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ABSTRACT

T helper (Th) cells are vital regulators of the adaptive immune system. When 
activated by presentation of cognate antigen, Th cells demonstrate capacity to 
differentiate into functionally distinct effector cell subsets. The Th2 subset is 
required for protection against extracellular parasites, such as helminths, but 
is also closely linked to pathogenesis of asthma and allergies. The intracellular 
molecular signal transduction pathways regulating T helper cell subset 
differentiation are still incompletely known. Moreover, great majority of studies 
regarding Th2 differentiation have been conducted with mice models, while 
studies with human cells have been fewer in comparison. The goal of this thesis 
was to characterize molecular mechanisms promoting the development of Th2 
phenotype, focusing specifically on human umbilical cord blood T cells as an 
experimental model. These primary cells, activated and differentiated to Th2 
cells in vitro, were investigated by complementary system-wide approaches, 
targeting levels of mRNA, proteins, and lipid molecules. Specifically, the results 
indicated IL4-regulated recruitment of nuclear protein, and described novel 
components of the Th2-promoting STAT6 enhanceosome complex. Furthermore, 
the development of the activated effector cell phenotype was found to correlate 
with remodeling of the cellular lipidome. These findings will hopefully advance 
the understanding of human Th2 cell lineage commitment and development of 
Th2-associated disease states.

Keywords: T helper cell, Th2, allergy, interleukin 4, transcriptomics, proteomics, 
lipidomics, systems biology
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TIIVISTELMÄ

T-auttajasolut (Th) ovat elintärkeitä adaptiivisen immuunijärjestelmän 
säätelijöitä. Aktivoituessaan kohdattuaan tunnistamansa antigeenin, Th-
solut erilaistuvat toiminnallisesti eroaviksi effektorisoluiksi. Th2-tyypin solut 
puolustavat elimistöä solujen ulkopuolisia loismatoja vastaan, mutta ovat 
toisaalta yhteydessä myös astman ja allergian kehittymiseen. T-auttajasolujen 
erilaistumista säätelevät solunsisäiset molekulaariset viestintätiet tunnetaan 
yhä puutteellisesti. Lisäksi suurin osa Th2-solujen erilaistumisen tutkimuksesta 
on suoritettu hiirimallien avulla, ja ihmisen soluja on tutkittu verrattain vähän. 
Tämän väitöskirjatutkimuksen tavoitteena oli selvittää ihmisen Th2-solujen 
kehitystä edistäviä molekyylitason mekanismeja käyttäen tutkimusaineistona 
napanuoran verestä eristettyjä T-soluja. Näiden primaarisolujen in 
vitro -stimuloitua erilaistumista Th2-tyypin soluiksi tutkittiin toisiaan 
täydentävin systeeminlaajuisin menetelmin, jotka kohdistuivat lähetti-RNA-, 
proteiini-, ja lipidimolekyyleihin. Tuloksena havaittiin IL4:n säätelemiä 
muutoksia tumaproteiinien määrissä, sekä tunnistettiin uusia Th2-solujen 
erilaistumista edistävän STAT6-enhanseosomikompleksin osia. Lisäksi 
aktivoidun effektorisolun fenotyypin kehitykseen havaittiin liittyvän solun 
lipidikoostumuksen selektiivisiä muutoksia. Nämä tulokset toivottavasti 
edistävät ymmärrystä ihmisen Th2-solujen erilaistumisen ja Th2-soluvälitteisten 
sairauksien mekanismeista.

Avainsanat: T-auttajasolu, Th2, allergia, interleukiini 4, transkriptomiikka, 
proteomiikka, lipidomiikka, systeemibiologia
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1.	 INTRODUCTION

The immune system is formed by a complex hierarchy of cell types with 
specialized roles. Efficient functioning of such system requires tight regulation 
and communication between the constituent components. T helper (Th) cells, 
characterized by the expression of CD4 surface marker, form the topmost 
regulatory layer of the adaptive immune system. They activate and recruit 
downstream immune cells, such as macrophages, cytolytic (CD8+) T cells, and 
in particular “help” B cells to produce antibodies. 

T cells arise from the hematopoietic stem cells of the bone marrow, and mature 
in the thymus, hence the name T cells. Their most distinctive feature is the 
expression of the cell surface T cell receptor, responsible for antigen recognition. 
During their maturation, genes coding for T cell receptor undergo somatic 
recombination. As a result, the receptors expressed on T cells differ between 
T cell clones, and the spectrum of antigens specifically recognized by the T 
cell repertoire is practically unlimited. While there are approximately 2.5*108 
T cell clones in an individual, estimated theoretical diversity of T cell receptor 
structures is in the order of 1016 (Robins et al., 2009). Dysfunctional and self-
reactive T cell clones are cleared by consequent processes of positive and 
negative thymic selection, which in fact results in apoptotic elimination of vast 
majority of newly generated T cells (Scollay et al., 1980). Mature T cells leave 
thymus and circulate in the periphery, until encountering antigen-presenting 
cells in the lymphoid tissues. Presentation of cognate antigen activates the T cell, 
inducing clonal expansion and development to functionally active phenotype. 
The activated cells develop into alternative effector subsets, as instructed by 
signals from cells of the innate immunity. By subset differentiation, the T helper 
cell compartment can selectively launch different arms of the immune system 
that are best suited for overcoming the particular type of pathogen in question. 

The regulatory functions performed by T helper cells are vital. In untreated HI 
virus infection, depletion of the CD4+ T cell compartment leads to fatal debilitation 
of the adaptive immune system, while insufficiently regulated T helper cell 
activity is associated with various autoimmune diseases. In particular, strong 
evidence exists for involvement of cells of Th2 subset in atopy and allergies. 
Hence, elucidation of molecular mechanisms regulating the development of Th2 
cells would improve our understanding of the pathogenesis of these disorders. 
In the present work, system-wide approaches were applied to investigate 
transcriptomics, proteomics, and lipidomics aspects of Th2 cell differentiation. 
These studies focused specifically on primary human T cells to achieve results 
representative of normal human physiology.
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2.	 REVIEW OF THE LITERATURE

2.1.	 Characterization of functionally distinct T helper cell subsets 

By the mid 1970s, it had been demonstrated that antibody-mediated and 
delayed-type hypersensitivity responses were distinct and potentially regulated 
by different types of T cells (Liew and Parish, 1974). Subsequently, existence of T 
helper cell populations with different functional properties was reported in the 
late 1970s and early 1980s by several groups (Liew, 2002; Coffman, 2006). 

Terms Th1 and Th2 were first used by Tada et al. to divide T helper cells based on 
the capacity to trigger B cells only by cognate interaction (Th1) or in a polyclonal 
manner (Th2) (Tada et al., 1978). In 1986, by application of newly established 
molecular immunology methods, Mosmann et al. provided the first, authoritative 
characterization of two functionally distinct murine T helper cell clones, and 
adopted the nomenclature proposed by Tada et al. A key difference between 
the clones was characteristic cytokine secretion profiles, which supported the 
hypothesis that the interferon-γ (IFNγ)- and Interleukin-2 (IL2)-producing Th1 
cells activate cell-mediated immune responses and the IL4-producing Th2 cells 
activate humoral responses (Mosmann et al., 1986). Further experiments with T 
cell clones verified that Th1 and Th2 cells arose from a common precursor cell 
type, and that the differentiation was not predetermined by antigen specificity 
(Hsieh et al., 1992; Röcken et al., 1992b; Sad and Mosmann, 1994). The existence 
of corresponding human Th1 and Th2 lineages was confirmed relatively shortly 
after the original findings with mice (Wierenga et al., 1990; Del Prete et al., 1991; 
Parronchi et al., 1991; Romagnani, 1991; Lahesmaa et al., 1992).

The dichotomy of T helper cells to Th1 and Th2 populations remained as 
the universally accepted paradigm for nearly twenty years, although data 
from studies with some Th1-specific disease models, such as experimental 
autoimmune enchaphalomyelitis (EAE) and collagen-induced arthritis (CIA), 
were increasingly in conflict with the predictions from the Th1/Th2 hypothesis 
(Harrington et al., 2006; Steinman, 2007). These discrepancies were reconciled 
by discovery of IL23 (Oppmann et al., 2000) and subsequent characterization of 
a separate subset of IL-17 producing T helper cells (Cua et al., 2003; Murphy et 
al., 2003; Langrish et al., 2005; Park et al., 2005; Chen et al., 2006). For cells of this 
novel subset, term Th17 was coined (Harrington et al., 2005; McKenzie et al., 
2006). Furthermore, naïve T cells were found to be capable of developing into 
inducible regulatory T cells (iTreg) (Apostolou and Boehmer, 2004; Cobbold 
et al., 2004; Curotto de Lafaille et al., 2004). The functional properties of the 
iTreg cells resembled those of the so called natural regulatory cells (nTreg), but 
instead of thymus, their differentiation took place in the periphery as part of 
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activation of the adaptive immune response (Curotto de Lafaille and Lafaille, 
2009).

In the past few years, the repertoire of distinct T helper cell subsets has further 
expanded with the discovery of subsets of IL9-producing Th9 cells (Dardalhon 
et al., 2008; Veldhoen et al., 2008) and IL22-producing Th22 cells (Duhen et al., 
2009; Trifari et al., 2009), and description of follicular T helper cells (Tfh) as a 
lineage distinct from the Th1, Th2, and Th17 populations (Nurieva et al., 2008). 

With the description of the new CD4+ T cell populations, and concurrent 
improvement in understanding of underlying molecular mechanisms that 
regulate T cell diversity, the boundaries between the subsets have in many 
cases become less obvious. Subsets such as Th2 and Th9 have been shown to 
be related both in terms of immunological function and regulatory intracellular 
pathways utilized (Soroosh and Doherty, 2009; Staudt et al., 2010; Goswami and 
Kaplan, 2011; Goswami et al., 2012). In addition, while originally T helper cell 
differentiation was seen as strictly irreversible process (Murphy et al., 1996), 
this view has recently been challenged (Bluestone et al., 2009; Zhou et al., 2009; 
Murphy and Stockinger, 2010). In particular, the subset identities of Th17 and 
Th1 cells in vivo have turned out to be remarkably interchangeable (Hirota et 
al., 2011). All things considered, despite more than 20 years of investigation, 
the full extent of human T helper cell subset diversity, as well as the regulatory 
signaling pathways, remain incompletely known.

2.2.	 Immunological roles of T helper subsets

Responding to signals from the immune immunity, the differentiated T helper 
cell subsets perform highly specialized functions in the immune system, acting 
primarily through secretion of cytokines characteristic to each subset. Th1 cells 
activate cell-mediated immune responses against intracellular viruses and bacteria 
(Buchmeier and Schreiber, 1985; Kobayashi et al., 1997; Sareneva et al., 1998; Fujioka 
et al., 1999; Mastroeni et al., 1999; Tanaka-Kataoka et al., 1999), protozoal parasites 
(Sadick et al., 1987), and tumors (Micallef et al., 1997), while Th17 activity targets 
extracellular bacteria and fungi (Chung et al., 2003; Huang et al., 2004; Happel et 
al., 2005; LeibundGut-Landmann et al., 2007). Th2 cells respond primarily against 
extracellular parasites, such as helminths (Sher and Coffman, 1992). The recently 
discovered Th9 subset has also been accredited with this function (Richard et al., 
2000; Khan et al., 2003; Forbes et al., 2008; Annunziato and Romagnani, 2009). 
Th22 cells express skin-homing chemokine receptors CCR4 and CCR10 and their 
function might involve immunosurveillance of the skin (Duhen et al., 2009; Trifari 
et al., 2009). Tfh cells are found in germinal centers of secondary lymphoid tissues, 
associated with B cells and regulating their proliferation and immunoglobulin 
class switching (Vinuesa et al., 2005; Fazilleau et al., 2009; King and Mohrs, 2009). 
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iTreg cells, together with the thymus-generated nTreg cells, regulate homeostasis 
of lymphocyte populations, promoting immune tolerance and preventing 
autoimmunity (Wohlfert and Belkaid, 2008).

Deviations in polarization of T helper cell response are correlated with various 
disease states. Such associations have been highlighted by numerous studies 
with mice strains deficient for key factors regulating T helper cell development. 
Depending on the specific effect of the perturbations on the balance of T helper cell 
subsets, such phenotypes may either be predisposing or protective to a particular 
disease. Th1 immunity plays a role in type-1 diabetes (Wang et al., 1997; Pakala 
et al., 1999), rheumatoid arthritis (RA) (Leung et al., 2000; Yamada et al., 2008), 
inflammatory bowel disease (IBD) (Davidson et al., 1996; Parronchi et al., 1997), 
and graft-versus-host disease (Hu et al., 1999), whereas defects in Th1 signaling 
pathways lead to susceptibility to Salmonella typhirium and mycobacterial infection, 
including Mycobacterium tuberculosis (Filipe-Santos et al., 2006). In line with its 
relation to Th1 phenotype, the Th17 subset is also involved in RA and IBD (Bush 
et al., 2002; Nakae et al., 2003; Yen et al., 2006; Nistala et al., 2010; van Hamburg 
et al., 2011). Even more significant is the role of Th17 cells in the pathogenesis of 
multiple sclerosis, and the corresponding mouse model EAE (Hofstetter et al., 2005; 
Langrish et al., 2005; Komiyama et al., 2006). Tfh cells have also been implicated 
in autoimmunity, in particular systemic lupus erythematosus (Simpson et al., 
2010) and autoimmune thyroid disease (Zhu et al., 2012). Th2 responses, when 
uncontrolled and persistent, can lead to chronic inflammatory airway diseases, 
namely allergy and atopic asthma (Durham et al., 1992; Robinson et al., 1992; 
Yssel et al., 1992; Ebner et al., 1993). In contrast, mice deficient for Th2 cells are 
protected from airway hyperreactivity but prone to disorders involving Th1 and 
Th17 subsets (Akimoto et al., 1998; Kuperman et al., 1998; Chitnis et al., 2001). In 
addition to Th2, Th9 cells have been shown to contribute to atopy and allergic 
inflammation (Shimbara et al., 2000; Erpenbeck et al., 2003; Soroosh and Doherty, 
2009; Bullens et al., 2011; Kearley et al., 2011; Yao et al., 2011). Elevated levels of 
IL22 and Th22 cells have been detected in patients with psoriasis, ankylosing 
spondylitis and RA (Lo et al., 2010; Zhang et al., 2012). Development of naïve 
T cells to Treg fate is induced in cancer tissues as means of inhibiting activity 
of tumor-targeting effector response (Liu et al., 2007). On the other hand, lack 
of regulatory T cell function is observed in patients with immunodysregulation 
polyendocrinopathy enteropathy X-linked syndrome (IPEX) (Wildin et al., 2001). 
Detailed understanding of how CD4+ T cell responses are regulated could thus 
offer numerous therapeutic and diagnostic possibilities.

