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4 Abstract 

Raine Toivonen 

Targeting adenoviral gene therapy vectors to HNSCC and heart 

 

Department of Medical Biochemistry and Genetics, University of Turku, Turku Centre 

for Biotechnology and Turku Graduate School of Biomedical Sciences, Turku, Finland 

 

Abstract 

Gene therapy aims to treat diseases by introducing genetic material to the diseased 

tissue. For cancer treatment it is important to destroy cancerous cells; this can be 

achieved by introducing a gene, which induces cell death or by allowing viral vectors 

to replicate, which also results in destruction of cancerous cells. For cardiac diseases 

the approach is more like the former, except the gene produces beneficial effects, like 

angiogenesis. 

Adenoviruses have many beneficial qualities, which make the virus an interesting gene 

therapy vector; it can be produced relatively easily, its manipulation is quite easy and it 

has naturally broad tropism. By removing or replacing certain genes in the adenoviral 

genome, it can be made non-replicative. 

In this study, adenoviral receptor expression patterns were characterized in both head 

and neck squamous cell carcinoma and the human heart. Adenovirus serotype 5 

receptor expression in head and neck cancer cell lines was found to be highly variable 

between cell lines and overall at lower levels, while Ad35 receptor expression was 

more uniform and at higher levels in all analyzed cell lines. It was also shown that a 

hybrid virus Ad5/35 is able to infect cells refractory to Ad5, which correlates with 

receptor expression in these cells. Furthermore, this difference in infection properties 

extends to cell killing efficiency in case of conditionally replicative viruses. Expression 

levels of adenoviral receptors CAR, CD46, CD86 and αv-integrins were found to be 

high both in normal and dilated cardiomyopathy heart tissue. The receptor levels also 

correlate with transduction efficiency after intracardiac injection. Ad5 showed superior 

transduction ability compared with Ad5/35, but evoked also a more profound immune 

reaction when administered this way. 

Adenoviral gene therapy vectors are the most used delivery vehicles in clinical trials to 

date. These vectors have proven to be well tolerated and positive results have been 

obtained when combined with traditional treatments, although poor transduction 

efficiency has often been reported due to low-level expression of viral receptors on 

target cells. In spite of this, the results are encouraging and merit for further research. 

 

Key words: gene therapy, adenovirus, targeting 
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Raine Toivonen 

Adenovirus geeniterapia vektoreiden kohdentaminen pään ja kaulan alueen 

syöpään sekä sydämeen 

 

Biolääketieteenlaitos, Lääketieteellinen Biokemia ja Genetiikka, Turun yliopisto, 

Turun Biotekniikankeskus ja Turku Graduate School of Biomedical Sciences 

Turku, Finland 

 

Tiivistelmä 

Geeniterapialla pyritään hoitamaan sairauksia lisäämällä geneettistä materiaalia 

sairastuneeseen kudokseen. Syövän hoidossa on tärkeää tuhota syöpäsolut; tämä 

toteutetaan ”itsemurhageenin” avulla, joka aikaansaa solukuoleman, tai sallimalla 

virusvektorin replikoitua, jolloin solukko tuhoutuu viruksen toiminnan myötä. 

Sydänsairauksien hoidossa ei pyritä tuhoamaan kudosta, vaan käytettävällä geenillä on 

myönteisiä vaikutuksia sydämen toimintaan, kuten verisuonien uudismuodostuksen 

aikaansaaminen. 

Adenoviruksillla on monia hyviä ominaisuuksia, joita geeniterapiavektorilta vaaditaan: 

helppo tuotettavuus, yksinkertainen manipulointi ja laaja tropismi. Poistamalla tiettyjä 

geenejä adenoviruksen genomista sen replikaatiokykyä pystytään säätelemään. 

Tässä tutkimuksessa tarkasteltiin adenovirusreseptoreiden ekspressiota sekä pään ja 

kaulan alueen syövässä että sydänkudoksessa. Ad5-reseptorin eli coxsackie-

adenovirus-reseptorin ilmentyminen pään ja kaulan alueen syövässä todettiin olevan 

hyvin vaihtelevaa solulinjojen välillä ja kaiken kaikkiaan alentunut normaaliin 

verrattuna. Päinvastaisesti Ad35-reseptorin, CD46:n, ilmentymisen todettiin olevan 

yhdenmukaisempaa solulinjojen välillä ja korkeaa kaikissa analysoiduissa 

solulinjoissa. Tutkimuksessa osoitettiin myös, että hybridivirus Ad5/35 pystyy 

infektoimaan soluja, joita Ad5 ei pysty. Lisäksi tämä ero ulottuu myös solujen 

tuhoamiskykyyn ehdollisesti lisääntyvillä adenoviruksilla. Eri adenovirusreseptoreiden 

ilmentymistasojen todettiin olevan yhdenmukaisempaa ihmisen sydänkudoksessa kuin 

syöpäsolulinjojen välillä. Lisäksi coxsackie-adenovirus-reseptorin ilmentymisen 

todettiin olevan voimakkainta sydänkudoksessa muihin adenovirusreseptoreihin 

verrattuna. Kudoksen reseptoritasot vaikuttavat adenovirusten infektiivisyyteen myös 

sydänkudoksessa, mutta Ad5 todettiin hyvin toksiseksi suoran sydänlihasinjektion 

jälkeen. 

Adenovirus-geeniterapiavektorit ovat eniten käytettyjä vektoreita kliinisissä kokeissa. 

Niiden on osoitettu olevan hyvin siedettyjä ja ne kykenevät parantamaan nykyisten 

hoitomuotojen tehoa. Tosin heikko infektiivisyys kliinisissä olosuhteissa kertoo 

lisätutkimusten tarpeesta. 

 

Avainsanat: geeniterapia, adenovirus, kohdentaminen 
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1. Introduction 

Gene therapy holds great potential and can be used for treatment of both cancer and 

cardiovascular disease. Despite the recent advances in treatment modalities, cancer and 

cardiovascular diseases are the leading causes of death in the western world. The 

mortality of both diseases has been steadily declining in the past decades, but recently 

the decrease has significantly slowed down and a plateau has been reached. Currently 

available treatment methods are invasive and lack in efficacy, especially for cancer. 

Unfortunately both diseases comprise of a plethora of variable conditions and gene 

therapy must be designed for each case individually, from the vector to the transgene 

used. 

Two facts make head and neck squamous cell carcinoma (HNSCC) one of the most 

promising targets for cancer gene therapy; HNSCC tumors are usually relatively easily 

accessible for intratumoral injection and local treatment (Fuller, C. D., et al. 2007, 

Khuri, F. R., et al. 2000), and metastasis is a late-stage occurrence and could be 

avoided by local treatment of early tumors (Goebel, E. A., et al. 1996, Blackwell, J. L., 

et al. 1999). About 500 000 new cases of HNSCC are diagnosed annually worldwide 

(Parkin, D. M., et al. 2005). Diagnosed patients usually have already local advanced 

tumors and are in need of surgery and/or radiotherapy. Even after treatment tumors 

recur in over 30 % of patients. Recurring tumors respond very poorly on current 

treatment methods and are considered incurable (Vokes, E. E., et al. 1993, van 

Dongen, G. A. and Snow. 1997).  

Cardiovascular diseases are one of the leading causes of death in the western world. 

Available treatment modalities for end-stage heart failure caused by either ischemic or 

dilated cardiomyopathy (DCM) are limited and include lifestyle changes, medicines, 

surgery and implantation of electronic devices. These treatments deal mainly with 

symptoms and prevent disease progression, but will not cure the disease. In some cases 

DCM is an inherited condition in which case the only treatment available is medication 

to alleviate the symptoms and prevention of disease progression. Gene therapy could 

present a way to introduce long lasting effects and more efficient disease control. Most 

gene therapy applications aimed at treating cardiac diseases involve the promotion of 

angiogenesis in the damaged area of the heart. Many preclinical studies, including both 

viral and non-viral methods, have shown the importance of efficient gene delivery to 

the target tissue, in order to achieve reasonable therapeutic efficacy (Asaoka, K., et al. 

2000, Douglas, J. T., et al. 2001, Dirven, C. M., et al. 2002, Joung, I., et al. 2005). 

Adenoviruses (Ads) are natural human pathogens and can induce from mild to 

severe side effects. Also, the fact that most people have suffered an Ad infection and 

thus have neutralizing antibodies (NAbs) in their antibody repertoire, contributes to Ad 

toxicity and the effects after Ad vector administration vary greatly in different 

individuals. Adenovirus vector toxicity has been discussed ever since the first 

preclinical experiments were conducted. Although Ads can potentially cause even 

systemic inflammatory response, the most common side effects reported in clinical 
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studies are flu-like symptoms, such as fever, nausea and pain in the injected area 

(Nemunaitis, J., et al. 2001, Hamid, O., et al. 2003, Small, E. J., et al. 2006). A more 

severe side effect is the inflammation of the liver or spleen, which can occur when liver 

cells are infected by Ad or the Ad vector is actively taken up by liver cells (Huard, J., 

et al. 1995, Kalyuzhniy, O., et al. 2008). Retargeting Ad vectors effectively reduce the 

risk of liver infection, but since there are other mechanisms that result in liver 

transduction than specific receptor recognition, it may be necessary to “mask” or hide 

the viral vector from the host immune system and blood factors that bind the vector. 

The toxicity and infection of unwanted organs can be reduced by using modified Ad 

vectors (Shayakhmetov, D. M., et al. 2004), choosing carefully the administration 

strategy and keeping the vector doses within safe limits (Raper, S. E., et al. 2003).  

Retargeting of adenoviruses has been shown to be of utmost importance for 

achieving safer and more efficient gene therapy vectors. The most commonly used 

adenovirus serotype 5 (Ad5) can readily infect liver cells, but in many cases it infects 

poorly the target tissue (Smith, T. A., et al. 1993, Hemmi, S., et al. 1998, Li, D., et al. 

1999). Ad5 has been used extensively and has many advantages over other viral 

vectors and non-viral gene delivery methods. Ad5 can be readily produced in high 

titers, manufacturing processes have been well established, Ads readily infect both 

dividing and quiescent cell types, gene expression is transient and Ad genome does not 

integrate into the host genome. Broad tropism, however, is also a problem; too many 

unwanted organs and cell types can be infected leading to detrimental side effects. 

Thus, many strategies for retargeting the Ad vector have been developed. Three main 

retargeting systems are discussed here: 1) fiber exchange, part of a different serotype 

fiber protein is cloned to replace the corresponding native part; 2) fiber engineering, 

parts of fiber protein are mutated or sequences are added, and 3) two-component 

approach, where a separate molecule is used as a bridge between the vector and target 

receptor. All three retargeting systems have advantages and limitations and depending 

on the application one might be better suited than another. It is very unlikely that we 

will see a “universal” vector construction in the future but instead, many tailor-made 

constructs for each disease or patient group. 



 Review of the Literature 13 

 

2. Review of the Literature 

2.1. Adenoviral gene therapy vectors 

Adenovirus serotype 5 is an interesting vector for gene therapy applications. Ad5 

naturally infects a broad range of host cells, including both dividing and quiescent 

cells. This natural human pathogen is known to cause from mild to severe diseases 

depending on the site of infection and the serotype involved. Major syndromes caused 

by Ads are: 1) acute respiratory syndrome, 2) pharyngoconjunctival fever, 3) epidemic 

keratoconjunctivitis, 4) acute hemorrhagic cystis, and 5) gastroenteritis. Transmission 

of Ad can be via droplet inhalation, fecal-oral route, or exposure to infected blood or 

tissue. Even though Ad can survive prolonged periods outside the host severe 

morbidity is rare in immunocompetent adults. Ad is a non-enveloped icosahedral virus. 

It has been shown to tolerate modifications quite well and these modifications to the 

capsid, which consists mainly of three major capsid proteins hexon, penton and fiber, 

can be done relatively easily. Also the production and purification methods of Ad5 are 

well established. Unfortunately, there are also some major drawbacks in using native 

Ad5 as a gene therapy vector. Major problems and some solutions are discussed below. 

