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Abstract

This thesis addresses the use of covariant phase space observables in quantum
tomography. Necessary and sufficient conditions for the informational com-
pleteness of covariant phase space observables are proved, and some state
reconstruction formulae are derived. Different measurement schemes for meas-
uring phase space observables are considered. Special emphasis is given to the
quantum optical eight-port homodyne detection scheme and, in particular, on
the effect of non-unit detector efficiencies on the measured observable. It is
shown that the informational completeness of the observable does not depend
on the efficiencies.

As a related problem, the possibility of reconstructing the position and
momentum distributions from the marginal statistics of a phase space observable
is considered. It is shown that informational completeness for the phase space
observable is neither necessary nor sufficient for this procedure. Two methods
for determining the distributions from the marginal statistics are presented.

Finally, two alternative methods for determining the state are considered.
Some of their shortcomings when compared to the phase space method are
discussed.
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Chapter 1

Introduction

The purpose of a measurement performed on a physical system is to gain some
information about the properties of the system. In quantum tomography, the
goal is the complete determination of the state of the system prior to the
measurement (see, e.g., [43] 50} 53] for expositions on this topic). The question
about the possibility of reconstructing the quantum state from measurement
statistics is naturally quite old. Indeed, it was briefly mentioned already in 1933
in Pauli’s book [54], though the first systematic approach is usually credited to
Fano [25]. A renewed interest to quantum tomography rose after the paper of
Vogel and Risken [65], and the quantum optical experiment of Smithey et al.
[62]. Nowadays, quantum tomography is an immensely wide field of research
due to the development of both theoretical and experimental methods.

It is clear that not all measurements allow unique state determination.
Therefore one of the fundamental questions in quantum tomography is the
informational completeness [57] of sets of observables. Informational com-
pleteness of a set of observables means, by definition, that the state can be
inferred from the statistics. A remarkable consequence of the modern view of
quantum observables as positive operator measures is the existence of single
informationally complete observables. An important class of such observables
are certain covariant phase space observables, whose significance is undisputed
also from a variety of different aspects of quantum mechanics (see, e.g., [59]).
Their relevance is further emphasized by the fact that these observables have
a quantum optical measurement realization in terms of eight-port homodyne
detection. Such a measurement was first performed (in the optical regime) by
Walker and Carroll [67].

This thesis addresses the use of covariant phase space observables for the
purpose of performing quantum tomography. The introductory review part



is organized as follows. In Section [2| the general framework is laid out, and
the relevant concepts related to quantum tomography are defined. Section (3] is
devoted to characterizing the informational completeness of covariant phase
space observables and presenting some reconstruction formulae. In Section [
three different measurement models for measuring phase space observables are
presented, with emphasis on eight-port homodyne detection. The problem of
reconstructing the position and momentum distributions from the marginal
statistics of phase space observables is considered in Section 5] In Section [6] two
alternative methods for quantum tomography are presented for comparison.
The conclusions are given in Section [7]



Chapter 2

Tomographic aspects of quantum
measurements

2.1 Preliminaries on quantum measurements

In quantum mechanics a complex separable Hilbert space H is assigned to any
physical system. The states of the system are defined as equivalence classes of
preparation procedures and they are represented by positive trace class operators
p with unit trace. We denote by 7 (H) the set of trace class operators and by
S(H) the convex set of states. The pure states are the extreme points of S(H)
and they correspond to the one-dimensional projections. For any ¢,v € H,
we define the rank-one operator |)(¢)| : H — H by |o)(¥|(n) = (Y|n)¢. In
particular, each pure state is of the form |p)(yp| for some unit vector ¢ and we
occasionally speak of vector states ¢.

The observables are defined as equivalence classes of measurements and
they are represented by normalized positive operator measures E : A — L(H)
where A is a o-algebra of subsets of a measurement outcome set Q2 and L£(H)
stands for the set of bounded operators on H. In most cases 2 is a topological
space such as (a subset of) R™ and A is the Borel o-algebra B(£2).

Definition 1. An observable is a map E: A — L(H) such that
(i) E(X) >0 for all X € A,
(i) E(Q) =1,

(iii) E(U2,X;) = Yoo  E(X;) for any sequence (X;):2, C A of mutually
disjoint sets, where the series converges in the weak operator topology.
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The range of an observable thus consists of operators E(X) satisfying 0 <
E(X) < I. Such operators are called effects. The set of effects is a convex subset
of L(H) and is denoted by E(H), that is, E(H) ={B € L(H) | 0< B < I}.
Clearly any effect appears in the range of some observable.

An observable is called sharp if it is projection valued, that is, E(X)? = E(X)
for all X € A. Projection valued measures are also called spectral measures
whereas positive operator measures are sometimes referred to as semispectral
measures. According to the spectral theorem of selfadjoint operators there is a
one-to-one correspondence between sharp observables defined on the real line
and selfadjoint operators acting on H. We occasionally write E# for the spectral
measure of a selfadjoint operator A, that is, A= [z dEA(z). For future use we
note that for all ¥, p € H the map Ey, : A = C, E; ,(X) = (¥|E(X)p) is a
complex measure.

Each pair (p, E) consisting of a state and an observable determines a prob-
ability measure p5 : A — [0,1] via p5(X) = tr[pE(X)], X € A. We adopt
the minimal interpretation according to which pE(X ) is the probability that
a measurement of E performed on the system in a state p leads to a result in
the set X. The empirical content of these probabilities is in terms of relative
frequencies: if we have a sufficiently large ensemble of identically prepared
systems, then the relative frequency of the measurement outcomes lying in the
set X can be approximated by the probability p,'f (X).

The statistical description given by states and observables is the crudest
level of description of a quantum measurement. By taking into account more
details of the measurement it is possible to reach two more levels, each more
detailed than the previous one (for an overview of the quantum theory of
measurement, see [14]). At the next level, one describes the conditional state
changes of the system due to the measurement, conditioned with respect to
the pointer values. These are conveniently implemented by the concept of an
instrument.

Definition 2. An instrument is a map Z : A — L(T(H)) such that
(1) Z(X) is completely positive for all X € A,
(i1) tr[Z(Q)(p)] =1 for all p € S(H),

(iii) T (U2, X;) (p) = Dot Z(Xi)(p) for any p € S(H) and any sequence
(X;)32, C A of mutually disjoint sets, where the series converges in trace
norm.

The range of an instrument thus consists of completely positive linear maps
Z(X) : T(H) = T(H) satisfying 0 < tr[Z(X)(p)] < 1 for all p € S(H).
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Such maps are called operations. An operation ® : T (H) — T (H) satisfying
tr [®(p)] = 1 for all p € S(H) is called a state transformation or a quantum
channel.

Each instrument determines uniquely the associated observable via the
formula tr[pE(X)] = tr[Z(X)(p)], or equivalently via the dual instrument
as E(X) = Z(X)*(I). The instrument contains all the information on the
measurement which is relevant to the object system. However, it does not say
anything about the measuring apparatus.

The most detailed description of a measurement is obtained when the
coupling between the system and the measuring apparatus, the probe, is taken
into account. Suppose that we have a probe system with the Hilbert space IC
in an initial state o € S(K), and we couple the object system and the probe
via a state transformation ® : T(H ® K) — T(H ® K). The measurement
outcome is then determined by reading the value of a pointer observable
Z: A — L(K). The description of the measurement process is thus given
by the 4-tuple (K, o, ®,Z) and the associated observable E : A — L(H) is
determined by the condition

tr [pE(X)] =tr [®(p®@ o)l ® Z(X)] (2.1)

for all p € S(H) and X € A. It is sometimes convenient to allow the pointer
observable to have a value space (€)y,.4p) which is different from that of the
measured observable. In that case one needs to introduce a (measurable) pointer
function f : €2y —  which connects these two spaces. This means that the
effect Z(X) in is replaced by Z(f~'(X)). By taking into consideration
the pointer function we have arrived at a 5-tuple which we define to be a
measurement scheme.

Definition 3. A measurement scheme is a 5-tuple M = (K,0,®,Z, f) where
IC is the Hilbert space of the probe, o € S(K) its initial state, ® : T(H @ K) —
T(H ®K) a state transformation, Z : Ay — L(H) a pointer observable, and
f Qo — Q a pointer function.

Each measurement scheme M defines the associated instrument ZM : A —

L(T(H)) via the formula
TM(X)(p) = tre [B(p® o)1 © Z(F(X))] (22)

where tri[-] denotes the partial trace over the Hilbert space K. Thus, the
observable EM : A — L(H) associated with the scheme is determined by the
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condition
tr [pEM(X)] = tr [TM(X)(p)] = tr [@(p @ o) @ Z(f1(X))] . (2.3)

The associations M < Z <— E are many-to-one defining natural equivalence
classes and reflecting the fact an observable can be measured in a multitude
of ways. However, it is a fundamental theorem of the quantum theory of
measurement that for any observable E there exists a measurement scheme
M such that E = EM [52]. The measurement can even be chosen in such a
way that o is a pure state |@){(¢|, ® is given by a unitary operator U acting on
H ® K, the pointer observable Z is sharp, and f is the identity map. In other
words, E has a measurement dilation

E(X) = VU T ® Z(X)UV, (2.4)

where V, : H — H ® K is the embedding V(¢) = ¢ ® ¢. In the case of a pure
state and a unitary coupling we typically use the notation M = (K, ¢, U, Z, f).

