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Abstract

The present manuscript represents the completion of a research path carried
forward during my doctoral studies in the University of Turku. It contains
information regarding my scientific contribution to the field of open quantum
systems, accomplished in collaboration with other scientists.

The main subject investigated in the thesis is the non-Markovian dynamics
of open quantum systems with focus on continuous variable quantum channels,
e.g. quantum Brownian motion models. Non-Markovianity is here interpreted
as a manifestation of the existence of a flow of information exchanged by the
system and environment during the dynamical evolution. While in Markovian
systems the flow is unidirectional, i.e. from the system to the environment, in
non-Markovian systems there are time windows in which the flow is reversed
and the quantum state of the system may regain coherence and correlations
previously lost.

Signatures of a non-Markovian behavior have been studied in connection
with the dynamics of quantum correlations like entanglement or quantum dis-
cord. Moreover, in the attempt to recognisee non-Markovianity as a resource
for quantum technologies, it is proposed, for the first time, to consider its
effects in practical quantum key distribution protocols. It has been proven
that security of coherent state protocols can be enhanced using non-Markovian
properties of the transmission channels.

The thesis is divided in two parts: in the first part I introduce the reader
to the world of continuous variable open quantum systems and non-Markovian
dynamics. The second part instead consists of a collection of five publications
inherent to the topic.
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Chapter 1

Introduction

The aim of quantum mechanics is to provide a physical description and inter-
pretation of natural phenomena regarding the very fundamental constituents
of matter such as atoms and molecules. Quantum theory has been originally
formulated in the first half of 20th century to describe the dynamics of closed
systems, i.e. systems whose interaction with the rest of the universe can be
neglected [1]. It turns out, however, that the very nature of quantum mechani-
cal systems makes them sensible to any external influence. Even measurement
processes, whose effects on the dynamics of classical systems can be made
arbitrarily small, produce non-negligible consequences in the quantum case.

Most quantum mechanical systems are made of electrically charged parti-
cles, e.g. electrons and protons, and therefore they constantly interact with the
surrounding quantum electromagnetic field. Observable effects of this interac-
tion, e.g. the existence of forces between neutral polarizable objects [2], or the
phenomenon of spontaneous emission of radiation [3], witness how quantum
systems need to be considered, fundamentally, open.

Once we accept the idea of the intrinsic openness of quantum systems,
we may formulate a further question: is the interaction with the external
environment, always, crucial? Let us consider, for instance, an atom initially
in its ground state with an applied laser field able to couple the ground state
to a second, excited, state. With an appropriate tuning of the atom-laser
interaction, it is possible to induce a coherent dynamics between these two
atomic levels, such that the atom can be effectively described as a two level
closed system. However, the transition from the excited to the ground state
may also be induced by the interaction with the external electromagnetic field,
and, as a consequence, the coherent unitary dynamics between the atomic levels

1



may be compromised. If the environmental interaction is much slower than
the coherent laser driven dynamics, then, at the early stages of the dynamics,
the system can be effectively considered as closed. For later times, instead, the
environmental interaction produces its effects and the situation becomes a true
example of an open quantum system, so that appropriate, novel, mathematical
tools need to be implemented to study its dynamics [4].

The theory of open quantum systems has become a very active research
field in the last three decades. As a fundamental reason, we can mention
the enormous improvements in the experimental techniques of preparation,
control and measurement of quantum systems [5]. These techniques allow now
to perform precise and fragile experiments in which it is possible to test basic
quantum mechanical principles. At this level of precision quantum systems
have to be considered effectively open systems and the interaction with the
surroundings cannot be neglected anymore.

Another driving example can be found by looking at the advances obtained
in the field of quantum information and computation [6], where properties
like state coherence and quantum correlations become fundamental resources.
The open system dynamics causes irreversible deterioration of these resources,
threatening the accomplishment of tasks and protocols in quantum informa-
tion. Hence the quantum information community has shown an increasing
interest in studying ways to circumvent this problem and to develop tech-
niques to protect the system from the detrimental effects of the environmental
interactions, e.g. quantum error correction [7].

The dynamics of open quantum systems can be studied by deriving and
solving an equation of motion for the state of the open system only, i.e. a
master equation [8–10]. The form of the master equation depends on the
physical system we are interested in, e.g. a qubit or a system of harmonic
oscillators, on the properties of the environmental degrees of freedom and on
the form of the system-environment interaction. One of the most commonly
used and simple form of master equations is the so called Lindblad master
equation [11,12]. Quantum optical systems are examples of open dynamics well
described by these kind of equations [13]. On the other hand solid state systems
or atom dynamics in optical cavities are more precisely described by more
complicated master equations, due to the structured form of the environmental
noise [14,15].

Lindblad-form equations can be derived, e.g. under the Born and Markov
approximations. The Born approximation is essentially an assumption on the
strength of the interaction between system and environment, considered to
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be weak. The Markov approximation, instead, is a condition on the relative
value of certain relevant time scales of the open system dynamics. Systems
for which the Markov approximation well describes the dynamics are usually
called Markovian, in contrast with non-Markovian systems. The concept of
non-Markovianity has been for long time associated to a property of the master
equation describing the open system dynamics. From a physical point of view
non-Markovianity is connected to the existence of memory effects in the system
dynamics.

Recently, however, a definition of non-Markovianity inspired to the idea of
quantifying the memory effects, has been introduced and a new interpretation
independent on the form of the master equation has been provided [16]. In
this new view, non-Markovianity is seen as a global property of the system and
environment, characterized by a back flow of information from the environment
to the system which modifies qualitatively the trajectory of the state of the
system. Hence non-Markovianity is defined as a property of the open system
dynamics and is not strictly linked to the mathematical structure of the master
equation.

Signatures of a non-Markovian behavior in open quantum systems can be
observed, for instance, in the evolution of quantum correlations in multipartite
systems. A Markovian evolution usually leads to a uniform degradation of
these correlations as time passes, e.g. sudden death of entanglement [17]. On
the other hand in a non-Markovian evolution, the back and forth communica-
tion between system and environment, makes possible revivals and increase of
correlations in certain interval of times [18,19].

The subject of this thesis is the investigation of the properties of con-
tinuous variable non-Markovian open systems. We essentially concentrate on
three big topics: dynamics of Gaussian quantum correlations, definition of non-
Markovianity for Gaussian states and coherent states quantum key distribution
protocols in non-Markovian channels.

The first three papers of the thesis are dedicated to the study of the evolu-
tion of entanglement, quantum discord and intensity correlations in quantum
Brownian motion (QBM) models [20, 21]. Particular attention is devoted to
study the conditions for robustness of correlations under the dissipative open
system dynamics, for various environmental structures. Quantum correlations
are, indeed, important resources in many quantum information and commu-
nication protocols, e.g. quantum teleportation or quantum key distribution.
Their dynamics is fundamental in the achievement or failure of these protocols
and, therefore needs to be studied carefully in all situations of interests. In
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non-Markovian systems it can be observed a longer survival time of correla-
tions and the environment acts as a source capable of rebuild the already lost
correlations by giving back the information about the initial state. This prop-
erty is valid for correlations like entanglement [22], quantum discord [23, 24]
and also for intensity correlations for light beams [25,26].

The definition of non-Markovianity for continuous variable systems and the
measure of its degree is the subject of paper IV. In this work we extend the
definition given in [16] to continuous variable Gaussian states and analyze the
non-Markovian behavior of coherent and squeezed states for a pair of quantum
Brownian motion models.

Finally in paper V we explore, for the first time, a possible practical appli-
cation of non-Markovian dynamics in the context of continuous variable quan-
tum key distribution. We show how it is possible to exploit the non-Markovian
properties of the transmission channel to enhance the security of a coherent
state protocol [27] and check the presence of an eavesdropper.

The thesis is organized as follows. In Chapter 2 we introduce some funda-
mentals of dynamics of closed and open quantum systems. Particular attention
will be devoted to the concept of master equation and its microscopic deriva-
tion, with specific emphasis to the Born-Markov and secular approximations.
In the same chapter we also introduce the concepts of Markovian and non-
Markovian dynamics and discuss their fundamental physical assumptions in
terms of reservoir memory effects on the system dynamics. In chapter 3 we
provide the basic notions and definitions for continuous variable systems. We
concentrate in particular on Gaussian states, i.e. states generated by bilinear
Hamiltonian dynamics on the total system. We also familiarize with the single
and bimodal cases which are the main systems analyzed in the thesis. Chapter
4 is dedicated to continuous variable open systems and in particular to QBM
master equations: the Hu-Paz-Zhang equation, the secular approximated equa-
tion and the Lindblad form equation. These are all the basic models employed
in the contributing papers. In Chapter 5 we discuss correlations in bipar-
tite systems introducing the concept of separability, entanglement, quantum
discord and intensity correlations, with the relative expressions for bimodal
continuous variable systems. At the end of the chapter we also provide the
bimodal extension of the QBM master equations introduced previously. In
Chapter 6 we discuss in more detail the concept of non-Markovianity and in-
troduce its measure for a given open quantum system. Our main contribution
here is the generalization of this definition to continuous variable systems, an
issue presented in paper IV. In Chapter 7 we review basic concepts of quan-
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tum key distribution with particular attention to continuous variable coherent
state protocols. Here we also provide the basics of the novel detection method
based on non-Markovian transmission channels which is the subject of paper
V. Finally, Chapter 8 is dedicated to the discussion and summary of the main
results of the five papers belonging to this thesis. These summaries are not
however intended to substitute the papers at the end of the thesis, but they
are meant to be a guide and an introduction to the more detailed discussion
contained into them. We close this last chapter and the thesis with a general
conclusive section about the whole research work.
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Chapter 2

Open quantum systems

In this chapter we review the basic principles and tools used to investigate
closed and open system dynamics in quantum mechanics. We introduce the
concept of density operator, dynamical map and master equation to describe
the reduced system dynamics of open systems. We also recall the basic ideas
beyond the derivation of the master equation with focus on Markovian sys-
tems and dynamical semigroups. Finally we introduce the concept of non-
Markovianity and discuss its physical interpretation in terms of reservoir mem-
ory effects.

2.1 Density operator and closed system dynamics

The most complete description of the state of a quantum system at a given
time t = t0 is provided by a vector |ψ(t0)⟩ belonging to a Hilbert space H
associated to the physical system. The time evolution of the state vector is
determined by the solution of the Schrödinger equation

i~
d

dt
|ψ(t)⟩ = H|ψ(t)⟩, (2.1)

where H is the Hamiltonian of the system. The dynamics generated by Eq.
(2.1) is unitary

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩, U†(t, t0) = U−1(t, t0), (2.2)

where, for a time-independent Hamiltonian, the evolution operator takes the
form U(t, t0) = exp{−iH(t− t0)/~}.
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This original formulation of state dynamics in quantum mechanics [28, 29]
relies on the fundamental assumption that we can fully describe the system
at the initial time in terms of a state vector. However, in some situations it
is not possible to assign a state vector, for instance, when we lack a complete
control on the preparation procedures of our system. In these cases only the
probabilities ci that the system is in a state |ψi⟩ of a given ensemble {|ψi⟩, i =
1...n} are known, and the state of the system must be described by a more
general object, known as density operator. The density operator associated to
the ensemble considered is given by

ρ =
∑
i

ci|ψi⟩⟨ψi|,
∑
i

ci = 1, (2.3)

where the states |ψi⟩ do not need to be orthogonal. All density operators
satisfy three main properties: normalization Tr[ρ] = 1, hermiticity ρ = ρ† and
positivity ρ ≥ 0. It follows that any density operator can be diagonalized

ρ =
∑
i

pi|ϕi⟩⟨ϕi|,
∑
i

pi = 1, pi ≥ 0, (2.4)

where in the spectral decomposition (2.4) the vectors |ϕi⟩ are orthogonal. From
now on we denote with D(H) the set of density operators with support in the
Hilbert space H.

When one of the probabilities is unit, e.g. pj = 1, the system is unambigu-
ously described by the pure state |ψj⟩, and the density operator approach is
equivalent to the original formulation based on state vectors. Otherwise we
say that the state is mixed. To verify if a state is pure or mixed there is no
need to find its spectral decomposition but it suffices to evaluate the so-called
purity

µ = Tr[ρ2]. (2.5)

It is easy to verify that µ ≤ 1, being equal to one only for pure states.
The density operator formulation is useful for many reasons, for instance

when we want to describe the state of a multipartite system. Imagine a physical
system made of two subsystems A and B described by a composite state ρAB ∈
D(H) with H = HA ⊗HB. We can define the state of each subsystem by the
partial trace operation, e.g.

ρA = TrB[ρAB] ≡
∑
j

⟨ϕAj |ρAB|ϕAj ⟩, (2.6)
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where {|ϕAj ⟩, j = 1....} is an orthogonal basis in HA. Even if the state of the
total system ρAB is pure, the partial trace operation usually leaves us with a
mixed state ρA of the system A, also called reduced state.

To conclude this section we provide the dynamical equations for the density
operator of a closed quantum system

d

dt
ρ(t) = − i

~
[
H, ρ

]
, (2.7)

known as von Neumann equation [29], which can be straightforwardly obtained
from Eq. (2.1). Because the system is closed, the dynamics generated by Eq.
(2.7) is unitary

ρ(t) = U†(t, t0)ρ(t0)U(t, t0). (2.8)

Under a unitary evolution the purity does not change, therefore an initially
pure (mixed) states remains pure (mixed). In the next section we will see that
this is not true when the system is subjected to a non-unitary evolution due
to the interaction with other systems.

2.2 Open systems and dynamical maps

As we saw in the previous section, the dynamics of a closed system is described
by a unitary operator, a result valid for both initial pure and mixed states. In
the case of an open system the situation changes drastically and new tools
to study its dynamics are needed [8–10]. We now consider a bipartite closed
system, composed of the subsystems S and E, and we focus on the dynamics
of the subsystem S only, from now on referred to as the system, while the other
subsystem constitutes its environment or reservoir. Our goal is to investigate
how the interaction with the environment E influences the dynamics of the
state of the system of interest S.