2.1.1. Adenovirus life cycle 

To date there are 52 different serotypes of Ads, divided in six different subgroups from 

A to G (Jones, M. S.,2nd, et al. 2007). Each subgroup has natural tropism for specific 

tissue and the physiological symptoms depend on the site of infection. Adenoviruses 

attach to cell-surface receptors when starting their infection cycle (Figure 1). These 

receptors vary between different Ad serotypes. The most common Ad receptor is 

coxsackie and adenovirus receptor (CAR). Ads from all subgroups other than subgroup 

B have been found to utilize this receptor for primary attachment. Subgroup B has been 

further divided into two groups; B1 and B2 and CD46 has been shown to be a common 

receptor for these groups (Segerman, A., et al. 2003b, Gaggar, A., et al. 2003, Sirena, 

D., et al. 2004). Group B1 has been shown to use the cell-surface molecules CD80 and 

CD86 as attachment receptors (Short, J. J., et al. 2004). In addition, various Ad 

serotypes utilize sialic acid, and heparan sulfate glycosaminoglycans for cellular 

attachment. After initial attachment the virus binding triggers clustering of αvβ3- and 

αvβ5-integrins. These integrins take part in the internalization of virus particles as viral 

protein penton base binds to these integrins (Chiu, C. Y., et al. 1999). Activation of αv-

integrins induces endocytosis. Once the virus is inside the cell, in a vesicle, it needs to 

escape. The insides of the vesicle are destroyed by low pH. The Ad particle resists 

complete destruction and instead, it starts to disassemble and eventually escapes the 

vesicle into the cytosol. Ad remains attached to the microtubules and is transported to 

the nuclear membrane where the viral capsid is further disassembled and the viral 

DNA is released into the nucleus (Leopold, P. L., et al. 2000, Suomalainen, M., et al. 

2001). Within a few hours after infection the first Ad genes are transcribed. 
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After infecting a cell the virus must protect the cell from host responses. Normally, 

when a cell is infected by a virus it undergoes apoptosis to prevent the virus from 

spreading into other parts of the organism. This is normally done by activation of a 

controlled cell death program. One major signaling molecule in this program is p53, 

which acts as a promoter of cell death. Adenovirus prevents apoptosis by interfering with 

this cell death program. The first expressed Ad genes are E1A, E1B, and E3. E1A codes 

for a protein which binds to human retinoblastoma protein (pRb). pRb prevents the 

replication of damaged DNA (and foreign DNA) by halting the cell cycle to the G1 phase 

and the cell eventually undergoes p53-mediated apoptosis, if DNA damage cannot be 

repaired (Figure 2). When the E1A gene product binds pRb, it cannot function properly 

and the cell cycle is allowed to continue regardless of the presence of foreign DNA.  

 

Figure 1. Adenovirus replication cycle. 1.) A virus particle attaches to a cell-surface receptor 

(CAR in case of Ad5). After attachment, signaling from the receptor leads to clustering of 

integrins αvβ3 and αvβ5. These integrins recognize penton base on the Ad and start the 

internalization of the virus. 2.) Ad is transported into the cell in a vesicle. Low pH destabilizes 

the viral coat and Ad is partially degraded. Partial degradation allows the virus to escape the 

vesicle. 3.) The vesicle is disrupted and Ad is able to escape into the cytosol. 4.) In the cytosol 

Ad is transported to the nuclear membrane via microtubules. At the nuclear membrane viral 

DNA is released into the nucleus. In the nucleus viral DNA is copied to make more viral 

genomes and viral genes are transcribed into mRNA (red). 5.) Viral mRNA acts in the same 

way as host mRNA and is recognized by cellular protein synthesis machinery, which will 

produce viral proteins. 6.) Viral structural proteins are transported back to nucleus, where 

assembly of virions takes place and viral DNA is packaged into virions. 7.) Viral particles are 

transported to the cellular membrane and after either overload of viruses or active disruption of 

cell membrane by adenoviral death protein, the cell bursts and new a batch of viral particles are 

released into extracellular space. 
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The gene product of E1B binds to the aforementioned cellular p53 and effectively 

prevents the infected cell from undergoing apoptosis, allowing the virus time to 

replicate and complete its life cycle (Liu, Y., et al. 2000). Ad gene E3 has similar 

functions as E1B. The gene product of E3, 10.4K/14.5K complex, removes the CD95 

receptors from the cell surface. This prevents the cell from undergoing Fas-induced 

TNF-dependent apoptosis (Shisler, J., et al. 1997). These three early genes inhibit cell 

death during the virus replication cycle and can be exploited in gene therapy 

applications. In addition, the product of the fourth early gene, E4, has two different 

splice variants: the first one inhibits the destruction of infected cells by targeting 

cellular p53 for destruction thus augmenting the effects of E1B (Querido, E., et al. 

2001). The second splice variant interferes with the host INF-α and INF-  signaling 

which inhibits host antiviral responses (Ullman, A. J., et al. 2007). Other Ad genes 

produce all the necessary proteins needed for replication of the Ad genome and 

production and assembly of new virions. Ad capsid proteins are synthesized in the 

cytoplasm by the host translation machinery, after which these structural proteins are 

transferred to the nucleus by viral protein VI, where the assembly of new virions takes 

place. Copies of Ad genomes are packaged into the virions and immature viruses 

mature while being transported through the cytosol to the plasma membrane. New 

viruses are released to the extracellular space when the adenovirus death protein (ADP) 

facilitates the lysis of the host cell. ADP is also coded by gene E3, but as a different 

splice variant and under MLP promoter at a late stage of the infection cycle (Tollefson, 

A. E., et al. 1996). 

 

Figure 2. Simplified schematic description of E1A and E1B function. 1) Normally, when p53 is 

active it induces apoptosis by activating Bax. When adenoviral E1B binds to p53 it cannot 

activate the apoptotic pathway. 2) When DNA is damaged pRb stays bound to transcription 

factor E2F and the cell cycle is arrested in G1 phase. If no DNA damage is detected pRb is 

phosphorylated and E2F is released and the cell cycle is allowed to proceed. When pRb is 

bound by E1A it cannot associate with E2F and the cell cycle cannot be arrested. 
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2.1.2. Adenoviral receptors 

Adenoviruses of different serotypes utilize various cellular receptors for primary 

attachment, when starting the infection of a host cell ( able 1). These receptors are 

specifically recognized by the fiber proteins protruding from the Ad capsids (Levine, 

A. J. and Ginsberg. 1967, Philipson, L., et al. 1968). 

T

Table 1. Adenoviral receptors. 

Receptor Native function Reference 

CAR Tight junction structural protein (Cohen, C. J., et al. 2001) 

CD46 Complement regulatory protein (Liszewski, M. K., et al. 1991) 

CD80 T-cell activation costimulatory molecule (Freeman, G. J., et al. 1989) 

CD86 T-cell activation costimulatory molecule (Caux, C., et al. 1994) 

Sialic acid Ubiquitous cell surface receptor  

Heparan sulfate 

glycosaminoglycans 

Varies from structural to cell-to-cell 

signaling 

(Kolset, S. O., et al. 2004) 

αvβ3- and αvβ5-integrins Cell adhesion molecule and endocytosis 

activation signaling 

(Smith, J. W., et al. 1990) 

2.1.2.1. Coxsackie and Adenovirus Receptor 

Coxsackie and adenovirus receptor is a common receptor for group B coxsackie 

viruses and various Ad serotypes (Bergelson, J. M., et al. 1997). CAR is a 46 kDa cell 

adhesion molecule belonging to immunoglobulin superfamily. After being identified as 

a virus attachment receptor CAR has been shown to be located in tight junctions and 

takes part in the  regulation of junction formation (Cohen, C. J., et al. 2001, Coyne, C. 

B., et al. 2004, Raschperger, E., et al. 2006). It has also been hypothesized that CAR 

acts as a pathfinder molecule during fetal development. Interestingly, for example, 

after cardiac damage CAR is up-regulated. In contrast, many cancer types express 

CAR at lower than normal levels (Hemmi, S., et al. 1998, Li, D., et al. 1999, 

Matsumoto, K., et al. 2005). Since reduced adhesion is a major factor for tumor to 

become invasive and metastatic, the loss of CAR may play a significant role in this 

occurrence. CAR expression would thus also have a tumor suppressive role. 

2.1.2.2. CD46 

Before identification of this receptor, it was observed that group B Ads do not compete 

with commonly used serotypes Ad2 and Ad5 for the cellular attachment sites during 

infection, which led to the conclusion that group B Ads do not interact with CAR. The 

group B Ad receptor has been identified as CD46 (Segerman, A., et al. 2003b, Gaggar, 

A., et al. 2003, Sirena, D., et al. 2004). CD46 is a membrane cofactor protein and a 

regulator of complement activation. This receptor is expressed by all nucleated cells in 

the human body. Interestingly, CD46 has been identified as a receptor for many other 

viruses as well, including measles and some herpes viruses (Manchester, M., et al. 

2000, Santoro, F., et al. 1999). 
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2.1.2.3. Integrins αvβ3 and αvβ5 

Integrins are cell adhesion molecules, which take part also in cell motility. These cell-

surface receptors are heterodimers composed of alpha and beta subunits. While αvβ3 

and αvβ5 may act as attachment receptors, especially with engineered viral vectors, their 

main function is the internalization of attached viruses. The virus attachment to the 

primary receptor on the cell surface leads to clustering of integrins. The integrins αvβ3 

and αvβ5 recognize a RGD motif in the viral penton base protein and this signal starts 

the internalization process (Wickham, T. J., et al. 1993). Integrin signaling leads 

eventually to phagocytosis of the attached virus. In the endosome αvβ3 and αvβ5 

integrins also help the virus to escape from the vesicle into the cytoplasm (Wickham, 

T. J., et al. 1994). Interestingly, although the integrins have important roles to play in 

the infection cycle of Ad they are not a prerequisite for cell entry. It has been shown 

that when the RGD motif in the penton is destroyed by mutation the virus is still able 

to enter the cell, although at a reduced efficiency (Bai, M., et al. 1993). 

2.1.2.4. CD80 and CD86 

It has been shown that all group B Ads can utilize CD46 as attachment receptor. Early 

receptor studies revealed that there are at least two different receptors for group B Ads 

(Segerman, A., et al. 2003a). Since then it has been shown that subgroup B Ads can 

also use CD80 and CD86 receptors for primary attachment. This was first 

demonstrated for group B1 member Ad3 (Short, J. J., et al. 2004) and later for both 

group B1 and B2 serotypes as well (Short, J. J., et al. 2006). Receptors CD80 (B7-1) 

and CD86 (B7-2) are commonly expressed by mature B cells and dendritic cells. Their 

function is to activate T-cells by recognizing ligands CD28 and CTLA-4, respectively 

(Freeman, G. J., et al. 1989, Caux, C., et al. 1994, Lanier, L. L., et al. 1995). 

2.1.2.5. Sialic acid 

Commonly found on cell-surface glycoproteins and glycolipids, sialic acid has been 

shown to act as an attachment receptor for Ad serotypes 8, 19a and 37 (Arnberg, N., et 

al. 2000a, Arnberg, N., et al. 2000b). Crystallographic studies show conservation of 

amino acid residues involved in sialic acid binding in many group D serotypes 

(Burmeister, W. P., et al. 2004). Since sialic acid can be found in various animal 

tissues of different species and to some extent in plants, fungi and bacteria, it seems 

very unlikely that a human Ad would have evolved to attach primarily on these cell-

surface receptors. 

2.1.2.6. Heparan sulfate glycosaminoglycans 

Long heavily sulfated carbohydrate chains which are found in the extracellular matrix 

are called heparan sulfate glycosaminoglycans (HS-GAGs). Ads 2 and 5 have been 

found to use HS-GAG as attachment receptors in addition to CAR (Dechecchi, M. C., 

et al. 2001). As HS-GAGs are similar to sialic acid in abundance it is more likely that 

HS-GAGs can be used as secondary receptors to gain cell entry in case primary 
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receptor CAR is not readily available. The amino acid sequence KKTK constitutes an 

HS-GAG binding motif. Interestingly, KKTK is found in shafts of the serotypes in 

subgroup C, but not on the shafts of serotypes in any other subgroup. When this motif 

is mutated in the Ad5 fiber shaft the virus tropism changes and importantly, liver 

transduction is impaired (Smith, T. A., et al. 2003). Because liver transduction has 

been recognized as one of the major problems in using Ad vectors, abolishing HS-

GAG binding is an important aspect to consider when retargeting Ad-based gene 

therapy vectors. 

2.1.3. Transductional retargeting of adenoviral vectors 

Adenoviruses have specific receptors to which they attach via virus capsid fiber protein 

when infecting a target cell (Levine, A. J. and Ginsberg. 1967, Philipson, L., et al. 1968). 

These receptors are usually expressed in a broad range of cells and tissues in the human 

body. While this can be advantageous in some gene therapy applications, it can also lead 

to unwanted side effects. Also, the expression of native virus receptor may be decreased 

in the target tissue. Decreased receptor expression has especially been reported for Ad5 

receptor CAR in various cancers (Hemmi, S., et al. 1998, Li, D., et al. 1999). 

