
Structured software development with the IPIDDDT method

A lean method for small agile organizations

UNIVERSITY OF TURKU
Department of Information Technology

Master of Science in Technology Thesis
September 2010

Jori Ahvonen

Inspectors:
Ville Leppänen
Tuomas Mäkilä

UNIVERSITY OF TURKU
Department of Information Technology

AHVONEN, JORI: Structured software development with the IPIDDDT
method - A lean method for small agile organizations

Master's Thesis, 76 pages
Software Development
September 2010

A software development process is a predetermined sequence of steps to
create a piece of software. A software development process is used, so
that an implementing organization could gain significant benefits. The
benefits for software development companies, that can be attributed to
software process improvement efforts, are improved predictability in the
development effort and improved quality software products. The
implementation, maintenance, and management of a software process as
well as the software process improvement efforts are expensive.
Especially the implementation phase is expensive with a best case
scenario of a slow return on investment. Software processes are rare in
very small software development companies because of the cost of
implementation and an improbable return on investment.

This study presents a new method to enable benefits that are usually
related to software process improvement to small companies with a low
cost. The study presents reasons for the development of the method, a
description of the method, and an implementation process for the
method, as well as a theoretical case study of a method implementation.

The study's focus is on describing the method. The theoretical use case is
used to illustrate the theory of the method and the implementation
process of the method. The study ends with a few conclusions on the
method and on the method's implementation process. The main
conclusion is that the method requires further study as well as
implementation experiments to asses the value of the method.

Keywords: Software Engineering, Software Tools

TURUN YLIOPISTO
Informaatioteknologian laitos

AHVONEN, JORI: Rakennetta ohjelmistokehitykseen IPIDDDT
menetelmällä – kevyt menetelmä pienille organisaatioille

Diplomityö, 76s.
Ohjelmistotekniikka
Syyskuu 2010

Ohjelmistokehitysprosessi on ohjelmistojen tuottamiseen käytettävä
suunnitelma, jolla pyritään saavuttamaan merkittäviä etuja
ohjelmistokehitykseen. Tavoiteltavia etuja ovat mm.
ohjelmistokehityksen ennakoitavuus ja tuotettavien ohjelmistojen laadun
paraneminen. Ohjelmistokehitysprosessin käyttöönottaminen,
ylläpitäminen ja hallitseminen vaatii merkittäviä resursseja. Etenkin
ohjelmistoprosessin käyttöönotto vaatii useimmiten omien käytäntöjen
muuttamisen lisäksi merkittäviä panostuksia mm.
ohjelmistokehitystyökaluihin. Ohjelmistokehitysprosessin ja jatkuvan
prosessinparannuksen käyttäminen pienissä organisaatioissa on, edellä
mainittujen kustannusten takia, harvinaista.

Tämän tutkielman tavoitteena on esitellä uusi menetelmä, jolla
ohjelmistokehitysprosesseihin liitettäviä hyötyjä pyritään saavuttamaan,
ilman ohjelmistoprosessien hallitsemiseen liittyviä kustannuksia. Työssä
esitellään syyt menetelmän kehittämiselle, menetelmän kuvaus ja
menetelmän käyttöönottoprosessi, sekä teoreettinen tapaustutkimus
käyttöönotolle.

Työ keskittyy menetelmän kuvaamiseen ja käyttää teoreettista
käyttöönottoa menetelmän ja käyttöönottoprosessin
käytännönläheisempään kuvaamiseen. Tutkielma arvioi työn lopuksi
menetelmän toimivuutta, mutta menetelmän todellisia hyötyjä ei voida
arvioida ilman jatkotutkimuksia.

