Antti Airola

Kernel-Based Ranking

Methods for Learning and
Performance Estimation

Turku CENTRE for COMPUTER SCIENCE

TUCS Dissertations

No 144, December 2011

Kernel-Based Ranking

Methods for Learning and Performance Estimation

Antti Airola

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in
Auditorium Beta on December 12th, 2011, at 12 noon.

University of Turku
Department of Information Technology
Joukahaisenkatu 3-5, 20520 Turku

2011

Supervisors

Professor Tapio Salakoski

Department of Information Technology
University of Turku

Finland

Adjunct Professor Tapio Pahikkala
Department of Information Technology
University of Turku

Finland

Reviewers

Professor Eyke Hiillermeier

Department of Mathematics and Computer Science
University of Marburg

Germany

Adjunct Professor Juho Rousu
Department of Computer Science
University of Helsinki

Finland

Opponent

Adjunct Professor Timo Honkela

Department of Information and Computer Science
Aalto University

Finland

ISBN 978-952-12-2674-8
ISSN 1239-1883

Abstract

Machine learning provides tools for automated construction of predictive
models in data intensive areas of engineering and science. The family of
regularized kernel methods have in the recent years become one of the main-
stream approaches to machine learning, due to a number of advantages the
methods share. The approach provides theoretically well-founded solutions
to the problems of under- and overfitting, allows learning from structured
data, and has been empirically demonstrated to yield high predictive per-
formance on a wide range of application domains. Historically, the problems
of classification and regression have gained the majority of attention in the
field. In this thesis we focus on another type of learning problem, that of
learning to rank.

In learning to rank, the aim is from a set of past observations to learn
a ranking function that can order new objects according to how well they
match some underlying criterion of goodness. As an important special case
of the setting, we can recover the bipartite ranking problem, corresponding
to maximizing the area under the ROC curve (AUC) in binary classifica-
tion. Ranking applications appear in a large variety of settings, examples
encountered in this thesis include document retrieval in web search, recom-
mender systems, information extraction and automated parsing of natural
language. We consider the pairwise approach to learning to rank, where
ranking models are learned by minimizing the expected probability of rank-
ing any two randomly drawn test examples incorrectly. The development
of computationally efficient kernel methods, based on this approach, has in
the past proven to be challenging. Moreover, it is not clear what techniques
for estimating the predictive performance of learned models are the most
reliable in the ranking setting, and how the techniques can be implemented
efficiently.

The contributions of this thesis are as follows. First, we develop
RankRLS, a computationally efficient kernel method for learning to rank,
that is based on minimizing a regularized pairwise least-squares loss. In
addition to training methods, we introduce a variety of algorithms for tasks
such as model selection, multi-output learning, and cross-validation, based
on computational shortcuts from matrix algebra. Second, we improve the

fastest known training method for the linear version of the RankSVM al-
gorithm, which is one of the most well established methods for learning to
rank. Third, we study the combination of the empirical kernel map and re-
duced set approximation, which allows the large-scale training of kernel ma-
chines using linear solvers, and propose computationally efficient solutions
to cross-validation when using the approach. Next, we explore the prob-
lem of reliable cross-validation when using AUC as a performance criterion,
through an extensive simulation study. We demonstrate that the proposed
leave-pair-out cross-validation approach leads to more reliable performance
estimation than commonly used alternative approaches. Finally, we present
a case study on applying machine learning to information extraction from
biomedical literature, which combines several of the approaches considered
in the thesis. The thesis is divided into two parts. Part I provides the back-
ground for the research work and summarizes the most central results, Part
II consists of the five original research articles that are the main contribution
of this thesis.

ii

Acknowledgements

First, I would like to thank my supervisor Tapio Salakoski, who has over
the years provided me the support necessary for pursuing my thesis work,
always given good advice when needed, and allowed me the freedom to find
my own path. The research group he has founded is something to be proud
of, and it has been a privilege to work as part of it. I owe a great debt also
to my supervisor Tapio Pahikkala, who has had a large influence in shaping
me as a researcher. Without our close collaboration on machine learning
research this thesis would have looked quite different, I would like to thank
him for all he has taught me and for sharing a vision. Special thanks go also
to Filip Ginter and Sampo Pyysalo, who helped me in settling in the group
and getting started in my research, and taught me much of what (little) I
know about BioNLP.

During my thesis work I have had the pleasure of collaborating with
many excellent researchers in our group. I would like to thank especially
Jorma Boberg, Jouni Jarvinen, Jari Bjorne, Juho Heimonen, Pekka Naula,
Sebastian Okser, Hanna Suominen and Evgeni Tsivtsivadze. Jorma and
Jouni as senior researchers offered me guidance early in my research work.
With Jari and Juho we have had a fruitful collaboration in the area of
biomedical text mining, and many interesting discussions over the years. It
has been great to pass the torch on to Pekka and Sebastian, and see all
the things they have done, partly based on our previous research. Last but
certainly not least both Hanna and Evgeni deserve many thanks for our
close research collaboration in machine learning, on the infamous project
Adarctic, and on their great company whether we were wading through the
snow to math classes, just hanging around in the TUCS coffee room, or
traveling abroad together.

I would like to thank Sanna Salanterd, Helja Lundgrén-Laine, Riitta
Danielsson-Ojala and the others for our collaboration on Louhi and IKITIK.
Thanks go to Tero Aittokallio for introducing me to the world of genome-
wide association studies. Also, international collaborations have shaped my
research during the thesis work, and helped to widen my perspective on how
research is done in different places around the world. Thanks for this go to
Willem Waegeman and Bernard De Baets from the University of Ghent, and

iii

Fabian Gieseke and Oliver Kramer from the University of Oldenburg, who
have all directly contributed to my research.

Further, my thanks go to the Turku Centre for Computer Science
(TUCS) and the Department of Information Technology in University of
Turku, and the entire staff working there. My work has been possible only
due to the support offered by these institutions. Also, I would like to thank
Nokia Foundation for the financial support they have provided.

I am grateful to the reviewers of this thesis, Professor Eyke Hiillermeier
and Adjunct Professor Juho Rousu, both for their excellent criticisms and
encouragement. Further, I sincerely thank Adjunct Professor Timo Honkela
for agreeing to act as my opponent.

Finally, I am deeply grateful to my parents for their unwavering support,
love and encouragement over the years.

iv

List of original publications

1

II

III

v

Pahikkala, T., Tsivtsivadze, E., Airola, A., Jarvinen, J., and Boberg,
J. (2009). An efficient algorithm for learning to rank from preference
graphs. Machine Learning, 75(1):129-165.

Airola, A., Pahikkala, T., and Salakoski, T. (2011). Training linear
ranking SVMs in linearithmic time using red-black trees. Pattern
Recognition Letters, 32(9):1328-1336.

Airola, A., Pahikkala, T., and Salakoski, T. (2011). On learning and
cross-validation with decomposed Nystrom approximation of kernel ma-
trix. Neural Processing Letters, 33(1):17-30.

Airola, A., Pahikkala, T., Waegeman, W., De Baets, B., and Salakoski,
T. (2011). An experimental comparison of cross-validation techniques
for estimating the area under the ROC curve. Computational Statistics
¢ Data Analysis, 55(4):1828-1844.

Airola, A., Pyysalo, S., Bjorne, J., Pahikkala, T., Ginter, F., and
Salakoski, T. (2008). All-paths graph kernel for protein-protein in-
teraction extraction with evaluation of cross-corpus learning. BMC
Bioinformatics, 9 Suppl 11.

vi

List of related publications
not included in the thesis

Co-authored scientific publications

Airola, A., Pahikkala, T., Boberg, J., and Salakoski, T. (2010). Ap-
plying permutation tests for assessing the statistical significance of
wrapper based feature selection. In Draghici, S., Khoshgoftaar, T. M.,
Palade, V., Pedrycz, W., Wani, M. A., and Zhu, X., editors, Proceed-
ings of The Ninth International Conference on Machine Learning and
Applications (ICMLA 2010), pages 989-994. IEEE.

Airola, A., Pahikkala, T., and Salakoski, T. (2011). An improved
training algorithm for the linear ranking support vector machine. In
Honkela, T., Duch, W., Girolami, M., and Kaski, S., editors, Proceed-
ings of the 21st International Conference on Artificial Neural Networks
(ICANN 2011), volume 6791 of Lecture Notes in Computer Science,
pages 134-141. Springer.

Airola, A., Pahikkala, T., and Salakoski, T. (2010). Large scale train-
ing methods for linear RankRLS. In Hiillermeier, E. and Fiirnkranz,
J., editors, Proceedings of the ECML/PKDD-Workshop on Preference
Learning (PL-10).

Airola, A., Pahikkala, T., Waegeman, W., De Baets, B., and Salakoski,
T. (2010). A comparison of AUC estimators in small-sample studies.
In Dzeroski, S., Geurts, P., and Rousu, J., editors, Proceedings of
the third International Workshop on Machine Learning in Systems
Biology, volume 8 of JMLR Workshop and Conference Proceedings,
pages 3—-13. Journal of Machine Learning Research.

Airola, A., Pyysalo, S., Bjorne, J., Pahikkala, T., Ginter, F., and

Salakoski, T. (2008). A graph kernel for protein-protein interaction
extraction. In Proceedings of the Workshop on Current Trends in

vii

Biomedical Natural Language Processing (BioNLP’08), pages 1-9. As-
sociation for Computational Linguistics.

Bjorne, J., Airola, A., Pahikkala, T., and Salakoski, T. (2011). Drug-
drug interaction extraction from biomedical texts with SVM and
RLS classifiers. In Segura-Bedmar, 1., Martinez, P., and Sanchez-
Cisneros, D., editors, Proceedings of the SEPLN 2011 Workshop on
First Challenge Task on Drug-Drug Interaction Extraction (DDIEx-
traction 2011), volume 761 of CEUR Workshop Proceedings, pages
35-42. CEUR-WS.org.

Bjorne, J., Heimonen, J., Ginter, F., Airola, A., Pahikkala, T., and
Salakoski, T. (2009). Extracting complex biological events with rich
graph-based feature sets. In Proceedings of the BioNLP’09 Shared
Task on Event Extraction, pages 10-18.

Bjorne, J., Heimonen, J., Ginter, F., Airola, A., Pahikkala, T., and
Salakoski, T. (2011). Extracting contextualized complex biological
events with rich graph-based feature sets. Computational Intelligence.
To appear.

Gieseke, F., Kramer, O., Airola, A., and Pahikkala, T. (2011). Speedy
local search for semi-supervised regularized least-squares. In Bach, J.,
Edelkamp, S., editors, Proceedings of the 34th Annual German Confer-
ence on Artificial Intelligence (KI 2011), Lecture Notes in Computer
Science, pages 87-98. Springer.

Naula, P., Pahikkala, T., Airola, A., and Salakoski, T. (2011). Greedy
regularized least-squares for multi-task learning. In Li, B., Zhu, X.,
and Yang, Q., editors, Proceedings of the Fifth International ICDM
Workshop on Mining Multiple Information Sources. IEEE. To appear.

Naula, P.; Pahikkala, T., Airola, A., and Salakoski, T. (2011). Learn-
ing multi-label predictors under sparsity budget. In Kofod-Petersen,
A., Heintz, F., and Langseth, H., editors, Eleventh Scandinavian Con-
ference on Artificial Intelligence (SCAI 2011), volume 227 of Frontiers
in Artificial Intelligence and Applications, pages 30-39. I0S Press.

Okser, S., Pahikkala, T., Airola, A., Aittokallio, T., and Salakoski,
T. (2011). Fast and parallelized greedy forward selection of genetic
variants in genome-wide association studies. In IFEFE International
Workshop on Genomic Signal Processing and Statistics (GENSIPS
2011). IEEE. To appear.

Pahikkala, T., Airola, A., Boberg, J., and Salakoski, T. (2008). Ex-
act and efficient leave-pair-out cross-validation for ranking RLS. In

viii

Honkela, T., Polla, M., Paukkeri, M.-S., and Simula, O., editors,
Proceedings of the 2nd International and Interdisciplinary Conference
on Adaptive Knowledge Representation and Reasoning (AKRR 2008),
pages 1-8. Helsinki University of Technology.

Pahikkala, T., Airola, A., Naula, P., and Salakoski, T. (2010). Greedy
RankRLS: a linear time algorithm for learning sparse ranking mod-
els. In Gabrilovich, E., Smola, A. J., and Tishby, N., editors, SIGIR
2010 Workshop on Feature Generation and Selection for Information
Retrieval, pages 11-18. ACM.

Pahikkala, T., Airola, A., and Salakoski, T. (2010). Feature selection
for regularized least-squares: New computational short-cuts and fast
algorithmic implementations. In Kaski, S., Miller, D. J., Oja, E., and
Honkela, A., editors, Proceedings of the Twentieth IEEE International
Workshop on Machine Learning for Signal Processing (MLSP 2010),
pages 295-300. IEEE.

Pahikkala, T., Airola, A., and Salakoski, T. (2010). Speeding up
greedy forward selection for regularized least-squares. In Draghici,
S., Khoshgoftaar, T. M., Palade, V., Pedrycz, W., Wani, M. A., and
Zhu, X., editors, Proceedings of The Ninth International Conference
on Machine Learning and Applications (ICMLA 2010), pages 325-330.
IEEE.

Pahikkala, T., Airola, A., Suominen, H., Boberg, J., and Salakoski, T.
(2008). Efficient AUC maximization with regularized least-squares. In
Holst, A., Kreuger, P., and Funk, P., editors, Tenth Scandinavian Con-
ference on Artificial Intelligence, SCAI 2008, volume 173 of Frontiers
in Artificial Intelligence and Applications, pages 12-19. 10S Press,
Amsterdam, Netherlands.

Pahikkala, T., Airola, A., Xu, T. C., Liljeberg, P., Tenhunen, H., and
Salakoski, T. (2011). A parallel online regularized least-squares ma-
chine learning algorithm for future multi-core processors. In Proceed-
ings of the 1st International Conference on Pervasive and Embedded
Computing and Communication Systems (PECCS 2011), pages 590—
599. SciTePress.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., and Salakoski,
T. (2007). Learning to rank with pairwise regularized least-squares.
In Joachims, T., Li, H., Liu, T.-Y., and Zhai, C., editors, SIGIR 2007
Workshop on Learning to Rank for Information Retrieval, pages 27—
33.

ix

Pahikkala, T., Waegeman, W., Airola, A., Salakoski, T., and De Baets,
B. (2010). Conditional ranking on relational data. In Balcazar,
J. L., Bonchi, F., Gionis, A., and Sebag, M., editors, Machine Learning
and Knowledge Discovery in Databases, Furopean Conference, ECML
PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings,
Part 11, volume 6322 of Lecture Notes in Computer Science, pages
499-514. Springer.

Pyysalo, S., Airola, A., Heimonen, J., Bjorne, J., Ginter, F., and
Salakoski, T. (2008). Comparative analysis of five protein-protein
interaction corpora. BMC' Bioinformatics, 9 Suppl 3.

Suominen, H., Ginter, F., Pyysalo, S., Airola, A., Pahikkala, T.
Salanterd, S., and Salakoski, T. (2008). Machine learning to auto-
mate the assignment of diagnosis codes to free-text radiology reports: a
method description. In Hauskrecht, M., Schuurmans, D., and Szepes-
vari, C., editors, Proceedings of the ICML/UAIL/COLT Workshop on
Machine Learning in Health Care Applications.

Tsivtsivadze, E., Pahikkala, T.; Airola, A., Boberg, J., and Salakoski,
T. (2008). A sparse regularized least-squares preference learning al-
gorithm. In Holst, A., Kreuger, P., and Funk, P., editors, Tenth
Scandinavian Conference on Artificial Intelligence, SCAI 2008, vol-
ume 173 of Frontiers in Artificial Intelligence and Applications, pages
76-83, Amsterdam, Netherlands. IOS Press.

o Waegeman, W., Pahikkala, T., Airola, A., Salakoski, T., and De Baets,
B. (2012). Learning valued relations from data. In Melo-Pinto, P.,
Couto, P., Serodio, C., Fodor, J., and De Baets, B., editors, Pro-
ceedings of the FUROFUSE 2011 Workshop on Fuzzy Methods for
Knowledge-Based Systems, volume 107 of Advances in Intelligent and
Soft Computing, pages 257-268. Springer.

Co-edited conference proceedings

e Pahikkala, T., Vayrynen, J., Kortela, J., and Airola, A., editors
(2010). Proceedings of the 14th Finnish Artificial Intelligence Confer-
ence, STeP 2010, number 25 in Publications of the Finnish Artificial
Intelligence Society, Espoo, Finland. Aalto-Print.

Contents

1 Introduction
1.1 Machine learningo 0oL
1.2 Research overview
1.2.1 Problem setting oo
1.2.2 Research objectives.
1.3 Organization of the thesis

2 Regularized kernel methods
2.1 Problemsettingo
2.2 Kernel feature spaces
2.3 Regularized risk minimization
2.4 Empirical kernel map oL
2.5 Reduced set approximation
2.6 Kernel functions
2.7 Regularized least-squares
2.8 Support vector machineso

3 Learning to rank
3.1 Data o
3.2 Ranking performanceo
3.3 Bipartite ranking and ordinal regression
3.4 Approaches to learning torank
3.4.1 Pointwise methodso
3.4.2 Pairwise Methods
3.4.3 Listwise Methods
3.5 Conclusions

4 Novel ranking algorithms
4.1 RankRLS
4.1.1 Problem formulation
4.1.2 Solving the optimization problem
4.1.3 Computational shortcuts
4.2 RankSVM

xi

10
12
14
15
17
19
21

23
23
25
27
30
30
32
33
34

4.2.1 Problem formulation
4.2.2 Solving the optimization problem
4.3 RankRLS vs. RankSVM

5 Performance estimation

5.1 Performance measures
5.2 Aims of performance estimation
5.3 Cross-validation,
5.4 AUC-estimation
5.5 Data dependencies oL
5.6 Reduced set approximation

6 Conclusions
6.1 Contributions of the thesis

6.2 Open source software
6.3 Futurework

Bibliography

Publication Reprints

xii

47
47
48
50
51
53
54

57
o7
58
60

62

81

Chapter 1

Introduction

1.1 Machine learning

Machine learning is the scientific discipline whose goal is the development of
algorithms that allow computer programs to learn from experience. The field
of machine learning is located at the intersection of the fields of computer
science, statistics and mathematics. From computer science it incorporates
the necessary tools for implementing the learning algorithms and data struc-
tures, and the analysis techniques for reasoning about the tractability and
efficiency of computation. Traditional statistics offers the basis for consider-
ing what conclusions can be inferred from finite data samples, and with what
confidence. Mathematics serves as the foundation for both computer science
and statistics, and also offers many additional tools for machine learning.
For more in depth discussion about the fundamental characteristics, his-
tory and the central research questions of the field, see e.g. Vapnik (1995);
Mitchell (2006); Hastie et al. (2009); Langley (2011).

The applications of machine learning are varied. Increasingly, methods
from the field are having impact both on the development of engineering
applications and on other fields of research. This has been made both nec-
essary and possible by the unprecented quantities of data now available in
electronic format. Advances both in the theory of machine learning, and
the amount of available computational resources, allow the leveraging of
this data for automatic development of predictive models. This has the
potential to produce substantial advances in data intensive fields.

For engineering applications, machine learning methods allow automated
construction of complex programs. For many tasks it is very difficult or even
impossible to write down a set of explicit rules that could be implemented as
a computer program. Further, it may be the case that an application needs
to adapt to its environment, meaning that one cannot in advance specify the
exact desired behavior of the system. In such settings one may collect ex-

amples of desired behavior, and use them to automatically train a machine
learning method to perform the task. Examples of applications, where this
approach is having major impact include model predictive control in in-
dustrial systems (Nrgaard et al., 2000), natural language processing (Man-
ning and Schiitze, 1999), optical character recognition (LeCun et al., 1998),
recommender systems (Koren et al., 2009), robotics (Argall et al., 2009),
self-adapting search engines (Joachims and Radlinski, 2007), and speech
recognition (Gong, 1995).

In data driven research, machine learning methods allow extraction of
(scientific) knowledge. This process is often called data mining, or knowledge
discovery from data (Fayyad et al., 1996). In fields such as bioinformatics
the complexity and amount of data far exceeds the capability of human
beings to process and make use of, thus automatic methods for detecting
regularities are needed. Discovered models may be interesting as such as
descriptors of some characteristics of the process generating the data, or
be used to predict or simulate future behavior. Examples of prominent
applications, where machine learning methods are used for data analysis
include astronomical data analysis (Ball et al., 2006), biomedical text min-
ing (Zweigenbaum et al., 2007), marketing analysis (Berry and Linoff, 2004)
and identification of genetic variants that contribute to diseases (Okser et al.,
2010). It has been suggested that a new scientific methodology driven by
data-intensive problems is now emerging (Hey et al., 2009). Some interest-
ing recent developments include automated inference of natural laws from
experimental data (Schmidt and Lipson, 2009) and the prototype robot sci-
entist Adam, which represents an attempt towards automating not only data
analysis, but also hypothesis generation and experimentation (King et al.,
2009).

Finally, a commonly made assumption is that machine learning is essen-
tial for development of artificial intelligence. Already Turing (1950) envi-
sioned programs with human-like capabilities to general problem solving and
proposed, that the ability to learn would be an essential characteristic for
such a program. When measured against such expectations, the outcomes
of the last 60 years of artificial intelligence research have proven to be quite
disappointing. Still, the human brain continues to serve as an inspiration for
machine learning (Smale et al., 2010), and new computational models for al-
lowing the development of complex artificial intelligences are being explored
(see e.g. Bengio and LeCun (2007); Legg and Hutter (2007)). The hope
remains that with advances in fields such as machine learning, coupled with
increasing computational power, the development of artificial intelligences
capable of general problem solving will become possible.

2

1.2 Research overview

The research carried out as part of this thesis work was motivated by chal-
lenges encountered, when applying machine learning methods in a number
of application projects. The main focus of these projects was the automated
analysis of biomedical text (Ginter, 2007; Pahikkala, 2008; Pyysalo, 2008;
Suominen, 2009; Tsivtsivadze, 2009). The excellent performance of the so-
called regularized kernel methods in the text domain (see e.g. Joachims
(2002a); Pahikkala (2008)), combined with a number of other advantages
the methods share, lead us to specifically consider this family of learning
methods. The problem of ranking was soon identified as one major chal-
lenge in the application projects. This was both due to its connection to area
under the ROC curve (AUC) analysis (Agarwal et al., 2005), as well as due
to more general ranking tasks encountered in areas such as medical decision
making (Suominen et al., 2006), and automated parsing of text (Tsivtsi-
vadze et al., 2005). From methodological point of view, we encountered two
major challenges. One one hand, it was necessary to develop computation-
ally efficient methods for solving the learning tasks, and at the other hand
reliable and efficient methods for evaluating the generalization performance
of the learned models were needed. Next, we sketch the background for these
research problems, and then proceed to formalize the research objectives of
this thesis.

1.2.1 Problem setting

The main focus of this thesis is on the development and analysis of general
domain-independent methods for machine learning and performance evalu-
ation. We limit our considerations to the supervised learning setting, where
a program is trained to make predictions by supplying it with training data
consisting of inputs and labels. Based on these it tries to produce a general
hypothesis about the dependency between the inputs and the labels, such
that would allow it to accurately predict the labels of future observations
for which only the inputs are known. Historically, the two most commonly
studied supervised learning settings are classification, where the labels en-
code class memberships, and regression, where the labels are real valued. In
this thesis, we will study in detail a third type of supervised learning task,
that of learning to rank.

In learning to rank, the aim is to learn from the training data a ranking
function, that is able to order sets of objects according to how well they
match some underlying ranking criterion. The information about this match
is often encoded via wutility scores, where a higher utility score indicates a
higher rank than a lower one. Alternatively, pairwise preferences may be
used directly to encode information about relative order between objects.

3

Given a set of training examples consisting of inputs, and either utility scores
or pairwise comparisons, one aims to learn a ranking function that is used
to predict rankings for new data. A common approach to learning ranking
functions is to minimize the probability of a mistake when predicting, which
of two new randomly drawn examples should be ranked higher (Cohen et al.,
1998). The bipartite ranking problem where only two possible utility values
exist, which corresponds to maximizing AUC performance measure in binary
classification (Bamber, 1975; Cortes and Mohri, 2004; Agarwal et al., 2005),
provides an important special case of this general ranking setting.

The family of regularized kernel methods embodies one of the main-
stream approaches to machine learning (Schélkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004). In supervised learning, these methods typ-
ically allow the use of structured data and non-linear modeling, and offer
principled ways to deal with both the underfitting and overfitting phenom-
ena, while still leading to convex optimization problems, where globally
optimal solutions can be found. Widely used kernel methods include the
support vector machine (SVM) (Vapnik, 1995, 1998; Drucker et al., 1997)
and the regularized least-squares (RLS) (Poggio and Girosi, 1990; Poggio and
Smale, 2003) algorithms for both classification and regression. Previously,
the scalability of learning has remained an issue, when adapting kernel meth-
ods to ranking. Straightforward adaptations of existing learning methods,
such as the standard ranking support vector machine (RankSVM) training
method described in Herbrich et al. (1999); Joachims (2002b) lead to solv-
ing optimization problems whose size may depend quadratically rather than
linearly on the size of the training set. For linear RankSVM more efficient
training methods are known (Joachims, 2006), but these are limited to set-
tings where the number of possible ranks in the data can be assumed a small
constant. Thus more efficient training algorithms are needed to allow better
applicability of kernel based methods for learning to rank

Performance evaluation is a central task in almost any area of machine
learning. Here, the goal is to estimate the expected predictive accuracy of
learned models on future data unseen during the training phase, as measured
by some performance measure. This may be required for example in order
to decide whether a developed system can be taken into use, for comparing
learning algorithms or for model selection (Dietterich, 1998). A technique
known as cross-validation is commonly applied to estimate learner perfor-
mance. However, in many settings achieving reliable results with cross-
validation can be challenging. The assumption that all the training samples
are sampled independently of each other is routinely broken in many ap-
plications, leading to biased estimates (see e.g. Pahikkala et al. (2006a);
Seetre et al. (2007)). The use of multivariate performance measures, such as
the AUC, can lead to problems when predictions made on different rounds
of cross-validation are combined together (Parker et al., 2007; Forman and

4

Scholz, 2010). Finally, the use of reduced set approximations (Smola and
Scholkopf, 2000; Quinionero-Candela and Rasmussen, 2005) for scaling ker-
nel methods to large datasets can result in unexpected complications when
doing cross-validation (Pahikkala et al., 2009). The computational costs of
cross-validation are also of concern, as straightforward implementations of
the procedure require re-training a learning algorithm a large number of
times.

1.2.2 Research objectives

The main objectives of this thesis are to develop computationally efficient
methods for learning accurate ranking models, and reliable and efficient
strategies for performance estimation.

Efficient learning methods. We aim to develop novel algorithms for
learning ranking functions. By minimizing an approximation of the pair-
wise ranking error, the goal is to learn predictors with ranking accuracy
that is competitive with state-of-the art in ranking methods. We prefer
general methods that are able to learn both from utility scores, and from
pairwise preferences. The methods are developed within the regularized
kernel method framework. The reduced set approximation corresponding to
the Nystrom approximation of the kernel matrix is considered as a way to
scale kernel methods for large data sets, and adapt linear solvers for training
non-linear models.

Computational and memory efficiency are key aspects addressed in de-
signing the methods. The developed algorithms are to be such that they
will not explicitly form the data or kernel matrices corresponding to all the
pairwise preferences in the training data. Rather, the preferences are mod-
eled only implicitly, using computational shortcuts based on matrix algebra,
sorting operations and advanced data structures.

Performance estimation by cross-validation. We study the proper-
ties of different cross-validation methods, with special focus on performance
estimation for ranking problems. The considered approaches included the
leave-pair-out method, the leave-query-out method, and both the pooling
and averaging approaches. Since straightforward implementations of these
methods would be computationally very costly, developing computational
shortcuts is central for making the methods in practice useful. We produce
an experimental study on AUC-estimation by cross-validation to better un-
derstand the properties of the leave-pair-out method, as well as the pooling
and averaging methods. Further, we study the effects of combining the re-
duced set approximation and cross-validation, and derive computationally
efficient algorithms for reliable performance estimation in this setting.

Application study. The task of protein-protein interaction extraction
from scientific literature provides a case study in the use of kernel methods

and reduced set approximation, AUC-estimation, and the practical impor-
tance of efficient and reliable cross-validation algorithms.

1.3 Organization of the thesis

The main contribution of this thesis are the five original research articles,
that together form the second half of this thesis. The first half of the thesis
(Chapters 1—6) provides an introduction, where the background of the re-
search work is described in detail, and the main contributions of the papers,
and their connections to the overall research questions are described. Chap-
ter 2 provides an overview of regularized kernel methods. In Chapter 3 we
formalize the general ranking problem and discuss related work, proceeding
in Chapter 4 to introduce the novel RankRLS algorithm, as well as the pro-
posed extensions to the RankSVM method. Chapter 5 provides an overview
of a number of challenges in performance evaluation via cross-validation,
as well as our proposed solutions. Chapter 6 concludes the first part of the
thesis, provides an overview of the second part, and discusses possible future
directions of research.

Chapter 2

Regularized kernel methods

In this section we introduce the family of regularized kernel methods. We
present an abstract definition of the supervised learning problem, and show
how the problem can be solved in the regularized risk minimization frame-
work. The introduced approach consists of selecting a prediction function
which balances the tradeoff between how well the function fits to training
data, and the complexity of the selected function. The considered prediction
functions are linear, with respect to a feature space into which the data is
mapped to. The kernel trick is introduced as a means to implicitly construct
rich enough feature spaces, that allow one to adequetly model the learned
concept using a linear function, even though the concept may be non-linear
with respect to the original input space. In addition, the approach allows
learning from structured data. For a detailed overview of regularized risk
minimization and kernel based learning we refer to Scholkopf and Smola
(2002); Shawe-Taylor and Cristianini (2004).

We use the following type of notation. [m] denotes the index set
{1...m}. A bold lowercase letter v € R"™ denotes a column vector of length
n, whose i:th entry is given by v;. The set of all m x n matrices with real co-
efficients is denoted by R™*". Given a matrix M € R”*" M; ; denotes its
element in the i:th row and j:th column. Given two index sets R C [m] and
S C [n], Mgs is the submatrix containing the rows and columns indexed
by R and S, respectively, and My is the shorthand notation for Mgy,. By
MT we denote the transpose of M, by M~ its inverse if such exists, and
by M its pseudoinverse (see e.g. Meyer (2000)).

2.1 Problem setting
The goal of supervised learning is to infer from a finite data sample a predic-
tive model, that generalizes to new data that may not have been observed

during the training phase. The data consists of inputs and labels, with in-

7

puts each being associated with some feature representation. The predictive
model aims to capture a relationship that would allow predicting labels as a
function of the features for new data for which the labels are unknown. We
call the sample from which the model is inferred the training set. The most
commonly made assumption is that the training data is sampled according
to the same distribution as the new data on which predictions are made on.

For inferring a model we need a learning algorithm, that takes as input
a training set, and outputs a prediction function. Following Shawe-Taylor
and Cristianini (2004), we set three major design requirements for such
algorithms. First, a learning algorithm should be computationally efficient,
meaning polynomial scaling in running time and memory usage. In practice
for a method to scale to reasonable training set sizes on modern computers it
should have at most cubic running time scaling and quadratic memory usage,
as well as efficient methods for model selection and performance estimation.
For large scale learning problems, where data is abundant, close to linear
scaling is preferred. Second, a learning algorithm should be robust, meaning
the ability to tolerate noisy data measurements and learn relations that are
probabilistic in nature, rather than exact. Finally, we require statistical
stability meaning that the algorithm is likely to identify models that capture
properties of the true underlying source generating the data, rather than
just properties of a particular training set. Next, we formalize our problem
setting.

Let the input space X', and output space) be sets. We are supplied with
a training set Z containing inputs, and associated label information, defined
as Z = (X,Y) e X" x Y. By X = (z1,...,2y,) € X™ we denote the set of
m inputs belonging to the training set. By Y €) we denote a structured
object containing the label information associated with X. For example,
in binary classification, we may define) = {—1,1}", where 1 denotes the
so-called positive, and —1 the negative class, whereas in regression we may
define Y = R™. In these settings, there is exactly one label per each input.
The reason we however use more general definition for the output space is
that in ranking problems) has often complex structure. The labels may
have dependencies between them, and in some settings they are associated
with pairs of inputs rather than with individual inputs (see Chapter 3).

A learning algorithm

A Umey—Y}-L Z— f

meN

takes as input a finite training set Z, and outputs a prediction function
f X — R, which aims to model the dependency between the inputs and
the labels. By H we denote some as of yet undefined hypothesis space, from
which f is chosen. We overload our notation as follows. Let X € &A™,
m € N be a sequence of inputs. Then by f(X) € R™ we denote the vector

8

of predictions for this sample. Regardless of the label structure, the learned
function predicts a single real valued output per input. The setting matches
regression where the labels are also real-valued, and in binary classification
a threshold can be set to decide whether the prediction denotes positive or
negative class. It also turns out that using such a scoring function is also
sufficient for representing ranking models, even if the labels are not supplied
directly as real valued scores during training (see Chapter 3).
A loss function
L R x Y [0,00)

meN

measures how well the predicted labels and true labels for a data set match®.
The exact form of a suitable loss function depends on the problem. The goal
of learning is to find a prediction function that incurs minimal average loss
on future data. This can be achieved by minimizing the expected risk, also
known as the generalization error, defined as

R(f) = Ex v opll(F(X), V)],

where E denotes expected value, D is the probability distribution that gen-
erated our training data, and (X,Y) is a randomly sampled data set.

In practice we never have access to the true underlying distribution, and
are rather limited to using the empirical risk

R(f) = I(f(X),Y), (2.1)

which is simply the loss computed on the training set.

Should we choose a too simple hypothesis space, we may encounter the
problem of underfitting, where none of the functions in ‘H can accurately
model the true underlying relation. As a historical example, a main criticism
against the classic perceptron algorithm was that due to its restriction to
models that are linear with respect to the input space, it was unable to
learn non-linear relations such as XOR (Minsky and Papert, 1969). On
the other hand, considering too complex models leads to loss of statistical
stability, as the empirical risk no longer provides reliable information about
the true generalization error of the considered functions. For example, using
polynomial interpolation, one can fit a training set of size m using a m — 1:th
degree polynomial and a single feature, in order to perfectly regress any real
valued labels for the set?. It is however highly unlikely that such a model

'In contrast to the more typical approach of defining losses as a sum over comparisons
of individual predictions and labels (see e.g. Vapnik (1995)), we use a more general
formulation, since ranking based losses do not typically admit such a representation. A
similar type of formalization was used in Joachims (2002b); Lan et al. (2009).

2 Assuming the feature does not take on differing values for training data points having
equal labels

would perform well on data not part of the training set. The phenomenon
where model is fitted to random characteristics of the training set that do
not generalize to new data is referred as overfitting. To find balance between
underfitting and overfitting, we need to find ways to control the structure
and complexity of the considered hypothesis space. In regularized kernel
methods these goals are achieved by using kernel functions that give the
learning methods sufficient expressive power to avoid underfitting, and by
using reqularization which penalizes complex functions in order to avoid
overfitting.

2.2 Kernel feature spaces

First, we recall some basic concepts that are used to define kernel induced
feature spaces. While the considered concepts can also be generalized to
complex numbers, we restrict our considerations to the field of real numbers.

Definition 1 (Inner product space). An inner product space V is a vector
space over R with a map (-,-) : V XV — R known as the inner product,
which is symmetric, linear in each argument and satisfies

(x,z) >0, with (z,z) =0 iff z =0

The inner product directly induces a norm ||z|| = /{(x, z) and a distance
metric d(z,2') = ||z — 2’| = \/{z,z) — 2(x,2’) + (z/2’) on V.

We recall that a Cauchy sequence x1,x2 ... in V' denotes a sequence of
elements of V, for which for every positive real number €, we can find such
N € N that d(x;,x;) < e for all 7,5 > N.

Definition 2 (Hilbert space). A Hilbert space F is an inner product space
that is complete, with respect to the morm defined by the inner product,
meaning that F contains the limit point of every Cauchy sequence in F.

For any mapping
P X - F,

a function

k(z,2') = (2(x), ("))

which computes the inner product of mapped data points is called a kernel
function. We call the Hilbert space F, where the data is mapped to, a feature
space. This mapping is not unique, in the sense that for a given kernel one
may define @1 # @9 such that k(z,2’) = (P1(z), P1(2’)) = (Po(x), Po(2))
for all choices of x and 2. In some ceases we may not be able to explicitly
compute the feature map at all. However, the kernel function allows us
access to inner products between the mapped data points, which is already

10

sufficient information for developing powerful learning algorithms. Thus
provided that the kernel function is computationally efficient to evaluate, our
learning algorithm can operate in high dimensional feature spaces, without
explicitly mapping the data. As a consequence, linear algorithms that can
be fully formulated in terms of dot products can be made nonlinear by
replacing the dot product with a non-linear kernel function. An algorithm
which is linear with respect to F will then be nonlinear with respect to X.
Further, kernel functions allow learning from structured data. The input
space X can consist of complex objects such as pictures, DNA-sequences
or graphs, as long as a suitable kernel function can be defined between
such objects. Informally, a good kernel function should aim to capture
the notion of similarity, producing the higher values the more similar the
function arguments are with respect to each other.

Formally, a function k(x,z’), which is either continuous or has a count-
able domain, corresponds to an inner product (®(x),®(z')) in a fea-
ture space if and only if it is finitely positive semi-definite, defined as
doiioy iajk(wi,x;) > 0 for any m € N, where 7, € X and a; € R
1 < k < m. Equivalently, for a given input sequence X, a kernel func-
tion gives rise to a symmetric matrix

k(xl,xl) k(mhxm)
K = 2 :
k(ﬂjmafﬁl) k(xmaxm)
known as the kernel matriz of X, which is positive semi-definite, meaning
that ATKA > 0 for all A € R™.
Next, we consider a general approach to constructing a feature space

corresponding to any given kernel function. Following Scholkopf and Smola
(2002) we consider the following mapping into a function space:

d:X > RY, z—k(,x),

where RY is the space of functions mapping X into R, and k(-,z) is a
function that computes the kernel evaluation between the argument and z.
First, we construct a vector space V as:

V:{feRX

defining addition as f,g € V = (f + g)(z) = f(z) + g(x).

Next, we turn the vector space into an inner product space. Let f(-) =
S k(- x) and g(-) = S, Bik(-, #) be two elements in V. Then we
can define an inner product as

l n
(f.9) =Y ciBik(wi,).

i=1 j=1

l
f() = ZO@k(',%”,O&i € R,xi € X} ,
=1

11

It can be shown (Schoélkopf and Smola, 2002) that this mapping indeed
satisfies all the properties required of an inner product, and induces the
following norm:

l
£ =y Y ciak(ai,z))

i,j=1

Finally, (Scholkopf and Smola, 2002) note that in order to simplify the
mathematical analysis of the properties of the feature space, it is useful to
turn it into a Hilbert space. This is achieved by adding to it the limit points
of all the series that are convergent in the norm, resulting in the reproducing
kernel Hilbert space (RKHS) of functions, defined as

fz{feRX

f() = Zaik('¢$i)7ai € Raxi € Xa ||f|| < OO} :
=1

2.3 Regularized risk minimization

Next, we present the framework of kernel-based regularized risk minimiza-
tion. The kernel functions introduced earlier allow us to represent rich
enough hypotheses to allow underfitting. Conversely, a mechanism known
as regularization is introduced for avoiding the problem of overfitting. We
assume that our hypothesis space consists of the set of linear functions in
a kernel induced feature space, where the kernel has been a priori chosen
according to its suitability for the application domain in question.

A large class of machine learning algorithms (see e.g. Evgeniou et al.
(2000) for discussion) are based on minimizing the reqularized risk functional

A(Z) = argmin J(f),
feF

where
J(f) = R(f) + Al fII°- (2.2)

The first term in (2.2) is the empirical risk (2.1) measuring how well the
considered hypothesis f fits the training data, as measured by a convex loss
function [. The second term called the regularizer measures the complexity
of the hypothesis with the RKHS norm, and A > 0 is the regularization
parameter. We require the convexity of the loss function in order to guaran-
tee that we can always find a globally optimal solution to the minimization
problem.

We define k(z, X) = (k(z,21),...,k(z,7,)) € (R™T, where » € X.
According to the representer theorem (Scholkopf et al., 2001) any minimizer

12

of (2.2) admits a representation of the form

f($) = Zalk(l‘?xl) = k(an)aa (23)
i=1
where o; € R, a = (a1,...,a,)T € R™, This representation allows us

to express the solution solely in terms of kernel evaluations between the
argument and the training examples. We call this the dual formulation and
a the dual solution.

The minimizer (2.3) can be re-written as

m

flx) =) ail®(z), ®(z))

i=1
= ((2),) aib(xy))
i=1
= (®(x),w).

We call this the primal formulation. Let us assume that the feature rep-
resentation ® corresponding to the kernel function is finite dimensional.
For any kernel function and any finite set of data points, such a feature
representation can be for example constructed using the empirical kernel
map, as discussed in the next section. Then, we can form a data matrix
O(X) = (P(x1)...P9(zp)), and the primal solution becomes the column
vector w = ®(X)a. Conversely, given the primal solution w, a dual solu-
tion can be recovered by solving the linear system ®(X)a = w, where a is
unknown. The consistency of this system of linear equations is guaranteed
by the representer theorem. Thus a can be recovered using for example the
Moore-Penrose pseudoinverse of ®(X) (Meyer, 2000).

Depending on whether we solve the primal problem directly in the feature
space, or its dual counterpart, we can re-formulate (2.2) either as

J(w) = 1(®(X)Tw,Y) + Aw'w, (2.4)

or as
J(a) =1(Ka,Y) + X\a'Ka. (2.5)

The primal problem (2.4) may be solved whenever we can efficiently form
the feature representations of the training examples directly. This is most
straightforward when using the linear kernel, but approaches such as explic-
itly modeling low-order polynomial features (Chang et al., 2010), decompos-
ing the kernel matrix (Tsuda, 1999; Scholkopf et al., 1999; Harmeling et al.,
2002), or using randomized features for shift invariant kernels (Rahimi and
Recht, 2007) have also been proposed. Efficient training algorithms whose

13

training complexity is often only linear in the number of training examples,
and the dimensionality of the feature space, have been introduced for solving
the primal problem (see e.g. Joachims (2006); Smola et al. (2007); Shwartz
et al. (2007)).

Whenever we can efficiently access only the kernel evaluations between
training points, dual algorithms are applied for solving (2.5). Not consider-
ing the cost of kernel evaluations, the training costs of fastest dual learning
algorithms typically vary between O(m?) and O(m?) (see e.g. Bottou and
Lin (2007)).

In this thesis we introduce both dual and primal learning algorithms.
The dual algorithms allow efficient use of kernels, which may be necessary
for learning non-linear concepts, or for learning from structured data. The
primal algorithms allow scaling the methods to larger data sets whenever
the linear kernel is sufficient for achieving good prediction accuracy, or the
feature map can otherwise efficiently be explicitly constructed. The intro-
duced algorithms are described in more detail in Chapter 4 of the thesis, as
well as in Papers I, II and III.

2.4 Empirical kernel map

The representer theorem guarantees that in regularized risk minimization
with quadratic regularizer, the optimal solution can be expressed as a linear
combination of the images of the training data. Thus, during training it
is enough to consider the subspace of the feature space spanned by the
images of the training data. It turns out that there is a simple technique to
construct a feature representation, that corresponds to the kernel function
for members of this subspace.

Following Schélkopf et al. (1999), we note that for a finite set of inputs X,
one can construct a feature representation corresponding to a given kernel
function k using the empirical kernel map

Dy : X =R,

where

Ox(z) = (K'*)* (k(z, X))T, (2.6)

and r is larger or equal to the rank of K. K!/2 denotes a symmetric decom-
position of K, meaning that K/ 2(K1/ HT = K. In practice such decom-
position can be constructed from the eigen-decomposition of K. We recall
the following property of the Moore-Penrose pseudoinverse M of any given
matrix M: M = (MT)*TM"™M.

For the set of inputs X that were used to define the mapping, the feature

14

representations are defined as

dx(X) = (KY?))TK
_ (K1/2)+K1/2(K1/2)T
_ (K1/2)T.

Since ®x (X)T®x(X) = K, the empirical kernel map allows us to con-
struct a feature representation that corresponds to the kernel function k
for all the training data. Algorithms that depend only on properties that
are determined by inner products between the training examples can thus
be trained using the features generated by the empirical kernel map. For
example, Tsuda (1999) proposed using the empirical kernel map for gener-
ating feature representations in order to train support vector machines. A
downside of the approach is the O(m?) cost required to decompose a full
rank kernel matrix (Golub and Loan, 1989).

Finally, we note that Scholkopf et al. (1999) gives also an alternative
definition of empirical kernel map as

®x(2) = (k(z, X))",

where the map simply corresponds to using kernel evaluations directly as fea-
tures. Using such feature representation when training support vector ma-
chines was considered in more detail for example in Schoélkopf et al. (2002).
However, we do not consider this form of empirical kernel map further in
this thesis.

