Customized agile development process for
embedded softwar e development

UNIVERSITY OF TURKU
Department of Information Technology
Master of Science in Technology Thesis

June 2010
Tomi Juhola

Inspectors:
Tuomas Makila
Ville Leppanen

UNIVERSITY OF TURKU
Department of Information Technology

TOMI JUHOLA: Customized agile development processeémbedded software
development

Master of Science in Technology Thesis, 106 p.
Software Engineering
June 2010

Agile software development has grown in populasiyrting from the agile manifesto
declared in 2001. However there is a strong behat the agile methods are not
suitable for embedded, critical or real-time sofevalevelopment, even though
multiple studies and cases show differently. Thissts will present a custom agile
process that can be used in embedded softwareogenent.

The reasons for presumed unfitness of agile methodembedded software
development have mainly based on the feeling ofe¢hmethods providing no real
control, no strict discipline and less rigor engirieg practices. One starting point is
to provide a light process with disciplined apptoao the embedded software
development.

Agile software development has gained popularitg thuthe fact that there are still
big issues in software development as a whole.eBt®jfail due to schedule slips,
budget surpassing or failing to meet the businessisr This does not change when
talking about embedded software development. Thesges are still valid, with
multiple new ones rising from the quite complex daratd domain the embedded
software developers work in. These issues are anethrting point for this thesis.

The thesis is based heavily on Feature Driven gweént, a software development
methodology that can be seen as a runner up tmadsé popular agile methodologies.
The FDD as such is quite process oriented andclarig few practices considered
commonly as extremely important in agile developtmerthodologies. In order for

FDD to gain acceptance in the software developnoemimunity it needs to be

modified and enhanced.

This thesis presents an improved custom agile psot®at can be used in embedded
software development projects with size varyingrfrb0 to 500 persons. This process
is based on Feature Driven Development and by ldaitparts to Extreme
Programming, Scrum and Agile Modeling. Finally thigsis will present how the
new process responds to the common issues in thedztad software development.

The process of creating the new process is evaluatethe retrospective and

guidelines for such process creation work are thteed. These emphasize the agility
also in the process development through early asguént deliveries and the team
work needed to create suitable process.

Keywords: agile software development, Feature-Driv®evelopment, Agile
Modeling, embedded software development, softwaxeldpment process

TURUN YLIOPISTO
Informaatioteknologian laitos

TOMI JUHOLA: R&aataloity ketteré ohjelmistokehitysgessi sulautetun ohjelmiston
kehittdmiseen

Diplomity6, 106 s.
Ohjelmistotekniikka
Kesakuu 2010

Kettera ohjelmistokehitys on kasvattanut suosioteetterdn manifestin julkaisusta
vuonna 2001 lahtien. Tasta huolimatta yha uskota#g, ketterat menetelmat eivat
ole sopivia sulautettujen, kriittisten tai tosiagtan ohjelmistojen kehittdamiseen,
vaikka useat tutkimukset ja tapaukset ovat toderoggn. Taméa opinnayte esittelee
raataloidyn ketterdn prosessin, jota voi kayttdawatun ohjelmiston kehittamiseen.

Ketterien menetelmien oletettuun sopimattomuuteeausettujen jarjestelmien
kehittamiseen on useita syitd, jotka perustuvattemmokseen, jonka mukaan
menetelmét eivat tarjoa oikeaa kontrollia, tiukkkarinalaisuutta ja tasmallisia
kehityskaytantdja. Yksi lahtokohta on tarjota kevjg kurinalainen prosessi
sulautettujen jarjestelmien kehittamiseen.

Kettera ohjelmistokehitys on saavuttanut suosiotkoska nykyisessa
ohjelmistokehityksessd on suuria ongelmia. Prdjektiepaonnistuvat

aikatauluhaasteiden, budjettiylitysten tai liiketomtatarpeisiin sopimattomuuden
vuoksi. Tilanne ei ole erilainen sulautettujen dmjstojen tapauksessa. Nama
ongelmat ovat edelleen valideja ja lisdksi monia itamuongelmia esiintyy

monimutkaisesta ja vaikeasta alasta johtuen. Optenkayttdd naitd ongelmia
lahtokohtana prosessikehitykselle.

Opinnayte perustuu voimakkaasti Feature Driven yraeent menetelmaan, joka on
melko suosittu kettera menetelmd. FDD on melko gss®rientoitunut ja siit
puuttuu monia kaytantoja, joita pidetaan erittéirkeéana ketterille menetelmille. Jotta
FDD saadaan paremmin kayttoon ohjelmistokehitysgbgsa, sitd pitad muokata ja
parannella.

Opinnayte esittelee parannellun raataldidyn kettgrésessin, jota voidaan kayttaa
sulautettujen jarjestelmien projekteihin, joiderk&ovoi vaihdella kymmenesta 500
henkilo6bn. Tama prosessi perustuu Feature Drivemeldpment menetelmaan ja
sisaltdd myos sopivia osia Extreme Programming,urScija Agile Modeling
menetelmistd. Opinnayte nayttdd myods kuinka uusisgssi vastaa yleisimpiin
sulautetun ohjelmistonkehityksen haasteisiin.

Uuden prosessin kehitysprosessi arvioidaan retkbisgesa ja prosessikehitykseen
esitetddn ohjeita. Nama ohjeet korostavat kett&ryynyos prosessikehityksessa
aikaisten ja jatkuvien toimitusten avulla seka iiyiiskentelyn tarkeytta painottaen.

Asiasanat: kettera ohjelmistokehitys, Feature Driidevelopment, Agile Modeling,
sulautetun ohjelmiston kehitys, ohjelmistokehitys@ssi

Table of Contents

TABLE OF CONTENTS
1 INTRODUCTION

2 AGILE DEVELOPMENT
2.1 Agile Development
2.2 Agile Manifesto
2.3 Feature Driven Development
2.4 Agile Modeling
2.5 Popular agile methods
2.5.1 Extreme Programming
2.5.2 Scrum
2.5.3 Other methodologies

2.6 Pragmatic developer

2.7 Motivation for selecting FDD as a base process

3 EMBEDDED AND REAL-TIME SYSTEMS
3.1 What are embedded and real-time systems?
3.2 Constraints in embedded and real-time system design

3.3 Issues in embedded and real-time software development
3.3.1 Response time and timing related issues
3.3.2 Platform architecture related issues
3.3.3 Embedded software development tools related issues
3.3.4 Development process related issues
3.3.5 Programming and design practices related issues
3.3.6 Project size and complexity related issues
3.3.7 Issues from typical constraints

12
17
21

29
29
32
34

41

42

44
44
a5

48
50
51
51
52
53
58
58

4 PROCESS FOR EMBEDDED AND REAL-TIME SOFTWARE DEVELOPMENT 61

4.1 Proposed process for embedded software development

4.2 Process description
4.2.1 Subprocess 1: Develop an Overall Model
4.2.2 Subprocess 2: Build a Features List
4.2.3 Subprocess 3: Plan by Feature
4.2.4 Subprocess 4: Design by Feature

61

63
63
65
67
69

1 (106)

4.2.5 Subprocess 5: Build by Feature 71

4.3 Practices used with process 76
4.3.1 Feature-Driven Development practices 77
4.3.2 Agile Modeling practices 83
4.3.3 Other agile practices 86

4.4 How the process meets the development issues? 87
4.4.1 Response time and timing 88
4.4.2 Platform architecture 88
4.4.3 Embedded software development tools 89
4.4.4 Typical constraints 90
4.4.5 Development process 90
4.4.6 Programming practices 91
4.4.7 Design practices 91
4.4.8 Project size and complexity 92

5 RETROSPECTIVE OF THE PROCESS DEVELOPMENT 94

6 SUMMARY 99

REFERENCES 100

TABLE OF FIGURES

FIGURE 1 CHAOS 2004 SURVEY RESULTS [INFOO06]. 6
FIGURE 2 ITERATIVE AND INCREMENTAL MODEL. 9
FIGURE 3 TRADITIONAL WATERFALL MODEL. 9
FIGURE 4 ALMOST HALF OF THE FEATURES ARE NEVER USED [JOHNO2]. 10
FIGURE 5 AGILE MANIFESTO [MANO1]. 13
FIGURE 6 PRINCIPLES OF AGILE MANIFESTO [MANO1]. 16
FIGURE 7 DESCRIPTION HOW THE PRINCIPLES MAP TO THE VALUES. 17
FIGURE 8 BASIC PROCESS FLOW OF FDD [NEBUOS]. 18

FIGURE 9 FDD SPECIFIC FEATURE MILESTONES AND CORRESPONDING FEATURE READINESS [PALMO02].21
FIGURE 10 AGILE MODELING PRINCIPLES AND DESCRIPTIONS ACCORDING TO [AMBO7A], [AMBO02] 24

FIGURE 11 AGILE MODELING BEST PRACTICES AND THEIR RELATIONSHIPS [AMBO7A]. 25
FIGURE 12 AGILE MODELING PRACTICES ACCORDING TO [AMBO02] AND [AMBO7A]. 28
FIGURE 13 THE RELATIONSHIP AND ATTRIBUTES OF XP VALUES, PRINCIPLES AND PRACTICES [BECKO05].30
FIGURE 14 XP IS USED IN PROJECTS CLOSE TO THE CENTER [ANGO6]. 31
FIGURE 15 SCRUM FLOW FROM [MOUO08]. 33
FIGURE 16 SCRUM FLOW MODIFIED FROM [SCHWO01]. 34
FIGURE 17 THE AMDD LIFECYCLE: PROJECT VIEWPOINT. 36
FIGURE 18 THE AGILE UNIFIED PROCESS (AUP) LIFECYCLE [AMBO5]. 37
FIGURE 19 CRYSTAL FAMILY LIGHTWEIGHT METHODOLOGIES [COCKO1]. 38
FIGURE 20 DSDM PROJECT LIFECYCLE [DSDMO3]. 39
FIGURE 21 TABLE OF COMMON DESIGN METRICS [AWAD96]. 46
FIGURE 22 EXAMPLE OF CURRENT SET-TOP BOX ARCHITECTURE [XILOO]. a7
FIGURE 23 ISSUES IN EMBEDDED AND REAL-TIME SOFTWARE DEVELOPMENT. 49
FIGURE 25 ETVX TEMPLATE. 62
FIGURE 26 PROCESS FLOW OF THE PROPOSED PROCESS. 63
FIGURE 28 RESPONSE TIME AND TIMING RELATED ISSUES WITH HELPING PRACTICES. 88
FIGURE 29 PLATFORM ARCHITECTURE RELATED ISSUES WITH HELPING PRACTICES. 89

2 (106)

FIGURE 30 EMBEDDED SOFTWARE DEVELOPMENT TOOLS RELATED ISSUES WITH HELPING PRACTICES. 89

FIGURE 31 TYPICAL CONSTRAINTS RELATED ISSUES WITH HELPING PRACTICES. 90
FIGURE 32 DEVELOPMENT PROCESS RELATED ISSUES WITH HELPING PRACTICES. 90
FIGURE 33 PROGRAMMING PRACTICES RELATED ISSUES WITH HELPING PRACTICES. 91
FIGURE 34 DESIGN PRACTICES RELATED ISSUES WITH HELPING PRACTICES. 92
FIGURE 35 PROJECT SIZE AND COMPLEXITY RELATED ISSUES WITH HELPING PRACTICES. 92

3 (106)

1 Introduction

Agile software development has grown in populasitgrting from the agile manifesto

declared in 2001. However there is a strong béhiaf the agile methods are not suitable
for embedded, critical or real-time software depelent, even though multiple studies
and cases show differently. This thesis will préserustom agile process that can be

used in embedded software development.

The reasons for presumed unfithess of agile methiodsembedded software
development have mainly based on the feeling o$ahmethods providing no real
control, no strict discipline and less rigor engiriag practices. One starting point is to
provide a light process with disciplined approaah the embedded software

development.

Agile software development has gained popularity thuthe fact that there are still big
issues in software development as a whole. Projadtslue to schedule slips, budget
surpassing or failing to meet the business neelds does not change when talking
about embedded software development. These isseedila valid, with multiple new

ones rising from the quite complex and hard dontaénembedded software developers

work in. These issues are another starting poirtis thesis.

The thesis is based heavily on Feature Driven Dgweént, a software development
methodology that can be seen as a runner up todst popular agile methodologies.
The FDD as such is quite process oriented andcising few practices considered
commonly as extremely important in agile developmmethodologies. In order for
FDD to gain acceptance in the software developnwmhmunity it needs to be

modified and enhanced.
The aim of this thesis is to present an improvestam agile process that can be used in

embedded software development projects with sizging from 10 to 500 persons.

This process is based on Feature Driven Developarahby suitable parts to Extreme

4 (106)

Programming, Scrum and Agile Modeling. Finally ttigsis will present how the new

process responds to the common issues in the emthasodtware development.

The motivation for development of an own agile @& was to be able to provide a
suitable agile embedded software development psof@scustomers alongside with
training and consulting services. The processrgetad for a major customer in Finland
that has a need for agile methods, but that issmo¢ how they will fit into their

environment and how to adopt the process.

5 (106)

2 Agile development

This chapter describes what the agile developmesans and why it has become very
popular during the last decade. The basis of agplitware development, the Agile
manifesto [Man01], is discussed also to descrileerttionale of the values in agile

manifesto and also defining how the values andcjpies correlate with each other.

After that the Feature Driven Development [Palm@2yl Agile Modeling [AmbO02] are

presented in detail as they are important basisherproposed process of this thesis.
After this other agile software development meth@de presented, including the
popular Extreme programming [Beck99], [Beck05] & atum [SchwO01], and also a

rationale for choosing the Feature Driven Developnmepresented.

2.1 Agile Development

Traditional software development relies ¢ CHAOS 2004

waterfall model [Roy70] based processe

_ _ SURVEY RESULTS
These start from requirements gatherir
moving forward to design phase and th Resolution of Projects
finally at the end implementing and testir chajlenged
the system. These processes have ti 53%

procedures for work and tigh

Succeeded
29%

requirements for delivered artifacts. St
very large number of software

development projects fails. Standis

Group has followed the state of softwa Failed
18%
development continuously since the ’

Copyright & 2006 The Stendish Group Intemationzl, Inc..

Figure 1 CHAOS 2004 Survey results[Info06].

6 (106)

published the first CHAOS report in 1994 [Sta94jarflish group reports in the
CHAQOS report of 2004 that only 29 % of softwarejpcts are successful [Sta04] as
displayed in Figure 1. Also Capers Jones has redesimilar results from his study
spanning from 1995 to 2004 and concentrating on B&Qe software projects
[Jones04]. The study reports that 175 of the ptsjét0 %) experienced major delays

and cost overruns.

lan Sommerville in his book, “Software Engineerif@omO04], offers an explanation
by pointing out that the traditional developmenttimoels and processes originate from
large, critical, long-lived systems developed bstrlbuted teams and composed from a

large number of individual subprograms.

The traditional software development usually feagua very detailed project planning,
formalized quality assurance, many tools aidinglyeis and design and, most of all,
very controlled and tight software development psses. These cause some overhead
and wasted effort in planning, designing and doauing, but Sommerville thinks that
this overhead is justified when talking about vdayge systems and distributed
development teams. However when the traditionawsot development methods are
used in small or medium sized projects, the waate lave a big impact. This leads,
according to Sommerville, on situations where ntoree is spent on how the system

should be developed than on the development atidgetself. [Som04]

Sommerville thinks that the problems of traditioregdproach arise also from the
markets of today. The software companies operata iglobal, rapidly changing
environment where they have to respond to new appities and markets. This leads
to a situation where the complete set of stableirements are usually impossible to
deliver. The requirements change according to msrkad new knowledge gained
during development. Sometimes the real requiremeane found after delivery of the
software from the feedback of customers and udés. leads to a situation where a
project is delayed because of new requirementstlaisdagain leads to disappointed
customers because of slipping schedules, growirdpdts and, in worst cases, bad
guality. [Som04]

7 (106)

Software is often compared to product manufactueng from this metaphor comes
often the reason for software development procedsemanufacturing the product
guality comes from an improved process that isllffjretandardized to produce suitable
quality products every time. However in softwareelepment the case is not the same
from three reasons introduced by lan SommervilEj84] and an additional reason by
Mary and Tom Poppendieck [Poppen07]:

1. The specification should tell what the customer twaiowever in software
development there are requirements that come fremeldpment organization,
e.g. maintainability, reusability [Som04].

2. Certain quality characteristics (e.g. maintain&gilsecurity) can not be or are
extremely hard to specify in an unambiguous wayr|G4).

3. It is extremely difficult or even impossible to ¥&ia complete specification in
advance. Even though the software would perfedtlthé specification it might
not suit the needs of the users [Som04].

4. Software development processes are subject to aminshange and require

learning from the developers [Poppen07].

The previous four reasons are also the main reagbes deciding what kind of process
is used in product development. There are two wiffeways: The empirical process
control and the defined process control (or planpegtess control) [Poppen07]. The
empirical process starts with a high-level prodtaricept, called e.g. a vision in Scrum
[SchwO01]. The concept is interpreted to a prodyctising well-defined feedback loops
that adjust activities constantly [Poppen07]. Tdefined process control creates a
complete product specification and delivers a pecbdased on that according to a plan
[Poppen07]. The reasons in previous paragraph dhirive the software projects to

select the empirical process as the way to develofpware. Agile development

methodologies are based on empirical process doatih continuous feedback. This
has also been used in many other creative areago and in different product

development projects, e.g. Toyota uses empiricatgsses in development of new cars

in their own Toyota Product Development System QUik

8 (106)

The Agile development offers a cure for these motd, by focusing on the software
itself. The principles of agile development areatié®d in Agile Manifesto [Man01]
that was published by a group of software develpeelieving in light-weight
methodologies. There are many features that arenoomto most agile development
methodologies. The methodologies are individuaktdagerative, incremental, focusing
on client valued functions and change adaptation.

The first basic principle is that the individualsdainteractions are more important than
processes and tools. This means that face-to-fasd-time communication is

emphasized and written documents should be produclgdvhen needed. What comes
to individuals, one of the Agile Manifesto signaésr Robert C. Martin describes
[Mart03] that the professional goal of every softevdeveloper is to deliver the highest

possible value to their employers and customers.