2.3.	 Common features in T helper cell lineage commitment

The current paradigm views T helper cell lineages as alternative developmental 
programs, any of which the uncommitted precursor cell can undergo in response 
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to specific external stimuli. Although all T helper cell lineages represent separate 
directions of effector cell differentiation with considerably complex individual 
characteristics, there are several common unifying themes, which can at least 
provide a useful conceptual simplification. These features are presented in 
table 1 and discussed below in detail. Essentially, T helper cell lineages are 
populations with characteristic cytokine production, distinctive gene expression 
profile regulated by a lineage-specific transcription factor, and to a lesser extent, 
express lineage-specific cytokine and chemokine receptor phenotype (Bluestone 
et al., 2009; Guo et al., 2009; O’Shea and Paul, 2010). Whether all of the newly 
discovered subsets (Th9, Th22, Tfh) truly fulfill these criteria remains to be 
confirmed (Zhu and Paul, 2010).

2.3.1.	Cytokines

The defining property of T helper cells subsets is the unique profile of secreted 
cytokines. Th1 cells produce mainly IFNγ, while the hallmark Th2 cytokines are 
IL4, IL5, and IL13, and Th17 cells secrete IL17a and IL17f (Zhu and Paul, 2008; 
Annunziato and Romagnani, 2009; Zhu et al., 2010), and Th9 cells produce high 
levels of IL9 (Dardalhon et al., 2008; Veldhoen et al., 2008). The main cytokines 
generated by Tfh and Th22 cells are IL21 and IL22, respectively, although both 
are produced also by Th17 cells (Nurieva et al., 2008; Duhen et al., 2009; Trifari 
et al., 2009; Zhu et al., 2010). iTreg produce TGFβ and in common with the Th9 
cells, also IL10 (Dardalhon et al., 2008; Veldhoen et al., 2008; Zhu and Paul, 2008; 
Annunziato and Romagnani, 2009). In addition to these subset-specific signature 
molecules, cytokines such as IL2 are produced in varying amounts by multiple 
subsets. 

Local cytokine milieu is the key regulatory component of T helper cell 
differentiation. Early on it was observed that the cytokines produced by the Th 
cells themselves promote the proliferation of the secreting subset in an autocrine 
and paracrine manner, while specifically restricting the proliferation of the 
opposing subset (Horowitz et al., 1986; Fernandez-Botran et al., 1988; Gajewski 
and Fitch, 1988; Fiorentino et al., 1989; 1991). Thus, the effector cytokines 
play dual roles, serving also as key regulators driving T helper cell lineage 
commitment. This concept of reciprocal regulation by opposing cytokines has 
in its part strengthened the notion of T helper cell subsets as mutually exclusive 
separate cell lineages.

Naïve Th cells differentiate to Th1 cells in response to IL12 and IFNγ whereas 
IL4 induces Th2 differentiation (Le Gros et al., 1990; Swain et al., 1990; Kühn 
et al., 1991; Hsieh et al., 1993; Kopf et al., 1993; Seder et al., 1993; Magram et 
al., 1996; Noben-Trauth et al., 1997; Wu et al., 1997; Lighvani et al., 2001). Both 
IFNγ and IL12 contribute to downregulation of Th2 subset (Manetti et al., 1993; 
Mountford et al., 1999). Differentiation of both Th1 and Th2 cells is inhibited by 
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TGFβ (Gorelik et al., 2000; 2002; Park et al., 2007). IL4 suppresses differentiation 
of Th1, Th17, and iTreg cells (Zhu et al., 2006; 2009), but in combination with 
TGFβ promotes Th9 differentiation (Dardalhon et al., 2008; Veldhoen et al., 
2008). Th17 differentiation can be induced in mouse with TGFβ and either IL6 
or IL21 (Bettelli et al., 2006; Mangan et al., 2006; Veldhoen et al., 2006; Korn et al., 
2007; Nurieva et al., 2007; Zhou et al., 2007), and in human with TGFβ, IL6, and 
IL1β (Manel et al., 2008; Tuomela et al., 2012). Th17 differentiation is suppressed 
by IL2 (Laurence et al., 2007). Human Th22 cells can be generated using IL6 and 
TNF (Duhen et al., 2009). Differentiation of iTreg cells requires TGFβ and IL2 
(Chen et al., 2003a; Burchill et al., 2007; Davidson et al., 2007; Yao et al., 2007; 
Burchill et al., 2008), and Tfh cells IL21 (Nurieva et al., 2007; Vogelzang et al., 
2008).

The mechanistic role of cytokines in lymphocyte differentiation was for long 
debated. Whether cytokine signals truly instructed the development of naïve cells 
to alternative fates or merely acted as selective signals, specifically permitting 
proliferation of pre-committed cells, was unclear (Farrar et al., 2002; Murphy 
and Reiner, 2002). However, recent reports have unambiguously shown that 
cytokines can indeed control developmental decisions in individual cells in an 
instructive manner (Rieger et al., 2009; Sarrazin et al., 2009).

2.3.2.	STAT pathways 

Ligation of cytokine receptors activate transcriptional factors of the Signal 
transducer and activator of transcription (STAT) family, composed of STAT1, 
STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6 (Stark and Darnell, 2012). 
Each IL activates specific STAT molecule, and to a certain extent these pathways 
are characteristic for the T helper cell subsets. In Th1 cells, IL12 and IFNγ activate 
STAT4 and STAT1, respectively (Greenlund et al., 1994; Thierfelder et al., 1996; 
Kaplan et al., 1996b; Ramana et al., 2002). In Th2 cells, IL4 signaling is mediated 
by STAT6. STAT6 is required also for Th9 differentiation(Goswami et al., 2012). 
STAT3 is the major regulator in Th17 and Tfh cells and STAT5 in iTreg cells, 
although both of these STATs are also involved in differentiation of Th2 cells 
(Holland et al., 2007; Minegishi et al., 2007; Ma et al., 2008; Milner et al., 2008; 
Stritesky and Kaplan, 2011). In the case of the recently discovered Th22 subset, 
the relative contributions of the intracellular signaling pathways are still under 
investigation, but STAT1 and STAT3 are likely to play major roles (Heinrich et 
al., 1998; Annunziato and Romagnani, 2009; Stark and Darnell, 2012).

2.3.3.	Lineage-specific transcription factors

For each of the “classical” T helper cell subsets, i.e. Th1, Th2, and Th17 cells, 
but also for most of the more recently discovered subsets, lineage-specific 
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transcription factors have been identified, sometimes also referred to as master 
regulators. These factors are induced in response to the signals mediated by the 
STAT pathways, and in turn upregulate the production of the subset-specific 
cytokines. Thus, positive feedback loops are formed, resulting in reinforcement 
of subset identity. In Th1 differentiation, the transcription factor T-box 21 (T-bet) 
is highly expressed in response to IFNγ (Szabo et al., 2002). In Th2 cells, the 
counterpart regulator is GATA3 (Zhang et al., 1997; Zheng and Flavell, 1997). In 
Th17, Th9, and iTreg cells, the corresponding factors are RORC (Ivanov et al., 
2006), PU.1 (Chang et al., 2010), and FOXP3 (Sakaguchi et al., 2006), respectively. 
For Tfh cells, the critical transcription factor appears to be BCL6 (Nurieva et 
al., 2008; Vogelzang et al., 2008; Fazilleau et al., 2009). A master regulator for 
the Th22 program has not been characterized, although both RORC and AHR 
appear to be involved (Trifari et al., 2009). Importantly, the expression of these 
transcription factors appears to be mutually exclusive. This has been widely 
documented especially in the case of T-bet and GATA3 (Zheng and Flavell, 1997; 
Ouyang et al., 2000).

2.3.4.	Epigenetic changes

In fully differentiated cell populations, the instructive cytokine signals are no 
longer required to maintain the subset identity. Instead, cells exhibit subset-
specific patterns of cytokine expression in response to re-stimulation by cognate 
antigen alone. According to current knowledge, this subset memory is largely 
based on epigenetic regulation of key cytokine loci, including both permissive 
and silencing modifications (Grogan et al., 2001) (Ansel et al., 2006; Lee et al., 
2006; Janson et al., 2009; Wilson et al., 2009). 

Table 1. Functional and regulatory characteristics of lineages derived from naïve 
CD4+ T cells.

Feature Th1 Th2 Th9 Th17 Th22 Tfh iTreg

Hallmark 
cytokine 
secretion

IFNγ IL4, IL5, 
IL13

IL9 IL17A, 
IL17F, 
IL21, IL22

IL22, 
TNFα

IL10,
IL21

TGFβ

Primary 
instructing 
cytokines

IL12, IFNγ IL4 IL4, TGFβ IL6, 
TGFβ, 
IL21

TNF, IL6 IL21 TGFβ, IL2

Main STAT 
mediator(s)

STAT1, 
STAT4

STAT6 STAT6 STAT3 unknown STAT3 STAT5

Master tran-
scription 
factor

T-bet GATA3 PU.1 RORC AHR? BCL6 FOXP3
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2.4.	 Cytokine-induced signaling pathways promoting the 
development of Th2 phenotype

The focus of this thesis was elucidation of intracellular molecular signal 
transduction mechanisms that lead to the development of Th2 phenotype. Since 
the original characterization of Th2 cells, a multitude of factors affecting Th2 
subset polarization has been described. These factors are organized into several, 
partly crosstalking pathways, the most important of which are discussed below 
and summarized in figure 1. This signaling network processes environmental 
information that is delivered primarily in the form of cytokines by the cells of 
the innate immunity, although the exact in vivo conditions that regulate Th2 
responses are still incompletely understood (Fowell, 2009). 
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Figure 1. A simplified model of signaling pathways promoting the development of 
Th2 cells. References: (1) (Zhu et al., 2002); (2) (Malek, 2008); (3) (Stritesky et al., 2011); 
(4) (Elo et al., 2010); (5) (Tripathi et al., 2011); (6) (Corn et al., 2005); (7) (Hutloff et al., 
1999); (8) (Jenner et al., 2009; Horiuchi et al., 2011; Wei et al., 2011); (9) (Verweij et al., 
1991); (10) (Watts, 2005); (11) (Nurieva et al., 2003); (12) (Amsen et al., 2004; 2007; Fang 
et al., 2007).

2.4.1.	IL4-STAT6 pathway

IL4 is considered as the hallmark Th2 cytokine. Naïve CD4+ T cells primed 
in presence of IL4 differentiate to cells of Th2 phenotype (Betz and Fox, 1990; 
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Le Gros et al., 1990; Swain et al., 1990; Hsieh et al., 1992; Seder et al., 1992). In 
IL4 knockout mice, production of Th2 cytokines IL-5, IL-9, and IL-10, as well 
as IgE, is diminished (Kühn et al., 1991; Kopf et al., 1993). IL4 signals through 
heterodimeric type I or type II receptors. The receptors found on naïve T cells 
and Th2 cells are of type I (Newcomb et al., 2011), and consist of IL4R-α and 
common γ chain subunits (Nelms et al., 1999). The IL4R-α subunit is common 
with the IL13 receptor (Lin et al., 1995; Zurawski et al., 1995; Hilton et al., 1996), 
while the γ chain is shared with the receptors for IL2 (Takeshita et al., 1992), 
IL7 (Noguchi et al., 1993; Kondo et al., 1994), IL9 (Russell et al., 1994), IL15 (Giri 
et al., 1994), and IL21 (Asao et al., 2001). The more recently discovered type II 
IL4 receptor is composed of IL4R-α and IL13R-α1 proteins (Murata et al., 1998), 
and its expression is confined mostly to non-hematopoietic cells. While the IL4 
receptor is expressed in naïve T cells, the expression of the IL4R-α subunit is 
rapidly upregulated in response to IL4 (Ohara and Paul, 1988; Dokter et al., 
1992).

IL4 signaling leading to Th2 polarization is mediated primarily by STAT6 
(Boothby et al., 1988; Kotanides and Reich, 1993; Hou et al., 1994). In STAT6 
deficient mice, Th2 development is impaired even more completely than in IL4 
knockout mice (Shimoda et al., 1996; Takeda et al., 1996; Kaplan et al., 1996a). 
In human Th2 cells, more than 80% of IL4 target genes are regulated by STAT6 
(Elo et al., 2010). Inactive, unphosphorylated STAT6 resides preferentially in the 
cytosol. Contrary to early notion of latent STAT6 existing only in monomeric 
form, it has since been shown, like other STAT proteins, to form dimeric or 
multimeric complexes referred to as statosomes (Haan et al., 2000; Ota et al., 
2004; Sehgal, 2008). Activated STAT6 dissociates from the IL4 receptor and 
translocates to the nucleus. Recent study has shown that also inactive STAT6 is 
continuously shuttled to the nucleus, but the activated form accumulates in the 
nucleus due to DNA binding and thus longer time of nuclear retention (Chen 
and Reich, 2010).