Asiasanat: ohjelmistokehitys, ohjelmistotuotanto, ohjelmistot

Table of Contents

1 Introduction..5

2 Background on software development processes and tools...7

2.1 Software development..7

2.2 Agile software development processes...8

2.2.1 The agile development process...8

2.2.2 Benefits of using a software development process.......................................10

2.2.3 Implementation of a software process methodology.....................................11

2.3 Application life-cycle management..12

2.4 Software development tools..12

2.4.1 The aim of software development tools..12

2.4.2 Categorization of software development tools..13

2.4.3 Selecting software development tools...13

2.5 Definition of small scale software development...14

3 Agile software process methodologies' relationship to software development tools. . .15

3.1 Agile software development's view on tools...15

3.1.1 Agile software development and tools ...15

3.1.2 Agile tools in practice..17

3.2 Lean software development and selecting software development tools...............20

3.2.1 Lean software development concepts...20

3.2.2 Waste in software development...21

3.2.3 Tool value listing...22

4 Software development tool categorization...23

4.1 Project management..24

4.1.1 Process management...25

4.1.2 Resource management and requirements prioritization................................25

4.1.3 Process visibility...26

4.2 Communication...27

4.2.1 Persistent documentation..27

4.2.2 On demand documentation...28

4.2.3 Direct communication...29

 1

4.3 Development activities..29

4.3.1 Writing software source code..30

4.3.2 Deployment...30

4.3.3 Quality assurance..31

4.4 Tool functionality and categorization table...32

5 A software development tool selection process..33

6 Software process management and improvement..35

6.1 Process authoring, publishing, enactment, enforcement and improvement..........35

6.2 Problems and solutions to process maintenance in small companies...................37

6.2.1 Software process maintenance issues with dedicated tools..........................37

6.2.2 Software process maintenance issues with a separate process document.....38

6.2.3 A software process maintenance solution for small companies....................39

7 The IPIDDDT method..42

7.1 Implicit process improvement through day-to-day development tools................42

7.1.1 IPIDDDT basic principles...42

7.1.2 IPIDDDT examples...43

7.2 IPIDDDT implementation..44

7.2.1 IPIDDDT implementation process ...44

7.2.2 Selecting general selection criteria to define initial pool..............................45

7.2.3 Selecting the extreme pools for the the tool selection...................................45

7.2.4 Tool selection according to the IPIDDDT targets...47

7.2.5 IPIDDDT tool configuration and customization...48

7.2.6 IPIDDDT method iteration in constant process improvement......................49

7.2.7 The IPIDDDT implementation process chart..50

8 Implementing IPIDDDT for a theoretical case...52

8.1 IPIDDDT implementation..52

8.2 Describing the target company and project...53

8.2.1 Target justification...53

8.2.2 Small project development..53

8.2.3 Agile software development for small project development.........................54

8.2.4 Targeted process benefits..54

8.3 General tool selection criteria...56

 2

8.4 Tool selection according to Agile principles...57

8.4.1 Selection criteria..58

8.4.2 Project management tools...58

8.4.3 Communication ..60

8.4.4 Development activities..61

8.4.5 Summary of selected tools..63

8.5 Removing excess tools with concepts from Lean software development............64

8.5.1 Selection criteria and rationale..64

8.5.2 Project management tools...65

8.5.3 Communication...66

8.5.4 Development activities..66

8.5.5 Summary of selected tools..67

8.6 The tool selection according to the IPIDDDT principles.....................................68

8.6.1 Selection criteria and rationale..68

8.6.2 Project management tools...68

8.6.3 Communication...69

8.6.4 Development activities..70

8.6.5 Summary of selected tools..72

8.7 IPIDDDT practices after tool selection...72

9 Conclusions..74

9.1 Conclusions on the IPIDDDT method..74

9.2 Further studies...74

9.3 The possible significance of the IPIDDDT method..74

 3

Index of Tables
Table 1: Tools for agile development according to [Barnett and Schwaber, 2004]18

Table 2: Tools for agile development according to [Cockburn, 2004]............................19

Table 3: Value - waste table of lean software development...22

Table 4: Tool functionality table..32

Table 5: Example of tool evaluation criteria [Firth et al., 1987].....................................34

Table 6: Problem - solution table for the IPIDDDT method...40

Table 7: Strengths - weaknesses table for the IPIDDDT method....................................41

Table 8: Steps of the IPIDDDT method implementation process...................................51

Table 9: Process benefit deduction for the target company...55

Table 10: Targeted software process methods and principles for the target company....56

Table 11: General tool selection criteria for the target company.....................................57

Table 12: Tool selection for a small agile company..64

Table 13: Tool selection table after applying Lean concepts...68

Table 14: Tool selection table after applying the IPIDDDT method...............................72

Table 15: Key differences in typical approaches and IPIDDDT to process benefits......76

 4

1 Introduction
Small scale software development in small software development companies, working

with small and versatile projects, are a challenging group of companies for software

development process improvement. The biggest challenge for software development

process improvement is that small companies have smaller resources for software

process improvement than large companies. Small software development companies

need special types of software process improvement efforts, special types of software

development process methodologies, or modified software process improvement targets.

Popular ways to address these challenges are using agile software development

methodologies or modifying more rigid software process targets like the CMM key

process areas to better suite a small organization [Coleman Dangle et al., 2005]. The

smaller the company, the harder a beneficial process is to maintain.

Small scale software development is often done without an explicit software

development process because the engineering and enactment of a software development

process is considered too expensive without actual return on investment. This study

presents another approach to software development and software development

processes. The approach is to enable process benefits for a certain type of small

companies with a small overhead, without an actual software process engineering and

improvement effort. This thesis studies and presents a method on how software

development tools should be chosen and modified to enable and enforce software

process practices. Enabling and enforcing some software development process practices

can bring benefits that are typical for software process improvement, to small co-located

companies with small resources, that could not sustain a proper software process

improvement effort.

This thesis begins by presenting some background and theory in the first Chapters 2 - 5.

Chapter 2 presents theory on basic software development concepts that are used later in

the thesis. The emphasis is, in the beginning, on software development processes in

Section 2.2, and later, in Section 2.4, on software development tools and software

development tool selection. Background on the software process methodologies' views

on software development tools is presented in Chapter 3. A simple software tool

 5

taxonomy is presented in Chapter 4. The software tool taxonomy relies on the IEEE

Standard for Developing Software Life Cycle Processes [IEEE std. 1074-1997] as well

as on agile principles to create a common ground for discussions in the later parts of the

thesis. The last chapter of the background methods is Chapter 5, which presents a

simple tool selection process that is used repeatedly in the following chapters.

The background for the new software process management method is presented in

Chapter 6. Chapter 6 discusses software process management models and problems

associated with them. The new process management method called Implicit Process

Improvement with Day-to-Day Development Tools (IPIDDDT) is presented in Chapter

7. Chapter 7 consists of a presentation of the IPIDDDT model as well as the

implementation process of IPIDDDT.