The incremental and iterative design starts frasmall set of requirements that are best
understood and have the highest priority and usesethio develop working software
with some client valued functions. The softwaree$ivered or shown to customers and
users and from the feedback new requirements amedforhe real requirements come
up in a very early stage of the project insteathefend of the project that was the case
with traditional approach. This short step, ordtem, is repeated until the software is
ready. The incremental development in a way refléoe fundamental way we all tend
to solve problems. Taking a small subproblem @&na taind solving that until the whole

problem is solved [Mart98]. The difference in ttamhal iterative waterfall model and

s Y

Planning .
_ \ Requirements
Fualuation ‘ Requirements ‘ P |a nni ng
! | |
‘Deygn
’ Testing t Design ‘ DeVE|0pment
| =
‘ Testing

Develapment

e

Figure 3 Traditional waterfall model.
Figure 2 Iterative and Incremental model.

9 (106)

the agile iterative and incremental model can @ se process models (see Figures 2
and 3).

Focusing on client valued functions makes sure titclient gets as much value as
possible from the project. Instead of deliveringgéa buggy software with all the
functions required, the agile developers deliverrkiviy software with the most

important features. According to Jim Johnson, thai@nan of Standish Group, only 20

% of the requirements ar
always or often used in Features and functions used

the requirements are

rarely or never used
[John02]. The data is alsa
displayed in Figure 4.

Sometimes;
16 %

Often; 13 %
In Lean software '(
development this is seer

as one of the three bigges

wastes in software

development [Poppen03],

[Poppen07]. Figure 4 Almost half of the features are never used [John02].

In today's software projects there will be a lamgenber of changes. The amount of
changes has been estimated to be between 1 % taoBréguirements changes per
calendar month and averaging to 25 % or more rements changes per project
[Jones97]. The agile development welcomes thesegesa The changes do not make
development as hard as it makes in traditional lopweent because the changes come
steadily through the project. In traditional deystent most of the changes seem
appear at the final stages as the acceptancegestth high level functional testing are
performed. At that time the responding to them listdarder. Incremental development
makes implementing changes easier as the chantemtaffect the whole system but

just the increments of software already develojBtk05].

10 (106)

The agile development was summarized by Andrew Humt Venkat Subramaniam
with a one phrase: “Agile development uses feedlbackake constant adjustment in a
highly collaborative environment” [Sub06]. Kent Becthe father of extreme

programming (XP), compares the agile developmedté&n to driving a car on a curvy

road; you have to make all the time some adjustsnémtreach your destination
[Beck99].

The agile development has naturally its own prolslemd it has been criticized. Maybe
the most well known criticism has come from BarrgeBm and Richard Turner, who
suggest that risk analysis should be used to chbeteeen agile (adaptive) and
traditional plan-driven (predictive) methods [Boed8h The customer involvement is
usually hard as the customers are used to giviggirements and making a fixed price
contract on building the software according to ¢hosquirements. Customers are not
ready to invest more time to the software develapmEhe emphasizing of interactions
and individuals is criticized as different peopleyrnhave a hard time working and
communicating together. So bringing face-to-facencmnication as a main way to
communicate makes some individuals uneasy. As gile development seeks always
the simplest possible solutions this may lead sitwation where a lot of extra work is

needed in order to maintain that simplicity [Mait03

On the management level the agility can cause smngact problems. As mentioned
before, the industry is used to give requirementsr@ceive working software more or
less on time. The agile way of development requinesre feedback and more
communication from the customer’s side. This is stinmg that is not easy to explain
to customers and to make the customers also coetmnit the project. The agile
promise to the customers is to bring the developtrser to the customers and help
them in the following issues [Poppen03b]:

e What is the simplest way to address the custorhasiess problem?

e How to best deliver what is needed?

e How to deal with changes over time?

11 (106)

Along these criticisms it is usually said that agidevelopment fits best for small and
medium sized projects and not for distributed degwelent, critical system development
or embedded systems development [Som04]. Howewewigw on project size has
changed and there are already articles on agitevard development on large projects
[EckO4], [Lef07], [Schw07] as well as case studiesthe suitability of agile approach

to such projects [Haa07].

The agile approach is said to be bad for embedddévese development as the
embedded software depends so much on the hardwdréhe final hardware may be
unavailable until the final stages of the projddte process described in this thesis tries
to answer some of the criticism before and devaltyasic process that can be used as a

basis for embedded systems development projectsrping size.

2.2 Agile Manifesto

"Agile methods" is a common term for a family ajHi-weight development processes,
not a single approach to software development.OBl2 17 light-weight methodology
experts gathered at the Snowbird ski resort in Wtatiscuss the unifying of different
light-weight processes. There were representatifresn Extreme Programming
[Beck99], Feature-Driven Development [Palmo02], &BR [Schw01l], DSDM
[DSDMO03], Adaptive Software Development [HighOO]ryStal [Cock01], Pragmatic
Programming [Hunt99], etc. All of the representasivagreed that there was a need for
an alternative to traditional documentation driveeavyweight software development
processes. They created and signed the Agile Saftidavelopment Manifesto, which
defines agile development, and accompanying 12 ggihciples, guiding the software
professionals. This meeting also gave the birthAgile Alliance, a non-profit
organization that supports individuals and orgaiors who use agile approaches to

develop softwargMan01]

The significance of the manifesto in my opiniorthat it created a tempting brand for

the lightweight processes and described a practioal reasonable basis for agile

12 (106)

software development. This has certainly helped itteeeasing popularity of agile
development amongst the software developers adethelopers have been able to see

the conflict with these values and the contradéctinrrent values.

The manifesto promotes four items that should beeeh Individuals and interactions,
working software,

customer collaboration Manifesto for Agile Software Development
and responding to We are uncovering better ways of developing so#waf

change. These ar by doing it and helping others do it. Through thizrk

treated as the mos we have come to value:

important pieces Of
software developmen| Individuals and interactions over processes and tools
projects. The works sq Working software over comprehensive documentation
that, the items on thd Customer collaboration over contract negotiation
right side in Figure 5 Responding to change over following a plan

are very important buf

. That is, while there is value in the items on figat; we
their importance should

. value the items on the left more.
not exceed the items o

Figure 5 Agile Manifesto [Man01].
the left side. Even if some people seem to migimétrthe manifesto, the items on the

right side should not be forgotten, but they shawdtibe used to create waste. [Man01]

The first value, individuals and interactions opeocesses and tools, reminds that the
software is not created by just processes or tboitsthat people are needed in order to
make working and valuable software. The interactidnthese individuals is often
something that is forgotten as a key point in safevdevelopment. In fact Tom De
Marco and Timothy Listener stated some resultshafirtresearches in their book
Peopleware [DeM87]: “The major problems of our wark not so much technological
as sociological in natureThis is further interpreted by De Marco and Listeteemean
that the one key success factor in software dewedop is the ease and efficiency of

communication between people.

13 (106)

The second value, working software over comprelvendbcumentation, seems like
guite obvious. The aim is to create working sofevaComprehensive documentation
should not go ahead of working software. This vakleo creates a common
misunderstanding that agile software developmentanme that there is no

documentation, but the real idea is that unnecesdacumentation is avoided. Each
created document should have value to the customsome other stakeholders. Fred
Brooks has identified few needed documentationsdétware in his essay "The Other
Face" [Bro75]: User's manual to know how it is ysedt cases for proving it works, a
flow chart (or nowadays architecture descriptiorl atass diagrams) to be able to
modify it and a simple, commented and readablecgoapnde to define the software
behavior more precisely. These can be thoughteasdeded, valuable documentation.
When creating additional documentations, the vabfiethat document should be

considered before creating it.

Next value, customer collaboration over contragfatiations, is quite hard to follow in
modern business environment. The aim is to makeudstomer happy, meet his needs,
and create a tight cooperative relationship with.hThis also emphasizes the value of
long time customers. Instead of making as goodoemeéficial contracts as possible and
trying to find holes in the contract to make thdtware easier to develop, the
developers and the customer should work closelgttag to find out the customer’s
needs and to build the best possible softwarevamgtime and budget frame to meet
these needs. This is in fact mandatory way to defaguirements, as it has been noted
that there is no way for the customer to define rdguirements in advance [Bro75].
This way also the customer’s confidence and satisfiais build up day by day and the

developers learn the customer’s domain area hitléttle.

The last value states that it is more importamespond to change than to follow a plan.
Again some might say this is more common sensegbfiware development. Software
development is performed in quite turbulent enwinent where change is inevitable as
stated before. The changes come from quite largegbeu of sources: customers, users,
management, developers, technology, business, csksng true etc. When changes

occur, we have to create a new plan and start usimgstead of sticking with the old

14 (106)

plan. The ability to respond to changes in timelgnmer makes the small companies
successful; however this ability seems to be vamiskalongside the growth of the
company and with more emphasis on more strict @sE® Agile company is a

company that can react to changes rapidly andethetion is close to correct.

The values of agile manifesto guide the peoplelireain a software project to work in
an agile manner. These values themselves are ajsteact and hard to implement in
practice but they give the basis on how to soh@blems and do really valuable work.
Because of the abstractness, the agile manifestoiratiudes 12 principles. These give
you an insight on what the agile values mean inenpactical sense. These are also

common principles for all agile development metHod@s [Man01].

15 (106)

Principles behind the Agile Manifesto
We follow these principles:

Our highest priority is to satisfy the custometigh early and continuous
delivery of valuable software.

Welcome changing requirements, even late in dewedop. Agile processes
harness change for the customer's competitive éagan

Deliver working software frequently, from a coupleweeks to a couple of
months, with a preference to the shorter timescale.

Business people and developers must work togetibrttiroughout the project.

Build projects around motivated individuals. Gilem the environment and
support they need, and trust them to get the jole do

The most efficient and effective method of conveyimformation to and within a
development team is face-to-face conversation.

Working software is the primary measure of progress

Agile processes promote sustainable developmeetspbnsors, developers, an
users should be able to maintain a constant paedimitely.

Continuous attention to technical excellence aratigtesign enhances agility.
Simplicity--the art of maximizing the amount of vianot done--is essential.

The best architectures, requirements, and desigesge from self-organizing
teams.

At regular intervals, the team reflects on howegadme more effective, then
tunes and adjusts its behavior accordingly.

[®N

Figure 6 Principles of Agile Manifesto [Man01].

The values and principles of agile manifesto cques to each other according to our

mapping in Figure 7. The principles are generatlglimes that can be used to guide the

development project through unusual situations. él@w the day-by-day work should

follow the processes and practices described inatfile methods, as presented in
Sections 2.3-2.6.

16 (106)

Principles Values

‘ Satisfy customer through early and continuous delivery K

‘ Build projectsaround motivated individuals Individualsand Interactions ‘

‘ Caoncentrate on technical excellence and good design

Welcome changing requirements, even late in
development

‘ Simplicity is essential

‘ Emphasize face-to-face communication

‘ Deliver working software frequently

e
\
N \
\\/ Customer collaboration

‘ Working softwareis the primary measure of progress }‘—
NN
‘ Bestresults emerge from self-organizing teams ’/ / \
- /177N
‘ Promote sustainable pace . \
-
Business people and developersmust work together F% o Responding to change

daily T
/
‘ The team should reflect at regularintervals

Figure 7 Description how the principles map to the values.

2.3 Feature Driven Development

Feature Driven Development [Palm02] was developgdldff De Luca for a large
banking software project in 1997. The original mes was highly influenced by Peter
Coad’s ideas of object modeling, color modeling desielopment processes. It was in
fact presented first time as a chapter of color eliad book [Coad99]. This original
process was later on refined by Stephen R. Paln@dahn M. Felsing [Palm02] to its
current form, making it more general and decoupiirfgom the color modeling. FDD
has since become one of the most popular agilevaodt development methods
[AmbO06], however lately the trend seems to be tolwaBcrum and own hybrid agile
models [Ver07].

17 (106)

Feature-Driven Development, or FDD, is an increrakerghort-iterative and model-
driven process consisting of five basic activitiEsese are [Palm02]:

e Develop an overall model

e Build a Feature List

e Plan by Feature

e Design by Feature

e Build by Feature.

Develop an . Build feature . Planby
overall model list feature
i Categorized Development plan

An object model features list

(more shape -~ Y w

v~

than content) I N
R Design by | Build by
(more content™*- feature " feature
than shape) : :
v v
Design package Client valued
function

FDD overview © 2005 Nebulon Pty. Ltd.

Figure 8 Basic process flow of FDD [Nebu05].

Develop an overall model is namely the first stédg-DD based software developing
although there may have been some prototyping aetimpnary business related
planning done, or even formal and traditional regmients gathering. Whatever the
starting point is, the aim is to create, refine ald more detail to the model. In this
phase the project team starts forming and gets nmwelved in project and the

management has decided that at least first thraggshare to be done. [Palm02]

Domain modeling starts with a domain walkthroughdgd by domain expert. The

modeling team then studies documents, if availade, develops models of the domain

18 (106)

in groups of three. The chief architect may givemea starting point in a form of “straw
man” model. The models are then presented ands$iedu The result of this is a model
of domain that is updated to overall model. The donmmodel is accompanied with

notes from modeling session that state some deégigisions and explain more complex
structures. Also alternative domain models shoudd documented. The model is
verified internally by active participation of mdohg team and, if needed, it is verified
and clarified by customers and users. This phasspmsated to every domain in order to
build a complete overall model with a suitable detvel for needs of the project.

[Palm02]

The next step is to build a feature list. FDD u$eatures to communicate about
requirements with the customer and to divide theegot to simple, easy-to-implement
parts. A very important part of the features i¢ thay should be client-valued features.
The features are created according to a simple l&gep<action> <result> <object>
(e.g. “Track number of parking passes” and “Enter tlesired number by dial pad”).
The building of a feature list starts with identify the set of features. These are
decomposed into subject areas. As previously meatipthe features should be client-
valued functions that are granular enough to implanin short time (max. 2 weeks).
Granularity should not also go too far, getters setters do not need own features and
the same goes with parts of Ul. This phase, ormdgss, should result in list of subject
areas consisting of business activities and featireomplete those business activities.
[Palm02]

The most important part of the first phase, plan fbgture, is determining the
development sequence of features. This is donenhlyzing the complexity and the
size of the feature and the dependencies it helasses. The feature sets are assigned to
chief programmers after this, who in turn assigasses to developers. The verification
is again done by self assessment of the team, #&ed business value and
implementability should be considered during thisage in order to avoid starting
implementation of a process too risky or hard. Tpigse ends the requirements
gathering, design and analysis phase and studeepdbsibilities of project’s success

[Palm02]. Also, as Barry Boehm stated: “Projectrmation does not equal project

19 (106)

failure” [BoehmO0Q], but in fact it is many times more profitable to eannfeasible
products before any more time, effort and monaysexd to it. This kind of projects can
be found through prototyping or through e.g. risid anarket analysis according to
Boehm.

The next two phases of FDD are repeated iteratiirelgrder to grow incrementally,
feature-by-feature, quality software that meets deenands of customers. The third
phase, design by feature, starts with forming &ufeateam by chief programmer for a
chosen feature. If this feature is complicated,fdaure team is introduced to domain
of the feature by domain expert and the team mase ha study some additional
documents in order to be able to design the feafline team then creates sequence
diagrams that describe the actions of the featlirew classes and attributes are found,
the chief programmer should update these to ovekadict model. After this the class
owners in the feature team write the class and odefitologues, in other words, the
commentary that is used in automatically creatimg APl documentations. After this
the whole design is reviewed by the feature teathifaneeded, external verification by
a chief architect, a domain expert and customersers can be requested. Finally a to-

do list is created for developers owning affectiedses. [Palm02]

The final phase is called a build by feature. lis thhase the feature team starts
implementing the designed functionalities accordingheir personal task lists. After

implementation thorough code inspections shouldekecuted and the developers
should write unit tests to gain immediate feedbdtle unit test could be written before
implementation, in a test first development waythar tests could be written by another
developer, in order to ensure that both of the ligppers agree on the design and
functionality of feature. After the unit test runtlout failure the classes are sent to the
chief programmer who is responsible of integratihg classes into the feature and
promoting the feature to build. These last two stepe repeated for every feature and
these may be as rapid as a 30 minutes long mantehisig session and a few hours of
implementation before promoting the feature to duiThe time taken for design

sessions and preliminary modeling can vary very hmutepending on feature

complexity and on the feature team experiencenjba]

20 (106)

The FDD uses specific milestones for accuratelykegtrack on the state and progress
of different features. According to Brooks the depers are honest with their progress
when the milestones are so sharp that they catiendin his opinion the milestones
have to be concrete, specific, measurable eveantsatie easy to verify [Bro75]. The
recommended milestone percentage from Palmer atsingdPalm02] is shown in

Figure 9:
Domain Design Code Promote to
Design Code
walkthrough Inspection Inspection Build
1% 40 % 3% 45 % 10% 1%

Figure 9 FDD specific feature milestones and corresponding featur e readiness [Palm02].

The completion percentage is the sum of completiéestones. So the current stage of
work is not taken into account when talking abawigpess, even though it may be 99 %
ready. The percentage given by Palmer and Felsinf¢ourse just a starting point, the
actual percentages may vary a lot depending on Winat of software and for what
industry you are building. The milestone percergaggn be alternated, but this should
not be done during development cycle, but ratheroject review meetings, iteration
review or during a larger release. [Palm02]

2.4 Agile Modeling

Agile modeling [Amb07a] is a methodology developeyg Scott W. Ambler. Agile

modeling is more like a sidekick for projects thafull grown methodology, and it has
been designed to be tailored to other processesleknihas also introduced Agile
Model-Driven Development methodology (AMDD) whick shortly introduced in

Section 2.5.3.

21 (106)

Agile modeling borrows quite much from Extreme paogming [Beck99], [Beck05]. It

also is based on values, principles and practinésnaost of the values and principles

are the same as in XP. [Amb02]

The Agile modeling values are communication, sigiplj feedback, courage, and

humility. Each of these values has a simple idgard them [Amb02]:

The main purpose of the modeling is to communigatg thoughts effectively
to stakeholders.

The best results come from the simplest solutidn®s. much complexity makes
the systems hard to understand.

The models are just abstractions of the designamacdhot normally correct or
incorrect, only better or worse. Feedback fromofellco-workers, audience,
implemented prototype or test cases will improverymodels and prove them
good.