STAT6 is activated as a consequence of sequential phosphorylation events initiated 
by binding of IL4 to its receptor (Hebenstreit et al., 2006). IL4 interacts first with 
the IL4R-α, which then dimerizes with the γ chain (Mueller et al., 2002). Upon 
dimerization, conserved tyrosine residues Y575, Y603, and Y631 on cytoplasmic 
tail of the IL4R-α chain become phosphorylated by Janus Kinases (Jak) associated 
with the receptor (Pernis et al., 1995; Ryan et al., 1996; Wang et al., 1996). 
Mediated by an SH2 domain, inactive STAT6 docks with the phosphotyrosine 
residues on the receptor and subsequently becomes itself phosphorylated on 
tyrosine 641 by Jak3 or Jak1 (Witthuhn et al., 1994). Once phosphorylated, the 
Y641 residue interacts with the SH2 domain in a neighboring molecule, resulting 
in the formation of an activated STAT6 homodimer. Although phosphorylation 
of tyrosine residue 641 is the key determinant of STAT6 activity, a number of 
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other post-translational modifications have been characterized. Independent of 
Y641, also S756 is phosphorylated in IL4-responsive manner, however, this this 
phosphorylation is required neither to nuclear translocation nor DNA binding 
activity of STAT6 (Wang et al., 2004b). Recently, phosphorylation of S707 by 
JNK has been to shown to negatively regulate STAT6 function by inhibiting its 
binding to DNA (Shirakawa et al., 2011). Instead of IL4, this phosphorylation 
is induced by stress response or IL1β. In addition to phosphorylation, 
STAT6 is subject to methylation on R27 (Chen et al., 2004). Both IL4 induced 
phosphorylation and nuclear translocation of STAT6 seem to be dependent on 
this modification, although contradictory evidence exists (Chen and Reich, 2010). 
Moreover, inducible lysine acetylation of STAT6 might, at least in some cases, be 
required for its transcriptional regulatory activity (McDonald and Reich, 1999; 
Shankaranarayanan et al., 2001; Wieczorek et al., 2012).

In the nucleus, STAT6 regulates expression of a pattern of genes by binding 
directly to their regulatory elements, promoting local chromatin modification, 
or by suppressing activity of transcription factors of opposing function (Ohmori 
and Hamilton, 2000). The target genes of STAT6 in Th2 cells have been identified 
with DNA microarrays (Chen et al., 2003b; Lund et al., 2007), and recently 
by more direct approaches based on chromatin immunoprecipitation and 
sequencing (ChIP-Seq) (Elo et al., 2010; Wei et al., 2010). The canonical STAT6 
consensus binding sequence is 5´-TTCN(3-4)GAA-3´ (Schindler et al., 1995). In 
the human STAT6 target genes, the consensus sequence was found in 73% of the 
cases (Elo et al., 2010). While this implies that STAT6 can directly bind many of its 
target genes, efficient transcriptional induction by STAT6 requires recruitment 
of coactivator proteins resulting in formation of STAT6 enhanceosome complex 
(Goenka and Kaplan, 2011). Best-characterized components of the complex 
include SND1 (Yang et al., 2002), CREBBP (Gingras et al., 1999; McDonald and 
Reich, 1999), and RHA (Välineva et al., 2006). These coactivators bridge STAT6 
with the basal transcriptional machinery, and recruit histone deacetylase activity 
to the target loci. Importantly, co-operation with inducible or cell-type specific 
factors can provide context-dependent regulation and fine-tuning to IL4-STAT6 
signaling. A recent comparison of STAT6 targets identified by ChIP-Seq in B 
cells, Th2 cells, and epithelial cells has demonstrated that these targets often are 
indeed cell-type specific (Kanai et al., 2011).

In the context of T helper cell lineage commitment, arguably the most important 
of the STAT6 target genes is GATA3, the Th2 master transcription factor (Zhang 
et al., 1997; Zheng and Flavell, 1997; Ouyang et al., 1998). The induction of GATA3 
expression is achieved by STAT6 mediated displacement of repressive polycomb 
protein complex (Onodera et al., 2010). Transcription factor IRF4 contributes to 
GATA3 induction, and is necessary for Th2 differentiation (Lohoff et al., 2002; 
Rengarajan et al., 2002). GATA3 itself is required for T cell maturation, and its 
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deletion causes to embryonic lethality (Ting et al., 1996). Consequently, direct 
genetic evidence for its significance for Th2 differentiation has been difficult 
to obtain. However, evidence from studies with conditional knockout models 
demonstrates that disruption of GATA3 inhibits development of Th2 responses, 
measured as diminished production of Th2 cytokines IL4, IL5, IL10, and IL13 
(Pai et al., 2004; Zhu et al., 2004). Accordingly, in patients with haploinsufficiency 
of GATA3, Th2 differentiation is reduced (Skapenko et al., 2004).

GATA3 has been shown to bind directly to promoter regions of both IL5 and 
IL13, but, somewhat surprisingly, not to IL4 (Siegel et al., 1995; Zhang et al., 
1998; Kishikawa et al., 2001; Lavenu-Bombled et al., 2002; Yamashita et al., 
2002; Klein-Hessling et al., 2003). While regulation of the IL4 locus involves 
GATA3 (Tanaka et al., 2011), also contributions by other proteins, including 
STAT6 and the Th2-specific transcription factor c-MAF, seem to be required 
(Kim et al., 1999; Lee and Rao, 2004). The collaboration of GATA3 and STAT6 
has been further confirmed by systematic study of GATA3 targets with 
constitutively active or absent STAT6 (Horiuchi et al., 2011). Genome-wide 
analyses of GATA3 targets have illustrated that while approximately 100 genes 
are bound by GATA3 in cells of all Th subsets, the number of subset-specific 
targets is more than 10-fold higher in the case of Th2 cells, highlighting the 
importance of accessory factors and epigenetic mechanisms (Horiuchi et al., 
2011; Wei et al., 2011).

In addition to regulating the expression of Th2-specific genes, GATA3 actively 
suppresses the differentiation of Th1 cells, and in absence of GATA3, T cells 
can develop into Th1 phenotype even in absence of IL12 or IFNγ (Zhu et al., 
2004). Interestingly, some of the GATA3 target genes are in common with T-bet 
(Jenner et al., 2009). This suggests that these factors have opposing influence on 
a common set of genes that ultimately determine the direction of effector subset 
differentiation.

The STAT6-mediated upregulation of GATA3 and the regulatory effects of these 
factors on their downstream targets represent a straightforward instructive 
pathway promoting differentiation to Th2 phenotype. In addition, The IL4-
STAT6 signaling pathway positively influences cellular viability and proliferation 
(Ben-Sasson et al., 2000; Zhu et al., 2001). These effects are mediated by growth 
factor independent-1 (GFI1), expression of which is up-regulated in response 
to IL4 in activated T-cells (Zhu et al., 2002). GFI1 prevents apoptosis and 
promotes proliferation of cells that express high levels of GATA3. Altogether, 
the IL4-STAT6 pathway can be seen as serving complementary dual roles by 
providing instructive signals to trigger the Th2 transcriptional program, as well 
as selectively promoting the proliferation of cells already committed to the Th2 
lineage.
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2.4.2.	STAT5 and STAT3 pathways

Since the discovery of IL4 as the hallmark cytokine of the Th2 subset, the 
source of early IL4 as the initial promoter of Th2 differentiation has remained 
controversial. Moreover, development of Th2 cells was reported to take place 
also in absence of both IL4 and STAT6, albeit in most studies at a decreased 
frequency (Noben-Trauth et al., 1997; Finkelman et al., 2000; Jankovic et al., 2000; 
van Panhuys et al., 2008). Thus, from early on it was likely that complementary 
or compensatory pathways independent of IL4 existed.

In vitro differentiation of mouse Th2 cells, even in presence of IL4, requires 
IL2 (Le Gros et al., 1990). The receptor for IL2 (composed of IL2Rα, IL2Rβ, and 
γc subunits) is not present on naïve T cells, but its expression is induced by 
TCR and costimulatory signaling pathways, namely NFκB, NFAT, AP-1, and 
CREB/ATF (Kim et al., 2006; Malek, 2008). IL2 signals through STAT5 with 
mechanism analogous to that employed in IL4-STAT6 signaling. Ligation of IL2 
with its receptor leads to JAK1/JAK3-mediated phosphorylation of cytoplasmic 
receptor tails and STAT5, which subsequently translocates to nucleus to exert its 
regulatory activity. Simultaneously, MAPK and PI3K pathways are activated by 
recruitment of adaptor protein SHC (Nelson and Willerford, 1998; Gaffen, 2001).

While IL2 is a general growth factor for T cells, its functions in Th2 differentiation 
extend beyond promotion of proliferation and survival. The proliferative effects 
of IL2 are mediated by the MAPK and PI3K pathways (Nelson and Willerford, 
1998; Gaffen, 2001), but the Th2-specific regulatory effect is promoted specifically 
by STAT5, as constitutively active STAT5 can induce Th2 differentiation in 
absence of IL2 or without induction of GATA3 expression (Cote-Sierra et al., 
2004). However, disruption of GATA3 abrogates this effect, suggesting that 
both transcription factors are needed for Th2 development (Zhu et al., 2004). 
The mechanisms by which STAT5 promotes differentiation of Th2 cells include 
maintenance of GATA3 expression (Guo et al., 2009), up-regulation of IL4Rα 
expression (Liao et al., 2008), and in particular, direct binding to the HS2 
enhancer region of the IL4 gene, facilitating its expression (Zhu et al., 2003; 
Cote-Sierra et al., 2004). Notably, in addition to IL2, STAT5 can be activated 
by IL7 and thymic stromal lymphopoietin (TSLP). Of these, TLSP is readily 
produced e.g. during allergic reactions by cells of the innate immunity, making 
this cytokine a potentially significant in vivo regulator of Th2 responses (Paul 
and Zhu, 2010).

Ligation of IL2 to its receptor can also activate STAT3, although to a lesser extent 
than STAT5 (Malek, 2008). While its activity is typically associated with the Th17 
and Tfh subsets, STAT3 is phosphorylated also during Th2 differentiation with a 
mechanism involving combination of signals from IL2, IL6, and IL21 (Stritesky 
et al., 2011). 
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Conditional deletion of STAT3 decreased the expression of GATA3, MAF, and 
BATF, reduced the production of Th2 cytokines, and inhibited the development 
of allergic inflammation (Stritesky et al., 2011). Regulation of MAF and BATF 
expression has been demonstrated to result from direct binding of STAT3 to the 
corresponding gene loci (Yang et al., 2005; Durant et al., 2010). Using ChIP assay, 
STAT3 was shown to bind multiple Th2-specific loci and through permissive 
chromatin remodeling facilitate subsequent binding by STAT6, thus promoting 
STAT6-mediated Th2 differentiation (Stritesky et al., 2011). Furthermore, IL6 
signaling through STAT3 induces expression of SOCS1 and NFATc1, factors 
associated with inhibition of Th1 responses and induction of IL4 production 
(Diehl et al., 2000; Diehl and Rincón, 2002).

2.5.	 Th2-promoting pathways engaged by T cell activation 

T cells are activated in response to recognition of cognate antigen peptide-MHC 
complex and co-stimulatory ligands on the surface of an antigen-presenting 
cell. The activation through T cell receptor (TCR) is prerequisite for effector cell 
development and differentiation to Th2 subset (Swain et al., 1988; Röcken et al., 
1992a). The nature of antigen itself does not restrict the direction of T helper 
cell differentiation, as cells from T cell clones have been shown to be capable 
of committing to either Th1 or Th2 lineage (Hsieh et al., 1992; Röcken et al., 
1992b; Sad and Mosmann, 1994). Instead, the influence of nature of antigen on 
T cell subset differentiation is typically mediated by the antigen-presenting cell 
(Kaiko et al., 2008). In contrast, the direct effect of TCR stimulation strength on 
T helper cell lineage commitment has been recognized for long (Constant et 
al., 1995; Hosken et al., 1995; Tao et al., 1997). As a generalization, strong TCR 
signals, associated with high affinity and dose of antigen, lead to generation 
of Th1 response, while weaker signals favor Th2 differentiation (Constant and 
Bottomly, 1997; Leitenberg and Bottomly, 1999). However, the specific evidence 
from various experimental models based on different antigen peptides has 
proven difficult to reconcile, and in part has seemed all but contradictory. 
These observed discrepancies have been proposed to be related to different 
absolute ranges of stimulatory signals used, in vivo differentiation follow a 
bi-phasic distribution where both low and very high antigen dosages promote 
Th2 differentiation and intermediate dosage Th1 differentiation (Nakayama 
and Yamashita, 2010). The preferential in vivo Th2 differentiation in very high 
antigen concentrations might be explained by repeated stimulation of naïve T 
cells by APCs, leading to enhanced production of IL4 correlating with accelerated 
differentiation and proliferation of developing Th2 cells. Such positive feedback 
effect would not be seen on Th1 cells, as early Th1 differentiation is dependent 
of exogenous source of IL12 (Magram et al., 1996). A wealth of experimental 
evidence describes mechanisms by which specific nodes of T cell activation and 
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co-stimulation networks can contribute to the determination of T helper cell 
fate.