We know that the dynamics of the total closed system is unitary and is
determined by an evolution operator USE(t, t0). Therefore if ρSE(t0) ≡ ρ(t0)
is the initial state of the full system plus environment, we have

ρ(t) = U†SE(t, t0)ρ(t0)USE(t, t0). (2.9)

Applying the partial trace rule of Eq. (2.6), we get

ρS(t) = TrE
[
U†SE(t, t0)ρ(t0)USE(t, t0)

]
. (2.10)
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If we indicate with ρS(t0) the initial state of the system S, we may ask which
is the connection between this state and the evolved state at time t. Can we
formally write the evolution as

ρS(t) = TrE
[
U†SE(t, t0)ρ(t0)USE(t, t0)

]
= Φ(t, t0)ρS(t0), (2.11)

with Φ(t, t0) being a superoperator acting on the initial state? In many situ-
ations Eq. (2.11) can actually be defined, and the operator Φ(t, t0) takes the
name of open system dynamical map [30–35]. The dynamical map satisfies two
main properties: it preserves superpositions, i.e. must be linear, and it maps
any density operator into another density operator

Φ(t, t0)
[
λρ1 + (1− λ)ρ2

]
= λΦ(t, t0)ρ1 + (1− λ)Φ(t, t0)ρ2,

Φ(t, t0)ρ = ρ̃ ∈ D(H).
(2.12)

Eqs. (2.12) must be valid for any t ≥ t0, for any 0 ≤ λ ≤ 1 and any ρ, ρ1, ρ2 ∈
D(H).

The map Φ(t, t0) is not unitary, therefore in contrast with the behavior of
closed systems, pure states can become mixed. This phenomenon, milestone of
the theory of open quantum systems, is known under the name of decoherence
or environment induced decoherence [36–38]. It describes the transformation
from coherent superpositions (pure states) to incoherent superpositions, i.e.
statistical mixtures (mixed states).

Finding the analytic expression and/or the properties of the map Φ(t, t0)

from the knowledge of the unitary operator U†SE(t, t0) and the initial state
ρ(t0) of the system plus environment, is not always possible. A fundamental
simplification consists in using factorized initial conditions, i.e. assuming that
the initial state of the total system can be written as a product of the state
of the system and of the environment: ρ(t0) = ρS(t0)⊗ ρE(t0). In this case it
has been shown that the map Φ(t, t0) exists and it is also completely positive
[39, 40], i.e. any extension of the map Φ(t, t0) ⊗ In, with In the identity map
for an Hilbert space of dimension n, is a positive map. The functional form
of any completely positive map Φ can be characterized by the operator sum
representation, or Kraus representation [6, 41]

Φ ρ =
∑
k

AkρA
†
k,

∑
k

A†kAk = I, (2.13)

where the Ak Kraus operators, provide a complete characterization of the
dynamical map Φ.
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The factorized initial condition is a very delicate assumption, because the
interaction between system and environment may build correlations. However
dynamical maps derived under this assumption well describe realistic experi-
mental conditions in most of physical scenarios under investigation.

When the initial state is not factorized the situation is more complicated.
Complete positivity is satisfied only for classically correlated initial states
[42–44], while in general nothing can be said on both the properties and func-
tional form of the dynamical map. In some cases it is not possible to define
a dynamical map, as its expression depends on the structure and amount of
correlations in the initial state of the system.

In this thesis we only deal with systems initially prepared in a factorized
state with the environment.

2.3 The master equation

In the previous section we introduced the dynamical map approach to the
description of the reduced system dynamics. We have seen that the dynamical
map, in a sense, plays the role of the unitary operator for closed systems,
providing the evolved state at a later time. One equivalent approach to look
at the open system dynamics is to derive an equation of motion for the reduced
state dynamics, known as master equation [8–10].

The starting point to the derivation of master equations is the expression
of the von Neumann equation for the total closed system (2.7). There ex-
ist several approaches to the derivation of the master equation, starting from
the Hamiltonian of the closed system, e.g. influence functional [45], projec-
tion operators [46, 47] or time convolutionless techniques [48–50]. Different
methods may lead to different forms of master equations. We can essentially
classify them in two big categories: memory kernel and time-local equations.
An example of memory kernel master equation is the Nakajima-Zwanzig equa-
tion [46,47], whose form for the only relevant assumption of factorizing initial
conditions is

∂

∂t
Pρ(t) =

∫ t

t0

dsK(t, s)Pρ(s), (2.14)

where K(t, s) is called convolution kernel of the equation and depends essen-
tially on the Hamiltonian of the total system and the state of the environment.
Pρ(t) = TrE [ρ(t)]⊗ ρE = ρS(t)⊗ ρE , where ρ(t) is the total system plus envi-
ronment state and ρE is a fixed state of the environment, usually taken to be
a thermal state. Eq. (2.14) is an integro-differential equation for the reduced
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system state, thus the solution at time t depends on the history of the state
evolution. In this sense we call it a memory kernel equation, as it describes
a state evolution which depends on the memory of the past evolution. On
the contrary local in time equations do not contain convolution kernels and
are thought to describe memoryless dynamical evolutions. As we will see later
on, however, this distinction is not satisfactory, also because memory kernel
master equations can be recast in a time local form [51].

We now provide an example of derivation of local in time master equation,
valid for weakly coupled systems. The most general open system model can
be described by the following Hamiltonian structure

H = HS +HE +HI , (2.15)

where HS is the system free Hamiltonian, HE is the reservoir free Hamiltonian,
and HI is the interaction term, hitherto assumed to be time-independent.
Situations with external laser driving fields, characterized by time-dependent
Hamiltonians, have also been subjects of investigations [52–54].

In the interaction picture the von Neumann equation for the state of system
plus environment reads

d

dt
ρ̃(t) = − i

~
[HI(t), ρ̃(t)], (2.16)

with HI(t) and ρ̃(t) the interaction Hamiltonian and the state of the total
system in the interaction picture, respectively. A formal integration of the
equation of motion (2.16) leads to

ρ̃(t) = ρ̃(0)− i

~

∫ t

0
ds [HI(s), ρ̃(s)]. (2.17)

Inserting Eq. (2.17) into (2.16), we get

d

dt
ρ̃(t) = − i

~
[HI(t), ρ̃(0)]−

1

~2

∫ t

0
[HI(t), [HI(s), ρ̃(s)]] ds, (2.18)

where we assumed the initial time t0 = 0, without any lack of generality. To
obtain the master equation we can apply the partial trace rule (2.6) to both
sides of Eq. (2.18) obtaining

d

dt
ρ̃S(t) = − 1

~2

∫ t

0
TrE

{
[HI(t), [HI(s), ρ̃(s)]]

}
ds, (2.19)
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where ρ̃S(t) is the state of system still in the interaction picture and we assumed
the condition TrE

{
[HI(t), ρ̃(0)]

}
= 0. The following steps require a certain

number of approximations compatible with the physical situation of interest.
It is not our purpose to provide a full description of such approximations,
but we limit ourselves to a brief discussion. The reader interested in a more
complete analysis of the microscopic derivation of the master equations can
consult the following references [8–10].

The first fundamental assumption is the factorized state initial condition
discussed in the previous section, followed by a second condition on the strength
of the interaction, i.e. the weak coupling or Born approximation. Under both
these approximations, when the environment is made of an infinite number of
degrees of freedom, we can assume that the system dynamics does not affect
the dynamics of the environment state. It follows that system and environment
remain uncorrelated at any successive time, so that ρ̃(t) = ρ̃S(t) ⊗ ρE , where
ρE is a stationary state for the environment usually taken to be a thermal
state.

Another assumption usually considered in open systems is the Markov ap-
proximation, i.e. a condition imposed on the time scales of the dynamics of the
total system. Generally one can identify three time scales of interest. The first
one is the free time scale of the system τS , which, in the case of an harmonic
oscillator of frequency ω0 is of the order of τS ≃ 1/ω0. Another time scale
is τE , known as correlation time scale of the environment, which essentially
depends on the state of the environment ρE , on its spectral properties and on
the interaction strength between system and environment. Finally we have the
relaxation time scale τR, which quantifies the rate of system state change due
to the interaction with the environment. The Markov approximation holds
when τE << τR.

Under the factorized initial condition and Born-Markov approximation
equation (2.19) reads

d

dt
ρ̃S(t) = − 1

~2

∫ ∞
0

TrE
{
[HI(t), [HI(t− s), ρ̃S(t)⊗ ρE ]]

}
ds, (2.20)

which is a master equation at second order in the interaction and in a time-
local form, i.e. the solution at time t depends only on the value of the system
state at time t.
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2.3.1 Markovian dynamics and dynamical semigroups

Equation (2.20) can be further simplified when the interaction Hamiltonian
takes the form

HI =
∑
i

Si ⊗Ei, (2.21)

which is a sum of products of system operators Si and environmental opera-
tors Ei. In this context it is possible to perform the secular approximation to
eliminate fastly oscillating terms appearing into the integral of (2.20). This
approximation can be performed when τS << τR, a condition usually satis-
fied, for instance, in quantum optical and nuclear magnetic resonance (NMR)
systems [13,55].

The dynamical maps associated to weakly coupled open systems under the
Markov and secular approximation belong to a specific class of maps studied
for the first time, independently, in [11,12]. These maps possess the property of
a quantum dynamical semigroup. If we indicate the map with Φ(t, 0) ≡ Φ(t),
this is a dynamical semigroup if

Φ(t1) · Φ(t2) = Φ(t1 + t2), ∀t1, t2 ≥ 0. (2.22)

Any dynamical semigroup can be written as Φ(t) = exp{Lt}, where L is called
generator of the semigroup. The master equation associated to this type of
dynamical map attains the so-called Lindblad form

d

dt
ρS = LρS , (2.23)

with

LρS = − i

~
[
HS , ρS

]
+
1

2

N2−1∑
k=1

γk
(
2CkρSC

†
k − C†kCkρS − ρSC

†
kCk

)
, (2.24)

where HS is the system free Hamiltonian, Ck are the jump or Lindblad op-
erators and the positive constant coefficients γk are called decay rates. The
summation is limited by the dimension dim{HS} = N of the Hilbert space of
the system.

Systems described by master equations in the Lindblad form are usually
known in the literature as Markovian. This denomination, however, is not
fully recognized among the scientific community, and different definitions of
non-Markovian/Markovian dynamics have been recently proposed. In the next
section we investigate this issue in more detail.
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2.3.2 Non-Markovian vs Markovian dynamics

It is widely accepted that Lindblad theory fails in describing the open system
dynamics in various physical situations, e.g. in solid state systems at low
temperature [14], or in superconducting circuits [15], as well as with photonic
band gap materials [56,57]. The reason can be found in the failure of the Born
approximation, i.e. strong system environment coupling, or in the failure of
the Markov approximation. This last assumption may be inappropriate in the
presence of non-trivial structured environments, as it happens in the case of
photonic band gap materials, or in solid state systems subjected to 1/f noise.

In order to describe more precisely these non-Markovian systems, we need
to abandon some of these approximations. As a consequence, the equations
describing the dynamics of the reduced system will be mathematically more
complicated, e.g. memory kernel or time dependent decay rates, and thus be-
come more difficult to handle analytically, often requiring the implementation
of numerical algorithms.

In section (2.3.1) we have already shown an example of exact form of master
equation (2.14) which have an integro-differential form with a memory kernel.
Because this equation is derived without the Markov assumption, people tend
to associate memory-kernel master equations with non-Markovian systems,
hence interpreting non-Markovianity as the presence of system-reservoir mem-
ory effects. According to this view, for instance, equations of the following
Lindblad-type form

d

dt
ρS = − i

~
[
HS , ρS

]
+
1

2

N2−1∑
k=1

γk(t)
(
2CkρSC

†
k − C†kCkρS − ρSC

†
kCk

)
, (2.25)

should describe Markovian dynamics. However these kind of equations can
be found, for instance, in the exact dynamics of an atom interacting with a
lossy structured cavity [8, 58], hence in a derivation which does not include
any Born-Markov approximation. Another example of exact local in time
master equation is provided by the Hu-Paz-Zhang equation describing the exact
dynamics of an harmonic particle interacting with a thermal bosonic bath
under the only assumption of factorized initial conditions [59].

These examples show how the definition of Markovianity/non-Markovianity
cannot be given in relation with the only form of the associated master equa-
tion, but a different point of view should be seriously considered. To support
this new view, we can mention a recent reference [51], in which the authors
claim that it is possible for a generic open system to be described both by
memory kernel and local in time equations.
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Non-Markovianity of physical processes can be defined looking at observ-
able physical effects on the state of the system, due to the existence of reservoir
memory affecting its dynamics. For instance in [60,61] memory effects are con-
nected to the appearance of reverse quantum jumps able to restore coherence in
the reduced state trajectory. In the particular case of Eq. (2.25) a Markovian
dynamics, obtained for decay rates γk(t) ≥ 0, does not present reverse jumps
in the state trajectory, therefore no restoration of state coherence is observed.
On the contrary a non-Markovian dynamics is characterized by some of the
coefficients γk(t) < 0 for some k and some t > 0. This phenomenon can be
interpreted as if part of the information on the state lost to the environment
is stored (memory) and given back to the system at later time, i.e. during
the negativity periods of the decay rates. The back flow of information is ex-
actly the characteristic of a non-Markovian dynamics [16, 62]. According to
this novel definition, Mazzola et al. demonstrate that memory kernel master
equations do not necessary describe reservoir memory effects [63].

In most of the examples provided in this thesis (Papers I-III,V), the non-
Markovian behavior is shown to have beneficial effects with respect to a Marko-
vian dynamics. Non-Markovianity in fact has the power of restoring coherence
and correlations like entanglement or quantum discord. The pure detrimental
effect on these properties due to a Markovian dynamics is, partially, washed
away when the information travel backwards, i.e. from the environment to the
system. For this reason we believe in a possible future role of non-Markovianity
as a resource to partially prevent the detrimental effect of the open system dy-
namics. In this thesis we provide a practical example of this idea in the field of
quantum key distribution (see paper V), where we prove how to use the prop-
erties of non-Markovian channels to increase the security of coherent state
protocols.
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Chapter 3

Continuous variable systems

In this chapter we introduce the central system of the thesis: an ensemble
of harmonic oscillators. This is the prototype of what it is usually called a
continuous variable (CV) system [64, 65]. Here we provide basic definitions
and concepts about CV systems, together with the notation used throughout
the manuscript.