Liver transduction is also a major problem with Ad based vectors. The liver has been 

reported to express CAR abundantly and is susceptible to adenovirus infection and virus-

mediated tissue damage (Everett, R. S., et al. 2003). Furthermore, it was recently 

reported that Ads are taken up by liver cells in a CAR-independent way. Blood 

coagulation factors bind to the major Ad capsid protein, hexon, which leads to the uptake 

of Ad particles by liver cells (Kalyuzhniy, O., et al. 2008, Waddington, S. N., et al. 

2008). This finding suggests that not only must Ad vectors be transductionally targeted 

but also “masked” from other Ad-binding mechanisms in the host body to avoid the 

transduction of unwanted tissues. Without engineering the hexon Diaconu et al. (2009) 

successfully decreased liver transduction in a renal carcinoma model by swapping the 

fiber of Ad5 to that of Ad19p and inserting kidney targeting motif into the swapped 

fibers (Diaconu, I., et al. 2009). Interestingly, without affecting the hexon, and swapping 

the fiber to another CAR binding fiber (Table 2), but with different natural tropism, the 

liver transduction ability of the novel vector was almost completely abolished. This 

indicates that insertions to the Ad fiber may be sufficient to hide the vector from 

mechanisms involving liver uptake. There are three major systems which can be used to 

alter virus tropism to be better suited for gene therapy applications 1) Fiber replacement 

or fiber swapping, 2) Fiber engineering, and 3) Two-component systems. 

2.1.3.1. Fiber replacement technology 

This method of adenovirus retargeting makes use of different tropism of different 

serotypes of adenoviruses. There are more than 50 different serotypes of Ads, divided 

into six different subgroups (A- ), with varying target tissues and associated 

pathological conditions (Table 1). Viruses in each group prefer a different set of 

primary receptors and thus are naturally targeted to different target tissues. Fiber 

G



 Review of the Literature 19 

 

replacement technology takes advantage of this fact and engineering viruses to contain 

parts of different serotypes results in novel hybrid viruses. 

When a hybrid virus is produced successfully it has the binding characteristics of 

the fiber serotype, while the rest of the viral particle is derived from another serotype, 

usually Ad5. Hybrid viruses can still be produced and purified similarly to Ad5. This is 

a relatively straightforward method to achieve two goals in virus retargeting; first, the 

tropism of virus is changed and second, the native receptor recognition is abolished. 

Also, the hybrid virus usually has high affinity to cell receptors because the binding 

capability has been tested by Mother Nature in the course of evolution and no 

engineering is done to the fiber per se. Several different hybrid viruses have been 

manufactured to date. These hybrids are usually based on Ad5 with fibers introduced 

from other serotypes. The most commonly used “fiber donor” serotypes are subgroup 

B members 3, 7, 11, 16, and 35 (Krasnykh, V. N., et al. 1996, Gall, J., et al. 1996, 

Stone, D., et al. 2005, Goossens, P. H., et al. 2001, Shayakhmetov, D. M., et al. 2000). 

The common primary receptor for subgroup B serotypes has been identified as CD46 

(Gaggar, A., et al. 2003). CD46 is a membrane cofactor protein which is expressed by 

all nucleated cells in the human body and functions as a regulator of complement 

activation (Liszewski, M. K., et al. 1991). 

Table 2. Adenovirus groups. 

Group Serotypes Primary receptor Tropism Reference 

A  12, 18, 31 CAR Gastrointestinal mucosa (Roelvink, P. W., et 

al. 1998) 

B B1 3, 7, 16, 21, 50 CD46, CD80, 

CD86 

Respiratory mucosa / 

Epithelium 

(Gaggar, A., et al. 

2003, Sirena, D., et 

al. 2004, Short, J. J., 

et al. 2004, Marttila, 

M., et al. 2005) 

B2 11, 14, 35, 36 CD46 Respiratory mucosa / 

Epithelium / Kidney* / 

Urinary tract* 

(Gaggar, A., et al. 

2003, Marttila, M., et 

al. 2005, Segerman, 

A., et al. 2000) 

C  1, 2, 5, 6 CAR Respiratory mucosa (Roelvink, P. W., et 

al. 1998) 

D  8-10, 13, 15, 17, 

19, 20, 22-30, 

32, 33, 36-39, 

42-49, 51 

CAR, sialic acid Ocular mucosa (Arnberg, N., et al. 

2000b, Roelvink, P. 

W., et al. 1998) 

E  4 CAR Respiratory mucosa (Roelvink, P. W., et 

al. 1998) 

F  40L, 40S, 41L, 

41S 

CAR** Gastrointestinal mucosa (Roelvink, P. W., et 

al. 1998) 

G  52 unknown Gastrointestinal mucosa (Jones, M. S.,2nd, et 

al. 2007) 

* Ad14 has not been found in these tissues 

** CAR is the receptor for 40L and 41L. 40S and 41S receptors unknown (non-CAR) 
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Although fiber replacement is a straightforward and relatively easy way to retarget 

Ad vectors, there are also a few limitations to this method. As the table 2 shows, the 

number of different Ad receptors is limited. Even though there are 52 different 

serotypes of Ads, most of them bind CAR. Interchanging fibers of these serotypes does 

not produce an Ad vector with novel binding characteristics. Another issue is the 

naturally broad tropism of Ads. This may be beneficial for some applications, but also 

detrimental to others.  

While hybrid Ads have been retargeted in regard to the native virus, the novel 

attachment receptor is usually expressed by a broad range of cells and tissues in the 

human body as well. Although, one vector might decrease the infection of liver, which 

is a major concern with Ad5 vectors, the novel vector might induce a severe infection 

of another tissue as a side effect. Replacing only the Ad fibers is not sufficient to 

prevent liver transduction. It has been shown that many, but not all, serotypes bind 

blood coaculation factor X (fX) via hexon and this leads to liver uptake of Ad 

(Waddington, S. N., et al. 2008). Furthermore, the shaft length has been associated 

with liver transduction efficiency. Hybrid viruses with fibers from serotypes with 

shorter fiber shafts have been shown to infect liver cells with reduced efficacy both in 

vitro and in vivo, when compared with Ad5 (Shayakhmetov, D. M., et al. 2004, Vigne, 

E., et al. 2003, Nakamura, T., et al. 2003). Fiber replacement combined with hexon 

swapping might further lessen the hepatotoxicity of Ad vectors and yield less toxic, 

better tolerated and more effective Ad vectors. 

2.1.3.2. Fiber engineering 

More specific retargeting may be done by genetically engineering the fiber to alter the 

binding properties. There are two distinct sites which have been proven to tolerate 

insertions well without the loss of fiber trimerization; the C-terminus and HI-loop. 

Both sites are located in the fiber knob. Early experiments included the insertion of a 

polylysine chain to the C-terminus and insertion of an RGD motif to the HI-loop 

(Yoshida, Y., et al. 1998, Wickham, T. J., et al. 1997). The polylysine modification 

resulted in redirecting of the vector from CAR to heparin sulfates on various cell types. 

The RGD insertion redirected the vector from CAR to αvβ integrins and was observed 

to allow the infection of cell types which had been previously refractory to native Ad5 

infection. Recently the RGD insertion showed some more success when Li et. al. 

(2010) successfully targeted tumor vascular endothelial cells (Li, P., et al. 2010). The 

fiber knob was first mutated to ablate native CAR binding activity and an RGD peptide 

was inserted to the HI-loop to redirect the vector to vascular endothelium expressing 

αv-integrins. The resulting vector was effective against both breast cancer and 

melanoma in animal models without observed toxicity in the normal tissues. 

The major problem with this method of retargeting is the size limitation of 

insertions and the fact that the inserted molecule must be able to fold correctly in the 

cell cytoplasm. The early reported maximal size for insertion to the C-terminus was 

only up to 25 amino acids. Larger insertions prevent the correct trimerization of the 

fiber protein which is necessary for the production of functional viral particles (Hong, 
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J. S. and Engler. 1996). The HI-loop tends to allow insertions of larger size than the C-

terminus. Insertions within the size limitations have been shown to be effective in 

targeting various cancer types including glioma, pancreatic, meningioma and ovarian 

cancer (Dirven, C. M., et al. 2002, Grill, J., et al. 2001, Wesseling, J. G., et al. 2001, 

Hemminki, A., et al. 2001). 

In order to target cardiac vasculature Nicol et. al. (2009) combined fiber 

replacement and fiber engineering techniques (Nicol, C. G., et al. 2009). The Ad5 fiber 

was first swapped for Ad19p fiber. Hybrid Ad5/19p displays as efficient transduction 

properties as Ad5 on vascular endothelial and smooth muscle cells, but significantly 

lower transduction levels on liver cells (Denby, L., et al. 2004). A cardiac specific 

peptide was inserted into the HI-loop of this hybrid fiber knob. The resulting 

engineered hybrid vector was analyzed in both in vitro and in vivo models and was 

shown to be more specific for endothelial cells and cardiac tissue than either Ad5 or 

Ad5/19p without peptide (Nicol, C. G., et al. 2009). Similarly Ad5/19p with insertion 

of kidney targeting peptide showed transduction levels comparable to wild type on 

renal cancer cells, but only minimal transduction of the liver cells (Diaconu, I., et al. 

2009). The works of Nicol et al. and Diaconu et al. show that it is feasible to use more 

than one method simultaneously to modify an Ad vector. This is probably even 

mandatory for achieving vectors which have the best possible safety and efficacy 

profiles. 

Recently the fiber protein has been engineered more extensively. Myhre et. al. 

(2009) have inserted different affibodies (58 amino acid molecules) to the fiber HI-

loop separately and in tandem without loss of virus function (Myhre, S., et al. 2009). 

The ability of different sites in the Ad capsid to tolerate insertions has been evaluated, 

and the HI-loop seems to be the best site in this sense when compared with fiber C-

terminus, hexon or pIX (Campos, S. K. and Barry. 2006, Kurachi, S., et al. 2007). 

Studies have also shown the importance of the fiber knob. It seems that, in addition to 

being in a key role in receptor recognition, the knob coding nucleotide sequence is 

needed for efficient fiber mRNA synthesis and subsequent protein synthesis. The 

correct folding and trimerization of the fiber protein is also impaired in virions with 

knobless fibers (Henning, P., et al. 2006). 

As discussed above, when manipulating the virus capsid it is paramount to retain 

the ability of capsid proteins to fold correctly. It would be possible to genetically delete 

parts of capsid proteins at the nucleotide level and thus add room for bigger insertions, 

but this would most likely interfere with correct protein folding and be deleterious to 

vector production. The other methods of targeting Ad vectors, discussed previously in 

chapter 2.1.3.1. and below in chapter 2.1.3.3., do not usually suffer from misfolding or 

loss of functionality problems since no engineering is done to the fiber per se. One 

might also try to manufacture “synthetic fibers” based on any suitable protein frame 

and incorporate these to the Ad vector genome in place of the native fiber. A single-

chain Fv fragment (scFv) has already been used as this kind of a “synthetic fiber”. 

Since antibodies and antibody fragments are not compatible with Ad capsids an 
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interesting specific complexing system was developed. Instead of the fiber gene, the 

vector genome codes for a secreted form of scFv. These secreted scFvs are then 

specifically associated with virions after cell lysis in the extracellular space (Glasgow, 

J. N., et al. 2009). This system allows the screening and affinity maturation of specific 

scFv fragments by powerful in vitro or in vivo screening methods separately, as with 

two-component systems. After finding a target specific scFv, it can be introduced into 

the viral genome to make a complete retargeted Ad vector system. It must be noted that 

Glasgow’s system could also be categorized under section 2.1.3.3. as it is much like a 

two-component system, with an important “upgrade”: the bridging component is 

genetically incorporated into the vector genome and its association with virions is 

specific. Importantly, one of the major drawbacks associated with two-component 

systems (discussed below) has been removed in Glasgow’s system. 

2.1.3.3. Two-component adenoviral systems 

One important aspect of retargeting Ad vectors is the ablation of native binding 

specificity. This can be done quite easily by blocking the receptor binding site on the 

Ad surface. For example, by binding an antibody against the fiber knob the virus can 

no longer bind to its target receptor. Targeting to a new set of host cells can be 

achieved if the antibody is conjugated with a target specific receptor ligand. This was 

in fact the first method used for targeting Ad gene therapy vectors. 

Watkins et. al. (1997) constructed a bispecific ligand containing an Ad fiber 

binding scFv and endothelial growth factor (EGF) for retargeting the Ad vector to EGF 

receptors (EGFR). The scFv, named S11, alone has been shown to inhibit Ad infection 

in cells otherwise readily infected by Ad (Watkins, S. J., et al. 1997, Haisma, H. J., et 

al. 2010). S11 has been fused with many peptides and ligands to target Ad vectors to 

different receptors on various cell types, including EGFR on squamous carcinoma 

cells, CD105 on epithelial cells, carcinoembryonic antigen on breast cancer and 

melanoma cells and VEGFR2 and Tie2 on endothelial cells (Watkins, S. J., et al. 1997, 

Haisma, H. J., et al. 2010, Nettelbeck, D. M., et al. 2001, Korn, T., et al. 2004). 