2.5.1.	T cell receptor signaling

Proper T cell function requires infallible discrimination between non-self and self 
peptides, reacting strongly to rare pathogenic antigens present among highly 
abundant innocuous peptides. Due to this requirement of exceptional specificity 
and sensitivity, strength of TCR signaling cannot rely on traditional mass action 
dynamics alone, where rate of reaction is in linear correlation with concentration 
of substrate molecules. Instead, intricate mechanisms that control the triggering 
of T cell activation have evolved (Davis et al., 2007; Morris and Allen, 2012). 
A key discriminatory feature is the difference in duration of occupancy of the 
receptor by the peptide, referred to as the dwell time. For self peptides, this time 
is typically only 0.1-2 seconds, while antigenic peptides contact the TCR for 2-10 
seconds (Davis et al., 1998; Baker and Wiley, 2001; Gascoigne et al., 2001). A 
related regulatory mechanism is employed on the level of lateral organization 
of TCRs. The TCRs are distributed as both monovalent receptors as well as 
multivalent nanocluster complexes consisting from two to over 20 individual 
TCRs (Schamel et al., 2005). Importantly, mono- and multivalent TCRs have 
been shown respond differently to varying doses of antigen, full activation 
requiring binding to multiple juxtaposed receptors (Minguet et al., 2007; Kumar 
et al., 2011; Blanco and Alarcón, 2012). The organization of TCRs parallels with 
distinct plasma membrane organization in the immediate surroundings of the 
TCRs, referred to as lipid microdomains or lipid rafts (Harder and Engelhardt, 
2004; Choudhuri and Dustin, 2010). The nature and biological importance of 
lipid rafts has been for long disputed. However, recent direct analyses have 
corroborated the existence of distinct lipid environment surrounding the TCR 
(Brügger et al., 2006; Zech et al., 2009; Saito et al., 2010).

The human T cell receptor complex consists of variable α and β chains 
associated with three pairs of CD3 molecules (γ-ε, δ-ε, and ζ-ζ), required for 
signal transduction to the cytoplasm (Moss et al., 1992). Ligation of cognate 
antigen-MHC complex to the α/β subunits of the TCR initiates a cascade of 
phosphorylation events, commonly referred to as the proximal TCR signaling 
network, or signalosome. The signals from this module further diversify 
into several distinct pathways, broadly categorized as calcium-mediated and 
GTPase-Ras-mitogen-activated protein kinase (MAPK) signaling pathways 
(Acuto et al., 2008; Smith-Garvin et al., 2009; Morris and Allen, 2012). However, 
the exact mechanisms by which the conformational change induced by antigen 
binding is translated as the biochemical change on the cytoplasmic side of the 
receptor are still debated (Smith-Garvin et al., 2009; Gascoigne et al., 2011; van 
der Merwe and Dushek, 2011). 
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In addition to the TCR/CD3 complex itself, the essential components of the 
proximal TCR signalosome are LCK, ZAP70, and LAT. LCK is a SRC-family 
protein tyrosine kinase, which in response to antigen binding, phosphorylates 
immunoreceptor tyrosine-based activation motifs (ITAMs) on the cytoplasmic 
tails of the CD3 molecules. Another protein tyrosine kinase, ZAP70, then binds to 
the phosphorylated ITAM tyrosine residues by dual SH2 motifs. This interaction 
alters the conformation of ZAP70, leading to its phosphorylation by LCK and 
ZAP70 itself. Once activated by phosphorylation, ZAP70 phosphorylates LAT, 
a scaffold protein required for activation of downstream calcium- and MAPK-
mediated pathways (Smith-Garvin et al., 2009).

Each of the components of the proximal TCR signaling network, when 
experimentally perturbed, can influence the outcome of Th differentiation. 
Mice expressing dominant negative LCK have impaired Th2 but normal Th1 
responses (Yamashita et al., 1998). In contrast, inhibition of ZAP70 activity 
favors Th2 development(Tanaka et al., 2003). In mice defective for LAT function, 
abnormally dominant Th2 responses develop. However, the maturation of T 
cells is significantly impaired in these mice (Aguado et al., 2002; Sommers et al., 
2002). Thus, whether the observed effect on Th2 development is attributed to the 
strength of TCR signaling or to altered T cell homeostasis due to lymphopenic 
environment, has been questioned (Nakayama and Yamashita, 2010).

Downstream of LAT, the activity of the calcium mediated signaling is directly 
involved in development of Th2 effector cells. Induction of calcium release 
from the endoplasmic reticulum is dependent on the recruitment of the Tec 
family kinase ITK to the LAT complex. Deletion of ITK, in certain experimental 
models, leads to impairment of Th2 responses (Fowell et al., 1999). Release of 
calcium ions from intracellular stores triggers activation of numerous factors 
including the phosphatase calcineurin (CN) (Savignac et al., 2007). Inhibition 
of CN activity impairs Th2 responses more profoundly than Th1 (Yamashita et 
al., 2000). Consistently, CN-activated transcription factors of the NFAT family 
regulate directly both GATA3 and IL4(Agarwal et al., 2000; Rengarajan et al., 
2002; Scheinman and Avni, 2009).

Of the MAPK pathways activated in response to TCR stimulation, ERK is required 
for Th2 differentiation, promoting stability of GATA3 through inhibition of 
proteosomal degradation (Yamashita et al., 1999; 2005). ERK has also been shown 
to regulate expression of IL4 by direct binding to the IL4 promoter (Tripathi et al., 
2011). On the other hand, high ERK activity resulting from strong TCR stimulation 
was reported to lead to reduced Th2 differentiation and IL4 production. In this 
case, the effect on IL4 expression was based on selective modification of AP1 
complex, and was negated by ERK inhibitors (Jorritsma et al., 2003). These 
findings might be explained by differential requirements for ERK in different 
phases of Th2 differentiation (Zhu et al., 2010). In addition to ERK, the p38 MAPK 
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pathway plays a role in Th2 signaling, phosphorylating GATA3 and promoting 
its localization to the nucleus (Maneechotesuwan et al., 2007).

In parallel with the MAPK pathways, PKCθ is activated, triggering the pleiotropic 
NFκB pathway (Barnes and Karin, 1997; Schulze-Luehrmann and Ghosh, 2006). 
Disruption of NFκB signaling has been demonstrated to inhibit the development 
of Th2-associated eosinophilia (Yang et al., 1998). NFκB promotes production of 
IL2 and regulates GATA3 (Verweij et al., 1991; Corn et al., 2005). Activation and 
nuclear translocation of NFκB is achieved by degradation of the inhibitory IκB 
factor. Multiple factors contribute to IκB degradation. Of these, SLAM, SAP, 
Bcl10, CARD11, and PKCθ itself have been shown to be required for proper Th2 
differentiation (Czar et al., 2001; Wu et al., 2001; Cannons et al., 2004; Marsland 
et al., 2004; Wang et al., 2004a; Medoff et al., 2006).

2.5.2.	CD4 signaling

The CD4 receptor is required for recognition of class II MHC molecule on the 
APC, and thus plays a crucial role in T cell activation. Interestingly, while the 
expression of CD4 in Th2 cells is only half of that in Th1 (Itoh et al., 2005), CD4 
is required for development of Th2 but not Th1 cells (Fowell et al., 1997). The 
dependence of Th2 differentiation on CD4 is explained by the association of LCK 
with the cytoplasmic part of the molecule, as Th2 differentiation is impaired by 
mutation of the LCK-interacting cytoplasmic tail even in presence of intact CD4 
ectodomain (Brown et al., 1997).

2.5.3.	CD28 signaling

Stimulation through TCR/CD3 alone leads to anergy. For proper activation, 
simultaneous signaling through co-stimulatory receptors is required, referred 
to as the two-signal model (Mueller et al., 1989; Schwartz, 1990; Shahinian et 
al., 1993). Like the MHCII complex, the ligands for the co-stimulatory receptors 
are expressed on the antigen-presenting cell surface. However, unlike antigen 
recognition by the TCR, the ligation of the co-stimulatory receptors is not 
clonotypic. Of the known co-stimulatory molecules, the ones important for 
Th2 cell development include CD28, CD4, OX40, ICOS, and Notch (Mowen 
and Glimcher, 2004; Amsen et al., 2009). CD28 signaling has been shown to be 
indispensable for Th2 differentiation, enhancing IL4-STAT6 signaling, activating 
NFκB and promoting expression of GATA3 (Verweij et al., 1991; Shahinian et al., 
1993; Rulifson et al., 1997; Kubo et al., 1999; Rodríguez-Palmero et al., 1999). The 
CD28 receptor is activated by ligands CD80 (B7-1) and CD86 (B7-2), inducibly 
expressed on the APCs (Hathcock et al., 1994). Rather than being a single linear 
signaling cascade, CD28 regulates a number of pathways controlling survival, 
metabolism, and transcription, significantly overlapping with targets of TCR 
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signaling (Riley et al., 2002; Acuto and Michel, 2003; Riha and Rudd, 2010). 
Notably, CD28 upregulates both glycolysis and glucose uptake required for 
intense proliferation undergone by the activated cells (Frauwirth et al., 2002).

2.5.4.	OX40 (CD134) signaling

The co-stimulatory OX40 is not present in naïve T cells, but transiently expressed 
upon activation (Gramaglia et al., 1998). Ligation of OX40 with OX40L (CD252) 
has effects complementary to CD28, promoting cell survival, proliferation, and 
cytokine secretion (Redmond et al., 2009). OX40 has been shown to selectively 
augment the IL4-induced differentiation of Th2 cells(Flynn et al., 1998; Ohshima 
et al., 1998). However, OX40L-/- dendritic cells fail to induce neither proper Th2 
nor Th1 responses (Chen et al., 1999). Thus, while OX40 seems to be required 
for Th2 development, its exact function is still unclear. Rather than being a 
straightforward polarizing signal OX40, among other co-stimulatory pathways, 
has been proposed to mediate the effect of antigen dose and affinity, regulating 
overall magnitude of Th response (Rogers and Croft, 2000; Jenkins et al., 2007; 
Redmond et al., 2009). 

2.5.5.	ICOS (CD278) signaling

Expression of the ICOS receptor is induced by CD28 stimulation, with expression 
levels higher in Th2 than Th1 cells (Hutloff et al., 1999; Coyle et al., 2000). The 
ICOS ligand B7RP-1, is constitutively expressed by APCs. ICOS regulates 
expression of Th2-promoting transcription factor c-Maf, and increases early IL4 
production, through NFAT (Nurieva et al., 2003). However, ICOS has functions 
also in Th1 subset and augments secretion of cytokines of both Th1 and Th2 
subsets (Hutloff et al., 1999; Wilson et al., 2006). Instead of instructive regulation 
of Th differentiation, the primary role of ICOS might be related to enhancing 
the size of lymphocyte populations in the lymph node and promoting survival 
of the effector cell populations. The need for such positive signals would be 
more required in cases of weak TCR stimuli typically associated with Th2-type 
responses (Loke et al., 2005; Burmeister et al., 2008; Tesciuba et al., 2008).

2.5.6.	Notch signaling

Evolutionarily conserved Notch receptors regulate cell fate decisions during 
embryonic and hematopoietic development (Maillard et al., 2003; Stanley and 
Guidos, 2009). Accumulating evidence implicates them also in T helper cell subset 
differentiation. Of the four mammalian Notch receptors, naïve T cells express 
Notch1 and Notch2, and expression of Notch3 is induced by activation (Adler et 
al., 2003; Amsen et al., 2004). The Notch ligands are encoded by two gene families, 
Jagged and Delta. The ligation of Jagged or Delta to the Notch receptor induces 
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proteolytic cleavage and nuclear translocation of the Notch intracellular domain 
(NICD). In the nucleus, NICD interacts with the repressory DNA-bound RBPJ 
complex leading to recruitment of coactivator Mastermind/Lag-3 and MED8 
complex and induction of gene expression (Kopan and Ilagan, 2009).

Although according to current knowledge Delta and Jagged ligands activate 
similar intracellular signaling pathways, when expressed on surface of APCs 
they seem to promote development of opposing T helper cell subsets, Delta 
instructing differentiation to Th1 and Jagged instructing differentiation to Th2 
subset (Amsen et al., 2004). Notch1, Notch2, and RBPJ has all been shown to be 
required for proper in vivo Th2 development (Amsen et al., 2007). The notch-
mediated Th2 differentiation involves direct regulation of both IL4 and GATA3 
loci (Amsen et al., 2004; 2007; Fang et al., 2007). Interestingly, the binding pattern 
to GATA3 resembles that of TCR-induced NFAT1 (Scheinman and Avni, 2009). 
These regulatory effects are dependent on RBPJ pathway but independent of 
STAT6, as demonstrated by gene deletion experiments (Amsen et al., 2004). Thus, 
acting upstream of both IL4 and STAT6, the Notch-mediated up-regulation of 
GATA3 has been proposed as an alternative initiation mechanism for Th2 lineage 
commitment (Amsen et al., 2009). However, the full importance of this pathway 
for in vivo Th2 differentiation is still under debate (Zhu and Paul, 2008).

2.6.	 T helper cell differentiation from a systems biology point of view 

Large majority of the original fundamental studies of T helper cell differentiation 
were conducted using models such as knock-out mice, in which genes of interest 
were investigated in isolation in a dualistic setting. The findings from these studies 
have provided the groundwork for the current model of T helper cell lineage 
commitment. Nevertheless, with recent reports suggesting newfound diversity 
and plasticity among the T helper cell populations, increasing appreciation of 
the importance of quantitative effects on multiple levels in regulation of T helper 
cell lineage commitment has emerged.