The IPIDDDT method is implemented for a theoretical company in Chapter 8. This

theoretical case study is done to present the IPIDDDT method implementation in a more

concrete form. The method is implemented according to the IPIDDDT implementation

process that was presented in Section 7.2. The company and the company's

improvement targets are presented in Section 8.2. The tool selection targets a set of

process benefits that are selected methodically according to process improvement

benefits that have been identified in other studies, an important source for this is

“Concepts on Measuring the Benefits of Software Process Improvement” [Rozum,

1993]. The final steps of the IPIDDDT selection are done in Section 8.6.

The thesis discusses, in the final Chapter 9, what impact this method could have on

small scale software development, and what further studies could be done to realize the

tool selection method in the field.

 6

2 Background on software development processes
and tools

2.1 Software development
The creation of software is called software development. Software development is a

complicated discipline with a vast number of actions included. The ideal steps that are

required to create a new piece of software have been gathered in the IEEE Standard for

Developing Software Life Cycle Processes [IEEE std. 1074-1997]. The sequence in

which these concepts are used is called a software life-cycle model. A software life-cycle

model and the information what to emphasize in the software life-cycle model is called

a software process methodology. [IEEE std. 1074-1997], [Brugge and Dutoit, 2004]

”A software life-cycle model represents all the activities and work products

necessary to develop a software system.” [Brugge and Dutoit, 2004]

A software life-cycle model is an abstraction of the process of delivering a piece of

software. It includes a development process, a supporting process, and a managing

process. Management of the life-cycle consists of both managing the model of the

process, and its actualization as the tracking of activities, roles and work products and

defining them.

Life-cycle models are general visions on how the process of developing software should

be run. The first documented and discussed life-cycle model was the waterfall model.

The waterfall model was a model directly derived from the manufacturing and

construction industries. The waterfall model is an activity centered model that describes

sequential execution of the following steps

1) Requirements specification

2) Analysis

3) Design

4) Implementation

5) Testing and debugging (AKA validation)

 7

6) Installation

7) Maintenance

The steps have a simple feedback loops where a problem in one step would mean a

return to the previous phase or to a phase where a solution for that problem could be

found. The steps represent different sub-processes of the life-cycle process to develop

and maintain a piece of software through its life-cycle. [Royce, 1970]

Several modern life-cycle models are evolutionary. An evolutionary life-cycle model

repeats a set of steps, similar to the waterfall model, to create working software with a

subset of the wanted requirements in each iteration. Evolutionary life-cycle models

deliver better reaction to change and the option to end the project at a wanted stage, for

instance, when the budget runs out, with working software ready for delivery. On the

other side, evolutionary life-cycle models require some special development paradigms

to be competitive with the more sequential models because an iterative model repeats all

development process steps multiple times, while sequential models repeat them only

once, or a few times.

2.2 Agile software development processes

2.2.1 The agile development process
Software process methodologies are an emphasized subset of the software life-cycle

processes; collections of practices that define the action of software development

projects, according to a life-cycle model. Process methodologies are a defined set of

practices that try to define best practices for creating software. Software process

methodologies range from some principles and points of emphasis to clearly

distinguished exact steps for creating software. [Brugge and Dutoit, 2004]

Agile software development process methodologies are methodologies that emphasize

the following items. These items are presented in the [Agile Manifesto, 2001] which is

the basis for modern agile software development process methodologies.

 8

“Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan” [Agile Manifesto, 2001]

Tools and processes are given less emphasis in agile development methodologies. Some

practices of agile development, such as constant integration and test-driven

development, require tools to enable them [Fowler, 2006 (2)]. In addition to tools that

are required for agile practices on localized sites, there is a distinct need for tools that

enable agile practices such as face-to-face communications when developing software

in a non co-located development team. A tool that would enable such communication is

for example web conferencing software. [Cockburn, 2004]

The key agile software development practices that set them apart from other practices

are according to [Schwaber, 2007]:

1) Iterative development, where each iteration delivers working software

2) The phases in each iteration are nearly concurrent

3) The team uses specific practices to keep the code base fresh and flexible

4) Teams are self managing

5) Lean principles eliminate waste whenever possible.

Popular agile software development methodologies include Scrum, Extreme

Programming and Lean software development. Scrum is a technique that emphasizes

project management techniques like scrum of scrums and self managing teams

[Abrahamsson et al. 2002]. Extreme programming is a methodology that focuses on

agile development practices like test-driven development, pair programming, and

continuous integration [Abrahamsson et al. 2002]. Lean software development has its

emphasis on constant process development but with a very lean process. The concepts

of waste and value are employed in the development of the software process [Larman

and Vodde, 2009].

 9

2.2.2 Benefits of using a software development process
The primary aim of traditional software process methodologies is to find a repeatable,

predictable process that improves productivity and quality. Agile software processes

have deemed such an aim to be impossible and this can be testified especially because

of the great versatility of software development, where completely different products

can not be produced in the exact same way. Another agile critique of the traditional

process aims resides in the fact that software development has inherent instability, the

requirements often change in mid-development.