2.5 Reduced set approximation

The kernel matrix can form a computational bottleneck for kernel based
methods, since computing the matrix and storing its values results in at
least quadratic time and memory complexities. Further, computing pre-
dictions according to (2.3) requires loading the whole training set to mem-
ory, and computing kernel evaluations between each training input and the
new input. Reduced set approrimation (see e.g. Poggio and Girosi (1990);
Smola and Schélkopf (2000); Rifkin et al. (2003); Quinonero-Candela and
Rasmussen (2005)), also known as sparse approximation or the subset of
regressors method is a standard approach to reducing the computational
costs of training and prediction for kernel methods.

Instead of using all the m training examples to represent the learned
hypothesis, as in (2.3), we limit ourselves to considering their subset indexed
by R C [m], where |R| << m. We call this subset the basis vectors. Now
we consider a solution that allows only the basis vectors to have nonzero

15

coefficient, that is,

fl@) =" Bik(z, ;) = k(x, Xr)B, (2.7)

1E€ER

where X7 is the subsequence of training inputs indexed by R, and B € RI®!
is a column vector containing the |R| coefficients in the reduced set solution.
A number of different selection schemes for choosing the set R have been
proposed in the literature (see e.g. Smola and Scholkopf (2000); Rifkin
et al. (2003); Quinonero-Candela and Rasmussen (2005); Zhang et al. (2008);
Kumar et al. (2009)). We restrict our considerations to simple uniform
sampling without replacement, as it has been noted in Rifkin et al. (2003);
Kumar et al. (2009) to be both computationally highly efficient, and in terms
of prediction performance competitive with more sophisticated approaches.

Quinonero-Candela and Rasmussen (2005) noted that using the reduced
set approximation is equivalent to using the following type of modified kernel
function

k(z,a') = k(z, Xz)(Krr)'k(2', Xr) T, (2.8)

The kernel matrix for the training set, constructed with (2.8), becomes
K = (Kr)"(Kzrr) 'Kx.

K is sometimes known as the Nystrom approzimation of K.

Using the Nystrom approximation K directly as an approximation of
K by simply inserting it to the dual problem (2.5) leads to the method
known as the Nystrom method (Williams and Seeger, 2001). Rifkin et al.
(2003) criticized this approach, because it leads to using different kernel
functions during training and prediction. However, in can be shown that
the dual solution obtained by training a regularized kernel method using
the Nystrom approximation can be transformed to an equivalent prediction
function that corresponds to the reduced set approximation (2.7) based on
the original kernel function. This was shown in Rifkin et al. (2003) for
the case of regularized least-squares regression, a more general formulation
of the result is presented in Paper III. Rifkin et al. (2003) also empirically
demonstrated, that the reduced set approach outperforms the naive Nystrom
method in predictive performance.

Combining the empirical kernel map and the Nystrém approximation,
we can create computationally efficiently a feature representation that allows
training reduced set approximations of kernel methods in the primal. The
decomposition strategy, and the mapping from a learned primal solution to
a reduced set solution of type (2.7) are described in Paper III. The cost
of performing the mapping is O(m|R|?), which results in a m x |R| sized
data matrix. Further, Paper III introduces an efficient algorithm for re-
moving basis vectors from the mapping, without having to fully re-compute

16

it. This technique has applications in cross-validation, as also discussed in
Section 5.6.

Section 3.5 in Paper I formalizes the reduced set approximation for the
introduced RankRLS algorithm. In Paper V a reduced set approximation
method is implemented in order to scale the learner to the considered data
set sizes, in the experiments on protein-protein interaction extraction from
scientific literature.

2.6 Kernel functions

The choice of a suitable kernel function is an application dependent problem,
and there exists a large body of literature on kernels for different applica-
tion domains (see e.g. Shawe-Taylor and Cristianini (2004) and references
therein). Next we present some of the most widely used kernels for vectorial
data, and introduce a family of kernels for learning from graph structured
data.

First, let us assume that X = R", and that z,2’ € X. Commonly used
kernel functions that have a closed form solution include the following:

The linear kernel is defined as

k(z,2') = (z,2),

meaning that it is simply the dot product between two real-valued vectors.

Most kernel methods are generalizations of originally linear methods, and

become equivalent to their linear counterparts when the linear kernel is used.
The polynomial kernel is defined as

k(z,2') = ((z,2) +)%, (2.9)

where d € N and ¢ > 0 are parameters.
The Gaussian kernel, also known as the radial basis function (RBF)
kernel can be defined as

k(z,2') = e eI, (2.10)
where v € RT is a parameter.

Further, a large number of kernels have been introduced for non-vectorial
data (see e.g. Shawe-Taylor and Cristianini (2004)). These include for
example set kernels, string kernels, graph kernels and semantic kernels for
textual data. Often these kernels do not have closed form expressions for
computing them, but rather the kernel evaluations rely on recursive relations
solved by dynamic programming techniques.

Gértner et al. (2003) introduced a number of kernels for graph data. Let
us assume, that our data points are directed weighted graphs, where each

17

node has a number of binary labels. We consider the setting, where each
feature corresponds to a pair of labels that are connected in the graph. Let V
be the set of vertices in the graph and £ be the set of possible labels vertices
can have. We represent the graph with an adjacency matrix A € RIVIXIVI
whose rows and columns are indexed by the vertices, and A; ; contains the
weight of the edge connecting v; € V and v; € V if such an edge exists,
and zero otherwise. Further, we represent the labels as a label allocation
matrix L € REXIVI so that L;; = 1 if the j-th vertex has the i-th label and
L; ; = 0 otherwise.

A walk of length k in a graph is a sequence of k edges, where the end
node of each edge must be the same as the starting node of the following
edge. Thus a walk is one possible route one could traverse from the starting
node of the first edge to the end node of the last edge in the sequence. If
the graph contains cycles, a walk may pass through the same edge multiple
times. A path is a walk that is allowed to contain any edge only once. The
matrix power A?,j contains the multiplied weights on all walks of length
n connecting the vertices v; and v; in the graph. The feature representa-
tion, corresponding to all label pairs connected by walks of length n can
be computed as LA®LT. The sum Yoy LA'L combines together the pair-
wise features from all walks of lengths 1...n. Finally, let us assume that
|A| < 1, where ||A| denotes the spectral radius, being the supremum of
the absolute values of the eigenvalues of A, holds. Then, the sum of powers
of A converges, allowing us to compute the pairwise features for paths of all
lengths as > 5% LA'L = L((I - A)~! — I)L", where I denotes the identity
matrix. This is a special case of a more general formulation presented in
Gértner et al. (2003).

To adapt the graph kernel framework for different applications, one needs
to define suitable graph representations, labels, weightings and decide on
the length of paths considered. Paper V introduces one such adaptation
of the general framework for the purpose of extracting information about
protein-protein interactions based on dependency graphs encoding syntactic
information about sentences. The kernel is called all-paths graph kernel,
though all-walks graph kernel would in fact be a more appropriate choice,
as the kernel is actually based on general walks rather than just paths in
the graph. Related work includes the graph representations proposed in
Pahikkala et al. (2006b) for the task of parse ranking, that are used in the
experiments described in Papers I and III.

Kernel functions have a number of closure properties, which allows one
to define new kernels by combining known ones. For example, multiplication
by a positive real number, as well as addition and multiplication of kernel
functions produces valid new kernel functions. For a detailed survey of these
properties, see Scholkopf and Smola (2002); Shawe-Taylor and Cristianini
(2004).

18

2.7 Regularized least-squares

Regularized least-squares (RLS) is a regularized kernel method suitable for
both regression and classification. The method is known under various
aliases in the machine learning and statistics literature. For example, in
the statistics literature the linear RLS is often known as ridge regression
(Hoerl and Kennard, 1970), for which reason the kernelized RLS is some-
times called kernel ridge regression (Saunders et al., 1998). Inspired by
neural networks and support vector machines respectively, the method has
also become known as the regularization network (Poggio and Girosi, 1990)
and as the least-squares support vector machine (Suykens and Vandewalle,
1999). A Bayesian interpretation of the method results in Gaussian process
regression (Williams and Rasmussen, 1996). The term RLS has been used
for example by Poggio and Smale (2003); Rifkin et al. (2003); Cesa-Bianchi
(2007), and it is by this name we refer to the method from now on.

First, we assume that for a training set of size m, the output space is
defined as Y = R™, and the labels in the training set are stored in the
column vector y € R™. By inserting the squared loss, defined as

UFX)Y) = D () = wi)? (211)

into the regularized risk functional (2.2) we derive the objective function for
the RLS

m

J(f) =D (fl@:) — v)* + All 1% (2.12)

i=1
This can be equivalently re-written in matrix notation either in the primal,

or in the dual form.
The primal form of (2.12) is

Jw) = ((X)Tw —y)T(®(X) "W —y) + \wTw.

Since this equation is convex with respect to w, we can find a global min-
imizer by setting the gradient equal to 0. The gradient of this equation
is

VJ(w) = —20(X)y + 2(®(X)®(X)T + AI)w,
and setting it to 0 results in the system of linear equations
(®(X)®(X)T + AD)w = &(X)y. (2.13)

Since the matrix on the left side of the equation is positive definite, an
unique solution to the equation exists.

19

The dual form of (2.12) is
J(a) = (Ka —y)T(Ka—y)+ aTKa.
Again, the equation is convex with respect to a, the gradient of this equation
} VJ(a) =2K(-y + (K + AI)a),
and we can recover a dual solution by solving the linear system
(K+MX)a=y. (2.14)

The property that both the primal and dual solutions can be found
by solving systems of linear equations yields a number of computational
benefits. When solving the system only once, Cholesky decomposition based
methods can be used to solve the system. The computational cost of solving
(2.13) is O(n® 4+ n®m), assuming that the feature space is R™. For the
dual form (2.14) the cost is O(m?), not taking into account the cost of
constructing the kernel matrix which varies according to the kernel function.

The RLS is naturally suited to solving regression problems, but it can
also be used to solve binary classification problems by regressing the class
labels. In this context its use can be criticized due to the two-sided nature
of the loss function; examining (2.11) it can be seen, that the loss unnec-
essarily penalizes correct class predictions whose magnitude is too large.
However, it has been empirically observed that RLS tends to perform as
well in classification as methods based on one sided loss-functions (Suykens
and Vandewalle, 1999; Rifkin, 2002; Poggio and Smale, 2003; Zhang and
Peng, 2004).

Perhaps one of the main benefits of using the RLS loss is that much of the
computations done in solving the linear systems of equations can be re-used,
when doing small modifications to the system. First, we consider changing
the value of the regularization parameter A. Since one often does not know
the suitable value for the parameter in advance, it is usually necessary to
solve the RLS problem many times for different values of A in order to find
a good value for the parameter. By computing the eigen-decomposition
of K, or the “economy size” singular value decomposition of ®(X), one
may re-solve the system for several different values of A with no growth in
asymptotic cost, as discussed in Rifkin and Lippert (2007).

Additionally, computational shortcuts can be used to update the so-
lutions w or a, when removing data points from the training set. Such
short-cuts can be used to derive efficient methods for cross-validation, where
repeatedly some data points are left out of training set for the purpose of
evaluating learner performance. An efficient leave-one-out algorithm for
RLS is a classical result (Vapnik, 1979). This result has been recently ex-
tended to repeated hold-out and cross-validation with arbitrary sized, pos-
sibly overlapping holdout sets in Pahikkala et al. (2006a) and An et al.

20

(2007), independently of each other. When using the linear kernel such
computational short-cuts may analogously be extended to feature selection,
where the model is updated to reflect the removal or addition of features in
the training set (Pahikkala et al., 2010b). Similar type of shortcuts allow
efficient online learning (see e.g. Pahikkala et al. (2011)).

Finally, conjugate gradient optimization (Shewchuk, 1994) based train-
ing methods allow scaling linear RLS training to very large and high-
dimensional but sparse data sets (Rifkin, 2002).

The RankRLS algorithm (see Chapter 4 as well as Paper I), can be con-
sidered as an extension of RLS, where regression is done on the level of pairs
of data points. The RLS method is used in the experimental evaluations in
Papers I, 111, IV, and V

2.8 Support vector machines

The (soft margin) support vector machine (SVM) algorithm (Cortes and
Vapnik, 1995; Vapnik, 1995) is among the most popular approaches to binary
classification. We assume that J = {—1,1}", and that the training labels
are stored in a vector y € {—1,1}".

The hinge loss is defined as

I(f(X),y) =) max(l—yif(x),0). (2.15)
=1

By inserting this into the regularized risk functional (2.2), we recover the
SVM objective function, defined as

J(f) = max(l — yif(x:),0) + A I
=1

The hinge loss provides a convex approximation of the non-convex 0 — 1
loss that computes the fraction of misclassifications on binary classification
tasks. The SVM algorithm is known to have good performance on binary
classification tasks, and it is one of the most widely used kernel based learn-
ing methods. However, the SVM optimization problem is made more diffi-
cult than the RLS one by the fact that no closed form solution exists, and
also the loss function is non-smooth, meaning that it is not differentiable ev-
erywhere. The RankSVM method (Herbrich et al., 1999; Joachims, 2002b)
considered in Chapter 4 extends the SVM for ranking.

For training kernel-based SVMs a large number of dual algorithms have
been proposed (see Bottou and Lin (2007) for overview). According to
Bottou and Lin (2007), the methods scale between O(m?) and O(m?) in

21

the number of training examples, depending on the level of regularization
applied.

For the linear case, the use of subgradient based methods has been pro-
posed in Joachims (2006); Smola et al. (2007); Teo et al. (2010). Joachims
(2006) called the approach the cutting plane method, the equivalence to sub-
gradient based bundle optimization was shown in Smola et al. (2007); Teo
et al. (2010). The concept of subgradient generalizes the notion of gradient
for convex functions. Formally, for a convex risk functional R(f),s € Fis
called a subgradient of R at f', if and only if

R(f) = R(f") + (f — f'.8') VF.

If R is differentiable at /', then the set of subgradients at that point con-
sists of simply the gradient. The subgradient information can be used to
minimize the regularized risk functional using bundle optimization methods
(Smola et al., 2007; Teo et al., 2010). The main idea is to use subgradient
evaluations to iteratively construct a piecewise linear lower bound approx-
imation of the empirical risk. The optimization problem where this lower
bound replaces the empirical risk in (2.2) can be solved by using quadratic
programming, where the number of constraints depends on the number of
computed subgradients. Theoretical and empirical analysis of the approach
has shown that the method can be expected to converge to accurate solution
long before the number of constraints is large enough to make the quadratic
program expensive to solve, the main computational costs result rather from
risk and subgradient evaluations (Joachims, 2006; Smola et al., 2007; Teo
et al., 2010).

For the hinge loss, a primal formulation for the subgradient of the em-
pirical risk at w’ can be defined as s’ = ®(X)g, where g € R™ is defined
as

_Jo if 3 ®(z;)Tw' > 1
i = { —1; otherwise

This approach has been implemented in a number of state-of-the art
linear SVM solvers, including SVMP®! (Joachims, 2006), BMRM (Teo et al.,
2007) and the OCA (Franc and Sonnenburg, 2009) software packages. The
methods have either linear or linearithmic scaling in the number of training
examples. The method has also been used to implement state-of-the-art
linear RankSVM solvers, as discussed in Chapter 4. The bundle method is
described in detail in Section 3 of Paper 11, where it is used to implement the
introduced novel RankSVM training algorithm. The bundle method is also
used to implement the basic SVM for running the experiments described in
Section 5.4 in Paper IV.

22

Chapter 3

Learning to rank

The task of learning to rank refers the supervised learning problem, where
the aim is to learn to order objects according to some criterion of goodness.
Common applications include search engines that rank documents according
to their match to user queries (Joachims and Radlinski, 2007; Liu, 2009),
recommender systems (Minkov et al., 2010) and medical decision making
(Suominen et al., 2006). In this section the general learning to rank setting
is introduced, and important special cases such as AUC mazimization and
ordinal regression are related to the general setting. We adapt the widely
used approach of modeling the ranking problem in terms of pairwise pref-
erences. Two alternative approaches to learning to rank, the pointwise and
the listwise approach, are also discussed. As pointers to relevant literature,
Fiirnkranz and Hiillermeier (2010) provides a compact overview of the area
of pairwise preference learning, and Domshlak et al. (2011) discusses the
use of pairwise preferences in a broader context in the field of Al, as well
as connections to other fields where preference models are used. Liu (2009)
provides an overview of the pointwise, pairwise and listwise approaches in
the context of learning to rank for information retrieval.

3.1 Data

We again sample a training set Z = (X,Y) € X x) containing inputs rep-
resenting the objects we aim to rank, and label information encoding infor-
mation about how well the objects match the underlying ranking criterion.
There exist two distinct settings with respect to how the label information
is provided. We may learn from scored data, or from pairwise comparisons.

In a global ranking defined by scored data, we have a setting similar
to regression, where) = R™ (assuming a set of m inputs), meaning that
each input in a dataset is associated with a single real-valued score. In this
setting, we may define our training set of m examples as Z = (X,y), where

23

X € X™ is the sequence of inputs, and y € R™ is a column vector of utility
scores. In this case we may compare any two data points, denoted here as
(x,y) and (2',y') as follows. If y > 3/, then x is preferred over z’, denoted
as x = x'. If y < v/, the contrary is the case. Finally in case y = v/, we say
that we are indifferent with respect to this choice, both choices are equally
good.

The scored data may also be used to define a partial order. This is com-
monly the case for example in document ranking, where the inputs are pairs
of user queries and documents, and the utility score reflects how well the
document and query match together!. In this setting rankings are defined
over individual queries, but it is not meaningful to compare data points re-
lated to different queries. At test time the ranking is always constructed for
a single query at a time. In this setting, we adopt the term query to denote
a subset of inputs over which a ranking is defined. We limit our consider-
ations to the setting where each input belongs to one and only one query.
Identical inputs are allowed to appear in different queries, but these are then
considered distinct from each other rather than being the same input. The
described framework is standard in the learning to rank for information re-
trieval literature (see e.g. Joachims (2002b); Lan et al. (2009)), and is also
applicable to ranking problems in many other domains (Pahikkala et al.,
2010d).

Formally, in the scoring setting with query structured data, the output
space corresponding to m inputs is defined as YV = R™ x Q, where

Q={{q1, - @}la S [m, e N g =0ifi#j}

denotes the set of all possible query partitions for index set [m]. The global
ranking can in this setting treated as the restricted case @ = {[m]}. Pairwise
preferences can be constructed as before for data points belonging to the
same query, examples from different queries are said to be incomparable. In
this setting, we may define a training set of m examples as Z = (X,y, @),
where X € X™ is the sequence of inputs, y € R™ is a column vector of
utility scores, and @) € Q is the query partition of the training set.

When sampling data points from a global ranking, we may assume that
the training set constitutes an i.i.d. sample from an unknown distribution
over the input-utility pairs. However, with query structured data, the sam-
pling is typically done on the level of queries, rather than on the level of
individual data points. Here we may assume that the set of training queries

Paper I uses the term label ranking to describe ranking with query-structured data.
This choice of terminology reflects the idea, that the data points represent input-label
pairs with joint feature representations, and are ordered according to how well the label
matches the input. However, the term has been more commonly used to describe the
situation where the set of labels is fixed, and the labels do not have features (Firnkranz
and Hiillermeier, 2010).

24

constitutes an i.i.d. sample from an unknown distribution over all the pos-
sible queries. The fact that the data points are not sampled independently
of each other in the query setting can lead to complications when doing
performance estimation via cross-validation, as discussed in more detail in
Chapter 5.

In some applications it may be the case that we do not have access to
the utility scores of the training examples, but rather are supplied only with
pairwise comparisons. For example Joachims (2002a) proposed gathering
such pairwise comparisons from implicit feedback given by search engine
users. When supplying a user with a set of candidate web pages, the link
that received a click may be considered to be preferred over those that did
not receive a click. This feedback information does not directly inform us
whether the offered links matched the user need well or not, only that the
clicked link was a better match than the other ones that were presented.

A set of pairwise preferences can be encoded as a directed preference
graph, where input points serve as vertices, and the edges encode preferences
between the vertices. By an edge e; = (h,), where h # j, we encode that
xp, is preferred over x;. Formally, for a data set of m examples, we denote
the corresponding output space of preference graphs as

Y =JUh DIk # 4., j € m]}),
leN

and denote a preference graph drawn from the underlying distribution as
E=(e,...,e) €.

When supplied with utility scores, an equivalent representation as a pref-
erence graph may be constructed as follows

E ={(h,j)|yn > yj,3q € Q,h,j € q)}.

For computational reasons, it is rarely a good idea to explicitly construct the
pairwise preferences when having access to utility scores. Rather, efficient
algorithms are based on modeling the preference graph only implicitly.

3.2 Ranking performance

Our aim is to learn a scoring function f : & — R, for predicting utility
scores. From ranking point of view it is not important to predict correct
values, rather we require that when sorting objects according to predicted
scores the resulting ordering agrees as well as possible with the true rank-
ing. We assume that ties are broken randomly, when constructing rankings.
Following Herbrich et al. (1999); Dekel et al. (2003), we measure this discrep-
ancy using the pairwise ranking error. The error measures the probability,

25

that two randomly drawn objects are incorrectly ranked. Depending on the
assumptions we make about the underlying data source, we may recover a
variety of settings

First, let us assume a probability distribution Dy over X x X, such that
(x,2') ~ D., denotes a pairwise preference x > z’. Then, the expected
ranking loss is defined

B en~p, [H(f(2) = f(2))], (3.1)

where H is the Heaviside step function defined as

1, ifa>0
H(a)=1< 1/2, ifa=0 . (3.2)
0, ifa<0

The expected ranking loss for trivial predictors that always predict ran-
domly, or always predict ties, is 0.5.

Let us assume that we are given a training set Z, sampled according to
D. . The training set contains a preference graph E of k pairwise preferences.
Following Dekel et al. (2003), we give a general formulation of the ranking
error, also known as disagreement error, as

), B) =3 S H(f(y) — f(). (33)

(3,7)€EE

The properties of Do determine, to what extent the underlying relation
produces consistent rankings, and hence to what extent it can be modeled
using a scoring function. Shortly put, intransitive preference relations can-
not be modeled without error using scoring functions, as intransitivity leads
to preference cycles, for which no corresponding ranking exists. For exam-
ple, for the game of rock-paper-scissors, at best we can capture only two of
the three rules for the game by producing a ranking for the three strate-
gies. However, in learning to rank, when sampling the data as pairs, we
may often assume that the underlying relation is transitive, considering any
preference cycles as the product of noise. Further, in settings where the pair-
wise preferences are generated from utility scores of individual examples, the
transitivity of the preference relation is guaranteed. For more in-depth anal-
ysis about ranking representability of general preference learning problems,
we refer to Pahikkala et al. (2010e).

Next, we consider the scoring setting, where all the inputs are associated
with a real-valued utility score. Further, we assume the global ranking
setting. Here, a typical assumption is (see e.g. Clémencon et al. (2005)),
that there exists a probability distribution D over X xR, from where our data
is drawn as input-utility pairs. Then, Dy corresponds to two independent

26

draws of objects from D. Without loss of generality we can again assume
that the first object in a drawn pair has higher utility than the second
one, with ties being broken randomly.? Now let us consider a training set
(X,y) = Z, consisting of an i.i.d. sample from D. The pairwise ranking
error is defined as the sum

(), 9) = 5 32 Hf)~) (3.4

Yi>Yj

As noted for example in Clémencon et al. (2005), the set Z does not consti-
tute an i.i.d. sample from D, , since there are dependencies between pairs
related to same inputs. Nevertheless, theoretical results in the literature
suggest that (regularized) risk minimization based on (3.4) should lead to
low expected ranking loss (3.1) (Herbrich et al., 2000; Agarwal et al., 2005;
Clémencon et al., 2005).

This far we have assumed, that the data is sampled independently either
on the level of pairs, or on the level of individual inputs. However, in the
commonly encountered query-setting the data is rather sampled on the level
of queries. At test time we are offered a query consisting of data points. The
goal is to produce a ranking for the query such that matches the true ranking
as well as possible, as measured by a multivariate loss function I. Let D,
denote the fixed but unknown distribution over queries. The expected loss
is

E(xy)~0, L (f(X),¥)],

where (X,y) contains the inputs and the true utility scores for a randomly
sampled query. This formulation has been proposed in literature on learning
to rank for document retrieval, where data typically has query structure
(Joachims, 2002b; Lan et al., 2009). Following Joachims (2002b), we may
use the pairwise ranking error (3.4) as the query-wise loss, and define the
empirical risk as the average pairwise ranking error over all the queries in the
training set. Also other types of losses have been suggested in the literature,
as discussed in Section 3.4.3.

3.3 Bipartite ranking and ordinal regression

The bipartite ranking problem is perhaps the simplest possible ranking set-
ting. Here each input is assigned one of two possible scores. Without loss of
generality we may define the set of available labels as {—1,1}. The aim is to
learn a prediction function that ranks the positive examples higher than the

2For technical reasons in settings where it is likely that two randomly drawn examples
have exactly the same utility, we may wish to instead define D. such that the second
drawn object is conditioned on having a different utility score than the first one.

27

negative ones. The induced preference graph has bipartite structure, mean-
ing that all positive examples are connected with all negative examples, but
examples from the same class are not connected. Hence the term bipartite
ranking has been used for example in Freund et al. (2003); Agarwal et al.
(2005) to describe the setting.

Clearly, any binary classification task can be treated as a bipartite rank-
ing problem. In fact, it is well known that the bipartite ranking problem is
equivalent to the task of maximizing the area under the ROC curve (AUC)
binary classification performance measure (see e.g. Bamber (1975); Cortes
and Mohri (2004); Agarwal et al. (2005)). Historically, AUC has been asso-
ciated with analysis of radar images, (Hanley and McNeil, 1982) and med-
ical decision making (Swets, 1988). In the recent years the measure has
received substantial interest within the machine learning community (Agar-
wal et al., 2005; Bradley, 1997; Cortes and Mohri, 2004; Fawcett and Flach,
2005; Huang and Ling, 2005; Provost et al., 1998; Waegeman et al., 2008;
Vanderlooy and Hiillermeier, 2008).

The AUC criterion corresponds to the probability, that given two ran-
domly drawn inputs, one from the positive and one from the negative class,
the classifier is able to distinguish between them correctly. Formally, let the
conditional distribution of an input from X, given that it belongs to the
positive class be denoted by D, and given that it belongs to the negative
class by D_. Agarwal et al. (2005) define the expected ranking accuracy
over all possible positive-negative example pairs as

E$+~D+$7ND— [H(f($+) - f(:(}_»],

and derive generalization bounds which bound this quantity either as a
function of AUC measured on the training data, or on independent test
data.

AUC may be considered an empirical estimate of the expected ranking
accuracy. It can can be computed using the following formula, also called
the Wilcoxon-Mann-Whitney statistic:

p(f(X),Y)=,X+iX_| S Y H(f@) - f@), (35)

z,€Xy xjEX

where X is a sequence of examples, and Xy C X and X_ C X denote the
division of the inputs to positive and negative classes according to the class
labels in Y, respectively (see e.g. Cortes and Mohri (2004)). From (3.4) we
can see that in bipartite ranking the AUC criterion becomes equivalent to
the ranking error, since in this case AUC equals one minus ranking error.
The AUC measure has a number of beneficial properties, due to which
its use in place of classification error has been recommended in evaluation of
binary classification methods. These properties include its invariance to to

28

class-specific error costs, which are often difficult to determine, its invariance
to changes in the prior class distributions, and the fact that trivial predic-
tors such as majority voter or random predictions never lead to high AUC
performance regardless of the data distribution (Bradley, 1997). Cortes and
Mohri (2004) provided a detailed theoretical comparison of classification er-
ror and AUC, and showed that achieving low classification error does not
guarantee high AUC.

Ordinal regression can be seen as a generalization of the AUC criterion
to ranking with multiple levels of utility. Instead of two possible levels,
there now exists several levels of utility, which we may encode as each data
point having a label from the set {1,...,k}, where k € N is the number of
possible levels. Ordinality means that the categories are ordered, with higher
categories being preferred over the lower ones. In contrast to regression
there is however no distance metric between the categories. This type of
data is often gathered from human judgements (e.g. rate movies from one
to five stars or restaurants on scale 1-10). A common assumption is that
the number of possible categories is fairly low, since it is easier for humans
to provide feedback given only a small number of choices to decide from.

There are several different perspectives to ordinal regression learning.
First, one may aim at prediction time to predict the exact category a test
example belongs to. This can be modeled using a prediction function f and
k — 1 thresholds 6;...0;_1. Now the category a new example belongs to
may be predicted as

clx)=9 I, O <flx)<O,le{2...k—1} (3.6)
k, if f(z) > 01

Many approaches to ordinal regression learning fit this model, including both
classical approaches introduced in statistics (see e.g. (McCullagh, 1980)),
as well as recent work in machine learning (see e.g. (Frank and Hall, 2001;
Crammer and Singer, 2002; Chu and Keerthi, 2007).

However, from ranking point of view requiring the fitting of thresholds is
unnecessary. When making predictions it does not matter whether correct
categories are assigned to test examples, only that the ranking acquired by
sorting test examples by their predicted scores matches the true ranking
well. Starting from the work of Herbrich et al. (1999), much of the work
on learning to rank from ordinal data has concentrated on optimizing losses
which guarantee good ranking performance, without the need to recover the
actual categories at prediction time. The approach of Herbrich et al. (1999)
was to consider the pairwise preferences induced by the ordinal categories,
where each data point is preferred over those belonging to the lower cate-
gories. This naturally leads to algorithms that minimize approximations of
the ranking error (3.4) in order to achieve low expected ranking loss (3.1).

29

This is the approach we adopt in our work on learning to rank, when learning
from ordinal data. A slightly different approach was introduced in Waege-
man et al. (2008) where AUC was generalized for ordinal regression into
volume under the surface, which estimates the expected value for the prob-
ability of correctly ordering a k-tuple given a randomly drawn data point
from each category.

The setting for learning to rank from scored data as defined in Section 3.1
can be considered more general than the ordinal regression setting considered
here. First, in ordinal regression one typically assumes a global ranking over
all the data points, meaning that methods introduced for ordinal regression
often cannot deal with query structure in the data. Second, the assumption
that the data comes from only a few ordered categories may not in general
hold. Methods built upon this assumption may be unsuitable for the case
where arbitrary real-valued utility scores are provided. While methods that
optimize pairwise criterions typically can generalize to this setting, they may
suffer from efficiency problems when the number of allowed categories is no
longer restricted (see Section 4.2).

3.4 Approaches to learning to rank

A large number of approaches have been proposed for learning to rank in the
last decade or so. Here we provide an overview of this body of related work.
Following Liu (2009) we divide the ranking methods into three categories:
the pointwise, pairwise and the listwise methods.

3.4.1 Pointwise methods

In the pointwise approach, the ranking problem is modeled by aiming at
correctly predicting the utility score or category of the data points. The
criterion typically leads to minimizing univariate loss functions, which for
each data point calculate the discrepancy between the true label, and the
predicted label. Standard classification or regression methods may be ap-
plied for learning to predict the labels. Alternatively, ordinal regression
methods that take better into account the special structure of the output
space have been proposed. A justification for using the pointwise methods
is that predicting perfectly the correct utility scores allows one to recover
optimal rankings.

As discussed in section 3.3, the bipartite ranking problem can be solved
using any binary classification algorithm. For example, some of the work
on document retrieval, casts the ranking task simply as classifying “rel-
evant” and “non-relevant” query-document pairs (see e.g. Cooper et al.
(1992); Nallapati (2004)). Also, in most applications where the AUC is
used to measure performance, standard classification methods are applied

30

rather than ranking methods. More generally, the ordinal regression prob-
lem can be modeled as a multi class learning problem (Li et al., 2008). The
aforementioned approaches have a number of drawbacks when applied to
ranking. For bipartite ranking, both theoretical and empirical results have
shown that optimizing classification error rate may not lead to good rank-
ing performance (see e.g. Cortes and Mohri (2004); Pahikkala et al. (2008b)
Paper I). Using multi-class classification ignores the ordinal structure over
the classes completely (it is less wrong to predict 4 stars for a 5 star movie
than to predict 2 stars). Further, the approach breaks down if the range of
utility scores is not restricted to only few categories.

Frank and Hall (2001) introduced a cumulative decomposition approach,
where for each category a classifier is trained to predict the probability that
the true category is higher than the given category. Crammer and Singer
(2002) proposed a perceptron based PRank algorithm for ordinal regression
learning in an online setting. Here a predictor such as described in equation
(3.6) is used, and both the current linear model and the thresholds are
adjusted each time a new data point is misclassified. We are aware of two
kernel methods proposed for ordinal regression learning®. First, Shashua
and Levin (2003) introduced an SVM formulation for ordinal regression,
where the selection of suitable thresholds is integrated into the standard
SVM optimization problem. The work was further improved in Chu and
Keerthi (2005, 2007). Second, Chu and Ghahramani (2005b) introduced a
similar approach based on Gaussian processes for ordinal regression learning.
A common limitation of all these algorithms is that they are not applicable
if there is too large, or unrestricted number of ordinal categories available.

Finally, the ranking problem can be solved by pointwise regression of
utility scores. Here methods such as (regularized) least-squares may be
used for learning (see e.g. Fuhr (1989); Tsivtsivadze et al. (2005); Cossock
and Zhang (2006)). In regression the ordering information is taken into
account, and the approach is applicable also when the range of utility scores
is unrestricted. The criterion enforced when using regression is however too
strict; from ranking point of view it does not matter what the predicted
scores are, as long as the ordering they produce is good.

A problem all the methods considered here share is that they can be seri-
ously lead astray by imbalanced data. Predicting the majority class or mean
of the training labels may produce low classification or regression error, but
does not help in ranking. Finally, the methods ignore query structure and
are not applicable when only pairwise comparisons are available. All this
being said, many of the pointwise approaches are simple to efficiently imple-
ment, and can often reach as good ranking performance as those optimizing

#We do not include the work of Herbrich et al. (1999, 2000) here because, even though
it was motivated by the problem of ordinal regression, the end result is a general pairwise
ranking method.

31

ranking based criteria more directly as discussed in more detail at the end
of this chapter.

3.4.2 Pairwise Methods

In the pairwise approach, the aim is to learn to correctly predict relative
order between any two data points. A method that is able to correctly or-
der data points can be used to construct accurate rankings. For bipartite
ranking this criterion leads to AUC optimization (3.5), and in the more gen-
eral case to pairwise ranking error minimization (3.3, 3.4). The approach is
inspired by the notion of pairwise preferences, and in the preference learning
literature the setting is sometimes known as object ranking (Firnkranz and
Hiillermeier, 2010).

The criterion is more closely related to final goals of learning to rank
than the pointwise criteria. On one hand correct prediction of categories
or scores is not enforced, what matters is how well the predictor can decide
which of two data points is more preferred. On the other hand pathological
solutions such as a majority voter or a mean predictor are not encouraged,
since such models achieve no better pairwise performance than random.
Finally, the approach allows learning directly from pairwise comparisons,
and queries can be modeled by considering only preferences between data
points belonging to the same query.

Tesauro (1989) proposed learning a unary scoring function from pair-
wise comparisons using a neural network architecture. More recently, the
pairwise approach has been popularized by the introduction of a pairwise
formulation of SVM, popularly known as the RankSVM (Herbrich et al.,
1999, 2000). Originally, RankSVM was introduced for learning from ordinal
regression data, a generalization to learning directly from pairwise compar-
isons was introduced in Joachims (2002a), a modification better suited to
query structured data in Cao et al. (2006) and an efficient training method
for the linear case in Joachims (2006). Many other classification algorithms
have similarly been adapted to learning ranking functions by optimizing a
pairwise criterion. These include the RankBoost (Freund et al., 2003), and
RankNet (Burges et al., 2005) algorithms, as well as the RankRLS algo-
rithm, originally introduced in Pahikkala et al. (2007), which is the subject
of Paper I. The magnitude preserving ranking algorithm MPrank (Cortes
et al., 2007b,a) also belongs to this category.

An alternative direction was considered in Cohen et al. (1998), where
the ranking problem was modeled as a classification problem on pairs of
examples. Here the aim is to learn a binary prediction function g : X x X' —
{—=1,1}, which predicts, whether the first example is preferred over the sec-
ond one, or vice versa. An advantage of this approach is that any binary
classification algorithm may be used here for learning, by using joint fea-

32

ture representations of pairs of data points both at training and prediction
time. However the approach has not been popular in learning to rank for
two reasons. First, producing the predicted ranking from the pairwise com-
parisons of test examples is a non-trivial task. The learned model may
be non-transitive, producing predictions which are not consistent with any
ranking. For a proposed solution on how to construct the final ranking ef-
ficiently from pairwise classifications, see Ailon and Mohri (2008). Second,
the quadratic growth in the size of the training set leads to computationally
inefficient algorithms. The pairwise classification approach has shown more
promise in recent work on preference learning tasks where the underlying
relation has a complex structure that cannot be reduced to a linear ordering
representable by a simple unary scoring function, such as cyclic preference
relations (Pahikkala et al., 2010e) and conditional ranking models (Pahikkala
et al., 2010d).

AUC-maximization has been studied as a topic of its own in several
studies. Variants of most learning methods have been introduced for the
task, including those based on boosting (Freund et al., 2003), decision trees
(Ferri et al., 2002), logistic regression (Herschtal and Raskutti, 2004), RLS
(Pahikkala et al., 2008b), rule sets (Fawcett, 2001), and SVMs (Rakotoma-
monjy, 2004; Brefeld and Scheffer, 2005; Joachims, 2005). Methods specifi-
cally designed for AUC optimization may not be suitable for other ranking
tasks, though some of these methods are known to be special cases of general
pairwise ranking algorithms.

A common problem for all the pairwise methods is that for straightfor-
ward implementations of the methods, the training complexity grows with
respect to the number of pairwise preferences, rather than the number of
training examples. For global rankings the number of preferences typically
grows quadratically with training set size, while for query structured data
the growth is linear in the number of queries, and quadratic in query size.
These complexities may be affordable for small training sets, or small query
sizes, but can become problematic on large data sets. One approach pro-
posed for solving this problem has been approximation, where only a subset
of all pairs is used (see e.g. Rakotomamonjy (2004); Brefeld and Scheffer
(2005); Sculley (2009)). Other line of approach has been to develop compu-
tational shortcuts which allow the optimization of pairwise losses without
explicitly iterating over the pairs (see e.g. Freund et al. (2003); Joachims
(2006); Cortes et al. (2007b)). The algorithms introduced in Papers I and
IT are based on the latter approach (see also Chapter 4).

3.4.3 Listwise Methods

The listwise approach to learning to rank has been motivated by the mul-
tivariate performance measures used in information retrieval, such as Mean

33

Average Precision (MAP) (Yue et al., 2007), Normalized Discounted Cu-
mulative Gain (NDCG) (Jarvelin and Kekéldinen, 2000), and Expected Re-
ciprocal Rank (ERR) (Chapelle et al., 2009). These measures give much
greater importance on whether the first entries in the ranking are correct,
than to the correctness of the entries low in the produced ranking. This
choice is motivated by the fact that in many ranking applications, such as
web search, the user is likely to examine only the highest ranked objects.
The pointwise and pairwise approaches may not be optimal here, since they
do not give any special importance on the highest ranked entries.

The listwise, or multivariate learning algorithms aim at optimizing these
measures more directly. This is made challenging by the fact that the pre-
viously mentioned measures do not decompose into pointwise or pairwise
evaluations. Instead, the individual atoms considered are queries, and the
losses measure how well a predicted list of relevance judgements or a permu-
tation of the query indices matches the correct ranking. Also, when viewed
as functions of predicted scores, the aforementioned measures are not smooth
or differentiable. A small change in a predicted score often has no effect on
the produced ranking. Thus advanced optimization strategies which are
able to work with full queries are needed in listwise learning. Introduced
approaches include structural SVMs (Joachims, 2005; Tsochantaridis et al.,
2005; Yue et al., 2007; Chapelle et al., 2007), as well as several several other
approaches (Burges et al., 2007; Cao et al., 2007; Qin et al., 2008; Xia et al.,
2008). The majority of these methods are based on linear models.

3.5 Conclusions

A natural question that arises considering all the presented approaches is,
which one should adapt in practice. In case the training data is gathered
as pairwise comparisons it is quite clear that only the pairwise methods are
applicable, but for scored data one can use any of the three approaches. Pre-
vious results in the literature suggest that considering pairwise preferences
should lead to higher ranking performance than using pointwise methods
(see e.g. Herbrich et al. (1999); Freund et al. (2003); Burges et al. (2005);
Joachims (2005)). Further, articles introducing listwise methods have con-
sistently reported that the listwise approach allows better optimization for
information retrieval specific measures than the other approaches (Yue et al.,
2007; Chapelle et al., 2007; Cao et al., 2007; Qin et al., 2008; Xia et al., 2008).

As a contrary result, Chapelle and Keerthi (2010) recently demonstrated
that the RankSVM method outperforms in terms of the NDCG measure a
number of considered listwise based baseline methods on the widely used
LETOR (Qin et al., 2010) benchmark dataset. Further, in the recent Ya-
hoo! 2010 Learning to Rank Challenge, it was reported that most of the top

34

performing systems were actually based on pointwise regression of utility val-
ues (Chapelle and Chang, 2011). The possible explanations offered for this
phenomenon were that the regression based approaches allowed non-linear
modeling, unlike most methods optimizing ranking based losses, as well as
the possibility of some previously reported improvements in the literature
being the product of random chance.

The focus of this thesis is on regularized kernel methods, as this allows
the use of structured data, learning non-linear models, and offers principled
ways to deal with both the underfitting and overfitting phenomena. Further,
we require that the considered methods are as general as possible, rather
than restricted to certain settings such as only AUC maximization, though
we will also study such important special cases in detail. The considered
methods should achieve higher ranking performance than the pointwise ap-
proach, and be computationally efficient. These constraints motivate both
the development of the RankRLS method, as well as improvements to the
computational efficiency of RankSVM, both discussed in Chapter 4.

35

36

Chapter 4

Novel ranking algorithms

In this section we introduce the RankRLS algorithm developed as part of
this thesis work, as well as an improved training method for the RankSVM
method. Both RankRLS and RankSVM combine kernel based learning,
and learning to rank by minimizing a convex approximation of the number
of pairwise mistakes made by the learned model. We assume the setting
described in Section 3.1, where training data containing either utility scores
or pairwise preferences is provided.

4.1 RankRLS

The RankRLS method combines the regularized risk minimization problem
(2.2) with a least-squares based approximation of the pairwise disagreement
error (3.3). The method was originally formulated in Pahikkala et al. (2007)
for the case of scored data. Tsivtsivadze et al. (2008) studied the reduced set
approximation of RankRLS, Pahikkala et al. (2008b) considered the specific
case of AUC-optimization, and Pahikkala et al. (2008a) presented and effi-
cient leave-pair-out cross-validation algorithm for the method. The following
sections are based on Paper I, that collects together this previous work, and
further extends RankRLS to learning from pairwise comparisons, introduces
new efficient algorithms, and includes extended experimental evaluation.
In addition to pairwise preferences, we may in some settings have access
to preference magnitudes, that denote to which degree an object is preferred
over another. For two input-utility pairs (z,y) and (2/,y’) such that = >
x’, the preference magnitude can be defined as y — 4/. In theory one can
also define magnitudes for general preference relations not based on utility
scores. If such information is not available and magnitudes are required, we
may assume that each preference has a magnitude 1. In the following, we
use Fj; to denote a set of pairwise preferences augmented with preference
magnitudes, meaning that each e; = (h,j,w;) € Ej; contains a magnitude

37

w; encoding the degree, to which x}, is preferred over x;. The corresponding
preference graph is thus a directed weighted graph.

The RankRLS is an example of a magnitude preserving ranking algo-
rithm, a term first introduced in Cortes et al. (2007b), meaning that in
addition to directions of preferences it also aims to enforce their magnitudes
using a two-sided loss function. Analogously to the use of RLS regression
for classification, one might expect this criterion to be unnecessarily strict
in case the goal is to achieve low ranking error. Experimental results pre-
sented in Paper I however indicate, that also in this case the approach leads
to predictive performance that is comparable to that achieved with one-sided
pairwise ranking losses.

4.1.1 Problem formulation

We define the magnitude preserving pairwise ranking loss as

(F(X)Bar) = > (wi— flan) + fla)))* (4.1)

(h7j7wl)€E

This choice is most natural when using scored data since the preference
magnitudes can be recovered from differences of utility scores. For scored
data, (4.1) reduces to'

(X)) y. Q) =) > (wi —yj — flmi) + fl=))* (4.2)

q€eQ i,j€q

The loss function (4.2) is how the RankRLS method was originally for-
mulated in Pahikkala et al. (2007). If the data has no query structure, but
rather a single global ranking, then the variant of RankRLS that is based
on (4.2) also becomes equivalent to the MPrank algorithm proposed simul-
taneously and independently of us in Cortes et al. (2007b,a).

