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Of coevolution, 
 
“Thus I can understand how a flower and a bee might slowly become,  
either simultaneously or one after the other,  
modified and adapted in the most perfect manner to each other,  
by continued preservation of individuals presenting  
mutual and slightly favourable deviations of structure.” 

 
Charles Darwin 
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1. INTRODUCTION 

Human induced environmental changes, such as habitat fragmentation, are rapidly 
reducing biodiversity. The scale of impact of these ongoing and, unfortunately also 
accelerating, processes ranges from genetic diversity within species to the species 
diversity of communities (e.g. Saunders et al. 1991, Young et al. 1996). Although the 
effects of fragmentation on a single species have been widely studied (e.g. Leimu et al. 
2006), the impacts of fragmentation on species interactions are poorly understood. At 
the same time the growing body of evidence demonstrates that reciprocal evolutionary 
responses between interacting species, i.e. coevolution, is a major force generating 
biological diversity (Thompson 1994, 2005). Thus, understanding the factors affecting 
the process of coevolution has far-reaching implications for conservation of 
biodiversity. I conducted my research in the southwestern archipelago of Finland that 
consists of ca 10000 islands of varying size, age, and degree of isolation. Therefore, 
my study system provides a unique, naturally-fragmented geographic mosaic for 
investigating coevolutionary dynamics.  

1.1. Coevolution 

A large part of evolution is coevolution – the process of reciprocal evolutionary change 
between interacting species (Ehrlich & Raven 1964, Thompson 1994, 2005). 
Coevolution can shape the patterns of adaptation and speciation and is claimed to be a 
major force in organizing the diversity of life on earth (Janzen 1980, Thompson 1994, 
2005). Indeed, many major events in the history of life are consequences of reciprocal 
evolutionary change, including the origin of eukaryotic cell and the origin of plants 
(Taylor 1970, Horiike et al. 2001).  

Most species have spatially structured populations and these populations are commonly 
genetically differentiated. This genetic differentiation among populations may be 
caused by different processes, such as mutations, genetic drift, founder effects, 
isolation or population bottlenecks that affect the distribution of genetic variation 
within and among populations of a species (Lande 1976, Gomulkiewicz et al. 2007).  
Moreover, genetic differentiation may arise due to spatial variation in the selective 
pressure caused by environmental, both physical and biological, conditions. Variable 
selection pressure at a geographic scale is likely to cause adaptive divergence of 
populations of a species in heritable traits (Mayr 1947). As a consequence, the form of 
coevolving interaction often varies across geographic areas and leads to different 
evolutionary trajectories. Adaptive divergence is, thus, a consequence of natural 
selection and a key to understanding how coevolution maintains diversity within 
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species, how it affects the evolution of natural populations, and eventually, how 
divergent coevolutionary selection among populations may lead to speciation (Mayr 
1947, Thompson 1994, 2005). To what extent coevolution of local populations of 
interacting species reflects the coevolution of these species across their distribution 
range is, however, not well understood (Thompson 1994, 2005).  

The geographic mosaic theory of coevolution (GMTC) (Thompson 1994, 1999, 2005) 
states that coevolutionary processes are often driven by geographic variation in species 
interactions. According to this theory, variation in species interactions among local 
populations forms the raw material for the coevolutionary processes that take place 
over larger geographical scales. Variation in the average intensity of interactions is 
important because evolutionary trajectories will diverge only if trait correlations of 
interacting species differ among populations. Selection can be reciprocal only in those 
populations where the interacting species occur and they impose selection on each 
others, i.e., the coevolutionary hot spots. In coevolutionary cold spots the interacting 
species can at times be absent or the interaction between the species may not lead to 
reciprocal selection. Furthermore, the level of specialization and adaptation to local 
conditions is likely to vary among populations and communities (Thompson 1994, 
2005). To investigate the assumptions of the GMTC we need to study one particular 
interspecific interaction across large spatial and temporal scales. Information on the 
relative roles of several factors, such as levels and distribution of genetic variation and 
environmental conditions that explain variation in the interactions among and within 
populations, is essential in understanding how persistent such variation in the 
interactions is over time (Thompson 1994, 2005). 

Although examples of coevolutionary change in interacting species are accumulating, 
coevolution is difficult to measure (Gomulkiewicz et al. 2007, Laine 2009). In order to 
show that both interacting species are evolving as a result of reciprocal selection it is 
necessary to overcome the difficulties of studying more than one species 
simultaneously (Gomulkiewicz et al. 2007). Likewise, to measure evolutionary change 
for both of the interacting species over an evolutionary relevant time scale is often 
impossible (Gomulkiewicz et al. 2007). Furthermore, coevolution at the population 
level is difficult to link with the coevolution of species that occurs across the whole 
distribution range of the species. This is because much of the coevolution takes places 
below the species level, but above the level of local populations. In practice, a 
commonly used solution to overcome these difficulties is to collect snapshot data on 
traits that are relevant for the coevolving interaction and are closely linked with the 
fitness of the interacting species (Gomulkiewicz et al. 2007, Laine 2009).  
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1.2. Local adaptation 

In spatially structured systems, studies of local adaptation provide one tool to detect the 
coevolutionary dynamics of interacting species (Thompson 2005, Laine 2009). For 
instance, in a plant-herbivore interaction, local adaptation is revealed by relatively 
higher mean fitness of an herbivore on its sympatric compared to its allopatric host 
plant (Kawecki & Ebert 2004). However, interacting species can be locally adapted in 
some populations, but they may not be locally adapted in other populations, or they 
may even show maladaptation, i.e., lower fitness in sympatry compared with allopatry, 
or no difference in fitness between sympatric and allopatric counterparts (Thompson et 
al. 2002). While eventual maladaptation may indicate that interacting species are not 
reciprocally coevolving, it may also reflect the dynamic nature of coevolutionary 
process (Lively 1999, Thompson 2005, 2009; Laine 2009), or result from gene flow 
from populations adapted to different conditions (Thompson et al. 2002). Local 
adaptation is, thus, central for creating and maintaining spatial variation in coevolving 
interactions (Thompson 1994; Kawecki & Ebert 2004; Laine 2009). 

In general, local adaptation is predicted to be more likely with growing genetic, 
geographic, and phenotypic divergence among the populations (Becker et al. 2006; 
Hereford & Winn 2008; Hereford 2009). However, local adaptation can occur even 
within continuous populations or between physically connected populations, if gene 
flow among the patches or populations is not strong enough to counteract the forces of 
selection (Kawecki & Ebert 2004). Generation times of interacting species are likely to 
affect local adaptation. In the case of long-lived plants and their herbivores, the 
herbivore with shorter generation time is assumed to show stronger local adaptation 
than the host (Gandon 2002, Hoeksma & Forde 2008). Adaptation to the sympatric 
interacting species is predicted to be driven by variation in traits that are central for the 
coevolving interaction, such as host resistance and tolerance (Hoeksema & Forde 
2008). The occurrence and degree of local adaptation in coevolving interactions is, thus, 
predicted to vary among populations and in time (Thompson 2005, 2009; Laine 2009). 
In accordance with these predictions, some studies on local adaptation in host-enemy 
interactions have demonstrated that enemies are locally adapted in at least some of the 
populations (Kaltz & Shykoff 1998; Koskela et al. 2000; Laine 2005) while other 
studies provide no evidence of local adaptation (Strauss 1997; Kaltz & Shykoff 1998; 
Kaltz et al. 1999; Mutikainen et al. 2000; Spitzer 2006).  

