

compensation calibration was performed for scanning speeds between 300−5,000 amu/s. The mass 

spectrometer was operated in the positive ionisation mode and full scans of 150−1,500 m/z were 

collected. The ESI capillary voltage was set at 3.00 kV, the cone voltage at 300 V, the extractor 

voltage at 2 V the source temperature at 120°C, the desolvation temperature at 170°C, the 

desolvation gas flow at 600 L/h and the cone gas flow at 500 L/h. 

The quantifications were based on the calibration curves of reference compounds made by linear 

fitting of the area of selected single ion mass chromatogram peaks versus concentration. Waters 

MassLynx 4.1 and Origin 8.4 SR software (OriginLab Co., Northampton, MA, USA) was used for 

the extraction and area integrations of mass chromatograms and the preparation of calibration 

curves. The duplicate sets of the mixtures of reference compounds were injected at 5 different 



Materials and Methods 

 

52

levels. 10, 5, 2.5, 1.25, 0.625 µg loads were used for free fatty acids, and one tenth of the amount of 

FFAs for MAGs, DAGs, and TAGs. An internal standard (12-hydroxyoctadeacnoic acid) was used 

to correct for any sample loss during the extraction procedure. The saturation of the MS signal 

limited the accuracy of quantification in higher concentrations. No reliable quantification was 

performed for the oxidised lipids because the reference compounds acquired by synthesis were not 

sufficiently pure.  

4.7 GC–FID analysis of fatty acids (I) 

Fatty acid methyl esters were prepared from the unoxidised rapeseed oil by borotrifluoride 

catalysed methylation and subsequent gas chromatographic (GC) analysis. Triheptadecanoate was 

used as an internal standard. A Perkin-Elmer Auto-System gas chromatograph equipped with an 

autosampler and flame ionisation detector (FID) was used with a J.W. Scientific DB-23 column (60 

m x 0.25 mm i.d., 0.25 µm film thickness, Agilent Technologies Inc., Santa Clara, CA, USA). A 

gradient temperature program was used to separate the fatty acid methyl esters. The initial oven 

temperature of 130°C was held for 1 min, then increased to 170°C (6.5°C/min), then to 215°C 

(2.8°C/min) and held for 12 min; finally, the temperature was increased to 230°C (40°C/min) and 

held for 3 min. The detector and autosampler were held at 270°C. The injection volume was 1 µL 

and one analysis was done of each of the four replicate methylations. 

4.8 UHPLC−ESI−MS analysis of digested unoxidised and oxidised rapeseed oils (II, 

III, and IV) 

An ultra-high performance LC−ESI−MS method was developed to increase the speed of the 

analysis of free fatty acids and acylglycerols. A Waters Acquity UPLC™ was used with a reversed 

phase BEH C18 column (100 x 2.1 mm, 1.7 µm particle size, Waters Corp.) A solvent gradient and 

a column at elevated temperature were used to enhance the separation of different lipid components. 

Solvent A was composed of H2O/acetonitrile/formic acid (50:50:0.1, by vol). Solvent B was 

composed of isopropanol/formic acid (100:0.1, v/v). The initial composition of 14% of B was 

increased to 85% of B in 14.0 minutes and reduced then back to 14%. The initial flow rate of 0.65 

mL/min was reduced to 0.5 mL/min in 14 minutes. A column oven capable of up to 65°C 

temperature was used to increase mass transfer inside the column and to decrease the high back 
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pressure. The back pressure would have risen over the limits of the used UHPLC system (1,000 

bars) if the moderately high flow rate had been used with the high isopropanol content solvent 

mixture at room temperature. The temperature of 60°C was selected as an optimum temperature for 

increased resolution of the analytes and sufficiently decreased back pressure. Maximum back 

pressure during optimised analysis was 965 bars, which was within the usable operating range of 

the UHPLC system. 