3.1 Definitions and notation

The Hamiltonian for a system of N non interacting quantum harmonic oscil-
lators, or bosonic modes, can be written as follows

H0 =

N∑
k=1

p2
k

2mk
+

1

2
mkω

2
kq

2
k, (3.1)

where ωk and mk are respectively the free frequencies and the masses of the
oscillators, while qk and pk denote the position and momentum operators,
satisfying the canonical commutation relations [qj ,pk] = i~δjk. The total
Hilbert space of the ensemble is given by a tensor product of the Hilbert spaces
for each mode, i.e. H =

⊗N
k=1Hk and it is spanned by vectors given by tensor

products of single mode Hamiltonian eigenstates, or Fock states

|m1,m2....mN ⟩ = |m1⟩ ⊗ |m2⟩...⊗ |mN ⟩, (3.2)

with mk ∈ N, ∀k = 1, ...N , being {|mk⟩,mk ∈ N} a basis for the space Hk.
The vector |0⟩ = |0⟩1 ⊗ |0⟩2... ⊗ |0⟩N is the ground state of the system, also
called vacuum state.
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For the sake of simplicity we adopt here a common convention in quantum
optics and define the scaled position and momentum operators

Qk =

√
mkωk
~

qk, Pk =
pk√
mkωk~

, (3.3)

and the vector R = (Q1,P1,Q2...PN−1,QN ,PN )
T , i.e. an ordered string of

all the position and momentum quadrature operators of the system. These
operators are particular examples of quadrature operators [13, 66], defined in
general as

xϕ = Qk cosϕ+Pk sinϕ, (3.4)

where 0 ≤ ϕ ≤ 2π. The components of the quadrature vector satisfy the
following commutation relation

[Rj ,Rk] = iΩjk, Ω =
n⊕
k=1

ω, ω =

(
0 1
−1 0

)
. (3.5)

In some occasions, throughout the text, we also make use of the creation and
annihilation operators, defined as

ak =
Qk + iPk√

2
, a†k =

Qk − iPk√
2

. (3.6)

The quadrature operators in terms of ak and a†k take the form

xϕ =
ake
−iϕ + a†ke

iϕ

√
2

, (3.7)

while the free Hamiltonian (3.1) becomes

H0 =

N∑
k=1

~ωk
(
a†kak +

1

2

)
. (3.8)

3.2 Covariance matrix and symplectic transforma-
tions

Given a quantum state ρ of the system of N modes, we define two fundamental
quantities: the first one is a vector collecting the mean values of the quadrature
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vector components X. The second is a 2N × 2N matrix σ, called covariance
matrix [66]. Their form is the following

Xj = ⟨Rj⟩,

σjk =
1

2
⟨{Rj ,Rk}⟩ − ⟨Rj⟩⟨Rk⟩,

(3.9)

where ⟨A ⟩ indicates the mean value of the operator A over the chosen state
ρ. These quantities are called first moments and second moments of the state
ρ, analogously to the correspondent definitions for probability distributions in
statistical sciences [67]. Higher order functions can be also defined, however,
in the following chapters we concentrate on the dynamics of a specific class of
states, the Gaussian states, which are completely characterized by quadrature
first and second moments only.

In quantum mechanics a transformation of dynamical variables is canonical
if it preserves the commutation relations between them. For a system of N
modes a transformation R′k = fk(R1...R2N ) is canonical if and only if

[R′j ,R
′
k] = iΩjk. (3.10)

Eq. (3.10) states that any unitary operation, e.g. the unitary evolution of any
closed system, defines a canonical transformation. We now consider only linear
transformations, which can be characterized by a 2N × 2N matrix F and a
displacement vector dR such that

R′ = FR+ dR. (3.11)

The vector dR describes a phase space translation of the operators, while F
induces a rotation of the variables in phase space. It can be proven that
the commutation relations (3.10) are preserved if and only if the canonical
matrix satisfies FΩFT = Ω. In this case the canonical transformation is called
symplectic and the associated matrix F is called symplectic matrix [66].

Under a given symplectic transformation, the covariance matrix and mean
quadrature vector transform as

σ → FσFT , X → FX+ dR. (3.12)

We note that phase space translations do not influence the form of the covari-
ance matrix.
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3.3 Bilinear operations

Since now we have considered only a system of non-interacting harmonic oscil-
lators, for which the Hamiltonian is simply given by Eq. (3.1). Here instead we
focus on more general Hamiltonian models containing also interaction terms. In
particular we are interested in studying interaction models at most quadratic in
the annihilation and creation operators, since they can be easily implemented
in realistic experimental situations [68–70].

The most general form of a bilinear interaction Hamiltonian is the following

HI =

N∑
k=1

g
(1)
k a†k +

N∑
k=1

δωka
†
kak +

N∑
k ̸=l=1

g
(2)
kl a

†
kal

+
N∑
k=1

g
(3)
k

(
a†k
)2
+

N∑
k ̸=l=1

g
(4)
k a†ka

†
l + h.c.

(3.13)

We refer to the first term of (3.13), as linear term, or displacement [71]. The
evolution operator, denoted by D(λ), is given by a product of N independent
displacement operators Dk(λk)

D(λ) =
N∏
k=1

Dk(λk) =
N∏
k=1

eλka
†
k−λ

∗
kak , (3.14)

where λk = ig
(1)
k t/~, while the symbol λ = (λ1, λ

∗
1, ..., λN , λ

∗
N )

T collects all
the parameters involved in the displacement operation. The evolution of the
quadrature operators is the following

D†k(λk)RkDk(λk) = Rk + Λk, (3.15)

where Λ ≡ (b1, c1, ..., bN , cN )
T , with λk = (bk + ick)/

√
2, bk and ck being

real parameters. The canonical transformation associated to the displacement
operation is thus symplectic and characterized by F = I and dR = Λ.

The second term of (3.13) is of the same form of the free Hamiltonian (3.8),
therefore it corresponds to a shift δωk of the free frequency of each oscillator
independently. It is usually called, improperly, renormalization term, and may
appear when considering certain models of open system dynamics (see Chapter
4). Moreover it can be implemented in experiments with light modes using an
optical element known as phase shifter [68].

The third term contains the product of a creation and an annihilation
operator for different modes and it is responsible for the exchange of excitations
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among the modes. For this reason it is usually referred to as mixing term. In
the case of light beams it can be implemented using a passive optical element,
e.g. a beam splitter [68]. When the j-th and k-th modes are involved, the
unitary operator associated to the mixing term reads

Ujk(ζjk) = exp{ζjka†jak − ζ∗jka
†
kaj}, (3.16)

with ζjk = ig
(2)
jk t/~.

Finally the fourth and fifth terms of (3.13) are called single mode squeezing
and two-mode squeezing terms, respectively, and their implementation requires
non-linear parametric processes [72]. The unitary operators associated are

S
(1)
k (ξk) = exp

{
ξk(a

†
k)

2 − ξ∗ka
2
k

2

}
, (3.17)

and
S
(2)
jk (ξjk) = exp{ξjka†ja

†
k − ξ∗jkajak}, (3.18)

where ξk = 2ig
(3)
k t/~ and ξjk = ig

(4)
jk t/~ are the complex squeezing amplitudes.

Except for the linear term, all the other terms in the Hamiltonian (3.13)
produce a non-trivial (F ̸= I) symplectic evolution. Moreover a generic sym-
plectic evolution can always be obtained by a suitable combination of some
of the interaction terms contained in (3.13). We can then conclude that the
Hamiltonian of Eq. (3.13) is the generator of symplectic evolutions for N
modes [66]. From the expression of the symplectic matrices is then possible to
calculate the evolution of the vector X and the covariance matrix σ using Eq.
(3.12).

To summarize, the dynamics of mean quadratures values and covariance
matrices for a system of oscillators under bilinear Hamiltonians can be evalu-
ated using finite dimensional matrix analysis. In the next section we will intro-
duce a class of states, the Gaussian states, characterized only by quadrature
first and the second moments only. Therefore their evolution under bilinear
interactions can be easily evaluated using the results presented in this section.

3.4 Gaussian states

The state of a quantum system is uniquely determined given the expression of
the density operator ρ. However for continuous variable systems it is possible
to provide an alternative but equivalent description of quantum states in terms
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of quasi-probability distributions in phase space. For an exhaustive discussion
on phase space distributions we refer to Refs. [73,74]. Here we introduce only
the symmetrically ordered characteristic function χ(λ), defined as

χ(λ) = Tr[D(λ)ρ]. (3.19)

The formulation based on phase space distributions is equivalent to that of den-
sity operators for two reasons: there is a one to one correspondence between
characteristic functions and density operators, and, moreover, any matrix el-
ement of any operator of the system can be evaluated from the expression of
the characteristic function.

Furthermore, dynamical equations for the density operators, e.g. the von
Neumann equation or master equations, can be converted into partial differ-
ential equations for the phase space distributions [73].

This equivalent approach is particularly useful when we are interested in
dynamical problems involving a specific class of continuous variable states: the
Gaussian states. Among the different definitions provided in the literature,
Gaussian states can be introduced by defining the form of their associated
characteristic function. A quantum state ρ of a continuous variable system is
Gaussian if its characteristic function is Gaussian shaped. The most general
form of the characteristic function of a Gaussian state is

χ(Λ) = exp

{
−1

2
ΛTσΛ + iΛTX

}
. (3.20)

We notice that the characteristic function of a Gaussian state depends only
on the expression of the mean value of the quadratures X and the covariance
matrix σ. This means that any Gaussian state can be obtained from another
Gaussian state through only symplectic evolutions.

Though a general theory for N mode Gaussian states could be formulated,
in this thesis we concentrate only on the cases N = 1 and N = 2.

3.4.1 Single mode Gaussian states

For a single mode system, the Hamiltonian (3.13) simplifies considerably, con-
taining only the linear term and the single mode squeezing. From now on we
neglect the renormalization term, assuming that it is included into the free
Hamiltonian.

Any single mode Gaussian state can be generated applying squeezing and
displacement operations to a thermal state [66,75]

ρG(n, α, ξ) = D(α)S1(ξ)ν(n)S
†
1(ξ)D

†(α), (3.21)
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where ν(n) is a thermal state of temperature parameter n, α = |α|eiϕ is the
complex displacement amplitude and ξ = reiψ is the squeezing complex param-
eter. For a fixed value of the temperature parameter n, Eq. (3.21) describes
a subclass of Gaussian states all characterized by the same symplectic spec-
trum [66], with symplectic eigenvalue d1 = n+1/2. A simple calculation leads
to the expression of the covariance matrix, which, as expected, depends only
on the temperature and squeezing parameters

σ =
2n+ 1

2

(
cosh(2r) + sinh(2r) cosψ − sinh(2r) sinψ

− sinh(2r) sinψ cosh(2r)− sinh(2r) cosψ

)
.

(3.22)

3.4.2 Two-mode Gaussian states

Two-mode Gaussian states are generated by applying a general two-mode bi-
linear evolution US to a product of thermal states

ρ = US ν1(n1)⊗ ν2(n2)U
†
S , (3.23)

with, the symplectic eigenvalues being d+ = n1 + 1/2 and d− = n2 + 1/2,
assuming n1 ≥ n2. The general form of the covariance matrix in terms of the
squeezing and mixing parameters ξ1, ξ2, ξ12 and ζ12 is quite complicated, as it
depends on the order in which each operation is performed. In many situations,
it suffices to know the expression of the covariance matrix in its normal form

σ =

(
A C
CT B

)
=


a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

 , (3.24)

obtainable starting from any bimodal gaussian state and applying suitable local
symplectic operations. The following quantities, remaining unchanged under
local symplectic operations, are known as symplectic invariants

I1 = Det[A], I2 = Det[B], I3 = Det[C], I4 = Det[σ]. (3.25)

The quantity I4 is the only one invariant also under global unitaries.
We want to stress the fact that, Gaussian states characterized by a pair of

covariance matrices σ1 and σ2 connected only by local symplectic operations
are different states. However some properties of the total state of the two-mode
system are unaffected by local operations, e.g. quantum correlations. This is
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one of the reasons why the normal-form of the two-mode covariance matrix is
useful.

To conclude we provide also the expression of the symplectic eigenvalues
of the covariance matrix in terms of the symplectic invariants

d± =

√
I1 + I2 + 2I3 ±

√
(I1 + I2 + 2I3)2 − 4I4
2

(3.26)

3.5 Detection of mode quadratures: balanced homo-
dyne detection

In the previous sections we discussed the properties of continuous variable sys-
tems with particular attention to the class of bilinear operations and Gaussian
states. Gaussian states constitute a privileged class within CV systems, for
their simple mathematical description and physical interpretation in terms of
generating Hamiltonian. In quantum information and quantum optics many
theoretical and experimental achievements rely on the use of this class of states.
The successful implementation of quantum communication and information
processing protocols in CV systems, e.g. quantum teleportation [76, 77] and
quantum key distribution [27,78], has been possible thanks to the development
of measurements techniques such as photodetection [79] or homodyne detec-
tion [80, 81]. Hence we wish to conclude this chapter with a brief review of
the basic notions about balanced homodyne detection, a method we refer to
in paper V when exploring coherent states quantum key distribution.

Any measurement process in quantum theory can be thought as a con-
trolled induced interaction between the system of interest and a measurement
apparatus, consisting of a certain number of probe modes. The measured quan-
tity is described by an observable Z defined on the total Hilbert space H⊗K
of the system and the probe modes. If we denote by Z the spectrum of the
operator Z, by z ∈ Z the eigenvalues and by E(z) = |z⟩⟨z| the corresponding
orthogonal projectors, the probability distribution of obtaining the value z in
the measurement process is given by

p(z) = Tr[ρ⊗ ρME(z)], (3.27)

where ρ is the state of the system and ρM is a default state of the apparatus.
If we want to define the measurement process only in the space of the system
we need to trace out the degrees of freedom of the apparatus, getting

p(z) = TrH[ρΠ(z)], (3.28)
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Figure 3.1: Basic balanced homodyne detection scheme.

where the Π(z) = TrK[ρME(z)] are positive selfadjoint operators. The set of
Π(z) defines a POVM (positive operator valued measure) which completely
characterize the measurement process [6].

Balanced homodyne detection is a measurement scheme exploited to mea-
sure one of the quadrature operators xϕ of a single field mode. The scheme is
depicted in Fig. 3.1 and shows how the system mode a and a probe mode b
are mixed in a fifty-fifty beam splitter. The outer modes c and d then are sub-
jected to a photodetection measurement and their current difference c†c− d†d
is evaluated. The probe mode is usually prepared in a coherent state char-
acterized by a given mean value and fluctuations around it. However if the
probe is prepared in a high amplitude coherent state ||α|eiϕ⟩ with |α|2 >> 1
(high amplitude limit), the fluctuations can be neglected. The measured op-
erator is then defined only on the space of the system and, in the case of ideal
photodetection, reads

∆H =
c†c− d†d√

2|α|
=
a†b+ ab†√

2|α|
≃ a†eiϕ + ae−iϕ√

2
= xϕ. (3.29)

The angle ϕmeasures the phase difference between the system and probe modes
and can be tuned to modify the choice of quadrature to measure. In the high
amplitude limit and for ideal photodetection processes the POVM associated
to the measurement consists of a set of projectors Π(ϕ)(x) = |x⟩ϕ⟨x|. Slightly
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different detection scheme have been also used to measure the quadratures of
a single beam and two-mode systems [82].
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Chapter 4

Quantum Brownian motion

In this chapter we introduce a paradigmatic class of continuous variable open
quantum systems: the quantum Brownian motion (QBM) models [20,21]. This
class contains systems consisting of a finite number N of free, or interacting,
quantum particles subjected to an external potential V (x) and coupled to M
independent bosonic environments. In this thesis we concentrate the attention
to the case of at most N = 2 non-interacting particles in harmonic poten-
tial, or modes, coupled to one common environment or to two independent
environments.