Developing the simplest thing possible, avoidingnesessary documents,
trusting co-workers' feedback and skills, admittihgt you have been wrong or
made a mistake are all hard tasks that requireageurCourage helps build trust
among the peers and creates an efficient envirohfoesoftware development.
Humility is quite close to courage by pointing ot everyone makes mistakes
and nobody knows everything. Everyone has their avaas of expertise and
each is of some value for the project.

The values presented above lead to principlesowaig the principles helps us to live

with the values. The Agile modeling principles haween divided into eleven Core

Principles and two Supplementary Principles. Theme also five principles that are

marked deprecated. The following table lists thee@nd supplementary principles with

a short description [Figure 10]:

Core Principles

Assume that the simplest solution is the best solution. Avoid

Assume Simplicity overdesign and too complicated patterns. Keep the models as

simple as possible.

22 (106)

Embrace Change

Enabling the Next
Effort is Your

Secondary Goal

Incremental Change

Maximize

Stakeholder ROI

Model With a

Purpose

Multiple Models

Quality Work

Change is evident and requirements always evolve over time
because of business environment changes and stakeholder's
understanding evolves changing goals or success criteria. Your
approach to development must reflect this change.

Even though the primary goal is to make working software,
the secondary goal is to think about the future. The system
should be robust, maintainable and documented well enough.
Idea behind incremental change is that you can not do perfect
models at once. There is no need to try to make very detailed
and seemingly perfect models. Instead make models that are
good enough for the purpose and incrementally improve it.
The stakeholders are investing resources on the project to get
a system that suits their needs as well as possible. They have
the right to decide how to use the resources and they also
have a power to make the decisions on what is important in
the system and what is not.

Instead of worrying about the details of the design artifacts
created, developers should think why the artifacts are needed
and who gets value from them. The artifacts can be created to
simplify own thinking, to provide information to upper
management or to enable the maintenance team to work
more efficiently with the system. If you can not think of any
purpose for designing or no stakeholder who needs the
artifact, the artifact is not probably needed.

You usually need multiple models to model each aspect of the
system. You should be able to produce many kinds of models.
Also you do not need to always produce all models, but just
the ones that are required for the task at hand.

The customer is not happy with bad work. Also the co-workers

can not get help from bad design documents that need

23 (106)

Rapid Feedback

Working Software Is

Your Primary Goal

Travel Light

Supplementary

Principles

refactoring or are really hard to understand.

Feedback is very important when trying to create quality
software. By working together on the same model you will get
instant feedback on your ideas and designs. Also working
close to customer helps to understand the customer's needs
better and to get feedback on the work already done.

Your primary goal should be working software that meets the
needs of the customer. Extensive documentation, precise
status reports or flashy UML diagrams are not the primary
target. All unnecessary tasks should be avoided as they are
considered waste [Poppen03].

Each created artifact that is decided to keep has to be
maintained over the time. So the more you have models the
more you have to work when a change occurs. This agility vs.
convenience of having models available when needed is the

balance you have to think through.

Content is More
Important Than

Representation

Open and Honest

Communication

There is many ways to represent any model (low fidelity vs.
high fidelity). Keep the representation simple enough as the
most important part of the model is the content. You
probably will not even need expensive CASE tools but just
plain whiteboard will do.

The people should feel free and safe to offer suggestions and
to work effectively. To build this kind of environment you
need to be open to e.g. new ideas, delivery of bad news and
current status. Open and honest communication enables
people to make good decisions as they have more precise and

correct information available.

Figure 10 Agile modeling principles and descriptions accor ding to [Amb07a], [Amb02]

24 (106)

The principles above can be transferred to everydark through a set of practices.
There are 13 core practices and five supplemepiagtices as well as four deprecated
practices. The practices are quite close to Extrpragramming and they usually need
other practices as well to work effectively. Sonfetlee relationships between core
practices can be seen in Figure 11. The practickptad always rely on the
environment the project is working in and in caseswant to incrementally adopt few

practices the practice relationships or practiostels are useful [ElsO7].

e Model
Storming Active Stakeholder
Test-Driven / B
Design (TDD) /
Requirements W
Envisioning —~ Prlqnhzed
Requirements

Iteration

Modeling Architecture

Envisioning
Just Barely
Good Enough Model a bit
/\ Ahead

Executable Document Multiple
Specifications Late Models

\ Sifdie coukcs The Best Practices of Agile Modeling I
Information

Copyright 2005-2007 Scott W Ambler

Figure 11 Agile modeling best practices and their relationships[Amb07a].

The core and supplementary practices of the Agddeting are described in Figure 12.

Core Practices

This practice is an expansion to Extreme programming's On-Site

Customer which tells to have an on-site person that has the
Active

authority and ability to make decisions about the system. The
Stakeholder

practice is expanded to have all project stakeholders (incl. users,
Participation
their management, operations, senior management, support etc)

actively involved in the project.

25 (106)

Apply the Right
Artifact(s)

Collective

Ownership

Create Several

Models in Parallel

Create Simple

Content

Depict Models

Simply

Display Models
Publicly

Iterate to Another

Artifact

Model in Small

Increments

Each artifact should have its own specific purpose. In some cases
source code is the best artifact to describe the functionalities, in
some other cases e.g. UML deployment diagram. You should
choose the correct artifacts to aid you in the task at hand.
Everyone can work on any model or any artifact on the project if
needed.

No type of model is enough to represent the whole system and
each of the type have its own advantages and disadvantages. It is
far more productive to develop multiple models simultaneously to
model the problem area than to stick with just one type of model.
Keep the content of the models as simple as possible. Do not
model any additional details; unless you have to, i.e. there is a
reason for modeling them. This is quite similar to Extreme
programming's Simple Design practice.

Use only the simple subset of diagrams to model the problem
area. There is no need to make the models too detailed or use all
the possible features e.g. UML offers.

You should display your models publicly in a modeling wall. This is
one way to support the Open and Honest Communication practice.
This modeling wall should be accessible to all the project members
and stakeholders. Also virtual modeling walls can be used,
especially when doing distributed development.

Whenever you are stuck you should work with another artifact for
a while. This change of view will let you progress and it also gives
you a different view on the problem at hand.

Agile development is by definition incremental development.
Same should go with the modeling too. Model only small portions
at a time, preferably the portions that you will release during

current iteration or the following iteration.

26 (106)

Model With
Others

Prove it With
Code

Single Source

Information

Use the Simplest

Tools

Supplementary

Practices

Three main reasons for modeling are: modeling to understand
something, modeling to communicate your thoughts or modeling
to create common vision of the system. Two of these are by
definition group activities where you would like to have many
opinions and many people contributing to the model. You should
have at least a person with you when you're modeling. This is
quite close to Extreme programming's Pair Programming practice,
but it doesn't limit the number of people participating.

Model is an abstraction of an idea or design. It is not usually right
or wrong. To determine if the model is good, you should prove it
with code. Show the result for interested to get feedback from it
and improve both the model and the code implementing it.

Store information only to one place. So apply right artifact to
model a concept once and only once and then store the
information to the best possible place. Remember the following
practices: Discard Temporary Models, Create Simple Content,
Create Several Models in Parallel and Apply the Right Artifact(s).
Most modeling can be done in front of whiteboard without a need
for expensive CASE tools. If you want to save any whiteboard
model, you might use e.g. a digital camera. Whiteboard helps you
to discard temporary models and is a lot easier tool for
collaborative modeling than a computer. The drawing tools can be
used to present important information to project stakeholders or

when you need code generation.

Apply Modeling
Standards

This practice is renamed from XP's Coding Standards. The
developers should agree and follow common modeling standards.
This eases the communication through models as everyone has a

common modeling language.

27 (106)

Design patterns are good tools for modeling and design when
appropriately applied. However these should be used with care.
The use of design patterns is not the aim, but the design patterns

Apply Patterns are more or less suitable solutions to common problems. In case

Gently you suspect some pattern would suit your situation, you should
add the simplest part of the pattern to get the solution working
and later on refactor the solution more towards the design pattern
if needed.

Most models created when modeling are temporary models. They

Discard have already fulfilled their purpose when finished and do not add
Temporary any value anymore after that. These models quickly go out of
Models synch with the code and require updating. If the models do not

add value to the project, they should be discarded.
Contract models are needed when some external group (e.g.
another team, company etc.) controls a resource that your system
requires, such as a database, another application or information
Formalize service. A contract model could be e.g. an application
Contract Models programming interface (APl) document, a text layout description,
an XML schema or a database description. This contract model
should be implemented using some advanced tool because it
needs to be updated and maintained.
The models should be updated only if it is really needed. You can
Update Only
live with imperfect models as long as they are good enough. Do

When It Hurts
not waste your time on meaningless updates.

Figure 12 Agile modeling practices according to [Amb02] and [Amb07a].

Agile modeling is full of practices but not all gteces need to be adopted. The practice
adoption should be based on needs and should terieatal. It is also useful to
understand the relationships between differenttipexin order to select suitable

cluster of practices to adopt at a time [EIsO7].

28 (106)

2.5 Popular agile methods

There are currently quite a large number of difieragile methods used in the industry.
Agile has crossed the chasm and became as a padin$tream software development
processes [Amb07b]. Most of these are based omBand/or Extreme Programming
or are some kind of other hybrid processes [VerQThis section describes the most

popular methods and briefly introduces some otredl kmown methods.

2.5.1 Extreme Programming

Extreme Programming (XP) was the most widely spaaatiwell-known agile software

development methodology [AmbO06] however lately &troas become more popular
than Extreme programming [Ver07]. Extreme prograngnwas created by Kent Beck,
Ward Cunningham and Ron Jeffries during a payafiweare development project for

Chrysler. Kent Beck became the project leader imckld 996 and began to adjust the
development methodology of the project. From thého#ology developed, Beck wrote

Extreme Programming Explained [Beck99] that wadlipbhbd in 1999.

XP defines five values: Communication, Courage,dbaek, Respect and Simplicity.
[Beck05] The values are a fundamental knowledge warterstanding as a base of XP
[Fowl05]. By starting off just with values is hat@k these can be applied in many ways.
For this XP includes twenty-four practices for gailse. The practices are used to
encourage and to apply basic values included inTXie.bridge between these practices
and values are the fourteen principles as can éxe fsem Figure 13. The practices are
close to traditional software development best fpras, but taken to more agile level.
This leads to development process more responsivasa@tware that is better or similar

quality.

29 (106)

LIniversal

Complementary

Zoncrete Values -
— — % Consistent
Accountable | Practices | —
' | . Purposeful
Situated | 1 XP e

Wiidely applicable

' 45 Principles | Daomain Specific
\ _ Contradictory

Figure 13 Therelationship and attributes of XP values, principlesand practices [Beck05].

The name of the methodology comes from the idelalohg every value and principle
in the agile manifesto to the extreme level. Ondanmalue emphasized in XP is
adaptability. XP treats change as a constant facteoftware development projects and
tries to embrace changes all the time, throughtmeitproject. This is done by defining
only a small set of small, informal requirement®iigs) at a time and implementing
those in small iterations. This leads to an incnetaedesign that is affected by almost

instant feedback from previous iterations. [Beck05]

Also one interesting part of XP is the Test Drivervelopment (TDD) that states

nothing is to be coded unless there is a unit that tests the functions to be
implemented. This creates a new way of develognegsoftware incrementally and at
the same time making sure that every part of tHievace has been tested at least in
some way. This also results in more instant feekldemm the system. Test Driven

Development is often connected with automated deocep testing and called

Acceptance Test Driven Development (ATDD). ATDDrigs the TDD focus from a bit

criticized [Ber07] low level details to higher furanal level of the system. [Kos08]

XP is also criticized, because it does everythingsd extreme way. The change in
software development culture is huge when tramsitigp from traditional ways to XP.

There is not enough focus on structure and neededhdentation, as everything is done
in just-enough way. XP requires that most develpee senior level. The more novice

level developers there are involved, the more tspiiocess is needed. The same goes

30 (106)

with the project size. When working in larger paigethere are more processes needed
and more formalized communication in order to kpegect running and people aware
of the situation of the project. Also there maydmene problems on the business side
too. XP introduces an on-site customer. The ideéhasthe customer sits with the team
and provides feedback and clarifies requiremertigs ilea is usually hard to introduce
to the customer as the customers are used to vgpikirtraditional way by giving
requirements, paying a fixed price and then finatlgeiving the working software.
[Step03]

Because of the extreme nature of XP, it does ht &ll purposes. XP works best with
small non-critical projects with senior staff antbaof changes. The Figure 12 below
describes the suitability of XP as process forgutg. The more closer the project gets
to the center of the circle the more suitable XRilde for that project [Ang06].
Nowadays however, XP practices are used in marjggisoto add value to current
development processes. Especially Scrum and XPseamreto support each other.

Scrum gives a management framework where to wadkxdhgives day-to-day

development practices [KniO7].

Figure 14 XPisused in projects close to the center [Ang0g].

31 (106)

The process described in this thesis might use réPtipes to make it more responsive.
See the Section 4.2.2 for more details.

2.5.2 Scrum

Scrum is an agile process that is meant to be tsedanage and control software
development. It was first introduced as a proje@nagement style in auto and
consumer product manufacturing companies by TakearahNonaka in The New New
Product Development Game [Tak86] in 1986. This wedged in 1995 by the same
authors in The Knowledge Creating Company [Tak@b]same year Scrum was first
formulated and presented to the Object Managemenig5(OMG). Later on, in 2001,

Ken Schwaber and Mike Beedle described the fuli®gprocess. [Schw01]

Scrum is described as a “hyper-productivity techaiq Scrum tries to increase the
productivity of an important product. This is dobg implementing a framework that
empowers teams and thrives on change. This is Ognesing simple techniques, e.qg.
small teams, daily status meetings, not interrgpfpeoples who are working and a

single source of prioritization. [SchwO01]

Scrum is mainly based on team empowerment and aoiipt The team empowerment
means that once teams are assigned work, the abpioyn on how to do the task is
owned by the team. The team does the best it cangdeach increment. The only
communication with the management, during the té&amvorking, is in case there is
something blocking the teams work and it needsetadmoved. [Schw01] Lately the
emphasis has been to describe Scrum as a framethatkreveals problems in

development organizations, e.g. [Dru07].
The Scrum process flow itself is fairly simple. Theocess starts from creation of

common vision of the project. The vision descriladgt the customer, or the product

owner in Scrum terms, wants. From this vision tmedpct owner makes a product

32 (106)

backlog which is a prioritized list of high-levalrfctional requirements. The team with
the product owner selects a few items that the tbaleves it can implement in one
sprint (iteration, length usually one month). Thestected backlog items are split into
tasks and the tasks are added to sprint backlogstimdated. The sprint itself consist of
team working and keeping short daily Scrum meetwpere the team members tell
what they have done during previous day, what thilybe doing this day and what
impediments do they have. This is so that the witeten knows how the sprint is
progressing. At the end of the sprint the team khaleliver potentially shippable
product with the features selected. The featuresdamoed in a demo session where
team gets feedback from the project stakeholdefter Ahis the team will held a
retrospective session where the team discussefects the last sprint and decides on
improvements to the process [Schw01]. The Figubeant 16 present the Scrum flow.

DALY SCRUM
MEETING

24 HOURS

POTENTIALLY
SPRINT ‘ SHIPPABLE
BACckKLOG BaAackLoOG PrRODUCT
INCREMENT

CorvriGHT 4 2005, MounTas Sos- SOFTwWARE

Figure 15 Scrum flow from [M ou08].

33 (106)

Daily Scrum

Sprint . s
New DONE functionality
Demonstrated and promoted to
Sprint backlog build
Selected backlog divided
into tasks

[#] Feature 2
Feature 1

[¥] Feature 3

Selected
backlog

Pro!uct !acllog

Emerging prioritized reguirements

improvement

@ Retrospective for continuous
N

Figure 16 Scrum flow modified from [SchwO01].

2.5.3 Other methodologies

This Section describes shortly different aspectstioér famous agile methods.
Adaptive Softwar e Development

Adaptive Software Development (ASD) is a softwaexelopment process developed
by James A. Highsmith [HighOO]. It was developeddsh on the rapid application

development described by Highsmith and Sam Bayeay9B]. It emphasizes

continuous adaptation of the process to the workoAmal waterfall type process is

34 (106)

replaced by several repeating “speculate, collabaad learn” cycles. These dynamic
cycles aim for continuous learning and adaptationctirrent state of the project.
Highsmith describes an ASD life cycle as missiotued, feature-based, iterative, time

boxed, risk-driven and change-tolerant. [Abra02]

ASD offers quite good principles and ideas, butdes not describe how to transfer
them to day-to-day work. It provides an introduction how an adaptive organization
culture would be built and it can be seen as auliseSource for management in agile

organizations. [Abra02]

Agile Model Driven Development

Agile Model Driven Development, or AMDD, is an agilersion of Model Driven
Development (MDD). The MDD starts with extensive dating before writing any
source code. The difference with AMDD and MDD iattin AMDD you create models
that are barely good enough to drive the developfioeward. [Amb02], [Amb06]

The following Figure 17 describes the lifecycleA¥DD project. The cycle 0 targets

to create an initial vision for the project withitial requirements and a first draft of the

architecture of the system. [Amb06]

35 (106)

Initial Requirements _| Initial Architectural
Modeling Modeling

L

Cycle 0: Initial Modeling Sessions
(days)

Model Storming]
(minutes)
Reviews/Inspections
(optional)
[]
All Cycles
L {hours)
Implementation
(ldeally Test Driven)
(hours)
Cycle 1: Development
Cycle 2: Development
Cycle n: Development Copyright 2004 Scott W, Ambler

Figure 17 The AMDD lifecycle: project viewpoint.

After the Cycle 0, we will iterate through the redtthe project. Iteration consists of
iteration planning and a model storming to supploet planning. This phase requires
stakeholder participation and it will lead to evaly requirements and just enough
models to move forward. Implementation is doneratités storming in Test-Driven

Development fashion. After this the result is rewed and verified. [AmbO06]

Agile Unified Process

The Agile Unified Process (AUP) [AmbO05] is a lightend simplified version of the
Rational Unified Process (RUP) [Kru00], lately justified Process (UP). Its goal is to

36 (106)

be a simple and easy to understand way to develbware using agile techniques and
concepts, while at the same time following UP. Tdwle techniques in AUP are
familiar from other agile development approachasluding test driven development,
agile model driven development, agile change mamagé and database refactoring.
[Amb05]

Phases

Inception Elaboration Construction Transition

Model e

b

Implementation
Test

Deployment

Configuration Management
Project Management
Environment

Copyright 2005 Scott 1. Ambler lterations

Figure 18 The Agile Unified Process (AUP) lifecycle [Amb05].