Any two measurements M; and My may be combined sequentially, e.g.,
by first performing M; and then My, to obtain a new measurement M, (see,
e.g., [8]). At the level of instruments this leads to the instrument Z*2 defined
on the product space and determined by the condition [23] §]

TM2(X xY)=T""(Y) o ZM(X), X €AY €A, (2.5)
The observable determined by this sequential measurement is then
EMi2(X x V) =TM2(X x Y)*(I) = TM (X)* (Eo(Y)) (2.6)

where E, is the observable associated to the subsequent measurement. It should
be noted that the observable does not depend on the instrument Z*2, i.e., on any
details of the measurement of E;. The marginal observables E{"2 : A — L(H)
and E)"2 0 Ay — L(H) of EM2 are

EM2(X) = EMi2(X x Q) = Ey(X),
Ey2(Y) = EM2(Q xY) =TM(Q)" (E2(Y)),
which shows that the first margin is the observable measured first whereas the

second margin is a smeared version of Ey, where the smearing is caused by the
first measurement.
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2.2 Generalized standard model

We will now present a generalized version of what is known as the standard
model of quantum measurement theory. Historically the standard model can
be traced back to the book of von Neumann [66]. A modern treatment can be
found, for instance in the book [9, Chapter I1.3.4] and the survey [13]. This
generalization was presented in Article IV.

Let E : B(R) — L(H) be an observable which we wish to measure. Since
E has a dilation (2.4) where the map X — U*I ® Z(X)U is also a spectral
measure, we know that there exists a Hilbert space Hg, a unit vector v € H,
and a spectral measure E* : B(R) — L(H ® Hy), with the corresponding
selfadjoint operator A, such that

E(X) =V, EYNX)V,
where Vi, : H — H ® Hy is again the embedding Vi, (p) = ¢ ® 9.

Let K = L?(R) be the Hilbert space of the probe. For each A > 0 define
the state transformation ®* : T(H ® K) — T(H @ K) via

P (p @ 0) = tryy [ (p @ [U) (Y] @ 0) M

where P is the momentum operator on K, i.e., (Py)(z) = —i¢/(z). Since P
generates spatial translations, it is natural to choose as the pointer observable
the (sharp) position observable Q : B(R) — £(K), i.e., the spectral measure
of the multiplicative position operator (). Due to the coupling constant \ it
is convenient to choose a pointer function fA(z) = A~'z. The 5-tuple M =
(K,0,®* Q, f*) then constitutes a measurement scheme with the intention of
measuring the system observable E. We call this a generalized standard model

for E.

The instrument as well as the observable actually measured can now be
computed from and ([2.3)). For simplicity, we assume that the probe system
is initially in a (sufficiently regular) vector state ¢, that is, o = |¢)(¢|. The
associated instrument and its dual are

PX) = [ K VopViRzde, € T(H),

INX)'(B) = /XVJK;(B®I)KIV¢CZ95, B e L(H),
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where

K, = VA(-A(A — 1)) = / VAG(—M(y — 2)) dEA(y),

for all x € R. The observable actually measured by this scheme is then an
unsharp version p* * E of the intended one, E, defined as the weak integral

pr* E(X) = /,u)‘(X —z)dE(z), X € B(R).

The convolving probability measure is determined by the initial probe state

via JA(X) = (6IQAX)9).

2.3 State distinction power and informational
equivalence

When a measurement of an observable E : A — L(H) is performed on a system
prepared in a state p, the measurement outcomes are distributed according
to the probability measure pE. Thus, if the measurement is performed on a
system whose initial state is unknown we can try to deduce the state from the
measurement outcome statistics. Typically we are able to single out a subset of
possible states, namely those for which the corresponding probability measure
agrees with the measurement statistics. In an ideal case this set would consist
of a single state, but more often than not this is not the case.

We say that an observable E : A — £(H) distinguishes the states p, o €
S(H) if pE # pE. This means that if we know a priori that the system under
consideration is in either of the states, then the state can be deduced from the
statistics of the observable. If an observable E does not distinguish any pairs of
states, it is called trivial. This is equivalent to the existence of a probability
measure u : A — [0,1] such that E(X) = u(X)I for all X € A. Certain
observables can now be compared according to their ability to distinguish
different states.

Definition 4. Let E: Ay — L(H) and F : Ay — L(H) be observables. The
state distinction power of E is greater than or equal to that of F if for any two
states p, 0 € S(H), p;, = ps implies p, = p,. The observables E and F are
informationally equivalent if for any two states p, o0 € S(H), pE = pt if and
only if pf, = pf.

A typical situation which arises in practice is that one wishes to measure
some observable E : B(R") — L(#) but due to the measurement arrangement
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one is only able to measure some unsharp version p * E of it. We have already
encountered this in Section in the case of the standard model. In concrete
applications this unsharpness is often due to physical imperfections in the
measuring apparatus, such as non-unit efficiencies of photodetectors.

The state distinction power of the observable E : B(R") — L(H) is always
greater than or equal to that of p x E. To see this, let p, 0 € S(H) be such
that pE = pE. It follows that their Fourier transforms are also equal, that is,
P, = P, Where

~E 1 —iy-X E
p,(y) = W/e dp,(x).

#*E = px p and the Fourier transform maps convolutions into products,
that is, @ = (2m)"/21p5, we conclude by the injectivity of the Fourier
transform that pg*E = pE,

Even though p*E cannot distinguish any states that are indistinguishable by
E, it may happen that these observables are informationally equivalent. Indeed,
if E is a sharp observable, then E and p * E are informationally equivalent if
and only if supp z# = R™, that is, the support of the Fourier transform of y is
the whole R™ [27].

Since p

2.4 State determination power and
informational completeness

Since quantum tomography deals with the problem of reconstructing the
unknown state of the system, the relevant question is obviously whether or
not an arbitrary state is uniquely determined by the measurement outcome
statistics. We say that a state p € S(H) is determined by the observable
E: A— L(H) if for any 0 € S(H), p, = pg implies p = 0. We denote by De
the set of states determined by E.

Definition 5. Let E: Ay — L(H) and F : Ay — L(H) be observables. The
state determination power of E is greater than or equal to that of F if D C Dg.
The observable E is informationally complete if De = S(H), that is, for any
two states p,o € S(H), p;, = py implies p = 0.

The informational completeness of an observable means that the state
is uniquely determined by the measurement statistics. In other words, an
observable E is informationally complete if and only if the map p — pE is
injective. However, since most of the physically important observables such
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as position, momentum, energy, etc., are not informationally complete, it is
natural to extend the definition to cover sets of observables.

Definition 6. Let E; : A; — L(H) be an observable for all i € T. The set
{Ei | i € I} of observables is informationally complete if for any two states
p, 0 €S(H), pEi = pEi for alli € T implies p = 0.

It is now possible to give examples of informationally complete sets of
observables. For instance, define for each unit vector ¢ € H the two-valued
observable E, via

E.(D) =le)lel,  Eo(0) =1 —lp) (gl

The set {E, | ¢ € H,||¢|| = 1} is then informationally complete. Indeed, if
p,o € S(H) are such that p,* = pg* for all E, then, in particular, (¢|pp) =
(p|op) for all unit vectors ¢ so that p = o.

A remarkable fact is that there exist single observables which are informa-
tionally complete. Certain covariant phase space observables, as seen in the next
chapter, constitute an important class of such observables. It is even possible
to construct discrete observables which are informationally complete [12] [64].
However, it should be emphasized that even though a single observable might
be sufficient to determine the state uniquely, a single measurement outcome is
never enough. This is due to the fact that for any effect B € £(H) there exists
a large class of states p such that the probability tr [pB] is nonzero.

We will next present some mathematical characterizations of the informa-
tional completeness of an observable. We start with the following well known
lemma which is typically used when determining whether or not a given observ-
able is informationally complete. The proof is a straightforward application
of Definition [6] and can be found, for instance, in [7]. Since we use this result
explicitly in the next section, we present a proof here.

Proposition 1. An observable E : A — L(H) is informationally complete if
and only if for any T € T (H) the condition

tr[TE(X)] =0 for all X € A (2.7)
implies T = 0.