The original model of Th cell differentiation where one cytokine induces 
development of particular subset, activating a master transcription factor 
through a specific JAK-STAT pathway, is proving inadequate. This view has been 
challenged with the discovery of the novel Th subsets together with improved 
understanding of the molecular underpinnings of pathways regulating Th1 
and Th2 differentiation. Nowadays it is evident that many of the cytokines are 
involved in development of multiple Th cell fates, and for each T helper subset 
more than one cytokine seem to be required (Zhu and Paul, 2010). In general, 
the same observation applies for JAK-STAT pathways. For example, while Th2 
differentiation has been for long held as a process directed uniquely by STAT6, 
it is now turning out that in fact, STAT6, STAT5, and STAT3 are all involved. 
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Similarly, both STAT1 and STAT4 are required for Th1 differentiation (Stritesky 
and Kaplan, 2011). Thus, to accurately describe transcriptional regulation in Th 
cells, the combinatorial effects of distinct STAT pathways should be considered. 

In particular, the understanding of function of lineage-specific master regulator 
transcription factors is becoming more refined. The original monolithic view has 
gradually shifted towards one emphasizing network-like regulation, where even 
the master regulators are, to a certain extent, dispensable (O’Shea and Paul, 2010; 
O’Garra et al., 2011). For example, constitutionally active STAT5 can compensate 
for low level of GATA3 (Zhu et al., 2004), and IFNγ production requires presence 
of only either T-bet or STAT4 (Lighvani et al., 2001; Thieu et al., 2008). To truly 
understand how Th subsets arise in vivo, transcription factors should, instead of 
digital inputs, be considered as a regulatory network in which both quantitative 
and temporal information play important roles (O’Shea and Paul, 2010).

The importance of quantitative changes is especially pronounced in the 
context of T helper cell subset plasticity. In contrast with the original notion of 
irreversible T helper cell lineage commitment, Th subsets have been found, in 
some cases, to have the capacity interconvert (Sundrud et al., 2003; Hirota et al., 
2011). Consequently, the question has been raised to which extent the original 
Th clone phenotypes represent in vivo Th responses. It seems possible that 
Th differentiation proceeds through phases during which plasticity to change 
subset fate is gradually lost, and original Th clones correspond to terminally 
differentiated cells normally associated only with chronic inflammation 
(Bluestone et al., 2009; Murphy and Stockinger, 2010; O’Shea and Paul, 2010).

Altogether, while reductionistic models where individual factors are studied in 
isolation have provided us with valuable mechanistic insight on function of most 
of the molecules associated with the T helper cell signaling network, they might 
no longer always represent the optimal strategy for addressing questions about 
the in vivo human T cell function. Hence, it has been proposed that quantitative 
system-level measurement of immune responses might be required for further 
advancing our understanding of the immune system(O’Shea and Paul, 2010). A 
major challenge will be describing how the environmental cues are integrated 
on the level of crosstalking and partly redundant signaling pathways, and 
translated as cell fate decisions leading to the establishment of alternative cellular 
phenotypes that can be qualitatively categorized as distinct T helper cell subsets. 

2.7.	 System-wide studies on human Th2 differentiation

The development of high throughput analytical methods, such as microarrays 
(Hoheisel, 2006), deep sequencing (Wold and Myers, 2008; Metzker, 2010), and 
mass spectrometry (Aebersold and Mann, 2003), has for the first time allowed 
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to study the structure and function of whole biological systems, including 
genomes, cells, and even entire organs (Noble, 2002). In parallel, biology as 
a scientific discipline has evolved, increasingly assuming characteristics of 
informational science. The specific concept of systems biology has been coined to 
describe the attempt to characterize flow of information in biological networks, 
defined by Leroy Hood as “the study of all the elements in a biological system 
(all genes, mRNAs, proteins, and so on) and their relationships to one another 
in response to perturbations” (Hood, 2002). The promise of systems biology is 
in characterization of emergent properties of a system that cannot be discovered 
by study of behavior of individual components in isolation (Schlitt and Brazma, 
2005). Arguably, the outcome of T helper cell lineage commitment can be viewed 
as such property.

Systems biology approaches typically involve computational models which are 
based on integration of data acquired with system-wide experimental platforms 
targeting different levels of cellular organization (Germain et al., 2011). Such 
methods are often conceptually divided on basis of targeted analytes to 
categories including, but not limited to, genomics, transcriptomics, proteomics, 
and metabolomics (Figure 2).
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Figure 2. Levels of biological organization targeted by system-wide experiments. 
Adapted from Nielsen & Oliver (Nielsen and Oliver, 2005).

Some of the “-omics” approaches have been applied to study of T helper cell 
differentiation rather extensively, while others have received less attention, for 
technological limitations and otherwise. Studies in humans have been more 
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limited in number than those in mice. Some of the most important system-wide 
studies of development of human Th2 cells are listed in table 2 and discussed 
herein.

Table 2. Selected system-wide studies relevant to human Th2 development. 
Abbreviations: 2DE, two-dimensional gel electrophoresis; LC, liquid chromatography; 
MS, mass spectrometry (peptide mass fingerprinting); MS/MS, tandem mass spectrometry.

Reference Material
Cytokine 
stimuli Analytes Platform(s)

(Rogge et al., 2000) Cord blood IL4, IL12 mRNA Oligonucleotide 
array

(Hämäläinen et al., 2001) Cord blood IL4, IL12 mRNA Oligonucleotide 
array

(Nyman et al., 2001) Peripheral 
blood

- Total protein 2DE, MS

(Lund et al., 2003a) Cord blood IL4, IL12, 
TGFβ

mRNA Oligonucleotide 
array

(Rautajoki et al., 2004) Cord blood IL4, IL12 Total protein, 
mRNA

2DE, MS, 
oligonucleotide 
array

(Stentz and Kitabchi, 2004) Peripheral 
blood

- Total protein, 
mRNA

Oligonucleotide 
array, MS

(Kronfeld et al., 2005) Peripheral 
blood

- Total protein, 
phosphoprotein

2DE, MS/MS

(Nikula et al., 2005) Cord blood IL4, IL12, 
TGFβ

mRNA cDNA array

(Lund et al., 2007) Cord blood IL4, IL12, 
TGFβ

mRNA Oligonucleotide 
array

(Rautajoki et al., 2007) Cord blood IL4 Total protein 2DE, MS/MS
(Wang et al., 2008a) Peripheral 

blood
- mRNA Oligonucleotide 

array
(Wang et al., 2008b) Peripheral 

blood
- mRNA Oligonucleotide 

array
(Carrascal et al., 2008) Peripheral 

blood
- Phosphoprotein MS/MS

(Filén et al., 2009) Cord blood IL4, IL12 Microsomal 
protein

MS/MS

(Haudek et al., 2009) Peripheral 
blood

- Cytoplasmic 
protein

2DE, MS/MS

(Elo et al., 2010) Cord blood IL4 mRNA Oligonucleotide 
array

(Lichtenfels et al., 2012) Cord blood - Total protein 2DE, MS
(Orr et al., 2012) Peripheral 

blood
- Chromatin-

bound protein
MS/MS

(Ruperez et al., 2012) Peripheral 
blood

- Phosphoprotein MS/MS
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2.7.1.	Transcriptomics

Of all system-wide techniques, the ones targeting nucleic acids have matured 
most quickly (Lander, 1999). Together with the widely accepted view of T helper 
cell lineages fundamentally representing alternative transcriptional programs, 
the interest for applying array-based transcript profiling methods to investigate 
T helper cell differentiation has been high. In 2000, Rogge et al. reported the 
first systematic comparison of transcription kinetics in human Th1 and Th2 
cells, resulting in identification of more than 200 differentially expressed genes 
(Rogge et al., 2000). However, this as well as the other earliest studies, were 
conducted using arrays with limited scope of probe sequences (Hämäläinen 
et al., 2001; Lund et al., 2003a; Nikula et al., 2005). With subsequent advances 
in microarray technology, genome-wide studies of both activation (Stentz and 
Kitabchi, 2004; Wang et al., 2008a; 2008b) and Th2 differentiation (Lund et al., 
2007; Elo et al., 2010) of human primary cells have been published. Although 
the mRNA kinetics of human Th2 cells have been described in detail, additional 
insight on transcriptional regulation will be achieved through genome-wide 
studies of transcription factor binding (Jenner et al., 2009; Elo et al., 2010) and 
epigenetic regulatory mechanisms (Roh et al., 2006).

2.7.2.	Proteomics

Proteins represent the end products of gene expression and carry out innumerable 
enzymatic, regulatory, and structural functions. However, the abundance 
of proteins and corresponding mRNAs exhibit only modest correlation, and 
the former cannot be universally predicted from the latter (Gygi et al., 1999; 
Lundberg et al., 2010). With analogy to genomics and transcriptomics, proteomics 
is defined as the large scale investigation of proteins using biochemical methods 
(Wilkins et al., 1996; Pandey and Mann, 2000). In comparison to the study of 
DNA and RNA, several factors make proteomics inherently more challenging. 
Unlike the genome, the proteome is highly transient in nature. Average protein 
turn-over rate is approximately only 20 hours, varying from minutes to over 100 
hours (Ohsumi, 2006; Boisvert et al., 2012). In addition to temporal variation, 
proteomes are also highly specific to tissue and cell types (Geiger et al., 2012). 
Complexity of proteomes is exponentially increased by numerous possible post-
translational modifications (PTMs), including phosphorylation, methylation, 
acetylation and proteolytic cleavage. On average, each protein is subject to at least 
2.5 modifications, which can also be highly transient and context-dependent. 
The total extent and importance of PTMs might still be underestimated (Papin 
et al., 2005). Finally, whereas nucleic acids can be amplified by polymerase chain 
reaction, no such methods are available for proteins. 

Early proteomics studies relied on application of two-dimensional gel 
electrophoretic separation (2DE) and visualization of proteins to identify 
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relative differences in protein expression. The first such study in human T 
helper cells afforded identification of 91 proteins from activated cells by peptide 
mass fingerprinting (Nyman et al., 2001). Subsequent comparison of whole 
cell lysates from polarized Th1 and Th2 cultures resulted in detection of more 
than 70 differences, 14 of which were reproducible over the time points under 
examination (7 and 14 days). The observed differences were in partial agreement 
with the results of a transcriptomic analysis (Rautajoki et al., 2004). A related 
study targeting an earlier stage (24h) of IL4-induced Th2 differentiation provided 
a panel of 35 IL4-regulated proteins, as identified by a shotgun proteomics 
approach (Rautajoki et al., 2007). Not accounting for the role of IL4, proteomic 
changes in activated primary T cells induced by TCR(Stentz and Kitabchi, 2004) 
and CD28 signaling have been characterized (Kronfeld et al., 2005; Lichtenfels 
et al., 2012).

Variation in the levels of cellular protein abundance has been measured to 
reach seven orders of magnitude (Beck et al., 2011; Geiger et al., 2012). Mass 
spectrometry-based proteomics has only recently begun to even approach 
this dynamic range (Picotti et al., 2009). Moreover, the complete proteome has 
remained prohibitively complex for a single-step analysis. Hence, methods for 
targeting of spatially limited sub-proteomes, e.g. organelles, have been developed 
and utilized. In addition to the advantage of reduced sample complexity, such 
approaches can provide valuable information of protein localization, which 
cannot be extrapolated from results of transcriptomic analyses (Cox and Mann, 
2011). With human T cells, IL4 and IL12 associated changes were identified 
using the microsomal protein fraction (Filén et al., 2009). Outside the context 
of cytokine signaling, the cytoplasmic fraction of primary T cells (Haudek et 
al., 2009), as well as protein bound to chromatin or nuclear matrix, have been 
characterized (Orr et al., 2012). In addition, with the use of human Jurkat T cell 
leukemia model, studies of the nuclear (Hwang et al., 2006), mitochondrial 
(Rezaul et al., 2005), and lipid raft (Bini et al., 2003; Haller et al., 2003; Kobayashi 
et al., 2007; de Wet et al., 2011) protein fractions have been reported.

Of the post-translational protein modifications, reversible phosphorylation of 
serine, threonine, and tyrosine residues is particularly significant as a mechanism 
of signal transduction and modifier of biological activity. Consequently, effective 
methods for enrichment and analysis of phosphorylated proteins and peptides 
have been developed (Bodenmiller et al., 2007). In context of T cell biology, the 
cascade of phosphorylation events triggered by stimulation of T cell receptor 
and CD28 has received most attention. Majority of the studies have relied on the 
use of the Jurkat cell line (Brill et al., 2004; Cao et al., 2006; Kim and White, 2006; 
Matsumoto et al., 2009; Mayya et al., 2009; Nguyen et al., 2009; Brockmeyer et 
al., 2011), whereas primary cells have been analyzed in only few cases (Kronfeld 
et al., 2005; Carrascal et al., 2008; Ruperez et al., 2012). Notably, the effects of IL4 
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signaling have not been investigated with high-throughput phosphoproteomics. 
Together with mass spectrometry-based tools, recent advent of multiplexed 
phospho-specific flow cytometry (Krutzik and Nolan, 2003; Perfetto et al., 2004; 
Irish et al., 2006; Krutzik and Nolan, 2006) and mass cytometry offer promising 
tools for such experiments (Bandura et al., 2009; Bendall et al., 2011).