1.3. Plant-herbivore interaction 

Interactions between plants and herbivores have often been used as model systems for 
examining the patterns of coevolution (Ehrlich & Raven 1964, Berenbaum & Zangerl 
1998, Pellmyr 2003, Stenberg et al. 2006, Pauw et al. 2009). In general, herbivory 
reduces plant growth, fecundity, and survival (Crawley 1989, Strauss 1991). Plants are 
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also usually consumed by several different herbivores. The fitness effects of multiple 
herbivores on a shared host plant may differ between the herbivores (Strauss 1991). On 
the other hand, variation in plant quality can influence herbivore populations through 
effects on herbivore fecundity, survival, movement, mortality due to natural enemies, 
and competition (Price et al. 1980, Denno et al. 1995, Larsson et al. 2000, Lill et al. 
2002).  

Plant-herbivore interactions often show significant spatiotemporal variation. Herbivore 
abundances can vary spatially and temporally due to abiotic (e.g. weather conditions) 
and biotic (e.g. abundance of pathogens and predators) factors (Schoonhoven et al. 
1998). Host plant quality and quantity is also likely to vary spatially due to unevenly 
distributed resources and genetic variation (Karban 1992). Variation in plant quality 
can, in turn, affect the spatial distribution of herbivores (Hunter et al. 1996). Moreover, 
the reproductive output of plants often varies spatiotemporally producing variation in 
the amount of resources available for seed predators (Janzen 1971, Solbreck & Sillén-
Tullberg 1986). In summary, variation in the strength of plant-herbivore interaction is 
important in shaping the life histories, defensive traits, resistance and tolerance of the 
interacting species.  

1.3.1. Plant quality 

Plant quality for herbivores is determined both by nutritive compounds and defensive 
chemicals in plant tissues (Schoonhoven et al. 1998). Plant quality reflects both genetic 
variation in the composition of compounds in plant tissues and resources available for 
the plant. Plant secondary metabolites play a major role in plant defence against 
herbivores (Fritz & Simms 1992, Schoonhoven et al. 1998). However, specialist 
herbivores are often adapted to the chemical composition of their host plant (Fox 1981, 
Kraft & Denno 1982, Bordner et al. 1983, Bowers & Puttick 1988) and can even use 
some compounds to find their host plants or exploit the plant compounds in their own 
defence (Blum 1983, Bowers 1983, Malcolm 1991). Therefore, unlike generalist 
herbivores, specialist herbivores maybe unaffected or even prefer high levels of a 
particular compound (Bowers & Puttick 1988).  

1.3.2. Herbivore resistance and tolerance 

In addition to plant quality, which can affect the level of herbivore damage, plants have 
evolved other defence strategies to reduce the detrimental effects of herbivores. 
Resistance traits reduce damage while tolerance traits reduce the negative fitness 
impacts of herbivore damage. Resistance to herbivory may be provided by physical 
structures or chemical mechanisms that reduce herbivore damage while tolerance 
mechanisms enable compensation for damage (Strauss & Agrawal 1999, Tiffin 2000). 
Resistance and tolerance are commonly genetically determined traits that show 
heritable genetic variation within a plant species, and are often under selection exerted 
by herbivores (Berenbaum et al. 1986, Mauricio 1998, Juenger et al. 2000, Baucom & 



Introduction 10 

Mauricio 2004). Genetic variation in plant resistance and tolerance to herbivory, with 
which plants can respond to selection exerted by herbivores, is important for plant-
herbivore dynamics, and more importantly, a prerequisite for plant-herbivore 
coevolution (Carr & Eubanks 2002).  

Generally, traits that reduce the detrimental effects of herbivores on plant fitness, and 
thus offer a fitness benefit for the plant, are expected to be selected for and show 
reduced genetic variation. However, studies on herbivore resistance and tolerance have 
commonly observed genetic variation in these traits (Berenbaum et al. 1986, Mauricio 
1998, Juenger et al. 2000, Baucom & Mauricio 2004). Several factors create and 
maintain genetic variation in resistance and tolerance traits. Firstly, genetic variation 
may result from recombination and mutations, while gene flow may introduce new 
alleles to populations. Secondly, abiotic or biotic conditions may create variable 
selection pressures on resistance and tolerance traits. For example, abiotic conditions, 
such as drought or shortage of nutrients, may alter plant´s ability to resist or tolerate 
herbivores (Bergelson & Purrington 1996). Likewise, population dynamics of 
herbivores, pathogens, and predators create both spatial and temporal variation, which 
affect plant resistance and tolerance (Karban & Baldwin 1997, Schoonhoven et al. 
1998, Stowe et al. 2002). Furthermore, in natural populations plants are often attacked 
by multiple natural enemies.  For example, generalist and specialist herbivores may 
impose differential selection pressures on plant defence strategies, resulting in the 
maintenance of variation in both tolerance and resistance within a population (Stowe 
1998, Tiffin 2000, Leimu & Koricheva 2006a). For example, tolerance traits are likely 
to decrease the detrimental effects of mammalian herbivores (Lennartsson et al. 1997) 
and specialists adapted to the chemical defences of their host plants (Jokela et al. 2000, 
Bowers & Puttick 1988). Resistance traits, such as a specific chemical compound, 
function, in turn, especially against generalist herbivores, but may also reduce the 
damage by specialist herbivores (Rosenthal & Berenbaum 1991, Leimu & Koricheva 
2006b). Defensive traits have generally been assumed to involve fitness costs. 
Existence of such costs is demonstrated by negative genetic correlations, i.e., trade-offs, 
between resistance traits and plant fitness (Bergelson & Purrington 1996, Koricheva 
2002, Strauss et al. 2002). Trade-offs between the levels of resistance and tolerance are 
expected to occur if plants have a limited amount of resources for allocation to defence, 
and these two strategies serve a fundamentally similar function for plants (Van Der 
Meijden et al. 1988, Rosenthal & Kotanen 1994, Fineblum & Rausher 1995, Tiffin & 
Rausher 1999). Although trade-offs do not directly create genetic variation in 
resistance and tolerance, they contribute to the maintenance of genetic variation in 
resistance and tolerance especially in environments where the amount of resources 
vary spatially. Trade-offs between resistance and tolerance have also been assumed to 
constrain the evolution of these two defence strategies (Rosenthal & Kotanen 1994, 
Tiffin & Rausher 1999). However, increasing amount of empirical evidence from 
natural populations suggests that plants rather allocate resources simultaneously to 
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resistance and tolerance, and maintain multiple defensive strategies against herbivores 
(for a review, Leimu & Koricheva 2006a, Núñez-Farfán et al. 2007).  

1.3.3. Plant mating system 

Plant mating systems (i.e. self-fertilization versus cross-fertilization) are a fundamental 
factor affecting genetic variation and genetic structure of plant populations. Self-
fertilization reduces heterozygosity and the contribution of overdominance, and 
increases the expression of recessive alleles within individuals, which alter the 
distribution of genetic variation (Falconer 1981, Charlesworth & Charlesworth 1987). 
These genetic changes usually incur fitness costs to the offspring produced by self-
pollination, referred to as inbreeding depression (Husband & Schemske 1996). 
Increased inbreeding is considered to be a major genetic consequence of habitat 
fragmentation and small population size because it can result in inbreeding depression, 
which reduces population viability (Keller & Waller 2002). On the other hand, cross-
pollination between plants whose genomes are increasingly genetically dissimilar, e.g., 
plant individuals from different populations, may lead to fitness decline of the 
offspring (Waser & Price 1983, Lynch 1991, Waser 1993, Leimu & Fischer, 2010). 
This fitness decline, referred as outbreeding depression, may arise because of 
disruption of local adaptation, or disruption of allelic coadaptation within or across 
gene loci, or a combination of these mechanisms (Campbell & Waser 1987, Lynch 
1991).  