Proof. Assume that E is informationally complete and let 7" € T (#H) be such
that tr [I'E(X)] = 0 for all X € A. Since T" can be decomposed as T' = T} + T}
where the T; € T(H) are selfadjoint and thus tr [T;E(X)] € R, it follows
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that tr [T;E(X)] = 0 for all X € A and j = 1,2. Furthermore, each 7} can be
decomposed as T; = TjJr —T where the TjjE are positive so that tr [TjiE(X )] >0
and thus tr [T;"E(X)] = tr [T, E(X)] for all X € Aand j = 1,2. Now consider
a fixed j. By choosing X = 2 we have tr [T]ﬂ = tr [TJ’} so that by the
positivity, if either T;r or T, is zero then so is the other one. If they both are
nonzero, then the operators tr [TJJ’] - TjjE are positive and of unit trace, and
tr [73'] i [T/E(X)] = tr [T}'] i [T, E(X)] for all X € A. It follows from
the assumption of informational completeness that TjJr =T} so that T; = 0.
Therefore T' = 0.

Now assume that T € T(H) is zero if and only if tr [TE(X)] = 0 for all
X € A, and let p,0 € S(H) be such that p5 = p5. Then T'= p — o € T(H)
and tr [TE(X)] =0 for all X € A. This implies that 7' =0, or, p = 0. O

It is obvious from Proposition 1| that informational completeness is somehow
related to the question of the size of the subspace of £(#), or more precisely,
the operator system, generated by the effects E(X). Indeed, as a consequence
of the duality 7(H)" ~ £(H) and the Hahn-Banach theorem, we have that E is
informationally complete if and only if the weak*-closure of lin {E(X)|X € A}
is L(H) [7,164].

Since sharp observables are physically an important class of observables, it
is natural to address the question of their informational completeness. More
generally, we may consider a commutative observable E : A — L(H), i.e., one
which satisfies E(X)E(Y) = E(Y)E(X) for all X,Y € A. Any smearing p1*E* of
a sharp observable constitutes an example of a commutative observable which
is typically not sharp. It is known that when dim(?) > 2, no commutative
observable is informationally complete [12, Theorem 2.1.2]. An even stronger
result holds. Indeed, any informationally complete observable E is necessarily
totally noncommutative, that is |7, Proposition 3],

Com(E) = {p € H | E(X)E(Y)p = E(Y)E(X)p for all X, Y € A} = {0}.

Even though no single sharp observable is informationally complete, one can
try to find sets of sharp observables which would be such. In that case, it
is the noncommutativity which is essential in order to improve the ability
to determine the state. In fact, any family of mutually commuting sharp
observables is always informationally incomplete.

We will next present a physically significant example of a set of sharp
observables, namely the rotated quadrature observables, which satisfies the
condition of informational completeness.
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2.4.1 Example: Rotated quadrature observables

Let H = L*(R) and let Q, P : B(R) — H be the position and momentum
observables, i.e., the spectral measures of the position and momentum operators
@ and P. Since position and momentum are totally noncommutative, it makes
sense to ask whether or not (Q, P) is informationally complete. This problem
was already mentioned in a footnote in [54], and it has since become known as
the Pauli problem. We now know that the answer to this question is negative
and several counterexamples are known (see, e.g., |58, 57, 19, 55| [16]). Due
to the physical significance of the position and momentum observables it is
tempting to ask if we can obtain informational completeness by adding some
more physically interesting observables to this set. It seems to be an open
question whether or not any triple (Q,P,H), where H is a sharp observable,
can be informationally complete. However, informational completeness can be
reached if we allow the number of observables to be infinite. One possibility
for such a completion is given by the rotated quadrature observables.

Let H = 1(Q* + P?) be the Hamiltonian of the harmonic oscillator and
define for each 6 € [0, 27) the rotated quadrature observable Qg : B(R) — L(H)
via

Q(X) = PHQ(X)e ™ X e B(R). (2.8)

In particular, we recover Q = Qp and P = Q.. For any 0,0" € [0,27),
0’ # 0 £ 7, the pair (Qg, Qo) resembles the position-momentum pair in many
ways (see, e.g., [40]). In particular the pair is totally noncommutative and
informationally incomplete. However, by taking a larger set {Qq | ¢ € Z} where
Z C [0,7) is a dense subset we obtain informational completeness |17, 36].

The significance of the quadrature observables is enhanced by the fact
that their measurement has a simple quantum optical realization, namely, the
homodyne detection scheme (see, e.g., [43]). In fact, the experimental recon-
struction of the state of a single mode electromagnetic field using quadrature
measurements was first done by Smithey et al. in their pioneering work [62]
where the vacuum state and a squeezed state were reconstructed. Afterwards
this method has also been used to reconstruct the first number state, i.e., the
single photon state, by Lvovsky et al. [49].



Chapter 3

Informationally complete covariant
phase space observables

In the Hamiltonian formulation of classical mechanics the description of a
physical system is based on the phase space {2 consisting of the generalized
position and momentum coordinates. The points (q,p) € 2 represent the
pure states and the dynamical variables are given by measurable functions
f:Q — R. Furthermore, there are in principle no limitations to measuring the
state in a single measurement. In quantum mechanics the situation is obviously
quite different. To begin with, position and momentum no longer have definite
values but are given merely as probability distributions, and even if one knows
these distributions, they do not determine the state uniquely. We have already
seen that the latter shortcoming may be overcome by taking into account the
set of rotated quadratures, but even in that case one needs infinitely many
different measurements to determine the state. We will next consider a different
approach which makes use of the fact that position and momentum admit
approximate joint measurements. This then leads naturally to study covariant
phase space observables.

3.1 Covariant phase space observables

Consider again a quantum system with a Hilbert space H = L?*(R). Physically
such a space is associated to a spinless particle moving in a single spacial
dimension, or a single mode electromagnetic field. The phase space of the
system may be taken to be Q = R?, and it thus consists of pairs (g, p) of “position”
and “momentum” coordinates. The phase space translations, i.e., the position
shifts and velocity boosts, are represented in H by the state automorphisms
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p = g (p) = W(g,p)* oW (q,p) where W(gq,p) = e'% e~1"¢? are the Weyl
operators. The map (¢,p) — W (q,p) is a strongly continuous irreducible
projective unitary representation which is square integrable, and thus for each
S, T € T(H) the function (q,p) — tr[SW(q,p)TW (q,p)*] is integrable. In
fact, we have (see, e.g., [68, Lemma 3.1])

% tr [SW (g, p)TW (¢, p)*] dqdp = tr [S]tr [T7].

In particular, if 7' is positive and of unit trace, then the map G” : B(R?) — L(H)
defined as

1
G'(2) = %/ZW(q,p)TW(q,p)*dqdp, Z € B(R?),

is an observable.

The observables G have the important property of being covariant with
respect to the phase space translations. This means that given a system in a
state p, the probability of obtaining a measurement outcome from a translated
set Z+ (g, p) is the same as the probability of obtaining the result from Z when
the system is in the translated state g p)(p). This is the defining property of
a covariant phase space observable:

Definition 7. An observable G : B(R?) — H is a covariant phase space
observable if

W(q,p)G(Z2)W(q,p)" = G(Z + (¢,p)) (3.1)
for all Z € B(R?) and (q,p) € R%

We have already noted that any G” is covariant, but the converse statement
is also true. Namely, for any covariant phase space observable G there exists
a unique positive trace one operator T such that G = GT [29, [68] (for more
recent proofs, see [18, [37]). We say that T is the generating operator of G”.

The Cartesian margins of G'' are the unsharp position and momentum
observables GI' = p? * Q and GI = vT % P, where the convolving measures
are determined by the generating operator via p?(X) = tr[TQ(—X)] and
vI(Y) = tr [TP(=Y)]. Thus, GT is a joint observable of u? * Q and v x P. Tt
is also known that if u, v : B(R) — [0, 1] are probability measures, then the
corresponding unsharp observables 1+ Q and v *P have a joint observable if and
only if u = p? and v = T for some generating operator T" [16]. In this sense
the covariant phase space observables serve as architypes of approximate joint
observables of position and momentum. Indeed, it has been shown in [69] using
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a distance between observables as the quantifier of the level of approximation,
that the optimal approximate joint observable is in fact a covariant phase space
observable. The same conclusion was later obtained with a different measure of
approximation, namely, the error bar width [15]. The question concerning the
optimality of approximate joint observables of course predates these results,
and has been addressed for instance in [30]. For a review on these issues we
refer to [10].

The fact that certain phase space probability densities arising from covariant
phase space observables determine the state uniquely has been known for
a long time. Indeed, already in 1940, Husimi introduced the phase space
representation which is nowadays known as the Husimi Q-function [31]. In
modern terms it is simply the probability density corresponding to the phase
space observable generated by the ground state of the harmonic oscillator,
the vacuum. Historically this predates the introduction of covariant phase
space observables (see, e.g., [22], 28] B0] and references therein). Since these
observables are in one-to-one correspondence with the generating operators, it
is only natural that the informational completeness of G’ can be characterized
in terms of T" only. As it turns out, a convenient way to present the condition
is via the Weyl transform of T, i.e., the function (¢, p) — tr [TW (g, p)], which
uniquely determines 7.