In cases where magnitude information about preferences is not available,
the magnitude preserving ranking loss reduces to

If(X),E)= > (1= fzn) + f(z))). (4.3)

(h,j)eEE

One may further wish to normalize the losses by dividing them by the
number of preferences. Alternatively, for query-structured data, the losses
incurred in each query may be normalized by the size of the query, as
such an approach has been shown to be sometimes beneficial for the re-
lated RankSVM method (Cao et al., 2006). In addition to the pairwise

'For technical reasons also pairs having the same utility score, such that belong to the
same query, are included in the loss. Empirical results in Paper I suggest that this is not
detrimental to predictive performance.

38

squared losses presented here, Paper I also introduces an additional variant
of the RankRLS loss. We do not however include it in the following consid-
erations, as it does not improve the applicability of RankRLS beyond what
the presented losses allow.

4.1.2 Solving the optimization problem

Inserting the magnitude preserving pairwise ranking loss (4.1) to the regular-
ized risk functional (2.2) we derive the objective function for the RankRLS

D (wi— flan) + fl@)) + AP (4.4)

(h7j7w1)eE

This can be equivalently re-written in matrix notation either in the primal,
or in the dual form.

Let M € R™*! be a matrix whose rows and columns are indexed by the
vertices and edges of the preference graph for the training set, and its entries
are given by

w; if ¢, = (h, j,w;), for some j # h
My, =< —w; ife; =(j,h,w;), for some j #h . (4.5)
0 otherwise

Fach w; and —w; can be replaced by 1 and —1 correspondingly, in case
preference magnitudes are not available. In graph theory, this matrix is
sometimes called the oriented incidence matrix of a graph (see e.g. Brualdi
and Ryser (1991)).

Further, let us write n = (w1, ...,w;)T. Then, we can write in matrix
form the RankRLS risk (4.4) as
J(a) = (n—M"Ka)T(n - M"Ka) + \aTKa. (4.6)

It can be seen that dual RankRLS problem is analogous to the basic dual
RLS formulation (2.14), but the regression is done on the level of preference
graph edges. Analogously to RLS, we can recover a close form solution. The
gradient of (4.6) is

VJ(a) = 2K(—Mn + (MM'K + Al)a),

and by setting the gradient to zero, we can find a globally optimal solution
by solving the linear system

(MMTK + \I)a = Mn. (4.7)
The primal form of the RankRLS risk (4.4) is

Jw)=M"d(X)Tw —n)"(MTO(X)"™w —n) + A\w’w. (4.8)

39

The gradient of (4.8) is
VJ(w) = —28(X)Mn + 2(&(X)MMTo(X)T + A\D)w,
and setting it to 0 results in the system of linear equations
(@(X)MM"®(X)T + A\I)w = &(X)Mn. (4.9)

We recall, that by m we refer to the number of training inputs, by [the
number of pairwise preferences in the training set, and by n the dimension-
ality of the feature space. The complexity of solving the dual form (4.7) is
O(m3+1), where the O(m?) term is due to the cost of solving a m x m linear
system, using for example matrix inversion. Since in most applications the
number of edges grows at most quadratically with the number of training
examples, we may simplify the overall complexity to O(m?).

The computational complexity of solving the primal form (4.9) is O(n3 +
min(n?m + m?n + [,n?l)). If n << m this can be much more efficient than
using the dual form. Further, for the scoring setting and the magnitude
preserving loss it can be shown, that using a low-rank decomposition of
the graph Laplacian matrix MMT, the primal solution can be recovered in
O(n®+n?m) time, eliminating the dependency on the number of preferences.

Thus using basic dense linear algebra techniques based on matrix inver-
sion or matrix factorization, RankRLS can be trained in a time that is either
cubic in the number of training examples, or cubic in the dimensionality of
feature space. In practice this means that on modern computers RankRLS
can be trained as long as either the number of training examples, or the
dimensionality of the feature space does not exceed a few thousands.

When using kernels, the reduced set approximation (see Section 2.5)
can be used to scale RankRLS training beyond a few thousand training
examples. This approach is described in detail in Section 3.5 of Paper I,
and it can be seen as a special case of the Nystrom approximation scheme
studied in Paper III. Additional experimental results demonstrating that
this approach can lead to increased ranking performance are presented in
Tsivtsivadze et al. (2008).

Alternatively, in many central ranking applications, such as web search,
the data to be ranked consists of natural language documents. In typical
feature representations the dimensionality of the feature space is huge, as it
may be related to the number of distinct words in a vocabulary, or to some
power of this number. However, the data is sparse, meaning that the data
matrix is filled mostly with zeroes. Using the linear kernel, it is possible
to make use of this sparsity, avoiding explicitly constructing dense m x m
or n X n matrices. Using the conjugate gradient method, the RankRLS
optimization can rather be formalized in terms of sparse matrix - vector
products. The basic technique is described in Paper I, more detailed analy-
sis and further experimental results are presented in Airola et al. (2010). Let

40

7 be the average number of non-zero features per example, and ¢ the number
of iterations that conjugate gradient optimization needs to converge. Then
linear RankRLS can be trained from scored data in O(tmn) time, and from
pairwise preferences in O(tmm + tl). As discussed in Airola et al. (2010)
bounding ¢ is not straightforward, but in practice it was observed that even
on very large datasets good solutions could be achieved within tens of iter-
ations. In practice this allows linear RankRLS training to scale to tens to
hundreds of thousands of training examples and features on sparse data in
a matter of minutes.

4.1.3 Computational shortcuts

For scored data and the magnitude preserving ranking loss, Paper I intro-
duces a number of computational shortcuts. The shortcuts are analogous to
those known for the basic RLS algorithm (see Section 2.7).

First, it can be shown that after computing the eigendecomposition of
the matrix MMTK, in O(m?) time, solutions for different regularization
parameter values A can subsequently be computed in O(m?) time. This is
highly advantageous, since one rarely knows in advance the suitable value
for A, rather it is typically chosen by grid searching. Similar shortcut can be
used for re-training primal RankRLS for different regularization parameter
values in O(n?) time, after performing O(n® + n?m) time operations.

Second, using the previously discussed eigendecomposition operations,
we can train RankRLS efficiently for multiple ranking tasks. Assuming that
instead of a single vector of output scores, we have a m X v matrix represent-
ing v distinct ranking tasks, dual RankRLS can be trained in O(m?v) time
for all the tasks, assuming previously computed O(m?) cost decomposition.
Similarly, primal RankRLS can be trained in O(n?v+mnuv) time for v tasks,
assuming previously computed O(n® + n?m) cost operations.

Third, based on low-rank matrix update operations, one can develop
computationally efficient cross-validation algorithms for RankRLS. These
methods in effect allow a trained RankRLS model with a minimal number
of operations to “unlearn” the effects of a holdout set of examples, that is
left out of the training set. Two such fast algorithms have been derived.
First, we consider the the case, where there is a single global ranking de-
fined over the objects. Here leave-pair-out cross-validation can be seen as a
generalization of the standard leave-one-out method, for pairwise loss func-
tions. The method was proposed by (Cortes et al., 2007a), who derived
an approximate method for computing this estimate for the MPrank algo-
rithm in O(m?) time. In Paper I, we improve this result by presenting an
O(m?) method for computing the non-approximative leave-pair-out predic-
tions for RankRLS. Further, we consider the problem of cross-validation
for query-structured data, and present a O(m? + m|q|?) time method for

41

leave-query-out cross-validation, where |g| is the average query size.

Recently we have introduced further computational shortcuts for
RankRLS, whose detailed treatment however falls outside the scope of this
thesis. In Pahikkala et al. (2010a) we derived Greedy RankRLS, a greedy
forward selection algorithm for doing feature selection with RankRLS on
query-structured data. The method starts from the empty feature set, and
the iteratively keeps selecting the feature whose addition leads to largest
decrease in leave-query-out cross-validation error. Let k& be the number of
selected features. Then the method can be trained in O(kmn) time, by
making use of leave-query-out cross-validation shortcuts, as well as addi-
tional shortcuts for fast addition of new features to the model. Further, in
Pahikkala et al. (2010d) we considered the problem of conditional ranking on
relational data, where the vertices of relational graphs are ranked according
to how well they match any vertex on which the ranking is conditioned on.
For example, when playing a game, other players can be ranked according
to how likely they are to win against a given player. We derived an efficient
to compute closed form solution for RankRLS for learning such pairwise
ranking relations using pairwise Kronecker kernels.

4.2 RankSVM

The ranking support vector machine (RankSVM) method combines the reg-
ularized risk minimization problem (2.2) with a hinge-loss based approxi-
mation of the pairwise disagreement error (3.3). The method was proposed
originally in Herbrich et al. (1999) for solving ordinal regression problems,
and later adapted to learning from query structured data and pairwise pref-
erences in Joachims (2002a).

4.2.1 Problem formulation

The pairwise hinge loss is defined as

(X)), B) =) max(l— f(x;) + f(x7),0).
(i.g)eE
The loss can be seen as an extension of the basic hinge loss (2.15) to
pairwise comparisons, the loss is also very similar to the pairwise least-
squares loss (4.1). For scored data, the pairwise hinge loss can be written
as

W(f(X),y, @) =Y > max(l— f(z;)+ f(x),0).

q€Q 1,5€4,Y:>Y;

Again, we can normalize the losses by the number of pairwise preferences,
or by the query size as suggested in Cao et al. (2006).

42

4.2.2 Solving the optimization problem

Herbrich et al. (1999); Joachims (2002a) note the close connection of the
RankSVM problem to ordinary SVM classification. Let us consider a binary
classification problem, where we encode each preference z; > x; as a positive
training example, using ®(x;) — ®(z;), or the dual representation of this
difference, as its feature vector. Likewise, we may assume the existence of
a corresponding negative training example, whose feature vector is ®(x;) —
®(x;). When computing the hinge loss (2.15) for this classification problem,
for each preference z; > x; we recover a term max(l — 1 - (w, ®(z;) —
®(z4))),0) for the positive, and the same term max(1 — (—1) - (w, ®(x;) —
®(x4))),0) = max(1 — (w, ®(x;) — (z;))),0) for the corresponding negative
example. Due to the linearity of the inner product, we can decompose the
prediction as (w, ®(z;) — ®(z;)) = (W, P(x;)) — (W, P(x;)), allowing us to
recover the pairwise hinge loss.

One practical implication of this result is that any standard SVM solver
can be used to solve also the RankSVM problem (analogously, the same
connection exists between the RLS and RankRLS methods). This approach
was originally adapted in Herbrich et al. (1999). Further, the popular ker-
nel RankSVM solver included in the SVM' " software package (Joachims,
1998), uses a standard SVM solver trained on example pairs for training
the RankSVM (Joachims, 2002a). The downside of this approach is that
the computational complexity of these solvers becomes dependent not on
the number of examples, but on the number of pairwise preferences. Since
the number of pairwise preferences often grows quadratically with respect to
training set size, adapting modern dual SVM solvers to RankSVM training
can lead to O(m?) or worse scaling.

For linear RankSVM training, more efficient training algorithms have
been proposed. A method suitable for scored data was introduced in
Joachims (2006), our treatment of the subject is based on the formulation
in Teo et al. (2010), where the approach was shown to be equivalent to sub-
gradient optimization using a bundle method. Let us consider RankSVM
training on scored data, where only a single global ranking exists. The set-
ting can be easily generalized to the query structured setting, since the loss
and subgradient can there be expressed as a sum of loss and subgradient
computations for individual queries.

Joachims (2006) shows that linear RankSVM training can be done using
bundle optimization. On each iteration of the method, the loss correspond-
ing to the current solution, as well as its subgradient needs to be computed.
According to analysis in Joachims (2006) the method needs O(ﬁ) steps to
converge to e-accurate solution, Smola et al. (2007) improves this bound to
O(i) Thus assuming that the pairwise hinge loss and its subgradient can
be computed efficiently, one can create an efficient linear RankSVM solver.

43

Let us define
=g (i <yp) AW () > w () ~ DAL <j<m)}| (4.10)
and
di = {7 (yi > y)) AN(wh(z;) <wiP(z;) + 1) AL <j<m)}. (411)

Using the frequencies (4.10) and (4.11), we recover an alternative formu-
lation for the empirical risk.
The average pairwise hinge loss can be equivalently expressed as

m

> (e — di)w () + i) (4.12)

i=1

Similarly, computation of (4.10) and (4.11) allows the computation of a
subgradient of the empirical risk. A subgradient of the pairwise hinge loss

can be expressed as
m

> (e — di) (). (4.13)

i=1

Inner product evaluations, scalar-vector multiplications and vector sum-
mations are needed to calculate (4.12) and (4.13). These take each O(n)
time, where 7 is the average number of nonzero elements in a feature vec-
tor. Provided that we know the values of ¢;, d; and N, both the loss and
subgradient can thus be evaluated in O(mmn) time.

Joachims (2006) describes a way to calculate efficiently these frequencies,
and subsequently the loss and subgradient. However, the work assumes that
the range of possible utility score values is restricted to r different values,
with r being quite small. The algorithm requires O(r) passes through the
training set, contributing a O(rm) term to the overall complexity, which is
O(mm + mlog(m) + rm). If the number of allowed scores is not restricted,
at worst case r = m with the resulting complexity O(mn + m?), mean-
ing quadratic behavior with respect to the training set size. Chapelle and
Keerthi (2010) proposes for scored data a similar algorithm, that is however
based on quasi-Newton optimization rather than the bundle method, but
the approach has also at worst case quadratic iteration cost. On very large
data sets, this quadratic scalability can still limit the scalability of linear
RankSVM training on scored data.

Paper II presents a technique for removing this dependence on r from
the complexity. The method uses balanced binary search trees to allow
the iterative computation of both ¢; and d; in O(mlog(m)) time, allow-
ing O(mmn 4+ mlog(m)) worst case behavior for linear RankSVM training.

44

On large enough data sets this can make a substantial difference in train-
ing times, reducing days of training time to minutes, as demonstrated also
experimentally in Paper II.

For the general case, where the data is supplied directly as pairwise pref-
erences, Chapelle and Keerthi (2010) presents an O(tnm+tl) time aglorithm
for linear RankSVM training, where the number of iterations ¢ is assumed
to be often a small constant. The method is analogous to the conjugate
gradient training method for RankRLS. It is also based on the use of the
oriented incidence matrix (4.5), in order to avoid explicit enumeration of the
feature representations of the pairs, and has similar time complexity.

Efficient kernel RankSVM training can be achieved using the empirical
kernel map corresponding to the Nystrom approximation, explored espe-
cially in Paper III, in order to convert the dual RankSVM problem to the
primal problem. This idea was introduced already in Section 4 in Paper I.
The use of empirical kernel map for RankSVM training has subsequently
been independently considered by Chapelle and Keerthi (2010). Briefly put,
we can create an empirical kernel map of the data corresponding to reduced
set approximation in O(mr?) time, where r is the number of basis vectors.
After this, a linear RankSVM can be trained on the data in the scoring
setting in O(mr + mlogm) time, resulting in an overall O(mr? + mlogm)
complexity. For the general pairwise setting we recover O(mr? + trm + tl)
complexity, adapting the training method of Chapelle and Keerthi (2010).
Alternatively, the bundle method may be adapted to directly training the
reduced set approximation in the dual, as was done for example in Joachims
and Yu (2009) for regular SVM classification.

4.3 RankRLS vs. RankSVM

The RankRLS and RankSVM methods are highly related, as both are regu-
larized kernel methods that aim to solve the supervised ranking problem by
minimizing convex pairwise loss functions. Previously, RankSVM has been
shown to work well in a wide variety of applications. When considering the
two methods, a natural question that arises is, in which setting should one
use one or the other of the two methods. The computational properties of
the methods are compared in Section 4 in Paper I, and an experimental com-
parison is presented in Section 5 in Paper I on four datasets from different
application domains.

Considering the ranking performance, the main conclusion was, that
there is very little difference in the performance of RankSVM and RankRLS.
Both methods were found to outperform RLS on two of the considered prob-
lems, while on the other two problems basic RLS performed as well as the
pairwise methods. The empirical results suggest that both RankSVM and

45

RankRLS seem to have as good as or better ranking performance as basic
regression. We consider the main difference between the applicability of
RankRLS and RankSVM to be computational efficiency.

For linear learning, RankRLS can be trained in a time that is linear with
respect to training set size using either dense matrix algebra techniques for
low-dimensional data, or the conjugate gradient method for sparse but high-
dimensional data. The O(mlog(m)) training time needed for RankSVM
training indicates slightly worse scaling, though in practice if one of the
methods can be trained on some problem, then the other one is also ap-
plicable. When training a single classifier using kernels, the O(m?) time
RankRLS training algorithms are more efficient, than the straightforward
adaptations of kernel based SVM-solvers proposed in (Herbrich et al., 1999;
Joachims, 2002a). As a point of comparison, in a runtime experiment pre-
sented in Table 1 in Paper I, it can be seen that already at 2500 training
examples, the SVM"8" RankSVM solver needed over 5.5 hours for train-
ing, whereas RankRLS could be trained in 83 seconds. As discussed in
Section 4.2.2, one can however apply the efficient primal RankSVM solvers,
such as the one introduced in Paper II, to solve also the dual problem.

The main computational advantage of RankRLS over RankSVM results
from the computational shortcuts made possible by its closed form solution.
In settings where procedures such as fast selection of regularization param-
eter, cross-validation, multi-output learning or feature selection need to be
performed, using RankRLS can be much faster than using RankSVM. This
is because such procedures can be computed for the same cost as training
RankRLS once, whereas RankSVM needs to be re-trained multiple times.
Further, the training complexity of RankSVM, for methods both those based
on bundle optimization (Joachims, 2006) or on quasi-Newton optimization
(Chapelle and Keerthi, 2010), has inverse dependency on the regularization
parameter \. For small values of A the methods may need substantial num-
ber of iterations in order to converge. While the same property holds for the
conjugate gradient RankRLS, the training times for dense matrix algebra
based RankRLS training methods are not affected by the choice of .

46

Chapter 5

Performance estimation

Performance estimation is a necessary task in a wide variety of settings,
when applying machine learning. For a given trained predictor, one typ-
ically needs to estimate its expected performance on future data in order
to decide, whether it is of sufficient quality to be used in an application.
When the subject of study is the properties of a given learning algorithm,
one may need to evaluate its expected performance on a given domain, or
compare it to other methods proposed for solving the same task. Finally, in
model selection, one needs to estimate which choice of learner parameters
leads to the best model. For kernel methods, typical such parameters are a
regularization parameter, as well as kernel parameters, such as the width of
the Gaussian kernel (2.9), or the degree of a polynomial kernel (2.10). For
a detailed taxonomy of different performance estimation tasks we refer to
Dietterich (1998).

5.1 Performance measures

To estimate performance one first needs to choose a performance measure.
Analogously to loss functions, we can define a performance measure as a
function
p: U R"x YR
meN

that measures how well the predicted labels and true labels for a set of
data points match. Some loss functions, such as the squared error (2.11),
are standardly used also for performance estimation. More often however,
performance measures are not suitable as such for efficient optimization. Fol-
lowing Joachims (2005) we divide performance measures into two categories:
univariate, and multivariate.

Univariate performance measures can be decomposed into a sum of eval-
uations over individual data points, where a prediction for a single data point

47

is compared to its true label. A typical example of a univariate performance
measure is the classification error rate, defined as

p(f(X % Z

where we assume that y; € {—1,1}, and [P] follows the Iverson bracket
notation, denoting the number 1 if the statement P is true, and number
0 otherwise. Another typical example is the squared error (2.11). What
is notable for both is that they can be represented as a sum, consisting of
comparisons of predicted and true labels for individual data points.

There are several types of multivariate performance measures. Some
of them can be decomposed in an analogous fashion as the univariate per-
formance measures. Bivariate performance measures, such as AUC (3.5),
pairwise ranking error (3.4), and the magnitude preserving ranking error
(4.2), decompose into a sum of pairwise comparisons of data points. Infor-
mation retrieval specific measures such as MAP and NDCG, as well as the
pairwise ranking error, allow a query-wise decomposition of the type

p(f(X),y,Q) = Zp) Ya),
a2

where X, and y, contain the inputs and utility scores related to query ¢,
and P is a performance measure that compares how well the rankings corre-
sponding to the predicted and true scores match each other. Pairwise per-
formance measures that are computed over queries can also be considered
as query-wise performance measures in addition to being pairwise perfor-
mance measures. Finally, we may have multivariate performance measures
which do not decompose into subparts. Such are for example the precision,
recall and F-score measure that have traditionally been used to evaluate
information extraction systems (see e.g. Joachims (2005)).

5.2 Aims of performance estimation

Let us consider the different aims of performance evaluation. In the fol-
lowing, we adopt the shorthand notation fz = A(Z), used in Paper IV, to
denote the prediction function returned by the learning algorithm A when
trained on Z. We use Z = (X,Y) to denote a training set, and Z = (X,Y)
to denote a test set sampled from our data distribution D. Following Diet-
terich (1998); Hastie et al. (2009); Schiavo and Hand (2000), we recognize
two different questions in performance estimation.

First, let us assume that we are in advance given the training set Z,
and we aim to estimate its generalization performance on new data. In this

48

setting, we aim to measure

A(fZ) = EZND[p(fZ(Y%?)]? (51)

which we call the conditional performance, since it is conditioned on a fixed
training set.

On the other hand, if we want to estimate the average behavior of the
learning algorithm, we take the expectation of (5.1) over all training sets
resulting in

Ezwp[A(f2)] = Bz z..plp(f2(X),Y)], (5.2)

which we call the unconditional performance.

As discussed in Dietterich (1998); Hastie et al. (2009); Schiavo and Hand
(2000), these two different measures correspond to two different questions of
interest. Conditional performance measures how well a particular predictor
that was constructed from a given training set can be expected to work on
independent data. This question is relevant in machine learning applica-
tions, where a data set has been gathered in advance, and the subject of
interest is the quality of the learned predictor. The variability resulting from
the choice of different training sets is here of no interest, since one is already
committed to using the given training set. In contrast, the unconditional
performance measures the average behavior of the learning algorithm. The
goal may be to evaluate the suitability of a certain algorithm to a given
application domain, or to compare different algorithms. In this setting, the
variability resulting from sampling of different training sets needs to be taken
into account.

In practice we can never compute (5.1) or (5.2), but are rather lim-
ited to using some estimate A instead. The quality of a single conditional
performance estimate can be measured using the deviation A(fz) — A(fz)
(Braga-Neto and Dougherty, 2004). Analogously, for unconditional perfor-
mance estimation, one can compute a deviation A(fz) — EzoplA(fz)]. We
may measure the quality of a performance estimation technique through the
expected value (bias) and the variance of its deviation. Ideally, both of these
should be as small as possible. The bias measures the tendency of a perfor-
mance estimation technique to provide either too optimistic or pessimistic
estimates of performance. It can be shown (see e.g. Paper IV), that the
bias coincides regardless of whether we consider the conditional or uncon-
ditional setting. However, the deviation variance behaves differently in the
two settings. In conditional performance estimation one aims to model the
variability resulting from the training set choice, to achieve low variance the
estimates need to be close to A(fz). However, in unconditional performance
estimation, the estimates should be close to the average case Ez.p[A(f7)],
in order to achieve low variance.

49

5.3 Cross-validation

It is commonly known that estimating the performance of a learned model
on training data can lead to highly over-optimistic estimates of performance.
This phenomenon is due to overfitting, as the particular model evaluated was
in the first place specifically chosen for its fit to the training data. Rather,
independent test data that was not observed during training is needed to
test the learned models. In applications where data is scarce, large separate
test sets often however cannot be afforded. Here, a technique known as
cross-validation is typically applied.

In cross-validation, one repeatedly splits the data set into two parts,
a training set and a holdout set. The model is trained on the training
set, after which it is used to make predictions on the holdout set. This
procedure is repeated a number of times, after which a final estimate of
the performance is computed over all the holdout sets on which predictions
were made on. One of the most common cross-validation techniques is V-
fold cross-validation, whose most popular variant is 10-fold cross-validation.
Here, the data is split into N mutually disjoint folds, each of which is in
its turn used as the holdout set. An extreme variant of N-fold CV is leave-
one-out cross-validation (LOOCV), where each example constitutes its own
fold.

Formally, let [m] denote the indices of the training examples. In cross-
validation, we have a set U = {Uy,...,Un} of hold-out sets, where N € N
and U; C [m]. By f; we denote the prediction functions learned from all
the training examples except those indexed by U. Then the cross-validation
procedure consists of computing the predictions fg (Xy,) for each 1 < <
N, and aggregating the resulting performance estimates together.

There exists two general strategies for aggregating cross-validation re-
sults together. Bradley (1997) who considered the specific problem of AUC
estimation referred to these alternatives as pooling and averaging. In pool-
ing all the predictions are combined together and the performance measure
is then computed over the combined predictions. In averaging, the perfor-
mance is computed separately for each holdout set, and finally the average
over these is computed. The pooling estimate can be written as

p([fﬁl (XU1)7 s 7fUN(XUN)]7 [YU17 R YUN])a

whereas the averaged estimate is written as

1 N
N Zp(fﬁi (XU'L)7YU1')'
=1

It is easy to see that for univariate performance measures the approaches
yield equivalent results!. For this reasons, considering whether to use aver-

!Barring differences due to normalizations, if the holdout sets have differing sizes.

50

aging or pooling has not really been an issue in statistics or machine learning,
when using traditional performance measures such as classification error rate
or squared error. Similarly, as long as data points related to the same query
are not split between different holdout sets, the approaches yield equivalent
results. However for other multivariate performance measures such as AUC
this equivalence does not hold. The study of this issue is the subject of
Paper IV.

The application settings considered in this thesis constitute also a num-
ber of additional challenges for reliable performance estimation via cross-
validation. Firstly, both the query-structured data encountered in many
ranking settings (see Papers I, II, III), as well as the data encountered in
the protein-protein interaction mining study presented in Paper V, strongly
violate the independence assumptions that are typically made when apply-
ing cross-validation. Further, when using the Nystréom approximation to
create a feature representation for the data, it becomes apparent that the
fact that the effect of holdout basis vectors needs to be removed from the
mapping on each round of cross-validation (see Paper III). Next, we examine
the aforementioned challenges in more detail.

5.4 AUC-estimation

Let us consider the problem of estimating the expected AUC performance of
a classifier. We recall the two approaches to computing the cross-validation
estimate, pooling and averaging. Let U, denote the positive, and U_ the
negative examples in a set U. For AUC estimation, the pooling approach
can be formalized as follows:

¥ XY) -)
U,U'el ieUy ,jeU’
where the normalizer N = > ;5o |U4+||UZ| is the number of positive-
negative pairs encountered in the summation, and H is the Heaviside step
function (3.2). For pooling we assume that the folds are defined such that
UNU' =0 forall U,U" €U.
The averaging estimate can be written as

%Z S Hfg(w) — fgl=)),

Uell icUy jeU_

where N = o, |UL||U-].

The major difference between the approaches is that in pooling, pre-
dictions made by different models are compared together, whereas this is
not the case in averaging. The pooling approach allows making use of all

o1

the example pairs in the training set, whereas this is not the case for typ-
ical averaging strategies. Previously, Parker et al. (2007) has shown that
the pooling approach can lead to large pessimistic biases. In their experi-
ments with no-signal data sets, AUC values of less than 0.3 were observed
instead of the expected 0.5. On the other hand such bias was not observed
in averaging. Similar results have been demonstrated in Forman and Scholz
(2010).

Based on these considerations we propose using leave-pair-out cross-
validation (LPOCV) for AUC-estimation. The method is an extreme form
of averaging, where each positive-negative example pair constitutes a hold-
out set. The method allows using all the positive-negative pairs to compute
the performance estimate, while still comparing only predictions made by
the same predictor. The LPOCYV estimate can be formalized as :

e 2 2l — fggta)

- zE[m]+ j€lm]-

where fm denotes a classifier trained without the ¢-th and j-th training
instance, and [m]4+ C [m] and [m]_ C [m] denote the indices of the positive
and negative instances in the training set Z, respectively.

Paper IV studies through an extensive simulation study the problem of
estimating the conditional AUC performance of a trained classifier via cross-
validation. The main conclusions of the paper are the following. First, it
was observed that the pooling approach indeed can lead to clear negative
bias, whereas standard averaging strategies such as averaged 10-fold cross-
validation can have unacceptably high variance on small data sets. LPOCV
is shown to be close to unbiased, while having also as low variance as that of
the most competitive compared approaches. On large enough datasets (sev-
eral hundreds of examples or more), standard averaging approaches prove
also to be as reliable as LPOCV.

The main shortcoming of the LPOCYV is its time complexity, since it
requires re-training the classifier a quadratic number of times, with respect
to the training set size. To make the approach practical, we propose in
Paper I computational shortcuts for computing the LPOCV estimate for
the RankRLS method. The algorithm presented in Pahikkala et al. (2006a)
can be used to achieve similar speedups for LPOCV with basic RLS regres-
sion. As an example application, we note that the simulation study that
is the main contribution of Paper IV would not have been possible with-
out the computational shortcuts, due to combinatorial explosion resulting
from the combined number of repetitions of the experiments, number of
cross-validation rounds etc. For example, implementing the sample size ex-
periment presented in Figures 8 and 9 in Paper IV would require re-training
a classifier of the order of 10? times.

52

A relevant question is, how other multivariate performance measures
than AUC behave when considering the pooling and averaging approaches.
It seems prudent to assume that the results should directly extend to the be-
havior of disagreement error, as well as to the magnitude preserving ranking
error, whose estimation via LPOCV was proposed in Cortes et al. (2007a).
For query-based loss functions averaging and pooling approaches lead to
equivalent results as long as data points related to the same query are not
divided across folds. However, for multivariate performance measures such
as F-score it is easy to establish that pooling and averaging will lead to
different results, but it is not straightforward to ascertain what this means
in terms of reliability for the two approaches.

5.5 Data dependencies

Let us recall the ranking problem on query structured data, considered in
Section 3.1. In a standard approach to learning to rank for information
retrieval (Liu, 2009), the data consists of query-document pairs, where each
data point has a feature representation that captures combined properties
of a query and a document, and a label denoting how well the document
matches the query. A similar ranking setting is studied in Tsivtsivadze et al.
(2005), where the problem of re-ranking the syntactic parses produced by
an automatic parser was modeled in the same framework, encoding the data
as sentence-parse pairs.

Clearly, objects related to the same query are not independent of each
other. A trained predictor can be in general be expected to perform better
on such queries it has already observed during training, than it would on
average perform on new unknown queries. Thus ignoring this structure can
lead to strongly optimistic bias in cross-validation, if examples belonging to
same query are split between training and test folds. Pahikkala et al. (2006a)
experimentally demonstrated how on the task of parse ranking splitting
related parses between training and test folds could lead to observed 0.7
Kendalls 7, correlation instead of the 0.3 7, obtained using an estimation
strategy, where the fold splits were defined on the level of queries.

Another type of data dependency was noted in Saetre et al. (2007) on
the task of protein-protein interaction extraction from scientific literature.
Here, each example represents a pair of protein names appearing in a sen-
tence, and the correct label is whether the proteins are stated to have an
interaction or not. There are two widely used approaches to perform cross-
validation in this domain, one where the fold splits are defined randomly on
the level of pairs, and one where pairs belonging to the same sentence, or
article, are never divided into separate folds. The former approach can be
considered problematic due to dependencies between examples originating

53

from a same sentence. To recall an example presented in Paper V, let us
consider two interaction candidates extracted from the same sentence, e.g.
from a statement of the form ”P1 and P2 [...] P37, where ”[...]” is any state-
ment of interaction or non-interaction. Due to the near-identity of contexts
a machine learning method should, for any reasonable feature representa-
tion, easily be able to predict the label of the pair (P1, P3), if it has seen
(P2, P3) during training. This is because feature representations that are
based on the textual context of the words, such as the one corresponding to
the kernel presented in Paper V, will typically be almost identical for both
pairs. However, one would not in real-world applications expect to often
encounter the case where at test time predictions were needed for pairs of
proteins appearing in sentences that were also part of the training set. Saetre
et al. (2007) demonstrated, that the approach of randomly splitting the data
into folds without taking into account the sentence structure could lead to
up to 0.18 increase in F-score performance on a widely used benchmark data
set, compared to the correct approach.

These findings support the notion that for data where strong dependen-
cies occur between the examples, dependent data points should never be
split between the training and test sets. These motivate cross-validation ap-
proaches such leave-query-out or leave-document out cross-validation, where
one can make maximal use of the available data while still ensuring reliable
performance estimation. A leave-document-out cross-validation procedure
is implemented in the experimental setting of Paper V. The leave-query-
out cross-validation procedure is considered in detail in Paper I, where an
efficient algorithm for computing this estimate for RankRLS is presented.

5.6 Reduced set approximation

In Section 2.5 we considered training reduced set approximations of kernel
methods, and discussed how this can be achieved using the Nystrom ap-
proximation of the kernel matrix. Let us recall the formula for the Nystrom
approximation K = (K)T (Krr) 'Kgr, where R denotes the indices of the
basis vectors. An empirical kernel map (2.4), corresponding to the reduced
set approximation, can be defined as

(®x(X)T =Kg(CH)™,

where CCT = Kzz denotes the Cholesky decomposition of Krx.

This mapping results in a m x |R| data matrix, on which a linear al-
gorithm can subsequently be trained on. The time complexity of comput-
ing the mapping is O(m|R|?). However, as discussed in Paper III, doing
cross-validation with the mapped data is problematic. This is, because the
mapping is data dependent, meaning that it is affected by the choice of basis

54

vectors. Whenever the holdout set contains basis vectors, one needs to take
into account the effect that removing elements from R has on (®x(X))T.
The most straightforward approach to N-fold cross-validation, where the
mapping is re-computed on every round of cross-validation, results in the
O(Nm|R|?) time complexity for computing the mappings. However, the
computations can be made more efficient using matrix update formulas.
Let H € R denote the subset of basis vectors belonging to the holdout
set. Theorem 1 in Paper III states that the modified mapping where the
effect of the basis vectors in H are removed can be computed in O(m|R||H])
time. The presented update formula is somewhat complicated, though based
on well known matrix identities and decompositions. Further, Corollary 2
in Paper III, states that as a result, the time complexity of N-fold cross-
validation is O(m|R|?).

Previously, Cawley and Talbot (2004) derived a fast LOOCV formula
for the reduced set approximation of RLS. The approach had however the
limitation that when the holdout example was a basis vector, its effect on the
mapping was not removed in the proposed approach. Pahikkala et al. (2009)
improved the method to ensure that the effect of holdout basis vectors is
removed, and generalized it to N-fold cross-validation. The method can be
considered a special case of the approach presented in Paper I11, optimized to
take advantage of the close formed solution of the RLS method. The method
is used to implement the leave-document-out cross-validation procedure for
the reduced set approximation of RLS in the experimental evaluation in
Paper V, where the problem of protein-protein interaction extraction from
scientific literature is studied.

95

56

Chapter 6

Conclusions

6.1 Contributions of the thesis

In this thesis, we both introduced novel efficient algorithms for learning with
regularized kernel methods, and addressed the problem of reliable validation
of results. Specifically, we studied the general problem of learning to rank,
and its special case AUC optimization, as well as the use of cross-validation
for performance evaluation. The studied problems are motivated by real life
applications, of which the problem of protein-protein interaction extraction
is presented as a case study in the second part of this thesis.

Papers I and II introduce novel computationally efficient algorithms for
learning to rank. The considered methods are regularized kernel methods,
allowing for principled balancing between under- and overfitting, learning
from structured data, and recovery of globally optimal solutions via convex
optimization. The RankRLS method (Paper I) is based on the pairwise least-
squares loss, the method is a novel contribution resulting from the research
work described in this thesis. In addition to efficient training methods,
we introduce fast algorithms for cross-validation, parameter selection, and
multi-output learning. The RankSVM is a well established ranking method
previously known in the literature, the contributions of this thesis lie in
improving the fastest known training methods for linear RankSVM training
(Paper II). Paper III, which studies the use of the Nystréom approximation
of the kernel matrix for training reduced set approximations, presents a
straightforward way for extending the results of Paper II for developing an
efficient solver for kernel RankSVM training, an approach briefly considered
already in Paper I.

Paper IV presents an experimental study comparing different cross-
validation approaches for AUC estimation. The main findings of the study
are that averaged cross-validation approaches should be preferred over
pooled ones, and that the LPOCV approach can provide high quality AUC

o7

estimation, if it can be computationally afforded. Paper III discusses the
challenges of using cross-validation when training methods on a feature map
recovered from the Nystrom approximation of kernel matrix. For reliable
performance estimation removing the effect of basis vectors included in the
current test set proves to be necessary, computationally efficient algorithms
for doing this are presented.

Both computational complexity analysis and practical experiments sup-
port the notion that the introduced algorithms make it possible to apply ker-
nel based ranking methods to larger datasets than was previously possible.
Experimental results demonstrate that the methods achieve high ranking
performance on a number of datasets from different application domains,
and that RankRLS appears to have similar predictive performance as the
previously well established RankSVM method. The analysis of different
cross-validation techniques identifies suitable methods for reliable perfor-
mance estimation when dealing with pairwise ranking measures, dependent
data points, and reduced set approximations. The introduced fast algo-
rithms make the techniques practical from computational efficiency point
of view. Software implementations of the methods developed during the
thesis work are made publicly available under open source software licence,
in order to support the adaptation of the methods in data intensive areas
of research and engineering. A possible limitation of the proposed ranking
algorithms is that in settings where it is much more important to get the
top ranked entries in the ranking correct than the rest, other approaches
such as those based on listwise modeling may be more appropriate.

The protein-protein interaction extraction study in Paper V combines
together a number of approaches considered in this thesis, such as the use of
kernel functions and RLS based learners, computational shortcuts for cross-
validation, the combination of cross-validation and Nystrom approximation,
and learner evaluation via averaged AUC estimation. Paper V further con-
siders a number of pitfalls that can affect the reliability of achieved results,
including incorrect cross-validation strategies that ignore dependencies be-
tween the data points. The work results in a novel system for protein-protein
interaction extraction, and a number of recommendations on how to improve
the validity and comparability of different studies in the field. The recom-
mendations have been adopted in several subsequent studies (see e.g. Miwa
et al. (2009); Fayruzov et al. (2009); Choi and Myaeng (2010); Kuksa et al.
(2010); Tikk et al. (2010)).

6.2 Open source software

The importance of sharing open source implementations of published meth-
ods has recently been advocated in the machine learning community. Son-

58

nenburg et al. (2007) discusses a number of advantages provided by this
model, including better reproducibility of experimental results, detection of
implementational errors, avoidance of unnecessary re-implementation work,
increased possibilities for combining different methods together, and faster
adaptation of methods in application fields. In a similar vein, Pedersen
(2008) discusses in the aptly titled article “Empiricism is not a matter of
faith”, the importance of sharing software in order to ensure the repro-
ducibility of published results.

In our opinion, the raised issues are more than valid. Therefore, we
have during the thesis work begun the development of the RLScore machine
learning open source software framework, which is made publicly available!
under the MIT open source license. Further, both the All-paths graph ker-
nel -software package, as well as the five datasets used to implement the
experiments described in Paper V, have been made publicly available?, un-
der an open source licence. Finally, an open source implementation for the
efficient linear RankSVM training algorithm described in Paper II is also
made publicly available in the TreeRankSVM package.

At the time of writing this thesis, the current 0.4 version of RLScore con-
tains implementations for a majority of methods introduced in this thesis,
including the RLS and RankRLS learners, kernel functions, computational
shortcuts for cross-validation, parameter selection, and multi-output learn-
ing, as well as reduced set approximations and fast performance measure im-
plementations. Additionally, the package contains methods for fast greedy
forward feature selection for both RLS and RankRLS methods (Pahikkala
et al., 2010c,a), as well as a RLS based maximum-margin clustering al-
gorithm (Gieseke et al., 2009). Experimental code not yet available in the
publicly available main distribution includes bundle methods for SVM train-
ing, as well as methods for relational learning using pairwise Kronecker ker-
nels (Pahikkala et al., 2010d). The RLScore package is implemented in the
Python programming language. The choice was made due to ease of imple-
mentation allowed by a high-level language, coupled with the availability of
high-quality matrix and optimization libraries such as NumPy, SciPy and
CVXOPT. Further, Python can be easily extended to integrate optimized
implementations written in low-level languages such as C or Fortran, an
approach we chose for implementing the RankSVM solver described in Pa-
per II.

http://tucs.fi/rlscore
*nttp://mars.cs.utu.fi/PPICorpora/GraphKernel.html

59

6.3 Future work

A main theme in the research presented in this thesis was the development of
computationally efficient algorithms, especially by means of matrix algebra.
A natural future direction of study is to explore what other computational
shortcuts are possible for the considered, or other learning methods having
similar properties, and whether such new shortcuts are compatible with the
existing ones. As an example, we have lately studied the problem of feature
selection for linear RLS and RankRLS learners (Pahikkala et al., 2010c,a).
The feature selection process can be modeled as a search, where the cross-
validation shortcuts are used to evaluate the quality of the considered feature
subsets at each search step, and matrix update formulas are used to add
the effect of new chosen features to the current solution. Similarly, the
problem of online learning where new data becomes available over time can
be efficiently solved for the RLS method through the use of update formulas
(Pahikkala et al., 2011). It is more than likely that one could for example
derive an efficient online version of RankRLS, which updates the solution
one query at a time.

All the methods considered in this thesis are supervised learning meth-
ods, meaning that it is assumed that all the training examples come with
label information. It would be beneficial if the methods could also make
use of unlabeled data, that is often available in much larger quantities than
labeled data. The area of semi-supervised learning addresses this prob-
lem (Chapelle et al., 2006). For example, semi-supervised SVMs aim to
improve classification performance by requiring the decision hyperplane to
pass through a low density area in the feature space, as determined by both
labeled and unlabeled data (Chapelle et al., 2008). There is some exist-
ing work on kernel methods for semi-supervised ranking (see e.g. Chu and
Ghahramani (2005a)), and Tsivtsivadze et al. (2011) has recently introduced
a semi-supervised variant of RankRLS based on the idea of co-regularization.
Still, further research is required in order to achieve efficient semi-supervised
methods that can consistently outperform their purely supervised counter-
parts. A particular unsolved problem in the area is that of model selection.
Semi-supervised methods tend to have many adjustable parameters, but are
applied in settings where there is very little labeled data available to guide
the correct selection of these parameters.

The RLScore open source software is still a work in progress. Future
releases of the software are expected to incorporate new learning algorithms
developed in our research. Parallelization of the learning methods provides
a promising direction to applying the methods on very large datasets. Pre-
viously, general frameworks for parallelizing machine learning methods have
been proposed for example in Chu et al. (2007); Low et al. (2010). Currently,
the methods included in the package are being used in a collaborative re-

60

search project for analyzing data from Genome Wide Association Studies
(see e.g. Okser et al. (2010) for relevant prior work).

61

62

Bibliography

Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., and Roth, D. (2005).
Generalization bounds for the area under the ROC curve. Journal of
Machine Learning Research, 6:393—425.

Ailon, N. and Mohri, M. (2008). An efficient reduction of ranking to clas-
sification. In Servedio, R. A. and Zhang, T., editors, Proceedings of the
21st Annual Conference on Learning Theory (COLT 2008), pages 87-98.
Omnipress.

Airola, A., Pahikkala, T., and Salakoski, T. (2010). Large scale training
methods for linear RankRLS. In Hiillermeier, E. and Fiirnkranz, J., edi-
tors, Proceedings of the ECML/PKDD-Workshop on Preference Learning
(PL-10).

An, S., Liu, W., and Venkatesh, S. (2007). Fast cross-validation algorithms
for least squares support vector machine and kernel ridge regression. Pat-
tern Recognition, 40(8):2154-2162.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey
of robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469 — 483.

Ball, N. M., Brunner, R. J., Myers, A. D., and Tcheng, D. (2006). Robust
machine learning applied to astronomical data sets. I. Star-galaxy clas-
sification of the Sloan digital sky survey DR3 using decision trees. The
Astrophysical Journal, 650(1):497.

Bamber, D. (1975). The area above the ordinal dominance graph and the
area below the receiver operating characteristic graph. Journal of Math-
ematical Psychology, 12:387-415.

Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards Al
In Bottou, L., Chapelle, O., Decoste, D., and Weston, J., editors, Large-
Scale Kernel Machines. MIT Press.

63

Berry, M. J. A. and Linoff, G. S. (2004). Data Mining Techniques: For
Marketing, Sales, and Customer Relationship Management. John Wiley
& Sons.

Bottou, L. and Lin, C.-J. (2007). Support vector machine solvers. In Bot-
tou, L., Chapelle, O., DeCoste, D., and Weston, J., editors, Large-Scale
Kernel Machines, Neural Information Processing, pages 1-28. MIT Press,
Cambridge, MA, USA.

Bradley, A. P. (1997). The use of the area under the ROC curve in the eval-
uation of machine learning algorithms. Pattern Recognition, 30(7):1145—
1159.

Braga-Neto, U. M. and Dougherty, E. R. (2004). Is cross-validation valid for
small-sample microarray classification? Bioinformatics, 20(3):374-380.

Brefeld, U. and Scheffer, T. (2005). AUC maximizing support vector learn-
ing. In Lachiche, N., Ferri, C., Macskassy, S. A., and Rakotomamonjy, A.,
editors, Proceedings of the 2nd Workshop on ROC Analysis in Machine
Learning (ROCML 2005).