The benefits that are sought through software process improvement are reducing waste,

increasing productivity, and rising quality. Organizations that have a stable process

(mature organizations) that continuously improve their process reap rewards in superior

quality products and increased customer and employee satisfaction. [Rozum, 1993]

Measurable examples of process development benefits are for example more accurate

project prediction, better return on investment, reduced time to delivery, fewer required

staff resources or reduced cost of rework. The emphasis on these different goals are

selected according to the target organization and the used software process. [Rozum,

1993]

Software process methodology differences are evident also in the process benefits that

the process aims to attain. An example of the differences on project improvement goals

is the value of project prediction. A project prediction is achieved in process

methodologies like the capability maturity model (CMM) style processes through the

thorough documentation of all phases of the process [Byrnes and Phillips, 1996]. A

relatively good account of the phases of projects is achieved after documenting a few

projects. Resource consumption of different parts of the project can be approximated

based on previous projects. The CMM solution can sometimes be a successful solution

for software development in organizations where changes mid-development are rare and

the project type is very homogenous [Shaikh et al., 2009]. [Coleman Dangle et al.,

2005]

A complete process prediction is not possible, nor desirable in Scrum, because the

requirements and process predictions change and become more exact throughout the

 10

development effort. Scrum is iterative and focuses on delivering working software after

each iteration. Iterative development means that the teachings of this exact process are

available in measuring development velocity, and the finished functionality can be

accurately approximated for the next iteration. Each iteration delivers functionality

according to a prioritized list, a list that can be altered between each iteration. The

Scrum solution is very effective for versatile projects that have requirements that can

change during production, and a limited budget. [Abrahamsson et al. 2002]

2.2.3 Implementation of a software process methodology
A software process methodology implementation begins with the selection of a software

process methodology, which is tailored to suit the requirements of the company. The

most important questions of the software process tailoring are the basic questions that a

methodology strives to answer: “How much planning?”, “How much reuse?” “How

much modeling?” and “How much process?”. [Brugge and Dutoit, 2004]

The software process methodology is implemented by the use of a process development

process. The process development process includes engineering a software development

process according to the tailored software process methodology, enacting the software

development process in the company, and initiating software process improvement

efforts. The process development process also includes the sub-process of gathering

metrics on the process. The engineering of the software process includes authoring a

software process documentation that is used for the enactment of the software

development process. [Feiler and Humphrey, 1993]

The software process is often reviewed based on the metrics that can be gathered from

the software process implementation and application life-cycle management. The

software process can be improved according to the reviewed data. A distinct software

process improvement process is often set in place in organizations, where the

maintenance and improvement of the software process is essential. [Feiler and

Humphrey, 1993]

The actual management of the software creation process is called Application Life-cycle

Management. The life-cycle management is based on the software process methodology

 11

that has been tailored for the company.

2.3 Application life-cycle management
Application life-cycle management is a discipline for coordinating the activities of

creating software. Application life-cycle management can be defined as:

”The coordination of development life-cycle activities, including

requirements, modeling, development, build, and testing, through; 1)

enforcement of processes that span these activities; 2) management of

relationships between development artifacts used or produced by these

activities; and 3) reporting on progress of the development effort as a

whole.” [Schwaber, 2006]

Traditionally application life-cycle management creates management overhead, or then

the discipline is maintained on a level that is very unobtrusive but also limits the view

inside the projects. The application of the life-cycle management discipline can be

simplified by integrating different tools. The dedicated application life-cycle

management tools strive to automate the integration of tools to simplify and automate

all processes of the application life cycle management. Complete application life-cycle

management has only become possible through the development of more complex

management tools for software development.

2.4 Software development tools

2.4.1 The aim of software development tools
Software development tools are an essential part of software development. Software

development tools strive to simplify and automate the work of delivering software.

Some tools are necessary parts of software development, for instance, a compiler, while

other tools are less compulsory and try to manage a process of the software life-cycle,

for instance, a requirements management tool. The number of different software

development tasks that are automated by software development tools is growing

constantly.

 12

The reliance on software development tools is a defining factor in software

development. The reliance affects the software development effort by making it more

efficient, but it also imposes some external constraints and processes on the

development effort. To accomplish a certain task with a certain tool, requires a work

flow that suits the tool in question. Another constraint is the skill required to use a

certain tool. Tools can not be switched at will because to truly master a work flow and a

software development tool requires both time and skills.

2.4.2 Categorization of software development tools
Software development tools can be classified in different ways. Software development

tools are traditionally classified in commercial categorizations for software development

tools. The categorizations are usually not very specific, in relation to the features or

functionality of the software because the organization is very difficult, partly because

features of different tools can place them in multiple categories or in no categories, and

because new tools evolve frequently and older tools wither away. In addition several

tools exist in the public domain, where the classification is not necessary for commerce.

Software development tools can be classified according to the functionality present in

the tools but it can also be classified according to what problems it strives to solve.

Comprehensive systems of classification include very comprehensive attempts, for

instance, the “A guide to the classification and assessment of software engineering

tools“ [Firth et al., 1987].

2.4.3 Selecting software development tools
The processes of selecting software development tools are versatile. Most methodical

tool selection processes are based on large companies and large company needs, or they

are simply too complex for simple selections. An emphasis is often on tool supplier

reliability, creation of a tool selection implementation plan, and other activities that are

not directly related to the actual tools, but the organizations that supply, implement, and

use the tools.