The AUP differs from the UP by explicitly sayingathnot all the documents and
artifacts are needed. It has also a bit lightaeeroenies and it has changed the
discipline names a bit. The idea of AUP is to mbliRea bit more streamlined and agile.
[Amb05]

Crystal Clear

Crystal Family [Cock01] is a family of agile methaldgies developed by Alistair

Cockburn. The Crystal methodologies understand difgrent projects need different

methods. There is no process that fits for all psgs. The Crystal Family consists of
different methodologies aimed for different purpgsehe family is segmented by color:
The methodology for 2-6 person projects is Cry§iigar, for 6-20 person projects is
Crystal Yellow, for 20-40 person projects is Crystaange, following Red, Magenta
and Blue. Cockburn has published the descriptidn€rgstal Clear and Orange. The
segmentation is done according to the Figure 18vdICock01]

37 (106)

H; Prioritized for Legal Liability [| [|

)

3 Privritized for Productlivitly & Tuleraﬁce
3 S .
=% Life u
= O |
Q Z _ a
=0 Lo L20 L40 L100 L200 L500 L1000
onm @ .
s =z Lssential L
O 8 money i
2 (E) |Es E20 |E40 [E100 |E200 |ES00 |EL00O ||

Discretionary L
money -
(D) D6 D20 D40 D100 D200 D500 D1000 —

Comfort
© s C20 |C10 |Cl00 | €200 |C500 |C1000 | |
1-6 -20 -40 -100 -200 -500 -1,000
Number of people involved +20%

Figure 19 Crystal family lightweight methodologies [Cock01].

The different methods have been developed by malkisgarch on successful projects.
They studied what the successful projects were doaigthe unsuccessful had not done
and gathered the results as a methodology. Thi¢eldsto human-centric methods for

software development. [Cock01]

Dynamic Systems Development M ethod

Dynamic Systems Development Method, DSDM is a fraork based originally on
Rapid Application Development. It also emphasizésrative and incremental
development along with responsiveness to changsgirements as almost all agile
methodologies. With this it aims to deliver systdmat meets the customer’s needs on
time and budget [DSDMO3].

DSDM was developed by the DSDM Consortium by conmigirbest-practices. The

DSDM Consortium consists of vendors and experts imformation systems

development and it now owns and administers the @$famework. The first version

38 (106)

of the framework was published in the early 199be Tatest public version (4.2) was
released in May 2003, and in 2008 an improved oersialled DSDM Atern was
published. [DSDMO03], [DSDMO08] The DSDM Atern hasmad to emphasize more

important values and to simplify the framework.

DSDM is divided in 3 phases: Pre-project phasejeptdlife-cycle phase and post-
project phase. DSDM has also 9 principles from WwHimur are foundations and five
starting points for the method. These principlesnfdche bases of development using
DSDM. In addition to these principles there are psupng principles, called
assumptions. [DSDMO03]

Feasibiiy
< implement
pgtee Plon - “ __

Create ¢ =y Ident Review Implementation Tain |
Fum-:tic:mc:IF'"'ﬂﬂﬂm:Ii o} Fummr:nl business 3 = usars
Protetype 21900 prtohvpe " J

oE i e
w Prototype - P
. \deniify Design
Agiee Design & build g‘;‘:;:
Flan terafion prototype
™

Figure 20 DSDM project lifecycle [DSDM03].

The pre-project phase is a short phase where Ipagject related issues are solved:

project funding, project commitment and projectdidates are identified. [DSDMO03]

The project life-cycle phase is divided in fivege#a: The feasibility study, the business
study, functional model iteration, design & buitdration and implementation stage. So
the first two stages study the possibilities to eaksuccessful project and to see how

the business side of the project may turn out. ffirel stage is started according to

39 (106)

requirements identified in previous stages. An ingt part of the third stage is

prototyping and reviewing the prototype with custss [DSDMO03]

The fourth stage integrates the functional compts&om the previous phase into one
system. This also implements the non-functionaluiregnents. In the fifth stage,

implementation, the system is delivered and thesuaee trained to usage of the new
system. After this stage, the project moves forwarthe Post-project stage where the

system is enhanced, maintained and fixed. [DSDMO03]

As can be noticed from the phases, DSDM specializasformation systems, so the
usage of it to pure software development can cre@tee waste. The DSDM framework
has been implemented with extreme programmingtiogea highly agile development

on precise process structure. [DSDMO03]

L ean Softwar e Development
Lean Software Development is a methodology crebyelary and Tom Poppendieck.
It transfers the seven principles of lean manufaoguinto software development. The
seven principles of lean software development Boppen03]:

e Eliminate Waste

e Build Quality In

e Create Knowledge

e Defer Commitment

e Deliver Fast

e Respect People

e Optimize the Whole

These are realized in 21 useful practices that gisghts on how to make software

development processes more effective and lean pgi)3]
The Lean software development seems to gain papukamongst agile community

[AmbO06], [Ver07], [Ver08], [Ver09], [Fre09] and Leasoftware development might be
something to watch in the future as just implenment ready method is not enough but

40 (106)

there is also a need to improve the way you wokks Tight still take a few more years
as more experience papers and researches willlidisiped. In the year 2008's State of
Agile Survey by VersionOne the lean software depelent popularity was 1.9 %
compared to 49.1 % popularity of Scrum [Ver08].

2.6 Pragmatic developer

Pragmatic development and pragmatic programmingnateagile methodologies or
processes but rather a set of rules and advicedeieglopers. The aim of these best
practices is to encourage developers to be agdedanelop software that has enough
quality and offers value to clients. [Sub06]

Pragmatic programming was introduced by Andrew Hamd Dave Thomas in 1999
[Hunt99]. These best practices were taken to enbre agile environment and also new

practices were introduced in 2006 by Venkat Subraama and Andrew Hunt [Sub06].

The pragmatic programming philosophy can be definesix points [Abra02]:
e Take responsibility for what you do. Think solutoimstead of excuses.
e Do not put up with bad design or coding. Fix indstencies as you see them, or
plan them to be fixed very soon.
e Take an active role in introducing change wherefgaliit is necessary.
e Make software that satisfies your customer, butkden to stop.
e Constantly broaden your knowledge.

e Improve your communication skills.

"The Practices of an Agile Developer" [Sub06] baalds a point to these from agile
development viewpoint: The integration should bealearly and often and the project
should be releasable at all times. It also addssargption on how it feels when people

are agile and how to keep agility in balance anthBle for task at hand.

41 (106)

The pragmatic programming gives a simple and dgithigvard way to develop

software. It can be mostly used in any kinds ofaoigations, whether the organization
is traditional or agile. The practices are fromevealoper’'s viewpoint and they have
clear benefits for developers [Sub06]. These rwdksbe used in this thesis to give
embedded software development process a bit marelaper viewpoint and day-to-

day guidelines.

2.7 Motivation for selecting FDD as a base process

The traditional way of software development hasnb@®ven to produce bad results in
most of the projects [Sta94], [Sta04]. Agile methddve lately also proven to be more

effective in producing results that suit the custosneeds [Sta04].

There has been a bit discussion if the agile methadt the needs of embedded
development, e.g. lan Sommerville stated that asgfeware development methods are
not suitable in large-scale system developmenttribiged development nor
development where there are complex interactiohsd®sn other hardware or software
systems [SommO04]. However there have been manyessitd results from agile
software development on embedded devices. Fronmraghi point of view, one of the
most interesting is the agile adoption in Nokiang#@s Networks that has been so far
quite successful [Vil08] and according to surveyshie year 2006 almost 70% of the
personnel in agile projects would not want to cleamgck to old way of working
[Haa07]. Also interesting results have been reckivem Nancy Van Schooenderwoert
who studied adoption of Extreme programming in etaleel development already in
the year 1999 [Scho04].

Even though the previous cases have adopted SerdrExdareme programming as their
agile method, it is likely that FDD has good featuto offer to embedded software
development. First of all FDD is scalable so itl\fitlto even larger projects [Palm02].
Scrum on the other hand does not offer day to dagtiges for development, but it
more or less stays as a high level management fvarkgSchw01]. The FDD offers

42 (106)

process oriented clear flow that can be followesllgand that has detailed instructions

on how to do the work too [Palm02].

FDD can be used to address concerns about théitigtand hardware interfaces by

thinking these already in the initial concept maatgiphase. In that phase we are able to
already identify key hardware interaction pointgl aran define abstract interfaces to
hide those points. This makes the system testdédeom the development host system

by using mock, stub or fake devices [Kos08].

Finally in my personal experiences the embeddeckldpment projects are quite
traditional projects using a very controlled praceshe FDD has a quite strict and
formal process but at the same time it emphasizekimg software and effective
communication in an agile manner. It might be adystepping stone to more agile
development process, but it does not require asirafiort to adopt as many other agile

methods.

Because of the previous reasons the FDD has bemerho be basis for the proposed
process in this thesis. The process is enhancdd difterent practices from Agile
modeling, Extreme programming and Scrum as weltlag to day guidelines from
Pragmatic programming. It also adds a new perspeot testing in FDD projects that

has not been discussed very much in FDD community.

43 (106)

3 Embedded and real-time systems

This chapter describes what are the embedded aftime systems and where can we
find them. We introduce normal constraints or desigetrics of embedded and real-

time systems and discuss why these are important.

Finally we introduce seven main issues of embedded real-time software
development and break these larger issues intonfiewe or less troubling concrete

problems.

3.1 What are embedded and real-time systems?

An embedded system is system where a processamgpletely encapsulated by the

device. Usually the embedded systems are speegial
) Examples of embedded
purpose systems that perform pre-defined tasks wWith
i : systems.
very specific requirements. Embedded systems \ary o
_ _ ir conditioning systems
from ATMs to mobile phones and from tiny MP3-
_ Anti-lock brakes
players to nuclear reactor security systems. MDrXTM

S
examples can be found from the text box on thetrigh
o | Avionic systems
The embedded systems vary by criticality, size,
_ _ Digital camera
manufacturing volume, power consumption neefs, .
_ Electronic toys/games
CPU power, complexity of software, etc. [Barr07] .
Home security systems

Medical devices
Even though the embedded systems vary a lot flom
Mobile phones
each other, they have common grounds too. The fact _
_ Photocopiers
that embedded systems are designed for specgific _
_) _ _ Smart ovens/dishwasherg
purpose with pre-defined tasks makes it possibte |fo

o Stereo systems
developers to optimize the hardware and softwarg of
_] | Televisions
system in many ways. The solution could run mainly

44 (106)

on hardware, on special-purpose processors witinmlramount of software or it can
run on general-purpose processor (GPP) with motsiteofvork done on software side.
Usually the hardware is specialized for just carfaoduct of product family. This leads
often to a situation where software is developedhfirdware that is not yet available.
[Yag03]

When speaking of embedded systems the term realdystem is often used alongside.
This is because many embedded systems are rea€tiey. wait in idle mode for
commands from user interface or some other everisdur and act according to those.

This may need many concurrent processes to runsargée processor. [Barr07]

In real-time systems a big issue is the timing tam#s. The timing constraints may be
hard, soft or firm. The hard timing constraints mehat if a system does not finish a
task before deadline, there will be a failure. Bloét timing constraints mean that the
deadlines may be violated to some degree. The fiming constraints are a
combination of previous ones resulting in that seéas&s may have hard constraints and
some less important soft constraints. The timingst@ints lead designers to scheduling
and performance issues. However, nowadays many defeiesystems rely on d%3
party real-time operating system (e.g. Nucleus RT@&Vorks RTOS, vrtx etc.). This
leads to situations where more up front designtbase done and the designers may

need more time to get comfortable with the opegasiystem used. [Awad96]

3.2 Constraints in embedded and real-time system design

Embedded systems have four common design challdAgesd96]: Common design
metrics, time-to-market, Non-Recurring Engineer{©MRE) & unit costs and platform
metrics. The Common design metrics are the nontimal constraints that drive the
design of embedded systems. The problem is that ofidBese are contradictory. Most
important parts of these contradictory metricsMIRE vs. unit costs and size vs. power

consumption [Awad96]. The design metrics have Biséed in Figure 21:

45 (106)

b

NRE costs The cost of designing the system

Unit cost The manufacturing cost of the system

Size Physical space required by the device, often medsurbyteg
for software and gates or transistor for hardware

Performance Execution speed of the system

Power Amount of power consumed. Measured in lifetime bé
battery or cooling requirements

Flexibility The ability to change functionality without largdRH costs.

Time-to-prototype

Time to build working version of the system

Time-to-market

Time to develop system so that it can be releasédsald tg

customer
M aintainability Ability to modify system after its release
Correctness Is the functionality implemented correctly
Safety The probability that the system won’t cause harm

Figure 21 Table of common design metrics [Awad96].

The easiest way to minimize the NRE costs woultbhese a powerful general-purpose
processor and do everything with simple ineffecseétware, but this might make the
unit cost higher, increase the size and most dhatease the power consumption a lot.

The same goes with any other design metric. Thise® the embedded system

designers to find an average combination that gpoasl as possible. [Yag03]

—

For many high volume products like mp3-players arbite phones, the minimizing

cost is the primary design goal. Every componestlscted to be just good enough for
necessary operations. In some products this cormpaedection is a bit easier, as some
tend to act like data-processing pipelines. Fomgta, set-top boxes just process the
transmission data received by pushing it througkedes of custom circuits. Such
architecture can be seen on Figure 22. When thegde design prototype or very low

volume products, then normal personal computer viiarel can also be used in

embedded systems. [Yag03]

46 (106)

SCART
\ QPSK Decoder on Screen
- and FEC Display (OSD)
Satellite Graphics Generator i
Audio
DACSs
— 13| OAMdDgé%der ‘?'—E*
Cabls an MPEG
’5&/(Decoder
and pP RF
OFDM Decoder L el Mod [~
stria and FEC video
Termestrial L] Dacs
F xDISL Conditional - Liep
e Access (CA)
Telephone Unit || RS232
/Srmart |
Card Modem

WS 100_09_112885

Figure 22 Example of current set-top box architecture [Xil0Q].

Another special feature in embedded systems islithkeeme of the product. Some
embedded products are expected to function forgusw years, e.g. small consumer
electronic devices like mobile phones, stop watckibker products have the lifetime
expectation of decades, e.g. nuclear power plantra@losystems, air conditioning
systems and space station control systems. Whezlagenwg systems with long lifetime
you have to take into account the issues of soétwadates and reliability. [Barr07]

The challenges grow when we move from embedde@msgsto real-time systems. The
real-time systems have operations that have desdand if the system does not meet
the deadlines the consequences might be catastropbi example, if the anti-lock

brakes in a car do not react in timely manner ditver might end up in a car crash. In
case the consequences of missing a deadline amatastrophic, at least the result of

the calculation is incorrect.

Real-time systems add more complex design issudse tdecided in advance. One
essential choice is the scheduling algorithm u3dwk system's timing and the worst-
case scenarios can be calculated using RMA (Ratestonic analysis) and timing
diagrams. Based on this some decisions can be radbow the scheduling is
implemented: using e.g. Round robin algorithm omubing a ready real-time operating
system (RTOS) and suitable mode for that. [SIm99]

47 (106)

Embedded and especially real-time systems are afteEn implemented using a
hardware platform specialized for just that prodoctusing a different platform than
previous project. Often it is needed for the depets, especially ones implementing
more of the device driver level code, to study peeformance, behavior and use of the
platform. [BarrQ7]

From real-time perspective the interesting featuoésthe platform and selected
operating system are worst-case performance, ugtelatency and context switch time.
Worst-case performance means the worst-case tiome fne moment when an event
happens to the moment that the system has respdadideé event. Interrupt latency
means the time operating system uses to process amived interrupt. Context switch
is the operation that happens when a process j®sdsed and a new process is given
some run time and of course the time it takesghliziimportant in embedded systems.
[Barr07]

3.3 Issues in embedded and real-time software development

The design and development of embedded and real4ystems has been seen as a
problematic area. Jerry Krasner from Embedded Mafkarecasters has studied
embedded software projects and has found out 814t% of the projects are cancelled
and 54.0 % are completed behind schedule. The dmlayage is 3.9 months. As
Krasner stated in his final words of the report:i8l clear from information provided
herein that embedded software practices, being mless methodological than
hardware design processes, are responsible fogrdégiays and missed ‘windows of

opportunity"." [Kra03]

What are the main issues in the embedded andinealdoftware development? I've
identified 7 main issues affecting the failure bé tembedded and real-time software
projects:

1. Response time and timing related issues

48 (106)

Platform architecture related issues

Embedded software development tools related issues
Development process related issues

Programming and design practices related issues

Project size and complexity related issues

N g M DN

Issues from typical constraints

The 7 main issues consist of many different paite Figure 23 shows the big picture
and the following Sections describe the issuesarendetail. The list has been collected
from multiple sources: [Barr07], [Osh06], [SIm9P$omO04], [Stew99a] and [Stew99Db]

Mo HW available

) | Moexectime measurements done
Response time and timing |~

t Mo HW analysis done

' Mo memaory analysis done

Distributed and multipracessar platfarms

Load halancing

Platf hitect .' Interporcess communication
‘orm architecture |
|4’< Generalizations

(. Mariahle and unigue platforms

. Resource allocation and management

#
it tools | Selection process

Mo automated testing

\ Lacking features
|
|
|

Elartery and processing power
Typical constraints |~
Sy Interaction with the environrment

et \ Updates carrectiveness
P =
[/ Ernbedded and real-time B o R
\ | acumentation written 1o late
« software development lssues _Development process |-
. o ;_7 Mo time far break

Task SWltchmg

Large it-then-else and case statements

Mo naming and style conventions

|
I’I,E ; _Ma code reviews
|
|

Delays implemented as empty loops

" One hig loop

I
Programmlng related Global variables

I\ Configuration infromation in #define statements

| ' Programming and design practices |

!
¥
!
.II f ‘I Warkarounds
\ | T
|
|
|

_Including #alahalh

' Design related | One solution applied everynme

Overdesign
PAEeaiml e S

' Reusing non-reusable modules

Too long projects

Project size and c

Natural camplexity

Figure 23 Issuesin embedded and real-time softwar e development.