All of the solvent flow from the UHPLC was directed to the ESI probe of Water Quattro Premier 

tandem mass spectrometer. The tuning was optimised for the simultaneous detection of FFAs, 

MAGs, DAGs and TAGs. The ESI capillary voltage was set at 3.0 kV and the cone voltage at 320 

V. The extractor voltage was set at 8 V and RF lens voltage at 1.0 V. Ion source temperature was 

set at 80°C and desolvation temperature at 350°C. Desolvation gas flow was set at 500 L/h and cone 

gas flow at 300 L/h. 

Synthesised reference compounds were used to estimate the amounts of oxidised lipids present in 

the samples. The mass chromatogram peaks identified as oxidised compounds were integrated and 

the areas were used in the quantitative calculation. 12-Hydroxyoctadecanoic acid was used as an 

internal standard. Multiple known and characteristic ions were used in the detection of oxidised 

compounds from the mass chromatograms. Because the purities of the synthesised oxidised fatty 

acids and acylglycerols were not sufficient, the results are only semi-quantitative. 

4.9 UHPLC–ESI–MS lithium adduct analysis of digested unoxidised rapeseed oil 

(III) 

To increase the sensitivity of the UHPLC−ESI−MS analysis, a new method utilising lithium 

formate as solvent additive was developed. Lithium was previously used by Hsu et al. (1998, 1999) 

and Cheng et al. (1998) in the analysis of GPCs and TAGs. A Waters Acquity UPLC™ was used as 

an LC inlet for a Waters Quattro Premier tandem mass spectrometer. MassLynx v4.1 and 

QuanLynx (Waters Corp.) were used for the collection and analysis of mass chromatograms and 

spectra. A reversed phase 2.1 x 100 mm (1.8 µm particle size) Phenomenex Kinetex C18 column 

(Phenomenex Inc., Torrence, CA) was used for the chromatographic separation of oxidised and 

unoxidised free fatty acids and acylglycerols. A column oven was utilised and set at 60°C. Solvent 

A was composed of acetonitrile/H2O/formic acid (50:50:0.1, by vol) and solvent B of 
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acetone/formic acid (100:0.1, by vol). Both solvents also contained lithium formate (1 mM) as an 

ionisation enhancer. The initial gradient of 1% B was increased to 99% B in 14.00 minutes, and 

back to 1% B in 14.05 minutes with the constant level of 1% B until 16.50 minutes. The flow rate 

was 0.90 mL min-1 and the injection volume was 3 µL. 

The ESI capillary voltage was set at 4.00 kV. Cone voltage was initially 60 V and after 8.70 

minutes was 350 V. RF lens voltage was set at 0.2 V and Extractor voltage at 8 V. Ion source 

temperature was set at 100°C and desolvation temperature was 400°C. Desolvation gas (N2) flow 

was set at 900 L/h and cone gas (N2) flow at 400 L/h. The mass spectrometer was mass calibrated 

with water clusters for m/z 50–1,800 and the scanning speeds of 300–5,000 amu/s. Mass spectra 

were collected initially of ions with m/z 165–800 and after 8.70 minutes m/z 350–1,100. 

4.10 UHPLC–ESI–MS analysis of amino acids and peptides (IV) 

Amino acids and peptides were analysed with a Waters Acquity UPLC and Waters Quattro Premier 

tandem quadrupole mass spectrometer. A Phenomenex Kinetex C18 column (100 mm x 2.1 mm, 

1.7 µm pore size) was used for chromatographic separations. An electrospray ionisation probe (ESI) 

was used to ionise the sample molecules in the positive ionisation mode and full scans were 

acquired between m/z 50–1500. The mass spectrometer was mass calibrated with water cluster 

calibration as explained previously. All acquisitions were done so that there was a minimum of 17 

data points across the peaks. The ESI probe voltage was set at 3.0 kV, the cone voltage at 30 V, the 

RF lens voltage at 0.2 V and extractor voltage at 8 V. Ion source temperature was set at 100°C and 

desolvation temperature at 400°C. Nitrogen was used as the nebulising gas at 900 L h−1 and cone 

gas flow was set at 400 L h−1. 