2.7.3.	Metabolomics

Metabolomics is a diverse field covering investigation of biomolecules not 
directly encoded by the genome. Like current proteomics, metabolomics relies 
heavily on the use LC-MS instrumentation (Lee et al., 2010a; Theodoridis et al., 
2012). Being an emerging field, the number of applications in study of human T 
cells is still very limited. In relation to T helper cell activation and differentiation, 
most significant are experiments targeting the membrane fraction associated 
with the T cell receptor (Zech et al., 2009). As T cell activation is known to 
cause alterations in energy metabolism (Vander Heiden et al., 2009), and recent 
reports indicate crosstalk between pathways regulating metabolism and subset 
differentiation (Lee et al., 2010b), further metabolomics investigation of T helper 
cell differentiation would seem justified. 
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3.	 AIMS OF THE STUDY

The overall goal of this study was to uncover novel molecular mechanisms 
underlying the IL4-induced development of human T helper cell subset 2 
phenotype using unbiased system-wide techniques. These methods, based on 
untargeted parallel detection and quantification of biomolecules such as RNA, 
protein, and lipids, allow hypothesis-independent measurement of systemic 
responses to experimental perturbations, e.g. in vitro stimulation of Th2 
differentiation. The tools used in this study included liquid chromatography-
coupled mass spectrometry as well as DNA microarrays, with the following 
specific aims:

1. 	 Quantification of IL4-induced changes in the T cell nuclear proteome 
during early Th2 differentiation (I)

2. 	 Isolation and characterization of proteins interacting with STAT6 in human 
Th2 cells (III)

3. 	 Determination of lipid composition of human CD4+ T cells and 
quantification of changes in lipid concentrations and metabolic pathways 
associated with the development of Th2 effector phenotype (II)

4. 	 Dissection of mRNA-level regulation of lipid metabolism in activated T 
cells (II)
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4.	 MATERIALS AND METHODS

4.1.	 Isolation of CD4+ cells from umbilical cord blood

To obtain naïve non-stimulated T helper cells, umbilical cord blood was used 
as sample material. The samples were obtained from healthy neonate donors 
born in Turku University Hospital. Mononuclear cells were isolated using Ficoll 
gradient centrifugation (Amersham). CD4+ cells were further purified using 
positive selection with anti-CD4-coated magnetic Dynal beads (Invitrogen). The 
typical purity of such samples has been determined to be in the order of 98-99% 
(Rautajoki et al., 2007).

4.2.	 Culture and stimulation of primary T cells

CD4+ cells were cultured in Yssel’s medium (Iscove’s modified Dulbecco’s 
medium [IMDM; Invitrogen] supplemented with Yssel’s medium concentrate, 
penicillin, streptomycin, and 1% AB-serum) at a density of 2-4*106 cells/ml on 
24-well plates. Cells were activated using plate-bound anti-CD3 (0.5µg/well) 
and soluble anti-CD28 (0.5µl/ml), (both antibodies from Beckman Coulter). Th2 
polarization was induced with the addition of IL4 (10 ng/ml, R&D Systems). At 
48h after activation, IL2 was added (17 ng/ml, R&D Systems) in all cases. Cells 
were cultured for up to 72 hours, as described in table 3.

Table 3. Cell stimulation times used in the subprojects. The roman numerals refer to 
time points studied in the corresponding original publications.

0.5h 1h 2h 4h 6h 12h 24h 48h 72h
Th0 (no cytokines) II II II II I, II II I, II II II
Th2 (IL4) II II II II I, II II I, II, III II II

4.3.	 siRNAs and transfection

Transfection of primary CD4+ T cells was performed with Amaxa Nucleofector 
equipped with a 96-well shuttle (Lonza), in each well mixing 5*10^5 cells 
with 40 pmol of RNA and using program EO-115. (Tahvanainen et al., 
2006). After transfection, cells were rested in RPMI (supplemented with 
penicillin, strepomycin, 2mM L-glutamine and 10% FCS) at 37°C for 40 hours. 
Subsequently, prior to activation, cells were resuspended in Yssel’s medium 
at density of 2-3*106 cells per ml. The sequences of siRNA molecules used are 
listed in table 4.
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Table 4. siRNA sequences used in nucleofection of primary CD4+ T cells.

Target Sequence
HNRNPK
(Dharmacon Smartpool M-011692-00-0005, 
Thermo Scientific)

5´-GAGCGCAUAUUGAGUAUCA-3´
5´-GAUCUUGGUGGACCUAUUA-3´
5´-GGUCAGCGGAUUAAACAAA-3´
5´-GUCGGGAGCUUCGAUCAAA-3´

NCL 5´-GGAAGGUCAGCAGUCUUCCAUGAGA-3´
STAT6 5´-AAGCAGGAAGAACUCAAGUUU-3´

4.4.	 Isolation of nuclear protein

Nuclear fractions were prepared according to Andrews and Faller, with some 
modifications (Andrews and Faller, 1991). Cells were lysed to hypotonic lysis 
buffer (0.2% Nonidet P-40, 10mM HEPES pH 7.9, 0.5mM DTT, 1.5mM MgCl2 
10mM KCl, and protease and phosphatase inhibitors from Roche) by incubating 
on ice for 10-20 minutes. Lysates were centrifuged and supernatants (cytoplasmic 
fractions) were recovered. Pelleted nuclei were washed once more with lysis 
buffer and suspended to and incubated 10-60 min in high-salt nuclear extraction 
buffer (20mM HEPES pH 7.9, 420mM NaCl, 0.5mM DTT, 1.5mM MgCl2, 0.2mM 
EDTA, and protease and phosphatase inhibitors from Roche) on ice. Samples were 
centrifuged 15 min at full speed in a tabletop centrifuge at +4°C. Supernatants 
(nuclear fractions) were recovered and pelleted debris were discarded. Enrichment 
of nuclear protein was confirmed with immunodetection of PARP1.

4.5.	 DNA affinity purification

Biotinylated and antisense bait oligonucleotides were supplied by Oligomer. 
Sequences for STAT6-specific and negative control baits were 5´-Biotin-GGATC
CGAGAGGTTTCCGGTGAATGTTAGA-3´, and 5´-Biotin-GGATCCGAGA
GGTTATCGGTCTATGTTAGA-3´, respectively. Antisense strands were of 
complementary sequence, and were not biotin labelled. Oligonucleotides 
were annealed by heating to 95°C and letting cool down slowly over night. 
Annealing efficiency was verified by acrylamide gel electrophoresis. Beads 
(Ultralink immobilized neutravidin protein, Pierce) were washed with buffer 
A (10mM HEPES pH 7.9, 60mM KCl, 2mM EDTA, 1mM EGTA, 0.1% Triton 
X-100, 1mM DTT, and protease and phosphatase inhibitors from Roche). Bait 
oligonucleotides were conjugated to beads by incubating 250 pmol of annealed 
oligos with 10μl beads in 200μl buffer A for 1h in a 360° rotator at +4°C. Oligo-
coated beads were washed four times with buffer A. Nuclear fractions were 
diluted to 60mM KCl using buffer B (10mM HEPES pH 7.9, 2mM EDTA, 1mM 
EGTA, 0.1% Triton X-100, 1mM DTT, and protease and phosphatase inhibitors 
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from Roche) and pre-cleared by incubating with uncoated beads for 1h in a 360° 
rotator at +4°C. Precleared supernatants were combined with beads coated with 
oligonucleotides and further incubated for 1h in a 360° rotator at +4°C. Beads 
were washed four times with  buffer A, and precipitated proteins were eluted 
by incubating twice for 5 minutes at 95°C in 2xSDS buffer (125mM Tris-HCl pH 
6.8, 4% w/v SDS, 20% glycerol, 100mM DTT).

4.6.	 SDS-PAGE and Western blot 

Protein concentrations were measured with Bio-Rad detergent compatible 
protein assay according to manufacturer’s instructions. 10-40 µg of each sample 
was resolved with either precast Bio-Rad Criterion 10% Bis-Tris gels, or with 
10% SDS-PAGE minigels. Following electrophoresis, the proteins were either 
visualized with silver-staining, or transferred to Amersham Hybond ECL 
membrane, Millipore Immobilon-FL membrane, or Millipore Immobilon-P 
membrane. Primary antibodies used in the immunodetections are listed in table 
5. Proteins were visualized using chemiluminsecence, or fluorescence-based 
detection with the Odyssey system (Li-cor). Silver-staining was performed 
using a MS-compatible protocol as follows: gels were fixed over night with 30% 
ethanol and 10% acetic acid, followed by 20 min washes with 20% ethanol and 
deionized water. Proteins were sensitized 2 min with 1mM sodium thiosulphate, 
and stained 2 h with 12 mM silver nitrate. Gels were rinsed twice with deionized 
water, and developed in 37% formaldehyde, 200 mM potassium carbonate, and 
0.06 mM sodium thiosulphate. Development was stopped with 2.5% acetic acid 
in 400 mM Tris.

Table 5. Primary antibodies used in immunodetections.

Antibody Supplier
GAPDH Hytest
GATA3 BD Biosciences
HNRNPK Santa Cruz Biotechnology
IKZF Santa Cruz Biotechnology
MAPK (Erk1/2) Cell Signaling Technologies
PARP1 Cell Signaling Technologies
Phospho-MAPK (Thr-202/Tyr-204) Cell Signaling Technologies
Phospho-STAT6 (Tyr-641) Cell Signaling Technologies
SATB1 Santa Cruz Biotechnology
STAT1 Santa Cruz Biotechnology
STAT6 BD Biosciences
TBX21 (T-bet) Santa Cruz Biotechnology
TCF7 Upstate
YB1 Abcam
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4.7.	 Flow cytometry

For staining of surface epitopes, cells were washed with FCM buffer (PBS, 
2% FCS, 0.01% NaN3), incubated with antibodies at +4°C protected from 
light, washed with FCM buffer and PBS, and resuspended in 1% formalin in 
PBS. For intracellular staining, cells were fixed by adding an equal volume 
of Phosflow fix buffer I (BD Biosciences), and incubating 10 minutes at 
+37°C. After fixation, cells were washed with PBS, permeabilized with -20°C 
Phosflow Perm Buffer III (BD Biosciences), and stored at -80°C. Staining 
of permeabilized cells was then performed similarly as surface epitopes. 
Antibodies used in staining of surface and intracellular epitopes are listed in 
table 6. Analyses were performed with Facscalibur and LSR2 instruments (BD 
Biosciences). Data were analyzed with Cellquest (BD Biosciences) or Flowing 
Software (www.flowingsoftware.com).

Table 6. Primary antibodies used in flow cytometry studies.

Antibody Supplier

CD4-FITC/CD8-PE BD Biosciences
CD69-FITC BD Biosciences
Phospho-STAT6 (Tyr-641) Cell Signaling Technologies

4.8.	 Real time quantitative RT-PCR

Real time quantitative RT-PCR was performed as previously described 
(Hämäläinen et al., 2000; Lund et al., 2003b). Briefly, total RNA was extracted 
using RNeasy Mini kit (Qiagen), genomic DNA was degraded with DNase 
I (Gibco), and cDNA was prepared using Transcriptor First Strand cDNA 
synthesis kit (Roche). Reactions were analyzed using a TaqMan ABI Prism 7900 
HT Instrument (Applied Biosystems). The primer sequences used are listed in 
table 7.
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Table 7. Primer and probe sequences used in RT-PCR assays.

Gene Primer 1
Primer 2
Probe

EF1α 5´-CTGAACCATCCAGGCCAAAT-3´
5´-GCCGTGTGGCAATCCAAT-3´
5´-(FAM)-AGCGCCGGCTATGCCCCTG-(TAMRA)-3´

GATA3 5´-GGACGCGGCGCAGTAC-3´
5´-TGCCTTGACCGTCGATGTTA-3´
5´-(FAM)-TGCCGGAGGAGGTGGATGTGCT-(TAMRA)-3´

IKZF1 5´-CCTTCCGGGCACACTGTA-3´
5´-TCTCTCTGATCCTATCTTGCACA-3´
Roche Universal ProbeLibrary #29

SATB1 5´-ACCAGTGGGTACGCGATGA-3´
5´-TGTTAAAAGCCACACGTGCAA-3´
5´-(FAM)-AACGAGCAGGAATCTCCCAGGCG-(TAMRA)-3´

STAT1 5´-GGATTGAAAGCATCCTAGAACTCA-3´
5´-GATGAAGCCCATGATGCAC-3´
Roche Universal ProbeLibrary #32

STAT6 5´-TGGGCCGTGGCTTCAC-3´
5´-CCGGAGACAGCGTTTGGT-3´
5´-(FAM)-CAGGACACCATCAAACCACTGCCAAA-(TAMRA)-3´

TBX21 (T-bet) 5´-ACAGCTATGAGGCTGAGTTTCGA-3´
5´-GGCCTCGGTAGTAGGACATGGT-3´
5´-(FAM)-TCAGCATGAAGCCTGCATTCTTGCC-(TAMRA)-3´

TCF7 5´-CTGCAGACCCCTGACCTCTCT-3´
5´-ACACCAGAACCTAGCATCAAGGAT-3´
5´-(FAM)-CTCCCTGACCTCAGGCAGCATGG-(TAMRA)-3´

YB1 5´-GGAGGGTGCTGACAACCA-3´
5´-GCTGTCTTTGGCGAGGAG-3´
Roche Universal ProbeLibrary #2

4.9.	 Microarray analysis

Total RNA was extracted using RNeasy Mini kit (Qiagen). cRNA was hybridized 
on GeneChip HG-U133 Plus 2.0 arrays (Affymetrix). The raw microarray data 
were processed using robust multi-array average normalization and log2-
transformed in R (version 2.12.0) using the Bioconductor affy package (version 
1.28.0).