This method differs from the ones described previously mainly in the fact that this 

is not a genetically targeted system. No genetic manipulations are done to the Ad 

vector in order to retarget it. This fact means that one does not need to worry about 

disrupting a complex multiprotein structure while engineering the retargeting system. 

Single chain Fv–ligand or double scFv -molecules are much smaller and easier to work 

with than the Ad as a whole. Furthermore, scFvs can be quite easily produced in 

bacterial cultures in high quantities. However, this system has some drawbacks. 

Adding another molecule between the vector and the target increases the complexity of 

the whole system. The bridging molecule must be thoroughly purified and analyzed 

again from each produced batch, which adds steps to the manufacturing process. In 

contrast, if the retargeting information were genetically incorporated to the Ad vector 

these steps would be unnecessary. Importantly, if the two-component retargeting 

system is used for transductional targeting the vector cannot be made conditionally 

replicative, because the redirecting component is not coded in the vector genome or the 
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binding reaction between vector and directing component does not usually happen 

effectively in vivo. 

2.1.4. Transcriptional retargeting of adenoviral vectors 

Wild type Ads use a wide range of host cells for replication. This presents a problem 

when only a certain types of cells need to be addressed, e.g. only cancer cells are 

targeted for termination or only cells with a dysfunctional gene need to be introduced 

with a functional copy. As discussed previously, Ad vectors can be transductionally 

targeted to the target tissue, but especially if the end result is the destruction of infected 

tissue, like in cancer therapy, it is paramount to have a second level of control for the 

vector replication or transgene expression. Usually, even if the vector is retargeted to 

infect only target cells, there is some “leakiness” in the system and unwanted cell types 

are infected to some degree. This may or may not be a severe issue, depending on the 

vector function. If the vector aims to introduce a functional copy of a gene to a cell 

population with a non-functional copy, the infection of neighboring normal cells would 

probably not lead to any severe side effects in the patient. On the contrary, if the 

intended vector function is to target a cell population and destroy it, infection of 

normal cells could have severely detrimental side effects. Thus, the vector replication, 

and in some cases the expression of a transgene, must also be targeted to the target 

cells with its own control elements. 

2.1.4.1. Oncolytic adenoviruses 

Deletion of non-essential adenoviral genes or subjecting these genes under the control 

of a tissue-specific promoter system (discussed below) produces conditionally 

replicating adenoviruses (CRAds). As discussed in chapter 2.1.1. adenovirus infection 

results in the destruction of the host cell. This has been exploited in gene therapy of 

cancer. Viral vectors used this way are generally called oncolytic viruses. The principle 

of oncolytic viruses relies on controlling the viral replication in the host and aiming it 

specifically to the target tissue (Figure 3). Transductional targeting blocks the efficient 

transduction of normal cells. A small proportion of normal cells may become infected, 

but the virus is not able to replicate. On the other hand, the targeted cancer cells are 

effectively transduced and viral replication takes place. The released viruses infect 

neighboring cells and tumor tissue is gradually destroyed by virus action. Ideally, when 

the patient is void of target cells the oncolytic virus is flushed from the body by host 

immune system. 
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Figure 3. Principle of oncolytic viruses. A) Normal cells are not transduced by oncolytic 

viruses due to modification to the viral capsid. B) The virus is not able to replicate in normal 

cells due to transcriptional control elements even if transduction occurs. C) Cancer cells are 

efficiently transduced and destroyed by viral replication. The released viruses infect 

neighboring cells and the effect is amplified each cycle. 

2.1.4.2. Deletion of essential viral genes 

As discussed in section 2.1.1., there are a few viral genes which are necessary for the 

continuation of the virus life cycle after infection of a cell (Figure 4). These genes 

include E1A, E1B, and E3, which are discussed here. If the E1B gene is deleted from 

the viral genome, the virus cannot prevent the host immune system from reacting to the 

infection and infected cells will undergo apoptosis before the viral replication is 

complete. This fact has been exploited to design safer Ad vectors for cancer treatment. 

Many cancer types have been reported to have a non-functional p53 gene (White, E. 

1994). If E1B is removed from the virus genome, the virus cannot complete the 

replication cycle in normal cells with functional p53. In cells with non-functional p53 

the E1B gene is not needed, and the virus can replicate in these cells. Similarly, the 

interaction of gene product E1A and cellular pRb protein is a prerequisite for viral 

replication in normal cells. E1A inhibits pRb function (discussed in 2.1.1.), which 

allows the replication of viral DNA. E1A areas are usually replaced by the transgene in 

non-replicating Ad vectors. These vectors can be used to introduce a therapeutic gene 
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into tissues that are not marked for destruction. Like p53, pRb has been shown to be 

nonfunctional in many cancers (Sherr, C. J. 1996). Thus, removal of the E1A gene 

from the viral genome renders the vector selective for cancerous tissue with pRb 

mutation and unable to replicate in normal cells. 

 

Figure 4. Organization of adenovirus genome and tasks involving early and late expressing 

adenoviral genes. 

A groundbreaking viral vector in the field of gene therapy was dl1520 (better 

known as ONYX-015) (Heise, C., et al. 1997). In the year 2000 ONYX-015 was the 

first CRAd to ever enter clinical trials (Ganly, I., et al. 2000). ONYX-015 has a 55 kDa 

deletion in the E1B gene, which alters the viral replication properties as described 

above. In 2005 China approved the use of CRAd H101 as treatment for head and neck 

cancer. The H101 virus is similar to ONYX-015, as it also has the 55 kDa E1B 

deletion, but in addition, it also has a second deletion in the E3 gene, which further 

limits the virus function in normal cells and thus increases safety. As described in 

section 2.1.1., the viral ligand for cellular pRb is gene product E1A. Gene E1A was 

partially deleted to create CRAd Ad5Δ24. Ad5Δ24 was shown to be effective in killing 

glioma cells both in vitro and in vivo while being unable to replicate in quiescent 

normal cells with functional pRb (Fueyo, J., et al. 2000). This vector has been 

developed further by adding also transductional targeting to the virus via RGD 

insertion to the fiber knob (Suzuki, K., et al. 2001). More recently Ad5Δ24RGD, with 

combined transcriptional and transductional control elements, has been shown to be 

very effective in killing glioma tumor cells when combined with chemotherapy in a 

mouse model (Alonso, M. M., et al. 2008). 
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2.1.4.3. Promoter-controlled virus replication 

A different kind of replication control can be achieved by incorporating tissue-specific 

promoters into the Ad vector genome. The first reported CRAd with its replication 

regulated by a tissue-specific promoter was CN706 that has a prostate-specific 

promoter-enhancer element controlling the adenoviral E1A gene. This CRAd was 

shown to replicate preferentially in PSA-producing cell lines and to be able to inhibit 

tumor growth in a mouse xenograft model (Rodriguez, R., et al. 1997). Since then the 

virus CN706 has been in phase I clinical trials and shown to be well tolerated and to 

decrease PSA levels in patients (DeWeese, T. L., et al. 2001). 

While PSAp is specific for prostate cancer, another promoter, human telomerase 

reverse transcriptase promoter (hTERTp), has activity in various different cancer types. 

The telomerase reverse transcriptase gene has been found to be reactivated in many 

cancers (Ito, H., et al. 1998, Kawakami, Y., et al. 2000, Saito, K., et al. 2002) and it 

has been hypothesized that this occurrence might be one of the prerequisites for cancer 

cells to become immortalized (Shay, J. W., et al. 2001). Normally hTERTp is active 

only at fetal development and after birth it remains active only in stem cells (Ulaner, G. 

A., et al. 1998). Cancer cells with reactivated hTERTp can be targeted by inserting 

hTERTp into the Ad genome to control the expression of essential genes like E1A. An 

hTERTp-controlled CRAd, Adv-TERTp-E1A, was one of the first created. It has been 

tested both in vitro and in vivo models (Huang, T. G., et al. 2003). Adv-TERTp-E1A 

has been found to be as effective in killing hTERTp active hepatocellular carcinoma 

cells as wt Ad5, but unable to replicate in hTERTp inactive fibroblasts, which are 

effectively killed by the wild-type virus. Importantly, it was also demonstrated that the 

Adv-TERTp-E1A virus did not induce severe inflammation in the liver; even though it 

is an accepted fact that wt Ad5 is severely hepatotoxic. The telomerase promoter 

system has been developed further with more efficient and specific control elements to 

restrict the viral replication into the target cells. The human telomerase is a 

ribonucleoprotein composed of RNA and reverse transcriptase subunits (Weinrich, S. 

L., et al. 1997). The subunit transcripts are controlled by separate promoters, hTRp and 

hTERTp, respectively. Both promoters have been evaluated with Ads expressing a 

suicide gene or as a control element for CRAd replication. It has been reported that 

hTRp is more efficient than hTERTp in producing oncolytic effects or sensitizing 

cancer cells through transgene expression in non-replicating vector systems (Abdul-

Ghani, R., et al. 2000, Plumb, J. A., et al. 2001, Dufes, C., et al. 2005). Interestingly, 

comparisons between CRAds controlled by these promoters showed no deifferences in 

cytopathic effects or viral E1A expression (Bilsland, A. E., et al. 2007). Recently an 

interesting report was published by Onimaru et. al. (2010), where they used in 

combination CRAd and non-replicative vectors to treat pancreatic cancer in a mouse 

model (Onimaru, M., et al. 2010). When an hTERTp-controlled CRAd was 

administered in combination with non-targeted vector bearing a therapeutic gene, the 

transgene expression was observed to be enhanced. The investigators hypothesize that 

this enhancement is due to the partial restoration of replicative properties of the 

transgene vector by CRAd-expressed E1A gene in co-infected target cells.  
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Many other CRAds have also been created with different promoter systems 

targeting different tissues. These promoters include CMV (not tissue-selective), 

survivin, COX2, heparanase, SLPI, CXCR4, EPG-2, mesothelin and midkine 

promoters (Krasnykh, V. N., et al. 1996, Zhu, Z. B., et al. 2004b, Yamamoto, M., et al. 

2001, Breidenbach, M., et al. 2006, Barker, S. D., et al. 2003, Zhu, Z. B., et al. 2004a, 

Lu, B., et al. 2005, Breidenbach, M., et al. 2005, Adachi, Y., et al. 2000). Each 

promoter has its own properties and can be chosen according to target tissue or 

application. 

2.1.4.4. MicroRNA based transcriptional targeting 

Gene expression in eukaryotes is partly under the control of microRNAs (miRNAs) 

and are one of the key regulators of gene expression also in humans (Ambros, V., et al. 

2003, John, B., et al. 2004). It has been shown that miRNAs can be tissue-specific and 

are expressed differentially in cancers (Chang, J., et al. 2004, Jay, C., et al. 2007). This 

presents a possibility to control Ad replication using miRNAs. MicroRNA122 has been 

identified as liver-specific (Chang, J., et al. 2004). This allows for specific down-

regulation of genes in the liver. The miRNA122 target sequence was incorporated into 

the Ad E1A gene in non-coding region by Ylösmäki et al. (2008). A novel CRAd 

Ad5/3K-122 was tested in tissue culture analyses and about 10,000 fold attenuation of 

viral replication in liver cells was observed (Ylosmaki, E., et al. 2008). More recently 

this control mechanism was used in combination with a tissue-specific promoter. 

CRAd Ad[CgA-E1A-miR122] is targeted to neuroendocrine tumor cells and 

simultaneously detargeted from the liver. This CRAd was shown to replicate in 

endocrine pancreatic tumor cells at levels similar to wild type Ad5. In hepatic cells the 

replication was attenuated over 1000 fold when compared with wild type Ad5, and 

over 50 fold when compared with promoter-controlled CRAd (Leja, J., et al. 2010). 

The work of Leja et al. shows the feasibility of combining two control mechanisms in 

the same Ad vector. Importantly, utilization of miRNAs does not prevent the use of 

tissue-specific promoters but, on the contrary, adds another level of control. With 

addition of capsid modification, the resulting CRAd would have a total of three control 

levels: 1) transductional control, 2) transcriptional control, and post-transcriptional 

control, which all cumulatively add to the safety profile of the Ad vector in question. 

2.1.5. Adenoviral vectors in clinical trials 

Adenoviral vectors are the most commonly used vectors in clinical trials. By the end of 

the year 2009, adenoviral vectors were used in 392 (24%) out of 1644 clinical trials. 