A solvent gradient program was used to analyse the hydrophilic components in the samples. Solvent 

A was composed of water/TFA (100:0.1, by vol) and solvent B of acetonitrile. A linear gradient 

starting from 5% B was increased to 100% B in 20 minutes. The injection volume was 3 µL. 

Reference amino acids, dipeptides and tripeptides were used to identify the peaks. 
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4.11 NMR experiments 

Bruker Avance 500 NMR spectrometer equipped with a BBI-5mm-Zgrad-ATM probe (Bruker 

BioSpin, Fällanden, Switzerland) was used to collect 1H NMR spectra of the samples. All spectra 

were acquired with 128 scans at 25°C using standard 1H NMR pulse sequence with a 30 flip angle. 

Free induction decays (FIDs) were collected with 64k data points and an acquisition time of 3.28 s, 

a spectral width being 10000.0 Hz. Tetramethylsilane (TMS) was used as an internal standard 

(chemical shift 0.00 ppm). Extracted samples in deuterated chloroform (600 µL) were transferred 

into 5 mm diameter NMR tubes (WILMAD, Emperor grade) for analysis. Spectra were processed 

with Topspin 1.3 and Amix Viewer 3.9.7 (Bruker BioSpin) software. For quantitative analysis, 

spectra were scaled and equalised to the chloroform peak. 

4.12 Statistical Analysis 

Data from the antioxidant experiments were analysed by the one-way analysis of variance 

(ANOVA) with post-hoc Tukey’s HSD for statistical differences between the groups. P-values of 

less than 0.05 were considered statistically significant. IBM SPSS Statistics version 19 (IBM 

Corporation, New York) was used for the statistical calculations. 
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5 RESULTS AND DISCUSSION 

Major results were acquired during the four separate studies marked in roman numerals (I−IV) in 

the text. Hundreds of different lipid molecules were identified from the unoxidised and oxidised oils 

and digested oil samples. The mass chromatograms, spectra and extensive tables of identified 

compounds are published in the corresponding papers (I−IV) and not repeated here, excluding 

some examples of chromatograms. 

5.1 Applicability of the newly developed analytical methods 

The new analytical methods developed during this thesis work enabled the study of lipid hydrolysis 

and the formation of oxygenated fragments of oxidised oils in great detail. These new methods 

enable not only the identification and even quantification of almost all major lipid classes present in 

the digestive system, but they can be adapted to other areas of research, such as biodiesel quality 

control, etc. Previously, several methods would have to be utilised simultaneously to obtain similar 

results. Also, the increased speed and sensitivity of analysis enabled screening the effects of several 

antioxidants against oxidation in the artificial digestion model. The use of artificial digestion model 

enabled the study of unhealthy oxidised oils without the ethical problems arising from the use of 

experimental animals or human test subjects. 

5.2 Identification of oxidised molecular species in oxidised oils 

Studies I−IV used oxidised oils in the digestion experiments. The oils were characterised by 

HPLC–ELSD–ESI–MS (study I), UHPLC–ESI–MS (studies II–IV), and 1H NMR (study IV) 

analyses. Hydroperoxidised triacylglycerols, epoxy-triacylglycerols, hydroxy-triacylglycerols, oxo-

triacylglycerols and oxoTAGs with two different oxidised groups were detected from the thermally 

oxidised oils (I−III). Hydroxy-triacylglycerols and epoxy-triacylglycerols were the major 

constituent of chemically oxidised oil (I−III). Minor amounts of core aldehydes were present in 

heat treated oils (I−IV), as expected, and abundantly in specially prepared ozonised oils (IV). The 

findings were in accordance with the previous studies of the constituents of oxidised seed oils by 

different LC–MS methods (Sjövall 2001, 2002a, 2002b, 2003, Frankel 1984, Byrdwell 1999, 2001, 2004). 
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5.3 Identification of oxidised lipolysis products (I–III) 

Lipid hydrolysis and incubation in the artificial digestion model had major effect on the lipid 

constituents of the chyme. Figure 1 shows the total ion current mass chromatograms of three oils 

before and after digestion, analysed by UHPLC–ESI–MS (from study III as an example). 