Brualdi, R. A. and Ryser, H. J. (1991). Combinatorial Matriz Theory.
Cambridge University Press.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N.,
and Hullender, G. (2005). Learning to rank using gradient descent. In
Raedt, L. D. and Wrobel, S., editors, Proceedings of the 22nd international
conference on Machine learning (ICML 2005), pages 89-96, New York,
NY, USA. ACM.

Burges, C. J. C., Ragno, R., and Le, Q. V. (2007). Learning to rank with
nonsmooth cost functions. In Scholkopf, B., Platt, J. C., Hoffman, T.,
Schélkopf, B., Platt, J. C., and Hoffman, T., editors, Advances in Neural
Processing Systems 19, pages 193-200. MIT Press.

Cao, Y., Xu, J., Liu, T.-Y., Li, H., Huang, Y., and Hon, H-W. (2006).
Adapting ranking SVM to document retrieval. In Efthimiadis, E. N.,
Dumais, S. T., Hawking, D., and Jarvelin, K., editors, Proceedings of
the 29th annual international ACM SIGIR conference on research and
development in information retrieval (SIGIR 2006), pages 186-193, New
York, NY, USA. ACM.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. (2007). Learning
to rank: from pairwise approach to listwise approach. In Ghahramani,

Z., editor, Proceedings of the 24th international conference on Machine
learning (ICML 2007), pages 129-136, New York, NY, USA. ACM.

64

Cawley, G. C. and Talbot, N. L. C. (2004). Fast exact leave-one-out cross-
validation of sparse least-squares support vector machines. Neural Net-
works, 17(10):1467-1475.

Cesa-Bianchi, N. (2007). Applications of regularized least squares to pattern
classification. Theoretical Computer Science, 382:221-231.

Chang, Y.-W., Hsieh, C.-J., Chang, K.-W., Ringgaard, M., and Lin, C.-J.
(2010). Training and testing low-degree polynomial data mappings via
linear SVM. Journal of Machine Learning Research, 11:1471-1490.

Chapelle, O. and Chang, Y. (2011). Yahoo! learning to rank challenge
overview. In Chapelle, O., Chang, Y., and Liu, T.-Y., editors, JMLR
Workshop and Conference Proceedings: Yahoo! Learning to Rank Chal-
lenge, volume 14 of JMLR Workshop and Conference Proceedings, pages
1-24.

Chapelle, O. and Keerthi, S. S. (2010). Efficient algorithms for ranking with
SVMs. Information Retrieval, 13(3):201-215.

Chapelle, O., Le, Q., and Smola, A. (2007). Large margin optimization of
ranking measures. In Zhou, D., Chapelle, O., Joachims, T., and Hofmann,
T., editors, NIPS 2007 Workshop on Machine Learning for Web Search.

Chapelle, O., Metlzer, D., Zhang, Y., and Grinspan, P. (2009). Expected re-
ciprocal rank for graded relevance. In Cheung, D. W.-L., Song, 1.-Y., Chu,
W. W., Hu, X., and Lin, J. J., editors, Proceeding of the 18th ACM con-

ference on Information and knowledge management (CIKM 2009), pages
621-630, New York, NY, USA. ACM.

Chapelle, O., Scholkopf, B., and Zien, A., editors (2006). Semi-Supervised
Learning. MIT Press, Cambridge, MA.

Chapelle, O., Sindhwani, V., and Keerthi, S. S. (2008). Optimization tech-
niques for semi-supervised support vector machines. Journal of Machine
Learning Research, 9:203-233.

Choi, S.-P. and Myaeng, S.-H. (2010). Simplicity is better: revisiting single
kernel ppi extraction. In Huang, C.-R. and Jurafsky, D., editors, Proceed-
ings of the 23rd International Conference on Computational Linguistics
(COLING 2010), pages 206-214, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., and
Olukotun, K. (2007). Map-reduce for machine learning on multicore. In

65

Scholkopf, B., Platt, J., and Hoffman, T., editors, Advances in Neural In-
formation Processing Systems 19, pages 281-288. MIT Press, Cambridge,
MA.

Chu, W. and Ghahramani, Z. (2005a). Extensions of Gaussian processes
for ranking: semi-supervised and active learning. In Agarwal, S., Cortes,
C., and Herbrich, R., editors, Proceedings of NIPS 2005 Workshop on
Learning to Rank, pages 29-34.

Chu, W. and Ghahramani, Z. (2005b). Gaussian processes for ordinal re-
gression. Journal of Machine Learning Research, 6:2005.

Chu, W. and Keerthi, S. S. (2005). New approaches to support vector
ordinal regression. In Raedt, L. D. and Wrobel, S., editors, Proceedings
of the 22nd international conference on Machine learning (ICML 2005),
pages 145-152, New York, NY, USA. ACM.

Chu, W. and Keerthi, S. S. (2007). Support vector ordinal regression. Neural
Computation, 19(3):792-815.

Clémencon, S., Lugosi, G., and Vayatis, N. (2005). Ranking and scoring
using empirical risk minimization. In Auer, P. and Meir, R., editors,
Proceedings of the 18th Annual Conference on Learning Theory (COLT
2005), volume 3559 of Lecture Notes in Computer Science, pages 1-15.
Springer.

Cohen, W. W., Schapire, R. E., and Singer, Y. (1998). Learning to order
things. Journal of Artificial Intelligence Research, 10:243-270.

Cooper, W. S., Gey, F. C., and Dabney, D. P. (1992). Probabilistic retrieval
based on staged logistic regression. In Belkin, N. J., Ingwersen, P., and Pe-
jtersen, A. M., editors, Proceedings of the 15th annual international ACM
SIGIR conference on Research and development in information retrieval

(SIGIR 1992), pages 198210, New York, NY, USA. ACM.

Cortes, C. and Mohri, M. (2004). AUC optimization vs. error rate mini-
mization. In Thrun, S., Saul, L., and Scholkopf, B., editors, Advances in
Neural Information Processing Systems 16. MIT Press, Cambridge, Mas-
sachusetts, USA.

Cortes, C., Mohri, M., and Rastogi, A. (2007a). An alternative ranking
problem for search engines. In Demetrescu, C., editor, Proceedings of the
6th Workshop on Experimental Algorithms (WEA 2007), volume 4525
of Lecture Notes in Computer Science, pages 1-21. Springer, Berlin /
Heidelberg, Germany.

66

Cortes, C., Mohri, M., and Rastogi, A. (2007b). Magnitude-preserving rank-
ing algorithms. In Ghahramani, Z., editor, Proceedings of the 24th Annual
International Conference on Machine Learning (ICML 2007), volume 227
of ACM International Conference Proceeding Series, pages 169-176, New

York, NY, USA. ACM Press.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learn-
ing, 20(3):273-297.

Cossock, D. and Zhang, T. (2006). Subset ranking using regression. In
Lugosi, G. and Simon, H.-U., editors, Proceedings of the 19th Annual
Conference on Learning Theory (COLT 2006), pages 605-619.

Crammer, K. and Singer, Y. (2002). Pranking with ranking. In Dietterich,
T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural In-
formation Processing Systems 1/, pages 641-647. MIT Press.

Dekel, O., Manning, C. D., and Singer, Y. (2003). Log-linear models for label
ranking. In Thrun, S., Saul, L. K., and Schélkopf, B., editors, Advances
in Neural Information Processing Systems 16. MIT Press.

Dietterich, T. G. (1998). Approximate statistical tests for comparing super-
vised classification learning algorithms. Neural Computation, 10:1895—
1923.

Domshlak, C., Hiillermeier, E., Kaci, S., and Prade, H. (2011). Preferences
in Al: An overview. Artificial Intelligence, 175:1037—-1052.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A., and Vapnik, V. (1997).
Support vector regression machines. In Mozer, M., Jordan, M., and
Petsche, T., editors, Advances in Neural Information Processing Systems
9, pages 155-161, Cambridge. MIT Press.

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization networks
and support vector machines. Advances in Computational Mathematics,
13:1-50.

Fawcett, T. (2001). Using rule sets to maximize ROC performance. In
Cercone, N., Lin, T. Y., and Wu, X., editors, Proceedings of the 2001 IEEE
International Conference on Data Mining (ICDM 2001), pages 131-138,
Washington, DC, USA. IEEE Computer Society.

Fawcett, T. and Flach, P. A. (2005). A response to Webb and Ting’s ”On the
application of ROC analysis to predict classification performance under
varying class distributions”. Machine Learning, 58(1):33-38.

67

Fayruzov, T., De Cock, M., Cornelis, C., and Hoste, V. (2009). Linguistic
feature analysis for protein interaction extraction. BMC Bioinformatics,
10(1):374.

Fayyad, U., Piatetsky-shapiro, G., and Smyth, P. (1996). From data mining
to knowledge discovery in databases. Al Magazine, 17:37-54.

Ferri, C., Flach, P. A., and Hernandez-Orallo, J. (2002). Learning decision
trees using the area under the ROC curve. In Sammut, C. and Hoffmann,
A. G., editors, Proceedings of the Nineteenth International Conference on
Machine Learning (ICML 2002), pages 139-146, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Forman, G. and Scholz, M. (2010). Apples-to-apples in cross-validation
studies: Pitfalls in classifier performance measurement. SIGKDD FExplo-
rations, 12(1):49-57.

Franc, V. and Sonnenburg, S. (2009). Optimized cutting plane algorithm
for large-scale risk minimization. Journal of Machine Learning Research,
10:2157-2192.

Frank, E. and Hall, M. (2001). A simple approach to ordinal classification.
In Raedt, L. D. and Flach, P. A.] editors, Proceedings of the 12th European
Conference on Machine Learning (ECML 2001), pages 145-156, London,
UK. Springer-Verlag.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. (2003). An efficient
boosting algorithm for combining preferences. Journal of Machine Learn-
ing Research, 4:933-969.

Fuhr, N. (1989). Optimum polynomial retrieval functions based on the
probability ranking principle. ACM Transactions on Information Systems,
7(3):183-204.

Fiirnkranz, J. and Hiillermeier, E. (2010). Preference learning. In Encyclo-
pedia of Machine Learning, pages 789-795.

Gértner, T., Flach, P. A., and Wrobel, S. (2003). On graph kernels:
Hardness results and efficient alternatives. In Schoélkopf, B. and War-
muth, M. K., editors, Proceedings of the Sizteenth Annual Conference
on Learning Theory and Seventh Annual Workshop on Kernel Machines
(COLT/Kernel 2003), volume 2777 of Lecture Notes in Artificial Intelli-
gence, pages 129-143. Springer.

Gieseke, F., Pahikkala, T., and Kramer, O. (2009). Fast evolutionary max-
imum margin clustering. In Danyluk, A. P., Bottou, L., and Littman,

68

M. L., editors, Proceedings of the 26th Annual International Conference
on Machine Learning (ICML 2009), volume 382 of ACM International
Conference Proceeding Series, pages 361-368, New York, NY, USA. ACM.

Ginter, F. (2007). Information Extraction in the Biomedical Domain: Meth-
ods and Resources. PhD thesis, Turku Centre for Computer Science

(TUCS).

Golub, G. H. and Loan, C. V. (1989). Matriz Computations. The Johns
Hopkins University Press, Baltimore and London, second edition.

Gong, Y. (1995). Speech recognition in noisy environments: A survey. Speech
Communication, 16(3):261 — 291.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area un-
der a receiver operating characteristic (ROC) curve. Radiology, 143(1):29—
36.

Harmeling, S., Ziehe, A., Kawanabe, M., and Miiller, K.-R. (2002). Kernel
feature spaces and nonlinear blind source separation. In Dietterich, T. G.,
Becker, S., and Ghahramani, Z., editors, Advances in Neural Information
Processing Systems 14, pages 761-768. MIT Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Sta-
tistical Learning: Data Mining, Inference and Prediction, Second Edition.
Springer Series in Statistics. Springer.

Herbrich, R., Graepel, T., and Obermayer, K. (1999). Support vector learn-
ing for ordinal regression. In Proceedings of the Ninth International Con-
ference on Articial Neural Networks (ICANN 1999), pages 97-102, Lon-

don. Institute of Electrical Engineers.

Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large Margin Rank
Boundaries for Ordinal Regression. MIT Press.

Herschtal, A. and Raskutti, B. (2004). Optimising area under the ROC
curve using gradient descent. In Brodley, C. E., editor, Proceedings of the

twenty-first international conference on Machine learning (ICML 2004),
pages 49-56, New York, NY, USA. ACM.

Hey, T., Tansley, S., and Tolle, K., editors (2009). The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft Research, Redmond, USA.

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estima-
tion for nonorthogonal problems. Technometrics, 12:55-67.

69

Huang, J. and Ling, C. X. (2005). Using AUC and accuracy in evaluating
learning algorithms. IEEE Transactions on Knowledge and Data Engi-
neering, 17(3):299-310.

Jarvelin, K. and Kekéldinen, J. (2000). Ir evaluation methods for retrieving
highly relevant documents. In Belkin, N. J., Ingwersen, P., and Leong,
M.-K., editors, Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval (SIGIR
2000), pages 41-48, New York, NY, USA. ACM.

Joachims, T. (1998). Making large-scale support vector machine learning
practical. In Scholkopf, C. B., editor, Advances in Kernel Methods: Sup-
port Vector Machines. MIT Press, Cambridge, MA.

Joachims, T. (2002a). Learning to Classify Text Using Support Vector Ma-
chines — Methods, Theory, and Algorithms. Kluwer/Springer.

Joachims, T. (2002b). Optimizing search engines using clickthrough data.
In Hand, D., Keim, D., and Ng, R., editors, Proceedings of the 8th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
2002), pages 133-142, New York, NY, USA. ACM Press.

Joachims, T. (2005). A support vector method for multivariate performance
measures. In Raedt, L. D. and Wrobel, S., editors, Proceedings of the 22nd
International Conference on Machine learning (ICML 2005), volume 119
of ACM International Conference Proceeding Series, pages 377-384, New
York, NY, USA. ACM Press.

Joachims, T. (2006). Training linear SVMs in linear time. In Eliassi-Rad,
T., Ungar, L. H., Craven, M., and Gunopulos, D., editors, Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD 2006), pages 217-226, New York, NY, USA. ACM
Press.

Joachims, T. and Radlinski, F. (2007). Search engines that learn from im-
plicit feedback. IEEE Computer, 40(8):34-40.

Joachims, T. and Yu, C.-N. J. (2009). Sparse kernel SVMs via cutting-plane
training. Machine Learning, 76(2-3):179-193.

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne,
E., Liakata, M., Markham, M., Pir, P., Soldatova, L. N.; Sparkes, A.,
Whelan, K. E., and Clare, A. (2009). The automation of science. Science,
324:85-89.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30-37.

70

Kuksa, P., Qi, Y., Bai, B., Collobert, R., Weston, J., Pavlovic, V., and Ning,
X. (2010). Semi-supervised abstraction-augmented string kernel for multi-
level bio-relation extraction. In Balcazar, J. L., Bonchi, F., Gionis, A.,
and Sebag, M., editors, Proceedings of the 2010 European conference on
Machine learning and knowledge discovery in databases: Part II (ECML
PKDD 2010), pages 128-144, Berlin, Heidelberg. Springer-Verlag.

Kumar, S., Mohri, M., and Talwalkar, A. (2009). Sampling techniques for
the Nystrom method. In van Dyk, D. and Welling, M., editors, Proceed-

ings of the Twelfth International Conference on Artificial Intelligence and
Statistics (AISTATS 2009), pages 304-311.

Lan, Y., Liu, T.-Y., Ma, Z., and Li, H. (2009). Generalization analysis
of listwise learning-to-rank algorithms. In Danyluk, A. P., Bottou, L.,
and Littman, M. L., editors, Proceedings of the 26th Annual International
Conference on Machine Learning (ICML 2009), pages 577-584, New York,
NY, USA. ACM.

Langley, P. (2011). The changing science of machine learning. Machine
Learning, 82:275-279.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278-2324.

Legg, S. and Hutter, M. (2007). Universal intelligence: A definition of
machine intelligence. Minds and Machines, 17(4):391-444.

Li, P., Burges, C. J. C., and Wu, Q. (2008). Mcrank: Learning to rank using
multiple classification and gradient boosting. In Platt, J. C., Koller, D.,
Singer, Y., and Roweis, S. T., editors, Advances in Neural Information
Processing Systems 20. MIT Press.

Liu, T.-Y. (2009). Learning to rank for information retrieval. Foundations
and Trends in Information Retrieval, 3(3):225-331.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein,
J. M. (2010). Graphlab: A new framework for parallel machine learning.
In The 26th Conference on Uncertainty in Artificial Intelligence (UAI
2010), pages 340-349, Corvallis, Oregon. AUAI Press.

Manning, C. D. and Schiitze, H. (1999). Foundations of statistical natural
language processing. MIT Press, Cambridge, MA, USA.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the
Royal Statistical Society. Series B (Methodological), 42(2):109-142.

71

Meyer, C. D. (2000). Matriz analysis and applied linear algebra. Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania, USA.

Minkov, E., Charrow, B., Ledlie, J., Teller, S., and Jaakkola, T. (2010).
Collaborative future event recommendation. In Huang, J., Koudas, N.,
Jones, G. J. F., Wu, X., Collins-Thompson, K., and An, A., editors,
Proceedings of the 19th ACM international conference on Information and
knowledge management (CIKM 2010), pages 819-828, New York, NY,
USA. ACM.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, Cambridge, MA.

Mitchell, T. (2006). The discipline of machine learning. Technical Report
CMU-ML-06-108, Carnegie Mellon University.

Miwa, M., Seetre, R., Miyao, Y., and Tsujii, J. (2009). Protein-protein inter-
action extraction by leveraging multiple kernels and parsers. International
Journal of Medical Informatics, 78:e39—e46.

Nallapati, R. (2004). Discriminative models for information retrieval. In
Sanderson, M., Jarvelin, K., Allan, J., and Bruza, P., editors, Proceedings
of the 27th annual international ACM SIGIR conference on Research and
development in information retrieval (SIGIR 2004), pages 64-71, New
York, NY, USA. ACM.

Nrgaard, M., Ravn, O. E., Poulsen, N. K., and Hansen, L. K. (2000). Neu-
ral Networks for Modelling and Control of Dynamic Systems: A Practi-
tioner’s Handbook. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Okser, S., Lehtiméki, T., Elo, L. L., Mononen, N., Peltonen, N.,
Kéahonen, M., Juonala, M., Fan, Y.-M., Hernesniemi, J. A., Laitinen,
T., Lyytikdinen, L.-P., Rontu, R., Eklund, C., Hutri-K&ahénen, N., Tait-
tonen, L., Hurme, M., Viikari, J. S. A., Raitakari, O. T., and Aittokallio,
T. (2010). Genetic variants and their interactions in the prediction of
increased pre-clinical carotid atherosclerosis: The cardiovascular risk in
young Finns study. PLoS Genetics, 6(9):e1001146.

Pahikkala, T. (2008). New Kernel Functions and Learning Methods for
Text and Data Mining. PhD thesis, Turku Centre for Computer Science
(TUCS), Turku, Finland.

Pahikkala, T., Airola, A., Boberg, J., and Salakoski, T. (2008a). Exact and
efficient leave-pair-out cross-validation for ranking RLS. In Honkela, T.,
Polla, M., Paukkeri, M.-S., and Simula, O., editors, Proceedings of the

72

2nd International and Interdisciplinary Conference on Adaptive Knowl-
edge Representation and Reasoning (AKRR 2008), pages 1-8. Helsinki
University of Technology.

Pahikkala, T., Airola, A., Naula, P., and Salakoski, T. (2010a). Greedy
RankRLS: a linear time algorithm for learning sparse ranking models.
In Gabrilovich, E., Smola, A. J., and Tishby, N., editors, SIGIR 2010
Workshop on Feature Generation and Selection for Information Retrieval,
pages 11-18. ACM.

Pahikkala, T., Airola, A., and Salakoski, T. (2010b). Feature selection for
regularized least-squares: New computational short-cuts and fast algorith-
mic implementations. In Kaski, S., Miller, D. J.; Oja, E., and Honkela,
A., editors, Proceedings of the Twentieth IEEFE International Workshop
on Machine Learning for Signal Processing (MLSP 2010), pages 295-300.
IEEE.

Pahikkala, T., Airola, A., and Salakoski, T. (2010c). Speeding up greedy
forward selection for regularized least-squares. In Draghici, S., Khoshgof-
taar, T. M., Palade, V., Pedrycz, W., Wani, M. A., and Zhu, X., editors,
Proceedings of The Ninth International Conference on Machine Learning
and Applications (ICMLA 2010), pages 325-330. IEEE.

Pahikkala, T., Airola, A., Suominen, H., Boberg, J., and Salakoski, T.
(2008b). Efficient AUC maximization with regularized least-squares. In
Holst, A., Kreuger, P., and Funk, P., editors, Proceedings of the 10th Scan-
dinavian Conference on Artificial Intelligence (SCAI 2008), volume 173
of Frontiers in Artificial Intelligence and Applications, pages 12-19. 10S
Press, Amsterdam, Netherlands.

Pahikkala, T., Airola, A., Xu, T. C., Liljeberg, P., Tenhunen, H., and
Salakoski, T. (2011). A parallel online regularized least-squares machine
learning algorithm for future multi-core processors. In Proceedings of the

1st International Conference on Pervasive and Embedded Computing and
Communication Systems (PECCS 2011), pages 590-599. SciTePress.

Pahikkala, T., Boberg, J., and Salakoski, T. (2006a). Fast n-fold cross-
validation for regularized least-squares. In Honkela, T., Raiko, T., Ko-
rtela, J., and Valpola, H., editors, Proceedings of the Ninth Scandinavian
Conference on Artificial Intelligence (SCAI 2006), pages 83-90, Espoo,
Finland. Otamedia Oy.

Pahikkala, T., Suominen, H., Boberg, J., and Salakoski, T. (2009). Efficient
hold-out for subset of regressors. In Kolehmainen, M., Toivanen, P., and
Beliczynski, B., editors, Proceedings of the 9th International Conference

73

on Adaptive and Natural Computing Algorithms (ICANNGA 2009), vol-
ume 5495 of Lecture Notes in Computer Science, pages 350-359, Berlin,
Germany. Springer.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., and Salakoski, T.
(2007). Learning to rank with pairwise regularized least-squares. In
Joachims, T., Li, H., Liu, T.-Y., and Zhai, C., editors, SIGIR 2007 Work-
shop on Learning to Rank for Information Retrieval, pages 27-33.

Pahikkala, T., Tsivtsivadze, E., Boberg, J., and Salakoski, T. (2006b).
Graph kernels versus graph representations: a case study in parse rank-
ing. In Gartner, T., Garriga, G. C., and Meinl, T., editors, Proceedings of
the ECML/PKDD 2006 workshop on Mining and Learning with Graphs
(MLG 2006), Berlin, Germany.

Pahikkala, T., Waegeman, W., Airola, A., Salakoski, T., and De Baets,
B. (2010d). Conditional ranking on relational data. In Balcdzar, J. L.,
Bonchi, F., Gionis, A., and Sebag, M., editors, Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in Databases,
Part II (ECML PKDD 2010), volume 6322 of Lecture Notes in Computer
Science, pages 499-514. Springer.

Pahikkala, T., Waegeman, W., Tsivtsivadze, E., Salakoski, T., and De Baets,
B. (2010e). Learning intransitive reciprocal relations with kernel methods.
European Journal of Operational Research, 206:676—-685.

Parker, B. J., Gunter, S., and Bedo, J. (2007). Stratification bias in low
signal microarray studies. BMC' Bioinformatics, 8:326.

Pedersen, T. (2008). Empiricism is not a matter of faith. Computational
Linguistics, 34:465-470.

Poggio, T. and Girosi, F. (1990). Networks for approximation and learning.
Proceedings of the IEEE, 78(9).

Poggio, T. and Smale, S. (2003). The mathematics of learning: Dealing with
data. Notices of the American Mathematical Society (AMS), 50(5):537—
544.

Provost, F. J., Fawcett, T., and Kohavi, R. (1998). The case against ac-
curacy estimation for comparing induction algorithms. In Shavlik, J.,
editor, Proceedings of the Fifteenth International Conference on Machine
Learning (ICML 1998), pages 445-453, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Pyysalo, S. (2008). A Dependency Parsing Approach to Biomedical Text
Mining. PhD thesis, Turku Centre for Computer Science (TUCS).

74

Qin, T., Liu, T.-Y., Xu, J., and Li, H. (2010). Letor: A benchmark collection
for research on learning to rank for information retrieval. Information

Retrieval, 13:346-374.

Qin, T., Zhang, X.-D., Tsai, M.-F., Wang, D.-S., Liu, T.-Y., and Li, H.
(2008). Query-level loss functions for information retrieval. Information
Processing and Management, 44(2):838-855.

Quinonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view
of sparse approximate gaussian process regression. Journal of Machine
Learning Research, 6:1939-1959.

Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel
machines. In Platt, J. C., Koller, D., Singer, Y., Roweis, S. T., Platt,
J. C., Koller, D., Singer, Y., and Roweis, S. T., editors, Advances in
Neural Processing Systems 20. MIT Press.

Rakotomamonyjy, A. (2004). Optimizing area under ROC curve with SVMs.
In Hernéndez-Orallo, J., Ferri, C., Lachiche, N., and Flach, P. A., edi-
tors, Proceedings of the 1st International Workshop on ROC' Analysis in
Artificial Intelligence, pages 71-80.

Rifkin, R. (2002). Everything Old Is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, Massachusetts Institute of
Technology.

Rifkin, R. and Lippert, R. (2007). Notes on regularized least squares. Tech-
nical Report MIT-CSAIL-TR-2007-025, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, USA.

Rifkin, R., Yeo, G., and Poggio, T. (2003). Regularized least-squares classi-
fication. In Suykens, J., Horvath, G., Basu, S., Micchelli, C., and Vande-
walle, J., editors, Advances in Learning Theory: Methods, Model and Ap-
plications, volume 190 of NATO Science Series I11: Computer and System
Sciences, chapter 7, pages 131-154. IOS Press, Amsterdam, Netherlands.

Saetre, R., Sagae, K., and Tsujii, J. (2007). Syntactic features for protein-
protein interaction extraction. In Second International Symposium on
Languages in Biology and Medicine (LBM 2007).

Saunders, C., Gammerman, A., and Vovk, V. (1998). Ridge regression
learning algorithm in dual variables. In Shavlik, J., editor, Proceedings
of the Fifteenth International Conference on Machine Learning (ICML
1998), pages 515-521, San Francisco, California, USA. Morgan Kaufmann
Publishers Inc.

75

Schiavo, R. A. and Hand, D. J. (2000). Ten more years of error rate research.
International Statistical Review, 68(3):295-310.

Schmidt, M. and Lipson, H. (2009). Distilling free-form natural laws from
experimental data. Science, 324(5923):81-85.

Scholkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized repre-
senter theorem. In Helmbold, D. and Williamson, R., editors, Proceedings
of the 14th Annual Conference on Computational Learning Theory and
and 5th European Conference on Computational Learning Theory (COLT
2001), pages 416-426, Berlin, Germany. Springer.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Miiller, K.-R., Réatsch, G.,
and Smola, A. (1999). Input space versus feature space in kernel-based
methods. IEEE Transactions On Neural Networks, 10(5):1000-1017.

Scholkopf, B. and Smola, A. J. (2002). Learning with kernels. MIT Press,
Cambridge, Massachusetts, USA.

Scholkopf, B., Weston, J., Eskin, E., Leslie, C., and Noble, W. S. (2002).
A kernel approach for learning from almost orthogonal patterns. In Elo-
maa, T., Mannila, H., and Toivonen, H., editors, Proceedings of the 13th
European Conference on Machine Learning and 6th European Conference
on Principles of Data Mining and Knowledge Discovery (ECML/PKDD
2002), volume 2430 of Lecture Notes in Computer Science, pages 494-511,
London, UK, UK. Springer-Verlag.

Sculley, D. (2009). Large scale learning to rank. In NIPS Workshop: Ad-
vances in Ranking, pages 58—63.

Shashua, A. and Levin, A. (2003). Ranking with large margin principle:
Two approaches. In Becker, S., Thrun, S., and Obermayer, K., editors,
Advances in Neural Information Processing Systems 15. MIT Press, Cam-
bridge, Massachusetts, USA.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern
Analysis. Cambridge University Press, Cambridge.

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method
without the agonizing pain. Technical report.

Shwartz, S. S., Singer, Y., and Srebro, N. (2007). Pegasos: Primal Estimated
sub-GrAdient SOlver for SVM. In Ghahramani, Z., editor, Proceedings
of the 24th international conference on Machine learning (ICML 2007),
pages 807-814, New York, NY, USA. ACM.

76

Smale, S., Rosasco, L., Bouvrie, J., Caponnetto, A., and Poggio, T. (2010).
Mathematics of the neural response. Foundations of Computational Math-
ematics, 10:67-91.

Smola, A. J. and Scholkopf, B. (2000). Sparse greedy matrix approximation
for machine learning. In Langley, P., editor, Proceedings of the Seventeenth
International Conference on Machine Learning (ICML 2000), pages 911—
918, San Francisco, CA. Morgan Kaufmann Publishers Inc.

Smola, A. J., Vishwanathan, S. V. N.; and Le, Q. (2007). Bundle meth-
ods for machine learning. In McCallum, A., editor, Advances in Neural
Information Processing Systems 20. MIT Press.

Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes,
G., Lecun, Y., Miiller, K. R., Pereira, F., Rasmussen, C. E., Ratsch, G.,
Scholkopf, B., Smola, A., Vincent, P., Weston, J., and Williamson, R.
(2007). The need for open source software in machine learning. Journal
of Machine Learning Research, 8:2443-2466.

Suominen, H. (2009). Machine Learning and Clinical Text: Supporting
Health Information Flow. PhD thesis, Turku Centre for Computer Science
(TUCS).

Suominen, H., Pahikkala, T., Hiissa, M., Lehtikunnas, T., Back, B., Karsten,
E. H., Salanteri, S., and Salakoski, T. (2006). Relevance ranking of inten-
sive care nursing narratives. In Gabrys, B., Howlett, R., , and Jain, L.,
editors, Proceedings of the 10th International Conference on Knowledge-
Based € Intelligent Information & Engineering Systems, Part I (KES
2006), volume 4251, pages 720-727. Springer.

Suykens, J. A. K. and Vandewalle, J. (1999). Least squares support vector
machine classifiers. Neural Processing Letters, 9(3):293-300.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science,
240(4857):1285-1293.

Teo, C. H., Smola, A., Vishwanathan, S. V., and Le, Q. V. (2007). A scalable
modular convex solver for regularized risk minimization. In Berkhin, P.,
Caruana, R., Wu, X., and Gaffney, S., editors, Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD 2007), pages 727-736, New York, NY, USA. ACM.

Teo, C. H., Vishwanathan, S. V., Smola, A., and Le, Q. V. (2010). Bundle
methods for regularized risk minimization. Journal of Machine Learning
Research, 11:311-365.

"

Tesauro, G. (1989). Connectionist learning of expert preferences by compar-
ison training. In Touretzky, D. S., editor, Advances in Neural Information
Processing Systems 1, pages 99-106. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Tikk, D., Thomas, P., Palaga, P., Hakenberg, J., and Leser, U. (2010). A
comprehensive benchmark of kernel methods to extract protein-protein in-
teractions from literature. PLoS Computational Biology, 6(7):¢1000837+-.

Tsivtsivadze, E. (2009). Learning Preferences with Kernel-Based Methods.
PhD thesis, Turku Centre for Computer Science (TUCS).

Tsivtsivadze, E., Pahikkala, T., Airola, A., Boberg, J., and Salakoski, T.
(2008). A sparse regularized least-squares preference learning algorithm.
In Holst, A., Kreuger, P., and Funk, P., editors, Tenth Scandinavian Con-
ference on Artificial Intelligence (SCAI 2008), volume 173 of Frontiers in

Artificial Intelligence and Applications, pages 76—83, Amsterdam, Nether-
lands. IOS Press.

Tsivtsivadze, E., Pahikkala, T., Boberg, J., Salakoski, T., and Heskes, T.
(2011). Co-regularized least-squares for label ranking. In Firnkranz,
J. and Hiillermeier, E., editors, Preference Learning, pages 107-123.
Springer.

Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Mylldri, A., and
Salakoski, T. (2005). Regularized least-squares for parse ranking. In
Famili, A. F., Kok, J. N., Pena, J. M., Siebes, A., and Feelders, A. J.,
editors, Proceedings of the 6th International Symposium on Intelligent
Data Analysis (IDA 2005), volume 3646, pages 464-474. Springer.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large
margin methods for structured and interdependent output variables. Jour-
nal of Machine Learning Research, 6:1453—-1484.

Tsuda, K. (1999). Support vector classifier with asymmetric kernel func-
tions. In Furopean Symposium on Artificial Neural Networks (ESANN
1999), pages 183-188.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, LIX.

Vanderlooy, S. and Hiillermeier, E. (2008). A critical analysis of variants of
the AUC. Machine Learning, 72(3):247-262.

Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data
[in Russian]. Nauka, Moscow. (English translation: Springer, New York,
1982).

78

Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Waegeman, W., De Baets, B., and Boullart, L. (2008). ROC analysis in
ordinal regression learning. Pattern Recognition Letters, 29(1):1-9.

Williams, C. K. and Rasmussen, C. E. (1996). Gaussian processes for regres-
sion. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors,
Advances in Neural Information Processing Systems 8, pages 514-520.
MIT Press.

Williams, C. K. I. and Seeger, M. (2001). Using the Nystrom method to
speed up kernel machines. In Leen, T. K., Dietterich, T. G., and Tresp,

V., editors, Advances in Neural Information Processing Systems 13, pages
682-688. MIT Press.

Xia, F., Liu, T.-Y., Wang, J., Zhang, W., and Li, H. (2008). Listwise ap-
proach to learning to rank: theory and algorithm. In Cohen, W. W.,
McCallum, A., and Roweis, S. T., editors, Proceedings of the 25th inter-
national conference on Machine learning (ICML 2008), pages 1192-1199,
New York, NY, USA. ACM.

Yue, Y., Finley, T., Radlinski, F., and Joachims, T. (2007). A support
vector method for optimizing average precision. In Kraaij, W., de Vries,
A. P., Clarke, C. L. A., Fuhr, N., and Kando, N., editors, Proceedings of
the 30th annual international ACM SIGIR conference on Research and
development in information retrieval (SIGIR 2007), pages 271-278, New
York, NY, USA. ACM.

Zhang, K., Tsang, I. W., and Kwok, J. T. (2008). Improved Nystréom low-
rank approximation and error analysis. In Cohen, W. W., McCallum, A.,
and Roweis, S. T., editors, Proceedings of the 25th international conference
on Machine learning (ICML 2008), pages 1232-1239, New York, NY,
USA. ACM.

Zhang, P. and Peng, J. (2004). SVM vs regularized least squares classifi-
cation. In Kittler, J., Petrou, M., and Nixon, M., editors, Proceedings of
the 17th International Conference on Pattern Recognition (ICPR 2004),
pages 176-179, Washington, DC, USA. IEEE Computer Society.

Zweigenbaum, P., Demner-Fushman, D., Yu, H., and Cohen, K. B. (2007).
Frontiers of biomedical text mining: current progress. Briefings in Bioin-
formatics, 8(5):358-375.

79

80

Publication Reprints

81

Paper 1

An efficient algorithm for learning to rank from
preference graphs

Pahikkala, T., Tsivtsivadze, E., Airola, A., Jarvinen, J., and Boberg, J.
(2009). Machine Learning, 75(1):129-165.

Mach Learn (2009) 75: 129-165
DOI 10.1007/s10994-008-5097-z

An efficient algorithm for learning to rank
from preference graphs

Tapio Pahikkala - Evgeni Tsivtsivadze - Antti Airola -
Jouni Jérvinen - Jorma Boberg

Received: 9 March 2007 / Revised: 5 December 2008 / Accepted: 10 December 2008 / Published online: 9
January 2009
Springer Science+Business Media, LLC 2009

Abstract In this paper, we introduce a framework for regularized least-squares (RLS) type
of ranking cost functions and we propose three such cost functions. Further, we propose a
kernel-based preference learning algorithm, which we call RankRLS, for minimizing these
functions. It is shown that RankRLS has many computational advantages compared to the
ranking algorithms that are based on minimizing other types of costs, such as the hinge cost.
In particular, we present efficient algorithms for training, parameter selection, multiple out-
put learning, cross-validation, and large-scale learning. Circumstances under which these
computational benefits make RankRLS preferable to RankSVM are considered. We eval-
uate RankRLS on four different types of ranking tasks using RankSVM and the standard
RLS regression as the baselines. RankRLS outperforms the standard RLS regression and its
performance is very similar to that of RankSVM, while RankRLS has several computational
benefits over RankSVM.

Keywords Ranking - Preference learning - Preference graph - Regularized least-squares -
Kernel methods

Editors: Thomas Girtner and Gemma C. Garriga.

T. Pahikkala (B<) - E. Tsivtsivadze - A. Airola - J. Jarvinen - J. Boberg

Turku Centre for Computer Science (TUCS), Department of Information Technology, University
of Turku, Joukahaisenkatu 3-5 B, 20520 Turku, Finland

e-mail: tapio.pahikkala@utu.fi

E. Tsivtsivadze
e-mail: evgeni.tsivtsivadze @utu.fi

A. Airola
e-mail: antti.airola@utu.fi

J. Jarvinen
e-mail: jouni.jarvinen@utu.fi

J. Boberg
e-mail: jorma.boberg @utu.fi

@ Springer

mailto:tapio.pahikkala@utu.fi
mailto:evgeni.tsivtsivadze@utu.fi
mailto:antti.airola@utu.fi
mailto:jouni.jarvinen@utu.fi
mailto:jorma.boberg@utu.fi

130 Mach Learn (2009) 75: 129-165

1 Introduction

Preference learning has recently received a lot of attention in the machine learning
literature—we refer to Fiirnkranz and Hiillermeier (2005) for a compact and illuminating
summary of the preference learning tasks. Preference learning can be considered as a task
in which the aim is to learn a function capable of arranging data points according to a
given preference relation. When comparing two data points, the function is able to evaluate
whether the first point is preferred over the second one.

We assume that we are given a training data consisting of input data points and their
pairwise preferences that are used to train a supervised learning algorithm for the prediction
of the preference relations among unseen data points. We also consider the scoring setting
in which we are given a training data consisting of scored data points, that is, each input
data point is assigned a real valued score indicating its goodness. The pairwise preference
between these data points are then determined by the differences of the scores. This type
of preference learning tasks are often cast into classification tasks so that each pair of data
points, in which one point is preferred over the other, is used as a training data point whose
class indicates the direction of the preference (for recent in depth theoretical analysis of
ranking algorithms see, e.g. Clémencon et al. 2005; Agarwal 2006; Cortes et al. 2007b). For
example, Herbrich et al. (1999) used this approach together with support vector machines
(SVM) for ordinal regression tasks. This method is often referred to as RankSVM. A similar
SVM adaptation was made by Joachims (2002) to rerank the results obtained from a search
engine.

Recently, it has been shown that the RLS classifiers (see e.g. Rifkin 2002), also known
as the least-squares SVMs (Suykens and Vandewalle 1999), have a classification perfor-
mance similar to the regular SVMs (see e.g. Rifkin 2002; Gestel et al. 2004; Zhang and
Peng 2004). In Pahikkala et al. (2007b), we proposed RankRLS, an algorithm that learns
preferences from scored data, in which for each input data point x we have a real value
score s attached. If an input data point x is preferred over x’, the difference to be regressed
is s —s’, where s and s’ are the scores of x and x’, respectively. It was shown that the com-
putational complexity of training RankRLS is equal to the complexity of training an RLS
regressor for the same data set. Namely, the computational complexity of training RankRLS
was shown to be O (m?) in the dual form, where m is the number of input data points in
the training data, and O(mn® + n?) in the primal form, where n is the dimensionality of
the feature space. A similar algorithm with equal computational times was at the same time
independently proposed by Cortes et al. (2007a, 2007b) and called MPRank. They also pro-
vide a thorough theoretical analysis of the generalization error of the MPRank algorithm
using stability bounds. The difference between RankRLS and MPRank is that the former
includes in the training process only such input data point pairs that are relevant to the task
in question, while the latter is defined to include every possible input pair. For example, in
many document retrieval tasks, each input data point consists of a query and a document,
and hence there should be no preferences between such inputs that are associated to different
queries. Otherwise, the objective functions of RankRLS and MPRank are the same, but the
closed form solution are derived in a slightly different way.

In this paper, we extend our consideration of RankRLS so that it can be used to learn
not only from scored data, but also from a given sequence of pairwise preferences and their
magnitudes when the scores are not given. Moreover, we introduce a general framework for
RLS based ranking cost functions and propose three different specializations for it. Note
that we only consider the case in which we learn so-called scoring function that maps each
possible input to a real value. The function then induces a total order for the inputs. The
direction of preference between two inputs is obtained by comparing their predicted scores.

@ Springer

Mach Learn (2009) 75: 129-165 131

Cost functions that are variations of the least-squares cost have certain computational
advantages compared to the other types of costs, such as the hinge cost used with SVM. For
example, the least-squares-based learning methods can be expressed using matrix calculus
which makes them simple to implement and analyze. Moreover, RankRLS can be trained
so that its computational complexity depends on the number of data points instead of the
number of observed pairwise preferences. This is an important advantage, because the num-
ber of preferences is usually proportional to the square of the number of individual data
points. Furthermore, there often exists efficient shortcut methods for calculating the cross-
validation performance for the least-squares based learners and for parameter selection (see
e.g. Pahikkala et al. 2006a, 2007a, 2008a; Rifkin and Lippert 2007a). RLS-based learn-
ing algorithms can also be extended for large-scale learning using the subset of regressors
method (see e.g. Quifionero-Candela et al. 2007; Tsivtsivadze et al. 2008). Further advan-
tages include the possibility to learn several functions in parallel as considered by Rifkin and
Klautau (2004). In this paper, we present efficient algorithms for training RankRLS both in
small and large scale as well as for both linear and nonlinear learning tasks. We also present
fast algorithms for cross-validation, parameter selection, and multiple output learning.

We also make a thorough consideration of the circumstances under which the fast cross-
validation, parameter selection, and multiple output learning algorithms make RankRLS
preferable to RankSVM from computational complexity point of view. Namely, the bene-
fits and drawbacks of RankRLS and RankSVM in both small-scale and large-scale learning
tasks are investigated and so are both the linear and nonlinear learning problems. For exam-
ple, training a single instance of a RankSVM may be faster than training a single instance
of RankRLS in the linear learning tasks, but the efficient cross-validation, parameter selec-
tion, and multiple output learning algorithms make RankRLS in many situations much faster
method to use than RankSVM. This is especially the case if nonlinear kernel functions are
used and if cross-validation is used for performance estimation.

In our experiments, we test our ranking algorithms with different tasks. The pairwise
preferences in all of the tasks are induced by a scoring of the data points. Two of the
considered tasks are the ranking of dependency parses and document retrieval. Comparing
parses generated for different sentences or documents returned for different queries would,
of course, make little sense. This kind of preference structure is typical for label ranking
problems in which the aim is to rank for each object a set of labels, and this is the approach
we use for these tasks. In the former task, the objects and labels are sentences and their parse
candidates, and in the latter they are queries and documents retrieved by them. The other two
tasks considered are document classification and collaborative filtering which we consider
as object ranking problems in which the aim is to learn a given preference structure over
all data points. Further, the document retrieval and binary classification tasks are bipartite
ranking problems, that is, there are only two possible score values for the data points. In
contrast, the parse ranking and collaborative filtering tasks have real-valued scores.

In the label ranking tasks, we test whether some of the input pairs that are not relevant
to the learning problem to be solved would be beneficial if included in the training process.
Our results suggest that this is not the case. Moreover, we compare the three proposed cost
functions on the ranking tasks. In all experiments, we use as baselines the RankSVM method
and the ordinary RLS regressor trained to regress the scores of the data points. The ranking
for the data points is then obtained from the regressed scores. We observe that performances
of RankRLS and RankSVM are very similar in all considered tasks, with no statistically
significant differences observed, although RankRLS has many computational benefits over
RankSVM as discussed in the paper. RankRLS and RankSVM perform better or as well as
the RLS regressor.

@ Springer

132 Mach Learn (2009) 75: 129-165

This paper is organized as follows. In Sect. 2, we present a formal introduction on the
preference learning tasks under consideration, and define the proposed method RankRLS.
Section 3 considers computationally efficient algorithms for training and validation. We
summarize the computational benefits of RankRLS and compare them to those of RankSVM
in Sect. 4. RankRLS is experimentally evaluated in Sect. 5. We conclude the paper in Sect. 6.

2 The RankRLS algorithm

First, we give a formulation of preference learning problems in Sect. 2.1. Section 2.2 con-
cerns the framework of regularized kernel methods. In Sect. 2.3, we introduce the RankRLS
algorithm. Finally, we consider three different variations of the least-squares ranking cost
function in Sect. 2.4.

2.1 Preference learning

Let X, called the input space, denote the set of input data points which we call in the fol-
lowing shortly as inputs. We assume that we are given a sequence

X=01,...,xn) € (Xm)T
of inputs. Moreover, let
E=(e,...,en)" € (X x X x RY)!

be a sequence of observed preferences between the inputs, that is, e; = (x;, x;, y;), where
1 <h,j<mand h # j, indicating that x; is preferred over x; with magnitude y;. The
magnitudes may be supplied in the training data, or in case such information is not available,
magnitude 1 can be given for each pairwise preference. Altogether, we define the training
data to be the tuple

G=(X,E).