Other methods of selecting a software development tools are selections that do not focus

on organizations. The focus on organizations can be a burden especially in cases where

 13

organizations are relatively small and agile. Other cases that are better of with a very

simple selection methods that focus on features and maintainability are open source

tools. The cost effect in open source tools is mostly in the skill that is required to

maintain the software as well as the skill required by the users.

2.5 Definition of small scale software development
The software development industry is an industry where the stakeholders, stakeholders

resources and projects sizes and types vary to a very large degree. One end of the

spectrum is the enterprise companies that produce enterprise software. Enterprise

software products are developed in many years and the resources that are put into the

development effort are very large. The other end of the spectrum presents single

developers that produce small pieces of software for a few users. The resource

consumption in these very small projects is very small. This thesis concentrates on small

scale software development.

Small scale software development is defined in this study as software development that

requires less than two months of work for a single developer. Small scale software

development is identified by a small total workload and few roles. A third defining

factor is that the roles are generally handled by a single person, if the project requires an

architect, then usually only one person has the role of an architect, and the one person

creates all architectural artifacts.

Such small scale software development, as described above, signifies a few things for

the projects. Firstly, a small total workload means that all activities, other than actual

development, should be kept to a minimum because all development margins are small.

Secondly, the fact that roles map to single person, or a few persons, and the

development artifacts are created mostly by single individuals, reduces the need for

communications patterns. Thirdly, because of project size and deployment size, it is not

customary to have rigorous testing or need for extensive deployment models. Finally

project sizes can equal the smallest typical iteration size (three weeks), and are done in

one iteration.

 14

3 Agile software process methodologies' relationship
to software development tools
Software development tools exist to enable or enhance the software development

process in some way. Software development process methodologies have different

views on the role and use of software development tools. This chapter will discuss the

role of software development tools in general, the role of software development in agile

software development, and some specific concepts of lean software development, that

can be applied to software development tool selection.

3.1 Agile software development's view on tools

3.1.1 Agile software development and tools
Agile software development processes emphasize people over tools, even though the

right tools are crucial for many agile concepts, such as unit testing tools for test driven

development, and build tools for continuous integration [Barnett and Schwaber, 2004].

It is typical for the agile tool set that the entire tool set integrate seamlessly and that the

tool set is easy and lightweight to use.

“... Agile shops focus their investments on tools that the entire team will use,

layering Agile project management tools on top of testing tools on top of

build management tools on top of software configuration management tools.

Agile teams also tend to value lightweight tools more than non-Agile shops

do, looking for tools that have very narrowly focused feature sets and open

pathways for integration.” [Schwaber, 2007]

The key agile software development practices that set them apart from other practices

are according to [Schwaber, 2007], are the same reasons that effect the selection of

software development tools:

1) Iterative development, where each iteration delivers working software

2) The phases in each iteration are nearly concurrent

 15

3) The team uses specific practices to keep the code base fresh and flexible

4) Teams are self managing

5) Lean principles eliminate waste whenever possible

Each iteration, in iterative software development, contain most phases of the basic

waterfall model. The overall length of the development project has pressure to grow in

iterative development, because phases like testing and installation are done more than

once, and always for a new subset of the code as well as the integrated code base from

the previous iteration. Some practices and automatizations should be implemented, to

make individual iterations more effective. For instance, an extensive practice, that

includes automatizations and makes phases of development more concurrent, is

continuous integration. Continuous integration is a software development practice

where members of a development team submit their changes to the source code to a

common software configuration management system. A constant integration server

automatically creates a new build from the changes to source code and runs all tests on

that software. Constant integration integrates the changes of all developers and tests

existing and new functionality constantly. Implied in this practice are the following

software development tools: constant integration server, software configuration

management, build tool, functional testing tools, and unit testing tools. [Fowler, 2006

(2)]

Agile practices to keep the code base fresh and flexible are, for example, test-driven

development, code re-factoring and peer code review. These practices require at least

the inclusion of software configuration management as well as unit testing tools and

possibly peer code review tools. [Schwaber, 2007]

Special requirements are imposed on tools by the fact that the development teams are

self managing and concurrently work with all phases of the software development

project. The tools must be simple to use, or at least familiar to all developers, so that

they can be used by the developers themselves instead of just specialized users. The

tools should also be automated and integrated to each other, so that the use of tools will

not create waste. [Schwaber, 2007]

 16

Documentation in all parts of the development life-cycle was one of the factors that

initiated the agile manifesto. The distinct type of documenting in agile processes is

described in the quote below.

”There are two keys to successful documentation on agile projects. The first

is finding the point of "just enough" documentation. This is difficult to

determine and will vary by project. Fortunately, the iterative nature of agile

development allows you to experiment until you get it right. The second key

to successful agile documentation is to not get attached to it or have

unrealistic hopes of keeping it updated. Documentation must be created to

serve a specific purpose, and after it has served that purpose you'll all

probably have more important things to do than keep updating the

documents. It may seem counter intuitive, but it's often better to produce

fresh documentation the next time some is clearly required. A side benefit of

starting over each time you need to document part of your project is that it's

great incentive to keep your documentation efficient!” [Simons, 2002]

3.1.2 Agile tools in practice
A very varied set of agile tools are used in practice. The agile basic ideology strongly

emphasizes that chosen tools are efficient in the operation that they provide. This

section presents two different authorities' views on which software development tools

are essential in agile development.