Hydroperoxidised lipids were quickly degraded to secondary oxidation products and were not 

detected in any samples after the three-part digestion. Epoxidised lipids, however, were detected 

from digested heat treated oil samples, implying that they could be available for absorption in the 

intestines. Oxylipids containing hydroxyl groups were the major class of oxidised triacylglycerol 

fragments present in the digested oxidised rapeseed oil samples, with hydroxy fatty acids and 

hydroxy monoacylglycerols being the major individual classes. 

 

Figure 1. Undigested unoxidised rapeseed oil (I), undigested thermally oxidised rapeseed oil (II), undigested 
chemically oxidised rapeseed oil (III), digested unoxidised rapeseed oil (IV), digested thermally oxidised rapeseed oil 
(V), and digested chemically oxidised rapeseed oil (VI). Analysed with the UHPLC–ESI–MS lithium adduct method as 
explained in materials and methods. Detailed peak listings and identifications provided in Tarvainen et al. (2012). The 
effects of antioxidants on rapeseed oil oxidation in an artificial digestion model analysed by UHPLC–ESI–MS. J. Agric. 
Food Chem. 60: 3564–3579. 
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Significant amounts of different constitutional isomers of saturated 18 carbon monoepoxy fatty acid 

(m/z 321.3 corresponding to [M + Na]+ adduct and m/z 297.4, corresponding to [M – H]– ion) and 

18 carbon monoepoxy fatty acid with one remaining double bond (m/z 319.3 corresponding to [M + 

Na]+ adduct and m/z 295.4 corresponding to [M – H]– ion) were identified in digested thermally 

oxidised oil samples. Small amounts of monoepoxy octadecadienoic acid were also detected at m/z 

293.4 and m/z 317.3. On the basis of both negative and positive ionisation MS analyses, there were 

approximately equal amounts of the isomers of monoepoxy octadecanoic and monoepoxy 

octadecenoic acids present. The combined amounts of the three epoxidised free fatty acids strongly 

reflected the overall amounts of oxylipids in the samples. 

5.4 Proportions of monoacylglycerol positional isomers in digested chyme (I) 

Particularly interesting observation from the LC–MS studies of the digested oils was that the 

amounts of sn-1(3)-monoacylglycerols in relation to sn-2-monoacylglycerols were much higher 

than expected. It is thought that pancreatic lipase almost exclusively cleaves fatty acids from sn-1 

and sn-3 positions and the resulting monoacylglycerol should be sn-2-monoacylglycerol. In our 

experiments, which closely mimic human digestion, the proportions of 2-oleoyl-sn-glycerol/1(3)-

oleoyl-sn-glycerol, 2-linoleoyl-sn-glycerol/1(3)-linoleoyl-sn-glycerol, 2-linolenoyl-sn-glycerol/ 

1(3)-linolenoyl-sn-glycerol, produced from unoxidised rapeseed oil, were 65%/35%, 75%/25%, and 

85%/15%, respectively. The reason for high amounts of sn-1(3)-monoacylglycerol positional 

isomers remains unknown, although speculations of enzyme preference or larger than believed acyl 

migration during digestion could be presented. 

5.5 Effects of antioxidants on rapeseed oil oxidation in artificial digestion model 

(III) 

Several different antioxidants were screened for their effects on the artificial digestion model. L-

ascorbic acid, 6-palmitoyl-O-L-ascorbic acid, 3,5-di-tert-butyl-4-hydroxytoluene (BHT), DL-α-

tocopherol, and DL-α-tocopheryl acetate had different kinds of effects on thermally oxidised oil 

than chemically oxidised oil. A total 114 of assays, excluding blanks and reference compound 

analyses, were performed with the three oil preparations in a preliminary experiment. 
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Hydroperoxides, epoxides and hydroxyl compounds acids were given special attention in the 

analysis of mass spectral data. 