G can be considered as a preference graph in which the inputs x;, are the vertices and e; are
the edges. By the definition of E, there may be multiple observed preferences with possibly
differing magnitudes between two inputs. Thus, G is a multigraph. Finally, we define G to
be the set of all possible graphs of the above defined type.

We also consider a special case of preference learning setting in which E is not given but
so-called scoring information of the inputs is available and the preferences are determined
by this scoring. Thus, in the scoring setting we assume that we are given a sequence

S=0(s1,...,80) €R"

of real valued scores corresponding to the input sequence X = (xy, ...,x,) € (X")T. In
this case, we can obtain a sequence of observed preferences so that for each pair of inputs
x, and x;, where 1 < h, j <m and h # j, there exists an edge e; = (xj, x;, i), Where
yi =8, — s;, if and only if 55, > 5;. Unless stated otherwise, we do not assume that the
observed preferences are determined by a scoring information.

Fiirnkranz and Hiillermeier (2005) divided the preference learning tasks into two cate-
gories, namely, to the tasks of learning object preferences and learning label preferences.
Here, we consider a similar type of division. The cases in which the aim is to learn a given

@ Springer

Mach Learn (2009) 75: 129-165 133

preference structure over all inputs are considered as object ranking problems. For example,
any binary classification task can be considered as an object ranking task in which the aim
is to rank all inputs belonging to the positive class above the ones belonging to the negative
class. We define label ranking tasks to be such in which the inputs are comprised of an object
and its label. In this case, the observed preferences make sense, that is, are relevant only be-
tween such inputs that are associated with the same object. In many document retrieval tasks,
for example, each input consists of a query and a document. In this case, the documents can
be considered as the labels of the queries. Clearly, there should be no preferences between
such inputs that are associated to different queries. If the preferences of a label ranking task
are induced by a scoring of the inputs, the preferences between inputs associated to different
objects are considered to be irrelevant to the task in question and they are not included in
the preference graph. Formally, the sequence of preferences is obtained from the scoring so
that for each pair of inputs x;, and x;, where 1 <h, j <m and h # j, there exists an edge
e; = (x5, xj, yi), where y; =s;, — s;, if and only if 55, > s; and the preference is relevant to
the task under consideration. In our notation, we make no difference between the object and
label ranking settings, and we assume that the sequence of observed preferences is formed
according to the setting in question.

Let RY denote the set of all functions from X to R, and let H € R¥ be the hypothesis
space. A natural way to measure how well a function f € H agrees with preferences of E is
to define a disagreement error:

1 1
D(f,G) =5 3 (1 = sign(g(e)), (1)

i=1
where e; = (x,, xj,y;) forsome h # j, 1 <h, j <m,
g(ei)) = f(xp) — f(x)),
and sign is the signum function

1 ifr >0,

sign(r) =
—1 ifr <0.

Note that in the disagreement error (1), we omit the magnitudes y;. Nevertheless, we take
advantage of the magnitude information when we design the learning algorithms.

Training can be considered as a process of selecting a function from the hypothesis space
that best performs the learning task in question. Thus, learning can be viewed as an algorithm
A that for a given preference graph G selects an appropriate function f from . Formally,

A:G— H. 2
2.2 Regularized kernel methods
Here, we consider the selection of the suitable function f € H. Let X’ denote the input space,

which can be any set, and F denote an inner product space we call the feature space. For
any mapping

DX > F,

@ Springer

134 Mach Learn (2009) 75: 129-165

the inner product
k(x, x') =(@(x), P (x))

of the mapped inputs is called a kernel function. We define the symmetric kernel matrix
K e R™™ where R™*™ denotes the set of real m x m-matrices, as

kQey,xn) e ke, xm)
K =
k(Xm,yx1) o k(Xp, Xpm)
for the sequence X = (x1, ..., %) € (X™)T of inputs. Unless stated otherwise, we assume

that the kernel matrix is strictly positive definite, that is, ATKA>O0forall AcR", A #0.
The strict positive definiteness of the kernel matrix K can be ensured, for example, by adding
el to K, where I € R™*" is the identity matrix and € is a small positive real number.

Following Scholkopf et al. (2001), we define the reproducing kernel Hilbert space
(RKHS) determined by the input space X and the kernel k : X x X — R as

)= Bik(x,x), B R, xi € X, || fllk <00 ¢,

i=1

Hi,x = [fERX

where

Iflle="| D BiBik(xi, x))

ij=1

denotes the norm of the function f in the RKHS. Using H; » as our hypothesis space, we
next define the cost functions that we can use to measure how well the hypotheses fit our
training data G. Overloading our notation, we denote

FX)=(f @), os f)T
for the sequence X of inputs and a hypothesis f € Hy, . We use cost functions of type
c:R"xG—R

to assign a value

c(f(X),G) (3)

on the predictions f(X), training data G = (X, E), and a candidate hypothesis f € Hy »
that measures how well f fits G.

We now consider the following variational problem as a realization of algorithm (2) that
we use to select an appropriate hypothesis f from H; » for training data G. Namely, we
consider an algorithm

A(G) =argmin J(f, G), “4)
feHr x
where
J(f.G)=c(f(X).G) +AlfII} ©)

@ Springer

Mach Learn (2009) 75: 129-165 135

and A > 0 is a regularization parameter. The first term measures the performance of a can-
didate hypothesis on the training data and the second term, called the regularizer, measures
the complexity of the hypothesis with the RKHS norm.

According to the representer theorem (Scholkopf et al. 2001), any minimizer f € Hy x
of (5) admits the representation of the following form:

@) =) ak(x, x), 6)
i=1
where a; € R and k is the kernel function associated with the RKHS mentioned above. Let
A=(aj,...,a,) " €R"

be a vector consisting of the values that determine the solution (6). By overloading our
notation, we write k(x, X) = (k(x,x1), ..., k(x,x,)) € R™T, where x € X and X =
(X1, ..., %,) € (X™T. Using this type of matrix notation, we can write

o) =) aik(x, x) =k(x, X)A, ©)
i=1

Similarly, the column vector f(X) € R™, that contains the predictions for the inputs ob-
tained with the function f, is

S) k(xi, X)A

Il
I
>
>

fX)= ®

S (m) k(xm, X)A

Further, according to (6) and to the definition of the RKHS norm, the regularizer can be
written as

MfIF=2" aak(x.x) =1ATKA. ©)
ij=1

Next, we consider realizations for the cost function.
2.3 Regularized least-squares regression of preferences

In order to construct a regularized kernel method that would learn the preferences defined
on the training data G = (X, E), we have to define an appropriate cost function. A natural
way to encode the preference information into a cost function is to use the disagreement
error (1) for the preferences:

1
c(f(X),G) = (1 —sign(g(en)), (10)

i=l

where e; = (x5, x;, y;) and g(e;) = f(x,) — f(x;). Note that in (1), % can be considered as
a constant, and hence it can be omitted from (10). It is well-known that the use of this type of

cost functions leads to intractable optimization problems. Therefore, instead of using (10),

@ Springer

136 Mach Learn (2009) 75: 129-165

we use functions approximating it. We adopt an approach similar to the regularized least-
squares classification (Ritkin 2002) which has been shown to have a performance similar to
that of the support vector machine classifiers. That is, we use the following type of square
cost as an approximation of (10):

1
c(f(X),G) =) wiz —gleN), (11)

i=1

where z;, w; > 0 are real-valued parameters. When defining the actual cost functions, we
fix the parameters z; and w; to be constants or dependent on the magnitude y;. We observe
that the cost is a sum of parabolae whose zeros and widths are determined by z; and w;,
respectively. Intuitively, the parameters w; can be considered as importance weights of the
edges ¢;, since the cost function (11) is more sensitive to the predictions g(e;) of the edges
having a large value of w; than to those having a small value. In Sect. 2.4, we present three
different specializations of the cost function by setting the parameters.

Before presenting the actual learning algorithm, we introduce some notation. Let M €
R”*! be a matrix whose rows and columns are indexed by the vertices and edges of the
preference graph, respectively, and its entries are given by

w; if e; = (x4, x;, y;) for some j ##h,
My, =1 —w; ife; =(xj,x;,y;) forsome j #h, (12)
0 otherwise.

In the graph theory (see e.g. Brualdi and Ryser 1991), the matrix M is sometimes called
the oriented incidence matrix of a graph and the product L = M M" is called the Laplacian
matrix of the graph. We also note that Laplacian matrix is always positive semidefinite, since
it is a product of a real-valued matrix with its own transpose. We consider M as a linear
transformation from R™ to R/, that is, it can be used to map the vector f(X) consisting of
the values f(x;,), 1 <h <m,to a vector MT f(X) containing the values w;g(¢;), 1 <i <1I.
Further, let us write

N=(w1z1,...,w1z/)T. (13)
Using these notations, we can rewrite the cost function (11) in a matrix form as
c(f(X),G)=(N=M"f(X)'(N —M"f(X)). (14)

The next theorem characterizes a method called RankRLS.

Theorem 1 Let G = (X, E) and let

A(G) = argmin J (f, G), (15)
feHk x
where
!
J(£.6) =Y wi@ —ge)) + Al fI}. (16)

i=1

is the algorithm under consideration. A coefficient vector A € R™ that determines a mini-
mizer of (16) is

A=MMTK +11)"'MN. (17)

@ Springer

Mach Learn (2009) 75: 129-165 137

Proof According to the representer theorem, the minimizer of (16) is of the form (6), that
is, the problem of finding the optimal hypothesis can be solved by finding the coefficients
ap, 1 <h<m.

According to (8), the vector consisting of the input predictions can be written as f(X) =
K A. We use the matrix M to transform the input predictions to a vector of prediction differ-
ences MTK A. Then, the ith entry of the vector MT K A contains the value w;g(e;). We use
the matrix forms (9) and (14) to rewrite the algorithm (15) as follows:

A(G) =argmin J (A, G),
AeRm

where
J(A,G)=(N—-M"KA)'(N-M"KA)+rATKA.
We take the derivative of J(A, G) with respect to A:

d
d—AJ(A,G) =—2KM(N —M'KA)+21KA

= —2KMN +2(KMM"K + 1K)A.
We set the derivative to zero and solve with respect to A:

A=(KMM"K +AK)"'KMN
= (MM K +1)"'MN,

where the last equality follows from our assumption of the kernel matrix being strictly pos-
itive definite. |

We refer to (17) as the dual solution of RankRLS in contrast to the primal solution consid-
ered in Sect. 3.1.

The multiplication of M with N can be performed in O (I) time, since M contains only 2/
nonzero elements. This is also the complexity of calculating the Laplacian matrix L = M MT
of the preference graph as can be shown in the following way. First, we note (see e.g. Brualdi
and Ryser 1991) that, if h # j, L, ; = —), wf, where i goes through the indices of the
edges that are between the /th and jth vertex. Further, L, = Y, w?, where i goes through
the indices of the edges starting from or ending to the Ath vertex. Therefore, for constructing
the matrix L, four operations per edge are needed. For example, an edge starting from the
h vertex and ending to the jth vertex affects the entries Ly, », Ly j, Lj, and L; ;. Thus, we
have:

the complexity of calculating the products M M Tand MN is O()). (18)

The subsequent multiplication of L with K and the inversion of the matrix M MTK + Al
can be done in O (m?) time. Note that, in the time complexities considered in this paper,
we do not count the complexity of calculating the kernel matrix, because it depends on the
kernel function used. Thus, provided that the kernel matrix is already calculated,

the complexity of dual RankRLS training is om® +1). (19)

Note that the preference graph determined by the sequence of observed preferences E is
a multigraph, and hence the number / of the pairwise preferences may not necessarily be

@ Springer

138 Mach Learn (2009) 75: 129-165

dominated by the term 73 in (19). However, in the scoring setting, which we discuss more
in Sect. 3, we have I = O (m?), because the number of edges is bounded above by the number
of all possible input pairs.

2.4 Specializations of the cost function

We now consider three different specializations of the least-squares cost function (11) for
approximating the disagreement error. The variations are depicted in Fig. 1. In the first
version, we justset z; =1 and w; =1 forall 1 <i <[:

1
c(f(X).G) =Y (1 - gle) (20)

i=1

This is a cost function that, similarly to the disagreement error (1), simply ignores the pref-
erence magnitudes treating every input pair in E as if their magnitudes would be equal to
one.

The second approach uses the magnitude information to determine the zero points, that
is,wesetz; =y; and w; =1forall 1 <i <I[:

1
c(f(X),G) = (v —gle). @1)

i=1

This cost function is equal to the one proposed by us in Pahikkala et al. (2007b). It has
many computational advantages in case preference magnitudes are induced by a scoring of

25F . , .

15F AN / 4

Fig. 1 The x-axis represents the value of g and the y-axis the value of the cost functions when the preference
magnitude is 0.5. The disagreement cost is depicted with a solid line and the functions (20), (21), and (22)
with ‘=’, “...”, and ‘---’, respectively

@ Springer

Mach Learn (2009) 75: 129-165 139

the inputs as discussed in Sect. 3. A disadvantage of this cost is that it does not form an
upper bound on the disagreement error, and therefore this cost function is harder to analyze
theoretically.

The third cost function also uses the magnitude information to determine the zero points,
and thus we set z; = y;. In addition, the width parameters are set to w; = 1/y; which ensures
that the disagreement error is bounded above by this cost function:

i

1
c(f(X).G) =) — (i —glen)’. (22)

i=1 -1

Moreover, this cost can be intuitively justified so that the RankRLS algorithm is allowed to
make larger prediction errors for edges having a large magnitude than for edges having a
small magnitude. This is, because even a small prediction error can reverse the direction of
preference for an edge with a small magnitude but not the with a large one.

We observe that the functions (20), (21), and (22) are equal if we have only preferences
but not magnitudes, that is, y; = 1 for all 1 <i </. This is the case especially in bipartite
ranking, that is, when the preferences are induced by the scoring in which there are only
two different scores, say 1 and 0. If y; =1 for all 1 <i </, also the function (21) forms
an upper bound on the disagreement error. Therefore, one may derive results similar to
those of Agarwal and Niyogi (2005) and Cortes et al. (2007b) to analyze the generalization
performance of the ranking algorithms.

The possibility to give importance weights to the preferences with the parameters w; also
enables the design of cost functions that are more suitable for label ranking tasks than those
using only the magnitudes. Consider, for example, the task of parse ranking in which the
aim is to rank for each sentence the set of parses according to some preference criterion.
The parse candidate sets can be of different size for each sentence, while each sentence is
equally important. In this case, it may be beneficial to use a normalized version of the cost
function in which each edge associated to a sentence has a weight equal to the inverse of the
number of edges associated to the same sentence.

3 Efficient implementations

In this section, we consider ways to speed up the training process of RankRLS. We pay
special attention to the preference learning task in the scoring setting using the magnitude
preserving cost function (21). In the scoring setting, the inputs X = (x1, ..., x,,) € (X™)T
and the corresponding scores S = (s, ..., s,)T € R™ are given. Recall the definitions (12)
and (13) of M and N, respectively. We observe, that in case we use (21), the following
equation holds:

N=M"s. (23)

Therefore, the matrix form (14) can be rewritten as
c(f(X),G)=(S— fF(X)'MM"(S — f(X)). (24)

Note that we use the notation c(f(X), G), while we also have the sequence of scores S.
Further, while considering the efficient implementations with the cost function (21) in the
scoring setting, we also allow preferences with magnitude zero. Namely, we consider cases
in which the scoring § induces exactly one preference between every input x; and x;, where

@ Springer

140 Mach Learn (2009) 75: 129-165

h # j,evenif x;, and x; have equal scores. If the scores are equal, the direction of the edge
does not matter, and hence only one edge is needed between the corresponding vertices in the
preference graph also in this case. These preferences with zero magnitude are generated only
for efficiency reasons and they are ignored when the performance of a ranking algorithm is
measured with the disagreement error.

When there are preferences between every input, we can take advantage of the regular-
ities of the matrix M in order to speed up the computations. We first consider the case in
which every possible preference induced by the scoring is relevant to the task in question,
as is often the case in object ranking tasks. We observe that we can write

MMT=D - PPT, (25)

where D € R™*™ is a diagonal matrix whose every diagonal entry is equal to m, and P € R"
is a vector whose every entry is equal to 1. It is much more efficient to perform matrix
multiplications with the form D — P PT than with M MT, because P is an m-dimensional
vector and D is a diagonal matrix, and thus having only m nonzero elements.

All preferences induced by the scoring are not always relevant to the task in question.
In label ranking tasks, for example, we may want to exclude the preferences that are not
relevant to the task, that is, the input pairs in which the inputs are associated to different
objects. Next, we consider the removal of this type of irrelevant preferences. Assume there
are ¢ objects in the training data and each of the m inputs are associated to one of the objects.
In the task of parse ranking, for example, an object is a sentence and an input is comprised
of a sentence and a parse candidate generated for the sentence. Each parse is associated
only with the sentence it is generated for and the aim is to learn to rank the parses for each
sentence separately. The scoring induces preferences also between parses that are associated
with different sentences but they are considered to be irrelevant to the task of parse ranking.
We redefine P € R"*? to be a matrix whose rows are indexed by the inputs and the columns
are indexed by the g objects. The value of P; ; is defined to be 1 if the ith input is associated
with the jth object and O otherwise. Further, we redefine D to be a diagonal matrix whose
entries are defined as follows. If the ith input is associated to a certain object, then the ith
diagonal element of D is the number of inputs that are associated to the same object. For
example, assume that our training data consists of altogether 5 inputs and two objects. The
first object is associated with the first two inputs and the second object with the last three
inputs. Then, the matrices P and D are

1 0 2 0 0 00

1 0 02 000
P=]0 1 and D=0 0 3 0 O},

0 1 00 0 30

0 1 0 0 0 0 3

respectively. Now, we observe that MM T can again be written as in (25). Similarly to the

object ranking case, the matrix P contains only m nonzero elements, and hence the matrix

multiplications involving P are as efficient to compute as with the object ranking case.
Further, provided that (23) and (25) hold, solving the dual form (17) involves calculating

MMTK = DK — PP'K

@ Springer

Mach Learn (2009) 75: 129-165 141

and

MN =MM"S
=DS— PPTSs.

These can be done in O(m?) and O(m) time, respectively, because there are exactly m
nonzero elements in both D and P. Therefore, the cubic complexity of the matrix inversion
dominates the computation time of dual RankRLS training, and instead of (19),

the complexity of solving (17) using the cost function (21)

in the scoring setting is o@md). (26)

In some cases, we may also want to exclude the tied input pairs from the training process,
that is, the ones whose both inputs belong to the same equivalence class as determined by
the scoring. In this case, it is also possible to construct a form analogous to the one presented
in (25) that can be efficiently used in computations. However, presenting it would lead to
very technical and detailed considerations, and hence we leave it out from this paper.

The rest of this section is organized as follows. Section 3.1 concerns the primal form
of RankRLS and its efficient implementation when using scored training data. In Sect. 3.2,
we consider a way to train RankRLS simultaneously with several values of the regulariza-
tion parameter. Computationally efficient cross-validation algorithms are proposed for label
ranking in Sect. 3.3 and for object ranking in Sect. 3.4. Finally, Sect. 3.5 considers a large-
scale training algorithm based on sparse approximation.

3.1 Primal RankRLS

In some cases, the number m of inputs xi, ..., x, in the training data is much larger than
the number of dimensions # in the feature space F, that is, n < m and F = R". Then, the
sequence of mapped inputs is a matrix

H=(®(x1),...,P(xp)) € RW™
and the function (6) minimizing (5) can be equivalently expressed as
f)=Px)"HA=®(x)'W, (27)

where
W=HA

denotes the n-dimensional normal vector of the hyperplane corresponding to the RankRLS
solution in the feature space, and A is the vector that determines the function (6). Output pre-
diction for unseen inputs is more efficient with (27) than with (6) if n < m and the mapping
is fast to compute.

We next show that, if n < m, also the training process can be performed in a more effi-
cient way than with dual RankRLS (17). We call this method the primal version of RankRLS.
With the primal version, the computational complexity of the training process becomes more
dependent on the dimensionality n of the feature space rather than on the number of in-
puts m.

@ Springer

142 Mach Learn (2009) 75: 129-165

Now we may write the algorithm (15) as

A(G) = argmin J (W, G),
WeRn

where
JW,G) =N —-M"H"W)'(N — MTH™W) + AWTW.
We take the derivative of J(W, G) with respect to W:

d
WJ(W, G)=—2HM(N — M"HTW) + 22w

= -—2HMN +2(HMM "H" + A)W.
Then, we set the derivative to zero and solve it with respect to W:
W=HMM"H +)1)"'"HMN. (28)

The computational complexity of the matrix inversion in (28) is in this case O(n?). Recall
from (18) that constructing the matrices M MT and M N needs O(l) time. The other domi-
nant operations involved in (28) are the multiplication of H with MMT and HMM™ with
H" which require O (m?n) and O (n*m) time, respectively. Alternatively, one can first mul-
tiply H with M in O (nl) time, because M contains only 2/ nonzero elements, and then H M
with its transpose in O (n%]) time. In this case, the dominant terms are O (n?) and O (nl).
Therefore we have:

the complexity of calculating (28) is O(n® + min(n’m + m?n + 1, n*D)). (29)

However, there are some special cases in which the matrix multiplications can be performed
more efficiently, as shown in the following.

Let us consider ranking in the scoring setting using the magnitude preserving cost func-
tion (21), that is, (23) and (25) hold. Then, the matrix HMMTHT can be computed effi-
ciently from

HMM"H" = HDH" — (HP)(P"H™)
and HMN from

HMN = HMM"S
= H(DS — P(P"$)).

The multiplication H DH T needs O(n?m) time, because D is a diagonal matrix. Further,
the multiplication of H with P can be performed in O(nm) time, because H has n rows
and there are exactly m nonzero elements in P. The other complexities can be analyzed
analogously. Therefore, we have:

the complexity of calculating (28) using the cost function (21)

in the scoring setting is O (n® +n’m), (30)

where the first term corresponds to the matrix inversion involved in (28) and the second to
the matrix multiplications.

@ Springer

Mach Learn (2009) 75: 129-165 143

3.2 Efficient regularization and learning multiple outputs

For simplicity, we assume in this section that the equations (23) and (25) hold, that is, the
cost function (21) is used in the scoring setting. Generalizations to cases in which the as-
sumption does not hold can also be made but we omit their consideration from this paper,
because their presentations would be too long and technical.

As noted in Sect. 2, the Laplacian matrix D — P PT of a preference graph is positive
semidefinite and the kernel matrix K is assumed to be strictly positive definite. Therefore,
it can be shown that the matrix (D — P PT)K is diagonalizable and has real non-negative
eigenvalues (see Horn and Johnson 1985, p. 465). By performing the eigen decomposition
of (D — PPT)K, it is possible to calculate the solutions (17) of dual RankRLS for sev-
eral values of the regularization parameter A with only small increase in the computational
cost compared to calculating with just one value. Let us consider the eigen decomposition
VAV~ = (D — PPT)K, where V is the matrix of eigenvectors and A is a diagonal matrix
containing the corresponding eigenvalues. The decomposition and the inversion V! can be
calculated in O (m®) time, and hence the complexity is not worse than that given in (26).
Let Q = V~!(D — PP")S, where the matrix products and subtractions can be computed
in O(m?) time. Then, the solution for a regularization parameter value A can be calculated
from

A=V(A+1DTQ, (31)

in O(m?) time, since A + A[is a diagonal matrix and Q is an m-dimensional vector.

An analogous approach can be used also in the primal form (28) by calculating the matrix
H(D— PPT)HT,its eigen decomposition V AVT, and the vector Q = VTH(D — PPT)S in
altogether O (n* +n”m) time. In this case, the solutions for different values of regularization
parameter can be subsequently obtained in O(n?) time, since Q is in an n-dimensional
vector.

We now consider learning multiple outputs simultaneously, that is, we assume that we
have multiple scores per each input. Analogously to the standard RLS, instead of having
a single column matrix S for the outputs, we now have a m x v-matrix S, where v is the
number of outputs. We observe that only the time complexity of calculating Q and the
subsequent use of (31) for different values of the regularization parameter depend on v. In
the dual case, the complexity of calculating Q is O (m?v). Therefore, training RankRLS in
the dual case needs altogether O (m* + m?v) time in the first phase. Subsequently, O (m?v)
time is needed per each different value of the regularization parameter A. In the primal case,
the calculation of Q needs O (n*v + mnv) time, and hence the time complexity of the first
phase in the primal case is O(n> 4+ n*m + n*v + mnv). Subsequently, the solution for a
regularization parameter value can be calculated in O (n%v) time.

3.3 Cross-validation for label ranking

In Pahikkala et al. (2006a), we described an efficient method for calculating hold-out es-
timates for the standard RLS regression algorithm in which several inputs were held out
simultaneously. We also described a similar hold-out algorithm for label ranking with
RankRLS in the scoring setting (Pahikkala et al. 2007a), that is, by leaving out all inputs
associated to the same object simultaneously. Here, we make a more thorough consideration
of the label ranking hold-out algorithm for dual RankRLS without tying it to the scoring
setting.

@ Springer

144 Mach Learn (2009) 75: 129-165

Recall that in label ranking tasks, we assume that each input consists of an object and
a label and one object is associated to several inputs. However, each input is associated to
only one object. Therefore, we assume that there are no preferences between inputs that are
associated to different objects. Let U C {1, ..., m} denote the index set that contains the
indices of the inputs that are associated to a hold-out object. Leaving more than one object
out can be defined analogously. In that case, U would refer to the union of index sets of
every hold-out object.

With any matrix (or a column vector) ¥ that has its rows indexed by a superset of U, we
use the subscript U so that the matrix ¥y, contains only the rows that are indexed by U. Sim-
ilarly, for any matrix ¥ that has its rows indexed by a superset of U and columns indexed by
a superset of V, we use ¥y y to denote a matrix that contains only the rows indexed by U and
the columns indexed by V. Moreover, we also denote U = {1,...,m}\ U. Further, let f
be the hypothesis obtained by training RankRLS without the preferences between the inputs
indexed by U. We will frequently make use of the following block matrix multiplication
identity:

Y = W)y +)1
where ¥ and 7" are matrices whose rows are indexed by a superset of U.

Note that in the case of label ranking, we obtain the incidence matrix corresponding to the
training data from which the inputs associated to the hold-out object have been removed by
just removing the rows indexed by U. After removing the rows, the columns corresponding
to the edges incident to the hold-out inputs contain only zeros. This is because both the start
and end vertices of those edges are indexed by U. Therefore, the columns have no effect on
the values of the matrix multiplications.

Let Q = Mg(Mg)" Kz + M. Then, according to (7) and (17), the predicted scores
for the inputs of the hold-out object can be obtained from

fo(Xv) = Kyg Q™' MgN
=K, 70 "(MN)g. (32)
However, having already calculated the solution with the whole training data, the predic-
tions for the hold-out instance can be performed more efficiently than using (32) which
calculates Q.
Let R = (MMTK + AI)~'. In the case of label ranking, the entries of the matrix

MU(MU)T are zeros for all U_ because there are no preferences between the inputs indexed
by U and inputs indexed by U. Therefore, we can write

0 = Mg(Mp)" Kgy + Mg
= My(Mp)" Kgg + Mg(My)" (Kyp) + Mg
= Mg((Mp)' Kz + (M) Ko)(UIp)" + Mg
= MgM™ (K" + Mgy
= (R gz
Then, due to the matrix inversion lemma (see e.g. Horn and Johnson 1985),

Q7' = Ry — Ry (Ruv) ' Ryg.

@ Springer

Mach Learn (2009) 75: 129-165 145

Therefore,

fr(Xv) = Kyg(Rgg — Ry (Ruw) ™ Ryg) (MN) g7
= Kyg(Rgg(MN)g — Ry (Ryu) ™ Ry (MN))
= K 7(Ry(Iz)"MzN — Rgy (Ryy) ™' Ryz(MN)p)
= K5 (Ry(M — (Iy)"My)N — Ry (Ryy) ™ Ryg(MN)y)
= Ky7(RgMN — Rgy(MN)y — RgU(RUU)*lRUg(MN)U)
= K,7((RMN)g — Rgy(MN)y — RgU(RUU)“RUg(MN)g). (33)

If (15) has been solved with the whole training data, we already have the matrices R, M N,
and RM N stored in the memory, and hence the computational complexity of calculating
the matrix inversions, products, and subtractions (in the optimal order) involved in (33) is
O(U||U|+|U)?) = O(m|U|+|U|?). This is more efficient than the method (32) which cal-
culates the inverse of Q with complexity O (m%). Assuming that the size of the label sets are
of the same size, there is m/|U| objects in the training data, and hence the complexity of cal-
culating a leave-object-out cross-validation is O ((m/|U|)(m|U|+|U|?)) = O (m*+m|U|?).
This is more efficient than the training of dual RankRLS with the whole training data. There-
fore, the cross-validation method can also be combined with the method of selecting the
regularization parameter described in Sect. 3.2. We omit the formulas describing this com-
bination, because their presentation would be too long and technical.

3.4 Leave-pair-out cross-validation for object ranking

Here, we consider object ranking in the scoring setting, and hence there is an edge between
every input in the preference graph. We consider only the magnitude preserving cost func-
tion (21). Therefore, (23) and (25) hold. We now consider leave-pair-out cross-validation
(LPOCYV) in which every pair of inputs is held out from the training data at a time. If a
certain pair of inputs is held out, the edges that are incident to those inputs are not used
in the training process in that cross-validation round. In each round, the predictions for the
hold-out inputs are calculated. These predictions can then be used for ranking performance
measurement. This method is very useful for performance estimation when dealing with so
small amounts of data that using a subset of the inputs as a separate test data does not pro-
vide reliable enough performance estimate. For a more detailed description of this method,
we refer to Pahikkala et al. (2008a).

Cortes et al. (2007a) have proposed an algorithm that approximates the result of LPOCV
for the object ranking in O (m?) time, provided that an inversion of a certain m x m-matrix
is already computed and stored in the memory. The larger the number of inputs m is, the
closer the approximation to the exact result of the cross-validation is. Here, we improve their
result by presenting an algorithm that calculates an exact result of LPOCV in O (m?) time,
again given that the inverse of a certain m x m-matrix is already computed and stored in the
memory.

Before presenting the LPOCV algorithm, we consider the following result (for a proof,
see e.g. Ritkin and Lippert 2007b; Johnson and Zhang 2008; Pahikkala et al. 2008a).

Lemma 2 Let U C {1,..., m} denote ihe index set that contains the indices of the inputs
belonging to the hold-out set and let U = {1,...,m} \ U. Further, let K € R™"*™ be the

@ Springer

146 Mach Learn (2009) 75: 129-165

kernel matrix constructed from the inputs X, fi be the hypothesis obtained by training
RankRLS without using the inputs indexed by U, and cg be a cost function that depends
only on the predictions made for the inputs indexed by U. Then, the vector of predictions
f7(X) can be computed from

fy(X) =arginf {c5(r, G) + Ar" K~ 'r}. (34)

reRm

If K is singular, the term rTK ~'r should be interpreted as

lim rT(K +€el)~'r.

e—0t

The main insight of the lemma is that we can obtain the hold-out predictions by using a
modified cost ¢ that only takes account of the predictions of the inputs not belonging
to the hold-out set U. In contrast, the regularizer Ar" K ~'r does not have to be modified
and it can still depend on all of the m predictions. Note that this property holds for any
cost function, and hence the lemma provides us a powerful framework for designing cross-
validation algorithms.

Next, we apply Lemma 2 to the cost function (21). Let

U={hi, hy}

be the index set containing the indices %; and h; of the two hold-out inputs and let U=
{1,...,m}\ U. Further, let S = (s, ...,s,)T € R” be a vector of real valued scores of the
inputs. We now reformulate the matrix form (24) so that its value is independent of the
predictions for the hold-out inputs. Recall that the preference magnitudes in the scoring
setting can be expressed with the differences of the scores of the inputs and that we also
include the preferences with zero magnitudes in training for efficiency reasons. Therefore,
the cost function (21) which is calculated over the whole training data can be expressed as

1 m
o, Gy =5 Y ((si =) = (i =)

ij=1

The sum is multiplied with the constant 1 because the sum contains each index pair twice,
since in this setting ((s; — s;) — (r; — r;)> = ((s; — 5;) — (rj — r;))* and ((s; — 5;) —
(ri —r)))> =0 for all i, j € {1,...,m}. In order to make the cost function independent
of the predictions for the hold-out inputs, we remove the terms involving the hold-out inputs
from the sum. Thus, the cost function from which the terms have been removed is

1
cg(r, Gy =3 Y (i —s)) = (i = r)))°

i,jeU
=m=2)) (i =r) = Y (si—r)s; —r))
ieU i,jeU
=S —r"LS —7), (35)

@ Springer

Mach Learn (2009) 75: 129-165 147

where I € R™*™ is a matrix whose entries are defined as
-1 ifijandi,jeU,
Lij={m-3 ifi=jandieU,

0 otherwise.

The matrix form (35) is similar to (24) except that the Laplacian matrix L corresponds to a
graph from which all edges incident to the hold-out inputs have been removed.

Next, we substitute (35) into (34). Then, derivating (34) with respect to r and setting it
to zero provides us the predictions for all of the m inputs made by f:

fe(X) =L +1KH7'LS.
Now, multiplying with 7y from the left provides us the predictions for the hold-out inputs
fr(Xv) = Iy (L+ 1K "H7'LS. (36)
We continue by observing that we can also write

L=D-BB", (37)

where B € R"*3 is a matrix whose values are determined by

1 ifieUand j=1,
m—2 ifi=h;and j=2,
Bl,j=
m—2 ifi=hyand j =3,
0 otherwise
and
D=(m—2)I eR™".
Let

Q0=(D+rkH".
Using (37), we can rewrite (36) as
fr(Xy) = Iy(Q~" — BBY)'LS
=Iy(Q — QB(—I + BTQB)'BTQ)LS
= (QLS)y — (OB)y(—1+ BTQB)'BTQLS, (38)

where the second equality is due to the Sherman-Morrison-Woodbury formula. Let C €
R”*3 be a matrix whose values are determined by

1 ifj=1,

Cij= .
0 otherwise

@ Springer

148 Mach Learn (2009) 75: 129-165

—1 m—2 0
R = .
-1 0 m—2

‘We observe that we can write

and let

(I)'TR=B - C,

where [is an m x m-identity matrix, and hence
R=By —Cy.
Let us assume that we have calculated the matrices
0,DS,0DS, 0C,C"0C,C'S, 0CC™S, and CTQDS, (39)

and stored them into the memory before starting the hold-out calculations. In order to cal-
culate (38), we have to compute the following matrices:

BTQB e R,
BTQLS e R¥!,
(QB)y € R¥,
(QLS)y e R,

Given that the matrices (39) have already been calculated, the above matrices can be calcu-
lated in a constant time as follows:

BTQB =(C+(y)"R)'Q(C+Uy)'R)
=CTQC+R"IyOC+C"QUy)"R+ R "Iy Q(Iy)"R
=C"QC + R'(QC)y + (R'(QC))" + R QuuR,
BTQLS =B"QDS— B"QOBB"S
=CTQDS+ R (QDS)y — BTOB(CTS + R"Sy),
(OB)y = (QC)y + (QUy) ' R)y
=(QC)y + QuuR,
(QLS)y = (QDS)y — (2BB"S)y
= (QDS)y — (@B)yB"S
= (QDS)y — ((QC)u + QuuR)(CTS + R"Sy).
By substituting these into (38), the hold-out predictions for a pair of inputs can be calculated
in a constant time.
Concerning the matrices (39) calculated in advance, the calculation of the matrix Q is
the computationally dominant one. Namely, its time complexity is O (m>) in the worst case

of K being of full rank. This is the same as that of training the RankRLS algorithm in the
worst case. However, if the rank of K is not full, the matrix Q can be calculated as follows.

@ Springer

Mach Learn (2009) 75: 129-165 149

Let K = VAVT be the eigen decomposition of the kernel matrix, where V contains the
eigenvectors of K and A is a diagonal matrix containing the eigenvalues of K. Then,

0=VAVT,
where A is the diagonal matrix whose elements are determined by

o M
YA+ m =2 A

The calculation of the other matrices in (39) need only O (m?) time if Q is already calcu-
lated.

After the matrices (39) are calculated, the overall complexity of LPOCV is O (m?), since
only a constant time is needed to compute (38) for each hold-out set U and there are O (m?)
different hold-out sets. This is advantageous, for example, if we have many independent
ranking tasks we aim to learn from the same input data. In this case, the outputs are stored,
instead of a single column matrix, in a matrix S € R"*", where v is the number of tasks.
Then, the time complexity of the cross-validation is O (m* + m?v), since the complexity of
calculating Q is not affected by the number of tasks.

3.5 Sparse approximation

If the number of inputs m is large, the time complexities (19) or (26) of training dual
RankRLS may become infeasible and approximative techniques are needed. In this section,
we propose an approach that is based on a similar kind of idea as the subset of regressors
method (see e.g. Poggio and Girosi 1990; Smola and Scholkopf 2000; Rifkin et al. 2003;
Quifionero-Candela et al. 2007) for the standard regularized least-squares regression. More
detailed considerations and experimental results of this approach for RankRLS are presented
in Tsivtsivadze et al. (2008).

Recall that the training data contains a sequence of inputs X = (xi, ..., x,,) € (X™)T
of length m and let R C {1,...,m}, where |R| < m. The inputs indexed by the set R are
called the basis vectors. Now we consider instead of (6) a solution that allows only the inputs
indexed by R to have nonzero coefficient, that is,

fo) =Y ak(x,x). (40)

ieR

Note that it is not guaranteed that the optimal solution with only |R| nonzero coefficients
a; will have a representation as in formula (40), because the sparse approximation cannot
straightforwardly resort to the representer theorem anymore. Clearly, the selection of the
index set R may have an influence on results obtained by our method. Different approaches
for selecting R are discussed, for example, in Rifkin et al. (2003). There, it was found that
simply selecting the elements of R randomly performs no worse than more sophisticated
methods.

The problem of finding this type of hypothesis can be solved by finding the coefficients
a;, where i € R. In this case, the predictions for the training inputs can be expressed as
f(X) = (Kg)TA and the regularizer as AATK zz A, where A € RI®! is a vector consisting of
the coefficients a;. Using these definitions, we present a method we call sparse RankRLS:

A(G) = argmin J (A, G),
AcRIR|

@ Springer

150 Mach Learn (2009) 75: 129-165

where
J(A,G)=(N = M"(Kp)TA)T(N = MT(Kg)TA) + L ATK g A.

We take the derivative of J(A, G) with respect to A, set it to zero, and solve with respect
to A:

A= (KaMM"(Kp)T+ AKrg) 'KgxMN. 41)

The computational complexity of calculating (41) can be analyzed in a similar way as that
of the primal RankRLS (28), because the former contains the matrix K in place of H and
Krpg in place of I, that is, we substitute | R| in place of n in (29). However, the solution can
be found more efficiently if we assume the scoring setting and that the magnitude preserving
cost function (21) is used making (23) and (25) to hold. Then, the training complexity of
the sparse RankRLS algorithm can be analyzed by substituting |R| in place of n in (30)
resulting in O (m|R|?) complexity, since |R| < m. Thus, the size of R can be selected so
that these computation times are feasible.

The efficient selection of regularization parameter discussed in Sect. 3.2 can also be
performed with sparse RankRLS using the following method. Here, we again assume that
we use the cost function (21) in the scoring setting, and hence (23) and (25) hold. Using
the Cholesky decomposition Kgrr = ZZ", where Z € RIF*I®l js a lower triangular matrix
called the Cholesky triangle of K gzg, we can rewrite the solution (41) as follows:

A= (KiMM"(KR)T+2ZZ")Y ' KxMM"S.

Note that since we assume the kernel matrix K to be strictly positive definite, it follows that
also its principal submatrix K g is strictly positive definite, and hence Z is invertible. Let

VAV = Z7' K e MM (K p)T(Z27H)T 42)

be the eigen decomposition of Z7'KxMMT(K)T(Z~")T, where V and A are the eigen-
vector matrix and diagonal matrix containing the corresponding eigenvalues, respectively.
Further, let A, = (A +AI)~'. Then,

(KgMMY(KR)"+2Z2ZH) ' = HY'wvaAvT +an~1z7!
=2Z HY'vAVTZ.

Therefore, we rewrite the solution (41) as follows:
A=Z HWYVAVTZ'KgMM'S.

The decompositions and the inversion of Z can be calculated in O(|R|?) time, and hence
the overall training complexity is not increased. The computational cost of calculating Ay is
O(|R)), since A + AI is a diagonal matrix. When the matrices VTZ~ 'Ky MMTS € RIRIx!
and (Z~HTV e RIFIXIRI are stored in the memory, the subsequent training with different
values of regularization parameters can be performed in O(|R|?) time.

We also note that the sparsity of the learned solution speeds up the prediction when
nonlinear kernels are used. Namely, the prediction complexity scales with respect to |R|
times the complexity of calculating the kernel function.

@ Springer

Mach Learn (2009) 75: 129-165 151

4 Summary of computational benefits and comparison to RankSVM

Here, we make a summary about the computational properties of RankRLS and compare
them to those of RankSVM. RankSVM (Herbrich et al. 1999; Joachims 2002) is a state-of-
the-art ranking method very closely related to RankRLS. Their objective functions are the
same except that RankSVM uses the hinge cost function:

!
c(f(X),G) = max(l — g(e;)sign(y;), 0),

i=1

where e; = (x;, x;, y;) are the observed preferences, g(e;) = f(x;) — f(x;), and sign(y;)
are the directions of the preferences e;. As for RankRLS, there are also various different
methods for finding a minimizer of the objective function. It can be argued that the hinge
cost is a better approximation of the disagreement error than the squared costs as it does not
penalize correct predictions with magnitudes larger than one. However, in our experiments,
we observe that the ranking performance of RankRLS is essentially the same as that of
RankSVM. A similar phenomenon has also been observed between support vector machine
and regularized least-squares classifiers (see e.g. Rifkin 2002; Gestel et al. 2004; Zhang and
Peng 2004). Thus, the computational issues become the main factor for deciding whether
RankSVM or RankRLS is preferable.

Next, we investigate in which circumstances it is more beneficial to use RankSVM or
RankRLS method from the computational complexity point of view. For simplicity, we make
the investigation only in the case the preferences are induced by a scoring of the inputs.
Further, we only consider the cost function (21), and hence (23) and (25) hold.

Recently, Joachims (2006) proposed an efficient linear support vector machine type of
ranking algorithm for scored data. The training complexity of the algorithm is O (nm logm),
where n is the average number of nonzero features in the inputs. In our comparisons, we
consider this algorithm in the linear case. Further, we investigate the possibilities to use this
algorithm also in the nonlinear case.

We have divided our consideration into four cases. We start with small-scale learning
using linear kernel in Sect. 4.1 and continue with nonlinear case in Sect. 4.2. With small-
scale learning we refer to the case in which the number m of inputs in the training data is
such that O (m?) time complexity can be afforded, and with large-scale learning we refer to
the opposite case. Large-scale learning with linear and nonlinear kernels are considered in
Sects. 4.3 and 4.4, respectively.

4.1 Linear small scale learning

Because of the efficient training algorithm in the linear case, RankSVM has a computational
advantage over RankRLS when only one instance of the ranking method is needed and no
parameter selection or performance evaluation with cross-validation are performed. How-
ever, the advantage becomes less clear when there is a need for selecting the value of the
regularization parameter, learning multiple outputs, or performing cross-validation. For ex-
ample, the ability to perform cross-validation efficiently is very important when the number
of inputs with known scores is small, since in many cases large enough test sets for reliable
performance estimation can not be afforded. Next, we present some examples in which these
properties are especially beneficial.

Small-size data appears frequently, for example, when solving medical and biological
tasks, and hence cross-validation is often the only reliable way to measure the ranking

@ Springer

152 Mach Learn (2009) 75: 129-165

performance. In this case, the efficient methods presented in Sects. 3.3 and 3.4 are very
useful. For example, when aiming for a maximal AUC with biological data as considered
by Parker et al. (2007), a common practice for performance evaluation is to use a ten-fold
cross-validation. Then, the overall AUC is obtained by computing AUC for each fold and
taking their average or by first pooling the predictions and computing AUC afterwards. Tak-
ing the average suffers from large variance, because the number of input pairs in each fold
may be too small. Moreover, Parker et al. (2007) reported that the pooling technique suffers
from a pessimistic bias. The efficient leave-pair-out cross-validation provides a third way
for AUC calculation that avoids many of the pitfalls associated to the pooling and averaging
techniques.