49 (106)

3.3.1 Response time and timing related issues

Response time and timing related issues referttiirexthe real-time related issues, but
the same issues can also affect typical embeddgdgs. The response time is highly
dependent on hardware and software design decisitvesdesigners must find suitable
software and hardware architecture; select theecbomomponents; select or implement
correct scheduling, and make sure that the busalleefiast enough communication.
[Osh06]

The main reason that make the response time ag issthat there often is no final
hardware available. The developer can not makeutectime measurements and can
not really test the timings. In fact, it is ofterpeoblem even the hardware or at least a
prototype would be available. Developers mighthmte any measured execution times
just estimates. Also the measurements are lefhdéoend where all the features have
been implemented. However at this stage there lysasd so much timing problems,

that it is really hard to solve them. [Stew99b]

Another problem affecting response time is that bta@dware platform specialties
haven't been analyzed. Platforms differ quite mwach how fast they do certain

calculations with different kind of numbers. Knoginvhat is fast and what is not is
very important when implementing real-time softwandsing correct and fast

instructions in calculations saves a lot of perfantce tuning. However, it is important
to remember that fine-tuning and optimization sbdug done only when a bottleneck is
found. [Stew99a]

The hardware specialties also affect the memongeaisahere might be significant
performance differences in accessing ROM or infeRAM memory and even more
when accessing external RAM. Memory analysis aidsusing the memory as
effectively as possible. If the platform offersache, the memory analysis is even more
important part of the design and if not made priypeill cause some performance
issues. [Stew99b]

50 (106)

3.3.2 Platform architecture related issues

Even more embedded and real-time systems rely dtipnmecessor platforms which
mean that the application might be partitioned aultiple processors. This leads to
multiple design challenges for designers. The comication between multiple
processors has to be well defined and consistesimBl issues arising from this are
byte endianess problems, byte ordering and padgiiaglems. Also the partitioning
must be done with care to avoid bottlenecks anckrsure even load distribution
between processors. The final issue with multiptcessors is that there is still only a
common set of hardware resources available. Théwzae resources have to allocated

and managed so that it enables maximum utilizatidnout any problems. [Osh06]

The modern platforms and the modern business anvieat bring us also more issues.
Often the platforms change from project to anothed include quite much custom
hardware. It is hard to find support for the platip as it seems like it is unique.

Especially, when the development team is small tree are no other low-level

software specialists around. Also the different immments and constant change
affecting the environments leads often to geneatitn of the software. The aim is to
enable the software to run on various differentfpfens. However doing this based on
one project and one platform often fails and letadeard to maintain software that is
not really portable as well as lots of unnecessamk. Better choice would be to do the

generalizations when there is a need for thatw$éa]

3.3.3 Embedded software development tools related issues

Desktop and enterprise software development taelsofien full of features that have
high level of automation and good integration wélg. source control and server
software. In embedded and real-time software dgveémt the tools are usually lacking
many of those features. The choice of developnmoistis often made from business
perspective on basis of marketing, feature promises user base. The tool choice in
embedded projects should be done based on teclenigiaiation. [Stew99a]

51 (106)

From the poor tool base comes multiple problems aral of them affects quite much
the success of projects. Automated testing is ofteking from embedded software
projects. Testing is done interactively using manest cases. This is much more error

prone than automated testing and causes the téstbgstarted at too late. [Ste99a]

3.3.4 Development process related issues

Development process might affect the result ofaggat surprisingly much. Lately agile
processes have been gaining popularity from tauhdi processes [VerQ07], [Ver08],
[Ver09], [Amb06], [Amb07c], [Amb08], [Met08], andghi03]. There are many process
related issues recognized in embedded and realgiojects that have failed. Few are

described in the following paragraphs.

Code reviews and inspections are usually an impbnpart of the process if done
correctly [Poppen07]. They can find common vulnéiizds, especially race conditions,
buffer overflows and memory leaks in embedded aatttime development. Also static
code review tools can be used to perform code weviend to find possible problems.
The code reviews have been noticed to improve mtddty and quality. For example
IBM has found that inspections gave a 23 % increas@roductivity and 38 %
reduction in bugs detected after unit testing [@3nGBtill the code reviews and
inspections are often forgotten and left aside wihesdline is approaching. Developers
have a tendency to protect and hide their codeagititle same time the code robustness

and correctness suffers. [Stew99b]

Documentation is a common issue in many projecftenQt is said that there is too
much documentation and sometimes there is toee likhcumentation. The main
problem is that the documentation is written afteplementation instead of writing it

during and before the implementation [Stew99b].

52 (106)

A normal problem with traditional projects is thenstant sense of urgency and high
number of overtime hours. These hours usually ateas productive as the normal
hours and can cause the developed software to blewar quality [Beck06]. In
embedded software development it can take a long to solve some hardware related
problem. Often developers think that they can aketa break while the problem is not
solved [Stew99a]. Even though there might be a ldeadpproaching a short break
might let you take a needed distance to the prokérhand and help you find an
alternative solution to the problem [Stew99a]. lukkbcompare a software project to a
marathon: You have to have a sustainable pacetavitl hot hurt much if you stop for

a while and have a drink. In fact it will hurt yowore if you run as fast as possible and

do not stop for a drink of water.

Task switching has been identified as one big westoftware development by Mary
and Tom Poppendieck [Poppen07]. The task switchouyrs when the developers are
working on a multiple projects at a time. The pesblis also very common in
embedded software development. According to theB2B@bedded Systems Market
study from Tech Insight/Embedded Systems Desigortdfemb08] about 65 % of the
respondents work on two or more projects and oly9@ were working on single
project. More than every tenth (13 %) work on thogemore projects. Working on
many projects simultaneously causes task swit@hesdur and is considered a wasteful

activity in software development [Poppen07].

3.3.5 Programming and design practices related issues

The development process gives us guidelines howptbgct is implemented. The
programming and design practices give us guidelmegaily work [Beck05]. The
practices guide the day-to-day work of anyone imedlin project. Multiple problems

arise also from incorrect working habits.

The common design practice related problems argifal by David B. Stewart in his
two part article "30 Pitfalls for Real-Time SoftvealDevelopment” [Stew99a, Stew99b]:

53 (106)

e Only one design document

e Dependencies

e One solution applied every time and the first gotuts right
e Overdesign

e Reusing non-reusable modules

One document type is quite important for the priogeccess, design documents. Many
software systems are written based on one or nesigridiagrams. This approach does
not give the benefits of modeling and system desigthe developers by giving only
one view to the system [Stew99b]. In addition thisgle diagram mixes multiple
diagram types and is not easy to understand. Alsisymtax or a legend box could help

others to decipher what the diagram means [Stew99Db]

Dependencies are almost inevitable in softwa

The dependencies limit the use of modules ¢
must be taken account when talking about re!
of modules. Understanding the dependencies)
software also help to find out how to test modul

separately and how the error handling should

implemented throughout the system. However

there are too much circular dependencies,

dependencies cause the modules to be hard tc | B

and hard to reuse. [Stew99a]

After finding a solution to a problem, it is norm: _

to try to use the same solution in simili

situations. When using e.g. design patterns 1
can lead to overdesign when trying to use sa -

solution to every problem [Beck05]. In embeddfFigure 24 Dependencies
In case A arenormal, no circular

world it might take a long time to get hardwadependencies. In case B there are many
)) caircular dependencies leading to complex
interface work correctly. After the interface workdesign and reusability problems.

54 (106)

the developer usually is happy and thinks thattétsi is done. However the solution
rarely is the best one. It can often cause probheitis high processor usage or timing
problems with too high priority [Stew99b]. So totge software right, multiple

different designs should be tried to learn the fmwband to implement as good solution

as possible.

Overdesign is a common problem in software devetgmnot in embedded systems
general. A lot of overdesign complicates the sysaeith makes maintenance and change
tedious tasks [Beck05]. In embedded and real-tigsgesns we want the software to
utilize the hardware as much as possible with a&aghardware as possible. So the
correct solution will always be the simplest and fhstest to execute. So overdesign
causes raise in hardware costs by requiring neeglexcessing power and additional

memory [Stew99a].

Not all code is designed to be reused. If some cibde¢ is badly designed or
purposefully designed to be non-reusable is reitsedy cause the functionality of the
code to change or some missing part might causelgams. It is often more suitable

solution to rewrite the module after analyzing ¢ihé module. [Stew99a]

There are quite many additional bad habits espggcihé embedded and real-time
software developers have. Quite many of theseerdtathe C language as it is most
common programming language for embedded systei®(d], [CMP02], [CMP04],
[CMPO5], and [CMPO06]. The following problems wedentified by David B. Stewart
in his two part article "30 Pitfalls for Real-Tinmfgoftware Development" [Stew99a,
Stew99b]:

e Large if-then-else and case statements

e No style and naming conventions

e Delays implemented as empty loops

e One big loop

e Global variables

e Workarounds

e Configuration information in #define statements

55 (106)

e Including #global.h

e Wrong use of interrupts

Large if-then-else and case statements make treltad to read and debug. From the
real-time perspective the differences between t&st-and worst-case scenarios are too
large and might lead to possible timing errorsmaer utilization of processor. It is also
harder to test the code so that the cases testewdumle as the number of different

branches is so large. [Stew99a]

When implementing the system the developer is msipte of the quality of the code.
There are quite common naming and style conventised widely. However not
everyone has heard about them. When everyone itetfie programs in his/her own
way the software will eventually be so hard to testl the code will be extremely hard
to understand. So to enable success a common naamdgprogramming style

conventions should be determined. [Stew99b]

Delays are used in code to ensure that anotheigasknpleted before moving forward.
Using empty loops as delays affects the code pdittabThe same software that
worked fine on some platform might have hard tal firming problems on some other
platform. Better solution would be to implement tiielay using real-time operating

system services. [Stew99a]

One big loop is a traditional architecture for siempmbedded software. The problem
comes when we want to modify the execution timearfie individual part, or parts, of

the code. This problem arises when the processovadoaded and there is a need to
slow down the less critical parts to give time thoe critical parts. One big loop does not

allow this, but runs everything at the same rath daop. [Stew99a]

Global variables are traditionally looked to vidieghe object oriented design models
and encapsulation [Amb02]. In real-time system#hwmultiple processes running on
real-time operating system all global variableswseally shared amongst all processes

and can cause strange problems. Some developetisasgevariables as shared memory

56 (106)

however all locks, semaphores and other meanslte sace conditions are something

that should be avoided in real-time software. [S@}

Workarounds is a common problem in software devaelamt projects. Problems are
solved with a quick patch instead of searching et cause for the problem and
making the needed refactorings [Sub06]. The probiétim workarounds is that the root
cause will surface every now and then to causetiaddl problems. The workarounds

should be only temporary answers to problems nohgeent solutions [Stew99a].

A common practice in embedded development and irerge in C development is to
use precompiler statements to configure softwasndJthese #define statements is a
bad idea in embedded world for two reasons. Fimstie that in case the software needs
fixing as some configuration value is e.g. to snih# whole software needs to be
recompiled and reinstalled. As the software is méanembedded device, this might
prove to be very hard. Second reason is that tlageusf #define statements and

constants is very bad for reusability and portmglitferent platforms. [Stew99b]

A common problem is also using a global projectewnticader file, usually called
globals.h or project.h. Such a file is includedietich source code file. The practice is
followed because it seems to be easy and simplejnbfact it makes the reuse of

software a lot harder and takes a lot more tinraamtain. [Stew99b]

The last programming related issues are wrong fisgesrupts. According to David B.

Stewart [Stew99b] 80-90 % of the program code igrofimplemented in interrupt
handlers. The interrupts contain complete 1/0O hagdand also loops. However large
interrupt handlers can cause several problems fikerity inversion, scheduling

problems and excessive use of global variables\f#b, Barr07]. The handlers are
also very hard to debug as many debuggers regstrectbreakpoint setting inside
interrupt code [Stew99D].

57 (106)

3.3.6 Project size and complexity related issues

The projects itself cause problems that are no¢ssarily related to process used, ways
of working or directly to any technical issue. These also quite traditional problems
that also the normal software development projsttgygle with. One solution helping
to get through these is use of more advanced saftwavelopment tools. However
there lies another problem from the embedded softwaint of view, see Section 3.3.3

Embedded software development tools related issues.

Tom DeMarco and Timothy Lister noticed alreadytsd tate 70s that larger software
projects, meaning ones that take over 25 work-y&affish, almost every fourth of

them failed or was cancelled [DeM87]. AccordingTiechinsight's Embedded Market
Study 2008 [Emb08] the average time for an embeduegect in 2008 was 13.1

months (12.6 in 2007) and the average lateness4whsnonths. The design teams
average is 15.2 persons (13.6 in 2007) growing albd from previous year. The size
of the project and the project teams causes conuation issues and disturbs the

development.

The complexity of hardware/software systems withl-tene constraints is an issue
itself. As embedded systems vary from highly soptased mobile phones to nuclear
plant control systems with tight security and resmotime requirements, it is clear that
the complexity of the system varies a lot.

3.3.7 Issues from typical constraints

The typical embedded and real-time system constraamlso cause issues in
development projects. The common design metricstthae to be taken into account
are (presented also in the Section 3.2 Constrair@sbedded and real-time systems):
e NRE costs
e Unit cost

e Sijze

58 (106)

e Performance

e Power

e Flexibility

e Time-to-prototype
e Time-to-market

e Maintainability

e Correctness

o Safety

The following issues are identified to be relatedhese design metrics.

Error handling and detection is a crucial parthef €mbedded and real-time systems as
the devices might be used in multiple environmenis the device might be unable to
inform users about the error conditions [Sim99]efEhseems to be two dominating
ways to implement this [Stew99b]: The developerlements error detection and
handling everywhere, many times even when it isnegessary. This causes problems
with the performance and timing. Another way is twoimplement error detection and
handling code unless needed as a workaround foessarising during testing. This
causes defects to be found from the complete ptadutesting can never be so

comprehensive that all defects are detected. [Sbjv9

Battery lifetime and processing power require goitech work from the developer,
especially when talking about systems that are fpestuced and use very low cost
hardware. The software should use the processoerpasveffectively as possible. At
the same time the software should not use the laelfer unnecessary operations and
should be able to turn off some parts of the hardvptatform temporarily in order to
save battery time. Cutting off everything unnecssf@m the software causes lots of

design challenges both for the hardware and soét@easigners. [Ten03]

Another issue related to typical constraints oféh#bedded systems is that e.g.
consumer embedded systems can be used in muliffdeedt environments. The
testers of the device and the developers can edigtrall uses of the system and so the

system might behave strangely in different situetidKoop96]

59 (106)

Related to the previous issue is that there migharbeasy way to fix defects found
after product has been released to markets. Howkeggiroblem is that most embedded
systems can not update itself over the air. Updatie device might require opening
the casing and changing the memory circuits permneontaining the software. This
kind of operation can be very costly in case teads major one. So the correctness
of the software is a large issue in embedded aaletiree software development. How
to ensure that the software works correctly irsailations? How in case of a fault the
system can recover and continue working? Whatreredliability needs for the

product? This is a great design challenge for yiséesn developers. [Barr07]

60 (106)

4 Process for embedded and real-time

softwar e development

This chapter introduces a new methodology for emdbddand real-time software
development. This process is based mainly on Fealriven Development with
practices and parts from Agile Modeling, ExtremedPamming and Scrum. Section

4.1 proposes a process for embedded and real-tifivease development.

Section 4.2 gives a detailed view of the activilese in each subprocess. Next Section
4.3 will introduce the agile practice used in dayday work in order to make the

process agile.

Section 4.4 “How the process meets the developrissnies?” considers the issues
introduced in previous Section 3.3 and how theseeis are addressed in the proposed

process.

4.1 Proposed process for embedded software development

The proposed process is described in detail iroWeflg Sections 4.2 and 4.3. The
process is a customization of Feature Driven Deraknt [Coad99], [Palm02] with
some tailored Agile Modeling [Amb02], [Amb04], XB¢ck99], [Beck05] and Scrum
[Schw01], [SchwO06] practices. The variations ofjoral FDD process and the purposes
for them have been described after each subpro€hesaim is to come up solutions to

normal problems in embedded software developmértdaced in Chapter 3.

The subprocesses are presented with Entry — TasWerification — eXit (ETVX)
template used also in the description of FDD preessA more detailed description of
ETVX template is in Figure 25. The overall view tbe process and its subprocesses

was introduced in Section 2.3.

61 (106)

The tasks have a header an

a short description what is to

be

contains information on th
title of the task, the perso
responsible of the task and a
section telling if the task is

required or optional.

Section

Description

A
Entry

done. The header

Gives a description on process and a s

et of

requirements needed to accomplish before

starting process

" Tasks

Task to be performed during process

Verification

Describes how to verify that the tasks

correctly done

Aare

" eXit

Describes what deliverables the process

delivers

Figure 25 ETVX template.

The proposed process is described below in FigGras2a high level presentation. It

shows the main subprocesses:

Develop an overall model
Build feature list

Plan by feature

Design by feature

Build by feature

Feature retrospective

Milestone retrospective.

It also shows the basic flow of the process withirmoutputs from each different

subprocess.

The process described in Figure 26 is basic FD2q®® with two new subprocesses:

Feature Retrospective and Milestone Retrospediiee detailed description of all the

subprocesses is in Section 4.2.

62 (106)

Build Development plan

Develop an feature list
overall Y A
model Pid |
I - I
NN ' Plan by '
\‘ ¢ feature __ Inspection and
; adaptation
An object model Categorized p
(more shape than features list 4
content) |
X YRXX
N\ NN N Milestone
N\ NN t :
WO NN retrospective
SNV AN
(more content than \ \ >

shape) N
Design by Build by
feature feature
Design _
package

Client valued
function

- Foature
 Tetrospective

Continuous
improvement

Figure 26 Process flow of the proposed process.

4.2 Process description

This Section describes all the subprocesses girtieess in detail.

4.2.1 Subprocess 1: Develop an Overall Model

Entry:
An initial project-wide phase that results in domabject model of the system. This is
lead by Chief Architect and it involves the deveop specialists and Domain Experts

in the design and modeling of the system domains.

63 (106)

The Domain Experts give a walkthrough on the whegltem and its context. Then they
perform a more detailed walkthrough on all areashefir domain to be modeled.
According to these, the developers and domain ¢éxpeeate domain models in small
groups. One model or a hybrid of many models iscetl and added to the overall

domain object model.