Before discussing this further, we note that the existence of informationally
complete phase space observables opens up the possibility of constructing
classical phase space representations of quantum mechanics. The idea of
representing quantum mechanics in phase space has a long history dating all
the way back to Wigner’s famous paper [71], and its subsequent developments
such as [51, 56]. However, in these approaches one is lead to representing
states as quasiprobability distributions, i.e., functions which take also negative
values. This is due to the requirement of obtaining the position and momentum
distributions as the margins. Of course this is an artificial requirement in
quantum mechanics and thus it is natural to drop it and to consider instead
the operational probability distributions arising from informationally complete
covariant phase space observables. Such an approach was initiated by Ali
and Prugovecki in [2] (see also [64]). More recently, the idea of representing
quantum mechanics in terms of operationally sensible probability distributions
has regained some attention due to the development of the so called tomographic
representation of Man’ko et al. (see [32] and references therein).
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3.2 Characterization of informational
completeness

Recall that the informational completeness of the observable G means that
any state p € S(H) is uniquely determined by the probability measure pgT.
Since this probability measure is absolutely continuous with with respect to
the Lebesgue measure on the phase space, an equivalent condition is that
p is determined by the probability density (g, p) — %tr (oW (q,p)TW (q,p)*].
The key observation needed for obtaining a characterization for informational
completeness is that the symplectic Fourier transform of this density is

1

> e W=Dy [pW (¢, p)TW (¢, p')*] dd'dp’ = tx [pW (g, p)] tr [TW (¢, p)].
(3.2)

From this it is clear that the relevant property is the size of the zero set
Z2(T) ={(q.p) € R* | tr [TW (g, p)] = 0}

of the Weyl transform of the generating operator 7. Indeed, we make the
following simple observation.

Proposition 2. Let GT and G° be covariant phase space observables such that
Z(T) C Z(S). Then the state distinction power of GT is greater than or equal
to that of G°.

Proof. Let p,o € S(H) be such that pE‘T = pST. By taking the symplectic
Fourier transforms, we see that tr [pW(q,p)] = tr[cW (g, p)] for all (¢,p) €
Z(T)* =R2*\ Z(T). Since Z(S)¢ C Z(T)¢, we have tr [pW (q, p)] = tr [cW (g, p)]
for all (¢,p) € Z(S), that is, pgs = pS by [3-2). O

Since we know that there exist informationally complete covariant phase
space observables, Proposition [2| shows that any GT for which Z(T) = () must be
informationally complete. This was recognized in [68], where the corresponding
generating operators were called regular. Despite some claims concerning the
necessity of regularity [2I], Ali and Prugovecki actually proved in [3] that the
weaker condition of Z(T') being of Lebesgue measure zero is already sufficient.
It was shown in Article V that the condition can be further relaxed so that the
necessary and sufficient condition is that Z(7T') does not contain an open set,
or equivalently, that Z(7T") has a dense complement.The proof is included here
for convenience.
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Proposition 3. The covariant phase space observable G is informationally
complete if and only if Z(T') does not contain an open set.

Proof. We use Proposition 1| to prove the result. Assume first that Z(7") does
not contain an open set, and let S € 7(#) be such that tr [SG"(Z)] = 0 for
all Z € B(R?), so that tr [SW(q,p)]tr [TW(q,p)] = 0 for all (¢,p) € R? by
(3-2). It follows that tr [SW (g, p)] = 0 for all (¢,p) € Z(T)¢ which is a dense
set. Since the Weyl transform is a continuous function, it must be identically
zero. Thus, S = 0.

Suppose now that Z(T) contains an open set U. We must construct a

nonzero trace class operator such that its Weyl transform is nonzero only inside
U. To that end, let Sy € T(H) be regular. For any f € L'(R?) define

f*Sy= /f(q,p)W(q,p)SoW(q,p)* dqdp

~

so that f * Sy € T(H) [68]. Now tr[f + SoW (q,p)] = 27 f(—p, q)tr [SoW (¢, p)]

~ ~

so that Z(T) = {(¢,p) € R? | f(—p,q) = 0}. We can now choose f to be, for

~

instance, a nonzero compactly supported C*°-function such that f(—p,q) =0
for all (¢,p) € U°. We then obtain f via the inverse Fourier transform, and our

~

choice of f guarantees that f € L'(R?). Hence, we have a nonzero operator
f* 8o € T(H) such that tr [f * SoGT(Z)] =0 for all Z € B(R?). That is, G*
is not informationally complete. ]

Note that Proposition [3| does not, in itself, show that the condition of Ali
and Prugovecki is not necessary, since it could happen that these conditions
were actually equivalent. This question was resolved in Article V where a
thorough analysis was performed on the three possible characterizations of the
smallness of the zero set, namely, the algebraic, the measure theoretic, and the
topological one:

(i) Z(T) is empty,
(ii) Z(T) is of measure zero,
(i) Z(T') does not contain an open set.

One of the important results in Article V was the following proposition, where
the failure of the converse implications was proved by constructing explicit
counterexamples. The first claim concerning the implications is clearly true.
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Proposition 4. Let T € T(H) be positive and of trace one. Then (i) = (ii) =
(731), but neither of the implications can be reversed.

This treatment can naturally be carried out also in the case of a more general
phase space. Indeed, the generalization for a phase space G x G where G is a
locally compact Abelian group (which is Hausdorff and second countable) and
QA is the dual group, is straightforward and Proposition |3/ still holds. However,
the statement about the failure of the converse implications in Proposition
is not always true. In Article V this question was considered in the case
that G is a finite product of copies of R, T, Z, and a finite group I, that is,
G = RF x T! x Z™ x F". It was shown that if either of the converse implications
(i1) = (7) or (iti) = (di) is true, then G is necessarily finite.

Mathematically, the problem of informational completeness of phase space
observables can be viewed as part of a more general framework. Indeed, the
informational completeness of GT is equivalent to the weak*-density of the
linear combinations of the translates W(q, p)TW(q,p)* in L(H). Therefore it
is natural to ask about the density of the linear combinations in the trace class
T (H), the Hilbert-Schmidt class HS(H), or more generally in the Schatten
p-classes T,(H), with respect to the appropriate topologies. As shown in
Proposition 4 of Article V, the conditions (i) — (i) give the characterization
of the density in T(H), HS(H) and L(H). This is the operator analogue
of the classic problem in harmonic analysis concerning the density of linear
combinations of translates of a function f € L'(R?) N LP(R?) in LP(R?) and,
in particular, the possibility of characterizing this density property in terms
of the zero set Z(f) = {(q,p) € R?* | f(q,p) = 0}. This problem dates back to
Wiener’s classic paper [70] where conditions (i) and (i7) for Z(f) were shown to
be necessary and sufficient for the density in L*(R?) and L?*(R?), respectively.
Condition (i#7) is again equivalent to the weak*-density in L>°(R?) as shown
for instance in [24]. As a matter of fact, this whole problem concerning the
operators can be mapped to the corresponding problem for functions (see
Proposition 5 of Article V). In particular, based on a recent result for functions
[46], it was shown in Proposition 7 of Article V that for 1 < p < 2 the density
property in 7,(#) cannot be characterized in terms of the zero set Z(T').

3.3 Reconstruction formulae

Even though the measurement of an informationally complete observable forms
the foundation of quantum tomography, from the practical point of view it is
merely the first step. In many cases, particularly those where the probability
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distribution is not the typical Q)-function, it may be difficult to say anything
about the state based on the statistics. For this purpose, it is desirable to
cast the data into a more suitable form. In other words, one seeks to find
a reconstruction formula which allows the computation of the state in some
suitable representation. We present two methods for deriving such formulae:
the Fourier theory, as already suggested by the above treatment, and the
method of infinite matrix inversion. Our main concern is finding the matrix
elements of the state with respect to the basis {h, | n =0,1,2,...} consisting
of the Hermite functions.

3.3.1 Fourier theory

Let G be informationally complete so that Z(T') does not contain an open
set, and let p € S(H) be an arbitrary state. From (3.2)) we obtain the Weyl
transform of p as

1 1

tr [oW - - = —i(ar'=a'p) gnC" (o o 3.3
W (0.0)) = o 5 ] ¢ oS (1) (33)

for all (¢,p) € Z(T)°. Note that we have here used the fact that tr [TW (q,p)] =
tr [TW (q,p)*] since T is self-adjoint. Now the set Z(T)¢ is dense in R?, and
the Weyl transform (q,p) — tr[pW(q,p)] is a continuous function, so that
by taking appropriate limits on the right-hand side of we are able to
determine tr [pW (g, p)] for all (¢, p) € R%

The Weyl transform for trace class operators is very much the analog of
the Fourier transform for integrable functions (see, e.g., [68]). In particular,
it maps trace class operators into continuous functions vanishing at infinity.
However, due to the square-integrability of the Weyl representation, the Weyl
transform is also square-integrable. The Plancherel theorem then states that it
can be extended to a unitary operator HS(H) — L?(R). In particular, for any
A, B € T(H) C HS(H), the Hilbert-Schmidt inner product is given by

ABuson = tr(AB) = 5 [ GTAW g ol (BW(a.p)] dadp. (3.0

™

Now the matrix elements p,, mir = (hm|phm+r) can be calculated from the
Weyl transform of p using (3.4). In the case that Z(T') is of measure zero, we
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can combine this with (3.3)) to get the expression

= (hon W (0, ) P2
Pm,m+k 472 tr [TW(Q7 p)*]

{ / e~ =) oS (¢/ )| dgdp. (3.5)

In the case that Z(7T') merely has dense complement but positive measure we
may still consider (3.5)) but the integrand needs to be determined using the
limit procedure described at the beginning of this section.