As epoxidised free fatty acids were detected in thermally oxidised oil, it was interesting to note that 

only in samples with the high tocopherol addition were the concentrations of epoxidised FFAs 

slightly lower than in samples without any added antioxidants. In samples with DL-α-tocopherol 

and BHT, there were equal amounts of epoxidised FFAs compared with the digested samples 

without added antioxidants. The rest of the antioxidant additions seemed to increase the amounts of 

epoxidised FFAs two- to three-fold. Previously, epoxides were observed to decompose to vicinal 

diol structures in acidic conditions (Giuffrida 2004a). The difference in the fate of epoxidised lipids 

compared with the previous report may be attributed to the shorter exposure time to the acidic 

medium in our experiments and differences in the gastric models.  

 

Figure 2. The normalised amount of detected oxidised MAGs in digested thermally oxidised rapeseed oil (I), oxidised 
FFAs in digested thermally oxidised rapeseed oil (II), oxidised MAGs in digested chemically oxidised rapeseed oil 
(III), and oxidised FFAs in chemically oxidised rapeseed oil (IV). Preliminary experiment. 

Figure 2 shows the amounts of oxidised lipids in the digested oxidised rapeseed oils in a 

preliminary experiment. Normalised amounts of detected oxidised MAGs in the digested thermally 

oxidised rapeseed oil are shown in (Fig. 2 I), oxidised FFAs in digested thermally oxidised 
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rapeseed oil in (Fig. 2 II), oxidised MAGs in digested chemically oxidised rapeseed oil in (Fig. 2 

III), and oxidised FFAs in chemically oxidised rapeseed oil in (Fig. 2 IV). The addition of high 

amounts of DL-α-tocopherol (T, high) had varying results. In the case of thermally oxidised 

rapeseed oil, high amounts of oxidised MAGs were detected, but little oxidised FFAs. In the case of 

chemically oxidised rapeseed oil, high amounts of oxidised FFAs were detected and low amounts of 

oxidised MAGs. High amount of antioxidants perhaps selectively stabilise some oxidised molecules 

found in the oxidised oils. In general, other tested antioxidants had no positive (decreasing) effect 

on the amounts of oxidised lipids detected. The amounts of oxidised FFAs and MAGs were on a 

similar level or higher than in the samples without any added antioxidant. A small addition of DL-

α-tocopherol (T) seemed to increase the amount of oxidised lipids. The explanation of this 

phenomenon might be that primary oxidation products are rapidly decomposed to secondary 

oxidation products in the artificial digestion model, but the addition of antioxidants alters the 

decomposition pathways resulting in different end-products. Specifically, the action of tocopheryl 

acetate (TA) was interesting, as the acetyl group would need to be hydrolysed before any 

antioxidative effects can be expected. Thermally oxidised digested rapeseed oil samples containing 

TA had, on average, slightly more oxidised lipids than samples without any added antioxidants. On 

the other hand, chemically oxidised rapeseed oil samples had equal amounts of oxylipids in samples 

with and without TA. 

No oxidised lipids were detected after the digestion of native rapeseed oil samples and samples with 

added FFAs and DAGs in the preliminary experiment. Because the amounts of oxidised lipids 

generated during the digestion of rapeseed oil were small and challenging to determine, a more 

sensitive lithium adduct-based detection method was developed. The lithium adduct method 

enabled the detection of oxidised lipids from digested fresh rapeseed oil. Figure 3 shows the 

amounts of oxidised MAGs in different antioxidant addition groups. Oxidised MAGs were detected 

in all groups, thus questioning the efficacy of the tested antioxidants against lipid oxidation during 

the digestion of lipids.  
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Figure 3. The amount of oxidised MAGs in digested fresh rapeseed oil in different antioxidant addition groups as 
analysed by UHPLC–ESI–MS. 