Because variation in plant responses to herbivores often has a genetic basis 
(Berenbaum et al. 1986, Simms & Rausher 1987, Marquis 1990), inbreeding and 
between-population outbreeding may indirectly affect plant fitness by altering the 
suitability of a plant to herbivores or by altering its capacity to resist or tolerate 
herbivore damage (Carr & Eubanks 2002, Ivey et al. 2004, Stephenson et al. 2004, Du 
et al., 2008; Delphia et al., 2009; Bello-Bedoy & Núñez-Farfán, 2010; Leimu & 
Fischer, 2010). In some studies inbreeding has been found to decrease herbivore 
resistance and/or tolerance (Carr & Eubanks 2002, Ivey et al. 2004, Stephenson et al. 
2004, Du et al., 2008; Delphia et al., 2009; Bello-Bedoy & Núñez-Farfán, 2010) 
whereas in other studies no such effects have been found (Nunez-Farfán et al. 1996). 
The most probable explanation for these contrasting results is that complex interactions 
between genetic and environmental conditions, such as the history of inbreeding and 
levels of herbivory, influence how inbreeding affects plant resistance to herbivores 
(Leimu et al. 2008). Because the genetic and environmental conditions vary across 
populations, effects of inbreeding and within-population outbreeding may also vary 
among populations and, thus, have major effects on the spatial dynamics of coevolving 
species. 

Compared to the effects of inbreeding on plant resistance, the effects of between-
population outbreeding on plant resistance have been much less studied (but see Leimu 
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& Fischer 2010), and most studies on outbreeding effects have focused on studying 
hybrid plants. Studies examining the effects of hybridization between species on plant 
resistance have either reported no differences in resistance between the hybrids and 
parental plants, an additive effect, hybrid susceptibility or hybrid resistance that 
resembles that of the susceptible parent (Fritz et al. 1999). In theory, between-
population cross-fertilization may also have positive effects on herbivore resistance as 
new gene combinations in the loci determining resistance may have a selective 
advantage over common local genotypes to which the local herbivores are adapted 
(Strauss & Karban 1994). However, spatial and temporal variation in gene flow and 
selection regimes as well as different population histories are likely to contribute to the 
variation in outbreeding depression in plant fitness and herbivore resistance (Waser & 
Price 1983, Waser 1993). Thus, plant mating system can affect the interactions of 
plants and their herbivores and these effects may vary among populations of interacting 
species. 

1.3.4. The roles of gene flow and genetic drift 

As stated earlier, significant variation in trait distribution among populations might 
arise from spatially variable reciprocal selection (Thompson 1994, 2005). Likewise, 
this variation may result from adaptive responses to spatially structured variation in 
habitat quality as well as from neutral genetic divergence or gene flow between 
geographically structured populations (Lande 1976, Gomulkiewicz et al. 2007). 
Unraveling all possible mechanisms that drive spatial variation in traits important for a 
given species interaction is crucial for understanding the dynamics of coevolving 
species, especially in rapidly changing landscapes. Human induced changes, for 
instance fragmentation of habitats, may take place really fast measured on an 
evolutionary timescale and, eventually, lead to small population sizes and increased 
isolation (Saunders et al. 1991, Young et al. 1996). This may lead to changes in gene 
flow, but may also affect the relative roles of selection and random genetic drift, since, 
especially in small populations selection might not be able to counteract the effect of 
genetic drift (Gandon & Nuismer 2009). Understanding the relative importance of 
selection, gene flow, and genetic drift for coevolutionary dynamics has only recently 
received some attention in theoretical studies, but has not been investigated in natural 
populations in the field (e.g. Gandon & Nuismer 2009). 

1.4. Aims of the study 

The aim of this thesis is to examine the factors affecting potential coevolution between 
a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae) and its two 
specialist herbivores: a folivorous moth Abrostola asclepiadis (Lepidoptera) and a seed 
predator, Euphranta connexa (Diptera). In addition to the two specialist herbivores, I 
have studied the seed-predating bug, Lygaeus equestris (Heteroptera) that prefers V. 



Introduction 13 

hirundinaria as a host plant, although it can feed and survive on alternative host plant 
species. In my study areas, L. equestris is, however, only found in sites where also V. 
hirundinaria occurs.  

One key assumption underlying the process of plant-herbivore coevolution is that 
herbivores exert selection on their host plants. Furthermore, according the geographic 
mosaic theory of coevolution this selection varies among plant populations. Therefore, 
in article I, I examined spatial variation in the existence and strength of phenotypic 
selection on host plant resistance exerted by the two specialist herbivores. Since plant 
resistance and tolerance to herbivores are important for the plant-herbivore interaction, 
genetic variation in these traits is a prerequisite for plant-herbivore coevolution. Thus, 
in article II, I studied genetic variation in herbivore resistance and tolerance. Linking 
plant-herbivore interactions and plant mating system is important, because variation in 
plant mating system is likely to lead to variation in plant-herbivore interactions, and, 
thus, herbivory is likely to exert selection on plant mating system. Therefore, in article 
III, I studied inbreeding and outbreeding depression in herbivore resistance and 
tolerance. Local adaptation is central for creating and maintaining spatial variation in 
coevolving plant-herbivore interactions. In my fourth (IV) article I investigated the 
impact of geographic variation in plant secondary chemistry of a host plant on among-
population variation in local adaptation of a specialist folivore, Abrostola asclepiadis. 
Variation in coevolving interactions can also be driven by factors other than selection. 
Adaptive responses to spatially structured variation in habitat quality as well as genetic 
drift or gene flow between geographically structured populations may create variation 
in coevolving interactions. To disentangle the relative importance of different factors 
affecting divergence in traits important for coevolving plant-herbivore interactions, in 
article V I analyzed if herbivore pressure, genetic differentiation, and/or geographic 
distance explains the observed among-population variation in leaf chemicals of V. 
hirundinaria. The results of my thesis add to the understanding of coevolutionary 
dynamics in fragmented landscapes. 
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2. MATERIALS AND METHODS 

2.1. Study species 

Vincetoxicum hirundinaria (Asclepiadaceae) L. (Figure 1) is a long-lived perennial 
herb that grows mainly on sunny exposed cliffs and slopes, but also on more shaded 
habitats along forest margins and in deciduous woods below cliffs. It prefers 
calcareous substrate. The plant has a short, branched rootstock and forms a dense 
tussock of above-ground shoots.  The flowers are hermaphroditic and arranged in 
inflorescences that grow from the leaf nodes of the shoots. V. hirundinaria is insect 
pollinated and the main pollinators are large flies, moths, and bees (Timonin & 
Savitskii 1997). Pollen is aggregated into pollen sacs (pollinia) and each flower has 
five pairs of pollinia. Pollination occurs when the pollinia are inserted into the 
stigmatic chambers from which the pollen tubes grow towards the ovaries. In my study 
populations V. hirundinaria has a mixed-mating system (Leimu 2004), i.e. plant 
individuals are capable of producing seeds through both self-fertilization and 
outcrossing. In my study area, flowering begins in the middle of June and lasts until the 
beginning of August. The fruits normally ripen from the end of August and into 
September. The ratio of pods produced to flowers (i.e. fruit set) is very low, which is 
characteristic for many species of Asclepiadaceae (Wyatt & Broyles 1994). Each pod 
contains approximately 20 wind-dispersed seeds (Leimu 2004). 