3.3.2 Method of infinite matrix inversion

Another possible way to derive reconstruction formulae is given by the so-called
method of infinite matrix inversion used in Article II (see also |38, 60]). We
demonstrate this in the case where the generating operator is the number
state Ts = |hs)(hs|, s = 0,1,2,.... In this case it is convenient to consider
the situation in the complex plane. Indeed, we identify C ~ R? via z =

\/Li(q +ip) and use the notation D(z) = W(q,p). In particular, we may use the

annihilation and creation operators a = \%(Q +iP) and a* = \%(Q —1iP) to

write D(2) = €** %%, Let N = a*a be the number operator related to the basis
in question and define the rotation operators R(#) = eV for all § € [0,27).
Then, by switching to the polar coordinate representation z = re® we have
D(re) = R(O)D(r)R(6)*.

Now consider the observable G*=. For any state p € S(H) the corresponding
probability density is then (up to a scaling)

gf)(rea) = (hy|D(re™)* pD(re)hy).

If we now expand the state as p = > o pmn|him) (hn| we obtain the form

go(re”) = > P (| D(r) ) (| D(r) )

m,n=0

= Z pm,new(n_m) fs,m (r)

m,n=0

where f2 (1) = (hs|D(r)*hm)(hn|D(r)hs). The idea behind the method of
infinite matrix inversion is to manipulate the above expression into a suitable
(infinite) matrix relation which then yields the matrix elements of the state
through the inversion of the matrix in question.
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The first step is to calculate the cyclic moments of the distribution:
1 2m

% szQZ (T€ de = Z pn-‘rk,nfs,n—&-k (T)
n=0

In general, the next step would be to multiply the above by a suitable function,
and then to either integrate or differentiate with respect to the free variable r.
The goal is to manipulate the relation into a form

00
Yp = E Apn L,
n=0

so that if the matrix (ayn)p5,—¢ has an inverse (by);°

n,p=0’
o0
n — E bnpyp-
p=0

For the present purpose, we need to consider separately the cases Where k is
even or odd. In both cases we first make the change of variables x = r2. For the
even case (k = 2[), we multiply the kth cyclic moment by e* and dlfferentlate
with respect to z. After performing the necessary matrix inversion, we end up
with the reconstruction formula

oo 07T L[ o 0
N Y = b x e s 9\ 40
Pn+2l, 2; W Hptatl {e 27T/0 g (Ve }

p=

we can recover the
Tp:S as

=0

In the odd case (k = 20 + 1) the suitable function for multiplication is y/ze”
which then eventually gives the formula

ap+s+l+1

2T
Pnt204+1n = Z bs ! axp+s+l+1 |:\/_6 / eZ(QH—l)egZ(\/Eew) d9:|
0

=0

The details concerning the derivation and in particular the matrices (bfzzlf)n =0
are given in Article II.



Chapter 4

Measuring covariant phase space
observables

In this chapter we present three measurement models realizing the measurement
of a covariant phase space observable. The first one is the Arthurs-Kelly model
of an approximate joint measurement of position and momentum, the second
one is a sequential measurement scheme, and the third one is a quantum optical
realization using an eight-port homodyne detector.

4.1 Arthurs-Kelly model

The Arthurs-Kelly model [4] is probably the first measurement model for an
approximate joint measurement of position and momentum. This model was
first presented by Arthurs and Kelly and has been further developed by Busch
[5, 6] (see also [9, pp. 150-152]). In this model, a system with the Hilbert
space H = L?(R) is coupled to two independent probe systems with the Hilbert
spaces H; = Hy = L*(R) via a unitary coupling of the form

U = e*i/\Q®P1®I2+iMP®11®Q2

As the pointer observables we choose the position Q; of probe 1 and the
momentum P, of probe 2, together with the pointer function f : R? — R?,
f(z,y) = (A tz, u~ly). If we then assume that all three systems are initially in
the vector states ¢ € H, ¢1 € Hi and ¢ € Hs, and denote by ¥ = ¢ ® ¢ ® ¢
the initial vector state of the combined system, the measured phase space
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observable G : B(R?) — L(H) is determined by the condition
(PIG(X x YV)g) = (UU[I @ Qi(AX) @ Po(pY)UW),

for all X,Y € B(R).

Using the fact that the state after the measurement interaction is given in
the position representation as

(UY)(2,y, 2) = p(x + pz)d1(y — A — 3 p2)da(2),

one can verify that G transforms covariantly under the action of the Weyl
operators. Thus, G = G’ for some generating operator 7. To calculate the
explicit form of T', we note that

(p|GT(X x Y)p) = / (I®1® FQU\IJ)(x,y,Z)|2dxdydz

RXAX xpY

where the Fourier transform is taken with respect to the third coordinate,

UL @RUY)(z,y,2) = \/% / e (x + pw) g1 (y — Ax — A pw) go(w) duw.

By assuming that the initial probe states ¢ and ¢, are sufficiently well behaving,
we get by a direct calculation

(p|GT(X x Y)p)

— 5 [ ([ O w9 0,2y ) dwi ) g

21

where

T(w, w') = / ST —w0)h@ + Wz —w))dh(e +w)dr  (41)

and we have denoted ¢7(z) = vV A¢1(Az) and ¢h(x) = \/iﬁgbg(ﬁ) In conclusion,

the phase space observable measured in the Arthurs-Kelly model is G where
T is the integral operator defined by the kernel (4.1)).
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4.2 Sequential measurement scheme

The sequential measurement scheme consists of a standard model type meas-
urement of unsharp position followed by any sharp momentum measurement.
Recall from Section 2.2] that the measurement scheme for the standard meas-
urement of unsharp position is M = (L*(R), ¢, e~ Q, f*) where P, is the
momentum operator on the Hilbert space of the probe and the pointer function
is fA(z) = A'2. The instrument associated to this scheme is then in the dual
form

I*(X)*(B):/XK;Bdex, B e L(H),

where K, = VA¢(=\(Q — z)), and the measured observable is the unsharp
position p* x Q with u*(X) = (¢|QAX)¢).

Suppose now that after the first measurement we perform any measurement
of the sharp momentum P. This results in the sequential observable

GX xY)=TX)"(P(Y)), X,Y€B(R),

which is again a covariant phase space observable so that G = G” for some 7.
Now for any ¢ € ‘H we have

(T (X) (P(Y))g) = /X N FR ) e dy

and a direct calculation gives

1
V2T

where ¢, () = VA ¢(—Az) so that

(FE.9)(y) = —==e "2 (oW (2, 9)"¢)

(6| G(X X Y)g) = — /X @l (o)) o dy,

T om

In other words, G = G with T = |¢,)(,|.
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local oscillator
—

signal

Figure 4.1: Balanced homodyne detector

4.3 Eight-port homodyne detection

4.3.1 Balanced homodyne detection

The balanced homodyne detector is a standard tool in quantum optics (see,
e.g., |43 pp. 85-97]). The success of this scheme is based on the fact that it can
be used to measure the field quadratures, that is, the quadrature observables
Qp. As depicted in Figure in balanced homodyne detection a signal field is
mixed with an auxiliary field of a local oscillator by means of a 50 : 50 beam
splitter, and the (scaled) photon number difference between the output fields is
measured. By assuming that the auxiliary field is a strong coherent field, that
is, a laser with high intensity, the measurement statistics is approximately that
of a quadrature observable.

To make things more precise, let H and H... be the Hilbert spaces of the
signal field and the auxiliary field, respectively. We use the photon number
basis {|n) |n =0, 1,2, ...} for each mode and denote by N and N, the number
operators for the modes. Assume that the auxiliary field is in the coherent
state |z), z € C, defined by the expression

2|2

|2y =e 2 Z\j%m.

n=0
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The beam splitter is modelled by the unitary operator U determined by its
action on the tensor product of coherent states:

Ulw) @ |2) = | 5(w = 2)) @ [ F5(w + 2)) (4.2)

for all w, z € C.

The detector involves two photodetectors D; and D, with quantum effi-
ciencies €1,¢6; € (0,1]. Each photodetector thus measures the approximate
photon number, given by the detection observable (see [9, pp. 177-180] or [43],
pp. 79-83])

€4 . m n m—n
wo =3 (1)t - )l .

and we are interested in the scaled number differences. In particular, the set of
possible measurement outcomes is taken to be

1 n m
Q=¢————)|mn=0,1,2,...
{\/§|Z| (62 61)’ }

and the detection statistics is represented by the observable E., ., : B(R) —
L(H ® Haux),
Eoa(X) =D _En@E?