Two of the most studied diseases involving adenoviral vectors are cancers (n = 1060) 

and cardiovascular diseases (n = 143). Apart from Ads, other viral vectors have been 

used in clinical trials as well. Retroviruses, Vaccinia virus, Poxvirus, Adeno-associated 

virus, Herpes simplex virus and Lentiviruses have all entered clinical trials mainly in 

cancer research. (www.wiley.co.uk/genmed/clinical, accessed October 26, 2010) All 

viral vectors have different properties with their own pros and cons. Ideally the 

application would dictate the viral vector to be used, but to date Ads and retroviruses 
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are significantly most utilized and researched, although lentiviruses and especially 

adeno-associated viruses have been used more and more in pre-clinical settings. 

Adenoviruses have been proven to be well tolerated in clinical trials. Usually mild 

flu-like symptoms (fever, fatigue, chills, nausea and vomiting) have been reported as 

adverse effects (with doses up to 2 × 1013 vp) (Nemunaitis, J., et al. 2001, Hamid, O., 

et al. 2003, Small, E. J., et al. 2006). Most adverse effects, including serious ones, have 

been reported as transient and dose-related. An extreme case occurred in 1999 when a 

patient in clinical trials died after systemic administration of Ad vectors intravenously 

(Raper, S. E., et al. 2003). This unfortunate case teaches valuable lessons: 1) pre-

existing levels of NAbs must be measured for each patient, 2) dosage must be carefully 

selected, 3) delivery route must be selected to minimize vector exposure to unwanted 

organs. For example, in case of HNSCC intratumoral injection should be preferred 

over intravenous injection. However, it must be noted that cancer metastases are hard 

to reach without systemic administration. And 4) a more advanced vector with inserted 

control elements should be used. 

Neutralizing antibodies against Ad vectors rise after administration of the vector, 

and usually within four weeks all patients have detectable levels of NAbs. No 

correlations between NAb levels and toxicity have been observed in clinical trials 

(Nemunaitis, J., et al. 2001). However, vector-induced immunity can reduce transgene 

expression to less than 10 % of the original levels after systemic delivery (Barcia, C., et 

al. 2006). 

Partial and complete responses are frequently observed in Ad clinical trials for 

various cancers (Ganly, I., et al. 2000, DeWeese, T. L., et al. 2001, Khorana, A. A., et 

al. 2003, Lu, W., et al. 2004, Dummer, R., et al. 2004, Dummer, R., et al. 2010). 

Freytag et. al. (2007) observed good tolerance and promising results from phase I 

studies with oncolytic Ad for treatment of prostate cancer (Freytag, S. O., et al. 2007). 

Doses of 1011, 1012 or 1012 × 2 viral particles were well tolerated, with grade 4 adverse 

event reported only in 1 out of 9 patients (hypoglycemia of unknown reason in a 

patient suffering from diabetes). All patients had decreased PSA levels and 7 patients 

had prostate biopsies free of cancer after one year. More recently Nokisalmi et. al. 

(2010) published a report describing treatment of solid progressive metastatic tumors 

of various origin and refractory to conventional treatments (Nokisalmi, P., et al. 2010). 

Patients were injected with CRAd doses ranging from 0.4 × 1011 to 1 × 1012 viral 

particles. Most patients developed NAbs over time, but these antibody levels did not 

correlate with toxicity. The observed adverse effects were of levels 1-3 and similar to 

what has been published previously, no level 4 or more serious adverse effects were 

observed. Five out of 12 patients showed decreased tumor size or tumor density. In 

another recent study Cerullo et. al. (2010) showed for the first time virus-induced 

antitumor immunity being raised in humans after treatment with non-replicating Ad 

vectors in addition to the expected antitumoral effects due to the viral vector carrying 

granulocyte macrophage colony-stimulating factor (GMCSF) gene. Fifty percent of 

evaluable patients showed positive responses (12% complete, 6% partial, and 31% 
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stable disease) in both injected and non-injected tumors (Cerullo, V., et al. 2010). This 

finding supports the theory that viral gene therapy vectors have potential to induce 

beneficial bystander effects, which further enhance the therapeutic potential of this 

kind of treatment. 

There is a clear similarity in results observed in Ad-vector-based gene therapy 

clinical trials. These results indicate rather clearly, what must be taken into account 

when Ad vectors are considered as a treatment method: Ads are well tolerated vectors, 

but the administered dose must be selected carefully. The immune system will 

recognize the vector and arising NAbs can reduce the therapeutic effect of the 

administered vector dose. The Ad vector must be targeted to infect the target tissue and 

natural tropism towards the liver must be reduced or ablated. To avoid side effects 

related to Ad and transgene function, the transgene expression and / or viral replication 

must be restricted to the target tissue as strictly as possible. Overall, the clinical trials 

done thus far using Ad vectors, show varying efficacy between trials and often the 

differences between control and vector groups remain quite low. On the other hand, 

results from clinical trials encourage for further vector development as the bullseye has 

not been hit yet. 

2.2. Head and neck squamous cell carcinoma and gene therapy 

About 940 new cancer cases per 100,000 people and over 500,000 cancer-related 

deaths are reported annually in the United States alone. These numbers translate to 

1500 deaths per day and over $228 billion used for cancer treatment and care annually 

(www.cancer.org, accessed June 11, 2010). In Finland in the year 2008 over 530 new 

cancer cases per 100,000 residents were diagnosed and over 11,000 cancer-related 

deaths were reported. The incidence rate has more than doubled over the last 30 years 

(www.cancerregistry.fi/tilastot, accessed July 20,2010). 

2.2.1. Head and neck squamous cell carcinoma 

Over 35,000 new cases and 7600 deaths due to HNSCC are reported annually in the 

U.S. Incidences are two times more common in men than in women. HNSCC has been 

associated with smoking and alcohol use, with combined use raising the risk factor 

over 30 fold. A different type of HNSCC can develop also due to human papilloma 

virus (HPV) infection. HPV-induced HNSCC usually has a better prognosis, less 

genetic alterations and less cell differentiation. Relative survival rates for diagnosed 

HNSCC patients are 83% for 1-year, 60 % for 5-year, and 49 % for 10-year survival. 

However, with metastatic HNSCC the 5-year survival drops to 28 % (www.cancer.org, 

accessed 11.6.2010). This shows that patients with metastases have severely worse 

prognoses and early detection and treatment is paramount. Unfortunately, the majority 

of patients diagnosed with HNSCC already have late-stage disease. Furthermore, 

HNSCC has a high recurrence rate and up to 40% of tumors treated with surgery and 

chemotherapy recur (Argiris, A., et al. 2008).  
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HNSCC is histologically characterized by nests of squamous cells and intercellular 

bridges within stromal fibrosis. Progressing carcinoma breaks through basal membrane 

and infiltrates subepithelial connective tissue. Invasive HNSCC can further infiltrate 

skeletal muscle, craniofacial bones and facial skin. The histology of HNSCC changes 

as the disease progresses and cells differentiate. Although HNSCC comprises of a 

heterogeneous group of tumors, depending on the origin, the vast majority has 

nullifying mutations in genes involved in p53 and / or pRb function. It has been shown 

that over 50% of HNSCC tumors have mutations in the p53 gene and these mutations 

contribute to reduced survival after surgery (Olshan, A. F., et al. 1997, Poeta, M. L., et 

al. 2007). Disruption of the pRb pathway in HNSCC occurs by inactivation of p16 due 

to mutation, promoter hypermethylation or loss of heterozygosity at chromosome 

region 9p21 (Olshan, A. F., et al. 1997). Loss of heterozygosity at chromosome region 

9p21 has been reported in 75% of HNSCC cases (Gonzalez, M. V., et al. 1995). The 

uniform loss of gene function represents a target for gene therapy applications and an 

Ad vector targeting the p53 function has been extensively tested in clinical settings 

(discussed in 2.2.2.). Even though therapy with Ad vectors targeting the p53 function 

has been successful, the disease progression is not as simple. There are at least three 

recognized specific mutations which are required for development of HNSCC: 1) 

inactivating mutation of pRb pathway (loss of p16), 2) inactivating mutation of p53 

gene or pathway, and 3) amplification of cyclin D. The first two mutations can be 

absent in HPV-induced HNSCC and function of these pathways are inhibited by HPV-

coded oncoproteins (Scheffner, M., et al. 1990, Hafkamp, H. C., et al. 2003). 

2.2.2. Gene therapy of squamous cell carcinoma of the head and neck 

HNSCC is an excellent target for Ad-mediated gene therapy. As previously discussed, 

Ad vectors induce immune reactions more efficiently when the vector is injected 

intravenously. HNSCC tumors are usually quite easily accessible for intratumoral 

injection to allow for local treatment. Clinical studies with Ad vectors for treatment of 

HNSCC have mainly centered on Ads expressing p53 cDNA (Ad5-p53). It has been 

shown that p53 is mutated and inactivated in 40-60 % of HNSCC patients. Also, active 

p53 has been shown to sensitize tumor tissue to chemo- and radiotherapy (Brennan, J. 

A., et al. 1995). Ad5-p53 has been tested in phase I-III clinical trials (Clayman, G. L., 

et al. 1998, Clayman, G. L., et al. 1999, Han, D. M., et al. 2003, Zhang, S. W., et al. 

2003, Zhang, S. W., et al. 2005, Pan, J. J., et al. 2009). Ad5-p53 has been well 

tolerated with most common side effects being fever and pain at the injection site. 

Clinical efficacy of this vector has been shown for various patient groups, recurrent 

tumors, resectable, non-resectable, higher grades (III and IV) and in combination with 

radiotherapy. The overall response rate for Ad5-p53 has been up to 93 %. Patients 

treated with Ad5-p53 also had higher rates of complete response. Two separate studies 

show that about two thirds of the patients with any response have complete response, 

while only one fourth of the patients with any response have complete response in 

groups receiving only radiation therapy. In follow-ups the patients who received Ad5-

p53 showed increased time being disease-free, although overall survival time was not 

always prolonged. Since then, the Chinese government has approved the use of Ad5-
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p53 (Gendicine) in combination with radiation therapy for treatment of solid tumors. 

(Rewieved in (Peng, Z. 2005)) 

2.3. Cardiovascular disease and gene therapy 

Cardiovascular disease (CVD) includes all diseases of the heart and the vasculature. 

Although, the occurrence of the most common CVD, the coronary heart disease, has 

decreased in the last 40 years, cases of other CVDs have steadily increased. Highest 

mortality from coronary heart disease in Finland was in 1967: 508 deaths for every 

100,000 people. Since then the mortality has decreased 64% and in the year 2005 the 

corresponding number was 109. In spite of this significant decrease over the past years 

Finland is still a country with one of the highest rates of incidence in the western 

world, along with the UK. In 2007 in the UK CVD was the number one cause of death 

with over 190 000 cases (313 cases per 100,000 people). In comparison, all cancers 

combined were responsible of just below 160,000 deaths. Additionally, the treatment 

costs for CVD were over 3.2 billion pounds (www.ktl.fi/attachments/suomi/julkaisut/ 

julkaisusarja_b/2008/ 2008b02_2.pdf accessed July 6, 2010, www.bhf.org.uk/ 

publications accessed June 8, 2010).  

2.3.1. Dilated cardiomyopathy 

Dilated cardiomyopathy (DCM) is generally recognized as a hereditary condition and 

can show autosomal dominant, autosomal recessive or X-linked inheritance pattern. 

Instead of being inherited DCM can also be acquired; for example extensive alcohol 

use can lead to DCM and mothers can develop DCM during pregnancy or shortly after 

delivery. In DCM the heart muscle becomes weak and chamber walls thinner, which 

results in impaired heart function. Usually the left ventricle is dilated and its contractile 

ability has become weak. Symptoms of DCM range from none to those described for 

heart failure, which include shortness of breath, tiredness, palpitations and swelling of 

ankles. Currently there is no curative treatment for DCM. Patients can suppress the 

symptoms with correct medication, but the condition remains throughout life.  

Over 30 DCM-related genes have been discovered to date, showing vast genetic 

heterogeneity in this disease. Mutations in these associated genes can cause the 

development of DCM, but the highest frequency for a single gene (lamin A/C) is only 

6%. Lamin A/C mutations also show autosomal dominant DCM, progressive disease, 

poor prognosis and many times prevalence of other muscular dystrophies, making it 

one of the most important genes in DCM (Taylor, M. R., et al. 2003). Other important 

genes associated with DCM include MYH7, AnkRD1, LDB3, MYBPC3, SCN5A, and 

TNNT2 (Villard, E., et al. 2005, Duboscq-Bidot, L., et al. 2009, Daehmlow, S., et al. 

2002, Hershberger, Ray E., et al. 2008). 