   

   
Figure 1. Study species. The host plant Vincetoxicum hirundinaria (a) and its herbivores, 
folivore Abrostola asclepiadis (b) and seed predators Euphranta connexa (c) and Lygaeus 
equestris (d). Photos by Anne Muola (1a), Kalle Rainio (1b & d) and Roosa Leimu (1c). 

a) b) 

 

 

c) d) 
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Vincetoxicum hirundinaria is highly toxic to mammals and many generalist insects 
(Solbreck & Sillén-Tullberg 1990). V. hirundinaria is known to contain for instance 
several types of alkaloids (Eibler et al. 1995, Staerk et al. 2000, Leimu et al. 2005). 
In the papers I, IV, and V, I studied the role of secondary metabolites of V. 
hirundinaria in different aspects of coevolving plant-herbivore interactions. I 
concentrated on antofine, a phenanthroindolizidine alkaloid, which is known for its 
cytotoxic activity (Staerk et al. 2000). I have also investigated chlorogenic acid, 
catechin derivatives and flavonoids that belong to phenolic compounds, because they 
have many ecological and physiological roles in plants, and they are traditionally 
believed to play an important role in interactions between plants and herbivores 
(Feeny 1976, Bennett & Wallsgrove 1994). I also chose to study lipophilic 
compounds, although they consist of many yet unidentified compounds. However, 
they form a relatively large group of chemical compounds including, for instance, 
chlorophylls and carotenoids and compounds found on leaf surface, and may, thus, 
have a potential role in plant herbivore resistance. 

Despite its toxicity, V. hirundinaria is the host plant for the folivorous moth, 
Abrostola asclepiadis (Noctuidae) Denis & Schiffermüller and the pre-dispersal seed 
predator, the tephritid fly Euphranta connexa (Tephritidae) Fabricius, both of which 
are strict specialists on this plant species (Figure 1). The female A. asclepiadis 
oviposits on the leaves of V. hirundinaria in June and July (Förare & Engqvist, 1996). 
The eggs hatch about ten days after oviposition and the five larval instars are 
completed in about five to six weeks (Förare 1995). Damage levels vary among years 
and among populations from no damage to almost complete defoliation of the plants 
(Leimu & Lehtilä 2006). The larvae of the tephritid fly E. connexa are the main pre-
dispersal seed predators of V. hirundinaria in my study populations. The female flies 
insert their eggs in the developing pods (Solbreck 2000). The larvae live within the 
developing pods and feed on the ripening seeds. In some years and some populations 
seed predation by E. connexa may destroy almost 100 % of the seeds (Solbreck 2000, 
Leimu & Syrjänen 2002, Leimu & Lehtilä 2006, Solbreck & Ives 2007). The third 
herbivore in this system is the pre- and post-dispersal seed predator, the bug Lygaeus 
equestris (Lygaeidae) L (Figure 1). L. equestris is relatively common in our study 
area (Leimu & Syrjänen 2002), but it is more generalist in its food use and can use 
several other species as food plants (Kugelberg 1973, Kugelberg 1974, A. Muola 
personal observations). However, when L. equestris feeds on species other than V. 
hirundinaria it performs less well (Laukkanen et al. unpublished data). The adults 
and larvae of L. equestris feed on green ovulae, and developing and mature seeds 
(Solbreck & Sillén-Tullberg, 1990) but they also suck sap from V. hirundinaria’s 
leaves (A. Muola personal observations). L. equestris usually feeds only on a single 
seed within a pod, before moving to another pod within the plant or to another plant. 
Thus the bug does not completely destroy the seed production of the pods, in contrast 
to E. connexa and its effect on the seed production is therefore less (see also Ågren et 
al. 2008).  
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2.2. Study populations 

Vincetoxicum hirundinaria has a continental Eurasian distribution, but its natural 
range covers also the islands and coastal areas of the middle Baltic Sea. My study 
populations are mainly located in the southwestern archipelago of Finland, but 
populations situated on the southwestern mainland of Finland and one population 
from southeastern mainland of Sweden were also included in some of the studies. 
The archipelago forms a naturally fragmented landscape where islands, and the 
populations therein, are of different sizes and isolated to variable degree. The 
populations have been established relatively recently, due to late formation of the 
archipelago as a result of land uplift after the latest ice age (von Numers & van der 
Maarel 1998, Leimu & Mutikainen 2005). Although these areas are located close to 
the northern and western limits of the species’ range, V. hirundinaria is relatively 
abundant in this archipelago occurring on over 700 islands (von Numers & van der 
Maarel 1998). The level of genetic variation in V. hirundinaria is relatively high 
(Leimu & Mutikainen 2005). Despite their fragmented distribution, the populations 
seem to have some gene flow among them due to the characteristics of pollen and 
seed dispersal (Leimu & Mutikainen 2005). V. hirundinaria is pollinated mainly by 
large flies, moths, and bees (Timonin & Savitskii 1997, A. Muola personal 
observations) that are typically capable of extended flight and thus, cause long-
distance pollen dispersal. Seeds of V. hirundinaria are wind dispersed, but they can 
also survive and float for up to ten days in brackish water that is characteristic of my 
study area (Leimu unpublished data). I used a total of 19 populations in my 
experiments. Two of them are located on the coastal southwestern mainland of 
Finland, one on the coastal mainland of Sweden and 16 on separate islands of the 
nearby Archipelago Sea (Figure 2). The distances among the study populations vary 
from few hundred meters to 260 kilometres. The size of the study populations varies 
from small (< 100 individuals) to large (> 10000 individuals). This naturally 
fragmented archipelago together with my study system that is relatively simple with 
no generalist and only a very few specialized herbivores feeding on the study plant, 
provides an ideal opportunity for testing the spatial dynamics in and factors affecting 
coevolving plant-herbivore interactions in a fragmented landscape. 
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Figure 2. A map showing the locations of the nineteen studied Vincetoxicum hirundinaria 
populations. 1. Naantali, 2. Ruissalo, 3. Kälklot, 4. Åvensor, 5. Innamo, 6. Rilot, 7. 
Lammasluoto, 8. Seili, 9. Jäämäluoto, 10. Henrysaari, 11. Limskär, 12. Ånskär, 13. Lohm, 14. 
Killingholm, 15. Petsor, 16. Berghamn, 17. Stenskär, 18. Jurmo, 19. Mörkö. Populations 1 to 18 
are located in southwestern mainland and archipelago of Finland. Population 19 is located in 
eastern coast of Sweden. 
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2.3. Associations of plant fitness, leaf chemistry, and herbivore damage 