X

where the summation is over those m,n for which f| | (ﬁ — —> e X.

The signal observable E?, , : B(R) — L£(H) is now given by the measurement
dilation formula

E: (X)) =V U'E, (X)UV, (4.3)

€1,€2
where V, : H — H ® Hauy is the embedding ¢ — ¢ ® |z). To consider rigorously
the high-amplitude limit |z| — oo we adopt the approach presented in [35],
that is, we consider the limit weakly in the sense of probabilities. In the
following definition the symbol X denotes the boundary of the set X, that is,
0X = X N X¢ where X¢ is the complement of X.

Definition 8. A sequence (E;);en of observables E; : B(R™) — L(H) converges
to an observable E : B(R") — L(H) weakly in the sense of probabilities if

lim E;(X) = E(X)

j—)OO

in the weak operator topology for all X € B(R™) such that E(0X) = 0.
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This convergence means that given any signal state p, the corresponding
sequence of probability measure (p,Ej )jen converges weakly to the measure pE.
In other words, for any bounded continuous function f : R — R we have

i [ (o) dp (x / f(x) dpE (s

j—o0
Now fix the phase 6 € [0,27) of the local oscillator and let z; = r;e®
where (r;);en is an arbitrary increasing sequence of positive numbers such
that lim; ,o7; = oo. If ¢ < 1 or €2 < 1 define the probability measure
Heyer : B(R) — [0, 1] via

5 _ 2e1e9
_z€1€2 €1 —2€1€e9+te€

6 1—=€1€2 2 €T
l’[’517€2 \/ m(e1—2€1€2+€2) ’

and let 111, be the Dirac measure concentrated at the origin. We can now
state the result concerning the observable measured in the high-amplitude limit.
The result was proved in [35] for ideal detectors (e = €5 = 1), and this was
generalized to the case of non-unit quantum efficiencies in Article III.

Proposition 5. For all ¢1,e3 € (0,1] the sequence (E& ,)jen converges to
ey.eo ¥ Qo weakly in the sense of probabilities.

4.3.2 Eight-port homodyne detection

The eight-port homodyne detector is, vaguely speaking, a combination of two
balanced homodyne detectors (see, e.g., [43, pp. 147-159]). A signal field is
mixed with a reference field using a beam splitter, and the quadratures Q and
P are measured on the output fields using balanced homodyne detection. The
measured observable then turns out to be a covariant phase space observable
whose generating operator depends on the state of the reference field, and by
varying this state any phase space observable can be measured [34] (This result
can also be found already in |30, Chapter IIL.6] although no direct reference to
the quantum optical realization has been made.). For this reason this scheme
is also known as double homodyne detection. Now let us go into the details of
this setup.

The eight-port homodyne detector consists of four input modes, four 50 : 50
beam splitters, a phase shifter, and four photodetectors D; with quantum
efficiencies ¢; € (0, 1], see Figure E Let p and o be the states of the signal
and reference fields and let the local oscillator be in the coherent state |v/2z).
In this more complicated setup we use the notation U;; for the beam splitter,
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Figure 4.2: Eight-port homodyne detector

where the subscripts refer to the primary and secondary input modes, that is,
the first and second terms in the tensor product in (4.2). In Figure the
dashed line represents the primary input mode. The phase shifter providing a
phase shift 6 € [0, 27) is modelled by the rotation operator R(f) = V.

We assign to each detector D; a quantum efficiency €; € (0, 1] so that the
detection is represented by the biobservable

(X,Y) = Be o (X) @ By ey (V).

The unique signal observable E?*? : B(R?) — L(H) determined by this setup

can be expressed in terms of the homodyne observables (4.3). Indeed, the
observable is determined by the condition

tr[pE7* (X x V)] = tr[Usa(p @ 0)URLEZ, ., (X) ® Exf, (V)]

€1,€3 €2,€4

for all X x Y € B(R?).
Proposition |5 now allows one to calculated the high-amplitude limit ob-
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servable. Assume that the phase shift provided by the phase shifter is 6 = 7
(an arbitrary phase shift leading to covariance with respect to a different rep-
resentation has been treated in [42]). Let € be a collective symbol for the set
{€1, €2, €3, €4} of efficiencies and define the probability measure p. : B(R?) —
[0,1] by
/’LE(X X Y) - I[’LelaES(%X)M527€4(\/L§Y)7 X X Y E B(R2)

Denote by C' the conjugation map, that is, (Cy)(z) = ¢(z). Let (r;),en be again
an arbitrary increasing sequence of positive numbers such that lim;_,,, r; = oo.
The following proposition then shows that the high-amplitude limit observable

is a smeared version of a covariant phase space observable. The proposition

was first proved in [34] for ideal detectors and the general case was proved in
Article ITI.

Proposition 6. The sequence (E®"™/2);cy coverges to i,
the sense of probabilities.

% GC7C™" weakly in

It should be noted that the covariance property of an observable is not
affected by the smearing. Indeed, the observable p, * G7C™" still satisfies the
covariance condition , so it is generated by a unique positive trace one
operator. It was shown in Proposition 4.1 of Article III that pu. * GCoC™ =
Gre*CoC™" where the convoluted state [68] is defined as

pex CoC™l = /W(q,p)CUC”W(q,p)*due(q,p)-

From the tomographic point of view an important point is that the state
distinction power of the high-amplitude limit observable does not depend on
the quantum efficiencies of the detectors. This is due to the Gaussian form
of the convolving measure p. which in turn results from the binomial form of
the unsharp photon number observable. All in all, we have the following result
from Article III.

Proposition 7. The observables ju. * GE7C~" and GC7C" are informationally
equivalent. In particular, p. * GE7C™" is informationally complete if and only if
GOoC s informationally complete.

Using Proposition [3| and the simple observation that C~'W(q,p)C =
W (q,—p) we get the following corollary.

Corollary 1. The observable . * GOoC™ s informationally complete if and
only if Z(o) does not contain an open set.



Chapter 5

Position and momentum
tomography

Even though the noncommutativity of position and momentum observables
denies the possibility of measuring them jointly, the existence of informationally
complete observables guarantees that the position and momentum distributions
can be reconstructed from the statistics of a single measurement. However, since
the pair (Q, P) is far from being informationally complete, one might expect
that a great deal of redundancy is included in the statistics of an informationally
complete observable. Indeed, one should be able to determine the position and
momentum distributions more directly and, in particular, with less information.
In this chapter we consider the possibility of reconstructing the distributions
from the marginal statistics of covariant phase space observables.

5.1 On the connection to informational
completeness

Consider a covariant phase space observable GT with the margins u * Q and
vT % P. A minimal requirement for reconstructing the position and momentum
distributions from the marginal statistics is that the marginal observables are
informationally equivalent with Q and P. Written in terms of the convolving
measures, we need to require that supp i’ = supp?? = R. The Fourier
transforms of the measures can be given in terms of the Weyl transform of the
generating operator:

GlTW(O,—p),  77(q) = ——ta[TW (g, 0).

oL 1
b= o Vor
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Now the informational completeness of G” is obtained whenever the support
of (q,p) — tr[TW(q,p)] is R? whereas the above condition for informational
equivalence concerns only the restrictions of this function to the coordinate
axes. Therefore there is no a priori reason to assume that only informational
complete measurements allow the reconstruction of the position and momentum
distributions. The following example from Article VI shows that informational
completeness is in fact unnecessary.

Let ¢ = X(_1/21/2), the characteristic function of the interval [—3, 1], and
define

1 1
T == Z1o)(3l.
2|s0><<p\+ 2!<p><90|

Consider the margins of GT. Now the Fourier transforms of the convolving
measures are given by

1 sin(p/2)

sin(p/2
{ 2&(1—|p|+%), when |p| <1
2v2n  p/2

otherwise.

This shows that the set of zeros for the above function is countable and
thus the support is R (see Figure . In other words, the margins are
informationally equivalent with sharp position and momentum. However, G*
is not informationally complete, since tr[TW(q, p)] = 0 whenever |¢| > 1 and
p| > 1.

Figure 5.1: The plot of il as a function of p.
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Article VI contains also another result, which shows that the informational
completeness of a G does not guarantee that the margins are informationally
equivalent with their sharp counterparts. This means that if one wishes to
reconstruct the position and momentum distributions from the statistics, then
it is not necessarily the informational completeness which ought to be sought.
That is, even though these distributions can be obtained by first reconstructing
the state, the methods presented in the next section do not require this. Indeed,
the distributions can be reconstructed directly from the marginal statistics.

5.2 Reconstructing position and momentum

We will next consider reconstructing the position and momentum distributions
from the marginal statistics of a covariant phase space observable. We focus
on two methods: using the Fourier theory and using the statistical method of
moments.