5.6 Core aldehydes in artificial digestion model (IV) 

Core aldehyde-rich oil was synthesised for studying the behaviour of carbonyl compounds in the 

artificial digestion model. While the undigested oxidised oil contained abundant amounts of core 

aldehydes, none were detected in the digested oxidised oils by UHPLC–ESI–MS analyses. 

However, 1H NMR analyses clearly revealed that carbonyl functions were, indeed, present even in 

digested mildly oxidised rapeseed oil (see Figure 4). Incubation in the digestion model up to the 

stomach phase for extended periods of time did not lower the amount of oxo-groups in the samples. 

However, further incubation in the intestinal phase resulted in the marked reduction of carbonyl 

functions in the NMR spectra (we estimated that 80% of the signals were lost, see Fig. 4 II). There 

were also small changes in chemical shifts of the carbonyl signals, but this may be attributed to the 

different pH in the stomach phase and intestinal phase. Several control incubations were done along 

the samples and based on all the analyses, it appears that lipid aldehydes may be present and 

available for absorption in the intestinal phase of digestion. 

The lost core aldehydes in the UHPLC–ESI–MS analyses and reduced carbonyl signals in proton 

NMR experiments of digested oxidised oils indicate that protein-lipid and amino acid-lipid 

interactions were taking place. Schiff base and Michael addition products were expected and 

reference Schiff bases were synthesised from amino acids and small peptides. The purification of 

these adduct molecules was not completely achieved, but they served as reference for the screening 

of similar compounds in the digested chyme. However, specific Schiff bases were not detected by 

UHPLC–ESI–MS analyses. This raises the question of where the carbonyl signals were coming 

from in the proton NMR analyses, as no aldehydes were detectable by MS analyses. The simplest 

explanation for this may be that the huge amount of free amino groups present in the sample 
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mixtures resulted in a too wide distribution of aldehyde-adducts to have sufficient concentration for 

MS analyses. Other explanations may be that the digested chyme contained such short chain 

aldehydes that the UHPLC–ESI–MS analysis method was not able to detect them. 

 

Figure 4. The 1H NMR spectrum of mildly oxidised rapeseed oil containing small amounts of core aldehydes (I). The 
enlargement of the carbonyl signal region of several overlaid samples. The spectra in panel (II) were scaled and 
equalised by the chloroform peak to enable comparison. 
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6 SIGNIFICANCE OF THE STUDIES 

New analytical methods were created during these studies in order to investigate all lipid 

components present in the digested samples. The new methods enable the separation of all the 

major lipid classes and individual lipid molecules, including the oxidised lipids, of oils subjected to 

partial or full lipolysis. The increased analytical speed and sensitivity enable the lipidomic profiling 

of hundreds of samples in a relatively short time, thus enabling new kinds of experiments. 

Hundreds of compounds were identified and many quantified from the undigested and digested 

fresh and differently oxidised rapeseed oils, resulting in deeper knowledge regarding the oxidation 

and behaviour of oxidised lipids in the artificial digestion model. The results help in the evaluation 

of the safety of (oxidised) highly unsaturated oils. 

Significant findings were done on the efficacy or rather the lack of efficacy of various common 

antioxidants against lipid oxidation during digestion. The findings merit more detailed research on 

the benefits and possible negative aspects of antioxidant fortification in foods and supplementation. 

The results regarding core aldehydes were particularly interesting, as many carbonyl compounds are 

known to be toxic to humans. Mildly oxidised oils can significantly contribute to the oxidative 

burden of the digestive system, and potentially lead to health problems if consumed for extended 

periods of time. More detailed studies should be conducted on the effects of lipid based carbonyl 

compounds in human health. 
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