Before Entry: The roles for the project have been decided; &t |IB@amain Experts,
Chief Programmers and the Chief Architect have bdentified.

Tasks:

Form the Modeling team Project M anager Required

The modeling team consists of the Domain Expertsthe Chief Programmers along
with other domain and development specialists,ni. &ther developers are rotated
throughout the domain modeling sessions in orddanaliarize the developers to the
project, domains and the process.

Conduct a Domain Walkthrough | Modeling Team Required

A Domain Expert gives an overview of his domain.eTialkthrough contains also
information of domain that is not necessarily medebr implemented. This phase

familiarizes the Modeling Team to domain and theid&sues in it.

Study Documents Modeling Team Optional

The Modeling Team studies documents related to doara requirements documents.

Develop Small Group Models Modeling Team in groups | Required

In groups of three the Modeling Team members craatwdel of the domain area. The
Chief Architect may give a “straw man” model to gia starting point for teams. Teams

may also produce sequence diagrams to test and gnevproper function of the model.

Develop a Team M odel Modeling Team Required

64 (106)

A member from each group presents the model degdldyy the group. The Chief

Architect may also propose further model alterrestivihe Modeling Team selects one
of the proposed models or creates in collaboratialew model by combining ideas
from the proposed models.

Write Model Notes Chief Architect, Chief | Required

Programmers

Notes about modeling session are written. Theseldhaclude notes on detailed or
complex model shapes and on significant alternatioelels proposed. These are for
future reference.

Verification:

Internal and External Assessment | Modeling Team, | Required
Stakeholders

Domain Experts provide internal or self-assessniwniactively participating in the
subprocess. External assessment is done if negdedrbain experts and customers

through reviews and by requesting more detaileakrimétion on the domain.

Exit criteria;

In order to exit the subprocess, an overall ohjeotiel must be produced and accepted
by the Chief Architect. This should show the aretiitire, classes and their connections,
important attributes, some sequence diagrams expdpithe harder parts and notes

describing why this solution was selected and shsawing the main alternatives.

4.2.2 Subprocess 2: Build a Features List

Entry:

65 (106)

An initial project-wide phase that results in featulist needed to achieve the
requirements. A team consisting of chief progransmir formed. Based on the
partitioning of the domain in the Subprocess 1, tkem breaks the domain into a
number of areas (or major feature set). After gash area is broken into a number of
activities (or feature sets). Each step within ativdy is identified as a feature. The

outcome of this is a hierarchically categorizetdisfeatures.

Before Entry: An overall object model has been created.

Tasks:

Form the FeaturesList Team Proj ect Manager, | Required

development manager

The features list team consists of the Chief pnognars from the modeling team.

Build the FeaturesList FeaturesList Team Required

The features are identified based on the first sadgss. Also functional requirements,
user guides and other existing references to ijethie features.

The aim of this task is a functional decompositibreaking the domain into areas and
the areas into activities that are composed fratufes representing a step in activity.
Features are simple granular client-valued funetiohhe features use a naming
template: <action> <result> <object> (e.g. “Entex tlesired number by dial pad”).

The granularity of a feature means that it showt take longer than two weeks to
complete, but it should not be so granular thatvatuld be simple getter or setter
function. Steps that seem to take more than twdksvebould be broken into smaller

steps that become features.

Verification:

Internal and External Assessment | Features List team, | Required
Stakeholders

66 (106)

The Features List Team participates actively inghacess to provide internal or self-
assessment. External assessment is done if negdddniain experts and customers
through reviews and by requesting more detailedrintion on domain and on issues

affecting the features list.

Exit criteria;

In order to exit the subprocess, a feature listtnies produced and accepted by the
project manager and development manager. This dhslubw the areas, activities

within them and a list of features to accomplisbleactivity.

4.2.3 Subprocess 3: Plan by Feature

Entry:

An initial project-wide phase that results in thevelopment plan. The project manager,
development manager and the chief programmers thiamorder of the features to be
implemented. The order of tasks in this subproéesmt strict but the tasks are more

done together refining and considering tasks perall

Before Entry: The feature list has been created.

Tasks:

Form the Planning team Project M anager Required

The planning team consists of project manager, Idpugeent manager and chief

programmers.

Determine the development | Planning team Required

sequence

67 (106)

The planning team assigns a completion date (manthyear only) for each activity.

The identification of the date is based on:

Dependencies between features and classes invioltieem,

Balancing the load across class owners,

Feature complexity,

High risk and complex features should be first doasplement, and

Also external milestones should be considered ghet@views, feedback, whole

releases).

Assign Feature Sets to Chief | Planning Team Required

Programmers

Chief programmers are assigned as owners of theiti@s (or feature sets). This

assignment is based on:

Development sequence,

Dependencies between features and classes invioltieem,

Balancing the load across class owners (the chigjrammers are also class
owners), and

Feature complexity.

Assign Classes to Developers Planning Team Required

The Planning Team assigns developers as class switeés is done based on:

Balancing load across developers,
Class complexity,
The usage of the classes, and

The development sequence

Verification:

Internal and External Assessment | Planning Team, | Required

Stakeholders

The Planning Team provides internal or self-assesstoy actively participating in the

subprocess.

68 (106)

Exit criteria;

In order to exit the subprocess, development plastine produced and accepted by the
Project Manager and Development Manager. This shehbw the feature sets with
completion dates and the chief programmers assigmezhch of these features. The

development plan also shows the assigned classrewne

4.2.4 Subprocess 4: Design by Feature

Entry:

A per-feature activity to produce the feature degigckage. The features are scheduled
for development by assigning them to a Chief progrer. The Chief programmer
selects features for development from the featassgyned for him.

The Chief programmer then forms a feature teamdeyntifying the owners of the
classes likely to be involved in the developmenttltad feature. This team produces
detailed sequence diagrams for the selected featline Chief programmer then refines
the object model and the developers write classaettiod prologues.

Before Entry: The planning team has successfully completed Sebpso3 (Plan by

feature)

Tasks:

Form afeatureteam Chief programmer Required

The Chief programmer identifies the classes thatikely to be involved in the design
of selected features and identifies the ownerdhe$d classes. The Chief programmer

also starts new design packages for the selechdalréss.

Conduct a domain walkthrough Domain expert Optional

69 (106)

The Chief programmer may request a Domain expentail the feature team through
details (e.g. algorithms, rules, formulas, datanelets etc.) of the selected features. This

task is optional and is based on the complexitheffeatures or interactions.

Study the referenced documents | Featureteam Optional

The feature team studies the documents referencee ifeatures list for the features to
be designed and any other useful documents, imgjugnemos, screen designs,
hardware interfaces and external system interfpeeifications. This task is optional
and is based on the complexity of the featuresiteractions and the existence of such
documents.

Develop the sequence diagrams Feature team Required

The feature team develops detailed sequence diagrequired for each feature being
designed. The team writes up and records any atigendesigns, design decisions,
assumptions, requirements clarifications and notethe design alternatives or notes

section of the design package.

Refine the object model Chief programmer Required

The Chief programmer creates a feature team arghddeatures. This area is either a
directory on a file server, a directory on Chiebgmnammer's computer or a directory at
project's version control system. This area is deethe team to share its progress and
make the progress visible.

The Chief programmer refines the overall object etlod add additional classes,
operations or attributes, based on the sequengeadis defined for the features. The
associated implementation language source filesipdated in the feature team area.

The model diagrams are created in publishable forma

Write class and method prologue | Featureteam Required

Using the updated implementation language souleg fiom previous task, each class
owner writes the class and method prologues foh & defined by the feature and
sequence diagrams. This includes parameter typssynr types, exceptions and

messages.

70 (106)

Design inspection Feature team Required

The feature team performs a design inspection. rQirgect members may participate.
The Chief programmer makes the decision to insp&itiin the feature team or with

other project team members.

Verification:

Design inspection Feature team Required

A successful design inspection is the verificatibthe output of this sub process.

Exit criteria:

In order to exit the subprocess, a successfullpaaoted design package should be
created. This should include a memo that integraelsdescribes the design package so
that it can be reviewed independently, the referdncequirements, the sequence
diagrams, design alternatives, the refined objeotet) generated output from the

prologues and the to-do task-list entries for tasksaffected classes for each team

member.

4.2.5 Subprocess 5: Build by Feature

Entry:

A per-feature activity to produce a complete chealued function (feature). The class

owners implement the items necessary for theirselmgo support the design for the

selected features. The code developed is thertestgd and the code is inspected. The
order of the development, unit testing and inspestiis determined by the Chief

programmer. After these have been completed, ttie sopromoted to the build.

71 (106)

Before Entry: The feature team has successfully completed Subgso¢ (Design by

feature)

Tasks:

Implement classes and methods Feature team Required

The class owners implement the items needed tsfgatie requirements on their
classes for the selected features. This includeslolement of any unit-testing code

needed.

Conduct a code inspection Feature team Required

The feature team conducts a code inspection, dithferre or after the unit test task. The
Chief programmer decides whether to inspect witbature team or with other project

team members.

Unit test Feature team Required

Each class owner tests their code to ensure thegcalirements on their classes for the
selected features are satisfied. The Chief progmmnuhetermines what feature team-

level unit testing is required, so what acceptaastng is done.

Promote to the build Chief programmer, | Required

Featureteam

Classes can be promoted to build after successti¢ mspection and unit testing. The
Chief programmer is the integration point for theire features and responsible for

tracking the promotion of the classes involved.

Verification:

Code inspection and unit test Chief programmer, | Required

Featureteam

72 (106)

A successful code inspection and the successfulpgion of unit tests is the

verification of the output of this sub process.

Exit criteria;

In order to exit the sub process, the feature temst complete the development of one
or more whole features (client-valued functionsp @o this it must have been

inspected, unit tested and the code promoted td.bui

4.2.6 Subprocess 6: Feature retrospective

Entry:

A per-feature activity to improve day to day prams The chief programmer or
selected class owner prepares and facilitates ra mdtmspective session (no more than
one hour). Outcome should be improvement to petseneing habits, insights on
software design or some input to milestone retrotbpe

Before Entry: The feature team has successfully completed Subgsas (Design by
feature). A feature is completed, inspected, ugsted and promoted to code. Whole

feature team is available for retrospective session

Tasks:

Prepar e session Selected facilitator Required

The facilitator plans the whole session and selsgitable way to observe the feature

implementation. Facilitator also decides the midigaal for the session.

Retr ospective session Feature team, Chief | Required

programmer

73 (106)

The feature team goes through a short retrospeséssion where they gather data on
the last task and generate insights on that. Kindde actions are decided and

documented using at most one A3 sized paper.

Reporting Chief programmer, session | Optional

facilitator

Findings from the retrospective session are regddedther Chief programmers and to
the Project manager. The session results are ssegat to Milestone retrospective.

Verification:

Self-inspection Chief programmer, | Required
Feature team

A successful retrospective session needs that eweryhares their feelings and
knowledge. Each feature team member is responséilgarticipating openly and

honestly to retrospective.

Exit criteria;

In order to exit the subprocess, the feature tearst come up with at least one personal
process improvement idea, input to the Milestoneospective or improvement to

overall process.

4.2.7 Subprocess 7: Milestone retrospective

Entry:

An activity performed when a milestone is reacheaider to improve processes and
working environment. The Project manager or seteperson prepares and facilitates a
retrospective session (no more than one work dayjcome should be improvement to

process, insights on software design and genembwvement ideas.

74 (106)

Before Entry: All the features needed to complete milestone Hepen developed and
Feature retrospectives have been performed. Everyamo has participated
implementation of the features belonging to thiestone is available for retrospective

session

Tasks:

Prepare session Selected facilitator Required

The facilitator plans the whole session and selsgitable way to observe the feature
implementation. Facilitator also decides the miigaal for the session and what

issues to emphasize during this session.

Retr ospective session Each feature teams, | Required
everyone involved in
development, Project

manager

The feature team goes through a standard retrogpesetssion according to facilitator's
plans. The project members gather data on tharldsstone and generate insights on
that. Finally the actions are decided and docuntensing at most one A3 sized paper.
All inputs from Feature retrospectives are handled actions from previous Milestone

retrospective are reflected. Previous actions eadiscarded, continued or adjusted.

Reporting and implementation Project manager, Chief | Required

programmers

Findings from the retrospective session are doctedeand implementation is planned.
The session results are always implemented andwetl for at least few features

forward.

Verification:

Self-inspection Project Manager, Chief | Required

75 (106)

programmer s, development
team members

A successful retrospective session needs that eweryshares their feelings and
knowledge. Each feature team member is responsilgarticipating openly and

honestly to retrospective.

Project manager and chief programmers verify thiattlee decided actions are

implemented and possible problems are solved aminzmicated immediately.

Exit criteria;

In order to exit the subprocess, the whole devetgrteam must come up with at least

one process improvement action or a general impnewne action.

4.3 Practices used with process

Practices are common day-to-day activities [BeckOBjey should be clear and
objective e.g. you can easily say that your companyracticing individual code

ownership or collective code ownership. The sofevaevelopment processes are
usually built around a set of best practices. Traetres usually aren't new, but the
combination of these may be. Each practice shoufghart other practices and make
working easier. The benefit resulting from a conaltion of suitable practices is greater

than the sum of benefit from the individual praeti¢Palm02].

The proposed process has also practices definbdtwithese practices are built on the
values and principles from the agile manifesto.Eat the practices should support
software development efforts and help the compaslwel client-valued software.

These practices can be extended, can be replatiedtiver practices that suit the needs

better and can be removed.

The base practices are the eight practices from féfa¢ure driven development
[Palm02]:

76 (106)

Configuration management
Developing by feature
Domain object modeling
Feature teams

Individual class ownership
Inspections

Regular builds
Reporting/Visibility of results
Unit testing

Few agile modeling practices are also used [Amb02]:

Active stakeholder participation
Apply the right artifacts

Consider testability

Create several models in parallel
Model with others

Use the simplest tools

Also few practices have been taken from Scrum aticeEe programming:

Energized work [Beck05]

Retrospectives [SchwO01]

The following paragraphs describe briefly eachhef practice listed above and also few

benefits resulting from following the practices.n8o practice dependencies are also

mentioned.

4.3.1 Feature-Driven Development practices

The following FDD practices form the core practiosgd in the process.

77 (106)

Configuration management (FDD practice)

The configuration management in an FDD project khdae able to identify what
features have been completed to date and to maintenge history of all classes.
These needs vary greatly depending on project'saddshand the complexity of the
product to be developed. [Palm02]

A very important point is that the configuration magement system should not only
hold source code files, but also requirements decus) analysis and design artifacts,
test cases, test harnesses and scripts and teiss s#®ould be in version control system.

Even the development tools could be version cdetto[Palm02]

Developing by feature (FDD practice)

In FDD functional requirements are expressed asifes. One feature is one client-
valued function defined with language that the hess side can understand. Features
are a functional decomposition of the requireménis very similar way to stories, use
cases and use case diagrams. These features dréousack and steer development.

The customers are able to prioritize features aliegrto their business value. [Palm02]

The main points about the features are that featiiage to be small and client-valued.
The size limit for a feature is that it should beplemented in two weeks. Usually the
project team should aim for features with smallexnglarity, from few hours to few
days. Small size enables better and more preaskimg of progress on frequent basis.
[Palm02]

Client-valued means that each feature should m#ap some kind of process, be it
typical business process or a process to set agvianhower robot. These features are
specified in a certain template:

<action> <result> <object>

78 (106)

One example from this could be "Perform a cleannph® lawnmower robot". This
tells also a bit about the implementation of thatdee, at least a function called

performCleanup() should be in Robot class. [Palm02]

Domain object modeling (FDD practice)

Domain object modeling is modeling the problem diomaith class diagram. This

shows the significant objects, the services thégraind the relationships between the
objects. Also e.g. some high level sequence diagramay help developers to
understand the problem domain, so there shouldbsiderations on usage of multiple

models in the domain object modeling. [Palm02]

The first purpose of domain object modeling is tindp the assumptions made by
individuals on the table. After learning the reguients, the developers tend to make
some automatic assumptions and bringing them opeimportant so that every
assumption is handled and no false assumptionsimeriie aim is for common
understanding inside the development team and rairamount of misunderstandings.
[Palm02]

Palmer uses a metaphor of road map to describeldh&in object model [Palm02]
compared to the driving metaphor by Kent Beck [B¥dk As Beck says, building
software is like driving a car. You observe yourviesnment and according to it you
steer, accelerate and break. The domain object Inderoad map for the driver. He
knows which way he should go and he gets thererfastd without so many detours.
[PalmO02], [BeckO5]

The domain object model is an overall framework,emehyou add more classes,
functions, and attributes, feature by feature. Ebmleloper should have an overall view
on the system and the domain object model helpsaiotain the conceptual integrity.
The amount of needed refactoring should be minichizg using the domain object

model to guide the implementation. [Palm02]

79 (106)

Feature teams (FDD practice)

The feature teams are dynamically created teaniptbduce features. A feature team
is started by the Chief programmer when he sekeatsw feature to be implemented
next. The Chief programmer decides which classesi@eded to implement the feature
and contacts the Class owners. The Chief progranamethe Class owners involved in
this feature are the feature team, like presentedrigure 27. This dynamic team
formation makes Featurt
Driven Development

highly scalable. [Palm02]

. |Feature teams are
formed from class
owners as needed

In order to feature team:

to work effectively few

other practices are

needed. First of allrjgyre 27 Feature team formation.
individual class ownership is needed to identify @lass owners that are needed in the

feature team. Also domain object modeling is neeatednost of the classes should be

known before starting the development of a feafl#alm02]

The feature teams are usually quite small, froreehio six developers. The feature team
members own all the code that is needed to be edaing order to implement the
feature under work. So there are no team deperekerior implementation of one
feature. The Chief programmers are also class @yiserthey keep working with the
source code. Also a Class owner may belong to phellteature teams at the same time.
[Paim02]

Individual class ownership (FDD practice)
Feature driven development has a bit different viiewcode ownership. Each class is
owned by a Class owner. This makes one develommonsible for the conceptual

integrity of the class. A Class owner is also apegkon this one class and can explain

the purpose and function of some piece of code.las<owner also implements new

80 (106)

functionality to the class faster than someone tm® not worked with the class before.
Also individual class ownership gives each develgmenething to be proud of and see

the products of their own effort. [Palm02]

I nspections (FDD practice)