The class of QBM open system models is capable of describing the open
system dynamics in many different physical situations. For instance we may
mention the dissipative dynamics of light modes in optical cavities [83], or the
propagation of light modes in optical fibers [66] or even damped oscillations
in mesoscopic optomechanical systems [84–86]. In the following sections we
review the basic concepts of the QBM models and their open system dynamics.

4.1 Classical Brownian motion

The classical Brownian motion is a phenomenon appearing in many situations
in nature. The first detailed observation comes from the English botanist R.
Brown, who studied the mechanical behavior of pollen grains suspended in
water solutions [87]. The stochastic behavior observed in the grains motion
can be explained microscopically as a result of the many collisions suffered by
the relatively big pollen particle with the water molecules.

The first exhaustive physical explanation of the Brownian motion comes
from A. Einstein [88], and independently from M. Smoluchovsly [89], who
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provided also a mathematical model in terms of a diffusion equation for the
density ρ(r, t) of the Brownian particle in r at time t. In the one dimensional
case the equation reads

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
, (4.1)

where D is called diffusion coefficient and its value depends on the solution
density and temperature. Assuming that the particle density is initially peaked
in x0 and the initial speed is zero, the solution of this equation can be expressed
as

ρ(x, t) =
1√
4πDt

e−(x−x0)
2/4Dt, (4.2)

Einstein’s solution reveals the stochastic nature of the Brownian motion, show-
ing that the average position of the particle does not change with time, while,
its mean quadratic value is different from zero and increasing. This means that
in each realization of the stochastic process the particle actually travels across
the solution.

The classical Brownian motion is considered a good model when applied
to the description of the motion of macroscopic objects subjected to random
forces and friction, like the pollen grains case. However as we consider smaller
particles, or when we want to apply the same ideas to purely quantum systems,
e.g. few photon states in optical fibers or cavities, we need to extend the
theory within quantum mechanics. In the next section we briefly introduce
the most simple and convenient way of describing Brownian like phenomena
in the quantum regime.

4.2 The quantum Brownian motion model

The open system model discussed in this section consists of one mode inter-
acting with one environment made of an ensemble of independent harmonic
oscillators, i.e. a bosonic reservoir or bath. Situations like this can be found,
for instance, when considering an optical monomodal cavity dynamics [83].
Because the cavity walls are not perfect mirrors, the internal mode is unavoid-
ably coupled with the external degrees of freedom. This coupling phenomenon
can be modeled as if the cavity mode is actually exchanging energy with other
modes constituting the environment. Same idea applies for instance in the
dynamics of a light mode propagating into a monomodal optical fiber, or in
photonic band-gap materials [56,57].
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The Hamiltonian describing the total system dynamics may be written as

H = HS +HE +HI +HR,

HS =
p2

2M
+

1

2
Mω2

0q
2,

HE =
∑
n

p2n
2mn

+
1

2
mnω

2
nq

2
n,

(4.3)

where q and p are the position and momentum operators of the system mode,
M is the mass of the harmonic particle and ω0 is the bare frequency. The oper-
ators qn and pn are the dynamical variables associated to the bath oscillators.
The functional form of the interaction term HI depends on the particular phys-
ical situation we are interested in. The simplest forms of system-environment
coupling are given by

HRWA
I = α

∑
n

kn(ab
†
n + a†bn),

HI = −αq
∑
n

knqn,
(4.4)

where a and a† are the annihilation and creation operator for the system os-
cillator, and bn’s and b†n’s are the same operators for the bath modes. The
constants kn define the strength of the interaction as determined by the prop-
erties of the environment and the actual physical interaction process, while
α is an overall coupling constant. The first model is called rotating wave, or
quantum optical coupling, and contains only terms conserving the number of
excitations in the total system. It is especially employed to describe quantum
optical systems, i.e. photon states propagating in optical fibers. The second in-
teraction model is known under the name of position-position coupling. Other
models can be also considered, e.g. momentum-momentum coupling [90, 91],
but in the following we are interested only in the ones provided by expression
(4.4).

One of the consequences of the open system dynamics is a change of the free
energies of the system mode: ω0 → ω0 + δω0. To cancel this unphysical effect
the term HR is added to the Hamiltonian. The form of this renormalization
term depends on the choice of the interaction Hamiltonian, see for instance
Ref. [8].

To complete the description of the total system we need to provide a full
characterization of the environmental modes, i.e. their number and how they
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are distributed in frequency. In practical situations the reduced dynamics is
derived under the assumption of an infinite ensemble of oscillators distributed
in a continuum of modes. The properties of the environment are then specified
by the spectral density J(ω) describing the coupling of the system with the
reservoir oscillators of frequency ω [9, 10].

The exact reduced dynamics of the model (4.3)-(4.4) in the master equa-
tion approach can be derived in the case of factorized initial condition with the
environment in a thermal stationary state. The derivation can be obtained for
instance using path integrals and influence functional approaches [20, 45, 59].
Other master equations can be derived within Born and/or Markov approxi-
mation in high or low temperature regimes [20]. In the next section we provide
a panoramic view of the most important master equation models used in this
thesis.

4.2.1 The High-T Caldeira-Leggett model

The first master equation we present is the high-temperature Markovian Caldeira-
Leggett model [20]

dρS
dt

= − i

~
[
HS , ρS

]
− iγ

~
[
q, {p, ρS}

]
−2MγkBT

~2
[
q, [q, ρS ]

]
, (4.5)

where T is the temperature of the environment, supposed to be in a stationary
thermal state, γ is a coupling constant usually called damping coefficient and
M is the mass of the particle.

This equation has been derived under the Born-Markov approximation and
factorized initial conditions, within a position-position interaction model [8].
Moreover there is also an assumption of high-temperature, i.e. the thermal en-
ergy kBT is assumed to be bigger than any other excitation energies. For
instance if the particle is also subjected to a harmonic potential, we put
kBT >> ~ω0, with ω0 being the free oscillator frequency. The spectral density
used is of the form J(ω) ∝ γω, known as Ohmic or linear frequency distribu-
tion [9].

Although Eq. (4.5) is not employed in any of the papers of this thesis,
it serves as a good and simple example to describe the main features of the
reduced dynamics in open quantum systems. Moreover this model shows many
common properties with the classical Brownian motion discussed previously.

For instance let us look at the dynamics of a free particle, i.e. when the
free Hamiltonian HS = p2/2M contains only a kinetic term. The mean values
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for the position and momentum operators evolve as

⟨p(t)⟩ = e−2γt⟨p(0)⟩,

⟨q(t)⟩ = ⟨q(0)⟩+ 1− e−2γt

2Mγ
⟨p(0)⟩.

(4.6)

The properties of these solutions resemble the ones observed in the classical
case. The momentum mean value is damped to zero, while the position mean
value reaches a constant value which depends on its initial value ⟨q(0)⟩ and on
the initial momentum mean value ⟨p(0)⟩. This feature of the dynamics is called
damping and it depends only on the coupling constant, or damping coefficient
γ, while it is independent on the temperature. The damping phenomenon is
present also in the classical Brownian motion case, therefore we cannot consider
it a genuine quantum effect.

To see quantum mechanical effects we must study the dynamics of higher
order moments of position and momentum. For instance if we consider the
solution for the position quadratic value ⟨q2(t)⟩ in the short time limit (γt <<
1), we get

⟨q2(t)⟩ = ⟨q2(0)⟩+ ~2t2

4m2⟨q2(0)⟩
+

4γkBT

3m
t3, (4.7)

where we assumed the initial condition ⟨q(0)⟩ = ⟨p(0)⟩ = ⟨{q(0),p(0)}⟩ = 0
and we consider as initial state a Gaussian minimum uncertainty wave packet
⟨q2(0)⟩ = ~/4⟨p2(0)⟩, to be as near as possible to a classical situation. The
spreading of the packet, also present in the classical Brownian particle density,
contains three terms. The first one is the value at time zero, compatible with
the Heisenberg uncertainty relation. The second term is the quantum mechani-
cal free particle spreading term, while the third term is temperature dependent
and of a quantum mechanical nature. It describes an additional spreading of
the wave packet due to the interaction with a thermal environment. However
it is not a classical term, being proportional to the third power of t. This
additional contribution is called quantum diffusion term and it is responsible
for the loss of quantum coherence of the system state, or decoherence, as one
can see by checking the value of the purity of the system state.

In this section, with a very basic example of master equation, we described
the main essential features of the dynamics of continuous variable open sys-
tems, damping and quantum diffusion, i.e. decoherence. These features are
also common in many other open system models as we will see in the next
sections.
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4.2.2 The Hu-Paz-Zhang master equation

The exact reduced dynamics of an harmonic particle of mass M and free fre-
quency ω0 interacting with a reservoir with a position-position coupling can be
derived within the only assumptions of factorized initial conditions and envi-
ronment initially in a thermal state at temperature T . The associated master
equation, expressed in terms of the quadrature operators Q and P defined in
Eq. (3.3), is known as the Hu-Paz-Zhang equation and has the following local
in time form [59]

dρS
dt

=
1

i~
[
HS , ρS

]
+ir(t)

[
Q2, ρS

]
−iγ(t)

[
Q, {P, ρS}

]
−∆(t)

[
Q, [Q, ρS ]

]
+Π(t)

[
Q, [P, ρS ]

]
.

(4.8)

The first term describes the unitary evolution of the free harmonic oscillator
while all the other terms appear due to the interaction with the thermal bath.
The second term, depending on the time-dependent coefficient r(t), is called
renormalization term and its effect is to change the free oscillator frequency.
The third term describes damping-like phenomena, it depends on the form of
the damping coefficient γ(t) and it is temperature independent. The last two
terms, containing the direct ∆(t) and anomalous Π(t) diffusion coefficients,
describe diffusive dynamics and decoherence. The analytic form of the time
dependent coefficients is in general quite complicated, depending essentially on
the state of the environment and on its spectral distribution. Each of them
can be usually written in a power series in the coupling constant α. The first
non zero contributions, are at second order in α, and read [18,92,93]

∆(t) = α2

∫ t

0
ds

∫ ∞
0

dω J(ω)
[
2N(ω) + 1

]
cos(ωs) cos(ω0s),

Π(t) = α2

∫ t

0
ds

∫ ∞
0

dω J(ω)
[
2N(ω) + 1

]
cos(ωs) sin(ω0s),

γ(t) = α2

∫ t

0
ds

∫ ∞
0

dω J(ω) sin(ωs) sin(ω0s),

r(t) = α2

∫ t

0
ds

∫ ∞
0

dω J(ω) sin(ωs) cos(ω0s),

(4.9)

where J(ω) is the spectral density of the environmental modes and N(ω) =
(exp{~ω/kBT} − 1)−1 is the mean number of photons at frequency ω. The
solution of the Eq. (4.8) depends on the form of the coefficients (4.9) and has
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a simple form in terms of the characteristic function

χ(Λ, t) = χ(exp{−Γ(s)/2}R−1(t)Λ, 0) exp{−ΛTW̃(t)Λ}, (4.10)

where

W̃ (t) =
[
R−1(t)

]T[∫ t

0
eΓ(s)−Γ(t)RT (s)M(s)R(s)

]
R−1(t),

M(s) =

(
∆(s) −Π(s)/2

−Π(s)/2 0

)
,

(4.11)

and we defined Γ(t) = 2
∫ t
0 γ(s)ds. The renormalization coefficient r(t) appears

only in the 2× 2 matrix R(t), whose form is in general quite complicated. At
the second order expansion in α it is possible to neglect the renormalization
effect and the matrix takes the free oscillator form

R(t) =

(
cos(ω0t) sin(ω0t)
− sin(ω0t) cos(ω0t)

)
. (4.12)

From the solution (4.10) we may notice that Eq. (4.8) describes a Gaussian
preserving dynamical map. The characteristic function at any later time t is,
in fact, a product of a Gaussian term and a rotated characteristic function at
the initial time, which means that if the initial state is Gaussian, also the final
state is Gaussian. This expected behavior is due to the bilinear form of the
Hamiltonian (4.3). A simple calculation provides the dynamical evolution of
the mean quadrature value and covariance matrix as

X(t) = e−Γ(t)/2R(t)X(0),

σ(t) = e−Γ(t)R(t)σ(0)RT (t) + 2W̃ (t).
(4.13)

In the weak coupling limit X(t) is damped towards the center of phase space
and rotates with frequency ω0 due to the free unitary dynamics. The covariance
matrix instead experiences both damping dynamics, as the information on the
initial value σ(0) is washed away, and decoherence due to the term proportional
to W̃ (t) which in general is typical of a thermal squeezed state even at zero
temperature. The asymptotic time qualitative behavior is independent of the
form of the environment spectral distribution J(ω). However the form of the
spectrum is important in the early stages of the dynamics, i.e. within a time
scale comparable with the reservoir correlation time τE . The correlation time
scale τE , which depends on the form of the spectrum, roughly corresponds to
the interval of time in which the coefficients (4.9) are time-dependent. For
t >> τE , and within the weak coupling limit, the coefficients reach a constant
value, i.e. their Markovian value.
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4.2.3 The secular approximated master equation

The Hu-Paz-Zhang equation is an exact equation of motion for the reduced
dynamics of the system oscillator. However in some situations it is possible to
use a simplified form. We present here a QBM master equation derived under
weak coupling limit and secular approximation. In the interaction picture the
equation reads

dρS
dt

=
∆(t) + γ(t)

2

(
2aρSa

† − a†aρS − ρSa
†a
)

+
∆(t)− γ(t)

2

(
2a†ρSa− aa†ρS − ρSaa

†), (4.14)

where the damping and diffusion coefficients ∆(t) and γ(t) are of the same form
of (4.9). The secular approximation is an assumption on the relative value of
the free system dynamics timescale τS ≃ ω−10 and the relaxation dynamics time
scale τR. When τS << τR it is possible to neglect some terms in the master
equation, i.e. the non-secular terms, which oscillate in time very fast giving a
negligible contribution to the dynamics. The validity of this approximation,
and therefore of Eq. (4.14), depends on the system-reservoir parameters and
in particular on the form of the spectral distribution [94].

The solution of Eq. (4.14) for an initial Gaussian state reads

X(t) = e−Γ(t)/2X(0),

σ(t) = e−Γ(t)σ(0) + 2∆Γ(t)I,
(4.15)

where ∆Γ(t) = e−Γ(t)
∫ t
0 e

Γ(s)∆(s)ds. In these equations the free dynamics has
been eliminated by using the transformation into the interaction picture, hence
the mean quadrature vector is simply damped towards the center of the phase
space. The covariance matrix instead tends to a simple thermal state without
any squeezing contribution.