Another advantage of RankRLS in linear small-scale learning is its ability to learn multi-
ple outputs at the cost of only one, provided that the number of outputs is linear in m or in n.
For example, in our experiments with the Reuters data in Sect. 5.4, there are 25 outputs that
can be learned in parallel. Of course, learning multiple outputs is also very efficient with the
fast RankSVM training methods. However, the fast cross-validation algorithms of RankRLS
can be combined with multiple output learning. This makes it possible, for example, to per-
form permutation tests similar to those used for classification (see e.g. Golland et al. 2005).
In the permutation tests, the outputs or scores of the training data are shuffled randomly and
the learner is then trained and cross-validated with the data having permuted outputs. The
shuffling and training is repeated many times and the cross-validation results are used, for
example, to estimate the reliability of the cross-validation results with the original training
data. This method can be used very efficiently with the RLS-based learning algorithms, be-
cause the permuted output vectors can be considered as extra outputs that can be learned
and cross-validated in parallel.

4.2 Nonlinear small scale learning

In general, when nonlinear kernel functions are used, support vector machine (SVM) type
of learners have an advantage in prediction time, because the form of the SVM solution may
be sparse. However, this depends on the level of regularization and the amount of noise in
the training data.

RankRLS has the advantage that its training time scales linearly instead of quadratically
with respect to the number m of inputs in the training data. To our knowledge, at least the
most commonly used implementations of nonlinear RankSVM scale roughly quadratically
with respect to the number of preferences, and hence their computational complexity can be
considered to be at least of the order O (m*), because the number of preferences in the scor-
ing setting is assumed to be of order m?. This makes RankSVM impractical even on small
datasets. The cubic complexity of RankRLS makes it thus the method of choice when using
nonlinear kernels and datasets which consist of at most a few thousand inputs. However, the
dual implementations of the RankSVM do not necessarily represent the state-of-the-art in
kernel based SVM ranking.

To demonstrate the scalability properties of nonlinear RankRLS and RankSVM algo-
rithms, we provide a comparison of running times on the acq dataset of the Reuters AUC-
maximization task (see Sect. 5.4 for description of the task and data). The RankSVM im-
plementation is the one included in the SVM-light package, for RankRLS we use our own
Python implementation. The runs are performed on a modern desktop computer using the
Gaussian kernel and the default parameter values of the software packages are used. The
results are presented in Table 1.

The runtime comparison of training provides further empirical support to the conclusions
derived from the computational complexity considerations. RankRLS is efficient to use in

@ Springer

Mach Learn (2009) 75: 129-165 153

Table 1 Runtime comparisons] -
of training for nonlinear Running times

RankRLS and RankSVM on the Inputs 200 500 750 1000 1500 2000 2500 4000 6000
acq dataset. The number of

inputs in the training data ranges RankRLS 1 3 5 10 24 48 83 280 841

from 200 to 6000, the runtimes RankSVM 2 150 579 1740 4685 13707 20055 — —
are measured in seconds

the small-scale setting where the number of inputs in the training data is measured in thou-
sands. RankSVM however does not scale well, for example, at a point of 2500 inputs where
RankRLS training takes less than one and a half minutes, training RankSVM takes five and a
half hours. Taking further into consideration the efficient regularization, cross-validation and
multiple output learning algorithms presented for RankRLS, it is clearly the better choice in
this setting.

Next, we consider an alternative approach using the empirical kernel map (Scholkopf
et al. 1999) to transform the SVM dual problem into a primal one, and hence to achieve cubic
complexity also for the RankSVM. Formally, if a full rank kernel matrix K is decomposed,
for example, with the Cholesky decomposition

K=27",

where the Cholesky triangle Z € R™*” of K can be considered as an empirical feature
space representation of the input sequence X. It can be shown that after a linear RankSVM
is trained with these features, the dual variables needed in prediction for new inputs can be
obtained by multiplying the normal vector of the learned separating hyperplane with the in-
verse of ZT. The computational complexity of the Cholesky decomposition of K is O (m?).
After the decomposition is performed, the training of RankSVM with this feature represen-
tation is of complexity O (m?*logm), because the average number of nonzero features per
input in this case is m. When testing in practice this approach for training a single RankSVM
learner, we observed training times that were very close to that of training a single RankRLS
learner. This is because the O (m®) complexities of the eigen decomposition used in train-
ing RankRLS and the Cholesky decomposition in training RankSVM dominate the running
times.

On the one hand, the Cholesky decomposition has to be performed only once, since
the same feature space representation can be used for multiple outputs, multiple values of
the regularization parameter, and in each cross-validation round. On the other hand, the
O (m?logm) time is spent for every combination of the regularization parameter, every sep-
arate output, and every round in a cross-validation. Compared to that, RankRLS spends
O (m?) time for every combination of the regularization parameter and output. However,
the fast cross-validation properties of RankRLS make it more suitable than RankSVM for
small-scale nonlinear ranking tasks. For example, the constant time hold-out computation
introduced in Sect. 3.4 means that the eigen decomposition still dominates the RankRLS
running time in leave-pair-out cross-validation but the complexity of RankSVM would rise
to O(m* logm), since there are m? cross-validation rounds.

4.3 Linear large scale learning

Recall from (30) that the computational complexity of training the primal RankRLS is
O (n® +n*m), where n is the dimensionality of the feature space. Further, after RankRLS is

@ Springer

154 Mach Learn (2009) 75: 129-165

trained once, the level of regularization can be adjusted and multiple tasks learned efficiently
as shown in Sect. 3.2. If n is a small constant and m is large enough, these properties make
RankRLS faster to train than RankSVM that has the O (nmlogm), where n is the average
number of nonzero features per input, training complexity.

If both the number of inputs in the training data m and the number of features n are large,
the cubic time complexities of training RankRLS with the matrix calculus based techniques
become infeasible. However, it may still be possible to take advantage of the sparsity of
the feature representation of the inputs, that is, n being small. We note that, similarly to
the standard RLS regression (see e.g. Rifkin et al. 2003; Shewchuk 1994), RankRLS can
also be trained in such circumstances using conjugate gradient type of algorithms where the
complexity of each iteration is O (nm). How close the coefficient vector obtained with this
method is to the minimizer of (16) depends of the number of iterations. Since we assume the
use of the cost function (21) in the scoring setting, we can write M MT =D — PPT, where
D and P are defined as in the beginning of Sect. 3. Moreover, recall that in both the object
and label ranking cases, the matrices P and D have only m nonzero entries. Further, let
H € R™™ be the sparse matrix containing the feature vectors of the training inputs having
an average of 11 nonzero features per input and let v € R™ be a vector. Then, we can compute
the product

(KMM'K +A K)v=H"HDH"Hv— H'HPPTH"Hv+ AH"Hv

in O(nm) time, since H contains approximately nm nonzero elements, and both D and P
contain only m nonzero elements. Computing this product is the most expensive operation
in each conjugate gradient iteration.

We run a test of the conjugate gradient algorithm using the Reuters classification task and
linear kernel (see Sect. 5.4) using more than 12000 inputs and features, which generate over
23 million pairwise preferences. The algorithm needs only a couple of hundred iterations to
converge, and hence the training takes only a few seconds.

4.4 Nonlinear large scale learning

The cubic complexity of nonlinear RankRLS is impractical in large-scale learning. However,
it is possible to use sparse approximations as discussed in Sect. 3.5 having O (m|R|?) train-
ing complexity, where R is the set consisting of the indices of the basis vectors and |R| < m.
This type of approximations are also possible for SVM type of learners as outlined in the
following. Similarly to the empirical kernel map approach described in Sect. 4.2, the train-
ing tasks can again be transformed in O (m|R|?) time into a more efficient linear learning
task, where the dimension of the feature space is |R|. Formally, the use of the sparse ap-
proximation corresponds to the use of the following type of modified kernel function (see
e.g. Quifionero-Candela and Rasmussen 2005):

ke, x") = ke, Xp) (Krp) k(G XR)T, (43)
where X is a sequence of basis vectors and k(x, X) € (R'®)T is a row vector consisting of
the kernel evaluations between the input x and the training inputs indexed by R. Therefore,
the kernel matrix corresponding to the modified kernel function k can be written as

K = (Kp)"(Kgg) "' K.

Now, if (Kzg)~' = ZZ7 is the Cholesky decomposition of (K)™, we can use (Kz)"Z
R”*IRI as an empirical kernel map with which linear RankSVM can be trained. It can be

@ Springer

Mach Learn (2009) 75: 129-165 155

shown that after a linear RankSVM is trained using the feature representation obtained from
this empirical kernel map, the vector of |R| dual variables needed in making predictions for
new inputs with the original kernel function k can be calculated by multiplying the normal
vector of the learned separating hyperplane with Z.

After the feature representation based on the empirical kernel map has been constructed
in O(m|R|?) time, the complexity of training a RankSVM is O(|R|m logm) for a single
output and for a single value of the regularization parameter, since the number of dimen-
sions in the feature representation determined by the empirical kernel map is |R| and the
representation is usually dense. Compared to that, after the eigen decomposition (42) and
the other matrix operations needed in training a sparse RankRLS for a single output and a
single value of the regularization parameter have been performed in O (m|R|?) time, sub-
sequent training with different values of the regularization parameter for the same output is
even more efficient, namely O (|R|?) per each parameter value.

5 Experiments

We test our ranking algorithms with various different tasks. The tasks considered are: rank-
ing of dependency parses, document retrieval, binary document classification, and collabo-
rative filtering. The two first tasks are instances of label ranking while the other two can be
considered as object ranking problems. The pairwise preferences in all of the four tasks are
induced by a scoring of the inputs. For example, in the document retrieval task the score of
an input consisting of a query and a document is 1 if the document is relevant to the query
and 0 otherwise. The document retrieval and binary classification tasks can be considered
as bipartite ranking problems, that is, there are only two possible score values for the in-
puts. On the other hand, the true scores of the inputs in the parse ranking and collaborative
filtering tasks are real numbers between a certain interval.

In all tasks, we test whether the irrelevant input pairs would be beneficial if included in
the training process. For example, in document retrieval we do not measure the disagreement
error between the inputs that are associated to different queries, but test if they are still useful
in training.

We also compare the RankRLS algorithm with RankSVM and standard RLS regressor in
all of the four tasks. The RankSVM baseline is always trained with only the relevant pairs,
since the irrelevant pairs were found to be non-beneficial in our experiments with RankRLS.
Moreover, in the document retrieval experiments, RankBoost is used as additional baseline.
We also compare the cost functions (20), (21), and (22) with each other on the non-bipartite
ranking tasks, since they are equal in bipartite tasks.

Both RankRLS and RLS regressor have a regularization parameter XA that controls the
trade-off between the minimization of the training error and the complexity of the func-
tion. RankSVM has a similar parameter. The parameters are selected using cross-validation
from the scale [271°,2714, ..., 2714 213]. Further, the used kernel functions have parame-
ters that are set by cross-validation on the training data. Whenever a statistical significance
is reported, the Wilcoxon signed-ranks test (Wilcoxon 1945) has been used with 0.05 as a
significance threshold.

In Sect. 5.1, a simple example is presented in which we consider the effect of having
irrelevant input pairs in the training process. Section 5.2 presents our experiments with parse
ranking and Sect. 5.3 with document retrieval. We consider maximizing the area under ROC
curve in Sect. 5.4 and collaborative filtering in Sect. 5.5.

@ Springer

156 Mach Learn (2009) 75: 129-165

5.1 The case of irrelevant input pairs

To investigate the possible effects of the irrelevant input pairs in the training process, we
now present an artificial label ranking example that is illustrated in Fig. 2. In both figures,
the feature vectors @ (x;) of the four inputs x; are depicted as circles and they reside on a
one-dimensional feature space. We assume that there are two objects, and inputs denoted x;
and x; are associated to the first object and x3 and x4 to the second one. Therefore, only two
pairs of inputs are relevant to the label ranking task, namely the pairs (x;, x,) and (x3, x4).

The four inputs are given scores that are s; =2, s, = 1, s3 =4, and s4 = 3. The scores
induce a direction of preference for the two relevant input pairs. These preferences are de-
picted with arrows between the inputs in Fig. 2 (left). The scores also induce preferences for
the four input pairs that are not relevant to the label ranking task in question. Both the rele-
vant and irrelevant preferences are depicted in Fig. 2 (right). We observe that the preference
direction of the relevant edges goes from left to right in the feature space but the direction
of the irrelevant edges is opposite.

Since the feature vectors in the example are one-dimensional and we are learning only
linear scoring functions, there are only two possible ways in which the inputs can be ordered.
Namely, from left to right or in the opposite way. In Fig. 2, the direction is determined by the
normal vector of the hyperplane corresponding to the RankRLS solution. Therefore, if the
irrelevant input pairs are excluded from the training process, RankRLS learns the first type
of ordering and it can correctly predict the preferences for both of the relevant inputs pairs.
However, if the four irrelevant pairs are included in training, they overwhelm the effect of
the two relevant pairs, and hence RankRLS learns the wrong type of ordering. This type
of phenomenon may occur frequently in the label ranking task, since the inputs associated
to the same object are often clustered in a similar way as in this example. Therefore, we
speculate that the irrelevant pairs are usually more harmful than useful if included in the
training of RankRLS for label ranking tasks.

Another type of input pair that may turn out to have an effect to the ranking performance
is a tied one, that is, a pair whose both inputs have the same score. The tied pairs of inputs
are not considered in our definition of the disagreement error. However, in our experiments
we test whether it has a beneficial or harmful effect on the ranking performance if the tied
pairs are used in the training. For simplicity, we perform the test only with (21), because it
is the only cost function in which the ties can be treated in a trivial way, that is, by setting
the zero point of the parabola to be zero.

We may also consider leaving out some of the relevant input pairs in case there is some
redundancy created by the transitivity of the preferences, for example, in the scoring setting.
However, this may not be an optimal strategy if the data is too noisy.

The hyperplane The hyperplane
The normal of The normal of
the hyperplane i the hyperplane
O(z1) O(z2) Dlas) D(z4) O(z1) r2) Dlzs) Dla)
S1=2 52=1 Sg=4 S4=3 51=2 52:1 53=4 S4=3
f@1) > f (@) > f(3) > f(2) f(z1) < fl@2) < f(s) < fla)

Fig. 2 Artificial label ranking example. Only the relevant input pairs are included in the training process
(left). Both the relevant and irrelevant input pairs are included in the training process (right)

@ Springer

Mach Learn (2009) 75: 129-165 157

5.2 Ranking of dependency parses

First, we give a short description of the characteristics of the data. For a more detailed de-
scription, we refer to Tsivtsivadze et al. (2005). Next, we describe the task of parse ranking.
Finally, we present the experimental evaluation.

Throughout our experiments, we use the Biolnfer corpus (Pyysalo et al. 2007) which
consists of 1100 manually annotated sentences.! For each sentence, we generate a set of
candidate parses with a link grammar (LG) parser (Sleator and Temperley 1991). The LG
parser is a full dependency parser based on a broad-coverage hand-written grammar. It gen-
erates all parses allowed by its grammar and applies a set of built-in heuristics to rank the
parses. However, the ranking performance of the heuristics has been found to be poor when
applied to biomedical text (Pyysalo et al. 2006), and hence subsequent ranking or selection
methods are needed. In our previous studies, we used regularized least-squares regression
for the reranking task that notably outperformed the LG heuristics (Tsivtsivadze et al. 2005).
In these experiments, we use the graph kernel described in Pahikkala et al. (2006b).

In the task of parse ranking, each input consists of a sentence and a parse generated for it.
We obtain a scoring for an input by comparing its parse to the hand annotated correct parse
of its sentence. Tsivtsivadze et al. (2005) describes in detail how the scores are calculated.
The relevant input pairs are those of which both inputs are associated to the same sentence
and have different scores. All the other pairs are considered to be irrelevant to the task of
parse ranking. We evaluate whether these irrelevant input pairs are beneficial if included in
the training process. Furthermore, we compare the performance of RankRLS with the cost
functions (20), (21), and (22).

In order to select the parameter values, we divide the set 1100 annotated sentences into
two data sets containing 500 and 600 sentences. The first dataset is used for the parameter
estimation and the second one is reserved for the final validation. The appropriate values
of the regularization and the kernel parameters are determined by grid search with 10-fold
cross-validation on the parameter estimation data.

Finally, the algorithm is trained on the whole parameter estimation data set with the
selected parameter values and tested with the 600 sentences reserved for the final valida-
tion. The results of the validation are presented in Table 2. We observe that the regression
approach is clearly worse than RankRLS. The performance differences between RLS re-
gressor and RankRLS in the relevant pairs case are all statistically significant. Moreover, the
performance differences of the results obtained by RankRLS methods when trained using

Table 2 Disagreement errors for

the validation set using different Method Disagreement error
methods. RankRLS is tested with
the cost functions (20), (21), and RankRLS (20) 0.225
(22), and both With only relevant RankRLS (20) All pairs 0.234
pairs and all pairs RankRLS (21) 0222
RankRLS (21) All pairs 0.247
RankRLS (22) 0.216
RankRLS (22) All pairs 0.228
RankSVM 0.214
RLS Regressor 0.252

1 Available at www.it.utu.fi/Biolnfer.

@ Springer

http://www.it.utu.fi/BioInfer

158 Mach Learn (2009) 75: 129-165

relevant and all pairs are statistically significant indicating that the irrelevant pairs are harm-
ful. Interestingly, the three cost functions seem to differ more in the all pairs experiments,
while the results were clearly worse than with the relevant pairs only. When considering the
relevant pairs, the results of RankSVM are very close to those of RankRLS.

5.3 Learning to rank for information retrieval

In this section, we present an evaluation of the RankRLS algorithm on the task of rank-
ing documents according to queries using the publicly available Letor information retrieval
dataset (Liu et al. 2007).2 The problem is an example of a typical label ranking task. Given
a set of query-document pairs, our aim is to learn to rank all the documents related to the
same query according to how well they match the query. We also test how the inclusion of
irrelevant preferences in the training data affects the performance of RankRLS. By irrelevant
preferences, we mean in this setting pairs of inputs related to different queries or input pairs
that are related to the same query, but have the same score associated with them. In addition
to RankSVM and the standard RLS regressor comparisons, we also compare our results to
those of RankBoost (Freund et al. 2003). Further details of these experiments can be found
in Pahikkala et al. (2007b).

Recently, the Letor dataset for learning to rank in information retrieval containing three
datasets of query-document pairs known as Ohsumed (16140 pairs), Trec2003 (49171 pairs)
and Trec2004 (74170 pairs), as well as baseline results on RankBoost and RankSVM algo-
rithms, has been made available. The Trec datasets contain only two possible scores for the
inputs 0 and 1, while Ohsumed has three possible scores, 0, 1 and 2. In these experiments, we
consider Ohsumed to be a bipartite ranking task by combining the scores 0 and 1 together.

We perform experiments on all of the three datasets. Because of the small dimensionality
of the feature space (25 features in Ohsumed, 44 in Trecs) coupled with the large dataset
sizes, we use the primal version of RankRLS which scales well in such settings as discussed
in Sect. 3.1. Because of this choice, we use the linear kernel. The data is preprocessed by
normalizing all of the feature values between O and 1 on per query basis. 5-fold cross-
validation is used so that in each phase the learners are trained with three folds, parameters
chosen on a fourth one and testing is done on the remaining fold. The fold split used is the
one provided in the dataset. All results are averaged over the folds. We evaluate the results
using disagreement error averaged over the different test queries. Such queries that are re-
lated only to documents that have score 1, or only to documents that have score 0, and thus
contain no preferences, are not considered in the performance evaluation. The experimental
results are presented in Table 3.

Table 3 Disagreement errors on

the Letor datasets. RankRLS is Method Ohsumed Trec2003 Trec2004

tested in two settings: only

relevant pairs are included and all ~ RankRLS 0.340 0.145 0.034

pairs are mcliudi‘; \§ﬁnd§d RLS RankRLS All pairs 0.346 0.141 0.048

regression, Ran an

RankBoost are used as baselines RLS Regressor 0.346 0.153 0.044
RankSVM 0.336 0.150 0.041
RankBoost 0.351 0.138 0.034

2 Available at http://research.microsoft.com/users/tyliu/LETOR/.

@ Springer

http://research.microsoft.com/users/tyliu/LETOR/

Mach Learn (2009) 75: 129-165 159

In the Trec2004, RankRLS achieves best results when only those pairs that come from
the same query and have documents with different relevance levels are used. On the other
two datasets, the differences between the performance results of the two approaches are
not statistically significant. There seems to be little to be gained from adding the irrelevant
pairs to the training data, suggesting that the approach of training only with relevant pairs
should be the default approach to take if given no prior information indicating otherwise.
Compared to the baseline ranking algorithms, RankRLS achieves very similar performance.
The standard RLS regressor, though slightly losing to the ranking algorithms, proves also to
be quite a competitive choice.

5.4 Maximizing area under curve

It has been argued that for many types of binary classification tasks the area under the re-
ceiver operating characteristics curve (AUC) provides a more fitting performance measure
than simple accuracy (Bradley 1997; Provost et al. 1998; Huang and Ling 2005). The task
of AUC maximization can be considered as a bipartite ranking problem where each positive
input is preferred over each negative one. Thus, it is equivalent to the task of disagree-
ment error minimization (see e.g. Clémencon et al. 2005 for a more detailed consideration).
Recent work in the field of support vector machines has shown AUC maximization to be
a challenging task (see e.g. Rakotomamonjy 2004; Brefeld and Scheffer 2005; Joachims
2005). The need to consider all positive-negative input pairs easily leads to too cumbersome
computations, or the use of approximative heuristics results in gains that are not statistically
significant. However, the computational complexity of RankRLS is proportional to the num-
ber of individual inputs in the training data instead of the number of input pairs. This makes
RankRLS a natural candidate for efficient AUC maximizing learner. For more discussion
about this topic, see Pahikkala et al. (2008b).

In our experiments, we evaluate the capability of RankRLS to maximize AUC on the
task of assigning topic labels to Reuters newswire documents. We approach the problem by
transforming the original multi-label classification task into a series of binary classification
tasks, where each sub-task consists of learning to classify documents on the basis of whether
they have a certain topic or not.

Similarly to Brefeld and Scheffer (2005), we conduct the experiments on a subset of
the Reuters-21578 dataset.> We limit the number of inputs in the training data to 500 to
test the performance of the ranking methods on small imbalanced datasets. The rest 12397
documents are used as a test data. We take into account only the 25 most numerous classes,
each of which corresponds to one possible topic a document can have. We consider the
assignment of each of these labels as a separate binary classification problem, where the task
is to decide whether a document should have the given label or not. Some of the documents
belong to more than one class, and some to none of them.

We use the linear kernel. The regularization parameter A is set using tenfold cross-
validation on the training data, the chosen parameter is the one that provides maximal AUC
on the pooled together cross-validation predictions (for a description of the pooling method,
see e.g. Bradley 1997). We also calculate the 0.95 confidence intervals for the classifiers’
AUC scores for each class. These statistical analyses are performed with SPSS 11.0. The
comparison of RankRLS and standard RLS regression results is presented in Table 4 and
similar comparison with RankSVM results is presented in Table 5.

3 Available at http://www.daviddlewis.com/resources/testcollections/reuters21578/.

@ Springer

http://www.daviddlewis.com/resources/testcollections/reuters21578/

160 Mach Learn (2009) 75: 129-165

Table 4 Comparison of the AUC performance of the RankRLS and RLS algorithms on the Reuters-21578
dataset. In the first column is the name of the predicted class and in the next two are the AUC-values and
corresponding confidence intervals for the tested algorithms. The last two columns present the numbers of
positive inputs in the training set of 500 documents and test data of 12397 documents

Class RankRLS RLS Regressor +train +test
acq 0.980 (0.978-0.983) 0.979 (0.977-0.982) 94 2275
bop 0.966 (0.947-0.985) 0.880 (0.843-0.917) 4 101
cocoa 0.931 (0.891-0.970) 0.837 (0.776-0.899) 2 71
coffee 0.969 (0.948-0.990) 0.962 (0.950-0.975) 5 134
corn 0.970 (0.959-0.982) 0.950 (0.936-0.964) 11 226
cpi 0.947 (0.925-0.969) 0.601 (0.555-0.648) 3 94
crude 0.976 (0.969-0.982) 0.975 (0.969-0.982) 23 555
dir 0.971 (0.961-0.981) 0.946 (0.926-0.965) 10 165
earn 0.994 (0.993-0.995) 0.993 (0.991-0.994) 158 3806
gnp 0.987 (0.981-0.993) 0.923 (0.891-0.956) 5 131
gold 0.970 (0.953-0.986) 0.922 (0.897-0.948) 4 120
grain 0.979 (0.973-0.985) 0.974 (0.968-0.980) 23 559
interest 0.965 (0.956-0.974) 0.952 (0.941-0.962) 19 459
livestock 0.701 (0.642-0.761) 0.637 (0.578-0.696) 3 96
money-fx 0.954 (0.946-0.962) 0.947 (0.938-0.957) 28 689
money-supply 0.949 (0.930-0.968) 0.907 (0.877-0.937) 7 165
nat-gas 0.957 (0.933-0.981) 0.941 (0.920-0.962) 5 100
oilseed 0.898 (0.877-0.919) 0.816 (0.783-0.849) 6 165
reserves 0.943 (0.908-0.977) 0.511 (0.458-0.564) 2 71
ship 0.949 (0.934-0.963) 0.925 (0.907-0.942) 13 273
soybean 0.876 (0.839-0.913) 0.805 (0.757-0.853) 4 107
sugar 0.985 (0.979-0.991) 0.964 (0.952-0.976) 6 156
trade 0.978 (0.970-0.986) 0.969 (0.960-0.977) 20 466
veg-oil 0.890 (0.865-0.914) 0.697 (0.656-0.739) 4 120
wheat 0.984 (0.978-0.990) 0.976 (0.969-0.983) 12 271

The results show that the RankRLS clearly outperforms the standard RLS regressor in

the task of AUC maximization on the Reuters-21578 dataset. We observe that the smaller the
amount of positive inputs is, the larger the performance gains seem to be. Between RankRLS
and RankSVM no statistically significant differences are found.

We further examined whether including the ties in the training process has a beneficial
or a harmful effect on the ranking performance. The effect was found to be negligible.

5.5 Collaborative filtering
‘We next present the results of a series of experiments run on a publicly available collabora-

tive filtering dataset, the Jester Joke (Goldberg et al. 2001).* The task it to learn to predict
the joke preferences of a user based on the preferences of other users, an approach com-

4 Available at http://www.ieor.berkeley.edu/ goldberg/jester-data/.

@ Springer

http://www.ieor.berkeley.edu/~goldberg/jester-data/

Mach Learn (2009) 75: 129-165

161

Table 5 Comparison of the AUC performance of the RankRLS and RankSVM algorithms on the Reuters-

21578 dataset

Class RankRLS RankSVM +train +test
acq 0.980 (0.978-0.983) 0.979 (0.977-0.982) 94 2275
bop 0.966 (0.947-0.985) 0.966 (0.949-0.983) 4 101
cocoa 0.931 (0.891-0.970) 0.923 (0.881-0.966) 2 71
coffee 0.969 (0.948-0.990) 0.962 (0.939-0.984) 5 134
corn 0.970 (0.959-0.982) 0.966 (0.956-0.975) 11 226
cpi 0.947 (0.925-0.969) 0.947 (0.925-0.969) 3 94
crude 0.976 (0.969-0.982) 0.976 (0.970-0.983) 23 555
dir 0.971 (0.961-0.981) 0.972 (0.962-0.982) 10 165
earn 0.994 (0.993-0.995) 0.994 (0.992-0.995) 158 3806
gnp 0.987 (0.981-0.993) 0.987 (0.980-0.993) 5 131
gold 0.970 (0.953-0.986) 0.960 (0.940-0.980) 4 120
grain 0.979 (0.973-0.985) 0.979 (0.974-0.984) 23 559
interest 0.965 (0.956-0.974) 0.968 (0.960-0.976) 19 459
livestock 0.701 (0.642-0.761) 0.741 (0.698-0.784) 3 96
money-fx 0.954 (0.946-0.962) 0.959 (0.952-0.966) 28 689
money-supply 0.949 (0.930-0.968) 0.963 (0.950-0.976) 7 165
nat-gas 0.957 (0.933-0.981) 0.957 (0.933-0.981) 5 100
oilseed 0.898 (0.877-0.919) 0.895 (0.873-0.918) 6 165
reserves 0.943 (0.908-0.977) 0.920 (0.902-0.938) 2 71
ship 0.949 (0.934-0.963) 0.951 (0.939-0.964) 13 273
soybean 0.876 (0.839-0.913) 0.882 (0.848-0.916) 4 107
sugar 0.985 (0.979-0.991) 0.977 (0.970-0.985) 6 156
trade 0.978 (0.970-0.986) 0.982 (0.976-0.988) 20 466
veg-oil 0.890 (0.865-0.914) 0.853 (0.818-0.888) 4 120
wheat 0.984 (0.978-0.990) 0.983 (0.978-0.989) 12 271

mon to many recommender systems. In these experiments, we compare the performance of
RankRLS with cost functions (20), (21) and (22) as measured by the disagreement error.

Jester Joke is a dataset of joke ratings, where a group of 73496 users has assigned real-
valued ratings in the scale —10.0 to 10.0 to a set of 100 jokes, each rating describing how
much they liked/disliked the joke in question. The task is to learn to predict the preferences
of individual users from the preferences of the other users.

Our experimental setting follows that of Cortes et al. (2007b). We choose a set of 300
active users, for whom the task is to learn to predict their joke preferences. For each user,
half of the jokes are chosen for training and half for testing. The preferences of the users are
derived from the differences of the rating scores, a joke with a higher score is preferred to
a joke with a lower score. To generate the features for the instances, a set of 300 reference
users is chosen, and their given ratings for the corresponding joke are used as the feature
values. In cases where these users have not rated the joke, the median of their ratings is used
as the feature value.

In accordance to the original experimental setup, we perform three rounds of experi-
ments, where we first choose the reference reviewers from people with 20—40, then with
40-60, and finally with 60-80 ratings. Finally, we remove these restrictions on feature den-

@ Springer

162 Mach Learn (2009) 75: 129-165

Table 6 Disagreement errors for

the different versions of Method 2040 40760 60-80 All sizes

RankRLS, RankSVM, and the

basic RLS regressor on the Jester RankRLS (20) 0.413 0.400 0.378 0.371

dataset. RankRLS is tested with RankRLS (21) 0.413 0.400 0.379 0371

?;‘;)CO“ functions (20). 21). and o VRLS (22) 0.445 0.426 0.388 0.379
RankSVM 0.413 0.400 0.378 0.371
RLS Regressor 0.414 0.401 0.378 0.371

sities and perform a fourth round of experiments using simply randomly chosen set of ref-
erence users. The kernel used is the Gaussian kernel and its width parameter was chosen
from the interval [271°,2714 ... 214 215], The parameters for each experiment are chosen
by taking the average over the performances on a hold-out set. The hold-out sets are created
for each experiment similarly as the corresponding training/test data.

The results of the collaborative filtering experiments are included in Table 6. In these
experiments, we found no difference between the performance of the cost functions (20)
and (21). Further, we noticed that the cost function weighted by the inverse of the magni-
tude of the difference (22) performed worse than the other cost functions. This difference
was statistically significant in each of the test settings. The performance of RankSVM was
identical with that of the discretized (20) and magnitude preserving cost functions (21). Fur-
ther, standard RLS also achieved as good performance as the ranking algorithms. We also
tested the effects of including all pairs instead of only relevant ones in the training data. No
performance differences were observed in the results.

6 Conclusions

There are many problems in which the aim is not to classify or to regress but to learn a rank-
ing function. Inspired by the recent success of the regularized least-squares (RLS) based
algorithms, we introduce a framework for RLS based ranking cost functions. Further, we
propose three cost functions. We investigate their benefits and drawbacks from the per-
spectives of applicability and computational complexity. Finally, we propose a kernel-based
preference learning algorithm, which we call RankRLS, for minimizing such cost functions.

RankRLS can be trained with a sequence of pairwise preferences between input data
points and it outputs a ranking function for the individual inputs. The training time of
RankRLS grows linearly with respect to the number of preferences and is cubic either with
respect to the number of inputs or to the number of dimensions in the input space.

An important special case is the one in which the preference relation is induced by a
scoring of input data points. For this case, it is possible to develop efficient shortcut methods
using techniques based on matrix calculus. Namely, we introduce training algorithms whose
complexities do not depend on the number of preferences, cross-validation algorithms for
both object and label ranking, method for selection of the regularization parameter, and
a method for learning multiple scorings simultaneously. These methods can be combined
together. In addition, we show that some of these efficient methods can also be used in
large-scale learning when the sparse approximation is used.

We also make a thorough comparison of the computational benefits and drawbacks of
RankRLS in both small-scale and large-scale learning tasks with those of RankSVM that
can be considered as a state-of-the-art ranking method. Moreover, both the linear and non-
linear learning problems are considered in the comparison. While a single instance of a

@ Springer

Mach Learn (2009) 75: 129-165 163

RankSVM may be faster to train than a single instance of RankRLS in the linear learning
tasks, the computational shortcuts of RankRLS in cross-validation, parameter selection, and
multiple output learning make RankRLS in many situations much faster method to use than
RankSVM. This is especially the case if nonlinear kernel functions are used and if cross-
validation is used for performance estimation.

We evaluate RankRLS on four tasks with different characteristics. We use as the baseline
method RankSVM. The results show that the performance of RankSVM and RankRLS is
very similar. Further, the three proposed cost functions are compared with each other and
it is found that the performance differences are task dependent. We also show that in all of
the experiments RankRLS always performs better or as well as the RLS regressor trained to
regress the scores of the input data points. Often some of the pairs of input data points are
not relevant with respect to the learning task in question. We show that they may be even
harmful to the ranking performance, because the RankRLS algorithm has to minimize their
RLS error at the expense of the relevant pairs.

There has been recently discussion within the community about the importance of shar-
ing open source implementations of introduced methods (see Sonnenburg et al. 2007). In-
spired by this, we make freely available a software package called RLScore containing an
implementation of RankRLS and the efficient cross-validation methods.’

Acknowledgements This work has been supported by Academy of Finland and Tekes, the Finnish Funding
Agency for Technology and Innovation. We would like to thank CSC, the Finnish IT center for science, for
providing us extensive computing resources. We are grateful to Hanna Suominen for her contributions to the
document classification experiments. We also thank the anonymous reviewers for their insightful comments.

References

Agarwal, S. (2006). Ranking on graph data. In W. W. Cohen & A. Moore (Eds.), ACM international confer-
ence proceeding series: Vol. 148. Proceedings of the 23rd international conference on machine learning
(pp. 25-32). New York: ACM.

Agarwal, S., & Niyogi, P. (2005). Stability and generalization of bipartite ranking algorithms. In P. Auer &
R. Meir (Eds.), Lecture notes in computer science: Vol. 3559. Proceedings of the 18th annual conference
on learning theory (pp. 32-47). Berlin: Springer.

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algo-
rithms. Pattern Recognition, 30(7), 1145-1159.

Brefeld, U., & Scheffer, T. (2005). AUC maximizing support vector learning. In N. Lachiche, C. Ferri, S. A.
Macskassy, & A. Rakotomamonjy (Eds.), Proceedings of the 2nd workshop on ROC analysis in machine
learning (ROCML’05).

Brualdi, R. A., & Ryser, H. J. (1991). Combinatorial matrix theory. Cambridge: Cambridge University Press.

Clémencon, S., Lugosi, G., & Vayatis, N. (2005). Ranking and scoring using empirical risk minimization. In
P. Auer & R. Meir (Eds.), Lecture notes in computer science: Vol. 3559. Proceedings of the 18th annual
conference on learning theory (pp. 1-15). Berlin: Springer.

Cortes, C., Mohri, M., & Rastogi, A. (2007a). An alternative ranking problem for search engines. In C. Deme-
trescu (Ed.), Lecture notes in computer science: Vol. 4525. Proceedings of the 6th workshop on experi-
mental algorithms (pp. 1-21). Berlin: Springer.

Cortes, C., Mohri, M., & Rastogi, A. (2007b). Magnitude-preserving ranking algorithms. In Z. Ghahramani
(Ed.), ACM international conference proceeding series: Vol. 227. Proceedings of the 24th annual inter-
national conference on machine learning (pp. 169-176). New York: ACM.

Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining
preferences. Journal Machine Learning Research, 4, 933-969.

Fiirnkranz, J., & Hiillermeier, E. (2005). Preference learning. Kiinstliche Intelligenz, 19(1), 60-61.

5 Available at http://www.tucs.fi/RLScore.

@ Springer

http://www.tucs.fi/RLScore

164 Mach Learn (2009) 75: 129-165

Gestel, T. V., Suykens, J. A. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., Moor, B. D., & Van-
dewalle, J. (2004). Benchmarking least squares support vector machine classifiers. Machine Learning,
54(1), 5-32.

Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 4(2), 133-151.

Golland, P., Liang, F., Mukherjee, S., & Panchenko, D. (2005). Permutation tests for classification. In P. Auer
& R. Meir (Eds.), Lecture notes in computer science: Vol. 3559. Proceedings of the 18th annual confer-
ence on learning theory (pp. 501-515). Berlin: Springer.

Herbrich, R., Graepel, T., & Obermayer, K. (1999). Support vector learning for ordinal regression. In Proceed-
ings of the ninth international conference on artificial neural networks (pp. 97-102). London, Institute
of Electrical Engineers.

Horn, R., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press.

Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. /EEE Transac-
tions on Knowledge and Data Engineering, 17(3), 299-310.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In D. Hand, D. Keim, & R. Ng
(Eds.), Proceedings of the 8th ACM SIGKDD conference on knowledge discovery and data mining
KDD’02 (pp. 133-142). New York: ACM.

Joachims, T. (2005). A support vector method for multivariate performance measures. In L. D. Raedt &
S. Wrobel (Eds.), ACM international conference proceeding series: Vol. 119. Proceedings of the 22nd
international conference on machine learning (pp. 377-384). New York: ACM.

Joachims, T. (2006). Training linear SVMs in linear time. In T. Eliassi-Rad, L. H. Ungar, M. Craven, &
D. Gunopulos (Eds.), Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining KDD’06 (pp. 217-226). New York: ACM.

Johnson, R., & Zhang, T. (2008). Graph-based semi-supervised learning and spectral kernel design. /[EEE
Transactions on Information Theory, 54(1), 275-288.

Liu, T.-Y., Xu, J., Qin, T., Xiong, W., & Li, H. (2007). LETOR: Benchmark dataset for research on learning to
rank for information retrieval. In T. Joachims, H. Li, T.-Y. Liu, & C. Zhai (Eds.), SIGIR 2007 workshop
on learning to rank for information retrieval (pp. 3—10).

Pahikkala, T., Airola, A., Boberg, J., & Salakoski, T. (2008a). Exact and efficient leave-pair-out cross-
validation for ranking RLS. In T. Honkela, M. P6ll4, M.-S. Paukkeri, & O. Simula (Eds.), Proceedings
of the 2nd international and interdisciplinary conference on adaptive knowledge representation and
reasoning (AKRR’08) (pp. 1-8). Helsinki University of Technology.

Pahikkala, T., Airola, A., Suominen, H., Boberg, J., & Salakoski, T. (2008b). Efficient AUC maximization
with regularized least-squares. In A. Holst, P. Kreuger, & P. Funk (Eds.), Frontiers in artificial in-
telligence and applications: Vol. 173. Proceedings of the 10th Scandinavian conference on artificial
intelligence SCAI, 2008 (pp. 12-19). Amsterdam: IOS Press.

Pahikkala, T., Boberg, J., & Salakoski, T. (2006a). Fast n-fold cross-validation for regularized least-squares. In
T. Honkela, T. Raiko, J. Kortela, & H. Valpola (Eds.), Proceedings of the ninth Scandinavian conference
on artificial intelligence, Espoo, Finland (pp. 83-90). Otamedia Oy.

Pahikkala, T., Suominen, H., Boberg, J., & Salakoski, T. (2007a). Transductive ranking via pairwise regular-
ized least-squares. In P. Frasconi, K. Kersting, & K. Tsuda (Eds.), Workshop on mining and learning
with graphs (pp. 175-178).

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., & Salakoski, T. (2007b). Learning to rank with pairwise
regularized least-squares. In T. Joachims, H. Li, T.-Y. Liu, C. Zhai (Eds.), SIGIR 2007 workshop on
learning to rank for information retrieval (pp. 27-33).

Pahikkala, T., Tsivtsivadze, E., Boberg, J., & Salakoski, T. (2006b). Graph kernels versus graph representa-
tions: a case study in parse ranking. In T. Gértner, G. C. Garriga, & T. Meinl (Eds.), Proceedings of the
ECML/PKDD’06 workshop on mining and learning with graphs, Berlin, Germany (pp. 181-188).

Parker, B. J., Gunter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioin-
Sformatics, 8, 326.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9),
1481-1497.

Provost, F. J., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induc-
tion algorithms. In J. Shavlik (Ed.), Proceedings of the fifteenth international conference on machine
learning (pp. 445-453). San Mateo: Morgan Kaufmann.

Pyysalo, S., Ginter, F., Heimonen, J., Bjorne, J., Boberg, J., Jirvinen, J., & Salakoski, T. (2007). Biolnfer:
A corpus for information extraction in the biomedical domain. BMC Bioinformatics, 8, 50.

Pyysalo, S., Ginter, F., Pahikkala, T., Boberg, J., Jarvinen, J., & Salakoski, T. (2006). Evaluation of two
dependency parsers on biomedical corpus targeted at protein-protein interactions. Recent Advances in
Natural Language Processing for Biomedical Applications, special issue of the International Journal of
Medical Informatics, 75(6), 430-442.

@ Springer

Mach Learn (2009) 75: 129-165 165

Quifionero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process
regression. Journal of Machine Learning Research, 6, 1939-1959.

Quifionero-Candela, J., Rasmussen, C. E., & Williams, C. K. I. (2007). Approximation methods for Gaussian
process regression. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large-scale kernel
machines (pp. 203-224). Cambridge: MIT Press.

Rakotomamonjy, A. (2004). Optimizing area under ROC curve with SVMs. In J. Hernandez-Orallo, C. Ferri,
N. Lachiche, & P. A. Flach (Eds.), Proceedings of the Ist international workshop on ROC analysis in
artificial intelligence (pp. 71-80).

Rifkin, R. (2002). Everything old is new again: a fresh look at historical approaches in machine learning.
Ph.D. thesis, Massachusetts Institute of Technology.

Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Re-
search, 5, 101-141.

Rifkin, R., & Lippert, R. (2007a). Notes on regularized least squares (Technical Report MIT-CSAIL-TR-
2007-025). Massachusetts Institute of Technology.

Rifkin, R., & Lippert, R. (2007b). Value regularization and Fenchel duality. Journal of Machine Learning
Research, 8, 441-479.

Rifkin, R., Yeo, G., & Poggio, T. (2003). Regularized least-squares classification. In J. Suykens, G. Horvath,
S. Basu, C. Micchelli, & J. Vandewalle (Eds.), NATO science series IIl: computer and system sciences:
Vol. 190. Advances in learning theory: methods, model and applications (pp. 131-154). Amsterdam:
10S Press. Chap. 7.

Scholkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem. In D. Helmbold &
R. Williamson (Eds.), Proceedings of the 14th annual conference on computational learning theory and
5th European conference on computational learning theory (pp. 416—426). Berlin: Springer.

Scholkopf, B., Mika, S., Burges, C., Knirsch, P., Miiller, K.-R., Ritsch, G., & Smola, A. (1999). Input space
versus feature space in kernel-based methods. IEEE Transactions On Neural Networks, 10(5), 1000—
1017.

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain (Tech-
nical Report CMU-CS-94-125). Carnegie Mellon University, Pittsburgh, PA, USA.

Sleator, D. D., & Temperley, D. (1991). Parsing English with a link grammar (Technical Report CMU-CS-
91-196). Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

Smola, A. J., & Scholkopf, B. (2000). Sparse greedy matrix approximation for machine learning. In P. Langley
(Ed.), Proceedings of the seventeenth international conference on machine learning (pp. 911-918). San
Mateo: Morgan Kaufmann.

Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., Lecun, Y., Miiller, K. R.,
Pereira, F., Rasmussen, C. E., Ritsch, G., Scholkopf, B., Smola, A., Vincent, P, Weston, J., &
Williamson, R. (2007). The need for open source software in machine learning. Journal of Machine
Learning Research, 8, 2443-2466.

Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Process-
ing Letters, 9(3), 293-300.

Tsivtsivadze, E., Pahikkala, T., Airola, A., Boberg, J., & Salakoski, T. (2008). A sparse regularized least-
squares preference learning algorithm. In A. Holst, P. Kreuger, & P. Funk (Eds.), Frontiers in artificial
intelligence and applications: Vol. 173. Proceedings of the 10th Scandinavian conference on artificial
intelligence SCAI, 2008 (pp. 76-83). Amsterdam: IOS Press.

Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Myllidri, A., & Salakoski, T. (2005). Regularized
least-squares for parse ranking. In A. F. Famili, J. N. Kok, J. M. Pefia, A. Siebes, & A. J. Feelders
(Eds.), Lecture notes in computer science: Vol. 3646. Proceedings of the 6th international symposium
on intelligent data analysis (pp. 464-474). Berlin: Springer.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80-83.

Zhang, P., & Peng, J. (2004). SVM vs regularized least squares classification. In J. Kittler, M. Petrou, &
M. Nixon (Eds.), Proceedings of the 17th international conference on pattern recognition ICPR’04
(Vol. 1, pp. 176-179). Los Alamitos: IEEE Computer Society.