4.10.	Alkylation and in-gel tryptic digestion of silver-stained proteins

SDS-PAGE Gel lanes were excised to pieces which were further sliced 
to approximately 1mm3 cubes, and washed twice for 15 minutes with 
40mM ammonium bicarbonate/50% acetonitrile at +37°C. Gel pieces were 
dehydrated with acetonitrile and dried using vacuum centrifuge. Dried gel 
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pieces were rehydrated and reduced using 20mM DTT for 30min at 56°C and 
again dehydrated using acetonitrile. Gel pieces were alkylated with 55mM 
iodoacetamide for 15 min at room temperature, protected from light, followed 
by two rounds of washing with 40mM ammonium bicarbonate, and dehydration 
with acetonitrile. For each sample, 0.4μg Sequencing grade modified trypsin 
(Promega) was added, incubated for 10 min on ice, and overlaid completely 
with 40mM ammonium bicarbonate/10% acetonitrile. Digestion was performed 
at +37°C for 16 to 18 hours. After digestion, peptides were extracted by adding 
an equal volume of acetonitrile and incubating 15 min at +37°C. Extraction was 
repeated twice more using 50% acetonitrile/5% formic acid. Peptides were dried 
with vacuum centrifuge, and prior to MS analysis, desalted using Empore C18 
(3M) packed in GELoader pipet tips (Eppendorf).

4.11.	 iTRAQ labeling and peptide fractionation

Relative quantification based on labeling with iTRAQ reagents (Applied 
Biosystems) was performed to compare nuclear proteomes of activated T 
helper cells cultured for 6 and 24 hours in presence or absence of IL4. Equal 
amounts of protein (50 –100 μg) from the four compared states were used for 
the labeling. Proteins were precipitated by mixing with 6 volumes of acetone 
and incubating for 4 h at -20 °C and re-dissolved in 40 μl of triethylammonium 
bicarbonate buffer containing 0.1% SDS. Labeling with iTRAQ reagents 
was performed according to manufacturer’s protocol. Briefly, this included 
reduction with tris(2-carboxyethyl)phosphine and derivatization of free 
cysteines with methyl methanethiosulfonate (MMTS), followed by overnight 
digestion with sequencing grade modified trypsin (Promega). The resulting 
peptides were labeled with the iTRAQ reagents for 1 h at room temperature. 
In all three biological replicates, the 114 and 116 reagents were used to label 
the peptides from the cells activated for 6 and 24 h, respectively, and likewise 
the 115 and 117 reagents were used to label the activated and IL4-treated cells 
for 6 and 24 h, respectively. The labeled peptides were combined and acidified 
(pH 2.9–3.1). The resulting peptide mixtures were fractionated with a 200 × 
4.6-mm-inner diameter polysulfoethyl A (Poly LC) strong cation exchange 
(SCX) column using a BioCAD chromatograph (PerSeptive Biosystems). 
The peptides were eluted at 0.7 ml/min from the cation exchange column 
during a two-step gradient from 0 to 30% B in 14 min and then to 100% B 
in 10 min (maintained for 15 min). The A and B phases consisted of 5 mM 
KH2PO4 and 25% acetonitrile, pH 3 with the B phase containing 0.6 M KCl. The 
eluted peptides were subsequently collected in 20 sequential fractions. The 
SCX fractions were dried in a HetoVac vacuum centrifuge (Heto-Holten) and 
desalted using Empore C18 material (3M).
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4.12.	Proteomics analysis by LC-MS/MS

Proteomics analyses were performed by tandem mass spectrometry (LC-MS/
MS) using a shotgun proteomics approach (Yates, 2004). In these studies, four 
different instrument set-ups were used, as specified in table 8.

Identification of in-gel digested proteins was performed using set-ups 2, 3, and 4. 
The data acquired by MS/MS were searched against a human Uniprot database 
supplemented with common contaminant peptide sequences using Mascot 
software (Matrix Science). Iodoacetamide derivative of cysteine was specified 
as a fixed modification, and deamidation of asparagine and glutamine and 
oxidation of methionine as variable modifications. Scaffold (Proteome Software) 
was used to validate the MS/MS based peptide and protein identifications. 
Peptide identifications were accepted if they could be established at greater than 
80.0% probability as specified by the Peptide Prophet algorithm (Keller et al., 
2002). Protein identifications were accepted if they could be established at greater 
than 99.0% probability and contained at least 2 identified peptides. Protein 
probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et 
al., 2003). 

Analysis of iTRAQ-labeled peptides was performed with instrument set-up 
1 (as described in table 8). The MS/MS data were searched against a Swiss-
Prot database composed of human proteins plus known contaminants (trypsin 
fragments and BSA; 11 entries), with fixed modifications iTRAQ labeling 
at the N terminus and lysine, and methylmethanethiosulfonate (MMTS) 
modification of cysteine. Variable modifications included iTRAQ labeling of 
tyrosine, deamidation of asparagine and glutamine, and methionine oxidation. 
One missed tryptic cleavage was permitted. The data analysis was done with 
two methods, using the Analyst script ProQuant (Applied Biosystems) in 
combination with the ProGroup algorithm (Applied Biosystems), as well as a 
complementary analysis by Mascot (Matrix Science). Quantification of iTRAQ 
reporter ions was achieved by comparison of weighted average values of the 
corresponding reporter ion peak area ratios as described by Gan et al. (Gan et 
al., 2007).
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Table 8. LC-MS/MS set-ups used for identification of in-gel digested proteins. 
Abbreviations: ACN, acetonitrile; ESI, electrospray ionization; i.d., inner diameter; LC, 
liquid chromatography; LTQ, hybrid linear ion trap-quadrupole; MS, mass spectrometer; 
QTOF, hybrid quadrupole-time of flight.

Set-up 1 Set-up 2 Set-up 3 Set-up 4

MS system QSTAR Pulsar 
(Applied 
Biosystems)

QSTAR Pulsar 
(Applied 
Biosystems)

QSTAR Elite 
(Applied 
Biosystems)

LTQ-Orbitrap 
(Thermo Scientific)

Ionization 
and MS type

ESI-QTOF ESI-ion trap-
Orbitrap

LC system Famos/Switchos-
II/Ultimate (LC 
Packings)

Cap-LC (Waters) Ultimate 3000 
capillary LC 
(Dionex)

NanoAcquity 
(Waters)

Loading 
column

5 × 0.3-mm 
PepMap C18 
μ-precolumn (LC 
Packings)

Atlantis C18 
NanoEase Trap 
Column 5um 
(Waters)

5 × 0.3-mm 
PepMap C18 
μ-precolumn (LC 
Packings)

18 mm × 100 μm 
i.d. precolumn 
packed with 200 
Å (5 μm) Magic 
C18 particles 
(C18AQ; Michrom 
BioResources)

Analytical 
column

15 cm × 75 μm i.d. fused silica capillary column packed with 5 μm Magic C18AQ 
100Å particles (Michrom BioResources)

Phase A MilliQ water with 
5% ACN, 0.1% 
HCOOH

MilliQ water with 5% ACN, 0.2% 
HCOOH

MilliQ water, 0.1% 
HCOOH

Phase B 95% ACN, 0.1% 
HCOOH, MilliQ 
water

95% ACN, 0.2% HCOOH, MilliQ water ACN, 0.1% 
HCOOH

Flow rate 200 nl/min 200 nl/min 250 nl/min

4.13.	Lipid extraction and analysis

Cell harvesting and metabolic quenching was performed with the protocol of de 
Koning et al. (de Koning and van Dam, 1992), with some modifications. In brief, 
culture medium was removed; cells were re-suspended to -20°C 50% methanol, 
and pelleted by centrifugation (770g 20min) at -20°C. The supernatant was 
discarded and cells were stored in liquid nitrogen. Aliquots of cultured T cells 
containing ca. 2 million cells were spiked with a standard mixture consisting 
of 10 lipid compounds (0.2 µg/sample) and mixed with 100 µl of chloroform/
methanol (2:1) by vortexing for 2 min. After 1 h standing the tubes were 
centrifuged at 10 000 rpm for 3 min and the lower organic phase was separated 
into a vial insert and mixed with a standard mixture containing 3 labelled lipid 
compounds (0.1 µg/sample).

For the lipidomics analysis, the lipid extracts were run on a Q-Tof Premier mass 
spectrometer (Waters) combined with an Acquity Ultra Performance Liquid 
Chromatography (Waters) by using a solvent system phase A of water with 1% 
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1M NH4Ac and 0.1% HCOOH and phase B of acetonitrile/isopropanol (5:2) with 
1% 1M NH4Ac, 0.1% HCOOH. An Acquity UPLC BEH C18 1 × 50 mm column with 
1.7 µm particles was used at 50°C at a flow rate of 200 µl/min. The lipid profiling 
was carried out using ESI+ mode and the data was collected at mass range of m/z 
300-1200. Data was processed using MZmine 2 software (Pluskal et al., 2010). 
Lipid identification was performed using in-house spectral library as described 
previously (Laaksonen et al., 2006). The lipidomics data were normalized using 
the lipid standard mixture: all monoacyl lipids except cholesterol esters, such 
as monoacylglycerols and monoacylglycerophospholipids were normalized 
with PC(17:0/0:0), all diacyl lipids except ethanolamine phospholipids were 
normalized with PC(17:0/17:0), ceramides with Cer(d18:1/17:0), the diacyl 
ethanolamine phospholipids were normalized with PE(17:0/17:0), and the TG 
and cholesterol esters with TG(17:0/17:0/17:0). 
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5.	 RESULTS AND DISCUSSION

5.1.	 Identification and relative quantification of nuclear proteins in 
activated and IL4-stimulated cells

To characterize the nuclear proteome of activated human T helper cells, and 
to detect protein-level responses induced by IL4, a quantitative proteomics 
approach was used. Nuclear protein was extracted from activated CD4+ T cells 
cultured for 6 and 24 hours in presence or absence of IL4. The analysis was 
performed with triplicate biological sample material, each replicate representing 
a pool of cord blood CD4+ T cells from multiple individuals. With LC-MS/MS, 
843 proteins were reproducibly identified, each identification being supported 
by at least two distinct peptides. These results represented so far most extensive 
coverage of the primary human T cell nuclear proteome. However, the 
nuclear proteome of the Jurkat cell line has been extensively studied (Hwang 
et al., 2006; Wu et al., 2007). Of the proteins identified from primary T cells, 
approximately three quarters were reported also in the Jurkat studies. While 
some of the discrepancies between the datasets might result from differences 
in sample preparation, others might signify biologically relevant differences 
between these experimental models. IL4-induced differences arising from 
regulation of expression and nuclear translocation were studied by comparing 
activated cells harvested after 6 and 24-hour culture. Relative quantification 
of 815 proteins was achieved by use of peptide labeling with iTRAQ reagents 
(Applied biosystems). IL4 has been shown to regulate expression of numerous 
genes (Lund et al., 2007; Elo et al., 2010), while the differences observed at the 
level of nuclear proteome were limited in comparison. According to related 
iTRAQ-based studies, significant differences were filtered by p-value of less 
than 0.05 combined with at least 20% quantitative difference (Seshi, 2006; 
Unwin et al., 2006; Duthie et al., 2007). With these criteria, 30 proteins were 
considered to be regulated by IL4, excluding keratins and ribosomal proteins 
(Table 9). As expected, the list of IL4-induced proteins included STAT6, being 
preferentially recruited to nucleus upon IL4-dependent phosphorylation. 
Correspondingly, levels of Th1-associated proteins TRIM22, STAT1, IFI16, 
TBX21 (T-bet), and TCF7 were decreased by IL4. 
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Table 9. IL4-regulated proteins identified from nuclear extracts of human CD4+ T 
cells. Adapted from I.

Gene symbol Uniprot accession Th2/Th0 at 6h Th2/Th0 at 24h

S10A9 P06702 1.27 1.82
RPL5 P46777 1.36 1.66
YB1 P67809 1.23 1.65
GRAP2 O75791 1 1.27
BUD31 P41223 0.97 1.24
AKAP8 O43823 1.1 1.24
RFC1 P35251 1.01 1.24
SATB1 Q01826 1.12 1.24
IKZF1 Q13422 1.04 1.21
CD3E P07766 1.25 1.16
GNAS P63092 0.72 1.14
HS105 Q92598 1.24 1.09
GLU2B P14314 1.23 1.07
STAT6 P42226 1.32 1.07
TXLNA P40222 1.38 1.01
MP2K3 P46734 1.82 0.92
TAF10 Q12962 1.59 0.9
RPB1 P24928 1.45 0.86
PSB8 P28062 1.03 0.83
APT P07741 0.99 0.83
TRIM22 Q8IYM9 0.82 0.81
STAT1 P42224 0.95 0.81
IFI16 Q16666 0.99 0.81
CD45 P08575 0.99 0.8
CD44 P16070 0.91 0.77
TCF7 P36402 0.95 0.75
ATP5J P18859 1.23 0.74
CD5 P06127 0.9 0.73
PSME3 P61289 0.93 0.73
TBX21 Q9UL17 0.98 0.64

5.2.	 Validation of proteomic changes and correlation with mRNA 
kinetics

The measured proteomic changes were successfully validated by quantitative 
western blotting in the cases of STAT6, SATB1, YB1, IKZF1, STAT1, TCF7, and 
TBX21 (Figure 3). Of these proteins, STAT6, SATB1, and IKZF1 have documented 
positive influence on Th2 differentiation, whereas TBX21, STAT1, and TCF7 are 
involved in pathways promoting Th1 development (Quirion et al., 2009; Ahlfors 
et al., 2010; Thomas et al., 2010). YB1 is a multifunctional protein with currently 
no reported implications in either Th1 or Th2 cells. To further elaborate the 
mechanisms regulating these proteins, quantitative RT-PCR assays were 
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performed. For SATB1 and TBX21, significant mRNA-level differences were 
measured between the Th2 and Th0 states, while other mRNAs, including YB1, 
were induced in response to CD3/CD28-activation regardless of IL4, highlighting 
the importance of regulation at post-transcriptional and spatial levels.
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Figure 3. Relative quantification of selected nuclear proteins by iTRAQ and western 
blot. The data points represent the mean values of 3 replicate experiments in case of 
iTRAQ data, and at least 5 independent experiments performed by western blotting.