4.2.4 Damped harmonic oscillator: Markovian treatment

The simplest model of a CV single mode open quantum system is given by a
master equation in the Lindblad form [8, 66]. In the interaction picture the
equation reads

dρS
dt

=
γ

2

(
2aρSa

† − a†aρS − ρSa
†a
)
. (4.16)

This master equation can be derived microscopically starting from a rotating
wave coupling HRWA

I under Born-Markov and secular approximation. Eq.
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(4.16) is usually the starting point of any dissipative dynamics treatement
among the quantum optics community as it well describes, for instance, the
lossy dynamics of propagating light beams or intracavity light modes. The
solution for an initial Gaussian state can be written as follows

X(t) = e−γtX(0),

σ(t) = e−2γtσ(0) +
(
1− e−2γt

) I
2
.

(4.17)

Dissipation and decoherence processes are here interrelated and depending on
the only free parameter of the model, i.e. the decay rate γ.

A phenomenological generalization of Eq. (4.16) can be also used in some
contexts, where the decay rate is now time dependent, i.e. γ(t),

dρS
dt

=
γ(t)

2

(
2aρSa

† − a†aρS − ρSa
†a
)
. (4.18)

The solution is

X(t) = e−Γ(t)/2X(0),

σ(t) = e−Γ(t)σ(0) +
(
1− e−Γ(t)

) I
2
,

(4.19)

with Γ(t) = 2
∫ t
0 γ(s)ds. The generalization (4.18) is explored in papers IV and

V in two different physical contexts. Whether this kind of open dynamics can
be actually implemented for any form of the rate γ(t) is still an open question.
If we assume γ(t) > 0 for any t ≥ 0 we may imagine that the equation could
describe the propagation of light modes in optical fibers where the fiber coating
changes through the line.

Moreover Eq. (4.18) can be also considered a special case of Eq. (4.14)
when |∆(t) − γ(t)| << |∆(t) + γ(t)|. Because both coefficients depend on
the same spectral distribution J(ω) we could argue that, with appropriate
reservoir engineering techniques, in principle, we may be able to satisfy the
previous requirement.
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Chapter 5

Correlations in quantum
systems

In this section we review some basic properties of bipartite systems, focusing
on the correlations in bipartite quantum states. We first define the concept of
correlated quantum states and introduce some of the most common measures
for correlations. In the last sections we focus on the dynamical evolution of
correlations in the presence of an environment.

5.1 Correlated states in quantum mechanics

A quantum mechanical state ρAB of a bipartite system A and B is said to
be correlated if it cannot be written as a product state ρAB = ρA ⊗ ρB. This
definition, valid for both pure and mixed states, relies on the fact that when the
state is not a product, joint measurement outcomes are, in general, statistically
correlated. A paradigmatic example is provided by a Bell state for a two qubits
system

|Ψ⟩ = 1√
2

(
|0⟩A|0⟩B + |1⟩A|1⟩B

)
, (5.1)

with ⟨0|1⟩ = 0. If we perform a joint projective measurement onto the canonical
basis {|0, 0⟩, |1, 0⟩, |0, 1⟩, |1, 1⟩}, we find that both subsystems are in the state
|0⟩ or |1⟩.

Measurement outcomes, however, may be correlated also in classical sys-
tems. For instance imagine to put one red ball and one blue ball into a bag. If
we pick up the red ball first, then we know for certain that the second ball is
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blue and viceversa. The nature of correlations expressed by Eq. (5.1) is how-
ever radically different from the classical balls example. Quantum mechanics
shows different types and more general correlations than classical mechanics.

Recently [95] there have been attempts to classify correlations in terms of
their quality, and consequently, in terms of properties of the bipartite states
involved. Depending on the nature of correlations, we can define different
classes, or sets, of bipartite states:

• Product states : ρAB = ρA ⊗ ρB,

• Classical states: ρAB =
∑

kl pkl|ψ
(A)
k ⟩⟨ψ(A)

k |⊗|ψ(B)
l ⟩⟨ψ(B)

l |,

• Separable states : ρAB =
∑

k pkρ
(A)
k ⊗ ρ

(B)
k ,

• Entangled states: ρAB ̸=
∑

k pkρ
(A)
k ⊗ ρ

(B)
k ,

with {|ψ(A),(B)
k ⟩} being an orthonormal basis in HA,B. These sets are not

disjoint, e.g. classically correlated states are also separable and product states
are trivially classically correlated and separable.

In the next section we will review the properties of these classes of states,
discussing their nature and their physical meaning.

5.2 Separability and entanglement

Following an historical path, the interest of the physics community about bipar-
tite correlations may be traced back to the concept of separability and entangle-
ment. Separability was first introduced in a seminal paper by R. Werner [96]
where its physical meaning was given in terms of preparation procedures of
bipartite quantum states. According to his definition, a state of a bipartite
system is separable if can be prepared using only local operations and classi-
cal communication (LOCC) on each subsystem. In practice to prepare these
states we need two local machines capable of preparing the states ρ(A)k and ρ(B)

k

in each subsystem location, and a classical random number generator which
selects numbers 1...r with probabilities pk’s. When the number k is drawn,
this information is sent to each machine through completely classical channels.
The machines then use this information to prepare the states ρ(A)k and ρ

(B)
k .

The composite state can be described by a statistical mixture of the form

ρAB =
∑
k

pkρ
(A)
k ⊗ ρ

(B)
k . (5.2)
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If a state is not separable then it is called entangled. Product states are simply
separable states where the probability of obtaining a given result by the classi-
cal random machine is one. Classically correlated states are obtained by local
machines which prepare locally distinguishable states (set of orthogonal states).
The preparation of entangled states requires instead a more general procedure,
which usually consists in the implementation of a direct, i.e. non-local, inter-
action between the subsystems. The problem of finding, for a generic system,
sufficient and necessary conditions for separability is considered a fundamental
research topic. Until now a complete answer to this question exists for the
class of pure states only. In this case the Schmidt decomposition theorem [6]
tells that pure separable states are given by products of pure states.

For mixed states it exists only a necessary condition for separability valid
for any bipartite system. This condition, provided in 1996 by A. Peres [97], is
called PPT (positivity under partial transposition) criterion. Peres introduces
first the definition of transposition map T which, applied to a generic state ρ
acts as T[ρ] = ρT. The transposition map is positive but it is not completely
positive. Therefore if we extend the map to a bigger system TA ⊗ IB, the
extended map, known as partial transposition in respect to the first subsystem,
may lead to non positive states ρ.

If partial transposition is applied to a separable state we get(
TA ⊗ IB

)[
ρsep

]
≡ ρTA =

∑
k

pk
(
ρ
(A)
k

)T⊗ρ(B)
k , (5.3)

which is still a positive operator. We can conclude that positivity under partial
transposition is a necessary condition for separability. This criteria turns out
to be also sufficient for some specific systems, e.g. two qubit states [98] or
bimodal continuous variable Gaussian states [99].

5.3 Entanglement measures

Entangled states are considered important tools in quantum information and
computation theory. A striking example is provided by the original quantum
teleportation protocol [100]. In this protocol Alice possesses an unknown one-
qubit quantum state and wants to teleport it to the receiver Bob. If the
two parties pre-share a two-qubit Bell state, like (5.1), it is then possible,
by means of measurements performed only by Alice, to prepare the initial
unknown quantum state in Bob’s location, and achieve teleportation of the
quantum state. This operation is possible only because the two parties share
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entanglement contained in the Bell state. If the shared state is not entangled,
teleportation cannot be achieved. This and other examples, e.g quantum dense
coding [101], quantum key distribution [102] or search algorithms [103], show
the role of entanglement as a resource in quantum information theory. The
teleportation protocol works also when the shared state is not a Bell state, but
it is still not separable. In this case the protocol efficiency is diminished. The
reason stands from the fact that among two-qubit entangled states, Bell states
seem to possess more entanglement than others.

To quantify the amount of entanglement in a generic bipartite system we
need to define a measure valid for any system and any density operator. In the
case of a pure state |ψ⟩, entanglement E(|ψ⟩⟨ψ|) can be measured, for instance,
by the von Neumann entropy S(ρ) = −Tr

[
ρ ln ρ

]
of the reduced state of one

of the subsystems [6]

EV (|ψ⟩⟨ψ|) = S(ρA) = S(ρB), ρA(B) = TrB(A)

[
|ψ⟩⟨ψ|

]
. (5.4)

For mixed states, the lack of a sufficient and necessary condition for separability
complicates also the problem of finding suitable measures of entanglement.

During the last decades many conceptually and operatively different entan-
glement measures have been presented in the literature [22]. These quantities
possess a conceptual meaning independent from the specification of the system
of interest, and hence they can, in principle, be applied to any bipartite sys-
tem state. A quantity E(ρAB) needs to satisfy certain requirements in order
to be eligible as a good measure of bipartite entanglement. The two main
requirements are

E(ρAB) = 0 ⇔ ρAB =
∑
k

pkρ
(A)
k ⊗ ρ

(B)
k

E(ΦLρAB) ≤ E(ρAB).

(5.5)

The first line of (5.5) states that the measure is zero only for separable states.
The second requirement states that the measure is monotonically decreasing
when local actions and classical communication only are performed, where ΦL
is a LOCC map [104]. Moreover E(ΦLρAB) = E(ρAB) only when ΦL is a local
unitary operation. Other requirements, e.g. continuity or convexity, may be
demanded. More detailed results can be found, e.g., in [22].

For most of the bipartite systems of interest, the evaluation of entanglement
measures is a very difficult task, and usually numerical algorithms are required
to calculate entanglement. Analytic results can be found in very few systems,
for instance in two-qubit states or in continuous variable Gaussian states [98].
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5.3.1 Logarithmic negativity and entanglement of formation

In this section we introduce two conceptually distinct measures for entangle-
ment of bipartite states. In both cases there exist analytical expressions for
bimodal continuous variable Gaussian states.

The first measure is known as logarithmic negativity and it is defined as
follows [105]

EN (ρAB) = ln(2N + 1), (5.6)

where the quantity N (ρAB), called negativity, is given by the absolute value of
the sum of the negative eigenvalues of the partially transposed density opera-
tor ρTAAB with respect to one of the subsystems [106]. If the partial transpose
operator is a density operator, then both negativity and logarithmic negativity
are zero. This means that, when the PPT criterion is also sufficient for sepa-
rability, then the state is separable. Otherwise the state may or may not be
separable and logarithmic negativity ceases to behave as a good entanglement
measure.

For bimodal continuous variable Gaussian states, the PPT criterion is also
sufficient for separability [99] and the logarithmic negativity assumes the form
[105]

EGauN (ρAB) = max{0,− log(2d̃−)}, (5.7)

where d̃− is the smallest symplectic eigenvalue of the partially transposed co-
variance matrix σ̃ associated to the state. The partially transposed covariance
matrix can be obtained from the actual covariance matrix σ as follows

σ̃ = YσY, Y =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 . (5.8)

Then the expression of the eigenvalue d̃− can be entirely written in terms of
the local and global symplectic invariants Ii’s

d̃− =

√
I1 + I2 − 2I3 −

√
(I1 + I2 − 2I3)2 − 4I4
2

, (5.9)

thus showing how local symplectic operations cannot change the value of the
entanglement.

The second measure we consider is called entanglement of formation and is
denoted by EF (ρAB) [104]. Given a good entanglement measure for pure states,
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e.g. the von Neumann entropy of the reduced states (5.4), the entanglement
of formation is given by

EF (ρAB) = min
∑
i

piEV
(
|ψi⟩⟨ψi|

)
, (5.10)

where the minimum is taken over the ensemble of states and related probabili-
ties {|ψi⟩, pi} which realize the given state, ρAB =

∑
i pi|ψi⟩⟨ψi|. Conceptually

this quantity tells how many pure maximally entangled states are needed, at
most, to realize the incoherent superposition ρAB. In this sense a highly en-
tangled state is a state given by a mixture of highly entangled pure states.

The expression of entanglement of formation for bimodal Gaussian states
reads [107,108]

EGauF (ρAB) = max{0, h(d̃−)}, (5.11)

with

h(x) =
(1 + 2x)2

8x
log

[
(1 + 2x)2

8x

]
−(1− 2x)2

8x
log

[
(1− 2x)2

8x

]
. (5.12)

5.4 Quantum discord

Entangled states can be used in quantum information and computation theory
to perform tasks beyond the classical efficiency level. The reasons seems to lie
on the qualitatively different kind of correlations exhibited by quantum sys-
tems, which allow for more efficient computational algorithms and information
transfer compared to classical systems. We may ask now if entanglement is
the only type of correlations of quantum nature, or stated in another way, if
among the class of separable states there are states exhibiting correlations not
present in a classical framework. A partial positive answer to this question
has been suggested through the concept of quantum discord [23, 24], which
quantifies the total amount of correlations of quantum nature in a given quan-
tum state. Within bipartite quantum systems, quantum discord is defined as
the algebraical difference between the total amount of correlations in a state,
quantified by the quantum mutual information [6]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (5.13)

and the correlations of classical nature. The fundamental and delicate point
of this definition consists in choosing the appropriate measure for the classical
correlations of a given bipartite quantum state. In [24] classical correlations
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are measured by quantifying the maximum amount of knowledge gained on one
subsystem when the other is measured. The result of this operation depends
in general on which of the two subsystems is measured, thus two different
measures of classical correlations can be introduced

C→(ρAB) = max
Πi,B

{
S(ρA)−

∑
i

pBi S(ρ
Πi,B

A|B )
}
,

C←(ρAB) = max
Πi,A

{
S(ρB)−

∑
i

pAi S(ρ
Πi,A

B|A )
}
.

(5.14)

The measurement set is usually restricted to projective measurements, char-
acterized by a set of projection operators {Πi,Y , i = 1, ...dimHY } when the
system Y = A,B is measured. The quantity ρΠi,Y

X|Y = TrY [ρABI⊗ Πi,Y ] is the
post measurement state of system X after the i-th result is obtained on system
Y with probability pYi = TrAB[ρABI⊗Πi,Y ].

Being C→(ρAB) ̸= C←(ρAB), quantum discord can be defined in two ver-
sions, depending on which system is measured

D→(ρAB) = I(ρAB)− C→(ρAB),

D←(ρAB) = I(ρAB)− C←(ρAB).
(5.15)

It is worth mentioning that there are also situations in which only one version
of the discord is different from zero. In this case one usually talks of quan-
tum/classical or classical/quantum correlations measured by the discord. The
possibility that discord asymmetry comes from a limitation in the choice of
the measurement schemes has been recently investigated, and the definitions
(5.14) and (5.15) have been extended to allow for more general measurements
schemes, i.e. POVM [109–113]. Other definitions of discord, independent on
measurements protocols but rather based on distance measures, have also been
recently provided [95,114,115].