5.2.1 Fourier theory

Let GT be a covariant phase space observable such that u” x Q and v7 * P are
informationally equivalent with Q and P, that is, supp i’ = supp?! = R. Let
p be an arbitrary state and consider the first marginal observable.

By taking/th\e Fourier transform of the corresponding probability measure
we obtain (u” x pQ)(p) = \/ﬂﬂT(p)ﬁS (p) for all p € R. It follows that for all
p € R such that u”(p) # 0 we have

—

1 (u*pR)(p)

Vor it (p)

Since /p\f} is a bounded continuous function and supp i’ = R, we may take
appropriate limits to determine ]58 (p) for all p € R. Since the Fourier transform
is injective, this then determines pg uniquely.

(5.1)

P (p) =

Of course, if we want to obtain explicitly the position distribution, then
we need the integrability of the right-hand side of which is not always
guaranteed. However, if for instance p = 22:1 Cn|tn) (1n| where each 1, is a
finite linear combination of Hermite functions, then the position distribution
T Z’:L:1 Cn|tn(x)]? belongs to the Schwartz space S(R), and hence also the
Fourier transform is in S(R). In particular, since S(R) C L'(R) we may use



40 Position and momentum tomography

the Fourier inversion theorem to obtain the position distribution

é s L[ i) (D)
Sl = 5 [ e

for almost all x € R. Note that by [26, Theorem 1] the states of the above
form are dense in the set of all states. A similar treatment shows that we can
reconstruct the momentum distribution from 7 x pE.

5.2.2 Method of moments

The statistical method of moments was presented in this context in [11], and
was further studied in Article I. The method is based on the fact that under
suitable assumptions it is possible to reconstruct, for instance, the moments
p/?[k] = [¢* dp/?(q) of the position distribution from the moments of the
measured marginal distribution. The obvious downside of this method is that
one needs to make the strong assumption that all the moments are finite. Even
under such assumption it is not guaranteed that the probability distribution
is uniquely determined by its moment sequence. Indeed, it may happen that
two different probability measures have the same moment sequences. However,
these problems vanish if the measures in question are exponentially bounded.

Recall that a probability measure p : B(R) — [0, 1] is said to be exponen-
tially bounded if there exists an a > 0 such that

/e“lw du(z) < oco.

According to [41, Proposition 2| this is the case if and only if there exist
constants C, R > 0 such that the moment inequality

\u[k]| < CR"E! (5.2)

holds for all £ € N. As shown, for instance in [61, Proposition 5| an exponentially
bounded measure is always uniquely determined by its moment sequence. That
is, if v : B(R) — [0, 1] is another probability measure such that v[k] = p[k] for
all k € N, then v = pu.

Consider again G” and suppose that p is a state such that marginal probab-
ility measures p” % pQ and v” pf are exponentially bounded. The kth moment
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of, say, the measure pu’ * p,? can now be calculated as

k

TETNICESY (:) 1Tk — n]pQ[n).

n=0

From this expression the moments of the position distribution can be solved
recursively which gives

k-1

po[k] = (u" *p2) (k] = ) (i) p"' [k —nlpn].

n=0

In other words, we are able to calculate the moments from the moments of the
measured marginal statistics. If we know a priori that pg’ is determined by the
moment sequence, then we have actually determined the position distribution.
The same treatment can of course be carried out for the second margin. Note
that if the convolving measures p? and v? are exponentially bounded, then
the marginal distributions are exponentially bounded whenever p/? and p5 are
such. Since this is the case for all finite mixtures of vector states which are
finite linear combinations of Hermite functions, we find that in the case of
exponentially bounded convolving measures, this method works for a dense set
of states.



Chapter 6

Remarks on other reconstruction
methods

Apart from the use of informationally complete phase space observables, there
are also other methods for determining the unknown state of a system. In this
chapter we consider two methods, the first one uses the rotated quadrature
observables whereas the second one uses the so-called weak values of observables.

6.1 Rotated quadrature observables

In quantum optics, perhaps the most used method for quantum tomography
uses the set of rotated quadrature observables {Qq |6 € [0,27)}. From the
experimentalist’s point of view this is quite appealing since the experimental
realization of a quadrature measurement is simple; one may use a single balanced
homodyne detector where by varying the phase of the coherent reference field
one can measure each Q. There are several possible ways to reconstruct the
state from the quadrature statistics. The original idea of Vogel and Risken [65]
is based on the observation that the quadrature distributions are obtained from
the Wigner function of the state via the Radon transform. Therefore, if one is
able to invert this transform, then one can calculate the Wigner function from
the measurement statistics.

In [20], D’Ariano et al. proposed a different method which allowed the
calculation of the matrix elements with respect to the number basis directly
from the quadrature data. This was improved and generalized in [45] allowing
the calculation of the matrix elements with respect to any basis. The main
idea is that suitable “pattern functions”, depending on the chosen basis, are
averaged with respect to the quadrature data. In [38] a mathematically rigorous
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derivation lead to the same reconstruction formula for the number basis. We
will now present this formula.

Let p € S(H) and for each 6 € [0, 2) let © — ¢,(z,8) be the density of the
probability measure X +— tr [pQy(X)]. The function ¢, : R x [0,27) — R is
then integrable and, in particular, the integral

1 2 )
k ik0
= — ) do
q,(7) o /0 e qp(x,0)
exists for all £ = 0,1,2,... and almost all x € R. Now let daw : R — R denote
the so-called Dawson’s integral [63, Chapter 42|, that is,

daw(z) = e / e’ dt
0
and define the quantity E’;’m, for k,m=20,1,2,..., via
—km __ (k+2m+1) k
=y = Q/daw (z)q,(x) dx

where daw**2™*1 denotes the (k 4 2m + 1)th derivative of Dawson’s integral.
Then, the matrix elements of p can be expressed as

+E S (n Ehm
em = (—1)F (n— S
Provn = (=1) 2kn mZ:o (m) 2m(k +m)!

This is the reconstruction formula appearing in both [45] and [3§].

Note that even though a finite number of quadratures is never enough
to determine a completely unknown state, some prior knowledge may allow
unique state determination from finitely many measurements. Indeed, if we
know that the matrix representation with respect to the number basis is finite,
then only finitely many quadratures are needed [44] [38]. Since any state can
be approximated by a finite matrix, it is often in practise justified to make
the a priori assumption of finiteness. In any case, no real detector can detect
arbitrarily high energies and only finitely many measurements can be performed.

6.2 Reconstruction via weak values

The concept of the weak value of an observable originates from the work of
Aharonov et al. [I]. The intuitive idea behind the weak value of a sharp
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observable E4 : B(R) — L£(H) is that in addition to preparing the system to a
state ¢ € H, which is viewed as a preselection, and performing a measurement,
we postselect “only those systems which are in a given state n € H”. If the
measurement performed between the pre- and postselection is weak (in some
appropriate sense), then the average value obtained from the statistics should
be the real part of the weak value (A),,, defined as

(n|Ap)
()

(A)w = (6.1)
Similarly, the imaginary part of (A),, can be obtained from a weak measurement
using a different pointer observable [33]. In Article IV this idea was analyzed
rigorously using the theory of sequential measurements, where the postselection
refers to conditioning with respect to some fixed subset of outcomes of the
second measurement.

From the tomographic point of view an important work is the experimental
paper [48] of Lundeen et al. where the weak values were used for reconstructing
the pointwise values of the wavefunction. This method was further developed in
[47] to cover also the case where the state is allowed to be mixed. Though this
method works well in finite dimensions (see below), in the infinite dimensional
case it has several disadvantages when compared to the use of phase space
observables. The most crucial shortcoming is the fact that the method does not
work for all initial stated!] Before going into the analysis of this reconstruction
method, we consider the (generalized) weak values and how they can be obtained
from measurements.

6.2.1 Weak values as limits of conditional averages

We begin by generalizing the formal definition into the case where the
observables in question are positive operator measures. The selfadjoint operator
A must therefore be replaced by the first moment operator E[1] of the observable
E, whereas the postselection corresponds to conditioning with respect to some
subset Y € B(R) of values of the subsequent measurement or with respect to
some effect B € E(H).

For an observable E : B(R) — £(#) denote by D(x,E) C H the subspace
of those ¢ for which the identity map x — x is E; ,-integrable for all ¢ € H.

'Here the use of the term “informationally complete” is avoided since the method uses the
(conditional) average values of a large number of measurements rather than the full statistics.
In other words, the set of measured observables may be informationally complete but the
average values do not determine the state.
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The first moment operator of E is then the linear operator E[1] : D(z,E) — H
defined as

(WIE[]) = / vdEy (), ¢ED.E), pe

The domain D(z, E) contains as a subspace the so-called square-integrability
domain D(z, E) consisting of the those ¢ € H for which the function z + x? is
integrable with respect to the positive measure E, , (see, e.g., [39]).