5.3.	 Enrichment and analysis of endogenous STAT6 protein complex

Study of protein-protein interactions can provide valuable information about 
protein function. To identify proteins associated with the IL4-induced STAT6 
enhanceosome complex in human Th2 cells, a DNA affinity purification-based 
workflow was optimized. The results indicated that STAT6 protein could be 
specifically precipitated using bait oligonucleotide sequences based on the 
consensus STAT6 binding motifs. Importantly, comparison to samples produced 
with mutated decoy sequences provided efficient negative control for estimating 
specificity of precipitation. The enriched proteins were analyzed by LC-MS/
MS, resulting in identification of altogether more than 200 proteins from three 
replicate experiments. Spectral count-based relative quantification of proteins 
identified in STAT6-containing and decoy samples afforded identification of 
specific putative STAT6 interacting proteins, including known cofactor SND1. 
Importantly, two novel proteins, HNRNPK and NCL, were identified with 
equal confidence of binding specificity. 
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HNRNPK is a multifunctional protein, localized in nuclear ribonucleoprotein 
particles, but also carrying out regulatory functions (Bomsztyk et al., 2004). 
Interestingly, HNRNPK has been categorized as a network hub molecule 
with more than 100 identified interacting proteins including NCL and the IL4-
induced protein YB1 (Shnyreva et al., 2000; Mikula et al., 2006). NCL, in turn, 
has roles in processes such as PolII transcription and chromatin remodeling 
(Mongelard and Bouvet, 2007). To investigate the involvement of HNRPNK and 
NCL in signaling pathways regulating Th2 differentiation, siRNA-based gene 
silencing was used, and expression levels of GATA3, the master Th2-specific 
transcription factor, were measured. Notably, disruption of HNRNPK lead to 
notable reduction of GATA3. For NCL, the results were negative, suggesting 
that its enrichment might result from secondary binding to HNRPNK. While 
literature suggests that association of HNRNPK with STAT6 enhanceosome is 
potentially mediated by SND1, the exact mechanism as well as full implications 
for Th2 differentiation will require more conclusive functional evidence.

5.4.	 Lipidomic profiles of CD4+ T cells

Lipid molecules carry out important biological functions as structural 
components, energy storages, barriers, and signaling intermediates. 
Correspondingly, cellular lipid composition is subject to active regulation. To 
investigate lipidomic composition and lipid homeostasis in human CD4+ T cells, 
an LC-MS approach was used. While the coverage achieved by such approach is 
still limited, data could be acquired from most of the major lipid classes, including 
phosphatidylcholines (PC), phosphatidylethanolamines (PE), sphingomyelin 
(SM), triacylglycerols (TG), and diacylglycerols (DG). From resting CD4+ 
cells, 41 distinct molecular species representing these classes were identified. 
Importantly, as lipid species were identified on the level of sum formulas 
(numbers of side chain carbon molecules and double bonds), true chemical 
variation among the analytes is considerably greater, accounting for differential 
combinations of side chains as well as differential spatial organization of double 
bonds. Nevertheless, the data represented so far most extensive catalogue of 
human primary T cell lipidome.

5.4.1.	Relative lipid kinetics in activated and IL4-stimulated cells

Importantly, the LC-MS approach allowed relative quantification of lipids by 
the use of spiked lipid standards (Figure 4). Lipid kinetics was measured during 
a time course of 72 hours following activation, with time points correlating 
with the transcript-level data. The activation was performed in both presence 
and absence of IL4. However, no statistically significant effects were measured 
associated specifically with IL4. In contrast, activation through CD3 and CD28 



	 Results and Discussion	 49

lead to notable remodeling of the cellular PC and PE lipids at the 48 and 72-hour 
time points, correlating with activation-induced proliferation. Interestingly, 
the upregulated species were typically shorter (36 or less side chain carbons) 
and more saturated (3 or less double bonds) than the downregulated ones. 
The time scale of the observed alterations of lipid composition correlated with 
the time of intense activation-induced cellular proliferation, possibly resulting 
from increased de novo lipid synthesis, as mammalian fatty acid biosynthesis 
produces predominantly relatively saturated species with only 14-18 carbons 
(Smith, 1994). T cell activation has been previously shown to lead to increased 
synthesis of molecules localizing to lipid rafts (Martin et al., 2001; Tuosto et 
al., 2001; Tani-ichi, 2005; Bensinger et al., 2008). However, only some of the 
observed lipidomic changes corresponded to known lipid raft components. 
Whether the changes correlate with expansion or reduction of some other 
subcellular compartment could not be concluded from the current global data 
alone.
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Figure 4. Relative concentrations of lipid species in activated CD4+ T cells cultured 
in presence or absence of IL4. Samples were collected at 0.5, 1, 2, 4, 6, 12, 24, 48, and 
72 hours post activation, and concentrations were normalized against concentration of 
corresponding species in unstimulated cells. Abbreviations: DG, diacylglycerol; PC, 
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; SM, 
sphingomyelin; TG, triacylglycerol. Adapted from II.
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5.4.2.	Transcriptional regulation of lipid metabolism

The transcriptomic dataset was mined in order to find possible explanatory 
mechanisms of regulation. To this end, mRNA expression levels in activated 
cells were compared to the unstimulated state, focusing on genes with known 
roles in lipid metabolism, as annotated in the KEGG knowledgebase (Kanehisa 
and Goto, 2000). The most significant activation-induced change was the 
upregulation of stearoyl CoA-desaturase (SCD). SCD is required for generation 
of monounsaturated fatty acids, and functions as a regulatory hub of lipid 
metabolism (Paton and Ntambi, 2009). Deletion of SCD leads to deficiency in 
TG, cholesterol esters, wax esters, and alkyldiacylglycerols (Miyazaki et al., 2001; 
Ntambi et al., 2002). The upregulation of SCD expression has been validated 
on also protein level by mass spectrometry. In addition to SCD, upregulation 
of acetyl-OcA carboxylase α (ACACA) and PCYT2 suggested induction of lipid 
synthesis. In parallel, the expression of several enzymes specific for saturated 
or monounsaturated substrates were upregulated, including elongases ELOVL1 
and ELOVL6, and lysophospholipid acyltransferases LPCAT1 and LPCAT4. 
Altogether, the mRNA data suggested active remodeling of cellular lipidome 
on multiple levels.

5.5.	 Immunological significance

Whereas the hallmark functions of Th2 cells are related to eradication of 
extracellular parasites such as helminths, Th2 responses can, in addition, be 
promoted by non-microbial stimuli including allergens, venoms, and vaccine 
adjuvants (Coffman et al., 2010; Palm et al., 2012; Pulendran and Artis, 2012). 
The motivation of the experiments discussed herein was to describe molecular 
mechanisms that underlie the development of human Th2 cells, and thus provide 
opportunities for development of diagnostic markers or therapeutic modulators 
of Th2 cell function.

Important information about dissecting molecular underpinnings of cell 
fate determination can be obtained by identification of molecules that are 
expressed in a lineage-specific manner, and by determination of their relative 
kinetics of expression. When successful, this strategy can provide a list of 
components regulating the lineage commitment process, as well as possible 
causal relationships based on the temporal order of expression changes. The 
transcriptomic signatures of human Th cells have been investigated relatively 
extensively before the presented studies, effectively illustrating the principal 
kinetics of Th2 differentiation (Rogge, 2002; Lund et al., 2003a; 2007; Elo et al., 
2010).

Building on the results of the transcriptomic analyses, a more targeted approach 
to regulation of Th2 differentiation was taken with the analysis of the nuclear 
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proteome in response to IL4 stimulation. As nuclear proteins in many cases 
function as signaling molecules, transcription factors or epigenetic modifiers, 
preferential expression or nuclear recruitment in response to IL4 may be indicative 
of regulatory role in Th2 differentiation. In addition to known Th2-promoting 
factors such as STAT6, the resulting panel of IL4 targets included several proteins 
with no previous implications in Th2 development. One of these proteins was 
YB1, a known transcriptional repressor of the apoptosis-related FAS receptor 
(Lasham et al., 2000). Th2 cells have been reported to express decreased levels 
of multiple components of the Fas pathway, including the FAS receptor, leading 
to relative inhibition of cell death (Rautajoki et al., 2007). Thus it seems possible 
that YB1 is involved in this differential regulation of apoptotic pathways in Th 
cells. However, this hypothesis could not be experimentally confirmed by use of 
siRNA targeting YB1. Of note, in parallel with the herein reported identification 
as a Th2-associated nuclear protein, IKZF1 was demonstrated to bind directly 
to regulatory regions within the IL4 locus, and to be required for proper Th2 
differentiation in mice (Quirion et al., 2009), and to silence expression of T-bet 
and IFNG (Thomas et al., 2010). Further characterization of such proteins 
might ultimately lead to identification of potential targets for regulation of Th2 
responses.

STAT6, the key mediator of IL4-signaling, was studied in more detail, namely 
in context of protein interactions. Due to its central role in orchestration of 
Th2 responses, artificial modulation of STAT6 activity has been proposed as a 
therapeutic possibility for allergic disorders (Darcan-Nicolaisen et al., 2009; Tian 
et al., 2011). These approaches might benefit from more detailed characterization 
in molecular interactions of STAT6 in cell-type specific physiological context. 
Using IL4-stimulated primary T cells, HNRNPK and nucleolin were identified 
as potential novel cofactors for STAT6. As HNRNPK was found to regulate 
expression of GATA3, it seems a potential inducer of Th2 differentiation deserving 
more detailed investigation. Unfortunately, as HNRNPK plays a central role in 
mRNA processing, deletion of HNRNPK is likely to cause embryonic lethality, 
hindering its studies with mouse models (Bomsztyk et al., 2004).

In the final part of the thesis, the lipid metabolism was investigated in activated 
and IL4-stimulated T cells using untargeted LC-MS approach. Consistent trends 
in kinetics of lipid concentrations were detected, which appeared to be at least 
partially regulated on the level of the transcriptome. Deeper insight into the 
immunological significance of these changes could potentially be obtained by 
studying T cell development in mice deficient for selected regulatory enzymes, 
such as SCD. 

In general, the overall importance of metabolic regulation for T helper cell 
differentiation is poorly understood. However, some lines of evidence, in 
particular regarding the mTOR pathway, highlight the interrelatedness of 
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metabolism and cellular differentiation (Wullschleger et al., 2006; Powell and 
Delgoffe, 2010; Lee et al., 2010b). Although in the present experiments no 
specific IL4-associated differences were observed, the possibility should not be 
entirely excluded by these data alone, as coverage of the method still has room 
for improvement. In the future, application of lipidomics and metabolomics 
methodology to T cell populations isolated from peripheral blood of healthy 
individuals as well as patients with T cell associated disorders might provide 
important clues to overall role of metabolic regulation in T cell biology.
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6.	 SUMMARY

This study focused on system-wide measurements of mRNA, protein, and lipid 
compositions of human CD4+ T cells, and importantly, resulted in description 
of specific changes in these compositions occurring during the development of 
Th2 subset phenotype. By using exclusively umbilical cord blood T cells, these 
studies aimed at results representative of normal human immunology.

The nuclear proteins of IL4-stimulated cells were targeted by expression and 
interaction proteomics. The former resulted in identification of more than 800 
proteins, representing the most extensive catalogue from human primary cells. 
Such datasets can provide useful “parts lists” for modeling-based computational 
systems biology (Schlitt and Brazma, 2005). In comparison to mRNA level, the 
IL4-induced proteomic differences were limited. Nevertheless, both known 
regulators of Th2 differentiation as well as proteins novel in this context were 
consistently quantified from triplicate samples.

By application of affinity purification and mass spectrometry, the Th2-promoting 
STAT6 enhanceosome complex was enriched and characterized. The use of semi 
quantitative proteomics approach allowed for use of low stringency purification 
conditions and isolation of the endogenous complex from primary human cells. 
Importantly, two previously undocumented proteins HNRNPK and NCL were 
found specifically associated with STAT6.

On the level of cellular metabolites, the lipid profiles of both resting and activated 
T cells were characterized. Importantly, following activation by T cell receptor 
and CD28, phosphatidylcholine and phosphatidylethanolamine lipids exhibited 
consistent gravitation towards more saturated and shorter molecular species. 
Integration with genome-wide transcriptomics data suggested that the observed 
lipidomic remodeling is regulated by acceleration of lipid synthesis as well as 
selective activation of metabolic pathways favoring generation of saturated lipid 
species. 

In its part, this thesis provided a view of Th2 differentiation as a complex transition, 
where biological information initially delivered through transmembrane 
receptor molecules is mediated by diverse pathways and ultimately translates 
to responses observed on both protein and metabolite levels. In these studies 
the developmental process of Th2 lineage commitment was investigated using 
diverse complementary techniques. However, rapid methodological progress 
presents researchers with ever increasing selection of tools, many of which 
might be particularly informative in case of T cell differentiation. Integration 
and interpretation of these system-wide datasets will present an important 
challenge.
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