Code and design inspections have proved to beteleway to find defects from
software. The bad reputation of inspections is itgdircause inspections are often done
quite badly. Idea of inspections is to let multipkeople look through work artifacts to
ensure code quality, to transfer knowledge andew that the artifact is according to
standards. One important point in inspections & thshould not be about individual
performance but team performance. There should b af effort on making the
inspections more comfortable for individuals andeating an atmosphere where

inspections can be seen as a good thing. [Palm02]

Regular builds (FDD practice)

One important aspect in most agile methodologiesgsilar or even continuous builds.
The system should be build at regular intervalst keeekly, daily or after every source
code commit to configuration management systems Ehbecause one traditional pain
in waterfall kind of software development has beetegration or build phase. By
pushing this phase to the end of the project tlogept team can be certain that there
will be major problems and costly fixing. The marféen build process is done the more

early the integration problems will arise. [Palm02]

Regular builds also ensure that there is alwaykking version of the software for

demonstration purposes. Build process can be usedt@ create documentation, run
unit test suites, run code metric collection, t&satic code quality and run acceptance
tests. In Extreme programming continuous integnaisoone core practices. This means
that all code is build each time anyone commitsectal configuration management
system, meaning that the build process is run etery. The build process is also

defined so that it should produce the final prod&ct if the software is a web site then

81 (106)

the web site should be deployed, and in case ahlbedded software, it should be
flashed to hardware. [Palm02], [Beck05]

Reporting/Visbility of results (FDD practice)

Normal problem with waterfall processes is its lagk visibility or even false
understanding of progress. Feature driven develapmsevery strong in reporting the
current status of the project. Each feature catrduked and different states of features
are precisely defined. Also it is easy to track tinember of features completed.
[Palm02]

Unit testing (FDD practice)

Unit testing is a testing practice that tests tbftwsare in small units separated from
other units. In procedural programming languagesuhit might be e.g. a function and
in object oriented languages the small unit issgaxl The unit tests are usually written in
the same programming language as the unit undérates are usually written by

developers. [Hunt03]

Testing units separated from other units meansathest is not a unit test if

e it uses the database,

e it communicates across the network,

e it uses the file system,

e it can not be run in parallel with other unit testsd

e you have to do manual work to run it, e.g. editfigpfiles, set the system to
certain state etc.
[Kos08]

Unit testing gives multiple benefits to develop&smprehensive unit test suites enable
developer to refactor code and implement new chamgthout a fear of breaking the
software from other parts. Running the test switélsshow if any problems result from

the changes. Also the unit tests offer an examplaaw to use class or function under

82 (106)

test. So in a sense it works as an executable datiation as well as a safety net for
changes. [Mart03]

4.3.2 Agile Modeling practices

Some Agile Modeling practices were selected for phecess in order to bring the
Extreme Programming values and principles as a giathe development process.
These were also seen as suitable practices faatfet organization as it sees modeling
as an important factor in software developmentgmtsj and, as described in Section

3.3.6, there are quite many issues related to nmgdahd design.

Active stakeholder participation (AM core practice)

The Active stakeholder participation practice imifar to On-site Customer [Beck05]
practices found from Extreme programming. A progekeholder is someone who is a
user, a manager of users, a support staff membester or anyone who is affected by
development of the software. Project success endightly linked to the participation
of important stakeholders. Management needs toupe project, operation and
support staff needs to work with the project teammake your environment ready,
hardware designers need to work with developeragke the system function as good
as possible, users and customers need to give deledim development efforts so far

and give business knowledge and clarificationfiéogroject team. [Amb02]

Active stakeholder participation was seen as ne@dactice in order to make sure the
stakeholders have a possibility to give feedbadkéateam. In a sense the practices was

already part of the FDD subprocesses.

Active stakeholder participation is done by fir§tadl using stakeholders as Domain
experts in domain walkthroughs. Also project mamagyet support is needed, so the
project team has to make sure the management waéssthe business opportunities

and value of the product. Also the management bamderstand the benefits of the

83 (106)

used techniques and technologies and the decisamlinlg to usage of these. In order to
gain this knowledge, the project team has to gehagement to participate in the
project. [Amb02], [Amb05]

Apply theright artifacts (AM cor e practice)

Apply the right artifacts practice is all aboutngithe right tool for the job. In case of
modeling, this means that correct artifact, be WML state chart, source code, a data
flow diagram etc, is used when it is most apprdpri&ach of these artifacts has their
own strengths and weaknesses and people are mogetent with different artifacts.
The correct artifact to fit different situationsositd be selected. In order to master the
differences between different artifacts, people dnée be trained and the more
experienced developers should be listened whemrtsalesuitable artifact for the job.
[Amb02], [Amb05]

This practice was selected as it directly helpshwahe specific issue described in
Section 3.3.5. The apply right artifacts practieeninds the developers not to model
with just one artifact, but to model the problemnm@on from suitable and needed

viewpoints.

Consider testability (AM core practice)

‘Consider testability’ is very important practicehan developing software for
embedded systems. The final hardware may not héablauntil the end of the project
and if the software can not be tested before thatproject will be in trouble. This was
seen as a large problem in Sections 3.3.1 and. A&a the lack of testability was part

of the issues described in Section 3.3.3.

The practice states that all the time during maodglyou should ask yourself "How are
we going to test this?" No non-testable softwareughbe build. One mantra of agile
developers is "test early and test often”, meathatjthe developers make sure that they

are doing the work right and to get immediate fe@ttlto notice mistakes. [Amb02]

84 (106)

One use of this practice is during the "Developrallanodel" subprocess. The model
should have defined hardware interfaces that canseel when testing the software

using mock objects [Hunt03].

Create several modelsin parallel (AM core practice)

As each different artifact has its own strengthd aeaknesses, you may need multiple
models to succeed in modeling. In FDD this pradscellowed at least in some extent,
as features are modeled with sequence diagramsvahdhe overall object model.
[Palm02]. However these two diagrams may not beughno so usually e.g. Ul
prototypes, use cases, and especially in embedgstdnss state charts are needed.
When modeling, developers must remember to useigheartifacts for the job and to

create multiple models when needed. [Amb02]

This practice helps with the same issue than thphAghe right artifacts practice
described above and will address the issues deskinbSection 3.3.5.

M odel with others (AM core practice)

Software development and modeling are creativestasid very error prone. In fact
when modeling, you can not be certain that yourgmhewill work. Because of these the
modeling should be performed in a small group. Thakes it easier to toss out ideas,
divide knowledge and efficiently better the modelsder work. As a result from a
collaborative modeling session you should not drdye better design, but also better
common knowledge, vocabulary and vision of the esystThis practice comes right

from the agile values enhancing communication. [A&jb
Model with others practice promotes communicatiamciv also is one of the main

values in Agile manifesto as described in Sectich The practice was selected to

promote team work and to accelerate learning ifeptavork.

85 (106)

Use the ssimplest tools (AM cor e practice)

Modeling is a task that is more or less about euglthe design in your head and
communicating it to others for feedback and elatimna Hence it usually should be
done with very simple, easy-to-use and effectiv@stoUse the simplest tool practice
requires developers to use the simplest tools [daitkor the task at hand. Usually a
whiteboard or a large sheet of paper is enough, aet CASE (Computer-aided

software engineering) tools are sometimes the sistjgluitable tools. [Amb02]

This practice also spreads the value of simpliatyich is one of the core values in
Extreme Programming [Beck05]. This was one purpfmseselecting this specific
practice to be part of the process. It also helgglte issues of complexity described in
Section 3.3.6 and the issues with suitable toddsrileed in Section 3.3.3.

4.3.3 Other agile practices

The following practices were selected for the psscEom Extreme Programming and
Scrum methodologies. Similar and suitable practiftesthe issues these practices

address were no found from Agile Modeling or FeatiDriven Development.

Energized work (XP primary practice)

Energized work is one of the main practices in &xie programming. It states that
developers should work as long as they are progueind with sustainable pace. There
is no point in overburdening developers with lommyihand constant hurry. Running a
marathon is usually considered as a metaphor fergezed work practice. Marathon

should be run on sustainable pace in order toHfiriBeck05]

The energized work practice directly addressesgbge of not having time for break
described in Section 3.3.4.

86 (106)

Retr ospectives (SCRUM practice)

The retrospectives are facilitated meetings wheaentlooks back and tries to learn and
improve for the future work. There are few mains@ss for holding retrospectives.
First of all of course the learning, a team camrndeom problems and errors and also a
team can try to repeat successes. Secondly rettdggse improve communication by
bringing the team together and going through is$rgem personal view points of team
members. Third reason for retrospectives is makimg team a part of process
improvement and at the same time making them mamandtted to the process used. It
is more natural for people to commit on somethingythave created or altered by

themselves. [Dav04]

The retrospectives aim for continuous improveme&hts concept has been talked a lot
because of gained popularity of Lean software dagmaknt [Poppen03], [Poppen07].

The retrospectives are one way to achieve thisargment. The decisions and ideas
made at retrospectives should be used so that @tnespectives do not feel like

unnecessary waste of time.

The reason for selecting retrospectives as intqmaek of the process was that we had
concerns about how the FDD practice itself hanileses and promotes continuous
improvement. The retrospective was an ideal chéicethis and the outcome from

retrospectives helps us address almost any issuestislowing the development team

down.

4.4 How the process meets the development issues?

The following sections map the issues of traditi@mabedded software development to
suitable practices that solve or relieve the coweding issue. There is also a short
description of the solution related to the issddse mapping is done in the same order
as in Section 3.3.

87 (106)

4.4.1 Response time and timing

Issue Practice

No HW available Unit testing

No exec time measurements dope Early and freqesting

No HW analysis done Frequent releases of workirfigvaoe
No memory analysis done Early and frequent testing

Figure 28 Response time and timing related issues with helping practices.

The first issue of not having hardware availableirdy software development can be
eased with the practice of unit testing. It candome against simulated or mocked
hardware to ensure that the program logic is vallds way the testing of hardware-
software interface can be done focusing mainlyt@ninteractions between these two

parts and it is possible to test other parts ofsifstem independently.

The issues of lacking execution time measuremerdslacking memory analysis need
early and frequent testing. This is done in thecess by developing the software
incrementally and testing each increment. By tgst@s soon as possible and as

frequently as possible, the performance and exatuime issues can be brought
visible.

The missing hardware analysis can cause performigasues and compatibility issues.
This can be helped with frequent releases of wgrkioftware which is integrated with
hardware and tested as a whole will reveal perfapeassues resulting from poor HW

analysis. Again the incremental way of implementthg system drives the frequent
releases.

4.4.2 Platform architecture

| ssue Practice

Distributed and multiprocessor platforms Unit tegtiEarly and Frequent testing

Load balancing Early and frequent testing

88 (106)

Interprocess communication Unit testing, Early &nelquent testing
Generalizations Incremental development

Variable and unique platforms Unit testing

Resource allocation and management Early and fredesting, unit testing

Figure 29 Platform architecturerelated issues with helping practices.

Many of the issues with platform architecture cansblved partly with unit testing. It
can be done against simulated hardware and distdbslystems to ensure that the
program logic is valid. This way the testing of dhwaare-software and network
communication can be done focusing mainly on theratctions between these two
parts. Platform issues, as well as load balancim) @erformance issues, can also be

found through early and frequent testing done &éeh implemented increment.

Incremental development leads to evolving desigichviprovides a possibility to do
suitable generalizations when needed. Also propértesting enables us to isolate the
non-changing parts of the system to own modules ran#les it easier to hide the

hardware platform behind a facade or interface.

4.4.3 Embedded software development tools

I ssue Practice

Lacking features Retrospectives, develop by feature
Selection process Retrospectives, Incremental dpregnt
No automated testing Retrospectives, Unit testing

Figure 30 Embedded softwar e development toolsrelated issues with helping practices.

The retrospectives help the team to self assesscanthuously improve. This also
enables us to select our tools incrementally araduete tools while using them in the
actual development work. Retrospectives also urrcoue needs for better tools and

e.g. automated testing.

The Develop by feature practice ensures that esatuife is finished before moving to

lower priority features. So these all makes it guesto select the tools while working

89 (106)

forward with the software. We can change develogneois for future features, and
keep the existing tools working with the previoaatfires.
So the retrospectives and incremental developmeferr dhe selection of tools to latest

responsible moment. Also tools can be changed t&fting them in the project work.

4.4.4 Typical constraints

I ssue Practice

Failure recovery Plan by feature, early and fretjtesting
Battery and processing power Plan by feature, eantlyfrequent testing
Interaction with the environment Plan by featuse)yeand frequent testing
Updates, correctiveness Plan by feature, earlyfregdient testing

Figure 31 Typical constraintsrelated issueswith helping practices.

Plan by feature makes it sure that the highestiprifeatures and critical issues are
resolved first. This combined with early and freguiesting gives us feedback on how
these solutions work and how to improve them. These practices help us to work

with the typical constraints and to bring the coausts visible as early as possible.

4.4.5 Development process

I'ssue Practice

No code reviews Code and Design inspections
Documentation written too late Included in desigchages

No time for break Energized work

Task switching N/A

Figure 32 Development processrelated issueswith helping practices.

Code and Design inspections that are included endévelopment process ensure that
code is always reviewed. Also the documentatiaonis deliverable in design packages,

so it needs to be done in order to finish a feature

There is no sense in overburdening the project &sthe projects are usually long. The

energized work practice instructs the teams toarkvgustainable pace. However, FDD

90 (106)

gives multiple responsibilities to each developarad this might cause excessive

amount of task switching occasionally. This carséen as a downside of the process.

4.4.6 Programming practices

| ssue Practice

Large if-then-else and case statements Code andrDiespections

Code and Design inspections,

No naming and style conventions Retrospectives

Delays implemented as empty loops Code and Desgpections
One big loop Code and Design inspections
Global variables Code and Design inspections
Workarounds Code and Design inspections

Configuration information in #defing

statements Code and Design inspections
Including #global.h Code and Design inspections
Wrong use of interrupts Code and Design inspections

Figure 33 Programming practices related issues with helping practices.

Continuous peer review helps to catch technicablpras in design and code level.
These inspections also help to spread the knowladgat correct practices. The correct
style and conventions can be agreed in the kiclanff changed in any retrospectives.

Collaborative working with the code improves theeaquality over time.

4.4.7 Design practices

| ssue Practice

Dependencies Design inspections, Unit testing

Concept Diagram, Sequence diagrams,

apply right artifacts, create several

Only one design diagram models in parallel
One solution applied every time Code and Desigpeasons
Overdesign Code and Design inspections, Scoping,

91 (106)

Unit testing

Reusing non-reusable modules Design inspections

Figure 34 Design practicesrelated issueswith helping practices.

Dependencies are a common issue in large embeddieche. Dependencies makes
unit testing painful, so having lots of dependeségerevealed when writing unit tests.
Also design inspections reveal possible dependsranie are also a step that makes it

possible to collaboratively improve the design.

Different diagram types are included into the psscia order to produce a big picture
about the whole problem domain as well as a pictir¢he functionality of certain

feature. Also the Agile Modeling practices applghti artifacts and create several
models in parallel reminds the developers not te asly one design diagram for

everything.

Continuous attention to code and design inspectikesps the code simple and
understandable as well as the design is cleanalsét contributes into a common
understanding of the project and the architecturat testing is hard if the design is
overly complicated so that drives also the simmsigh. Finally, the scoping helps to
focus on one problem at a time instead of desigfangall possible combinations at

once.

4.4.8 Project size and complexity

| ssue Practice

Prioritized requirements and release

Too long projects working software early and often

Natural complexity Incremental development

Figure 35 Project size and complexity related issues with helping practices.

The issue with long projects can be relieved byrfiizing the requirements and
releasing working software early and often. Thigmishorten the project by scoping

out the unnecessary features. According to Standislup studies, 45 % of the

92 (106)

requirements are rarely or never used [John02]o Allsadds new milestones for the

project, and so divides it into smaller objectives.

The natural complexity can be eased by solving glablem in incremental steps,

starting from the simplest case and building ondbghat.

93 (106)

5 Retrospective of the process

development

The target of the work was to develop an agile @sscfor training and consulting
company. The company had a major customer in Finthat had a need for agile
methods, but was not sure what method would bealdsitfor their environment and
how to adopt that. The customer was in developorgsamer electronics for the global
market. So the target for the developed processtavasiit the needs of that specific
target organization and to generate profit for¢henpany. The company had also few

good experiences from self developed processestfierprevious decade.

The project started by a background study of thetmopular agile methods and case
studies of those. The analysis consisted mostiy festimating different aspects of the
process and reflecting those to the target orgtiaiza All the methods were

characterized into their stereotypes: XP was vadjcal, FDD feature oriented, Scrum

just a framework, DSDM was for business and finalhebftware etc.

There were many factors making the Feature-Drivemelbpment a good choice for the
base of the process. The target organization wias giaditional and process oriented. It
could be described as a bit slow in changes. S&xheme Programming, which was at
that time the most popular method, was seen abitddical. Also the XP was seen as
ad-hoc method for small team to do software. Th®Fbn the other hand, was very
process oriented and was quite popular. It was everad of Scrum in some surveys

and was the runner up for XP.

Another interesting part of FDD is that it promisesilability. In the target organization,
there was very large number of large projects,hs® was a promise that was quite
important in selection process. The terminologpeesally Features, of FDD was also

familiar to the target organization.

94 (106)

Another part of the process was the Agile Modelpragctices. We selected Agile
modeling as a sidekick for the FDD in order to frin the XP and agile values to the
target organization. The AM is also an easy andknprocess to implement and to
spread inside an organization. Also it was a nasebection for this as modeling was
seen as a very important activity in target orgainin and the projects were quite

model driven.

After the overall view of the agile methodologieasadone and suitable candidates were
found, we started to investigate the special charstics of embedded software
development and the development projects. From téohnical side, we quickly
identified that the largest difference to tradiabisoftware development was the close
interaction of hardware and software. Also comma@s w have customized hardware

that would change from a project to another.

Looking at the embedded software development pimjeee identified that the projects
were often very large and had a heavy and vergtsireld organization. To handle this
large amount of people and large organization ptiogects were very process oriented
and risk driven.

After the larger overview of embedded software ttgw@ment, we decided to identify
the main issues of the embedded projects fromatitee and to build the new process to

somehow help out with these issues and improveuent situation.