To investigate spatial variation in specialized plant-herbivore interactions in a naturally 
fragmented archipelago environment I collected data from 17 V. hirundinaria 
populations during summer 2005 (I). Two of the populations were located on the 
coastal southwestern mainland of Finland and 15 on separate islands of the nearby 
Archipelago Sea. The distances among these populations vary from few hundred 
meters to 50 kilometres. The size of the study populations varies from small (< 100 
individuals) to large (> 2000 individuals). I haphazardly selected and marked 20 plant 
individuals from each population before the plants had been damaged by the herbivores. 
I was specifically interested in investigating spatial variation in pod production that 
serves as a food source for the seed predator, Euphranta connexa. I used the number of 
pods per plant individual and fruit set (number of pods per flowers) as estimates of 
plant fitness. While fruit set describes the ability of flowers to develop into fruits and 
can thus be considered a measure of reproductive resource allocation, the number of 
pods per plant individual is a more direct measure of plant reproductive output, i.e., 
fitness. Secondly, I examined if the association between damage by the seed predator, 
E. connexa and the folivore, Abrostola asclepiadis, and plant fitness varies spatially, 
potentially indicating variable selection pressure among the populations (sensu Lande 
& Arnold 1983). I estimated herbivore damage by these two herbivores separately. 
Herbivory by A. asclepiadis larvae was assessed by estimating visually the proportion 
of leaf area damaged by the larvae. Seed predation by E. connexa was estimated by 
counting the number of pods damaged by the larvae. Thirdly, I investigated spatial 
variation in the damage by both herbivores, and in constitutive leaf chemistry. Since 
leaf compounds can potentially function either as defensive traits or as attractants to 
specialist herbivores, I further examined spatial variation in the associations between 
herbivory and components of leaf chemistry. Finally, I tested for spatial variation in the 
associations between plant fitness and leaf chemistry, which would indicate variation 
in the potential costs of defence. Leaf samples for the chemical analyses were collected 
from the marked individuals before herbivores had damaged the plants. The contents of 
leaf compounds in V. hirundinaria were analyzed by using high-performance liquid 
chromatography (HPLC). 

2.4. Genetic variation in herbivore resistance and tolerance 

To investigate genetic variation in herbivore resistance and tolerance of V. 
hirundinaria I conducted a series of greenhouse experiments (II). I was specifically 
interested in whether the level of genetic variation in tolerance depends on plant life-
history stage, the type of the damage, or the timing of estimating the tolerance relative 
to the occurrence of the damage. To find out if there is genetic variation in the 
responses of plants to herbivore damage for selection to act on, I first tested for genetic 
variation in tolerance to artificial leaf damage in adult plants and whether putative 



Materials and Methods 19 

genetic variation in tolerance was observable over time. I artificially damaged 
replicates of 23 plant genotypes from the Lammasluoto population by cutting all of the 
stems of the plants between the second and third lowest node with scissors.  I counted 
the number of inflorescences per plant before damage, six weeks later and also once 
during the following growing season, and used this as a measure of plant reproductive 
output. The number of inflorescences in V. hirundinaria correlates strongly with the 
number of pods produced, and is thus a good fitness estimate (Leimu & Lehtilä 2006; 
Leimu et al., unpublished data). Tolerance of each plant genotype to clipping was 
estimated by dividing the mean number of inflorescences of the clipped plants by the 
mean number of inflorescences of the control plants of the same plant genotype 
(Strauss & Agrawal 1999). I further tested for genetic variation in tolerance to artificial 
defoliation in seedlings. To gain wider understanding of the amount of variation in 
tolerance, I compared the levels of genetic variation in the tolerance of seedlings to 
artificial damage among four plant populations. I collected and germinated seeds of ten 
randomly selected individuals (maternal plants) from four different populations (Stora 
Limskär, Henrysaari, Rilot, Ruissalo). Half of the twenty randomly chosen seedlings of 
each plant family were defoliated and the other half served as undamaged controls. In 
the artificial defoliation treatment I removed all leaves of the seedlings by cutting the 
petioles close to the stem. I determined seedling performance in terms of number of 
leaves before the treatment and five weeks after the treatment. Tolerance to defoliation 
was estimated by dividing the mean number of leaves of the defoliated seedlings by the 
mean number of leaves of the control seedlings of the same seedling family. To 
compare with the responses to the artificial damage, we tested for genetic variation in 
resistance and tolerance to natural damage by the specialist folivore, Abrostola 
asclepiadis, and in resistance to the seed predator, Lygaeus equestris. To inflict natural 
damage we used F1 – offspring of laboratory reared A. asclepiadis to damage the 
replicates of 23 plant genotypes from Lammasluoto population. I used larval biomass 
as a measure of herbivore performance. Because herbivore performance is likely to 
correlate negatively with plant resistance, the inverse of herbivore performance was 
used as a measure of plant resistance (Tiffin 2000). To estimate plant reproductive 
output and plant tolerance to A. asclepiadis, I counted the number of inflorescences 
before exposing the plants to A. asclepiadis and five weeks after the larvae were 
removed. I counted the number of inflorescences also in the following year. Tolerance 
to A. asclepiadis was estimated as the slope of the reaction norm relating the 
reproductive output of the plants representing each genotype to the damage level they 
experienced (Strauss & Agrawal 1999). The resistance to the seed predator, L. 
equestris, was estimated by conducting a feeding experiment where one larva from 
each of ten full-sib bug families was fed on seeds from one plant of each of the twenty 
plant genotypes from the Lammasluoto population. I tested whether there was variation 
in the biomass of the larvae among plant genotypes, which indicates genetic variation 
in plant resistance or in plant nutritional quality. Finally, I examined potential trade-
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offs between plant resistance and tolerance by analyzing genetic correlations between 
plant resistance and tolerance.  

2.5. Inbreeding and outbreeding depression in herbivore resistance and 
tolerance 

To examine the effects of both experimental inbreeding (self-fertilization) and 
outbreeding (within-population and between-population cross-fertilization) on plant 
performance and on resistance and tolerance against herbivory, I conducted a series of 
greenhouse experiments (III). More specifically, I first examined if there is inbreeding 
depression in plant performance and in plant resistance against a specialist folivore, A. 
asclepiadis, and whether this inbreeding depression varies among populations or 
among plant families. Secondly, I examined if there is inbreeding depression in plant 
tolerance to artificial defoliation and if this inbreeding depression in tolerance varies 
among plant families. Finally, I studied if there is outbreeding depression in plant 
performance and plant resistance against a specialist folivore, and whether there is 
among-population or among-family variation in this outbreeding depression.  

To obtain selfed and outcrossed offspring of the 80 maternal plants from four different 
populations (Lammasluoto, Naantali, Seili and Mörkö) I conducted hand pollinations 
in the greenhouse in June 2007. All maternal plants received self-pollination and 
within-population cross-pollination. In addition, maternal plants from the Lammasluoto 
and Mörkö populations received between-population cross-pollination with pollen 
donors from three other populations (Mörkö, Naantali and Seili for Lammasluoto, and 
Lammasluoto, Naantali and Seili for Mörkö). To measure plant performance and 
herbivore resistance and tolerance, I randomly selected two to three seedlings per each 
maternal plant and pollination treatment from each population and planted them in 
separate pots in the following spring. I compared the performance of selfed and 
outcrossed offspring and used the length of the stems and the number of leaves as 
estimates of plant performance. To measure herbivore resistance, I used F2-offspring of 
laboratory reared A. asclepiadis larvae to damage the plants. I used the larval biomass 
that is an estimate of the herbivore performance, and the proportion of damaged leaves 
as measures of plant resistance (Agrawal 2005, Muola et al. 2010a). I estimated 
tolerance to artificial defoliation by dividing the mean performance of the defoliated 
plants by the mean performance of the control plants of the same plant family for both 
selfed and outcrossed plants (Strauss & Agrawal 1999, Muola et al. 2010a). 