The first authority's tool category selection is presented in Table 1. The table is from an

article by “Forrester Research” called “Agile Development Teams Need Tools, Too”

[Barnett and Schwaber, 2004]. The table lists software development tool categories that

are that are useful in agile software development. Table 1 table divides the tools, that

agile software development organizations benefit from using, in the categories of “Must

Have”, “Should Have”, and “Nice To Have” agile tools. This division presents the view

that agile development is difficult or impossible without the tools presented under the

heading “Must Have”. The heading “Should Have” includes tools that benefit

development vastly but agile development is possible without these tools. Finally the

“Nice To Have” agile tools benefit development in some scenarios, but the lack of these

does not signify automatically a significantly worse agile development experience.

 17

”Must Have” Agile Tools Software Configuration Management Tools
Unit Testing Tools
Build Tools And Build Management Systems

”Should Have” Agile Tools Project Management Tools
”Nice To Have” Agile Tools Development Tools

Automated Functional Testing Tools

Table 1: Tools for agile development according to [Barnett and Schwaber, 2004]

The “Must Have” agile tools are “Software Configuration Management Tools”, “Unit

Testing Tools” and “Build Tools And Build Management Systems”. Software

configuration management tools are tools that store the state of software development

artifacts, like the state of a source code file, at each commit to the repository.

Developing software without software configuration management is very rare in

modern software development. Unit testing tools are a must have for agile development

because agile development is iterative, and non-automated testing would make agile

development very slow. Agile development also emphasizes constant source code

refactoring. Source code that is refactored must be tested again, testing would slow

down development, if the code is not already covered by unit tests. Build tools and build

management systems enable the building and integration of software code automatically

and running test suites on the source code automatically. The automatizing of build

management practices is crucial for agile iterative development because iterative

development requires short test, integration, and build cycles.

The “Should Have” agile tools are project management tools. The management of

iterations and development as well as estimation of the development velocity is difficult

without the use of development tools. Pen and paper, solutions based on post-it notes,

and/or spreadsheets are often considered sufficient solutions for many project

management needs. These tools are lacking in cases where all developers are not co-

located.

“Nice To Have” agile tools are development tools and automated functional testing

tools. Development tools include tools that are integrated to the IDE and enable

development tasks, an example is a modeling tool. Automated functional testing tools

enable and automate in the same way that the unit testing tools, but on a higher

 18

abstraction level. Functional testing tools are only “nice to have” because they do not

provide the same degree of support as unit testing tools in, for instance, refactoring.

Another authority's view, on which software development tools should be used in agile

software development, is presented in Table 2. The other quoted authority is Alistair

Cockburn in “What the Agile Toolbox Contains” [Cockburn, 2004]. The view of

software development tools in this table is very similar to the previous selection in Table

1. The most important differences are that communications tools were not in the scope

of Table 1, but they have a significant place in Table 2. Another significant difference is

that this table includes documenting tools, IDE, and performance profiling tools.

Scope Usage Exemplary Tool
Communication tools Instant Messaging Trillian

Group Discussion WikiWiki
Documenting /
collaboration

Generic drawing Dia, Impress

Project Tracking Xplanner, VersionOne
Designing-programming
tools

Configuration
management /
Version control

CVS

Unit test harness Junit
Accept test Fit, FitNesse
Automated task manager ANT
Automated Build System Cruise Control
IDE Eclipse
Performance profiling tools Jmeter, Jprofiler, Jprobe

Table 2: Tools for agile development according to [Cockburn, 2004]

Communication is a very important part of agile software development. The only time

when a wide array of communications tools is not necessary is when the team and

product owners are co-located. Communications tools like “instant messaging” and

“group discussion” are essential when some stakeholders or developers are on

distributed locations. Software documentation is also a form of communication, that is

named in this second table. The documentation tools that are presented in the table are

simple generic drawing tools for modeling and documenting issues in a concise and

 19

descriptive (agile) way.

Performance profiling tools, and an IDE are also software development tools that where

not explicitly named in Table 1. Performance profiling tools are essential in software

that that require a certain performance level, a performance level is often represented in

the nonfunctional requirements. The testing of the performance level is necessary in the

development of performance critical software, but optional in the case of

nonperformance critical software. An IDE (integrated development environment) is

used in most modern software development, especially more established languages have

multiple development environments that automate both the use of the software

development kit, as well as the use of other development tools. An IDE was probably

not mentioned in the first table because there is nothing especially agile about an IDE,

an IDE is a requirement for all professional software development.

3.2 Lean software development and selecting software
development tools
Selecting a subset of software development tools from a more standardized set can be

difficult. One methodological way is to use the basic concepts of a software process

methodology and extending the use of those concepts to tool selection. This section

discusses what the lean software development methodology would signify for software

development tool selection.

3.2.1 Lean software development concepts
Selecting a tool set to lighten the process from a standard agile process is not trivial.