@ Springer

Paper 11

Training linear ranking SVMs in linearithmic time
using red-black trees

Airola, A., Pahikkala, T., and Salakoski, T. (2011). Pattern Recognition
Letters, 32(9):1328-1336.

Paper II1

On learning and cross-validation with decomposed
Nystrom approximation of kernel matrix

Airola, A., Pahikkala, T., and Salakoski, T. (2011). Neural Processing
Letters, 33(1):17-30.

Neural Process Lett (2011) 33:17-30
DOI 10.1007/s11063-010-9159-4

On Learning and Cross-Validation with Decomposed
Nystrom Approximation of Kernel Matrix

Antti Airola - Tapio Pahikkala - Tapio Salakoski

Published online: 1 December 2010
© Springer Science+Business Media, LLC. 2010

Abstract The high computational costs of training kernel methods to solve nonlinear
tasks limits their applicability. However, recently several fast training methods have been
introduced for solving linear learning tasks. These can be used to solve nonlinear tasks by
mapping the input data nonlinearly to a low-dimensional feature space. In this work, we
consider the mapping induced by decomposing the Nystrom approximation of the kernel
matrix. We collect together prior results and derive new ones to show how to efficiently train,
make predictions with and do cross-validation for reduced set approximations of learning
algorithms, given an efficient linear solver. Specifically, we present an efficient method for
removing basis vectors from the mapping, which we show to be important when performing
cross-validation.

Keywords Cross-validation - Empirical kernel map - Kernel methods - Nystrom
approximation - Reduced set method

1 Introduction

Kernel methods are among the most popular approaches to pattern analysis. They enable
solving nonlinear tasks by utilizing a nonlinear mapping from the input space X’ to some
feature space F, where the task is solved by a linear algorithm. Rather than using the map-
ping explicitly, kernel methods use a kernel function, which directly calculates, given two
inputs, their inner product in the feature space. In addition to nonlinear learning, using kernel

A. Airola (X) - T. Pahikkala - T. Salakoski

Department of Information Technology, Turku Centre for Computer Science (TUCS),
University of Turku, Joukahaisenkatu 3-5 B, Turku, Finland

e-mail: Antti.Airola@utu.fi

T. Pahikkala
e-mail: Tapio.Pahikkala@utu.fi

T. Salakoski
e-mail: Tapio.Salakoski@utu.fi

@ Springer

18 A. Airola et al.

functions allows learning from non-vectorial data, such as images, text and graphs, as long
as a suitable kernel function can be defined. For a detailed introduction to the topic of kernel
methods we refer to [23,24].

Kernel-based learning algorithms, such as the support vector machine (SVM) [2,5], have
been designed for a wide variety of tasks, including classification, regression and ranking.
Typically for nonlinear learning tasks these methods are trained using dual algorithms which
operate directly on the kernel matrix of the training examples (see e.g. [3]). However such
methods scale poorly, with respect to the size of the training set.

Recently highly efficient training algorithms have been introduced for the primal case,
where the input data resides in an Euclidean space, and the learned decision function is linear
[8,25,27]. These methods can also be applied for training nonlinear kernel machines, by
mapping the input data nonlinearly to a low dimensional Euclidean space prior to training.
Known approaches for doing this include decomposing the kernel matrix [6,22,28,30] or
using randomized features for shift invariant kernels [18].

In this work, we show how to recover a reduced set approximation of any kernel based
learning algorithm, for which the representer theorem [21] holds, by training a linear learning
algorithm on the decomposition of the Nystrom approximation of kernel matrix, and applying
a linear transformation on the learned weight vector. This is a straightforward consequence
of previously known results but is not, we believe, well known in general. The considered
approach yields prediction functions which use only a subset of the training examples, when
making predictions on new examples. Previously equivalent reduced set methods have been
proposed for a large variety of loss functions [10,11,16,17,19,26,28,29].

Further, we introduce a novel method for efficient recalculation of the Nystrém fac-
torization for the case where basis vectors are removed. This allows efficient cross-val-
idation for the reduced set approximation, as long as there is an efficient primal solver
available. Cross-validation with reduced set methods was previously considered by Cawley
and Talbot [4], who introduced a fast leave-one-out algorithm for reduced set approxima-
tion of the regularized least squares (RLSs) algorithm, also known as least squares SVM
[16,19,28]. However, their method did not remove basis vectors belonging to the holdout
set, an approach which we will show to be problematic. A version of this cross-validation
algorithm which takes care of this issue for the reduced set approximation of RLS has been
introduced by Pahikkala et al. [14]. In this work, we generalize the result to arbitrary loss
functions with quadratic regularization.

2 Low-dimensional Feature Map for Regularized Risk Minimization

In this section, we show how to efficiently train a reduced set approximation of a kernel
method using a primal solver. This is based on three key observations. First, a kernel machine
can be trained by training a linear learner on the decomposition of a kernel matrix [22,30].
Second, using the Nystrom approximation corresponds to using a certain type of data depen-
dent kernel function [17]. Third, one can transform the prediction function learned using this
data dependent kernel to a one which uses only a subset of training examples for making

predictions.
We use X to denote the input space, which can be any set. The sequence X =
1, ..., xm) € (X™T is used to denote the training inputs. By ¥ = (y1, ..., ym) € Q™7

we denote the sequence of correct outputs corresponding to the training inputs.
Following type of notation is used for describing sliced matrices. Let us consider a matrix
D, that has its rows indexed by a superset of an index set F and its columns indexed by a

@ Springer

Learning and Cross-Validation with Decomposed Nystrém Approximation 19

superset of an index set G. Then by Dy we denote a matrix containing only those elements
of D whose row index is in F and column index in G.

By D'/2 we denote a symmetric decomposition of D, that is D/2(DV/2)T = D. The
decomposition matrix has at least as many columns as is the rank of D. D™ denotes the Moore—
Penrose pseudoinverse of D. We recall the following properties of the Moore—Penrose pseudo-
inverse DT of a given matrix D. First, D* = D~!, if D is nonsingular. Second, DT = D*DDT.
Third, if D has full column rank and E full row rank, (DE)* = E*D™. Finally, if D has full
row rank, then DD =1

2.1 Empirical Kernel Map for the Nystrém Approximation

Let F denote an inner product space known as the feature space. For any mapping
DX —> F,
the inner product
k(x, x') = (@ (x), @(x))

of the mapped inputs is called a kernel function. In the following we restrict ourselves to
consider only real valued inner products.
For a given input sequence X, a kernel function gives rise to a symmetric matrix

k(xp,xp) -« k(x1, Xm)
K= : - :
k(xm, x1) -+ - k(Xm, Xm)

which is known as the kernel matrix of X. The kernel matrix is positive semidefinite, that is,
a'Ka > 0 foralla € R™.

Though the feature space may have infinite dimension, the subspace where a finite
sequence of inputs lies has finite dimension. Thus as a notational convenience we repre-
sent mapped inputs as finite dimensional vectors. We overload our notation by defining
D(X) = (D(x1), ..., D(xy)) for any given sequence X of inputs. The corresponding kernel
matrix can be expressed as K = d(X)TP(X).

Even though the feature map @ exists for any given positive definite kernel function, in
practice this map is rarely explicitly used when the kernel is nonlinear. The map is often onto
a very high dimensional, or even infinite dimensional space, or one may not know what the
map is. Instead we consider the empirical kernel map.

By overloading our notation, we write k(x, X) = (k(x, x1),...,k(x,x,)) € (R™MT,
where x € X. Following Scholkopf et al. [22], we define the empirical kernel map with
respect to X as

by X > R,
where
Dx(x) = KT (k(x, X)) (1

In practice » would usually correspond to the rank of the kernel matrix, though one can
define such empirical kernel maps for which it is larger. Following Xiong et al. [32] we call
the space R” the empirical feature space. This space is an Euclidean space, where the inner
product is the standard dot product.

@ Springer

20 A. Airola et al.

Now, let us consider the empirical kernel map of the inputs used in defining the mapping.
According to (1)

Py (X) = (K'?)TK
_ (K1/2)+ K12 (KI/Z)T
_ (KI/Q)T.

Itis easy to see that @ x (X Y@y (X) = K, and thus for all examples in X the inner products
are the same in the empirical feature space, as in the feature space. The inner product fully
determines distances between these examples, and their norms. Due to the linearity of the
real valued inner product this result extends to any linear combinations of these examples.

What this result in practice means is that any learning algorithm that operates within the
linear span of the training examples can be trained in a finite dimensional Euclidean space
using the empirical kernel map of the data. This is particularly useful for algorithms based on
regularized risk minimization with a quadratic regularizer, as they provably find their optimal
solution within this span. We will discuss this issue further in the next section.

The approach of training kernel machines using the decomposition of the kernel
matrix and a primal solver was used by Tsuda [30] for SVM optimization. However, in
practice the approach has not been very popular due to computational burdens inherent in the
method. Assuming a training set of m examples the computational cost of decomposing the
kernel matrix is O (m>) and the memory complexity of storing the matrix is O (m?). Further,
the resulting mapping is high dimensional having m features, meaning that any subsequent
method trained on the data has at least O (m?) complexity if it passes at least once through
each mapped example. Such complexities provide no improvement over the existing dual
solvers.

In the machine learning field one of the most popular and successful techniques for finding
an approximative low-rank decomposition for the kernel matrix is the Nystrom approxima-
tion [31]. Let us consider the index set M = {1, ...m} of the training set X. We choose a
subset of training examples indexed by R € M, such that |R| << |M|. We call this subset
the basis vectors. Then the Nystrom approximation of K is

K = Kyr(Kgr) 'Kgum- ()

Let CCT = Kgg denote the cholesky decomposition of Kgg. Instead of explicitly con-
structing K, we can calculate its decomposition from (5 x(X)NT = Ky r(CH~L. The cost of
calculating C~'is O(|R|?) and the cost of the matrix multiplication O (m|R 12). The memory
complexity is O (m|R]), and the resulting mapping has only | R|-dimensions. This means that
for small | R| the method scales substantially better than the exact decomposition. As we will
discuss next, it turns out that applying this mapping on the training data and using a regular-
ized risk minimization based learner for subsequent training is equivalent to using reduced
set type of sparse approximation algorithms, sometimes known as subset of regressors, pro-
posed in the literature [16,17,19,26,29]. This approach is also quite similar, although not
equivalent, to the sparse approximative empirical kernel map proposed by Abe [1] for fast
RLS training.

An interesting result from [17] is that using the Nystrom approximation is equivalent to
using the following type of data dependent kernel function

k(x,x) = k(x, Xg)(Kgr) "k (x', X)7,)

@ Springer

Learning and Cross-Validation with Decomposed Nystrém Approximation 21

where X g denotes the set of training examples indexed by R. Thus, the decomposition ®x (X)
of K is an empirical kernel map corresponding to the feature space implicitly defined by the
modified kernel function .

The selection of basis vectors affects how well K approximates K. Proposed approaches
for selection include both adaptive methods such as a k-means clustering based method [33],
as well as non-adaptive ones. While the adaptive data dependent approaches can perform
better, Rifkin et al. [19] and Kumar et al. [9] criticize many of these for being computation-
ally heavy. Both recommend uniform sampling without replacement, as the method is fast
and according to Kumar et al. [9] can also be expected to yield superior results compared to
non-uniform sampling distributions.

2.2 Regularized Risk Minimization and Reduced Set Methods

A large class of machine learning algorithms are based on minimizing the regularized risk
functional

J(X,Y, f) =c(X, Y, f(X)) + Al fI3, 4)

where L > 0 is a parameter and f belongs to a reproducing kernel Hilbert space of func-
tions (RKHS). The first term in (4) is the empirical risk measuring how well the considered
hypothesis f fits the training data, as measured by some cost function c¢. The second term
called the regularizer measures the complexity of the hypothesis with the RKHS norm.

According to the generalized representer theorem [21] any minimizer of (4) admits a
representation of the form

f) =D aik(x, xi) = k(x, X)a, ®)

i=1

where a; € R, a = (ay, ..., am)T € R™ and k is the kernel function associated with the
RKHS mentioned above. This representation allows us to express the solution using only
kernel evaluations between the argument and the training examples. We call this the dual
formulation and a the dual solution.

The minimizer (5) can be re-written as

) =D ai(®(x), d(x)

i=1

= <4>(x>, Zai¢<xi>>

i=1

= (P(x), w).

We call w = @ (X)a the primal solution. Conversely, given the primal solution w, the dual
solution can be recovered from

a=o(X) w. (6)

The consistency of the system of linear equations involved in solving (6) is guaranteed by
the representer theorem. Thus, a can be recovered using the Moore—Penrose pseudoinverse
of @(X) [12].

@ Springer

22 A. Airola et al.

Depending on whether we solve the primal problem directly in the (empirical) feature
space, or its dual counterpart, we can re-formulate (4) either as

J(X,Y,w)=c(X,Y,®(X)Tw) + awlw,
or as
J(X,Y,a) = c(X, Y, Ka)+ ra Ka.)

Now let us consider the dual objective function, when using the modified kernel function k
corresponding to the Nystrom approximation. Our analysis is similar to that applied by Rifkin
et al. [19] to show the equivalence of the sparse approximation and the Nystrom approach
for the RLS algorithm. Let a be the minimizer of (7), when using the modified kernel matrix
K constructed from the training set.

Let us define

b = (Kgr) 'Kgya, b e RIEXT,
‘We note that

Ka = Kyr(Kgr) 'Krpa
= Kyrb.

Similarly,

a'Ka = a Kyr(Krg) ™ 'Kgyd
=2 Kyr(Krr) 'Krr(Kgr) 'Kgya
= b Kggb.

Substituting these into (7) we can define an equivalent objective function
J(X,Y,b) = c(X,Y,Kygb) + Ab"Kggb.

which is the objective function of the reduced set sparse approximation considered in [16,
17,19,26,29].

This means that for the Nystrom approximation, instead of using all the m training exam-
ples to represent the learned hypothesis, as in (5), we can limit ourselves to considering only
the basis vectors. The optimal solution is of the form,

f) =D aik(x, xi) = k(x, Xg)b. ®)
ieR
Based on previous considerations the dual reduced set solution b can be recovered from
the solution W in the empirical feature space using a linear transformation as follows
b = (Kgr) 'Krua
= (Krr) "' Kru®x (X)W
= (Kgr) ™' Kry (Kra) *CW
= (CH 1w
Thus, the dual coefficients can be recovered in O(|R|?) time, as we already know (cH-1,

New predictions are calculated as defined in (8) with the weighted sum of | R| kernel evalu-
ations between the basis vectors and the new example.

@ Springer

Learning and Cross-Validation with Decomposed Nystrém Approximation 23

3 Efficient Removal of Basis Vectors for Cross-validation

Cross-validation is one of the most commonly used tools for model selection and performance
estimation. However, with the data dependent kernel defined for the sparse approximation,
cross-validation becomes complicated. From (3) it can be seen that the basis vectors have an
influence on the kernel function itself. The removal of any of these from the training set will
result in a change in the kernel function. Next we explore this problem in more detail, and
provide a computationally efficient solution for doing cross-validation.

Let us consider the index set M of the training set X. When performing cross validation,
on each round one chooses a holdout set U C M and removes the examples indexed by it
from the training set. The the learner is trained on the examples indexed by U = M \ U, and
tested on the holdout examples.

If RNU = (¢, that is, none of the basis vectors belong to the holdout set, this is very
straightforward to do. One can simply use

(@), o

for training the learner, as this is a valid decomposition of IZW, which is the kernel matrix for
the complement of the holdout set. Given the primal solution w predictions for the holdout

examples can be directly calculated from ((IZI/ Z)T) - as we have the empirical kernel

map of the holdout data in it.

However, if RNU # ¢, the holdout procedure becomes more complicated. We could deal
with this situation by just ignoring it and use (9) as before. This would conceptually mean
selecting some of the basis vectors from the test set. However, this can provide unreliable
performance estimates as we will show in Sect. 4.1. Another approach for circumventing this
problem is, of course, to perform the cross-validation so that the training examples which
are selected to be basis vectors are not held out in any cross-validation round. With large
data sets, this approach usually provides reliable enough performance estimates. However,
there are certain tasks in which this approach is not reliable due to dependencies between
the examples in the training set. For a typical example of such a situation, see, for example,
the experiments in [13,20]. Such dependencies are also present in the experimental setting
of Sect. 4, and hence neither of the above presented simple approaches can be used there.

Next, we present an approach which enables the efficient removal of the effect of the
hold-out basis vectors from the empirical kernel map. Let us consider the index set R of the
basis vectors. Let H = RN U and L = R\ H. Thus, H contains the basis vectors which
are included in the holdout set, and L the rest of the basis vectors. Let us recall that

K = Kyr(Kzr) 'Kruy,

and C = (Kgp)!/?, that is, Kgg = CCT.

The most straightforward approach for removing the effect of holdout basis vectors would
be to calculate (Kzz)~ Y2 in O(|R|?) time, and Ky 7 (Kz2)~'/2 in O(m|R|?) time. This is
however almost as expensive as calculating the original decomposition was. Given that the
most efficient available linear learners have training complexities of the order O (m|R|) for
many types of tasks [8,25,27], this would mean that the cost of recalculating the decom-
positions would form a limiting computational bottleneck for performing cross-validation.
However, given that we have previously calculated C—! and Ky r(C™HT, we can do better.
In the following proof we will make use of the block inverse lemma, and the matrix inver-
sion lemma, also known as Sherman—-Morrison—Woodbury formula. Readers unfamiliar with
these results, or wanting to refresh their memory, may check them from the appendix.

@ Springer

24 A. Airola et al.

Theorem 1 The complexity of calculating Ky (Kpp)~'/? is O(|H||R|m), given C~! and
Kyr(C™HT

Proof First, let us define Z = Kyzr ((Crz)™) ™! and as a short hand notation write G =
(CT)~!. We can calculate Z in O(|H||R|m) time as follows.

-1
Z =Ky (Cep)")
=Ky (Gor — Gru Gum)™" Gur)
=KwurGrr — KurGru Gun) ' Gur

= (KnrG)yr — KmuGur — KurGru (Gun) ™' Guy.

The second equality is due to the block inverse lemma (Lemma 4, Appendix). The first term
on the last line can be efficiently calculated simply by slicing the columns indexed by L from
Kur(CT)~!, which we already have pre-computed in memory. The matrix products in the
other terms can be performed in O (|H||L|m) = O(|H||R|m) time.
Let A= (Crr)~'Cru.
-1
= (CLr(CLR)")
-1

= (Cre(CL)" +Cru CLm)")

-1 _ -1 -1 _
= ((Ceo)") (€)' = (€C)") AI+ATA) AT (Cp)!

-1 _ _
= (C)") [I-Ad+ATA AT (C)

Kzp)™!

where the third equality is due to the matrix inversion lemma (Lemma 5, Appendix). Let
B = A1+ ATA)1/2 ¢ RILIXIHI ¢ follows from the block inverse lemma that we can
rewrite A as A = —(C™) g ((C~H g y)~ L. Therefore, we can calculate B in O(|L||H|?)
time, since we already know cL

Moreover, let BBT = VAVT be the eigenvalue decomposition of BBT, where A €
RIZIXILT §g a diagonal matrix containing the eigenvalues of BBT, and V € RIZI*IZ contains
the corresponding eigenvectors. V is an orthogonal matrix, that is VVT = VTV = I. Because
the rank of BBT is at most | H|, A contains at most | H | non-zero eigenvalues. The eigenvalue
decomposition can be calculated for example from the singular value decomposition of B,
which takes O(|H||L|?) time to compute.

We can write the Nystrom approximation which uses only the examples indexed by L as
basis vectors as

K = Ky (Kpz) ' Koy
=7 (1-BB")Z"
=Z(1-vavh)z!
=ZV{A - A)VTZT
— 7V (ﬂﬂ) VIZT
:ZV(m—I+I)VTV(m—I+I)VTZT
-7 [V (m - 1) VT VVT] [V («/1—71\ - I) A VVT]TZT
:z[v(M—I)VT+I] [V(M—I)VT+I]TZT

@ Springer

Learning and Cross-Validation with Decomposed Nystrém Approximation 25

Thus, the empirical kernel map corresponding to the hold-out computation is
ZIV(VI=A-1) VT +1].

Let A € RIFIXIHI pe 4 diagonal matrix containing the non-zero values in A and Ve
RILIXIH the matrix containing the corresponding eigenvalues. Then Z[V («/I —A - I) VARE

=27V (\/1 —A- I) VT 41]. These matrix products can be calculated in O (|H||L|m) =

O (|H||R|m) time, which was also the complexity of calculating Z. Thus, the complexity of
calculating Kys7 (Kz2)~1/2 is O(|H||R|m). |

Corollary 2 The complexity of calculating the empirical kernel maps for n-fold cross-vali-
dation is O(|R|*m), when using the kernel map corresponding to the Nystrém approximation

Proof First, the complexity of calculating the empirical kernel map of the Nystrom approx-
imation for the whole training set is O(|R|*m). Second, the average number of hold-out
examples belonging to the set of basis vectors in each cross-validation round is | H| = |R|/n.
Thus, the complexity of removing the basis vectors on the n rounds of cross-validation is
O(n|H||R|m) = O(n(|R|/n)|RIm) = O(|R|*m). Once the effect of holdout basis vectors
has been removed, an empirical kernel map for the holdout set and its complement can be
recovered by slicing the corresponding rows from the mapping, as discussed before. O

4 Computer Simulations

In the simulations we consider the removal of holdout basis vectors during cross-validation.
We explore two questions. First, to what extent is the cross-validation estimate affected by
the choice of whether the holdout basis vectors are removed or not. Second, whether the
algorithm we introduced for removing holdout basis vectors is in practice efficient. We refer
to the relevant literature for results about the quality of the reduced set approximation when
applied to different loss functions [10,11,16,17,19,26,29].

Our methods were implemented using the Python programming language, and the NumPy
and SciPy programming libraries. All simulations were run on a modern desktop computer.

We consider a setting similar to that of Tsivtsivaze et al. [29], where the ranking per-
formance of the reduced set based sparse approximation of the RankRLS algorithm [15]
was evaluated. Training the primal version of the RankRLS algorithm using the feature map
produced by decomposing K would lead to an equivalent method.

The experiments were motivated by a task from the field of natural language processing.
Given a sentence and a set of candidate parses generated by an automatic parser, the task
is to order the parses according to how correctly they describe the syntactic structure of the
sentence. The training dataset consists of approximately 600 sentences each having 20 or
less candidate parses, yielding in total a set of 9856 examples. Each candidate parse is asso-
ciated with a goodness score describing how close it is to the correct parse of the sentence.
Following the setup of Tsivtsivadze et al. [29] we choose basis vectors from each sentence,
and use a graph kernel for the feature representation of the parses.

The kernel function has the property that two parses originating from a same sentence
have almost always larger mutual similarity than two parses originating from different sen-
tences. This causes dependencies between the examples, which is something we have to take
into account in designing the cross-validation experiments. Namely, we have to ensure that
all parses originating from the same sentence are held out simultaneously, since it would be
unrealistic to assume that both the training and test set would have parses originating from
the same sentence. In our experiments, we perform the cross-validation on the sentence level

@ Springer

26 A. Airola et al.

0.40 T T T T T T T T

— cv estimate, true
0.35 - cv estimate, holdout basis vectors present

0.30

0.25

0.20

squared error

0.15

0.10

0.05

0.00
10° 107 10° 10° 10" 10' 10° 10° 10’ 10°

regularization parameter

Fig. 1 Comparison between cross-validation estimates with and without removal of holdout basis vectors

so that all the parses generated from a sentence would always be either in the training set or
in the test set. The question still left open is whether we also have to remove the effect of a
basis vector from the kernel map if the corresponding example belongs to the hold-out set.
Next, we show the necessity of this.

4.1 The Effect of Keeping Holdout Basis Vectors

First, we explore to which extent not removing the basis vectors belonging to the holdout set
biases the cross-validation estimate. In this experiment, we fix the number of basis vectors
to two per sentence, and perform 10-fold cross-validation, where the sentences are randomly
divided to 10 mutually disjoint folds. On each round we train an RLS regressor to regress the
parse goodness scores. We compare the method which removes the basis vectors present in
the holdout set to an approach where they are not removed. The used performance measure
is mean squared error. A regularization parameter grid 1072 ... 10 is explored.

The results are in Fig. 1. The approach where the basis vectors belonging to the holdout set
are not removed shows a high degree of pessimism for low regularization parameter values,
predicting almost four times higher error than the correct approach. This can lead to incor-
rect performance estimation, or to selecting suboptimal parameters during model selection,
suggesting that it is important to remove the holdout basis vectors during cross-validation.
However, when the level of regularization is increased enough the differences between the
two estimates disappear.

4.2 Computational Efficiency
In the second set of experiments, we test the computational efficiency of the algorithm we

introduced. We compare this method to the more straightforward approach of recalculat-
ing the whole feature map every time basis vectors are included in the holdout set. The

@ Springer

Learning and Cross-Validation with Decomposed Nystrém Approximation 27

Table 1 Runtime comparisons

in CPU seconds for Size of |R|
lcizvsjizi‘g:;gn"“t 598 1181 1742 2297
Initial decomposition 6 28 63 123
Efficient CV 532 1193 1864 2679
Baseline CV 3639 16648 38373 73375
Table? e omprins St
cross-validation 598 1181 1742 2297
Initial decomposition 6 28 63 123
Efficient CV 33 112 234 408
Baseline CV 49 226 512 937

computational complexity of n-fold cross-validation is for the former approach O(|R*m)
suggesting that it should significantly outperform the latter approach whose complexity is
O (n|R)?m). 1t is however not self-evident that this is the case for typical choices of m, |R|
and n as asymptotic upper bounds can hide large constant terms which may in practice have
a large impact on performance.

We vary the value of chosen basis vectors per sentence from 1 to 4 to explore the effect
of the size of R on the computational efficiency.

The ranking performance is typically calculated as an average over per sentence ranking
performances. This suggests a natural cross-validation scheme for performance evaluation,
the leave-sentence-out cross-validation. On each cross validation round the holdout set con-
sists of the candidate parses of one of the sentences. Similar settings are typically encountered
in information retrieval where machine learning methods are trained on sets of user queries
paired with documents to be ranked.

In Table 1 is the runtime comparison of the efficient cross-validation method and the base-
line approach. The cost of performing the initial decomposition for calculating the feature
map for the whole dataset is presented separately. The results demonstrate that the efficient
method based on computational shortcuts is much faster, suggesting that implementing it is
worthwhile when doing cross-validation with a large number of folds.

In practice, due to computational constraints 10-fold cross-validation is more often
used than the leave-sentence-out considered previously. The 10-fold estimate is more pes-
simistically biased due to a larger part of the training set being unused in each round
of cross-validation. Still, for large datasets it can be expected to yield good estimate of
performance.

In Table 2 is the runtime comparison for 10-fold cross-validation. The folds have been
defined on the level of sentences, so that all the parses related to the same sentence belong
to the same fold. The efficient method is about two times faster than the baseline. This sug-
gests that the method is also useful for speeding up cross-validation when the number of
folds is relatively small, but the more straightforward baseline approach is in this setting also
competitive.

@ Springer

28 A. Airola et al.

5 Conclusion

Motivated by the recent developments in efficient linear learning methods we have considered
how nonlinear learning problems can be transformed to linear ones by using empirical kernel
map of the Nystrom approximation. A straightforward matrix decomposition approach allows
one to derive a reduced set approximation of any regularized risk minimization algorithm
that uses quadratic regularization. However, this mapping must be recalculated whenever
examples that are basis vectors are removed from the training set. We derive a computational
short cut for the removal of basis vectors. Our experiments show that removal of holdout basis
vectors is necessary for achieving reliable cross-validation estimates, and that our method can
do this efficiently. In our future work, we will explore other settings where the modification
of the set of basis vectors is necessary.

Acknowledgements This work has been supported by the Academy of Finland.

Appendix

Here, we consider some well-known properties of block matrices. Let D be a square matrix,
whose rows and columns are indexed by an index set J. Let us divide the indices into two
disjoint subsets, F C J, and G = J \ F. Without losing generality, we can write D as a
following block matrix

Drr Drc
D= . 10
|:DGF DGG] 1o

First, we present a lemma that is a direct consequence of Schur’s determinantal formula. (see
e.g. [7, p. 21)).
Lemma 3 [fDgg is invertible, then D is invertible if and only if

S =Drr — Dr¢(Dge) ' Dor.

is invertible. Here, S is the Schur complement of Dgg.
Next, we present a lemma that is known as the block inverse.

Lemma 4 Assume D to be invertible. If Dgg is invertible, then the inverse matrix of D is

D—l:[(D_l)FF (D_I)FG]
O Her O Hee |

where

—1
O Her =5,

—1
(D YHre = -S Drg(Dge)~ L,

O Nr = ~D6) "' D6rS ', and 1

DO Hee = Dee) ™'+ (Dg6) 'DgrS Drg(Dga) ™.

Finally, we present the following result known as the matrix inversion lemma or Sherman—
Morrison—Woodbury formula.

@ Springer

Learning and Cross-Validation with Decomposed Nystrém Approximation 29

Lemma$ IfDrpr, Dgg, and S are invertible, then

(D6 —Dgr(Drpp) 'Dpg) ™! 1
= Dg6)~' = D66) 'D6rS Drg(Dga) ™!

References

16.
17.

20.

21.

. Abe S (2007) Sparse least squares support vector training in the reduced empirical feature space. Pattern

Analy Appl 10(3):203-214

Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Pro-
ceedings of the 5th annual ACM workshop on computational learning theory. ACM Press, pp 144-152.
Bottou L, Lin CJ (2007) Support vector machine solvers. In: DD Léon Bottou Olivier Chapelle, Weston
J (eds) Large-scale kernel machines, neural information processing, MIT Press, Cambridge, pp 1-28
Cawley GC, Talbot NLC (2004) Fast exact leave-one-out cross-validation of sparse least-squares support
vector machines. Neural Netw 17(10):1467-1475

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273-297

Harmeling S, Ziehe A, Kawanabe M, Miiller KR (2002) Kernel feature spaces and nonlinear blind source
separation. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing
systems 14, MIT Press, Cambridge, pp 761-768.

Horn R, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

Joachims T (2006) Training linear SVMs in linear time. In: Eliassi-Rad T, Ungar LH, Craven M,
Gunopulos D (eds) Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD 2006). ACM Press, New York, pp 217-226

Kumar S, Mohri M, Talwalkar A (2009) Sampling techniques for the Nystrom method. In: van Dyk D,
Welling M (eds) Proceedings of the twelfth international conference on artificial intelligence and statistics
(AISTATS 2009). JMLR workshop and conference proceedings, vol 5, IMLR, pp 304-311

Lee YJ, Mangasarian OJ (2001) RSVM: reduced support vector machines. In: Proceedings of the first
SIAM international conference on data mining, Chicago

. Lin KM, Lin CJ (2003) A study on reduced support vector machines. IEEE Trans Neural Netw 14:1449—

1459

Meyer CD (2000) Matrix analysis and applied linear algebra. Society for Industrial and Applied Mathe-
matics, Philadelphia

Pahikkala T, Boberg J, Salakoski T (2006) Fast n-fold cross-validation for regularized least-squares. In:
Honkela T, Raiko T, Kortela J, Valpola H (eds) Proceedings of the ninth Scandinavian conference on
artificial intelligence (SCAI 2006), Otamedia Oy, Espoo, Finland, pp 83-90.

Pahikkala T, Suominen H, Boberg J, Salakoski T (2009) Efficient hold-out for subset of regressors. In:
Kolehmainen M, Toivanen P, Beliczynski B (eds) Proceedings of the international conference on natural
and adaptive computing algorithms (ICANNGA 2009). Lecture notes in computer science, vol 5495.
Springer, pp 350-359

. Pahikkala T, Tsivtsivadze E, Airola A, Boberg J, Jarvinen J (2009) An efficient algorithm for learning to

rank from preference graphs. Mach Learn 75(1):129-165

Poggio T, Girosi F (1990) Networks for approximation and learning. Proceedings of the IEEE 78(9)
Quifionero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate gaussian process
regression. J Mach Learn Res 6:1939-1959

Rahimi A, Recht B (2007) Random features for large-scale kernel machines. In: Platt JC, Koller D,
Singer Y, Roweis ST, Platt JC, Koller D, Singer Y, Roweis ST (eds) Advances in neural information
processing systems 20. MIT Press, Cambridge

Rifkin R, Yeo G, Poggio T (2003) Regularized least-squares classification. In: Suykens J, Horvath G, Basu
S, Micchelli C, Vandewalle J (eds) Advances in learning theory: methods, model and applications, nato
science series III: computer and system sciences, vol 190, chap. 7. IOS Press, Amsterdam, pp 131-154
Setre R, Sagae K, Tsujii J (2008) Syntactic features for protein—protein interaction extraction. In: Baker
CJ, Jian S (eds) Proceedings of the 2nd international symposium on languages in biology and medicine
(LBM 2007), CEUR Workshop Proceedings, pp 6.1-6.14

Scholkopf B, Herbrich R, Smola AJ (2001) A generalized representer theorem. In: Helmbold D,
Williamson R (eds) Proceedings of the 14th annual conference on computational learning theory and
5th European conference on computational learning theory (COLT 2001). Springer, Berlin, Germany,
pp 416-426

@ Springer

30

A. Airola et al.

22.

23.
24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Scholkopf B, Mika S, Burges C, Knirsch P, Miiller KR, Rétsch G, Smola A (1999) Input space versus
feature space in kernel-based methods. IEEE Trans Neural Netw 10(5):1000-1017

Scholkopf B, Smola AJ (2002) Learning with kernels. MIT Press, Cambridge

Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press,
Cambridge

Shwartz SS, Singer Y, Srebro N (2007) Pegasos: primal estimated sub-gradient solver for SVM. In:
Ghahramani Z (ed) Proceedings of the 24th international conference on Machine learning (ICML 2007).
ACM international conference proceeding series, vol 227. New York, pp 807-814. doi: 10.1145/1273496.
1273598

Smola AJ, Scholkopf B (2000) Sparse greedy matrix approximation for machine learning. In: Langley P
(ed) Proceedings of the seventeenth international conference on machine learning (ICML 2000). Morgan
Kaufmann Publishers Inc., San Francisco, pp 911-918

Smola AJ, Vishwanathan SVN, Le Q (2007) Bundle methods for machine learning. In: McCallum A
(ed) Advances in neural information processing systems 20. MIT Press, Cambridge

Suykens JAK, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2003) Least squares support vector
machines. World Scientific Publishing Company

Tsivtsivadze E, Pahikkala T, Airola A, Boberg J, Salakoski T (2008) A sparse regularized least-squares
preference learning algorithm. In: Holst A, Kreuger P, Funk P (eds) Proceedings of the Tenth Scandinavian
Conference on Atrtificial Intelligence (SCAI 2008). Frontiers in artificial intelligence and applications,
vol 173. IOS Press, pp 76-83

Tsuda K (1999) Support vector classifier with asymmetric kernel functions. In: European symposium on
artificial neural networks (ESANN 1999), pp 183-188

Williams CKI, Seeger M (2001) Using the Nystrom method to speed up kernel machines. In: Leen
TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems 13. MIT Press,
Cambridge, pp 682-688

Xiong H, Swamy M, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans
Neural Netw 16(2):460-474

Zhang K, Tsang IW, Kwok JT (2008) Improved Nystrom low-rank approximation and error analysis.
In: McCallum A, Roweis S (eds) Proceedings of the 25th international conference on Machine learning
(ICML 2008). ACM international conference proceeding series, vol 307. New York, pp 1232-1239

@ Springer

http://dx.doi.org/10.1145/1273496.1273598
http://dx.doi.org/10.1145/1273496.1273598

Paper IV

An experimental comparison of cross-validation
techniques for estimating the area under the ROC
curve

Airola, A., Pahikkala, T., Waegeman, W., De Baets, B., and Salakoski, T.
(2011). Computational Statistics & Data Analysis, 55(4):1828-1844.

Paper V

All-paths graph kernel for protein-protein inter-
action extraction with evaluation of cross-corpus
learning

Airola, A., Pyysalo, S., Bjorne, J., Pahikkala, T., Ginter, F., and Salakoski,
T. (2008). BMC' Bioinformatics, 9 Suppl 11

BIVIC Bioinformatics

Research

@,

BiolVied Central

All-paths graph kernel for protein-protein interaction extraction

with evaluation of cross-corpus learning

Antti Airola*, Sampo Pyysalo, Jari Bjorne, Tapio Pahikkala, Filip Ginter and

Tapio Salakoski

Address: Turku Centre for Computer Science (TUCS) and the Department of IT, University of Turku, Joukahaisenkatu 3-5, 20520 Turku, Finland

Email: Antti Airola* - antti.airola@utu.fi; Sampo Pyysalo - sampo.pyysalo@utu.fi; Jari Bjorne - jari.bjorne@utu.fi;

Tapio Pahikkala - tapio.pahikkala@utu.fi; Filip Ginter - filip.ginter@utu.fi; Tapio Salakoski - tapio.salakoski@utu.fi

* Corresponding author

from Natural Language Processing in Biomedicine (BioNLP) ACL Workshop 2008
Columbus, OH, USA. 19 June 2008

Published: 19 November 2008
BMC Bioinformatics 2008, 9(Suppl 11):S2 doi:10.1186/1471-2105-9-S11-S2

This article is available from: http://www.biomedcentral.com/1471-2105/9/S11/S2
© 2008 Airola et al; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Automated extraction of protein-protein interactions (PPI) is an important and
widely studied task in biomedical text mining. We propose a graph kernel based approach for this
task. In contrast to earlier approaches to PPl extraction, the introduced all-paths graph kernel has
the capability to make use of full, general dependency graphs representing the sentence structure.

Results: We evaluate the proposed method on five publicly available PPl corpora, providing the
most comprehensive evaluation done for a machine learning based PPl-extraction system. We
additionally perform a detailed evaluation of the effects of training and testing on different
resources, providing insight into the challenges involved in applying a system beyond the data it was
trained on. Our method is shown to achieve state-of-the-art performance with respect to

comparable evaluations, with 56.4 F-score and 84.8 AUC on the Almed corpus.

Conclusion: We show that the graph kernel approach performs on state-of-the-art level in PPI
extraction, and note the possible extension to the task of extracting complex interactions. Cross-
corpus results provide further insight into how the learning generalizes beyond individual corpora.
Further, we identify several pitfalls that can make evaluations of PPl-extraction systems
incomparable, or even invalid. These include incorrect cross-validation strategies and problems
related to comparing F-score results achieved on different evaluation resources. Recommendations

for avoiding these pitfalls are provided.

Background access through online interfaces to records of millions of
Information extraction from biomedical research publica- research articles from the biomedical domain, with
tions has been a topic of intense research during recent abstracts made available for many, and full texts for some
years [1-3]. Literature databases such as PubMed offer of the papers. Potentially, this offers a researcher direct

Page 1 of 12

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/S11/S2
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9(Suppl 11):S2

access to vast amounts of research knowledge. However,
locating the useful information can be challenging, a sim-
ple keyword search may still return many more articles
than a human being can process. This motivates the devel-
opment of tools for automating the extraction of informa-
tion from biomedical text.

A task of significant interest in biomedical natural lan-
guage processing is the automated protein-protein inter-
action (PPI) extraction. The most commonly addressed
problem has been the extraction of binary interactions,
where the system identifies which protein pairs in a sen-
tence have a biologically relevant relationship between
them. Proposed solutions include both hand-crafted rule-
based systems and machine learning approaches (see e.g.
[4]). A wide range of results have been reported for the
systems, but as we will show, differences in evaluation
resources, metrics and strategies make direct comparison
of the numbers presented problematic. Further, the results
gained from the BioCreative II evaluation, where the best
performing system achieved a 29% F-score [5], suggest
that the problem of extracting binary protein-protein
interactions is far from solved.

The public availability of large annotated PPI-corpora
such as Almed [4], BioInfer [6] and GENIA [7], provides
an opportunity for building PPI extraction systems auto-
matically using machine learning. A major challenge is
how to supply the learner with the contextual and syntac-
tic information needed to distinguish between interac-
tions and non-interactions. To address the ambiguity and
variability of the natural language expressions used to
state PPI, several recent studies have focused on the devel-
opment, adaptation and application of NLP tools for the
biomedical domain. Many high-quality domain-specific
tools are now freely available, including full parsers such
as that introduced by Lease and Charniak [8]. Addition-
ally, a number of conversions from phrase structure parses
to dependency structures that make the relationships
between words more directly accessible have been intro-
duced. These include conversions into representations
such as the Stanford dependency scheme [9] that are
explicitly designed for information extraction purposes.
However, specialized feature representations and kernels
are required to make learning from such structures possi-
ble.

Approaches such as subsequence kernels [10], tree kernels
[11] and shortest path kernels [12] have been proposed
and successfully used for relation extraction. However,
these methods lack the expressive power to consider rep-
resentations derived from general, possibly cyclic,
dependency graph structures, such as those generated by
the Stanford tools. The subsequence kernel approach does
not consider parses at all, and the shortest path approach

http://www.biomedcentral.com/1471-2105/9/S11/S2

is limited to representing only a single path in the full
dependency graph, which excludes relevant words even in
many simple cases (Figure 1). Tree kernels can represent
more complex structures, but are still restricted to tree rep-
resentations.

Lately, in the framework of kernel-based machine learn-
ing methods there has been an increased interest in
designing kernel functions for graph data. Building on the
work of Girtner et al. [13], graph representations tailored
for the task of dependency parse ranking were proposed
by Pahikkala et al. [14]. Though the proposed representa-
tions are not directly applicable to the task of PPI extrac-
tion, they offer insight in how to learn from dependency
graphs. We develop a graph kernel approach for PPI
extraction based on these ideas.

We next define a graph representation suitable for describ-
ing potential interactions and introduce a kernel which
makes efficient learning from a general, unrestricted graph
representation possible. Then we provide a short descrip-
tion of the sparse regularized least squares (sparse RLS)
kernel-based machine learning method we use for PPI-
extraction.

Further, we rigorously assess our method on five publicly
available PPI corpora. In addition to purely intrinsic eval-
uation using cross-validation on single corpora, we pro-

prep of>
prepiof>—\rconj_and>

interaction of P1 and P2

<nsubj
<cop
<det
(/’— <nn
f —<nn

Pl is a P2 binding protein

<xsubj
xcomp>
<nsubj{/’_ <aux dobj>1
1

P fails to bind P2

Figure |

Shortest path example. Stanford dependency parses
("collapsed") representation where the shortest path, shown
in bold, excludes important words.

Page 2 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

vide a broad cross-corpus evaluation to test how well an
extraction system trained on a given corpus will generalize
to the other corpora. We thus provide, to our knowledge,
the most comprehensive evaluation done with a machine
learning approach to PPl-extraction. Finally, we discuss
the effects that different evaluation strategies, choice of
corpus and applied metrics have on measured perform-
ance, and provide conclusions.

Methods

We next present our graph representation, formalize the
notion of graph kernels, and present our learning method
of choice, the sparse RLS.

Graph encoding of sentence structure

As in most recent work on machine learning for PPI
extraction, we cast the task as learning a decision function
that determines for each unordered candidate pair of pro-
tein names occurring together in a sentence whether the
two proteins interact. In the following, we first define the
graph representation used to represent an interaction can-
didate pair. We then proceed to derive the kernel used to
measure the similarities of these graphs.

We assume that the input of our learning method is a
dependency parse of a sentence where a pair of protein
names is marked as the candidate interaction for which an
extraction decision must be made. Based on this, we form
a weighted, directed graph that consists of two uncon-
nected subgraphs. One represents the dependency struc-
ture of the sentence, and the other the linear order of the
words (see Figure 2).

http://www.biomedcentral.com/1471-2105/9/S11/S2

The first subgraph is built from the dependency analysis.
One vertex and an associated set of labels is created in the
graph for each token and for each dependency. The verti-
ces that represent tokens have as labels the text and part-
of-speech (POS) of the token. To ensure generalization of
the learned extraction model, the labels of vertices that
correspond to protein names are replaced with PROT1,
PROT2 or PROT, where PROT1 and PROT? are the pair of
interest. The vertices that represent dependencies are
labeled with the type of the dependency. The edges in the
subgraph are defined so that each dependency vertex is
connected by an incoming edge from the vertex represent-
ing its governor token, and by an outgoing edge to the ver-
tex representing its dependent token. The graph thus
represents the entire sentence structure.

Itis widely acknowledged that the words between the can-
didate entities or connecting them in a syntactic represen-
tation are particularly likely to carry information
regarding their relationship; Bunescu and Mooney [12]
formalize this intuition for dependency graphs as the
shortest path hypothesis. We apply this insight in two ways
in the graph representation: the labels of the nodes on the
shortest undirected paths connecting PROT1 and PROT2
are differentiated from the labels outside the paths using
a special tag. Further, the edges are assigned weights; after
limited preliminary experiments, we chose a simple
weighting scheme where all edges on the shortest paths
receive a weight of 0.9 and other edges receive a weight of
0.3. The representation thus allows us to emphasize the
shortest path without completely disregarding potentially
relevant words outside the path.