As in the case of entanglement, quantum correlations as measured by quan-
tum discord have attracted the attention of the scientific community due to
their possible role in enhancing the efficiency of quantum information protocols,
in particular in mixed state quantum computation, where the role of entan-
glement becomes unclear. Is quantum discord a resource useful for quantum
technologies? This question is still under investigation and up to our knowl-
edge the only example of quantum efficient computation where discord plays
a key role is the deterministic quantum computation (DCQ1) model [116]. In
this protocol a single qubit interacts with a register of N qubits subjected to
a unitary operation U. After the interaction, a measurement of the system
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qubit allows to evaluate the trace of the operator U. The computation runs
without creation of entanglement between the system and the register, while
instead quantum discord is present [117].

Due to the maximization procedure needed to obtain the classical correla-
tions (5.14), the evaluation of quantum discord is not an easy task. Even for
the simplest system made of two qubits there is no analytic formula except for
some specific classes of states [109, 111, 112] for projective measurements, or
for certain classes of POVM’s [110]. For bimodal continuous variable systems
an analytic expression for quantum discord exists only in the case of Gaus-
sian states and when Gaussian measurements are performed [118, 119]. This
expression depends only on the symplectic invariants, thus showing that also
quantum discord does not change when we act locally with Gaussian unitary
operations. For the particular case of symmetric states we are interested in,
the general analytic expression [119] reduces to

D(ρAB) = f(
√
I1)− f(ν−)− f(ν+) +R(I1, I3, I4), (5.16)

where ν± are the symplectic eigenvalues of the covariance matrix,

f(x) =
x+ 1

2
log

[
x+ 1

2

]
−x− 1

2
log

[
x− 1

2

]
, (5.17)

and

R(I1, I3, I4) =
2I23 + (I1 − 1)(I4 − I1) + 2|I3|

√
I23 + (I1 − 1)(I4 − I1)

(I1 − 1)2
, (5.18)

if (I4 − I21 )
2 ≤ (I1 + 1)I23 (I1 + I4) otherwise

R(I1, I3, I4) =
I21 − I23 + I4 −

√
I43 + (I4 − I21 )

2 − 2I23 (I4 + I21 )

2I1
. (5.19)

5.5 Intensity correlations and non-classicality in CV
systems

Entanglement and quantum discord are examples of correlations present in any
kind of composed quantum system, consequences of the superposition principle
and the partial trace rule (2.6). Correlations of a different nature can be defined
for specific systems in relationship with specific measurement schemes. As a
paradigmatic example we may consider a pair of independently propagating
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light beams prepared in a given quantum state ρAB, and ask about the features
of the joint probability distribution of photon detection in each beam.

If we are interested in correlations between beam intensities, the quantity
of interest is a second order correlation function of the form [25,26]

I = 1−
⟨∆I2

−⟩
⟨I+⟩

= 1−
⟨I2
−⟩ − ⟨I−⟩2

⟨I+⟩
, (5.20)

where I± = nA ± nB, with nA = a†a, nB = b†b are the number operators
for the two light modes. The intensity correlation marker I quantifies the
quantumness of the total state of the two beams exhibited in the intensity
measurement statistics. If the beams are in a product of coherent states we
have I = 0, which defines the quantum-classical detection threshold, or shot-
noise limit [120–122]. When 0 ≤ I ≤ 1 the marker indicates the presence of
genuine non-classical correlations, i.e. intensity correlations which cannot be
observed in interference experiments with classical light. It is worth noticing
that such result can be obtained also for product states, e.g. in the case of
single mode squeezing, showing that the intensity correlation marker does not
witness correlations like entanglement or discord. It is, on the other hand, a
quantifier of classicality/quantumness present in joint intensity measurements.
Finally, when I < 0 the state ρAB does not show non-classical features.

The dynamics of intensity correlations is investigated in paper II, where
we consider only bimodal Gaussian states with zero displacement, i.e. XA =
XB = 0. In this case the expression for the marker I can be entirely written
as a function of the elements of the bimodal state covariance matrix as

I = 1−
σ2
11 + σ2

22 + 2σ2
13 − σ2

14 − σ2
23 − σ2

24 − 1
2

σ11 + σ22 − 1
. (5.21)

As expected Eq. (5.21) cannot be written as a function of the symplectic
invariants because, unlike entanglement or discord, local evolutions may change
the value of I.

States possessing non-classical intensity correlations have been proven to be
useful in quantum optical protocols like ghost-imaging/diffraction experiments
[25,123].

5.6 Evolution of correlations in open quantum sys-
tems

In the previous sections we provided a basic picture of the most important
properties of correlated states in quantum mechanics and shortly summarized
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their role in quantum information and quantum optics.
Because quantum systems are subjected to free dynamics as well as to in-

teractions with other systems, their state and, consequently, their correlations
change in time. One can identify at least two independent sources of state
evolution. The first one is the unitary dynamics within the bipartite system,
given by the free evolution of each subsystem, and a direct interaction among
the subsystems. A second source, on which we have minor or no control at
all, is the interaction with the surrounding environment, and/or with the mea-
surement apparatus.

In the following we assume that there is no direct interaction between the
subsystems, so that the free dynamics and the interaction with the environment
become the only sources of dynamical evolutions of correlations.

Under this assumption we may consider two different scenarios. In the first
scenario the subsystems interact locally with their own environment, therefore
the total dynamical map Φ(t) can be written as a product of two independent
maps ΦA(t) ⊗ ΦB(t) for any t ≥ 0. If the initial state carries no correlations,
i.e. ρAB(0) = ρA(0)⊗ρB(0) is a product state, then at any successive time the
state remains uncorrelated

ρAB(t) = ρA(t)⊗ ρB(t) = ΦA(t)ρA(0)⊗ ΦB(t)ρB(0). (5.22)

On the other hand if the initial state is correlated, classically or quantum me-
chanically, the amount of correlations changes with time. As for entanglement,
since its measures are monotonically decreasing under LOCC operations, we
must always have

E{ρAB(t)} ≤ E{ρAB(0)}. (5.23)

This phenomenon is usually referred to as disentanglement, since it describes
the detrimental effect on correlations due to the local open system dynamics.
As reported in paper II, the same phenomenon exists for quantum discord
and intensity correlations in the continuous variable case. The decrease of
intensity correlations has however two different origins: the first one is the
loss of quantum correlations and the second one is the loss of non-classicality
features, like squeezing or purity, driving a quantum to classical transition in
the system [38].

A second scenario consists in both subsystems interacting with the same
common environment. The open system dynamics in a common reservoir is
described by a dynamical map Φ(t) which cannot be factorized as in the case of
independent reservoir. As a consequence, the common environment gives rise
to an effecting coupling between the two subsystems. It is then expected that
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quantum correlations can either decrease or increase depending on the initial
state of the system, the coupling strength, the temperature and the spectral
density of the environment.

In the next sections we will briefly introduce the master equations de-
scribing the dynamics of a bimodal CV system in independent and common
reservoir scenarios.

5.6.1 Independent reservoirs scenario

The Hamiltonian describing the independent reservoir scenario is given by the
direct sum of terms of the form (4.3), where each oscillator interacts with its
own environment. Following the lines of the derivation of the Hu-Paz-Zhang
master equation (4.8) for one oscillator, the master equation for the system of
two oscillators can be extended as [18]

dρAB
dt

=
∑
j=A,B

1

i~
[
H

(j)
S , ρAB

]
+irj(t)

[
Q2
j , ρAB

]
−iγj(t)

[
Qj , {Pj , ρAB}

]
−∆j(t)

[
Qj , [Qj , ρAB]

]
+Πj(t)

[
Qj , [Pj , ρAB]

]
,

(5.24)

where ρAB is the state of the two modes, H(j)
S indicates the free Hamiltonian

of the j-th subsystem, and where we assume that the properties and the cou-
pling strength of the two environments with each mode may differ, leading to
different values of the dissipation, renormalization and diffusion coefficients for
each channel.

The master equation (5.24) is given by the sum of two parts each containing
only operators and coefficients pertinent to the j-th system-environment. The
absence of cross terms shows that if the modes are initially in an uncorrelated
product state, then they will evolve independently. However in the presence
of correlations in the initial state ρAB(0), Eq. (5.24) describes a non-trivial
dynamics. This physical situation is the subject of papers I-II-III, where the
time evolution of quantum features like entanglement, discord or intensity
correlations is investigated.

5.6.2 Common reservoir scenario

The Hamiltonian for the common reservoir scenario can be also written in the
form (4.3), with a different interaction term

HI = −α(QA +QB)
∑
n

κnqn, (5.25)
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In (5.25) we assumed that the two oscillators interacts symmetrically, i.e. in
the same way, with the common bath. The master equation can be derived
using a canonical transformation on the system variables (QA,PA,QB,PB) →
(Q+,P+,Q−,P−), leading to a new Hamiltonian in which one oscillator inter-
acts with the bath and the other evolves freely [90, 91]. Therefore the master
equation for the transformed state ρ̃AB reads

dρ̃AB
dt

=
∑
j=+,−

1

i~
[
H

(j)
S , ρ̃AB

]
+ir(t)

[
Q2

+, ρ̃AB
]
−iγ(t)

[
Q+, {P+, ρ̃AB}

]
−∆(t)

[
Q+, [Q+, ρ̃AB]

]
+Π(t)

[
Q+, [P+, ρ̃AB]

]
.

(5.26)

Applying the inverse canonical transformation we get the dynamics of the orig-
inal state of the oscillators and we can study the evolution of correlations. This
is the main subject of paper II where we consider the dynamics of entanglement,
discord and intensity correlations in independent and common environments.
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Chapter 6

Degree of non-Markovianity of
dynamical maps

In chapter 2 we introduced the concept of dynamical map as a one parameter
family of maps Φ(t, t0) ≡ Φ(t) (without loss of generality we fix t0 = 0 from now
on), describing the evolution of the quantum state of an open system. Within
factorized initial conditions, the dynamical map is also completely positive
and, for each time t, can be characterized by a set of Kraus operators {Ak(t)}.
Among the class of completely positive dynamical maps, we introduced the
dynamical semigroups and identified the generator of such processes, i.e. a
Lindblad generator [11, 12]. The associated Lindblad master equations are
usually derived under the Born-Markov approximation, an assumption justified
for weakly coupled systems when the relaxation dynamics is much slower than
the reservoir correlation functions dynamics.

However, there exist many physical situations which need to be described
by more general equations, derived without the Markov or the Born approx-
imation. These non-Markovian systems can be characterized by a dynamics
influenced by information flow between the system and the environment. Their
evolution presents very interesting properties regarding the dynamics, for in-
stance, of quantum correlations. In this chapter we want to discuss in more
detail an established definition of non-Markovianity of quantum processes, in-
troducing a way to measure its degree with particular attention to continuous
variable systems.

47



6.1 Non-Markovianity of quantum dynamical maps

Due to the reduced non unitary dynamics, an open quantum system experi-
ences phenomena like decoherence and dissipation, as discussed in Chapter 4.
A given initial state follows a "trajectory" in the space of density operators
D(H), starting from the initial point ρ(0) to the final configuration ρ(t→ ∞).
In many situations the final configuration is the same for any initial state. We
then refer to the common final state as the asymptotic state, denoted by ρ∞. It
follows that two initially different states ρ1 and ρ2, become asymptotically in-
distinguishable. This feature can be interpreted as a loss of information on the
initial state configuration due to the complete open dynamics, and appears as
a characterizing property in many open system dynamical maps, for instance
in dynamical semigroups.

Because the evolution from the initial to the final state is continuous, the
information loss is a phenomenon occurring during the whole dynamics and
we may then ask if it is possible to monitor its effects. A first step requires the
definition and quantification of distinguishability of two quantum states. One
possible way is to define a metric in the space of density operators, such as the
trace distance [6]

D
(
ρ1, ρ2

)
=

1

2
Tr|ρ1 − ρ2|, (6.1)

Based on this definition, two quantum states ρ1 and ρ2 are said to be distin-
guishable if D

(
ρ1, ρ2

)
> 0 and the degree of their distinguishability is provided

by the value of their trace distance.
Trace distance also possesses a contractivity property under any completely

positive map [6], i.e. for any completely positive map Ψ it is

D(ρ1, ρ2) ≥ D(Ψρ1,Ψρ2), (6.2)

where the equality is satisfied in the case of unitary dynamics. This means that
for any given completely positive dynamical map Φ(t) and for any initial pair
of states ρ1 and ρ2, the trace distance decreases. Hence two initially different
states become less distinguishable with respect to the initial time t = 0. Within
the factorized initial condition any dynamical map is CPT, therefore we always
have

D
(
ρ1(0), ρ2(0)

)
≥ D

(
ρ1(t), ρ2(t)

)
. (6.3)

Compared to the initial degree of distinguishability, at any later time two states
become less distinguishable, and Eq. (6.3) describes a flow of information about
the initial states, from the system to the environment. We may ask now which
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are the properties of such flow, e.g. if it is constant or if it is reversible. Stated
in another way, we may investigate if it is possible to find two instants of time
t1 and t2, such that, if t1 < t2, then

D
(
ρ1(t2), ρ2(t2)

)
≥ D

(
ρ1(t1), ρ2(t1)

)
. (6.4)

To answer this question we need to study the properties of the dynamical map
in the interval [t1, t2], and in particular its divisibility. A completely positive
dynamical map (CPT) Φ(t) is divisible if, for any t and any intermediate time
s, it is possible to divide the map into a composition of two CPT maps

Φ(t) = Φ(t, s) · Φ(s). (6.5)

Among divisible processes we can mention the dynamical semigroups and time-
dependent Lindblad maps described by a generator of the form (2.25) with
positive decay rates γk(t) for any t ≥ 0.

We now can conclude that, if a dynamical map is divisible then the condi-
tion (6.4) is never satisfied because of the contractivity property of the trace
distance under CPT maps. In this case the trace distance D

(
ρ1(t), ρ2(t)

)
has

a monotonic behavior as a function of time for any ρ1(0) and ρ2(0), showing
that divisible processes describe phenomena with irreversible flow of informa-
tion from the system to the environment.

On the other hand, if the map is not divisible we may, or may not, find
pairs of initial states and/or time intervals for which Eq. (6.4) is satisfied, thus
implying that, in certain cases, the environment is able to give back information
(information backflow) to the open system. In [16] this feature is considered
to be the key ingredient of non-Markovianity of the open system dynamics.
An open quantum system is then Markovian if for any pair of initial states the
trace distance is always monotonic as a function of time. On the other hand it
is non-Markovian if there exists at least one pair of initial states whose trace
distance is not globally monotonic.

We would like to stress here the fact that many dynamical maps derived
without the Markov approximation, are indeed Markovian in the sense specified
before. For instance many Lindblad type maps of the form (2.25) are usually
derived without assumptions on the system-reservoir time scales, but in certain
regimes are Markovian.