2.6. Local adaptation of a specialist herbivore 

To investigate if the specialist folivore, Abrostola asclepiadis, is adapted to its local 
host plant populations, I conducted a reciprocal feeding trial in laboratory with both 
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plants and larvae from three sites (Ånskär, Jurmo, Lammasluoto) (IV). In the 
resiprocal design, larvae from each population were randomly assigned for a particular 
plant from each of the populations immediately after hatching in July 2006, and later 
on fed with fresh leaves collected from the given plant. After the completion of the 
larval period, I measured pupal mass and determined the sex of each individual. Pupal 
mass was used as a measure of herbivore performance. Pupal mass has been shown to 
correlate with fitness in lepidopteran herbivores (Haukioja & Neuvonen 1985). 
Because the particular focus of the study was in whether the potential variation in local 
adaptation is driven by among-population variation in host plant chemistry, leaf 
samples were collected from all plants used in the reciprocal feeding trial to analyze 
the contents of leaf compounds. The content of leaf compounds was analyzed with 
high-performance liquid chromatography (HPLC) assisted with diode-array detection 
(Muola et al. 2010b). To examine if local adaptation is more pronounced between 
strongly diverged populations, I tested for correlations of local adaptation with 
geographic distance, genetic differentiation (Leimu & Mutikainen 2005), and 
phenotypic divergence in plant secondary chemistry among the plant populations. In 
addition, I studied the influence of among-population variation in plant chemistry on 
herbivore performance using data from two additional populations (Mörkö and 
Naantali). 

2.7. The associations of genetic differentiation, geographic distance, and 
divergence in leaf chemicals and herbivory 

In addition to selection, variation in coevolving interactions might arise from adaptive 
responses to spatially structured variation in habitat quality as well as from genetic 
drift or gene flow between geographically structured populations. To disentangle the 
relative importance of different factors affecting divergence in traits important for 
coevolving plant-herbivore interactions, I analyzed if herbivore pressure, genetic 
differentiation and/or geographic distance explain the observed among- population 
variation in leaf chemicals of V. hirundinaria (V). I used data collected from 17 V. 
hirundinaria populations that varied in their size and geographic distance to each 
others. Similarity in the amount of herbivory and in leaf chemical compounds between 
pairs of populations (total of 16 pairs) was calculated using Euclidean distance,  





n

i
iiqp qpd

1

2
),( )(    

where pi is the mean value of  trait i for population p and qi is the mean value of trait i 
for population q respectively. d(p,q)  is, thus, the distance between populations p and q. I 
formed separate distance matrices for the percentage of plant individuals eaten by A. 
asclepiadis, the percentage of leaf area damaged by A. asclepiadis, the percentage of 
plant individuals eaten by E. connexa, and combined the percentage of plant 
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individuals eaten by the two herbivores. Furthermore, I formed separate distance 
matrices for flavonoid compounds, lipophilic compounds, and for the whole chemical 
profile by combining the concentrations of antofine, chlorogenic acid, catechin 
derivatives, total content of flavonoids, and total content of lipophilic compounds. I 
used FST-values to estimate the neutral genetic differentiation among populations. FST-
values were based on isoenzyme electrophoresis (more detailed description of methods 
see Leimu & Mutikainen 2005). I compared the similarity in different geographic, 
genetic, chemical and herbivory matrices by conducting both simple and partial Mantel 
tests using the zt package (Bonnet & Van de Peer 2002). 
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3. RESULTS AND DISCUSSION 

3.1. Associations of plant fitness, leaf chemistry and herbivore damage 

The geographic mosaic theory of coevolution states that variation in species 
interactions forms the raw material for coevolutionary processes that take place over 
large geographic scales (Thompson 1994, 2005). I found extensive spatial variation in 
the levels of herbivory and in plant fitness (I). More importantly, the associations of 
plant fitness and leaf herbivory varied among the investigated populations: the fitness 
of plants damaged by leaf herbivores was lower than that of undamaged plants in some 
of the populations while in other populations the opposite was observed. This suggests 
that selection exerted by leaf herbivores for resistance varies among plant populations 
being stronger in populations with stronger negative association between leaf herbivory 
and plant fitness. In addition, leaf chemistry varied widely among plant populations 
reflecting spatial variation in plant defence and in plant quality as food for the 
herbivores. However, leaf compounds influenced folivory similarly in all the studied 
plant populations: plants damaged by the leaf herbivore contained less chlorogenic acid 
and more total lipophilic compounds. Interestingly, the content of catechin derivatives 
and the content of total flavonoids were associated with the intensity of seed predation. 
Finally, the contents of chlorogenic acid, catechin derivatives, and total lipophilic 
compounds were positively associated with plant fitness in some populations, but 
negatively or non-significantly in others.  

The observed spatial variation in the strength of the interactions between V. 
hirundinaria and its specialist herbivores suggests a geographic selection mosaic. 
Similarly, in a recent review Laine (2009) reported that spatially divergent selection 
trajectories both in mutualistic and antagonistic interactions have generated variable 
outcomes in the traits important for coevolving interactions among populations. As my 
results also demonstrate, in order to find divergent selection trajectories, species 
interactions need not be compared across the species entire range. Divergent selection 
trajectories can be found among neighbouring populations located at scales smaller 
than 50 kilometres (Laine 2009). Because the occurrence and strength of spatial 
variation varied between the two studied specialist herbivores, my results further 
highlight the importance of considering multiple enemies when trying to understand 
evolution of interactions between plants and their herbivores.  
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3.2. Genetic variation in herbivore resistance and tolerance 

To be able to respond to the selection imposed by herbivores, plants should have 
genetic variation in traits conferring herbivore resistance and tolerance. In my study II, 
I found that adult plants showed genetic variation in tolerance to artificial damage, but 
not in tolerance to damage by the specialist folivore, Abrostola asclepiadis. This 
difference might be explained by the pattern of selection imposed by the different types 
of damage on plant tolerance. Different types of herbivores and different causes of 
damage may be associated with different mechanisms of tolerance and thus cause 
variation in tolerance (Stowe et al. 2000). Moreover, plants are often differently 
tolerant to artificial and natural damage, because these damages may pose different 
types of stress and, therefore, result in different responses in the plants (Karban & 
Baldwin 1997, Lehtilä 2003). In addition, I found that the genetic variation observed in 
plant tolerance to artificial damage in the year of damage disappeared the following 
year, although the negative fitness effects of the damage did not disappear.  

In contrast to the adult plants, I found that, statistically, seedlings showed only 
marginally significant genetic variation in tolerance to artificial defoliation.  
Herbivores may exert different selection pressures on plant traits at different plant life-
history stages (Watson 1995, Boege & Marquis 2005). It has been predicted that plant 
tolerance to herbivory is likely to be lower in juveniles compared to adult plants, 
because of resource allocation constraints and shortage of stored reserves in young 
plants (Strauss & Agrawall 1999, Haukioja & Koricheva 2000, Kelly & Hanley 2005). 
A recent meta-analysis, however, did not find tolerance to differ between juveniles and 
adult plants (Barton & Koricheva 2010). Contrary to the results of Barton & Koricheva 
(2010), I found that seedlings compensated for artificial damage much better (tolerance 
as damaged / undamaged: 0.75 ± 0.03, mean ± stderr) than adult plants (0.06 ± 0.02). 
However, because the artificial damage used and especially the biomass removed in 
the artificial damage treatments differed between adults and seedlings, I cannot directly 
compare them. Nevertheless, my results suggest that the average level of tolerance and 
the level of genetic variation in tolerance differed between the life-history stages. 