22 xsubJ IP 09
0.3 0.9
m%(°3prep [prep_vith| — o °3[OQf-ﬁ
PROT1_IP| |interacts| |with| [PROT| |to| ([disassemble_IP| (PROT2_IP| (filaments_IP
NN_IP VBZ IN NN TO VB_IP NN_IP NNS_IP

ﬁﬁﬁﬁﬁfﬁfﬁ

PROT1| |interacts M |with M |PROT M B disassemble_M| [PROT2| (filaments_A
NN VBZ M IN M NN M TO_M VB_M NN NNS_A
Figure 2

Graph representation. Graph representation generated from an example sentence. The candidate interaction pair is

marked as PROT | and PROT?2, the third protein is marked as PROT. The shortest path between the proteins is shown in bold.
In the dependency based subgraph all nodes in a shortest path are specialized using a post-tag (IP). In the linear order subgraph
possible tags are (B)efore, (M)iddle, and (A)fter. For the other two candidate pairs in the sentence, graphs with the same struc-

ture but different weights and labels would be generated.

Page 3 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

The second subgraph is built from the linear structure of
the sentence. For each token, a second vertex is created
and the labels for the vertices are derived from the texts,
POS-tags and named entity tagging as above. The labels of
each word are specialized to denote whether the word
appears before, in-between, or after the protein pair of
interest. Each word node is connected by an edge to its
succeeding word, as determined by sentence order of the
words. Each edge is given the weight 0.9.

The all-paths graph kernel

We next formalize the graph representation and present
the all-paths graph kernel. This kernel can be considered
as a practical instantiation of the theoretical graph kernel
framework introduced by Girtner et al. [13]. Let V be the
set of vertices in the graph and £ be the set of possible
labels vertices can have. We represent the graph with an
adjacency matrix A € RIVI = IVl, whose rows and columns
are indexed by the vertices, and [A]; ; contains the weight

of the edge connecting v; € V and v; € V if such an edge
exists, and zero otherwise. Further, we represent the labels

as a label allocation matrix L e R“MV/ 5o that L;j=1ifthe
j-th vertex has the i-th label and L; ;= 0 otherwise. Because

only a very small fraction of all the possible labels are ever
assigned to any single node, this matrix is extremely
sparse.

It is well known that when an adjacency matrix is multi-
plied with itself, each element [A?]; ; contains the summed
weight of paths from vertex v; to vertex v; through one
intervening vertex, that is, paths of length two. Similarly,
for any length n, the summed weights from v; to v; can be
determined by calculating [A"]; ;. Since we are interested
not only in paths of one specific length, it is natural to
combine the effect of paths of different lengths by sum-
ming the powers of the adjacency matrices. We calculate
the infinite sum of the weights of all possible paths con-
necting the vertices using the Neumann Series, defined as

(I-A)'=1+A+A2 +...=ZA"
k=0
if |A| < 1 where |A] is the spectral radius of A [15]. From
this sum we can form a new adjacency matrix

W= (I-A)1-L

The final adjacency matrix contains the summed weights
of all possible paths connecting the vertices. The identity
matrix is subtracted to remove the paths of length zero,
which would correspond to self-loops. Next, we present
the graph kernel that utilizes the graph representation

http://www.biomedcentral.com/1471-2105/9/S11/S2

defined previously. We define an instance G representing
a candidate interaction as G = LWLT, where L and W are
the label allocation matrix and the final adjacency matrix
corresponding to the graph representation of the candi-
date interaction.

Following Girtner et al. [13] the graph kernel is defined as

£ 14
KG,G) =D GGl
i=1 j=1

where G' and G" are two instances formed as defined pre-
viously. The features can be thought as combinations of
labels from connected pairs of vertices, with a value that
represents the strength of their connection. In practical
implementations, the full G matrices, which consist
mostly of zeroes, are never explicitly formed. Rather, only
the non-zero elements are stored in memory and used
when calculating the kernels.

Scalable learning with Sparse RLS

RLS, also known as the least squares support vector
machine, is a state-of-the-art kernel-based machine learn-
ing method which has been shown to have comparable
performance to standard support vector machines
[16,17]. We choose the sparse version of the algorithm,
also known as subset of regressors, as it allows us to scale
up the method to very large training set sizes. Sparse RLS
also has the property that it is possible to perform cross-
validation and regularization parameter selection so that
their time complexities are negligible compared to the
training complexity. These efficient methods are analo-
gous to the ones proposed by Pahikkala et al. [18] for the
basic RLS regression.

We now briefly present the basic sparse RLS algorithm. Let
m denote the training set size and M = {1,..., m} an index
set in which the indices refer to the examples in the train-
ing set. Instead of allowing functions that can be
expressed as a linear combination over the whole training
set, as in the case of basic RLS regression, we only allow
functions of the following restricted type:

F)= ak (), (1)

i€eB

where k is the kernel function, x; are training data points,
a; € R are weights, and the set indexing the basis vectors B
c M is selected in advance. The coefficients a; that deter-
mine (1) are obtained by minimizing

3 - Y akex0)) + 2 gk x), (@)
j=1

i€eB j,ieB

Page 4 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

where the first term is the squared loss function, the sec-
ond term is the regularizer, and 1 € R, is a regularization
parameter. All the training instances are used for deter-
mining the coefficient vector, but only a subset of them to
represent the learned hypothesis. The minimizer of (2) is
obtained by solving the corresponding system of linear
equations, which can be performed in O(m|B|?) time.

We set the maximum number of basis vectors to 4000 in
all experiments in this study. The subset is selected ran-
domly when the training set size exceeds this number.
Other methods for the selection of the basis vectors were
considered by Rifkin et al. [17], who however reported
that the random selection worked as well as the more
sophisticated approaches.

Results and discussion

We next describe the evaluation resources and metrics
used, provide a comprehensive evaluation of our method
across five PPI corpora, and compare our results to earlier
work. Further, we discuss the challenges inherent in pro-
viding a valid method evaluation and propose solutions.

Corpora and evaluation criteria

We evaluate our method using five publicly available cor-
pora that contain PPI interaction annotation: Almed [4],
Biolnfer [6], HPRD50 [19], IEPA [20] and LLL [21]. All the
corpora were processed to a common format using trans-
formations [22] that we have introduced earlier [23]. We
note that the version of the BioIlnfer used in this study dif-
fers from the one we considered in [23] and in [24]. This
is due to the fact that these studies used an early version of
the binarization rules [25] that transform the complex
relations of Biolnfer to binary ones.

We parse these corpora with the Charniak-Lease parser
[8], which has been found to perform best among a
number of parsers tested in recent domain evaluations
[26,27]. The Charniak-Lease phrase structure parses are
transformed into the collapsed Stanford dependency
scheme using the Stanford tools [9]. We cast the PPI
extraction task as binary classification, where protein pairs
that are stated to interact are positive examples and other
co-occurring pairs negative. Thus, from each sentence,

n .
(2J examples are generated, where n is the number of

occurrences of protein names in the sentence. Finally, we
form the graph representation described earlier for each
candidate interaction.

In the single corpus tests we evaluate the method with 10-
fold document-level cross-validation on all of the cor-
pora. This guarantees the maximal use of the available

http://www.biomedcentral.com/1471-2105/9/S11/S2

data, and also allows comparison to relevant earlier work.
In particular, on the Almed corpus we apply the exact
same 10-fold split that was used by Bunescu et al. [10],
Giuliano et al. [28], Van Landeghem et al. [29], and pos-
sibly some of the other studies which do not explicitly
state which split was used. In cross-corpus tests we use
each of the corpora in turn to train an extraction system,
and test the system on the four remaining corpora.

Performance is measured according to the following crite-
ria: interactions are considered untyped, undirected pair-
wise relations between specific protein mentions, that is,
if the same protein name occurs multiple times in a sen-
tence, the correct interactions must be extracted for each
occurrence. Further, we do not consider self-interactions
as candidates and remove them from the corpora prior to
evaluation. The majority of PPI extraction system evalua-
tions use the balanced F-score measure for quantifying the
performance of the systems. This metric is defined as

2 . . _
F= p—f::, where p is precision and r recall. Likewise, we

provide F-score, precision, and recall values in our evalu-
ation. It should be noted that F-score is very sensitive to
the underlying positive/negative pair distribution of the
corpus - a property whose impact on evaluation is dis-
cussed in detail below. As an alternative to F-score, we also
evaluate the performance of our system using the area
under the receiver operating characteristics curve (AUC)
measure [30]. AUC has the important property that it is
invariant to the class distribution of the used dataset. Due
to this and other beneficial properties for comparative
evaluation, the usage of AUC for performance evaluation
has been recently advocated in the machine learning com-
munity (see e.g. [31]). Formally, AUC can be defined as

it ¥ Hixi-yj)
AUC = i=1 ~j=1) ,
mym_

where m, and m_are the numbers of positive and negative

examples, respectively, and x;,..., x,, are outputs of the

system for the positive, and y,,...,y,, for the negative

examples, and

1, ifr>0
H(r)=40.5, ifr=0
0, otherwise.
The outputs are real valued and can be thought of as

inducing a ranking, where the examples considered to be
most likely to belong to the positive class should receive

Page 5 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

the highest output values. The measure corresponds to the
probability that given a randomly chosen positive and
negative example, the system will be able to correctly dis-
tinguish which one is which.

Performance on the individual corpora

The performance of our method on the five corpora for
the various metrics is presented in Table 1. For reference,
we show also the performance of the co-occurrence (or all-
true) baseline, which simply assigns each candidate into
the interaction class. The recall of the co-occurrence
method is trivially 100%, and in terms of AUC it has a per-
formance of 50%, the random baseline. All the numbers
in Table 1, including the co-occurrence results, are aver-
ages taken over the ten folds. One should note that
because of the non-linearity of the F-score measure, the
average precision and recall will not produce exactly the
average F. Further, calculating the co-occurrence numbers
as averages over the folds leads to results that differ
slightly compared to the approach where the co-occur-
rence statistic is calculated over all the data pooled
together.

The results hold several interesting findings. First, we
briefly observe that on the Almed corpus, which has
recently been applied in numerous evaluations [32] and
can be seen as an emerging de facto standard for PPI extrac-
tion method evaluation, the method achieves an F-score
performance of 56.4%. As we argue in more detail below,
this level of performance is comparable to the state-of-the-
art in machine learning based PPI extraction. For the other
large corpus, Biolnfer, F-score performance is somewhat
higher, at 61%. Second, we observe that the F-score per-
formance of the method varies strikingly between the dif-
ferent corpora, with results on IEPA and LLL
approximately 20 percentage units higher than on Almed
and 15 percentage units higher than on Biolnfer, despite
the larger size of the latter two. In our previous work we
have observed similar results with a rule-based extraction
method [23]. As a broad multiple corpus evaluation using
a state-of-the-art machine learning method for PPI extrac-
tion, our results support and extend the key finding that F-
score performance results measured on different corpora
cannot, in general, be meaningfully compared.

http://www.biomedcentral.com/1471-2105/9/S11/S2

The co-occurrence baseline numbers indicate one reason
for the high F-score variance between the corpora. The F-
score metric is not invariant to the distribution of positive
and negative examples: for example, halving the number
of negative test examples is expected to approximately
halve the number of false positives at a given recall point.
Thus, the greater the fraction of true interactions in a cor-
pus is, the easier it is to reach high performance in terms
of F-score. This is reflected in co-occurrence results, which
range from 30% to 70% depending on the class distribu-
tion of the corpus.

This is a critical weakness of the F-score metric in compar-
isons involving different corpora as, for example, the frac-
tion of true interactions out of all candidates is 50% in the
LLL corpus but only 17% in Almed. By contrast to the
large differences in performance measured using F-score,
we find that for the distribution-invariant AUC measure
the performance for all of the corpora falls in the range of
80-85%. The results provide an argument in favor of
applying the AUC metric instead of, or in addition to, F-
score. AUC is also more stable in terms of variance.

The similar performance in terms of AUC for corpora with
as widely differing sizes as LLL and BiolInfer allows for two
alternative interpretations. First, it might be that past a rel-
atively modest number of examples, increasing corpus
size has little effect on the performance of the method.
Alternatively, it might be the case that the larger corpora,
while having more training data available, are also more
difficult to learn than the smaller corpora. We explore the
issue further by calculating learning curves on the corpora,
using AUC as the performance measure (see Figure 3). For
each corpus five folds are set aside as the test set, and the
rest of the data is incrementally added to the training set
to test how increase in training data affects the perform-
ance.

The learning curves support the latter interpretation. If the
datasets all represented equally difficult tasks with respect
to distinguishing randomly drawn positive instances from
negatives, we would expect the curves to roughly overlap.
The fact that they are to a large extent separate indicates
that there are large differences in the difficulty of the

Table I: Evaluation results. Counts of positive and negative examples in the corpora and (P)recision, (R)ecall, (F)-score and AUC for

the graph kernel, with standard deviations provided for F and AUC.

Statistics Graph Kernel co-occ

Corpus #POS. #NEG. P R OF AUC Oauc P F

AlMed 1000 4834 52.9% 61.8% 56.4% 5.0% 84.8% 2.3% 17.8% 30.1%
Biolnfer 2534 7132 56.7% 67.2% 61.3% 5.2% 81.9% 4.9% 26.6% 41.7%
HPRD50 163 270 64.3% 65.8% 63.4% 11.4% 79.7% 6.3% 38.9% 55.4%
IEPA 335 482 69.6% 82.7% 75.1% 7.0% 85.1% 5.1% 40.8% 57.6%
LLL 164 166 72.5% 87.2% 76.8% 17.8% 83.4% 12.2% 55.9% 70.3%

Page 6 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

84 T T

82 - -

80 | B

78 | .

76 1

74 | g

AUC

72 + B
70 | q

Almed —8— -

Biolnfer —=—

66 HPRD50 —e—
IEPA —e—

LLL —a—

68

64 . .
10 100 1000

10000
training set size

Figure 3

Learning curves. Learning curves for the five corpora. The
scale is logarithmic with respect to the amount of training
data.

learning tasks represented by the different corpora. On
Almed and Biolnfer it takes significantly more data to
reach the same performance than on the three smaller cor-
pora HPRD50, LLL and IEPA: For example, performance
on the latter three with 100 training examples exceeds the
performance on Biolnfer with ten times as much training
data.

Cross-corpus performance

The cross-corpus evaluation aims to shed light on a ques-
tion of fundamental importance in training machine
learning based PPl-extraction systems: Will the learned
models generalize beyond the specific characteristics of
the data they were trained on? The types of named entities
annotated, the definition of what exactly constitutes an
interaction and the relative positive/negative distributions
of pairs can vary significantly over different corpora. Thus
it is not obvious that a system trained on a given corpus
will perform well on data which is not from the same cor-
pus. As discussed in [33], applying text mining tools
beyond the development data can lead to disappointing
results.

http://www.biomedcentral.com/1471-2105/9/S11/S2

We explore this issue through a cross-corpus evaluation of
our method. Five extraction systems are trained, one on
each corpus, and they are each tested on the four remain-
ing corpora. Leave-one-document-out cross-validation on
the training corpus is used for parameter value selection.
Our evaluation extends the recent results of Van Lan-
deghem et al. [29], who conducted cross-corpus experi-
ments on four of the corpora considered in this study.
Their finding was that models trained on a combination
of three of the corpora often did not perform well on
terms of F-score, when tested on the remaining corpus.

We start by considering the AUC results of the cross-cor-
pus evaluation (see Table 2), as the metric normalizes
away much of the differences resulting from differing pos-
itive/negative distributions and threshold selection strate-
gies, thus providing a more stable view of performance.
We notice that the performance varies significantly
depending on the training and test corpus. Unlike in the
single corpus evaluations the results are scattered, ranging
from 61% to 83% AUC. On the large corpora the trained
extraction systems in all cases perform clearly worse than
the cross-validation performance. However, on the two
smallest corpora this is not so. On HPRD50 systems
trained on Almed and IEPA actually give better perform-
ance than the results from cross-validating on the corpus.
On LLL the models trained on Biolnfer and IEPA do
almost as well as the cross-validation results on the cor-
pus. These results suggest that a larger amount of training
data can compensate for the differences in corpus annota-
tion strategies to a large extent. Random chance may also
be a factor here, as observed previously in the large vari-
ances in cross-validation results on the smallest corpora.

One relevant question that can be answered from the
cross-corpus experiments is which of the corpora provides
the best resource for training from a generalization per-
spective. However, it is not entirely straightforward to
meaningfully summarize these results: simple averages
over results on the very different resources carry little
meaning. Instead, we provide a simple, rough indicator of
generalization potential by ranking the corpora separately
according to the results on each of the other corpora. The
rankings are presented in Table 2. Though the rankings do
differ over different test corpora, overall they roughly fol-

Table 2: Cross-corpus results measured with AUC. AUC results for cross-corpus testing. Rows correspond to training corpora and

columns to test corpora.

Almed rank Biolnfer rank HPRD50 rank IEPA rank LLL rank avg. rank
Almed - - 67.7% 2 82.4% I 76.1% 2 77.8% 3 2
Biolnfer 77.8% | - - 75.2% 3 79.3% I 83.3% I 1.5
HPRD50 72.5% 2 61.8% 3 - - 74.9% 3 64.0% 4 3
IEPA 70.2% 3 72.2% I 80.0% 2 - - 82.5% 2 2
LLL 61.8% 4 61.0% 4 69.4% 4 74.8% 4 - - 4
Page 7 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

low the size of the corpora. On average models trained on
the largest corpus, Biolnfer, perform best. Next in this
ranking the second and third largest corpora, Almed and
IEPA share a rank. The second worst performing models
are trained on the second smallest corpus HPRD50, and
the lowest performing ones on the smallest dataset, LLL.
Unsurprisingly, the more training data available the better
the performance is. A surprising result is the high perform-
ance of systems trained on IEPA, the corpus being an
order of magnitude smaller than Almed or Biolnfer.

Next, we consider the results using the F-score measure. In
Table 3 results for which the threshold separarating posi-
tive and negative classes has been selected on the training
corpus are shown. In some cases the results are on a simi-
lar level to those gained in the single corpus cross-valida-
tion experiments. This holds true for example with
models trained on Almed or IEPA, and tested on the
HPRD50 corpus. However, there are several cases where
the performance is disastrously low. Most strikingly, three
out of four results gained when using Almed for training
fall below the results one would achieve with the naive co-
occurrence baseline. We observe that even in these cases
the AUC results are still competitive. This gives rise to the
assumption that the problem is in the threshold selection.
The learned models do have the property that they tend to
assign higher values for the positive than for the negative
examples, but the approach of selecting the suitable
threshold on training data for separating the two classes
fails utterly in some cases. We further observed that avoid-
ing the task of threshold selection altogether by setting it
simply to zero yielded no better results.

In Table 4 we provide the optimal F-score results, choos-
ing the positions from the precision/recall curves that
would lead to highest F-scores. Many of the results are
now greatly increased, with no result falling below the
naive co-occurrence baseline. Further, the relative ranking
order of the results is the same as that induced by the AUC
scores. It is now clear that one can not necessarily rely on
the approach of choosing the threshold according to what
works on the training set when doing cross-corpus learn-
ing. This is perhaps due to the large differences in the
underlying positive/negative distributions of the corpora.

http://www.biomedcentral.com/1471-2105/9/S11/S2

The differences mean breaking the basic assumption
made by the majority of machine learning methods, that
the training and test examples are identically distributed.
As can be seen from the statistics presented in Table 1, the
examples are clearly not identically distributed over the
corpora, at least with respect to outputs.

One approach for selecting which examples to assign to
positive and which to negative classes could be selecting
the threshold according to the the relative positive/nega-
tive distribution of the test set. To estimate this in a prac-
tical setting, one may have to sample and manually check
examples from the test set. In Table 5 are presented the F-
score results gained when assigning to positive class such
a fraction of the test examples that corresponds to the rel-
ative frequency of positive examples in the test corpus. In
all the cases the results are within a few percentage units
of the optimal values, indicating that this simple heuristic
allows the worst disasters observed in the cross-corpus
tests to be avoided. However, there are several cases where
the result achieved with this approach is lower than when
choosing the threshold on the training data.

To conclude, the cross-corpus learning results support the
assumption that the learned models generalize beyond
the corpora they were trained on. Still, results are gener-
ally lower when testing a method against a corpus differ-
ent from that on which it was trained. We observe that the
systems trained on larger corpora tend to perform better
than the ones trained on smaller ones, as is to be expected.
The results achieved with the IEPA as a training corpus are
surprisingly competitive, considering how much smaller
it is than the two larger corpora. Choosing a threshold for
separating the positive and negative classes proves to be a
challenging issue, as a threshold chosen on the training
corpus may not work at all on another.

Performance compared to other methods

We next discuss the performance of our method com-
pared to other methods introduced in the literature and
the challenges of meaningful comparison, where we iden-
tify three major issues.

Table 3: Cross-corpus results measured with F-score and threshold chosen on training set. F-score results for cross-corpus testing with
the thresholds chosen on the training set. Rows correspond to training corpora and columns to test corpora. A denote the difference
between the F-score result and the result achieved with the optimal threshold.

Almed A Biolnfer A HPRD50 A IEPA A LLL A
Almed - - 24.9% 22.2% 64.6% 4.4% 22.9% 44.5% 17.7% 56.8%
Biolnfer 44.2% 3.0% - - 63.6% 0.3% 64.5% 3.5% 76.4% 1.6%
HPRD50 40.9% 1.3% 27.2% 15.3% - - 56.3% 8.8% 45.5% 22.4%
IEPA 38.4% 0.7% 47.0% 4.7% 65.6% 1.9% - - 77.0% 0.6%
LLL 32.6% 0.7% 42.2% 0.3% 58.3% 1.5% 63.9% 1.0% - -
Page 8 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

Table 4: Cross-corpus results measures with F-score and optimal
thresholds. F-score results for cross-corpus testing with the
optimal thresholds. Rows correspond to training corpora and
columns to test corpora.

Almed Biolnfer HPRD50 IEPA LLL
Almed - 47.1% 69.0% 67.4% 74.5%
Biolnfer 47.2% - 63.9% 68.0% 78.0%
HPRD50 42.2% 42.5% - 65.1% 67.9%
IEPA 39.1% 51.7% 67.5% - 77.6%
LLL 33.3% 42.5% 59.8% 64.9% -

First, as indicated by the results above, differences in the
makeup of different corpora render cross-corpus compar-
isons in terms of F-score essentially meaningless. As F-
score is typically the only metric for which results are
reported in the PPI extraction literature, we are limited to
comparing against results on single corpora. We consider
the Almed and Biolnfer evaluations to be the most rele-
vant ones, as these corpora are sufficiently large for train-
ing and reliably testing machine learning methods. As the
present study is, to the best of our knowledge, the first to
report machine learning method performance on Bioln-
fer, we will focus on Almed in the following comparison.

Second, the cross-validation strategy used in evaluation
has a large impact on measured performance. The pair-
based examples can break the assumption of the training
and test sets being independent of each other, as pairs
generated from the same sentence, and to a lesser extent
from the same document, are clearly not independent.
This must be taken into account when designing the
experimental setup (see e.g. [18] for further discussion).
In earlier system evaluations, two major strategies for
defining the splits used in cross-validation can be
observed. The approach used by Bunescu and Mooney
[10], which we consider the correct one, is to split the data
into folds on the level of documents. This guarantees that
all pairs generated from the same document are always
either in the training set or in the test set. Another
approach is to pool all the generated pairs together, and
then randomly split them to folds. To illustrate the signif-

http://www.biomedcentral.com/1471-2105/9/S11/S2

icance of this choice, consider two interaction candidates
extracted from the same sentence, e.g. from a statement of
the form "P; and P, [...] P;", where "[...]" is any statement
of interaction or non-interaction. Due to the near-identity
of contexts, a machine learning method will easily learn to
predict that the label of the pair (P;, P;) should match that
of (P,, P;). However, such "learning" will clearly not gen-
eralize. This approach must thus be considered invalid,
because allowing pairs generated from the same sentences
to appear in different folds leads to an information leak
between the training and test sets. Setre et al. [32]
observed that adopting the latter cross-validation strategy
on Almed could lead up to 18 F-score percentage unit overes-
timation of performance. For this reason, we will not con-
sider results listed in the "False 10-fold cross-validation"
table (2b) of Seetre et al. [32].

With these restrictions in place, we now turn to compari-
son with relevant results reported in related research, sum-
marized in Table 6. Among the work left out of the
comparison we note the results of Bunescu and Mooney
[10], who reported a performance of 54.2% F on Almed.
Though they used the same cross-validation strategy as the
one used in our experiments, their results are not compa-
rable to the ones included in the Table 6. They applied
evaluation criteria where it is enough to extract only one
occurrence of each mention of an interaction from each
abstract, while the results shown were evaluated using the
same criteria as applied here. The former approach can
produce higher performance: the evaluation of Giuliano
et al. [28] includes both alternatives, and their method
achieves an F-score of 63.9% under the former criterion,
which they term One Answer per Relation in a given Doc-
ument (OARD).

The best performing system, that of Miwa et al. [34], com-
bines the all-paths graph kernel, implemented based on
the description we provided in [24], together with other
kernels. Their results can be considered as a further valida-
tion about the suitability of the graph kernel for PPI-
extraction. Our implementation of the all-paths method
outperforms most of the other studies using similar eval-

Table 5: Cross-corpus results measured with F-score and thresholds based on the distribution of test set. F-score results for cross-
corpus testing with the thresholds chosen according to the positive/negative distribution of the test set. Rows correspond to training
corpora and columns to test corpora. A denote the difference between the F-score result and the result achieved with the optimal

threshold.

Almed A Biolnfer A HPRD50 A IEPA A LLL A
Almed - - 44.7% 2.4% 65.6% 3.4% 63.9% 3.5% 70.1% 4.4%
Biolnfer 42.6% 4.6% - - 62.0% 1.9% 66.9% 1.1% 75.6% 2.4%
HPRD50 39.1% 3.1% 40.0% 2.5% - - 63.3% 1.8% 58.5% 9.4%
IEPA 33.5% 5.6% 48.4% 3.3% 66.3% 1.2% - - 77.4% 0.2%
LLL 26.5% 6.8% 38.7% 3.8% 54.0% 5.8% 63.0% 1.9% - -

Page 9 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

Table 6: Comparison on Almed. (P)recision, (R)ecall, (F)-score
and AUC results for methods evaluated on Almed with the
correct cross-validation methodology. Note that the best
performing method, introduced by Miwa et al. [34], also utilizes
the all-paths graph kernel.

P R F AUC
Miwa et al. [34] - - 63.5% 87.9%
Miyao et al. [35] 54.9% 65.5% 59.5% -
Giuliano et al. [28] 60.9% 57.2% 59.0% -
All-paths graph kernel 529% 61.8% 564% 84.8%
Satre et al. [32] 64.3% 44.1% 52.0% -
Mitsumori et al. [39] 542% 42.6% 47.7% -

Van Landeghem et al. [29] 49% 44% 46% -
Yakushiji et al. [40] 33.7% 33.1% 33.4% -

uation methodology, with the exceptions being the
approaches Miyao et al. [35] and Giuliano et al. [28].

Miyao reports choosing in the experiments always the
optimal point from the precision/recall curve, an
approach we observe would raise our results around the
same level. The results of Giuliano et al. are somewhat sur-
prising, as their method does not apply any form of pars-
ing but relies instead only on the sequential order of the
words. This brings us to our third point regarding compa-
rability of methods. As pointed out by Setre et al. [32], the
Almed corpus allows remarkably different "interpreta-
tions" regarding the number of interacting and non-inter-
acting pairs. For example, where we have identified 1000
interacting and 4834 non-interacting protein pairs in
Almed, in the data used by Giuliano there are eight more
interacting and 200 fewer non-interacting pairs. The cor-
pus can also be preprocessed in a number of ways. In par-
ticular we noticed that whereas protein names are always
blinded in our data, in the data used by Giuliano protein
names are sometimes partly left visible. As Giuliano has
generously made his method implementation available
[36], we were able to test the performance of his system on
the data we used in our experiments. This resulted in an F-
score of 52.4%.

Finally, there remains an issue of parameter selection. For
sparse RLS the values of the regularization parameter A
and the decision threshold separating the positive and
negative classes must be chosen, which can be problem-
atic when no separate data for choosing them is available.
Choosing from several parameter values the ones that give
best results in testing, or picking the best point from a pre-
cision/recall curve when evaluating in terms of F-score,
will lead to an over-optimistic evaluation of performance.
This issue has often not been addressed in earlier evalua-
tions that do cross-validation on a whole corpus. We
choose the parameters by doing further leave-one-docu-
ment-out cross-validation within each round of 10-fold-

http://www.biomedcentral.com/1471-2105/9/S11/S2

cross-validation, on the nine folds that constitute the
training set.

As a conclusion, we observe the results achieved with the
all-paths graph kernel to be state-of-the-art level. How-
ever, differences in evaluation strategies and the large var-
iance exhibited in the results make it impossible to state
which of the systems considered can be expected in gen-
eral to perform best. We encourage future PPI-system eval-
uations to report AUC and F-score results over multiple
corpora, following clearly defined evaluation strategies, to
bring further clarity to this issue. For further discussion on
resolving the challenges of comparing biomedical relation
extraction results we refer to [37].

Conclusion

In this paper we have proposed a graph kernel approach
to extracting protein-protein interactions, which captures
the information in unrestricted dependency graphs to a
format that kernel based learning algorithms can process.
The method combines syntactic analysis with a represen-
tation of the linear order of the sentence, and considers all
possible paths connecting any two vertices in the resulting
graph. We demonstrate state-of-the-art performance for
the approach. All software developed in the course of this
study is made publicly available at [22].

A cross-corpus evaluation is performed to test whether an
extraction system will work beyond the corpus it was
trained on. We observe this to be the case, though results
are generally worse than when training and testing on
data from the same corpus. Having a larger amount of
data available leads to better performance. Extraction sys-
tems trained on the largest corpora work on the smallest
ones in some cases as well as systems trained on data
directly from the smaller corpora themselves.

We identify a number of issues which make results
achieved with different evaluation strategies and resources
incomparable, or even incorrect. In our experimental
design we consider the problems related to differences
across corpora, the effects different cross-validation strate-
gies have, and how parameter selection can be done. Our
recommendation is to provide evaluations over different
corpora, to use document-level cross-validation and to
always select parameters on the training set.

We draw attention to the behavior of the F-score metric
over corpora with differing pair distributions. The higher
the relative frequency of interacting pairs is, the higher the
performance can be expected to be. This is noticed both
for the graph kernel method and for the naive co-occur-
rence baseline. Indeed, the strategy of just stating that all
pairs interact leads to as high a result as 70% F-score on
one of the corpora. We consider AUC as an alternative

Page 10 of 12

(page number not for citation purposes)

BMC Bioinformatics 2008, 9(Suppl 11):S2

measure that does not exhibit such behavior, as it is invar-
iant to the distribution of pairs. The AUC metric is much
more stable across all the corpora, and never gives better
results than random for approaches such as the naive co-
occurrence.

Though we only consider binary interactions in this work,
the graph representations have the property that they
could be used to represent more complex structures than
pairs. The availability of corpora that annotate complex
interactions, such as the full Biolnfer and GENIA, makes
training a PPI extraction system for extracting complex
interactions an important avenue of future research (see
[38] for further discussion). However, how to avoid the
combinatorial explosion following from considering tri-
plets, quartets etc. remains an open question. Also, the
performance of the current approaches may need to be yet
improved before extending them to recognize complex
interactions.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

AA designed the graph kernel, implemented it with the
help of JB, and had the main responsibility for experi-
ments. AA, FG, JB and SP explored suitable features and
their representations. TP provided the sparse RLS algo-
rithms and advice on kernel design. AA was the main
author of the manuscript with contributions from all
other authors, all of whom read and approved the final
version.

Acknowledgements

We would like to thank Razvan Bunescu, Claudio Giuliano and Rune Satre
for their generous assistance in providing us with data, software and infor-
mation about their work on PPl extraction. Further, we thank CSC, the
Finnish IT center for science, for providing us extensive computational
resources. This work has been supported by the Academy of Finland and
the Finnish Funding Agency for Technology and Innovation, Tekes.

This article has been published as part of BMC Bioinformatics Volume 9 Sup-
plement | I, 2008: Proceedings of the BioNLP 08 ACL Workshop: Themes
in biomedical language processing. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/9?issue=S| |

References

I. Hirschman L, Park JC, Tsuijii J, Wong L, Wu CH: Accomplishments
and challenges in literature data mining for biology. Bioinfor-
matics 2002, 18(12):1553-1561.

2. Cohen KB, Hunter L: Natural language processing and systems
biology. In Artificial intelligence methods and tools for systems biology,
Volume 5 of Computational Biology Springer; 2004:147-173.

3. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB: Frontiers
of biomedical text mining: current progress. Briefings in Bioin-
formatics 2007, 8(5):358-375.

4, Bunescu R, Ge R, Kate R, Marcotte E, Mooney R, Ramani A, Wong Y:
Comparative Experiments on Learning Information Extrac-
tors for Proteins and their Interactions. Artificial Intelligence in
Medicine 2005, 33(2):139-155.

20.

21.

22.
23.

24.

25.

26.

27.

http://www.biomedcentral.com/1471-2105/9/S11/S2

Hunter L, Lu Z, Firby], Baumgartner WA, Johnson HL, Ogren PV,
Cohen KB: OpenDMAP: An open-source, ontology-driven
concept analysis engine, with applications to capturing
knowledge regarding protein transport, protein interactions
and cell-specific gene expression. BMC Bioinformatics 2008, 9:78.
Pyysalo S, Ginter F, Heimonen J, Bjérne], Boberg], Jarvinen J, Salako-
ski T: Biolnfer: A Corpus for Information Extraction in the
Biomedical Domain. BMC Bioinformatics 2007, 8(50):.

Kim JD, Ohta T, Tsujii J: Corpus annotation for mining biomed-
ical events from literature. BMC Bioinformatics 2008, 9:10.

Lease M, Charniak E: Parsing Biomedical literature. In Proceed-
ings of the Second International Joint Conference on Natural Language
Processing, Lecture notes in computer science Springer; 2005:58-69.

de Marneffe MC, MacCartney B, Manning CD: Generating Typed
Dependency Parses from Phrase Structure Parses. Proceed-
ings of the Fifth International Conference on Language Resources and Eval-
uation 2006:449-454.

Bunescu R, Mooney R: Subsequence Kernels for Relation
Extraction. In Advances in Neural Information Processing Systems 18
MIT Press; 2006:171-178.

Zelenko D, Aone C, Richardella A: Kernel methods for relation
extraction. Journal of Machine Learning Research 2003, 3:1083-1106.
Bunescu R, Mooney R: A shortest path dependency kernel for
relation extraction. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language
Processing Association for Computational Linguistics; 2005:724-731.
Girtner T, Flach PA, Wrobel S: On Graph Kernels: Hardness
Results and Efficient Alternatives. In Proceedings of the Sixteenth
Annual Conference on Learning Theory and Seventh Annual Workshop on
Kernel Machines, Lecture Notes in Artificial Intelligence Springer;
2003:129-143.

Pahikkala T, Tsivtsivadze E, Boberg), Salakoski T: Graph Kernels
versus Graph Representations: a Case Study in Parse Rank-
ing. Proceedings of the Fourth Workshop on Mining and Learning with
Graphs 2006:181-188.

Meyer CD: Matrix analysis and applied linear algebra Society for Industrial
and Applied Mathematics; 2000.

Suykens JAK, Vandewalle |: Least Squares Support Vector
Machine Classifiers. Neural Processing Letters 1999, 9(3):293-300.
Rifkin R, Yeo G, Poggio T: Regularized Least-squares Classification, Vol-
ume 190 of NATO Science Series Ill: Computer and System Sciences Vol-
ume chap 7. 10S Press; 2003:131-154.

Pahikkala T, Boberg), Salakoski T: Fast n-Fold Cross-Validation
for Regularized Least-Squares. Proceedings of the Ninth Scandina-
vian Conference on Artificial Intelligence, Otamedia 2006:83-90.

Fundel K, Kuffner R, Zimmer R: RelEx-Relation extraction using
dependency parse trees. Bioinformatics 2007, 23(3):365-371.
Ding J, Berleant D, Nettleton D, Wurtele E: Mining MEDLINE:
abstracts, sentences, or phrases? Proceedings of the Pacific Sympo-
sium on Biocomputing 2002:326-337.

Nédellec C: Learning language in logic — genic interaction
extraction challenge. Proceedings of the 4th Learning Language in
Logic Workshop 2005:31-37.
Conversions for five PPl corpora
pora]

Pyysalo S, Airola A, Heimonen J, Bjorne J, Ginter F, Salakoski T: Com-
parative Analysis of Five Protein-protein Interaction Cor-
pora. BMC Bioinformatics 2008, 9(Suppl 3):S6.

Airola A, Pyysalo S, Bjorne |, Pahikkala T, Ginter F, Salakoski T: A
Graph Kernel for Protein-Protein Interaction Extraction.
Proceedings of the Workshop on Current Trends in Biomedical Natural Lan-
guage Processing 2008:1-9.

Heimonen J, Pyysalo S, Ginter F, Salakoski T: Complex-to-pairwise
mapping of biological relationships using a semantic network
representation. Proceedings of the Third International Symposium on
Semantic Mining in Biomedicine 2008:45-52.

Clegg AB, Shepherd A: Benchmarking natural-language parsers
for biological applications using dependency graphs. BMC Bio-
informatics 2007, 8:24.

Pyysalo S, Ginter F, Laippala V, Haverinen K, Heimonen J, Salakoski T:
On the unification of syntactic annotations under the Stan-
ford dependency scheme: A case study on Biolnfer and
GENIA. In Proceedings of the Workshop on Biological, translational and
clinical language processing Association for Computational Linguistics;
2007:25-32.

[http://mars.cs.utu.fi/PPICor

Page 11 of 12

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9?issue=S11
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12490438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17977867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15811782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15811782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15811782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18237434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17291334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17291334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182099
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17142812
http://mars.cs.utu.fi/PPICorpora
http://mars.cs.utu.fi/PPICorpora
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18426551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17254351

BMC Bioinformatics 2008, 9(Suppl 11):S2

28.

29.

30.

31

32

33.

34.

35.

36.
37.

38.

39.

40.

Giuliano C, Lavelli A, Romano L: Exploiting Shallow Linguistic
Information for Relation Extraction From Biomedical Liter-
ature. Proceedings of the | Ith Conference of the European Chapter of
the Association for Computational Linguistics 2006.

Van Landeghem S, Saeys Y, Peer Y Van de, De Baets B: Extracting
Protein-Protein Interactions from Text using Rich Feature
Vectors and Feature Selection. Proceedings of the Third Interna-
tional Symposium on Semantic Mining in Biomedicine 2008:77-84.

Hanley JA, McNeil B]: The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology
1982, 143:29-36.

Bradley AP: The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition
1997, 30(7):1145-1159.

Saxtre R, Sagae K, Tsuijii J: Syntactic features for protein-protein
interaction extraction. Second International Symposium on Lan-
guages in Biology and Medicine short papers 2007.

Caporaso]G, Deshpande N, Fink JL, Bourne PE, Cohen KB, Hunter
L: Intrinsic Evaluation of Text Mining Tools May Not Predict
Performance on Realistic Tasks. Proceedings of Pacific Symposium
on Biocomputing 2008:640-651.

Miwa M, Sztre R, Miyao Y, Ohta T, Tsujii J;: Combining Multiple
Layers of Syntactic Information for Protein-Protein Interac-
tion Extraction. Proceedings of the Third International Symposium on
Semantic Mining in Biomedicine 2008:101-108.

Miyao Y, Sxtre R, Sagae K, Matsuzaki T, Tsujii J: Task-oriented
Evaluation of Syntactic Parsers and Their Representations.
Proceedings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies 2008:46-54.

java Simple Relation Extraction [http://tcc.itc.it/research/tex
tec/tools-resources/jsre.html]

Pyysalo S, Setre R, Tsuijii J, Salakoski T: Why Biomedical Relation
Extraction Results are Incomparable and What to do about
it. Proceedings of the Third International Symposium on Semantic Mining
in Biomedicine 2008:149-152.

Bjorne J, Pyysalo S, Ginter F, Salakoski T: How Complex are Com-
plex Protein-protein Interactions? Proceedings of the Third Inter-
national Symposium on Semantic Mining in Biomedicine 2008:125-128.
Mitsumori T, Murata M, Fukuda Y, Doi K, Doi H: Extracting Pro-
tein-Protein Interaction Information from Biomedical Text
with SVM. [EICE — Transactions on Information and Systems 2006,
E89-D(8):2464-2466.

Yakushiji A, Miyao Y, Tateisi Y, Tsujii]: Biomedical information
extraction with predicate-argument structure patterns. Pro-
ceedings of the First International Symposium on Semantic Mining in Bio-
medicine 2005:60-69.

http://www.biomedcentral.com/1471-2105/9/S11/S2

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7063747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7063747
http://tcc.itc.it/research/textec/tools-resources/jsre.html
http://tcc.itc.it/research/textec/tools-resources/jsre.html
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

Errata for All-paths graph kernel for
protein-protein interaction extraction with
evaluation of cross-corpus learning

Antti Airola
February 27, 2009

This is an errata for the article All-paths graph kernel for protein-protein
interaction extraction with evaluation of cross-corpus learning [1, 2|.

The behavior of the implementation of the graph kernel used in our ex-
periments deviates from how the method is described in the article. The
difference is in the construction of the matrix G, which is introduced to-
wards the end of the section “The all-paths graph kernel”.

Let L € R™ ™ be the label allocation matrix and W € R™*™ the final
adjacency matrix of the graph. Then, the definition given for GG in the article
is

G=LWL" (1)

When written open as a sum this becomes

Gij = Z Z L WiLj,.

k=1 I=1

However, when computing the values of the entries in matrix GG, the imple-
mentation used in the experiments erroneously had a reassignment operation
in place of the sum operation. The resulting behavior can be very closely
approximated by the following definition for G.

Gij = max {LixWiiLji}- (2)

The resulting difference is that instead of summing together the weights
of all paths connecting two labels, we take the maximum over these.

The results reported in [1, 2] are based on using (2). Further experiments
seem to indicate, that using the latter definition of G can lead to better

performance, than using the former definition (roughly, by order of 2-3 F-
score units on the five corpora). The evidence is however not conclusive, as
the differences fall within variance in performance estimation, and contrary
results have also been observed in a re-implementation of the method. We
note that both (1) and (2) lead to valid kernels, and thus we encourage
anyone using the graph kernel to try both variants of the method.

The graph kernel implementation that was made available at http://
mars.cs.utu.fi/PPICorpora/GraphKernel .html also originally used defi-
nition (2). An implementation of definition (1) has been added to the soft-
ware to facilitate replication efforts.

Acknowledgments

We would like to thank Erik Fassler for bringing this matter to our attention.

References

[1] A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Ginter, and
T. Salakoski. All-paths graph kernel for protein-protein interaction ex-
traction with evaluation of cross-corpus learning. BMC' Bioinformatics,
special issue, 9(Suppl 11):S2, 2008.

[2] A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Ginter, and
T. Salakoski. A graph kernel for protein-protein interaction extraction.
In Proceedings of the Workshop on Current Trends in Biomedical Natural
Language Processing, pages 1-9, 2008.

111.

112,
113.

114.
115.

116.
117.

118.
119.

120.
121.
122,
123.
124,
125,
126.
127.
128.
129,
130.
131.
132,
133.

134.
135.

136.
137.
138.

139.
140.
141.
142,
143.

144.

Turku Centre for Computer Science
TUCS Dissertations

Camilla J. Hollanti, Order-Theoretic Methods for Space-Time Coding: Symmetric
and Asymmetric Designs

Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption
Estimation

Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods

Petri Salmela, On Communication and Conjugacy of Rational Languages and the
Fixed Point Method

Siamak Taati, Conservation Laws in Cellular Automata

Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary
Operations, Parallelism and Computation

Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems

Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic
Vowels

Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
Johanna Tuominen, Formal Power Analysis of Systems-on-Chip

Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip

Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass
Forms

Linda Mannila, Teaching Mathematics and Programming - New Approaches with
Empirical Evaluation

Hanna Suominen, Machine Learning and Clinical Text: Supporting Health
Information Flow

Tuomo Saarni, Segmental Durations of Speech

Johannes Eriksson, Tool-Supported Invariant-Based Programming

Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

Yong Liu, Solving the Puzzle of Mobile Learning Adoption

Stina Ojala, Towards an Integrative Information Society: Studies on Individuality
in Speech and Sign

Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
Ville Junnila, On Identifying and Locating-Dominating Codes

Andrzej Mizera, Methods for Construction and Analysis of Computational Models
in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

Csaba Raduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

Jari Kyngas, Solving Challenging Real-World Scheduling Problems

Arho Suominen, Notes on Emerging Technologies

J6zsef Mezei, A Quantitative View on Fuzzy Numbers

Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of
Development

Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace
Estimation

TURKU
CENTRE for
COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

? University of Turku
& A ,é Faculty of Mathematics and Natural Sciences
§ é e Department of Information Technology
7// \\§ e Department of Mathematics

2N Turku School of Economics

e Institute of Information Systems Science

Abo Akademi University
Division for Natural Sciences and Technology
e Department of Information Technologies

%o

ISBN 978-952-12-2674-8
ISSN 1239-1883

Antti Airola Kernel-Based Ranking

Antti Airola Kernel-Based Ranking

Antti Airola Kernel-Based Ranking: Methods for Learning and Performance Estimation