For completeness we also mention alternative definitions of non-Markovianity
present in the literature [124, 125]. These definitions, in many physical situa-
tions, do not agree with the concept introduced in [16].
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6.2 A measure of non-Markovianity of Gaussian dy-
namical maps

In addition to the definition of non-Markovianity of quantum processes, in
[16,62], the authors introduce a measure N(Φ) of the non-Markovian behavior,
quantifying how much information flows back from the environment to the
system. The expression for the measure reads

N(Φ) = max
ρ1,ρ2

∫
D′>0

D′
(
ρ1(t), ρ2(t))dt, (6.6)

where D′ indicates the time derivative of the trace distance and the maximum
value is taken over all the initial pair of states. Definition (6.10) is independent
of the specific open system considered, and requires the evaluation of the trace
distance between the evolved states, together with a maximization procedure
over all the initial states. This task is in general very difficult to implement
except for simple situations like qubit systems [62]. When the dimension of
the Hilbert space becomes large, or even infinite, the evaluation of the non-
Markovianity measure may be computationally demanding.

In paper IV we extend the definition (6.10) to the case of continuous vari-
able dynamical maps, concentrating on Gaussian processes described by master
equations of the form (4.14) and (4.18). Because there is no available expres-
sion for the trace distance of harmonic oscillator states, we need to introduce
another suitable distance measure. The choice employed in the paper is the
fidelity [6], defined as

F(ρ1, ρ2) = Tr
√√

ρ1ρ2
√
ρ1. (6.7)

The fidelity is not a proper distance measure but it is related to the Bures
distance as follows

DF (ρ1, ρ2) =
√

2− 2
√

F(ρ1, ρ2). (6.8)

Moreover it is F(ρ1, ρ2) ≤ F(Φρ1,Φρ2) for any CPT map Φ, i.e., as the trace
distance DF is contractive. We can then use the definition of fidelity to study
the property of information flow and define a non-Markovianity measure.

An analytical expression for the fidelity of CV states is known only for the
class of Gaussian states [126]. Hence the measure we define in paper IV is
limited to those states only and to dynamical maps preserving their Gaussian
structure. These are all the classes of maps derived under the assumption
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that the system-environment interaction is at most bilinear in the dynamical
variables, e.g. the quantum Brownian motion modes. The analytic expres-
sion of fidelity depends only on the covariance matrices σ1 and σ2 and mean
quadrature vectors X1 and X2

F(ρG1 , ρ
G
2 ) =

2
√
∆+ δ −

√
δ
e−

1
2
(X1−X2)T (σ1+σ2)−1(X1−X2), (6.9)

with ∆ = 4Det[σ1+σ2] and δ = (4Det[σ1]− 1)(4Det[σ2]− 1). The Gaussian
non-Markovianity measure is then defined as

N(Φ) = max
ρG1 ,ρ

G
2

(−1)

∫
F ′<0

F ′
(
ρG1 (t), ρ

G
2 (t))dt, (6.10)

where the maximum is taken over all possible pairs of Gaussian states (ρG1 , ρ
G
2 ),

parameterizable by ten parameters, i.e. two squeezing complex amplitudes,
two displacement complex amplitudes and two real thermal parameters. A
summary of the main results of the paper can be found in Chapter 8.
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Chapter 7

Quantum key distribution

Cryptography is a branch of information science aiming at studying and de-
veloping techniques to share valuable information among selected users in a
secure way [127]. A message is shared in a secure way if any illegitimate user, or
eavesdropper, cannot obtain the information contained in the message without
being noticed, or if the information is obtained after its value is lost.

Classical cryptography is essentially based on two main ingredients: mes-
sage encryption and key distribution. The information is first encrypted using
a secret key chosen by the sender and then can travel securely through a com-
munication channel. Any eavesdropper cannot, in fact, access the message
without the knowledge of the key. However legitimate users need also the key
to decrypt the content of the message. Therefore the subject of cryptography
reduces to the study of protocols to distribute the secret key securely (key
distribution).

In classical key distribution, i.e. where the key is stored in strings of clas-
sical bits and sent through standard communication channels, conceptually
different protocols for key distribution have been developed. For instance, in
public key distribution [128], the receiver Bob generates a private key from
which he also generates a public key. The public key is distributed to the
sender of the message, Alice, who uses it to encrypt the message. An efficient
decryption also needs the knowledge of the private key, thus only Bob can
decrypt the message in a reasonable amount of time. Security of public key
distribution protocols is based on computational complexity of a given math-
ematical function. While decryption with the private key needs a small time
to be performed, any eavesdropper not possessing this knowledge will take a
longer time to break the code, and hopefully obtain the message when the
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information contained in it has already lost its value. An example of a compu-
tationally complex problem is prime factorization of large input numbers for
which any classical algorithm fails to be efficient, ensuring security of the key
distribution protocol.

With the development of quantum computation, certain problems, con-
sidered unsolvable in useful time with classical computers, could be instead
efficiently solved using quantum algorithms. In the case of factorization, for
instance, Shore’s quantum algorithm is able to factorize numbers in a time in-
creasing only polynomially with the size of the input. [129]. Similar arguments
can be formulated for other kinds of classical distribution protocols, e.g. the
one time pad by Vernam [130]. An alternative to classical key distribution
would then be useful in the future, since quantum computers would be able to
break cryptographic protocols based, e.g. on large integer factorization.

These are some of the reasons for the birth of a quantum version of cryptog-
raphy and in particular, key distribution. Quantum key distribution (QKD)
aims at a secure distribution of encryption-decryption keys using quantum in-
formation sent through quantum communication channels. Security of these
protocols is based on key principles of quantum mechanics, such as no-cloning
theorem [131], entanglement [22] or unavoidable perturbations caused by quan-
tum measurements [132]. The first protocol presented in the literature, known
as BB84 [133], is based on transmission of single qubit states randomly pre-
pared in certain pure states. An eavesdropper does not know in which states
the qubits have been prepared and therefore makes a random choice of mea-
surement basis which 50% of the times is wrong. After the transmission, the
sender and the receiver, comparing their data, are able to conclude if there
has been an external interference in the communication. More details can be
found, e.g., in [134].

In general external interferences in the communication may come from two
different sources. The first one is the natural noise level of the communication
channels that, unavoidably, introduces errors in the information exchanged.
The second is the presence of eavesdroppers that can actually exploit the noise
of the channel to hide their presence and listen undetected. Quantum key
distribution protocols need then to take into account these important sources
of communication errors.
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7.1 Coherent state protocol in noisy channels

In this section we concentrate on continuous variable QKD [27, 78, 135–138]
and introduce one example of CV protocols based on transmission of coherent
states of light [27, 78, 137]. The aim of coherent state protocols is to generate
a common symmetric key using successful communication of coherent states.

The sender Alice generates pairs of real numbers (xi, pi) each distributed
according to a Gaussian distribution with zero mean and variance Σ2. We
assume for simplicity that the variance is the same for both elements of the
pair. Each pair is then encoded in a coherent state |αi⟩ of complex amplitude
αi = xi + ipi which is then sent to the receiver Bob through a noisy quantum
channel. In the original version of coherent state QKD protocol, the channel
noise is described by a Lindblad master equation of the form (4.16). Any
coherent state evolves as follows

|αi⟩ → |e−γTαi⟩ ≡ |αi
√
ηM ⟩, (7.1)

where ηM = e−2γT is the overall channel transmission, and T is the propagation
time of the coherent state. If light modes are used to convey the information,
then T = L (c = 1) with L being the physical channel length. For any received
state Bob performs homodyne detection measuring randomly one of two or-
thogonal quadratures, e.g. x0 and xπ/2. Due to channel noise, however, its
results will be distributed around the point (xi

√
ηM , pi

√
ηM ) with an uncer-

tainty σ20 = 1/2. In order to retrieve the original encoded value, Bob needs
to rescale the measurement, i.e. to measure the quadratures x0/

√
ηM and

xπ/2/
√
ηM . The results will be then statistically distributed around (xi, pi),

with an amplified noise σ2 = σ20/ηM . The key distribution ends with a post
transmission communication between Alice and Bob through a classical chan-
nel, followed by reconciliation and privacy amplification protocols to extract
a key depending on the channel overall noise [127, 139]. The key is given by
a subset of all the pairs (xi, pi), the higher the noise the smaller the subset.
For highly noisy lines the number of transmitted pairs needs to be very large
and the protocol becomes demanding from a resource point of view. Moreover,
as we will see next, the higher the noise the higher is the risk for a successful
eavesdropping attack.

7.1.1 Cloning machine attack

We now consider the coherent state protocol in the presence of an eavesdropper.
Here we concentrate on a single Gaussian attack strategy performed locally at
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a certain position LE (or time tE) along the line. We assume that the eaves-
dropper Eve possesses a complete knowledge about the channel properties, i.e
length and total transmission value, and can listen to any communication per-
formed using classical information channels. Finally we also provide Eve with
the power to substitute arbitrary parts of the transmission line. For instance
Eve may decide to cut a certain part of the noisy channel and substitute it with
a completely noiseless line. These extreme hypothesis are usually employed in
QKD to develop the most secure protocol compatible with the laws of physics.

The best Gaussian attack that can be performed by Eve is obtained by
implementing an asymmetric optimal cloning on each coherent state [140,141].
One of the clones is sent to Bob, while the other is preserved in a quantum
memory, waiting for Alice and Bob post protocol communication, i.e. when the
choice of quadrature measurements is revealed. In the case of noisy channels of
the form (4.16), the cloning process is simulated using a simple beam splitter.
After the attack, one of the clones is sent to Bob using a completely noiseless
line. In order to hide her presence, Eve needs to tune the attack depending on
her position on the line. If she attacks at time tE , she has to carefully tune
the beam splitter transmissivity to ηE = e−2γM (T−tE), so that Bob always
receives the same states that he would receive in the absence of any eavesdrop-
per. Hence he cannot conclude that the communication was intercepted. The
information collected by Eve’s attack increases with decreasing values of ηE ,
meaning that the optimal attack consists in attacking at the beginning of the
line (tE = 0).

Once the communication is completed both Eve and Bob possess some
information about the chosen pairs (xi, pi). If the properties of the channel
allow Eve to use a cloning machine with ηE < 1/2, then her information on
the states sent by Alice is bigger than Bob’s, i.e. the results of her measure-
ments are more precise than those of Bob. However this is not equivalent to
a successful attack as it can be demonstrated that the success depends on the
chosen reconciliation strategy by Alice and Bob.

For a direct reconciliation protocol [137] the success depends on the overall
transmission of the line: if ηM ≥ 1/2 then ηE ≥ 1/2 and therefore Eve, even if
not detected, cannot access the same amount of information as Bob, and a key
can be extracted securely. The key rate generation however approaches zero as
ηM → 1/2. For ηM < 1/2 (highly noisy lines), the direct reconciliation is not
secure anymore because Eve possesses more information than Bob on Alice’s
states.

In this situation it is possible to adopt a reverse reconciliation protocol [142,
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143], where both Alice and Eve have to guess the results of Bob measurements,
with Alice always being advantaged in the process. The main problem of
reverse reconciliation methods is that, even if they ensure the extraction of a
key, they require a great amount of resources in terms of number of states to
be communicated.

The coherent state protocol represents one of the main achievements of
CV quantum key distribution, for its theoretical simplicity and easy technical
implementation. For low noise lines (η < 1/2) its original version ensures
a successful secure key generation with limited amount of resources needed.
For higher noise lines, in our opinion, the protocol loses its feasibility and
advantages compared to other practical key distribution methods. In the next
section we briefly introduce a novel proposal, discussed in detail in paper V,
where a scheme for eavesdropping detection and secure key distribution is
devised exploiting the properties of non-Markovian noisy channels.

7.2 Quantum key distribution in non-Markovian chan-
nels

Lindblad channels of the form (4.16) are the simplest models of noisy dynamics
in CV systems. This constitutes the main reason why in the literature losses
and noise in QKD protocols have been considered to be determined by these
equations. In paper V we consider the coherent state QKD protocol when the
non-unitary dynamics is described by alternative models, such as Eqs. (4.18)
and (4.14). This extension represents the first attempt in the direction of
exploiting the non-Markovian properties of quantum channels in quantum key
distribution. It is also one of the very few examples of non-Markovian open
system dynamics in the field of quantum information and computation.

The coherent state protocol can be formulated in the same way in the
presence of these alternative dynamical equations. First Alice encodes pairs
of Gaussian distributed numbers into coherent states and sends them to Bob
who performs homodyne detection of one of two orthogonal quadratures. In
the case of Eq. (4.18) the dissipation is not uniform along the whole channel
as in the Lindblad case. The channel is characterized by a total transmission
ηNM (T ) = exp{−Γ(T )}, where Γ(T ) = 2

∫ T
0 γ(t)dt and T is the transmission

time. The best eavesdropping strategy is again to attack at the beginning of
the channel with a beam splitter of transmissivity ηE = ηNM (T ).

If instead the dynamics is described by Eq. (4.14), the state undergoes
both dissipation and decoherence, thus accumulating extra, or added, noise
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which further reduces the fidelity of the communication. Also the eavesdrop-
ping attack needs to be adapted and performed using an appropriate cloning
protocol in the presence of added noise [143].

Under the usual eavesdropping strategy assumptions, e.g. knowledge of the
channel properties, the extension of the protocol in the case of new transmission
channels does not bring any particular advantage to the existing techniques in
coherent state QKD. The protocol is still secure when ηNM ≥ 1/2 for direct
reconciliation and for any value of ηNM when using a reverse reconciliation
protocol.

In paper V we propose to add an element to the protocol which exploits
the time-dependent dissipative properties of the channels (4.18) and (4.14).
This element consists in the transmission of extra reference coherent states
|α0⟩ hidden in between the states containing the transmitted key, namely key
states. While the key states travel along the standard channel of length T and
dissipation γ(t), the reference states are sent, randomly, along two different
channels. The first is standard channel while the second is a channel of length
T +∆t obtained by elongating the line on Alice side, a place, we assume, not
accessible to the eavesdropper (see Fig. 7.1). We also assume that only Alice
knows about the channel choice and the sequence of states, forcing both Bob
and Eve to treat every received state on an equal foot.

At the end of the transmission Alice communicates the sequence of states
to Bob, who can study the statistics of the reference states, separating the
results of the states sent along the two different channels. All the measurement
distributions have the same width but a different mean value. For the channel
(4.18), in the absence (presence) of an eavesdropper the mean value difference
of the distributions of the states sent along the two channels denoted by δxNE
(δxE), reads

δxNE ≃ α0∆tγ(T ), δxE ≃ α0∆tγ(tE), (7.2)

where tE is the Eve’s attacking time. If Bob is able to discriminate the differ-
ence δxNE − δxE , i.e. if Eve attacks when γ(tE) ̸= γ(T ), he concludes that
an eavesdropper was listening to the communication and takes the necessary
actions.