I also found genetic variation in plant resistance to the two different herbivores, the 
folivore Abrostola asclepiadis and the seed predator Lygaeus equestris. The evolution 
of resistance against one type of enemy may constrain, enhance, or be independent of 
the evolution of resistance to another type of enemy that shares the same host plant 
species (Rausher 1996). Because I did not use the same plant genotypes in measuring 
the resistance to A. asclepiadis and L. equestris, I was not able to test for genetic 
correlations between resistances to these two herbivores. 

Furthermore, I did not find negative genetic correlation between plant resistance and 
tolerance, which indicates lack of a trade-off between the two defence strategies and 
suggests that they can evolve independently. This is in line with the increasing amount 
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of empirical evidence reporting that trade-offs between resistance and tolerance are not 
that common (Leimu & Koricheva 2006a) and suggesting that herbivory can select 
independently for both resistance and tolerance (Mauricio et al. 1997, Valverde et al. 
2003, Núñez-Farfán et al. 2007).  

Taken together, my results suggest that selection can act on genetic variation in plant 
defence against herbivory and that herbivory can select for increased tolerance and 
resistance in this plant species. Furthermore, I found that the level of genetic variation 
in tolerance and resistance depended on plant life-history stage, type of damage, and 
timing of estimating the tolerance relative to the occurrence of the damage. These 
findings contribute to our understanding of ecology and evolution of herbivore defence 
of long-lived perennial plants. They also highlight the importance of taking plant life-
history stage and several natural herbivores sharing the host plant into account when 
studying plant resistance and tolerance. 

3.3. Inbreeding and outbreeding depression in herbivore resistance and 
tolerance 

As stated earlier, variation in plant responses to herbivores often has a genetic basis. 
Variation in plant mating system may affect plant fitness by increasing the 
vulnerability of plants to natural enemies by altering plant quality or defence, which in 
turn is likely to lead to variation in plant-herbivore interaction. Linking plant-herbivore 
interactions and plant mating system is, thus, important. Overall, I found that 
inbreeding affected plant fitness both directly by decreasing the performance of selfed 
offspring, and indirectly by affecting the ability of plants to resist the specialist 
herbivore (III). I found that selfed plants produced fewer pods and seeds compared to 
plants from within-population outcrosses whereas there were no significant differences 
in the relative germination rates between the selfed and outcrossed offspring. Likewise, 
I found that offspring originating from within-population outcrossing were taller and 
had more leaves than selfed offspring indicating inbreeding depression. Interestingly, 
in a previous study on the same plant species, Leimu (2004) found no clear signs of 
inbreeding depression in pod and seed production. My results indicate that V. 
hirundinaria exhibits inbreeding depression both early and later in its development. 

I found that selfed plants were more damaged by the specialist folivore, A. asclepiadis, 
than outcrossed ones indicating inbreeding depression in plant resistance. My results 
also show that feeding on selfed or outcrossed plants did not affect herbivore 
performance measured as larval biomass, although A. asclepiadis larvae consumed 
more leaf material of the selfed plants compared to the outcrossed plants to gain the 
same biomass on selfed and outcrossed plants. This indicates that the herbivore was 
able to compensate for any possible changes in plant defence or nutritive quality that 
could have altered the quality of the food for the herbivores.  
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The effects of inbreeding on plant performance and resistance against specialist 
folivore were similar in all studied populations and plant families. Previous studies 
investigating inbreeding effects on plant resistance in multiple populations have found 
that the severity of inbreeding depression in plant resistance varies among host-plant 
populations (Carr & Eubanks 2002, Ivey et al. 2004, Leimu et al. 2008). Likewise, the 
severity of inbreeding depression in plant performance (Dudash et al. 1997, 
Mutikainen & Delph 1998, Waller et al. 2008) and in plant resistance (Ouborg et al. 
2000, Ivey et al. 2004, Bello-Bedoy & Núñez-Farfán 2010) has been found to vary 
among plant families. My failure to detect among-population or among-family 
variation in the effects of inbreeding might be explained by the past levels of 
inbreeding in the V. hirundinaria populations. The frequency of self-fertile V. 
hirundinaria individuals within populations is relatively high and does not differ 
among populations in my study area (Leimu 2004). Interestingly, the amount of genetic 
variation in V. hirundinaria is also high in the investigated populations (Leimu & 
Mutikainen 2005), which might indicate that the negative effects of selfing have been 
at least partly purged from these populations. Environmental stress is known to 
exacerbate the effects of inbreeding (Dudash 1990, Heschel & Paige 1995). It is, 
therefore, possible that my failure to detect among among-family and among-
population variation was caused by the stable and benign greenhouse conditions while 
in field conditions such variation might be more pronounced.  

Inbreeding did not affect tolerance to artificial defoliation. In my study system, 
herbivore tolerance may be such an important defence strategy for plant juvenile stages 
that are often heavily consumed by A. asclepiadis that selection has acted to purge 
inbreeding depression in it. Alternatively, in my greenhouse experiment plants did not 
suffer from drought or lack of nutrients and were thus more capable of compensating 
for the artificial damage. 

Between-population outcrosses did not cause outbreeding depression in plant 
performance or resistance. The lack of outbreeding depression is likely explained by 
the low level of genetic differentiation and relatively high levels of gene flow among 
the V. hirundinaria populations (Von Numers & van der Maarel, 1998; Leimu & 
Mutikainen, 2005). Moreover, V. hirundinaria populations in our study area seem not 
to be strongly locally adapted (Kalske A, Muola A, Mutikainen P, Laukkanen L, 
Leimu R, unpublished data). Taken together, my findings suggest that, due to 
inbreeding depression, inbreeding plays an important role in the evolution of the 
interaction between V. hirundinaria and its specialist folivore, A. asclepiadis. The 
effects of cross fertilization between populations seem, in turn, not to play such an 
important role.  My results together with the growing body of evidence suggest that the 
effects of inbreeding on the mating system evolution of the host plants and the 
dynamics of plant-herbivore interactions should not be ignored when coevolving plant-
herbivore interactions are studied. 
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3.4. Local adaptation of a specialist herbivore 

Since local adaptation is central for creating and maintaining spatial variation in 
coevolving interactions, studies of local adaptation provide a commonly used tool to 
detect coevolutionary dynamics of interacting species (Thompson 1994, Kawecki & 
Ebert 2004, Laine 2009). I found among-population variation in local adaptation of the 
specialist folivore, A. asclepiadis, to the sympatric populations of its host plant, V. 
hirundinaria (IV). The herbivores from one of the populations (Anskär) performed 
significantly better on their sympatric host plant population compared to allopatric host 
plant populations. Similar pattern, although not statistically significant, was found for 
another population (Lammasluoto). Herbivores from the third population (Jurmo) were 
not locally adapted to their sympatric host plant population. My findings are in line 
with theoretical predictions and several studies that have found spatial variation in 
local adaptation of herbivores to their host plant populations (e.g. Hanks & Denno 
1994, Ortegón-Campos et al. 2009). The drivers of spatial variation in local adaptation 
are, however, less studied. In a quantitative survey on local adaptation studies on 
animals and plants, Hereford (2009) found that environmental divergence among 
populations correlated with the magnitude of local adaptation. I used the difference in 
secondary chemical composition to quantify the divergence of the plant populations. 
From the herbivore´s viewpoint, the plant characteristics are essential environmental 
variables. Interestingly, I found that both quantitative and qualitative variation in plant 
chemistry was linked to herbivore local adaptation. Furthermore, I found that the more 
differentiated the sympatric host plant population was in terms of secondary chemistry 
from the allopatric plant populations the higher the level of local adaptation of the 
herbivores to their sympatric host plant population. My results suggest that local 
adaptation of this folivore is modified both by the quantitative and qualitative 
composition of secondary chemicals of its host plant, and that the divergence of the 
host plant populations in plant chemistry explains the degree of local adaptation 
observed between pairs of host populations. I also found that the strength of local 
adaptation of A. asclepiadis increased with increasing genetic and geographic distances 
among the host plant populations. Taken together, I demonstrated how spatial variation 
in specific defensive traits drives local adaptation of a specialist herbivore among 
geographically structured host plant populations. These findings provide new insights 
into the mechanisms driving variation in local adaptation in coevolving plant-herbivore 
interactions.  