2.3.2. Gene therapy of the heart 

Gene therapy presents a novel treatment method for DCM by allowing the introduction 

of correcting or therapeutic genes into the heart. Although no clinical trials targeting 
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heart failure specifically caused by DCM have been completed to date, there are a 

number of gene therapy trials for heart failure (HF). Adenylylcyclase type VI (ACVI) is 

one promising therapeutic gene, the function of which could improve cardiac function 

after damage by heart disease. It has been shown that intracoronary injection of Ad- 

ACVI can improve left ventricular function in an animal model with dilating hearts 

(Rebolledo, B., et al. 2006). This work is important in the fact that Rebolledo et. al. 

were able to actually improve the heart functionality, as others have reported only 

reduction or arrest of heart failure progression (Hoshijima, M., et al. 2002, Lai, N. C., 

et al. 2004). Another interesting gene which has potential in improving the 

functionality of a failing heart is SERCA2a. One commonly recognized defect in 

failing hearts is abnormal function of the sarcoplastic reticulum (SR). Defect in SR 

leads to problems in intracellular Ca2+ handling. SERCA2a is a key regulator of Ca2+  

fluctuations in muscle contraction in the heart and many studies have shown decreased 

SERCA2a expression in late stage HF (de la Bastie, D., et al. 1990, Arai, M., et al. 

1993, Hasenfuss, G., et al. 1994, Schwinger, R. H., et al. 1995). Thus, introduction of 

active SERCA2a into heart muscle could reinstate appropriate contractile function of 

the heart. An adeno-associate virus (AAV) carrying SERCA2a cDNA is being 

currently tested in clinical trials for treatment of HF (Jaski, B. E., et al. 2009). In 

preclinical studies the AAV-SERCA2a has been shown to be well tolerated and has 

shown promise in improving the function of failing hearts by introducing functional 

SERCA2a levels. 

Clinical trials have mostly concentrated on coronary heart disease, where blood 

flow is impaired to parts of the myocardium causing ischemic areas. Many genes can 

be introduced to damaged myocardium to improve the functionality of a failing heart. 

This may be done either by introducing a working copy of the malfunctioning gene that 

causes the disease or by using a gene that otherwise improves functionality of the 

heart. The ischemic areas could be rescued by re-establishing blood flow. Therefore, 

one of the most studied applications in gene therapy of the heart is improvement of 

cardiac function by angiogenesis in damaged areas. Neovascularization has been 

induced by both hepatocyte growth factor (HGF) and vascular endothelial growth 

factors (VEGFs). 

Adenovirus bearing HGF (Ad-HGF) has been tested on human patients with 

coronary heart disease in phase I safety assessment studies (Yuan, B., et al. 2008). The 

virus was well tolerated after intracoronary administration and 78% of patients showed 

improved cardiac function after treatment. The response rate was also observed to be 

dose-dependent, with the group receiving the highest dose showing positive response. 

In a similar study with the same virus, patients were given Ad-HGF and stent into the 

coronary artery. Compared with the control group the treatment group had significantly 

higher HGF, VEGF and monocyte attractant protein-1 serum levels (Yang, Z. J., et al. 

2009). Both studies show good tolerance for Ad vectors when administered via 

intracoronary injection and beneficial properties of HGF for patients with coronary 

heart disease. Effects of Ad-VEGF have been evaluated in phase II clinical trials with 

encouraging results. The viral vector was well tolerated after administration during 



 Review of the Literature 33 

 

percutaneous coronary intervention. Compared with the control group, the only 

significant treatment-related side effects were fever, elevated serum C-reactive protein, 

and rise of anti-Ad antibody levels. One Ad-VEGF-treated patient showed significantly 

improved myocardial perfusion. Functional capacity and exercise time improved in all 

groups with no significant differences between groups (Hedman, M., et al. 2003). 

Recently Huusko et. al. (2009) compared the angiogenic properties of different 

VEGFs and evaluated their effects in an animal model (Huusko, J., et al. 2010). As in 

our work (discussed in 5.4.), after intracardiac injection all Ad groups showed 

moderate tissue damage and inflammation, with one group showing progressive 

toxicity, even though in contrast with our experiments all vectors were of Ad serotype 

5 with varying transgenes. This may have been caused by the transgene or as a 

combined effect as VEGF enlarged the capillaries and induced endothelial cell 

proliferation resulting in more inflammatory cells migrating to the site of the vector. 

There has been only limited amount of reports addressing the Ad-induced toxicity in 

heart tissue as most toxicity experiments have focused on tissues like liver, spleen, 

kidney and lungs. A number of biodistribution studies have been reported which 

include an analysis of the heart; these studies have mainly concentrated on the 

transduction efficiency and report the transgene expression levels or viral genomes 

detected in various tissues (Wright, M. J., et al. 2001, Ni, S., et al. 2005). It has been 

shown that the Ad5/35 hybrid virus is able to transduce efficiently the heart, lungs and 

ovaries of the tgCD46 mouse. Also, in this mouse strain the hybrid Ad is less toxic 

than Ad5 as measured by increase in IL-6, TNF-α and liver enzyme levels. 

Interestingly, for liver enzymes, the situation is opposite in wt mice (Ganesh, S., et al. 

2009). The liver infection by Ad5/35 observed in wt mice, is likely to be due to lack of 

receptors in mouse tissues, which results in virus accumulation in the liver. As it has 

been shown Ad5 is scavenged by liver cells by interaction with the Ad5 hexon 

(Waddington, S. N., et al. 2008). The presence of appropriate receptor in transgenic 

mouse tissues presents targets for Ad5/35 attachment and fewer viral particles are 

available for liver uptake. 

One important aspect concerning the use of Ad vectors is the transient expression of 

transgene of about 2-3 weeks due to the fact that Ad genome does not integrate into the 

host genome. This can be viewed both as an advantage and as a weakness of the vector. 

Transient expression is an advantage because there is no fear of onset of oncogenes by 

vector integration. On the other hand, it is a weakness because it may take a significant 

amount of time before physiological effects are seen after initiation of transgene 

expression and in certain applications continuous expression is sought but is usually 

not gained with Ad vectors. With non-replicating Ad vectors carrying therapeutic 

genes, such as Serca2a or VEGF, the transient expression may present limitations for 

effective gene therapy of the heart. There might be several strategies that could be 

employed to increase Ad-mediated transgene expression time: 1) The Ad vector could 

be engineered to integrate into the host genome. This is probably not feasible due to 

increased risk of setting off oncogenes. 2) Making the Ad less immunogenic or 
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masking infected cells from the host immune system would extend the vector’s 

expression time. 3) Engineering the Ad genome more stable as an episomal element in 

the host cell would also prolong the vector-mediated transgene expression time. 

Transient expression is usually not an issue with CRAds, because the initial viral load 

is multiplied within the target tissue. 
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3. Aims of the Study 

The overall aim of this study was to analyze the transduction efficiency of capsid-

modified adenovirus vector in comparison with non-modified vector both in cancer and 

cardiovascular models. The specific aims were: 

1. To evaluate the differences in transduction efficiencies between non-modified 

Ad5 and capsid-modified Ad5/35 gene therapy vectors in HNSCC cells (I). 

2. To evaluate the HNSCC cell killing properties of CRAds Ad5-TERT and 

Ad5/35-TERT in both in vitro and in vivo models (II). 

3. To study the expression patterns of various Ad receptors in normal and diseased 

human heart tissue (III). 

4. To evaluate the differences between Ad5 and Ad5/35 vectors in transgene 

expression efficiency and vector toxicity in heart after intramyocardial 

administration (IV). 
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4. Materials and Methods 

More detailed descriptions of the methodologies used in this study can be found in the 

original publications (I-IV). 

The human heart tissue samples were a generous gift from Dr. Mikko Mäyränpää 

and Dr. Petri Kovanen, Wihuri Institute, Helsinki. Left ventricle samples of failing 

hearts were harvested at the time of transplantation surgery from seven patients with 

end-stage heart failure due to idiopathic dilated cardiomyopathy (DCM). Normal heart 

samples were collected from donor heart left ventricles from patients whose hearts 

could not be used for transplantation. All heart tissue samples were frozen at the time 

of harvesting. More detailed description can be found in publication III. 

Adenovirus construction was done using a two plasmid system. Transgene is 

inserted into a shuttle plasmid which is co-transformed together with backbone plasmid 

into a high-recombinase strain of E. coli. Homologous sequences in the plasmids allow 

homologous recombination to take place. Recombined plasmid, containing an intact 

Ad genome (except the E1A region) is isolated and propagated in low-recombinase E. 

coli strain. The bacterial control elements are removed and linearized Ad genome is 

transformed into HEK293 cells, which provide the missing E1A region transcripts and 

allow virus production. Viral vectors are produced and collected from HEK293 

cultures. Finally Ad vectors are purified by CsCl gradient centrifugation and dialysis. 

Figure 5 shows the schematic presentation of key modification to the Ad genome of 

each vector used in this study. 

Figure 5. Schematic presentation of the 

genomes of Ad vectors used in this 

study. 1) Wild type Ad5, 2) Ad5-lacZ, 

E1A region has been replaced with E. 

coli β-galactosidase gene, 3) Ad5/35-

lacZ, E1A region has been replaced 

with E. coli β-galactosidase gene and 

the fiber is a hybrid with that of 

serotype 35, 4) CRAd5, wt promoter of 

E1A has been replaced with hTERTp, 

5) CRAd5, wt promoter of E1A has 

been replaced with hTERTp and the 

fiber is a hybrid with that of serotype 

35. 
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Viruses and viral vectors 

1Transgene cloned to Ad gene E1A area 

Methodology 

Method Used in 

Cell culture I, II 

DNA cloning I, IV 

Flow cytometry I, II 

Immunofluorescence microscopy III 

Immunohistochemistry I, II, III, IV 

In vivo animal models I, II, IV 

Live cell microscopy I, II 

Marker gene transfer assays I, IV 

MTT assay II 

Q-RT-PCR III 

Statistical analysis I, II, III, IV 

Trypan Blue exclusion assay II 

Western blot III 

Reagents and compounds 

Reagent Description Used in 

DAB Substrate for HRP, (IHC staining) I, II, III, IV 

DAPI Nuclei staining III 

Eosin Cytosol staining IV 

Hematoxylin Nuclei staining I, II, III, IV 

Hoechst Nuclei staining III 

MTT reagent Cell dye reacting with live cells II 

Trypan Blue Cell dye specific for dead cells II 

X-gal Substrate for β-galactosidase I, IV 

Animals 

Strain Description Used in 

scid/scid A homozygous mouse strain with severe combined immune 
deficiency, lacks T and B lymphocytes and immunoglobulins 

I, II 

nod/scid A heterozygous mouse strain, non-obese diabetic with severe 
combined immune deficiency 

II 

huCD46tg* A homozygous transgenic mouse strain which expresses human CD46 
receptor 

IV 

*huCD46tg mouse strain was a generous gift from Dr. Ann-Beth Jonsson, Uppsala University, 
Sweden 

Vector Capsid Promoter Transgene Replication Used in 

Ad5-lacZ wt RSV β-galactosidase1 non-replicative I, II 

Ad5/35-lacZ Ad5 w/ serotype 
35 fiber 

RSV β-galactosidase1 non-replicative I 

Ad5-TERT wt hTERTp none conditional II 

Ad5/35-TERT Ad5 w/ serotype 
35 fiber 

hTERTp none conditional II 

Ad5 wt wt wt none replicative II 
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Cell lines 

1Purchased from American Type Culture Collection (ATCC), Manassas, VA, USA 
2Established at the time of operation 

Antibodies 

1Conditioned medium collected from ATCC HB-8448 hybridoma cell line 

Cell line Description Source Used in 

HEK293 Transformed human embryonic kidney cells ATCC1 II, IV 

UT-SCC-5 Human squamous cell carcinoma cells, 

tongue 

Turku University 

Central Hospital2 

I 

UT-SCC-7 Human squamous cell carcinoma cells, 

temporal skin 

Turku University 

Central Hospital2 

II 

UT-SCC-8 Human squamous cell carcinoma cells, 

epiglottis and hypopharynx 

Turku University 

Central Hospital2 

I 

UT-SCC-9 Human squamous cell carcinoma cells, glottis 

larynx 

Turku University 

Central Hospital2 

I 

UT-SCC-10 Human squamous cell carcinoma cells, 

tongue 

Turku University 

Central Hospital2 

I, II 

UT-SCC-12A Human squamous cell carcinoma cells, skin 

of nose 

Turku University 

Central Hospital2 

I 

UT-SCC-13 Human squamous cell carcinoma cells, glottis 

larynx 

Turku University 

Central Hospital2 

I 

UT-SCC-16B Human squamous cell carcinoma cells, neck, 

metastasis 

Turku University 

Central Hospital2 

I 

UT-SCC-18 Human squamous cell carcinoma cells, 

gingiva 

Turku University 

Central Hospital2 

I 

UT-SCC-29 Human squamous cell carcinoma cells, glottis 

larynx 

Turku University 

Central Hospital2 

I 

Epitope Clone Manufacturer Application Used in 

CAR E1-1 Abcam, UK WB, IHC III 

CAR RmcB Upstate, USA FC I, II 

CD46  Sigma-Aldrich, USA WB III 

CD46 MEM-258 Biolegend, USA FC, IHC I, II 

CD80 2D10 Abcam, UK WB, FC, IHC III 

CD86 2F7 Abcam, UK WB, FC, IHC III 

αv-integrin L230 N/A1 WB, FC, IHC I, II, III 

β-actin AC-74 Sigma-Aldrich, USA WB III 

Hsc70 SPA-815 StressGen Biotechnologies, Canada WB III 
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Oligonucleotides 