Some agile methodologies, such as Scrum, do not mention any tools and the founding

concepts of agile software development try to diminish the value of tools [Agile

Manifesto, 2001]. Still tools are essential in software development, a developer needs at

least a way to write source code and a software development kit for the target language

and platform. A way to select a tool subset from a larger pool is to use concepts from

lean software development and extend those concepts to tool selection.

The lean software development concepts of “Kaizen” or continuous improvement, and

the balancing of “values and waste” are concepts that will be used to select tools for a

 20

more efficient software process. The principles of Kaizen are as follows from [Larman

and Vodde, 2009]:

“1. choose and practice techniques the team has agreed to try, until they are

well understood - that is, master standardized work.

2. experiment until you find a better way

3. repeat forever”

What to improve during Kaizen is explained in the concepts values and waste also from

[Larman and Vodde, 2009].

“Value - The moments of action or thought creating the product that the

customer is willing to pay for. “

“Waste - All other moments or actions that do not add value but consume

resources.”

From these concepts of lean development come value stream mapping. A value stream

mapping is the illustration of the elements of value that travel through the system to

deduce the amount of value and waste in the system that can be summed up to the value

ratio of a project. Value ratio is the percent of value of the total time of development.

Traditionally a very large portion of development is waste and only under 10 percent is

actual value. The easier way to improve the value ratio is to cut down waste because

waste can be up to 90 percent of the total development.

3.2.2 Waste in software development
The following actions are a list of non-value-adding action categories according to

[Larman and Vodde, 2009].

“ 1. Overproduction of solutions or features, or of elements ahead of the

next step; duplication

2. Waiting, delay

3. Hand-off, conveyance, moving

4. Extra processing (includes extra processes), relearning, reinvention

5. Partially done work, work in progress (WIP) or design in progress (DIP)

6. Task switching, motion between tasks; interrupt-based multitasking

 21

7. Defects, testing and correction after creation of the product

8. Under-realizing people’s potential and varied skill, insight, ideas,

suggestions

9. Knowledge and information scatter or loss

10. Wishful thinking (for example, that plans, estimates, and specifications

are ‘correct’)”

Non-value-adding categories are a learning aid to see waste in the software development

process. The software process can then be improved by Improving through removing

non-value-adding actions. All waste is not waste that must be banished but some waste

is temporary necessary waste. Temporary necessary waste is for example to test some

features after release (non-value-adding action 7.), if testing for those same effects

would be too expensive before release. [Larman and Vodde, 2009]

3.2.3 Tool value listing
The tools and process should be assessed and optimized frequently according to the

concept of Kaizen. The Table 3 of values and waste concepts for software development

tools is presented below, the table is based on the concepts of Kaizen presented

previously. This table elaborates on what value and waste is for tool selection.

The table presents in the value column a value that the tool can provide and in the waste

column a similar waste category. The value and waste categories are based on the waste

and value categories of general lean software development.

Value Waste
Use of the tool must bring value to the
customer

… or reduce waste

The tools must do what is needed … but not more
The tools must be easy to learn … and have no excess complexity
The same tools can be used for multiple
tasks

… and need to be learned only once

The tools should be fast … and reduce waiting
The tools must integrate … so similar work will not be duplicated

Table 3: Value - waste table of lean software development

 22

4 Software development tool categorization
Tool taxonomy is a complex discipline, which aims to group tools according to some

system of ordering. Multiple ways to group tools exists, for example, by features or by

the phase of the software life-cycle the tool aims to address. Existing taxonomies and

categorizations where deemed too complex for the purposes of this study.

This thesis presents a simple functional organization. The functional organization aims

to group tools in groups that are based on software life-cycle process activities. The

groups define a set of functionality, that the tools that are placed in that group addresses

is some way. The grouping is not unambiguous, so it is not a taxonomy but a grouping.

This grouping is a tool to help discuss the tools by grouping them according to their

main functionality. The tool groups are 1) Project management, 2) Communication and

3) Development activities. These tool groups are based on the phases of the software

life-cycle as presented in [IEEE std. 1074-1997]. The groups are formed according to an

agile tooling rationale where code producing activities are emphasized.

Project management comprises of software life-cycle process activities like the tool's

capability to facilitate managerial tasks that run over several projects, project activities

that are employed for single projects, and activities for providing visibility to the project

and process. This group comprises the functionality in [IEEE std. 1074-1997] section

“A.1 Process Management Activity Groups” and section “A.3.1.3 Prioritize and

Integrate Software Requirements”. The project management functional group consists

of activities that can be aided by process and project management tools. [IEEE std.

1074-1997]

Communication is the functional group for all tools that enable communication and

documentation, and activities that only require communication like the [IEEE std. 1074-

1997] activity group “A.2.1 Concept exploration activities”. This includes most

documentation except for the documentation of requirements that is a group on its own.

In the [IEEE std. 1074-1997] model communication spans over the complete life-cycle.

The communications activities include activities that are aided primarily by

communications tools.