Definition 9. Let E : B(R) — L(H) be an observable, ¢ € D(z,E), ||¢| =1
and let B € E(H) be such that (p|By) # 0. The weak value of E in a vector
state ¢ conditioned by B 1is

_ {#|BE[y)
R RN

Notice that by choosing E = E# and B = |)(n| so that E[1] = A, we have the
original form (|6.1]).

In Article IV we showed that weak value in the form of Definition [ can be
obtained as a limit of conditional averages in sequential measurements if the
initial state belongs to the square-integrability domain of the moment operator.
The essential measurement scheme for this purpose is the generalized standard
model M?* (where we have now explicitly indicated the A-dependence) which
realizes the measurement of the unsharp observable p* x E for an arbitrary
observable E : B(R) — L(#H). Recall that M* = (L?(R), ¢, ®*, Q, f*) where
®* is defined through the specific dilation of E. We also need a modification of
this scheme where instead of choosing the probe’s position to be the pointer
observable we choose its momentum P. The resulting scheme is denoted by
NA = (L2(R), ¢, ®* P, f*). Note that the observable measured with N is the
trivial one X +— (¢|P(AX)¢)I, but the state change caused by the measurement
is nontrivial. Indeed, the instrument J* associated to this scheme is in the
dual form

(6.2)

TNX)(B) = / VISP VIL(B® )LV, dr, B e L(H),

—iXz4 and the selfadjoint operator A is obtained from the dilation

where L, = ¢
of E.
In order to obtain the weak value (6.2)), we choose any observable F :

B(R) — L(H) such that B € £(H) is contained in the range of F, that is,
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B = F(Yp) for some Y, € B(R). If we now perform a sequential measurement
where the first measurement is M?* and the second one is any measurement of
F, the sequential observable M is, as usual, determined by the instrument Z*
associated to M* as M(X x Y) = ZM X)*(F(Y)). If we then fix the set Yj of
values of the subsequent measurement and normalize the probabilities, we end
up with the conditional probability measure A} : B(R) — [0, 1],

M) = M X Y)e) _ (el (X (B)e)

(PIMMR x Yo)p)  (p|ZA(R)*(B)y)
from which we may calculate the first moment A}[1] = [z dA{(x). If the initial
state of the system belongs to the square-integrability domain D(x, E), and the

initial probe state is chosen suitably, for instance, by taking ¢ = hg, then we
get the limit

lim A}[1] = ReE, (¢, B).
A—0

That is, the real part of the weak value is obtained as a limit of conditional
averages.

The above procedure can be repeated also in the case that the first measure-
ment is N, In this case we end up with the conditional probability measure
A} : B(R) — [0,1] whose first moment we can again calculate. As before, under
suitable regularity assumptions we get the limit

lim A3[1] = Im E, (¢, B)

A—0
so that we obtain the imaginary part of the weak value. We combine these
considerations into the following proposition. For more details and less strict
assumptions, see Article IV.

Proposition 8. Let M?* and N be as above with the initial probe state ¢ = hy.
Then
E. (0. B) = lim (A}1] + iA3 1]
A—0

for all € D(x,E) such that (p|Bp) # 0.

Note that the entire weak value can also be obtained using a single meas-
urement scheme with a suitably chosen phase space observable as the pointer.
However, for the purpose of demonstrating the reconstruction method of [4§],
it is not needed. Details can be found in Article IV.
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6.2.2 Direct measurement of the wavefunction

In [48] Lundeen et al. presented a method for determining the pointwise values
of the wavefunction using weak values, and reported an experiment where they
applied the method for determining the wavefunction of a photon. In order to
avoid the problems concerning photon localization we consider instead a spin—%
particle. We restrict only to one spacial degree of freedom, say, the z-direction,
so that the Hilbert space may be taken to be L?*(R) ® C?. Here the spin degree
of freedom will play the role of the probe.

In order to determine the values of the wavefunction, the position space is
divided into disjoint intervals (I;);eny with the assumption that the intervals are
of equal length and the center is labelled by x;. For each i € N we will then
perform a measurement of the two-valued observable 1 — Q(1;),0 — I—Q(/;) =
Q(R\ I;) thus scanning the whole position space. The spin state of the particle
is prepared to the o, eigenstate |+) and the measurement interaction is given
by the unitary operator e *QU)®7 ~ Ag the pointer observable we choose the
spin in either z- or y-direction. This corresponds to the choice of the position
or momentum pointer observables of the previous section. The pointer function
is chosen to be f(z) = 5. The subsequently measured observable is chosen

to be the momentum P of the particle where only the values which lie in the

small interval J. = (—3, 5) are postselected. After calculating the conditional

averages and the limit A — 0, we will arrive at the two values

§i = Re(p|P(J)Q(L)p)
ni = Im(p|P(J)Q(L))

where & and 7); refer to the measurements of o, and o,, respectively, with
the fixed position interval I;. If the wavefunction is assumed to be sufficiently
regular and the lengths of the intervals I; and J. are sufficiently small, then we
have

(p|P(J)Q(I;)p) =~ constant - p(x;).

More precisely, if we set I; = (x; — %/, x; + %') with ¢ > 0, then

limhm;(ﬂP(Je)Q([i)@ = limlimi/J (Fo)(p)(FQ(L)e)(p) dp

e/—0e—0 €'€ e—0e—=0 €'e

50) 0,
E}}gno;/hso(w)dw—msﬁ( )

provided that the limits exist. This is the case, for instance, when ¢ € S(R),
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the Schwartz space of C"*°-functions of rapid decrease.

The proposed method has obvious limitations as a method of state determ-
ination. First of all, due to the postselection of momentum values, only in
the case that the wavefunction satisfies P(J.)¢ # 0 can this method succeed.
Indeed, if the momentum of the system is localized outside this small interval,
then no information can be obtained from the measurement. Moreover, if it
happens that P(J.)¢ = ¢, then it is known from basic Fourier theory that all
the component vectors Q(1;)¢, ¢ € N, are nonzero and one has to scan through
all the intervals [I; in order to determine the state. However, the advantage of
this method is that it provides the value of the wavefunction directly as the limit
of these average, and thus we do avoid heavy processing of the measurement
data.

We close this section by considering this reconstruction method in the
finite dimensional case (see [48]). Let H,4 be the d-dimensional Hilbert space
(d < o0) of a quantum system and let ¢ € Hy be a unit vector. Consider a fixed
orthonormal basis B = {{; | k =0,...,d—1}. We are interested in determining
the Fourier components (&|¢) using weak values. To that end, let E¥ denote
the two-valued observable with E*(1) = |&.)(&] and EF(0) = T — |&,) (&] for
all k. The first moment is then simply E*[1] = [&)(&]. If we now assert
F(Y) = |¢)(¢| for some unit vector ¢ € Hq with (¢|p) # 0, the weak value is

given by
(I€k)

The crucial step now is to choose ¢ in a suitable way. This can be done by

using another basis B’ = {n; | j =0,...,d—1} such that B and B’ are mutually

unbiased, i.e., they satisfy |[(n;|&)|*> = é. An example of such a basis is given

by

d—1
1 E —2mijk/d
- o2 /
U \/E e gk

so that (n;|&) = \/iae%ijk/ 4. Furthermore, the fact that B is a basis guarantees

that (n;]¢) # 0 for some j. Let n; now be a fixed basis vector such that
(njlg) # 0, and for all k = 0,...,d — 1 let (5, k) € [0,2m) be such that
(n;éx) = ==€®U*). Then the Fourier coefficients can be expressed in terms of

Vd
the weak values as

(Exlip) = Vd e M (n;| ) EE (0, m)).

In this way the pure state ¢ can be determined from the weak values.



Chapter 7

Conclusions

This thesis has dealt with the problem of quantum tomography, that is, re-
constructing the unknown state of a quantum system, using measurements of
phase space observables. The results are theoretical in nature though some are
directly related to practical questions concerning actual measurements.

The condition of informational completeness for covariant phase space ob-
servables has been thoroughly analyzed and a necessary and sufficient condition
has been proved, thus sharpening an earlier result on this matter. Recon-
struction formulae for calculating the state from the measurement statistics
have also been derived. Different measurement schemes for measuring phase
space observables have been considered, with emphasis on the quantum optical
realization via eight-port homodyne detection. A detailed analysis of the effect
of detector efficiencies in homodyne detection has been performed, and as a
result, it has been shown that the informational completeness of the measured
observable does not depend on the efficiencies of the detectors.

In addition to full state reconstruction, the problem of reconstructing the
position and momentum distributions from the marginal statistics of phase
space observables has been considered. It has been shown that informational
completeness is neither necessary nor sufficient for this procedure. Indeed, the
relevant feature is that the marginal observables are informationally equivalent
with position and momentum, and a counterexample has been presented showing
that this may occur without informational completeness. Two methods for
determining the position and momentum distributions have also been presented.

Finally, two alternative methods for quantum tomography have been re-
viewed, namely, the standard quadrature tomography, and the method of weak
values. Some of their shortcomings when compared to phase space measure-
ments have been discussed.
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