Coherent state QKD is performed experimentally using optical systems,
i.e. photon states propagating in optical fibers. These situations are actually
well described within Markovian, i.e. Lindblad form, open system models.
To implement the non-Markovian extension just described one needs to rely
on reservoir engineering techniques in order to modify the spectral properties
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Figure 7.1: (a) Schematic of the QKD protocol in a non-Markovian damping
channel. Eve attacks at a distance time LE = ctE from Alice location, with a
beam splitter of transmissivity ηE and substitutes the rest of the channel with
a lossless line. Alice, instead, can choose on her own to elongate the channel
transmission time of a quantity ∆t, thus implementing the protection strategy.

of the environment and achieve an appropriate position dependent damping
dynamics.

A further discussion on the main results of the paper can be found in the
next chapter.
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Chapter 8

Summary of results and
conclusions

This chapter contains brief summaries of thesis papers contents, useful to guide
the reader through the actual manuscripts. Last section is, instead, dedicated
to final remarks about the thesis work.

8.1 Summary of papers results

8.1.1 Paper I

In this paper we investigate the dynamics of entanglement for a system of
two non interacting modes coupled to independent reservoirs. In the weak
coupling limit the dynamics is described by the master equation (5.24) with
the time-dependent coefficients (4.9).

We consider different kind of environments, characterized by a mode spec-
tral distribution of the form

J(ω) ∝ ωse−ω/ωc , (8.1)

with different s and in different thermal stationary states, at zero and high
temperatures. The exponential function in (8.1) has the role of an ultraviolet
cutoff, with a range determined by the cutoff frequency ωc. We also concentrate
on a particular class of entangled initial states, i.e. the twin beam (TWB)
vacuum states, obtained by applying the two mode squeezing operator (3.18)
to the vacuum state of the two modes.
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The analysis conducted in the paper is focused on two main aspects. First
we study the validity of the secular approximation, i.e. if it is possible or not
to neglect fast oscillating terms appearing in the solution of the equation (see
Eqs. 20a− d in the attached manuscript). The second aspect is the investiga-
tion of the dynamical features of entanglement for different reservoirs spectral
functions (8.1) and temperature regimes. Entanglement is here measured using
the Gaussian entanglement of formation (5.11).

The master equation (5.24), derived under the only assumptions of factor-
ized initial condition and weak coupling, may describe a Markovian or non-
Markovian dynamics depending on the values of the system reservoir parame-
ters, and in particular on the ratio between the cut-off frequency and the free
frequency , i.e. x = ωc/ω0. The results of this paper are precedent to the
introduction of the non-Markovianity measure [16], hence we did not use the
methods reported therein to derive conditions for non-Markovianity. However
The Markovian/non-Markovian character of the dynamics can be partially es-
tablished looking at the time evolution of entanglement. In Fig. 8.1 (a) we

a

Figure 8.1: (a) Gaussian Entanglement of Formation for an Ohmic reservoir in
the high-T regime, for x = 0.15 (out or resonance), α = 0.1, kBT/~ωc = 100,
as a function of τ = ωct. (b) Gaussian Entanglement of Formation for an
Ohmic reservoir in high-T, for x = 10 (resonant case), α = 1, kBT/~ωc = 100.
The blue solid line corresponds to the exact solution, while the red dashed line
gives the solution under the secular approximation.

show an example of entanglement evolution characterized by oscillations, sud-
den death and revivals, typical of the out of resonance regime x << 1, for
an Ohmic reservoir at high temperatures. For independent reservoirs these
oscillations witness a failure of the divisibility condition of the dynamical map
(6.5), which is at basis of the non-Markovianity measure introduced in [125],
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and it is a necessary condition for the measure introduced in [16]. On the other
hand in the resonance regime x >> 1, Fig. 8.1 (b), oscillations are not present
and without further investigations we cannot infer anything about a possible
non-Markovian behavior in this regime.

The results of the paper can be summarized as follows. First we prove
that, regarding the entanglement dynamics, the secular approximation can be
performed in the out of resonance regime only (x << 1). In the resonance
regime instead the approximation fails, in agreement with what is reported in
a previous publication [94]. We also find that entanglement is more robust in
the case of Ohmic (s = 1) and Subohmic (s = 1/2) spectra, while it vanishes
faster for a SuperOhmic (s = 3) spectrum. Also Gaussian entanglement oscil-
lations [18] are evident in the out of resonance regimes only in the Ohmic and
SubOhmic case, a result independent, qualitatively, on the temperature of the
bath.

8.1.2 Paper II

In paper II we analyze the dynamics of entanglement, measured by logarithmic
negativity (5.7), Gaussian quantum discord and intensity correlations in vari-
ous QBM open system models. We consider both the independent (5.24) and
common (5.26) reservoir scenarios in the case of an Ohmic spectral distribution
with Lorentz-Drude cutoff [9]

J(ω) =
ω2
c

π

ω

ω2 + ω2
c

(8.2)

in the high temperature regime, exploiting the results of paper I about the
limits of validity of the secular approximation.

The purpose of the work is to study the qualitative and quantitative dif-
ferences in the dynamics of various indicators of quantum correlations. In
the independent reservoir case, we consider initial two-mode thermal squeezed
states, obtained by applying the two mode squeezing operator (3.18) to a prod-
uct of thermal states for the two modes. We find that intensity correlations
disappear faster than entanglement and quantum discord (see Fig. 8.2 (a)).
Moreover quantum discord only disappears asymptotically in time due to the
characterizing property of Gaussian discord which is zero only for completely
uncorrelated states. Intensity correlations and entanglement instead disappear
at a finite time (sudden death). These results are qualitatively independent
on the value of the resonant parameter x = ωc/ω0, except for the presence of
oscillations in the out of resonance case (x << 1).
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(a) (b)

Figure 8.2: (a) Intensity correlations (dotted dashed blue line), Gaussian quan-
tum discord (solid yellow line), Logarithmic Negativity (dashed red line) for
an Ohmic reservoir at high-T, for x = 10, kBT/~ωc = 100 and α = 0.1. (b)
Gaussian quantum discord for and Ohmic reservoir at high-T, for for x = 10,
kBT/~ωc = 100 and α = 0.1. The different curves correspond to different
initial pure TWB states: r = 0 (solid blue), r = 0.2 (dashed red), r = 0.4
(dotted dashed yellow) and r = 1 (dotted green).

In the common reservoir case, as expected, initially uncorrelated states
may become correlated at later times, but, in the weak coupling limit, they
remain separable. Quantum discord is always increasing starting from simple
symmetric thermal state with a rate inversely proportional to the value of the
temperature parameter of the state. We also studied the evolution of quan-
tum discord in the case of initially correlated states (squeezed vacuum states)
and shown that, independently from the initial value of quantum correlations,
the open dynamics drives the system towards states with similar amount of
discord (see Fig. 8.2 (b)). This property can be considered an effect of loss of
information on the initial state due to the open system dynamics. In view of
the results about non-Markovianity in CV systems (Chapter 6) initial different
states become less and less distinguishable during the evolution and therefore
show also similar amount of quantum correlations.

8.1.3 Paper III

In paper III we extend the analysis of paper I in the case of asymmetrical
initial Gaussian states, for an asymmetric system reservoir coupling and for
different oscillator frequencies. The environments are characterized by an
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Figure 8.3: Separability as a function of τ = ωct for x1 = ωc/ω1 = 0.1,
kBT/~ωc = 100 and α = 0.1. x2 = 0.1 (blue solid curve), x2 = 0.2 (red dashed
curve) and x2 = 0.3 (black dotted curve).

Ohmic spectral structure with Lorentz-Drude cutoff function, and entangle-
ment is witnessed by the Separability function, obtained by applying directly
the Peres-Simon criterion [99].

The results obtained are in agreement with what has been presented in
paper I. However, in this case we allow two different values for the resonance
parameters x1 and x2 such that we can explore different dynamical regimes.
The most interesting result is found when, for instance, the first oscillator is in
resonance with the environment while the second oscillator is not. In this case
we may still observe entanglement oscillations, and for certain initial states
sudden death and revivals. However the intensity of these effects is reduced
due to the choice of x1 ̸= x2 as in Fig. 8.3.

This result can be interpreted in terms of non-Markovianity of the system
dynamics, supposing that the total contribution is provided by single system-
environment interaction. As one of the parameters xi increases, the behavior
of the corresponding oscillator becomes less and less non-Markovian. Hence
signatures of non-Markovian behavior, e.g. entanglement oscillations, are less
evident.

8.1.4 Paper IV

In paper IV we study the non-Markovianity properties of Gaussian dynamical
maps using the concepts introduced in [16]. We concentrate on two examples
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of single mode dynamical maps, described by the phenomenological master
equation (4.18) and the microscopic model (4.14), for initial Gaussian states.
For this purpose we first introduce, for the first time, an extension of the
measure [16] based on the use of fidelity of two-mode Gaussian states, rather
than on the original idea based on the trace distance.

The non-Markovianity condition coincides with divisibility property of the
channels in the case of Eq. (4.18), i.e. the backflow of information is de-
termined by the negativity periods of the damping coefficient γ(t). On the
contrary in the secular approximated QBM channel (4.14) case, the two prop-
erties do not coincide. We found, however, that for an Ohmic bath the fidelity
essentially increases when the diffusion coefficient ∆(t) is negative, a result
mathematically correct at the first order in the coupling constant. In the
resonance case ω0 < ωc the diffusion coefficient is never negative, therefore
non-Markovian behavior is observed only in the opposite case. This results
agrees with the previous studies on correlations dynamics (papers I-III) where
we found that oscillations are present only in the off resonant case.

The non-Markovianity measure is then evaluated concentrating on sub-
classes of Gaussian states, and in particular pure coherent states and pure
squeezed states. A first result shows that squeezed states are more sensitive to
information backflow than coherent states, therefore the measure restricted to
squeezed initial states is higher than that restricted to initial coherent states.
In Fig. 8.4 (a) we show this result for the damping channel (4.18). Moreover
our results indicate that the maximization is obtained in the case of initial
pure states.

Another interesting result valid for the QBM channel (4.14) is the presence
of a saturation effect for the measure restricted to squeezed states, shown in
Fig. 8.4 (b) . The value of the measure is independent of the coupling constant
but only depends on the temperature of the bath and the relative strength of
the free frequency ω0 and cutoff frequency ωc. This saturation effect implies
the existence of a bound of information backflow from the environment to the
system, due to the Gaussian structure of the map.

8.1.5 Paper V

In this paper we study the extension of continuous variable quantum key dis-
tribution protocols in the case of non trivial communication lines. We consider
the coherent state protocol in the case of channels losses described by phe-
nomenological equations like (4.18) and microscopic models like (4.14), and we
prove that it is possible to enhance security of the protocol for both direct and
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Figure 8.4: (a) Non-Markovianity measure for a damping channel as a function
of the coupling constant α. The solid black line corresponds to the squeezed
states measure while the blue dashed line is the measure for only coherent
states. The form of the damping coefficient is given in Eq. (22) of paper IV.
(b) Non-Markovianity measure for the secular approximated QBM channel as
a function of the coupling α and restricted to squeezed states only. We choose
ωc = 0.2, ω0 = 1 and the different curves correspond to different values of
the temperature: kBT/~ω0 = 0.3 (black solid), kBT/~ω0 = 0.9 (blue dashed),
kBT/~ω0 = 4 (red dotted) and kBT/~ω0 = 8 (green dotted dashed).

reverse reconciliation methods.
As reported in more detail in Sec. 7.2 the scheme consists in the sender

Alice transmitting, together with the key signals, also some reference coherent
states. These reference states are sent through two different channels, the usual
one of length T and a longer channel T +∆t, and the information about the
channel choice is revealed only at the end of the communication.

By checking the distribution of measurements on the reference states it is
possible to check the presence of an eavesdropping attack. The success of the
method relies on the time/position dependence of the eavesdropping attack
and on the impossibility to tune the attack power without knowing the Alice’s
choice of the channel used for the transmission of the reference states. In
Fig. 8.5 we present an example of channel decay rate suitable to apply our
eavesdropping detection protocol. As it can be seen, assuming ϵ to be the
minimum detectable error in the protection strategy, we are able to find two
attack regions, namely a danger zone and a safe zone. The threshold time τ
between the danger and safe zone is defined by the condition

γ(T )− γ(τ) =
ϵ

|α0|∆t
, (8.3)
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Figure 8.5: Example of suitable decay rate γ(t) allowing the eavesdropping
detection scheme. The transmission time is denoted by T , while τ denotes the
threshold time separating the safe and the danger zone.

If the eavesdropper attacks in the danger zone then Bob’s post transmission
results are able to detect the attack. It follows that the eavesdropper is forced
to attack in the safe zone and therefore to reduce the attack power, all in
favor of an enhancement of the security of the protocol for both direct and
reverse reconciliation. In the first case we can extend the security limit reported
in [137] for channels of total transmission ηNM > exp{−Γ(tE)}/2, and in the
second case we simply reduce the amount of resources needed to perform a
secure communication for any value of the total channel transmission.

8.2 Conclusion

In this thesis we explored the concept and the properties of non-Markovian
dynamics in continuous variable systems. Non-Markovianity turns out to be
a dynamical feature which leaves signatures of its presence in many observ-
able quantities. It is, for instance, responsible for oscillating dynamics, death
and revivals of entanglement and more general quantum correlations. In the
case of light beams it manifests its presence in the experimental data of joint
photodetection. We have shown that non-Markovianity can be exploited as a
resource in quantum communication protocols, as proven by the eavesdropping
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detection scheme for QKD with coherent states.
The definition of non-Markovianity as a resource requires, indeed, a mea-

sure for its degree. We have therefore extended to the realm of continuous
variable Gaussian states the general definition introduced in [16]. We have
demonstrated that different states are more or less sensible to the backflow of
information, and therefore some class of states, the squeezed states, may be
more useful in detecting non-Markovianity and exploiting its properties.

The exploration of non-Markovian dynamical systems is still, in many re-
gards, at its infancy. Only few examples of the possible use of memory effects
as a resource have been studied so far, our being the first result in quantum
cryptography. In many optical systems non-Markovianity still turns out to be
a very elusive property, as its effect can be seen only at the beginning of the
evolution, i.e. in a non-Markovian time scale. In these systems, in order to
enhance non-Markovian effects, one needs to modify the properties and the
interaction between the system and the environment in the spirit of reservoir
engineering techniques. Examples of this strategy can be already foreseen, e.g.
using properly engineered photonic band gap materials.
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