A while after the process development work hadiastawe had our first doubts about
the process under work. FDD was very process @tkahnd in a sense it lost some of
the main points of agile underneath the processpHasis on communication,
continuous improvement and team work was not broughin the FDD process. Also

on development side, the feedback was very hageto
Some FDD practices were completely opposite froneropopular agile methods. FDD

tracks process of features through describing egm¢age of work already done, instead

of measuring only done software as stated alraatlya agile manifesto.

95 (106)

The modeling was a big part of the FDD process tnedwhole system is roughly
illustrated before anything is done. This can kendéke a big design up front (BDUF)

that has been treated as a harmful practice ireErProgramming.

Another practice that contradicts with XP is thdiwdual code ownership in FDD.
FDD states that each class should be owned by englaper, when the XP states that

all code should be common and everyone should leet@inake changes anywhere.

Finally, by combining the individual code ownerslaipd feature teams, FDD creates a
big amount of task switching for developers. Tasktahing has been seen as a bad
habit in agile development and many methodologrephasize on getting one thing
done at a time.

Some changes were done to the process at this pbietmost notable was the addition
of retrospectives to the process. This was doessore the feedback for the developers

and to enable continuous improvement.

The process development ended at the beginningea?@07. It was partly due to other,
more valuable work and also due to the lack ofregefrom the target organization.
There were quite many reasons behind this, butrweot describe our observations

here.

When the process development work started, the RBIDScrum were almost equally
popular methodologies. However, during the develapn®crum gained popularity and
was overcoming XP. At the same time the communayg Vosing interest to FDD. This
change in popularity happened in a short time arséms to be quite common that
processes and methodologies have their own lifecy@me will gain larger popularity
and become standards in the industry as othershewlé a small popularity that fades

away in time.

96 (106)

Another movement we noticed during the processldpugent was the increase of the
amount of published agile research. The industd/rhare experiences about agile and
the researchers were all the time producing mofferrmation about the agile
development. Most of these researches were aboumSand XP. It was quite hard to

find any FDD related publications.

As the Scrum popularity was rising, we also notitieat there was no need for specific
own process, but rather a framework that could dengled was seen more valuable.
We could not see anymore the possibilities of angaprofit by selling the developed

process and trainings related to that. Scrum wes as an easier way to create profit
for the company, so we decided to prioritize ourugt related products over the own

developed process.

The one aspect that was not considered in thislo@vent work was that no process
fits for all projects. Each project, even insidee@ompany, is uniqgue and the adoption
work and modifications have to be made for eacleptoSo it was not likely that the

developed process would be suitable to all neeus$ tlze modifications of the process

would have been more complex than for example vetakpting Scrum.

We did find out few important lessons while workitiyough the long process of
creating the modified version of FDD.

e No process is useful on paper

e No process can be made without engaging the people

o Faster delivery increases chances of success

We had made quite solid work with the process aaerewuite happy with the outcome.
After the development work ended and there wasn®using the process, we noticed
that there is no value in having a purely theoattspftware development process. In
order to generate value with a process, it mustdasl to develop software. This would

have also helped to identify the shortcomings effifocess.

97 (106)

For this process, we believe that through bettesgraal engagement and commitment
the process might have had an empirical test. nSarder to bring the process to the

daily work a certain amount of leadership is needed

We also noticed that the process development was hard, if started just from the
issues the developers have. We had no idea of itgedt problems the developers
faced in the day to day work. We had a vague idgaeomost common issues in the

industry and we started solving those.

After the process was developed, it was obviousttialean way of having the people
who work with that process should have been thelpewho contribute to the process.
This would have given us new and diverse perspestas well as added commitment

and buy in from the people who start working whik hew process.

We decided in the beginning to make a processwtbatd be ready and easy to adopt.
There was no talk about milestones or early rekas®wever, we believe that by
delivering the first drafts of the process as eadypossible and after that frequently

delivering the changes, we might have improvedobiances of success greatly.

98 (106)

6 Summary

The thesis presents only theoretical basis for el software development process.
This process should be evaluated in practice irrotd give value to the embedded

software development community. This could be amssible aspect for further studies.

The more valuable part of this thesis is the neactites customized into Feature
Driven Development. Especially retrospective is owmly thought as a highly
important practice and should be adopted in ordegain benefit from continuous

improvement.

The thesis project was quite a long one, due tinbas environment changes, and due
to personal day to day work demands. During tmetthe agile development methods
have become quite common in software developmarjeqts. Especially Scrum has
become highly popular development framework. All @i the agile software
development has crossed the chasm. There stiédad to research the different flavors

of agile in embedded system projects.

The process presented in this thesis does notibdesanything about adoption and
change. Agile adoption has been seen as quiteypgirdcess and as such requires good
guidance, lots of knowledge and effective commuioca In order to adopt a process a
much more is needed than a process documentatbrdetiled day to day practice
descriptions. This has been left out from this ithesd could be another study that

should be conducted.

The key findings from this thesis are related te firocess of developing a new
software development process. These can be sunedaiizto following three
observations:

e No process is useful on paper

¢ No process can be made without engaging the people

e Faster delivery increases chances of success

99 (106)

References

[Abra02]

[Amb02]

[Amb04]

[Amb05]

[Amb06]

[Amb07a]

[Amb07b]

[AmbO07c]

[Amb08]

[Ang06]

Abrahamsson, Pekka et al. 2002. Agilewgafe development methods:
Review and analysis.
<http://www.inf.vtt.fi/pdf/publications/2002/P478.fxl

Ambler, Scott 2002. Agile Modeling: Effeet Practices for eXtreme
Programming and the Unified Process. John Wileyo&isS Inc.

Ambler, Scott; Jeffries, Ron 2005. The @jErimer, Third Edition:
Agile Model-Driven Development with UML 2.0. Cambge University

Press

Ambler, Scott 2005. The Agile Unified Prese(AUP) Home Page.
<http://www.ambysoft.com/unifiedprocess/agileUP.h#rmP.6.2006
Ambler, Scott 2006. Agile Survey Results8nary
<http://www.ambysoft.com/downloads/surveys/AgileAtopRates.ppt
March 2006

Ambler, Scott 2005-2007. An IntroductianAgile Modeling.
<http://www.agilemodeling.com/essays/introduction WdAtm>
30.6.2008

Ambler, Scott 2007. Survey Says... AgilasHCrossed the Chasm -

Examining the effectiveness of agile practices.Mubbs Journal August
2007, 59-61

Ambler, Scott 2007. Agile Survey Resultsm8nary
<http://www.ambysoft.com/downloads/surveys/AgileAdop2007.ppt
March 2007

Ambler, Scott 2008. Agile Survey Resultsn8nary
<http://www.ambysoft.com/downloads/surveys/AgileAdop2008.ppt
February 2008

Angel, Justin-Josef 2006. Feature Driverv@&epment: For the agile

agent of change.

100 (106)

<http://www.JustinAngel.Net/files/FeatureDrivenDevgient.ppt
29.6.2006

[Awad96] Awad, Maher; Kuusela, Juha; Ziegler, Jurd®96. Object-Oriented
Technology for Real-Time Systems. Prentice Hall

[Barr07] Barr, Michael; Massa, Anthony 1999,200id?amming Embedded
Systems with C and GNU Development Tools. O'Reilly

[Bay94] Bayer, Sam; Highsmith, James A. 1994. RAdDgoftware development.
American Programmer 7(6): 35-42.

[Beck99] Beck, Kent 1999. Extreme Programming Eixyad: Embrace Change.
Addison-Wesley Professional

[Beck05] Beck, Kent; Anders, Cynthia 2005. ExtreRregramming Explained,
Second Edition: Embrace Change. Addison-Wesley

[Ber07] Bergman, Gustav; Coplien, Jim. Is SomethiRagten in the Practices of
XP? Lean Magazine December 2007. Softhouse Nordic

[Boehm00] Boehm, Barry 2000. Project Terminatioestot Equal Project Failure.
Computer, Volume 33, Issue 9, Pages 94-96. Septc20ifé.

[Boehm03] Boehm, Barry; Turner, Richard 2003. Balag Agility and Discipline: A
Guide for the Perplexed. Addison-Wesley Professgiona

[Bro75] Brooks Jr., Frederick P 1975, 1995. The Iyl Man-Month: Essays on
Software Engineering. Addison-Wesley.

[CMP0O1] CMP Media LLC, Embedded Systems Programmi¥igson Research
Group 2001. 2001 Embedded Market Study. Conducteglist-
September 2001.

[CMP02] CMP Media LLC, Wilson Research Group 2008edded Market Study.
Conducted October-November 2002.

[CMP04] CMP Media LLC, Wilson Research Group 202d04 Embedded Market
Study. Conducted November 2003 — January 2004.

[CMP0O5] CMP Media LLC, Wilson Research Group 200805 Embedded Market
Study. Conducted February-March 2005.

[CMP06] CMP Media LLC, EE Times, Embedded Systerasifn 2006. 2006 State
of Embedded Market Survey. Conducted March 2006

101 (106)

[Cock01]

[Cock02]

[Coad99]

[Dav04]

[DeM87]

[Dru07]

[DSDMO3]

[DSMDO8]
[Eck04]

[ElSO7]

[Emb06]

[Emb08]
[Fowl05]

[Fre09]

[Gan01]

Cockburn, Alistair 2001. Crystal light rhetls.
<http://alistair.cockburn.us/index.php/Crystal_lightethods

Cockburn, Alistair 2002. Agile Software @opment. Pearson
Education, Inc.

Coad, Peter; Lefebvre, Eric; De Luca, 1889. Java Modeling in Color
with UML. Prentice Hall

Davies, Rachel; Brown, Peter. Using Rgiextives to Channel Feedback
<http://agilexp.com/presentations/XPDay4Retrospestivpt 2004

De Marco, Tom; Listener, Timothy 1987,19%®opleware: Productive
Projects and Teams. Dorset House Publishing.
Druckman, Angel 2007. What Scrum Can andr@a Fix? Scrum

Alliance. <http://www.scrumalliance.org/articles/68-what-scraem-and-

cannot-fix>

DSDM Consortium 2003. DSDM Public Versidr2 Manual
<http://www.dsdm.org/version4/2/publk/

DSDM Consortium 2009. DSDM Aternhttp://www.dsdm.org/aterr/
Eckstein, Jutta 2004. Agile Software Deystent in the Large: Diving
Into the Deep. Dorset House Publishing Company

Elssamadisy, Amr 2007. Patterns of Agilad®ice Adoption - The
Technical Cluster. C4Media Inc

Zurawski, Richard 2006. Embedded SystentsdHaok. Taylor &
Francis Group, LLC.

2008 Embedded Systems Market. Tech Indighibedded Systems Design
Fowler, Martin 2005. The New Methodology.
<http://www.martinfowler.com/articles/newMethodologym[>

French Scrum User Group 2009. A National/&uon Agile Methods in
France. June, 2009.
<http://www.frenchsug.org/download/attachments/5®&IRational_surve
y FrenchSUG ENGL en.pdf?versionr=27.5.2010

Ganssle, Jack G 2001. A Guide to Code btgpes. The Ganssle Group.

<http://www.ganssle.com/inspections.pdf

102 (106)

[Haa07]

[High0O]

[Hunt99]

[Hunt03]

[Info06]

[John02]
[Jones97]

[Jones04]

[Kni07]

[Koop96]

[Kos08]
[Kra03]

[Kruo0]

[Lef07]

Haapio, Petri 2007. The Agile Change in N8Neminar presentation in
Agile Finland Fall 2007 seminar 3.10.2007

Highsmith, James A. 2000. Adaptive Softer@evelopment: A
Collaborative Approach to Managing Complex SysteDwset House
Publishing

Hunt, Andrew; Thomas, David 1999. The Pnatjc Programmer: From
Journeyman to Master. Addison-Wesley

Hunt, Andrew; Thomas, David 2003. Pragmatnit Testing: In Java with
JUnit. The Pragmatic Programmers, LLC

Hartman, Deborah 2006. Interview: Jim Jsebim of the Standish Group.
<http://www.infog.com/articles/Interview-Johnson-&desh-CHAOS.

Johnson, Jim 2002. XP 2002 conferencedteyspeech.

Jones, Capers 1997. Software Qualityaly&is and Guidelines for
Success. International Thomson Computer Press.

Jones, Capers 2084ftware Project Management Practices: Failure
Versus Success.
<http://www.stsc.hill.af.mil/crosstalk/2004/10/04 bhés. htnw

Kniberg, Henrik 2007. Scrum and XP from fheenches - how we do

Scrum. Lulu.com

Koopman, Philip 1996. Embedded System @etisues (the Rest of the
Story). Proceedings of the International Conferammt€omputer Design
1996.

Koskela, Lasse 2008. Test Driven. Manning

Krasner, Jerry 2003. Embedded Software raent Issues And
Challenges - Failure Is NOT Optional - It Comes &led With The
Software. Embedded Market Forecasters.

<http://embeddedforecast.com/emf_esdi&cxpdf

Kruchten, Philippe 2000. The Rational UadiProcess: An Introduction.
Addison-Wesley Professional
Leffingwell, Dean 2007. Scaling Software ifty: Best Practices for

Large Enterprises . Addison-Wesley Professional

103 (106)

[Lik0A4]

[Man01]

[Mart98]

[Mart03]

[Met08]

[Mou08]

[Nebu05]

[Osh06]

[Palm02]

Liker, Jeffrey K. 2004. The Toyota Way - Management Principles from
the World's Greatest Manufacturer. McGraw-Hill

Beck, Kent; Beedle, Mike, van Bennekum,e”et. al. 2001. Manifesto for
Agile Software Development.http://agilemanifesto.org/

Martinez, Michael E. 1998. What Is Probl&ualving? Phi Delta Kappan,
Vol. 79, 1998

Martin, Robert C. 2003. Agile Software R#epment: Principles, Patterns

and Practices. Pearson Education, Inc.

Methods & Tools 2008. Adoption of Agile Meids poll.
<http://www.methodsandtools.com/dynpoll/oldpoll.pAgile2> 2008
Mountain Goat Software 2008. The Scrum dlgwaent process.

<http://www.mountaingoatsoftware.com/scram

Nebulon Pty., Ltd. 2005. Feature DrivervE€lepment overview.
<http://www.nebulon.com/articles/f{dd/download/fddoxiew.pdf>.
Oshana, Robert 2006. DSP Software Develapimechniques for

Embedded and Real-Time Systems. Elsevier Inc.

Palmer, Stephen R.; Felsing, John M. 28@2actical Guide to Feature-

Driven Development. Prentice Hall

[Poppen03] Poppendieck, Mary; Poppendieck, Tom 2068&n Software

Development: An Agile Toolkit for Software Developnt Managers.

Addison-Wesley

[Poppen03b] Poppendieck, Tom 2003. Agile Custonfartskit.

<http://www.poppendieck.com/pdfs/Agile Customers_I[KmoPaper.pdf>

[Poppen07] Poppendieck, Mary; Poppendieck, Tom 200@lementing Lean

[Roy07]

[Scho04]

Software Development: From Concept to Cash. Addis@sley

Royce, Winston W. 1970. Managing the Depeient of Large Software
Systems: Concepts and Techniques. Technical Pap@é/sstern
Electronic Show and Convention. August 25-28, 1970.

Van Schooenderwoert, Nancy 2004. Embe#&aé@me Programming:
An Experience Report. Presented in ESC conferanBeston 2004.

<http://www.aqgilerules.com/articles/Embedded ExtreRmwgramming E

xperience Report.pdf

104 (106)

[SchwO01]
[SchwO06]
[Schw07]
[Shi03]
[Sim99]
[SomO04]
[Sta94]
[Sta04]

[Step03]

[Stew99a]

[Stew99b]

[SubO6]

[Tak86]

[Tak95]

[Ten03]

Schwaber, Ken; Beedle, Mike 2001. Agilét®are Development with
Scrum. Prentice Hall
Schwaber, Ken 2006. Introduction to Scrum

<http://www.controlchaos.com/resources/intro.php

Schwaber, Ken 2007. The Enterprise andrBcMicrosoft Press

Shine Technologies 2003. Agile Methods 8yriResults. 2003

Simon, David E. 1999. An embedded softwammer. Addison-Wesley
Sommerville, lan 2004. Software Engineerfbgventh Edition. Pearson
Education Limited

Standish Group International, Inc. 1994 A% Report.
<http://www.standishgroup.com/sample_research/cHe$1 1.php.
Standish Group International, Inc. 2004 AT Report:

CHAOS Chronicles.

Stephens, Matt; Rosenberg, Doug 2003 eBdrProgramming

Refactored: The Case Against XP. Apress

Stewart, David B. 30 Pitfalls for Real¥ie Software Developers, Part 1.
Embedded Systems Programming Magazine, vol.121np.132-41.
October 1999. kttp://www.ece.umd.edu/serts/bib/mags/esp99z. pdf

Stewart, David B. More Pitfalls for Rédine Software Developers.
Embedded Systems Programming Magazine, vol.122np.174-86.
November 1999. kttp://www.ece.umd.edu/serts/bib/mags/esp99k. pdf

Subramaniam, Venkat; Hunt, Andrew 2006cfras of an Agile
Developer: Working in the World. The Pragmatic Bsioif

Takeuchi, Hirotaka; Nonaka, Ikujiro 198GelNew New Product
Development Game. Harvard Business Review, Jarfeloydary 1986.
137-146

Takeuchi, Hirotaka; Nonaka, Ikujiro 1995eTKnowledge-Creating
Company: How Japanese Companies Create the Dynafrlimsovation.
Oxford University Press

Tennies, Nathan 2003. Software MatterPmwver Consumption,
Embedded Systems Programming, February 2003.

105 (106)

[Ver07]

[Ver08]

[Ver09]

[VilO8]

[Xil00]

[Yag07]

Version One: ¥ Annual State of Agile Survey, conducted June-July
2007. 2007

Version One: 8 Annual State of Agile Survey, conducted June-20§8.
2008

Version One: 4 Annual State of Agile Survey, conducted June-Ndvem
2009. 2009

Vilkki, Kati 2008. Juggling with the Parades of Agile Transformation.
Keynote at XP2008 conference in Limerick.

Nicklin, Dave 2000. Xilinx at Work in Set-dp Boxes.
<http://direct.xilinx.com/bvdocs/whitepapers/wp10ifp

Yaghmour, Karim 2003. Building Embedded uxnSystems. O'Reilly

106 (106)