Name Gene Direction Sequence (5’-3’) Used in 

Ad_CMV CMV promoter forward CGTTACATAACTTACGGTAAATGGC IV 

Ad_tg_seul human Serca2a reverse CGGATATCTTATCTAGAAGCTTAGGC IV 

MS-173 CD46 forward TGACAATTCAGTGTGGAGTCG III 

MS-174 CD46 reverse TGGAAATCGACATTTGACCA III 

MS-175 CAR forward ATGAAAAGGAAGTTCATCACGATA III 

MS-176 CAR reverse AATGATTACTGCCGATGTAGCTT III 

MS-177 αv-integrin forward TTATACAATTTTACTGGCGAGCAG III 

MS-178 αv-integrin reverse ACACATCTGCATAATCATCTCCA III 

MS-181 CD80 forward TGGGCCATTACCTTAATCTCA III 

MS-182 CD80 reverse CATCTTGGGGCAAAGCAG III 

MS-183 CD86 forward CAAGACGCGGCTTTTATCTT III 

MS-184 CD86 reverse ATCCAAGGAATGTGGTCTGG III 

MS-185 CD80 forward AAGCAAGGGGCTGAAAAGAT III 

MS-186 CD80 reverse TGGGGTAATCTTGTCCATCTG III 

MS-187 CD80 forward GCTGTTCATGTTACTCATGACTCC III 

MS-188 CD80 reverse GTTGCGTCCACTTCTGGTCT III 

UPL8 CD80 forward CTGCCTTC III 

UPL10 CD80 forward CCACCTCC III 

UPL27 CD80 forward GCTGCCTG III 

UPL30 CD86 forward CCTCAGCC III 

UPL50 CD46 forward GCTCCAGA III 

UPL59 αv-integrin forward TGCCACTG III 

UPL86 CAR forward CCACCTCC III 

UPL = Universal probe library 
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5. Results and Discussion 

5.1. Expression of Adenovirus Receptors 

Adenovirus infection begins with the recognition of a cellular receptor. Different Ad 

serotypes use various receptors for primary attachment, many of which have been 

identified. Two of the most studied Ad receptors are CAR (group C) and CD46 (group 

B) and these receptors will also be the main focus here. Efficient gene delivery to the 

target tissue has been shown to be of great importance in order to achieve the desired 

level of therapeutic effect with gene therapy applications. When using Ad vectors that 

harbor native or chimeric fiber proteins it is possible to identify the level of Ad 

receptors expressed on the target tissue. Several primary Ad receptors have been 

identified for different serotypes, and antibodies against these receptors are usually 

readily available for use in tissue characterization experiments. It has been previously 

shown that potential Ad target tissues have reduced CAR expression levels leading to 

poor transduction efficiency in these tissues (Hemmi, S., et al. 1998, Li, D., et al. 

1999). Determining Ad primary receptor levels on target tissues would give an 

estimate on the transduction efficiency of the vector and guide in selecting the best Ad 

construct to be used on a specific target. 

5.1.1. Head and Neck Squamous Cell Cancer (I) 

Head and neck cancer cell lines used in this study have been established in Turku 

University Hospital during surgery of primary and metastatic tumors. These cell lines 

are named UT-SCC with running numbering distinguishing each histologically 

different cell line. These cells have not been previously characterized for their Ad 

receptor expression profile. In this work we analyzed various Ad primary receptor 

levels on several HNSCC cell lines (n = 9) with different clinical and histopathological 

characteristics (I: Table 1). Similarly, as reported earlier for different cell types, also 

our analysis showed greatly varying CAR levels between cell lines (Table 3). Two out 

of nine cell lines presented extremely low CAR expression and would most likely be 

refractory to Ad5 infection. Also, the highest detected CAR expression was only 61.5 

%, but as seen from our transduction studies, this level already allows quite efficient 

Ad infection. In addition to CAR we also analyzed CD46 and αv-integrin levels on 

these cells. Contrary to CAR, we found that both CD46 and αv-integrin levels are 

expressed more uniformly and at a higher level. CD46 was expressed between 84.5–

99.8 %. This consistent and high-level receptor expression should make these cells 

readily susceptible to Ad5/35 hybrid virus infection. αv-integrin was expressed mostly 

at high levels with two exceptions showing only 39.4 % and 50.5 %. These levels 

should allow efficient internalization of all attached Ads. These results indicate vast 

heterogeneity in receptor profiles in HNSCC cancer. Similar results have been 

previously reported with other cancer types, such as osteosarcoma, ovarian cancer, and 

bladder cancer (Matsumoto, K., et al. 2005, Witlox, M. A., et al. 2002, Zeimet, A. G., 

et al. 2002). Our receptor analysis involved only a fraction of the different UT-SCC 

cell lines available. The observed difference in CAR expression in our sample group 
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suggests extremely high variance of CAR between patients, which makes unmodified 

Ad5 capsid-based vectors a very poor choice when designing a gene therapy vector for 

HNSCC. On the contrary, Ad5/35 hybrid vectors seem more suitable for HNSCC 

targeting. As stated above, the high level and low variance in CD46 expression pattern 

should allow for efficient transduction for vectors harboring group B fibers that 

recognize this receptor.  

Table 3. Adenoviral receptor expression levels on head and neck cancer cell lines. HEK 293 

cell line was included as control. Values indicate percentage of positive cells as measured using 

FACS. 

 UT-SCC-5 UT-SCC-7 UT-SCC-8 UT-SCC-9 UT-SCC-10 UT-SCC-12A 

CAR 47,4 55,2 37,9 41,1 3,2 28,8 

CD46 84,5 90,0 96,3 99,7 94,0 99,8 

αv-integrin 39,4 91,3 89,5 96,3 76,6 94,7 

 UT-SCC-13 UT-SCC-16B UT-SCC-18 UT-SCC-29 HEK-293  

CAR 61,5 28,6 18,2 1,6 99,8  

CD46 97,7 99,4 99,4 96,3 99,5  

αv-integrin 50,5 98,0 98,3 91,3 99,7  

5.1.2. Human Cardiac Tissue (III) 

Human cardiac tissue has been scarcely studied for expression of Ad receptors other 

than CAR. Following the same line of thought as with HNSCC, we analyzed various 

Ad receptor expression levels on 14 human cardiac samples (7 normal, 7 DCM) (III: 

table 1). Contrary to HNSCC studies, we found that CAR was significantly up-

regulated in the diseased tissue when compared to normal samples (Figure 6). CD46 

was expressed slightly less in DCM (non-significant) and αv-integrin levels were lower 

in the diseased than in the normal samples. We also analyzed two other Ad receptors, 

CD80 and CD86. CD86 was up-regulated in DCM according to receptor staining 

studies on tissue sections, but down-regulated according to gene expression studies by 

detection of mRNA, although both results were statistically non-significant, which 

suggests that CD86 expression is not affected by onset of DCM. The lack of difference 

between healthy and diseased tissue makes CD86 less than an optimal receptor for 

targeted gene therapy. Observed discrepancy between assay results also suggests that 

CD86 is quite stable at the cell surface and is not continuously transcribed, but further 

studies are needed to corroborate this hypothesis. CD80 levels seemed to be up-

regulated in the DCM, but unfortunately overall expression of this receptor was barely 

detectable and the difference was non-significant. Extremely low expression levels do 

not make CD80 an interesting candidate for targeting Ads to the heart, even if the 

receptor is differentially expressed in normal heart tissue and in DCM. As discussed 

earlier, efficient transduction of target cells is paramount for achieving therapeutic 

efficacy when using Ad vectors in gene therapy applications. Very low receptor 

expression levels would most likely not allow for efficient transduction as shown in 

study I for Ad5 with cell lines UT-SCC-10 and -29. 



42 Results and Discussion 

Figure 6. Relative receptor expression quantified from western blot analysis of normal and 

DCM human heart samples (n = 7, statistical significance *p < 0.05). Value for healthy tissue 

set as 0.  

It is interesting that CAR expression was found up-regulated in DCM samples but 

not in non-DCM samples and further investigations might shed more light on CAR’s 

specific function. CAR has been identified as part of the tight junction and is also 

involved in formation of the junction by recruiting other macromolecules to the site of 

the junction formation (Cohen, C. J., et al. 2001, Coyne, C. B., et al. 2004). More 

specific role of CAR as part of the tight junction or other functions are still unknown. It 

has been proposed that CAR would regulate tissue permeability and homeostasis 

(Raschperger, E., et al. 2006). If CAR has a signaling property which guides for 

correct organization of specific cells in tissues, increasing the expression of CAR 

would be reasonable in DCM. In DCM, heart tissue is abnormal, which could trigger 

the need for cellular reorganization as heart tissue tries to regain the normal state. Cell-

to-cell recognition properties of CAR has been reported previously in the context of 

embryogenesis, where CAR is strongly expressed (Ito, M., et al. 2000). It has also been 

shown in a rat model that CAR expression decreases up to 190-fold after birth 

(Fechner, H., et al. 2003). 

Our immunofluorescence staining of CAR and CD46 in human heart tissue revealed 

differences between CAR and CD46 expression localization in the cardiac tissue. 

CD46 was found to be more ubiquitously expressed in the heart and CAR more 

localized in blood vessels. Interestingly, both receptors are localized seven times more 

frequently to vessel wall endothelium in DCM hearts than in non-DCM hearts. In 

normal hearts CAR was localized to subendothelial layer over 16 times and CD46 over 

24 times more frequently than in DCM tissue (III: Figure 7). CAR has previously been 

reported to be expressed also in sarcolemma and intercalated disk in DCM heart tissue 

and with very low expression on normal heart tissue. This differential CAR expression 

has also direct impact on heart susceptibility for Ad infection; normally a healthy heart 

is quite refractory to Ad infection, but DCM hearts have been shown to be 15 times 

more vulnerable for Ad5 infection (Noutsias, M., et al. 2001). 

* 
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The difference between both CAR and CD46 expression pattern in non-DCM and 

DCM presents interesting implications for gene therapy. The heart can be targeted with 

engineered viruses carrying a therapeutic gene. Our results show that both CAR and 

CD46 expression shift from subendothelial layer to endothelial cells in DCM, but only 

CAR expression is up-regulated. These results indicate that it would be more feasible 

to infect DCM hearts via intravascular administration. The choice of the therapeutic 

gene can be evaluated taking into account the expression sites of these receptors, e.g. 

tight junctions (CAR) and vein endothelial cells (both CAR and CD46). For example, 

using either Ad5-VEGF or Ad5/35-VEGF vectors one could target the VEGF 

expression directly to the vein endothelium, where the angiogenesis takes place. This 

should result in vascularization of surrounding areas of the heart and blood flow would 

be reinstated into oxygen depleted areas. Unfortunately, there is a number of other 

issues yet to be resolved before this kind of straightforward model is feasible, starting 

with choosing the correct therapeutic gene. 

5.2. Adenovirus mediated transgene expression in HNSCC (I) 

Ad receptor analysis on HNSCC cells suggested that Ad5/35 hybrid vector would be 

more efficient in transducing these cells than non-targeted Ad5. Four cell lines were 

chosen for the transduction studies. Cells were grown in vitro and infected with either 

Ad5-lacZ or Ad5/35-lacZ reporter viruses. Transgene expression was observed in cell 

cultures and was found to correlate with Ad receptor levels, higher receptor level cells 

were transduced more efficiently than low receptor level cells (quantified in Figure 7 

and visualized in I: Figure 2). 

Figure 7. In vitro transduction efficiency of Ad5-lacZ and Ad5/35-lacZ in selected UT-SCC 

cell lines. 

As expected, cell line UT-SCC-13, with the highest detected CAR expression 

(61.5%), was fairly efficiently infected with Ad5-lacZ virus. The observed correlation 

between receptor levels and Ad transfection efficiency in UT-SCC in vitro studies led 

to the hypothesis of a receptor threshold level, since UT-SCC-13 was transduced quite 

efficiently, about half of the cells were infected, and yet UT-SCC-18 with 18.2% CAR 

expression was transduced poorly, showing only a few individual infected cells. 