3.5. The associations of genetic differentiation, geographic distance, and 
divergence in leaf chemicals and herbivory 

The relative importance of factors other than selection that affect divergence in traits 
important for coevolving plant-herbivore interactions should not be ignored in studies 
of coevolution. Geographic distance affects the dispersal of plant and its herbivores, 
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and may, thus, affect gene flow between populations. Neighbouring populations are 
often considered to be more similar because of supposedly more gene flow between 
them, or because abiotic conditions are often more similar in closely located 
populations than in populations further apart from each other. However, I found that 
geographically close populations were not more similar in leaf chemicals or herbivory 
than populations that were further apart (V). This might be due to diverged selection 
pressure among the populations or good dispersal abilities of species in question. 
Likewise, genetic differentiation among populations, measured with neutral genetic 
markers, was not associated with geographic distance, divergence in leaf chemicals, or 
divergence in herbivory. Variation in neutral genetic markers is caused by random drift 
and gene flow, and may be used as a neutral expectation against which the spatial 
pattern of trait variation can be compared (Merilä & Crnokrak 2001, McKay & Latta 
2002). If trait values within populations result from drift rather than selection, levels of 
divergence among populations of traits important to interaction should resemble levels 
observed in selectively neutral traits (Gomulkiewicz et al. 2007). My results also 
showed that the divergence in the percentage of plant individuals damaged by A. 
asclepiadis was negatively associated with the divergence in the contents of flavonoids, 
and that the divergence in the content of lipophilic compounds was positively 
associated with the combined percentage of plant individuals eaten by the seed 
predator and the folivore. These results suggest that flavonoids might not play an 
important role in the interaction of the folivore and the host plant, while the role of 
lipophilic compounds might be more central. Taken together, my results suggest that 
neutral processes (i.e. drift or gene flow) seem not to solely drive the among-
population divergence in leaf chemistry. Even if these results do not unequivocally 
indicate that herbivory has caused population divergence in plant chemistry, they 
suggest that herbivory might contribute to this divergence, and that its role is worth 
further studies. 



Conclusions and Future Prospects 29 

4. CONCLUSIONS AND FUTURE PROSPECTS 

The increasing amount of studies on coevolutionary dynamics has shown that in 
several different between-species interactions, such as plant-pollinator, plant-herbivore, 
and plant-pathogen interactions, there is potential for coevolution (e.g. Laine 2005, 
Andersson & Johnson 2008, Parchman & Benkman 2008, Toju 2008). Although all of 
these studies have not been able to detect coevolution per se, they provide us tools for 
understanding the factors affecting species interactions.   This knowledge is necessary 
in order to further develop empirical approaches to detect coevolutionary dynamics and 
to recognize empirical systems that may currently undergo coevolution. Ultimately, 
these studies add to our knowledge on how the diversity of life is created and 
maintained via the process of reciprocal evolutionary change between interacting 
species. This is essential not only for a more precise understanding of evolution species 
interactions, but also for conservation and applied biology.  

One of the major findings of this thesis is the diversity of factors that can affect 
coevolutionary dynamics in plant-herbivore interactions. I observed qualitative and 
quantitative variation in plant chemistry among host-plant populations. Furthermore, 
this variation was associated with plant fitness and local adaptation of the specialist 
folivore indicating that plant chemistry plays an important role in mediating the 
interaction. In addition to plant quality that can affect the level of herbivore damage, 
plants have evolved other defence strategies, such as resistance and tolerance traits, to 
reduce the detrimental effects of herbivores. My results suggest that variation in plant 
mating system may alter the ability of plants to resist herbivores and thus affect the 
evolution of the interaction between plant and its herbivores. Furthermore, I found that 
the level of genetic variation in tolerance and resistance depended on plant life-history 
stage, type of damage, and timing of estimating the tolerance relative to the occurrence 
of the damage. These findings together with the observed differences in the occurrence 
and strength of spatial variation between the two specialist herbivores highlight the 
importance of studying multiple natural enemies when trying to understand coevolving 
plant-herbivore interactions.   

As a future direction, in order to deepen the knowledge of the factors affecting the 
coevolutionary process, I have studied local adaptation of the host plant to its physical 
and biotic environment.  In an interaction between a long-lived host plant and its 
herbivores with much shorter generation times, the herbivores are likely to show 
stronger local adaptation than their host plant (Gandon & Michalakis 2002, but see also 
IV). However, local adaptation of the host to its physiological or biotic environment 
may affect traits that are central for the species interaction, and may, thus, lead to local 
adaptation of the long-lived host to its enemy (Crémieux et al. 2008). My preliminary 
results indicate among-population variation in local adaptation of the host plant in 
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herbivore resistance against their sympatric herbivores and in pollinators present in 
their sympatric population. However, my findings may also indicate that the herbivores 
were maladapted to their sympatric host plants. Furthermore, an additional future 
direction is to study the potential impacts of gene flow, spatially variable selection, and 
genetic drift on coevolutionary dynamics. These factors have not yet been thoroughly 
studied (Gomulkiewicz et al. 2007, Gandon & Nuismer 2009), especially in 
combination with ongoing human-induced environmental changes, such as habitat 
fragmentation. Habitat fragmentation is known to reduce population sizes and increase 
their isolation, thereby altering the structure and diversity of communities (Saunders et 
al. 1991, Young et al. 1996). Likewise, small population size may influence the 
relative importance of selection and random genetic drift and cause spatial variation in 
traits central for the coevolving interactions (Gandon & Nuismer 2009). Isolation of 
populations may decrease gene flow between them and, thus, increase the genetic 
differentiation among populations and possibly also adaptation to local conditions. 
However, although gene flow has previously been thought of as the solely 
counteracting force of adaptation to local conditions, introduction of new genetic 
material via gene flow is especially important for small populations (Stockwell et al. 
2003). Lack of genetic variation may disturb the ability of populations to become 
locally adapted (Gandon & Michalakis 2002, Hoeksma & Forde 2008). Furthermore, 
fragmentation of host plant populations may affect the abundances and population 
dynamics of herbivores (Hanski & Gilpin 1997). Recolonization of habitats by 
herbivores after a local extinction might take longer especially if host-plant populations 
are isolated. Furthermore, inbreeding is more common in small populations, which 
may lead to inbreeding depression in both fitness traits and traits that central for the 
coevolving interaction (e.g. Carr & Eubanks 2002, Leimu et al. 2008, see also III), and 
subsequently alter the coevolutionary dynamics between host plant and its herbivores. 
Habitat fragmentation may, thus, have strong impact on coevolution of interacting 
species. Taken together, while there is still many unanswered question about 
coevolution, divergent coevolutionary selection plays undoubtedly a central role in 
generating diversity in nature, especially when considering the amount of different 
types of interactions among living organisms.  
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