Overall Ad5-lacZ was very poor in infecting the UT-SCC-10, -18 and -29 cell lines, 

with the highest infection percentage less than 30 with the highest virus concentration. 

On the contrary, Ad5/35-lacZ was able to infect 60-100% of the cells with the virus 

concentration dropped to only one third. These findings were further investigated in 
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vivo. UT-SCC tumors grown in the flanks of scid mice were injected with Ad5-lacZ or 

Ad5/35-lacZ. Sections of tumors were immunostained and evaluated for transgene 

expression. The results corroborated those obtained from in vitro experiments. Ad5/35-

lacz induced β-galactosidase expression was observed throughout the sections, while 

Ad5-lacZ transduced only a few separate areas within the tumor section (I: Figure 6). 

The Ad5 versus Ad5/35 setting was taken through experiments from in vitro to in 

vivo and all studies show the superior transduction ability of the hybrid vector when 

compared to Ad5. Further experiments, for example with larger study groups or with 

more cell lines, could further provide more insight to questions like: what is the 

receptor level allowing for efficient infection and what is the exact minimum amount 

of virus needed for efficient transgene expression. It should be possible to change the 

transgene of vectors Ad5-lacZ and Ad5/35-lacZ to a therapeutic gene with no 

significant change to the expression patterns observed here for the reporter vectors. 

Receptor analysis and transduction studies suggest that hybrid Ad5/35 capsid 

construction is better suited for targeting HNSCC than Ad5. From this perspective, the 

performance of vector Ad5-p53 (discussed in part 2.2.2.), which has met success in 

clinical trials and has even entered pharmaceutical markets in China (Zhang, S. W., et 

al. 2005), would benefit from fiber swapping technology. By changing fibers to those 

of Ad35 and creating Ad5/35-p53, the safety profile of the vector should improve, 

since smaller doses of the hybrid vector could be used to achieve the same level of 

therapeutic effect. On the other hand, capsid structure is also the main determinant for 

how immunogenic the vector is. Thus, the immunogenic properties will change when 

the fiber is swapped and new safety studies would be mandatory. 

5.3. Cytotoxic effects (II) 

To evaluate the cytotoxic properties of CRAds Ad5-TERT and Ad5/35-TERT, we 

selected two UT-SCC cell lines, which represent high and low CAR expression, but 

similar levels of CD46 expression. UT-SCC-7 and UT-SCC-10 cell lines were used 

both in vitro and in vivo experiments. We hypothesized that the hybrid virus would be 

able to lyse both cell lines more efficiently than Ad5-TERT and that Ad5-TERT-

induced cytopathic effect (CPE) would be greater on UT-SCC-7 cell line than on UT-

SCC-10. Our hypothesis was proven true both in vitro cell culture (Figure 8) and in 

vivo xenograft model (Figure 9). As shown previously for transduction studies, primary 

receptor expression levels on target cells correlated with CRAd mediated cell killing 

efficacy. Also the viruses were able to replicate in HNSCC cells even with their 

replication restricted due to tissue-specific promoter. The human telomerase promoter 

system can be used to target Ad replication to the HNSCC tumors. 
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Figure 8. Cytotoxic effects of Ad5-TERT (solid triangle) and Ad5/35-TERT (solid box) viruses 

on UT-SCC-7 (A) and UT-SCC-10 (B) cell lines. Wild type Ad5 (minus sign) was included to 

assess maximal cell death at given time points. PBS control (x) was included to represent the 

maximal non-hindered cell growth. Statistical significance**p < 0.01, ***p < 0.005 (II: Figure 

4 C and F). 

Figure 9. Tumor growth in an in vivo mouse model. Ad5/35-TERT, Ad5-TERT or PBS mock 

infected tumor cells were injected into mice subcutaneously. 

We analyzed the correlation between cytopathic effect (CPE) formation and primary 

receptor level expression. Four UT-SCC cell lines representing varying levels of CAR 

expression were analyzed in a simple MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide) cell survival assay using both Ad5-TERT and Ad5/35-TERT 

viruses. Ad5/35-TERT is clearly more efficient in reducing cell growth on low-CAR 

cells. On the contrary, with mid-CAR cell lines, UT-SCC-7 and UT-SCC-13, both 

viruses are almost equally effective (Table 4). Since CD46 is expressed at a high level 

by all four cell lines, survival after Ad5/35-TERT treatment can be used as the 

“maximal viral effect” with these hTERTp controlled CRADs for each cell line. 

Looking at the survival differences between viruses in cell lines UT-SCC-7 and UT-

SCC-13 we can make the following cautious statement: the threshold of primary 

receptor expression needed for efficient transduction is higher than 60%. More UT-

SCC cell lines should be analyzed and ideally a high-CAR (over 90% expression) cell 
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line would be found and subjected to the same experiments. The results would allow 

for more specific statements of receptor threshold needed for efficient adenoviral 

infection. It must also be noted that different UT-SCC cell lines have vastly different 

growth rates even without any treatment. The cellular growth rate also influences the 

survival after viral treatments. A higher growth rate allows the viruses to work faster 

and slow-growing cells show a more modest effect at the same time point, as long as 

the cell growth does not counteract the cell killing effect of the virus. 

Table 4. Percentage of cells surviving after virus treatment compared with PBS control in UT-

SCC cell lines expressing different levels of CAR. Growth rate: +++ robust, ++ average, + slow 

and +/- very slow. 

 UT-SCC-10 UT-SCC-18 UT-SCC-7 UT-SCC-13 

Survival w/Ad5-TERT 85 % 76 % 63 % 83 % 

Survival w/ Ad5/35-TERT 47 % 45 % 48 % 70 % 

Growth rate +++ + ++ +/- 

CAR expression 3 % 18 % 55 % 62 % 

CD46 expression 94 % 99 % 90 % 98 % 

 

5.4. Adenoviral transduction and toxicity in the heart (IV) 

As discussed in section 5.1.2., we analyzed Ad receptors in human cardiac tissues and 

observed CAR to be up-regulated in DCM. Next, we wanted to study the effects of 

Ad5-lacZ and hybrid Ad5/35-lacZ reporter viruses on a mouse model after intracardiac 

injection. A transgenic mouse strain was used, which expresses human CD46 gene in a 

similar pattern as observed for humans. Details on intracardiac injection can be found 

in study IV. 

As expected after receptor studies, we observed significantly more profound 

transgene expression with Ad5-lacZ (Figure 10). The vector with native capsid was 

able to induce transgene expression in over 3 times larger area than Ad5/35-lacZ 

hybrid virus (p = 0.01). Surprisingly though, we also observed more severe tissue 

damage due to immune reactions with Ad5-lacZ when compared with the hybrid virus 

(Figure 10).  
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Figure 10. Ad5-lacZ transduces significantly more effectively heart tissue than Ad5/35-lacZ 

(A) p < 0.01, but also induces more severe immune reactions (B) p = ns. 

This Ad5-lacZ-provoked toxicity can undermine the benefits gained for efficient 

gene expression. Most likely this level of immunoreactions would lead to severe 

complications and impaired heart function. However, it must be mentioned that our 

results for the difference in cytotoxicity are statistically non-significant and the groups 

were very small (n = 4). To corroborate the suggested difference in cytotoxicity 

between Ad5 and Ad5/35, a larger study must be carried out. In addition to direct 

analysis of heart sections, other inflammatory markers should also be analyzed, such as 

IL-6, IL-12 and IFN- . This more thorough study would answer the question of 

cytotoxicity decisively, either confirming our suggested results or indicating no 

difference between the two viruses. Whichever the case, these results shown here 

implicate severe toxicity of Ad5 when administered intramyocardially. Combined with 

already compromised cardiac function in DCM, the Ad5 treatment may even be more 

harmful than helpful with some patients. If Ad5 vectors are to be used for treatment of 

heart disease, the vector must be made far less immunoreactive than the native serotype 

5 adenovirus. 

Most studies involving adenoviral activity in the heart compose of biodistribution 

studies after intravenous (i.v.) administration. It has previously been shown that both 

Ad5-lacZ and Ad5/35-lacZ genomes are present at relatively high concentrations in the 

hearts of hCD46Ge mice and baboons. For Ad5/35-lacZ, the heart is one of the most 

effectively transduced tissues in both models (Ni, S., et al. 2005, Ganesh, S., et al. 

2009). Interestingly, with the primate model no transgene activity was reported in the 

heart tissue for any vector despite the presence of viral genomes. Analysis of genome 

copies in tissues does not discriminate between active or inactive viral particles or 

between intracellular genomes and viruses in extracellular space. Unfortunately, only 

this method of analysis was employed by Ganesh et. al. (2009). Here we show the 

expression and activity of viral transgene in hCD46Ge mice. The results indicate that 

both vectors are transcribed in this murine model. Ganesh et. al. (2009) also analyzed 

vector-mediated toxicity by measuring serum IL-6 and liver enzyme levels and showed 
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decreased overall toxicity with Ad5/35-lacZ vector after i.v. administration. Our results 

together with previous studies suggest that changing Ad5 fiber to those of Ad35 

increases the safety profile of gene therapy vectors. Also, vector administration by i.v. 

instead of direct intramyocardial injection may be better suited for gene therapy 

targeting the heart. 
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6. Summary and Conclusions 

The goals of this study were to characterize target-tissue Ad receptor levels and after 

selection of a proper vector to analyze the difference in efficacy of a targeted vector in 

both cancer and cardiovascular models. 

It has been shown that Ad receptors may be down-regulated in various diseases 

leading to impaired therapeutic effects with Ad vectors. We have shown with different 

HNSCC cell lines, that CAR levels vary significantly even within a cancer type, while 

another Ad receptor, CD46, remains at higher and more constant levels. It may also be 

that there is an as-yet-unknown threshold level of Ad receptors which allows for 

effective infection of target tissue. On the other hand, it is clear that tissues not 

expressing the correct Ad receptor are refractory to Ad transfection. These tissues can 

be targeted and effectively transduced by a hybrid Ad vector with changed tropism.  

In cancer treatment the basic goal is to rid the patient from the cancer cells without 

killing normal cells. One way of doing this with viral vectors is to utilize the natural 

ability of viruses to kill their host cells. We used an hTERT promoter to control and 

target the replication of the Ad vector. By combining the transductional targeting of a 

hybrid virus and the transcriptional control implemented by the insertion hTERT, we 

constructed a CRAd and characterized its tumor-killing properties both in vitro and in 

vivo model systems. In comparison with non-targeted Ad5-TERT vector and wt Ad5 

virus the Ad5/35-TERT hybrid virus was more efficient in killing HNSCC cells. The 

efficacy is largely dependent on expression of primary Ad receptors on target cells. 

In case of cardiovascular diseases the approach is quite different. The goal 

obviously is not to kill target cells, but to transfect them and get them to start 

producing some beneficial peptide or protein which helps the functionality of heart 

tissue. The efficient transfection of target tissue is, again, of paramount importance. 

We investigated expression of various Ad receptors in human heart tissue. Contrary to 

previous studies with HNSCC, CAR was found to be expressed at a high level and up-

regulated in DCM. A subsequent hypothesis based on these findings was that Ad5 is 

more efficient in transducing cardiac tissue than hybrid Ad5/35. This hypothesis was 

tested in a transgenic mouse model with ultrasound-guided intracardiac injection using 

reporter viruses of both capsid configurations. As expected, we observed more 

extensive transgene expression with Ad5 than with Ad5/35. Interestingly, we also 

observed more severe vector-induced inflammation and tissue damage in mice treated 

with the Ad5 virus. This suggests that native Ad5 is poorly tolerated when injected 

directly into the cardiac wall. 

To date numerous clinical trials have been conducted using Ad vectors for many 

diseases. Ads have been shown to be well tolerated, but dosage and the delivery 

method must be carefully chosen. Most problems involve transduction efficiency as 

transgene expression or viral function tends to remain lower in clinical settings than in 
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the laboratory. Also the advantage offered by gene therapy has varied greatly between 

trials and individuals, and often the benefit gained is modest although definitive. 

More work and research on viral vectors is needed before the breakthrough in gene 

therapy will be achieved. Research on diseases and growing understanding of disease 

mechanisms will help in the design and construction of the best vector configuration 

for each particular application. Based on our studies and work done by others, it is 

clear that the vector selection must be based on the intended application. Different 

possible combinations for viral vectors are innumerous; selection of the virus, capsid 

modifications, promoters, transgene / suicide gene, replicating / non-replicating 

characteristics, etc. Each combination will have its own pros and cons, which will be 

more pronounced in some ailments than others. The door is open and the tools are 

there, now it is time to choose the right tool for the right job. 
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