 23

Development activities is a functional group that span many activities. Development

activities span, in [IEEE std. 1074-1997], the groups “A.3 Development Activity

Groups” and “A.4 Post Development Activity Groups” as well as sections “A.5.1

Evaluation Activities”, “A.5.2 Software Configuration Management Activities”, and

“A.5.3 Documentation Development Activities”. The development activities are

activities that are aided by developer tools. [IEEE std. 1074-1997]

Tools and tooling functionality are organized in the subsections that follow. The tool

groups are defined so that a commercial tool category, for instance, software

configuration management tools, is presented only in one functional tool group, even

though the group would fit in more than one tool group.

4.1 Project management
The project management activity group is comprised of the functionality in [IEEE std.

1074-1997] section “A.1 Project Management Activity Groups” and section “A.3.1.3

Prioritize and Integrate Software Requirements”. Project management activity groups

are: process authoring and management activities (later referred to as process

management), project and process resource management and requirements

prioritization, and project and process estimations and metrics (later process visibility).

All activity groups mentioned, are activity groups that are employed to some extent in

almost all software development, and all can be aided by software development tools.

The tools that can aid in these activity groups are gathered in the subsections of this

section.

Project management tools are essential because a predictable process is difficult to

achieve without tools. A predictable process requires the process to be managed, without

any process management, a process can hardly be said to exist. Resource management is

a discipline that can be very simple, emailing to-do lists to other developers, but it can

also be very complex in large organizations with varying skills and skill requirements

for tasks and processes. Resource management can also incorporate limiting access and

controlling the resources on a deeper level: creating traceability and accountability.

Process visibility is a third very important functionality group. The improvement of the

process and project planning, as well as the assessment of waste in the process is very

 24

difficult without verifiable data from previous projects, that is why all types of visibility

is essential to project management. The gathering of metrics is somewhat tedious and it

is always good to automate by tools when possible.

4.1.1 Process management
Process management includes the activities of selecting and managing a software life-

cycle process. The management of the software life-cycle process can be described as

authoring and improving the process, publishing the process, and managing the

enactment of the process. Tools exist that help the process management activities, tools

can span some or all process management activities. More complex authoring tools

model the process on a more exact level, to enable other development tools to use the

process definition, and aid in enacting the process.

Tool categories that help in process modeling are from simpler to more complex: word

processors, web development tools, process authoring tools, and integrated application

life-cycle management tools. Tool categories that help publish the process are web

browsers, web servers and integrated application life-cycle management tools. Finally

tool categories that help enacting the process are tools that enforce work flow. Work

flow enforcement can be aided by tools that enable communication like task lists or

application life-cycle management tools that force some work flow by requiring input at

all phases in development.

4.1.2 Resource management and requirements prioritization
Activities that are included in resource management are activities that related to

knowledge and control of available and required resources for the projects. A way to

understand this is by using the concepts of role, artifact and task. Roles are skills that

are required in some part of the project and applicable human resources are mapped to

these skill sets. Artifacts are resources that are needed or created during the project like

requirements documentation. Access to create, modify, or view artifacts can be limited

to some roles in certain tasks, and this resource control can be extended to create

accountability automatically. [Zhu et al., 2006]

Requirements prioritization is an integral part of this activity group as well. The

 25

requirements prioritization allows for the selection of wanted functionality according to

available resources and the value of the said functionality.

Tool categories that enable and help in resource management and prioritization (from

less to more complex) are: email, spreadsheet, file access control, project management

tools, project portfolio management tools, and application life-cycle management tools.

Email, spreadsheets, and file access control provide lists of required roles, available

human resources, and some way to limit access to some resources. These simple tools

are separate and require a lot of manual labor to use.

Project management tools, project portfolio management tools, and application life-

cycle management tools provide integrated support for the activities listed previously.

The process and project are input to the management tool and resource control and role

information is all contained in the system. The more complex tools offer additional aid

in managing multiple simultaneous projects.

4.1.3 Process visibility
Visibility activities include the gathering of many different types of metrics from both

single projects and process level activities. Visibility into a single project contains

project velocity, resource consumption, project size estimation, and follow-up. Visibility

into single projects is essential to keep all stakeholders aware of progress and to notice

discrepancies between estimates and actual effort. The other type of visibility is the

visibility into the software life-cycle process. Creating metrics and possibilities to report

on the success and development of the process, enable the activities of software

development process improvement and enable the assessing the success of the process.

Software process enactment and the value of process improvement activities are

impossible to asses without visibility.

Tool categories that enable process visibility are spreadsheets, documents, time tracking

tools, process management tools, and application life-cycle management tools. All these

tools enable some level of tracking and reporting. The important difference is that most

tools require a lot of work to deliver tangible benefits.

 26

4.2 Communication
Communication is an integral part of software development, communication is an area

that overlaps all other areas (project-, requirements-, and source code management)

described in Chapter 4, as well as some activity groups like [IEEE std. 1074-1997]

group “A.5.3 Documentation Development Activities”, which use only communications

tools. Other communications centered activity groups are requirements exploration and

authoring. Requirements exploration are the [IEEE std. 1074-1997] groups “A.2.1

Concept Exploration Activities”, “A.4.3.1 Identify software improvement needs”, and

“A.4.3.2 Implement problem reporting method“ which create the basis for the

requirements authoring activities in [IEEE std. 1074-1997] group “A.3.1 Requirements

activities”.

Communication is separated as a distinct functionality group in this study because

dedicated communication tools are used. Essential to communication is that it is

efficient at the moment, stored as required, and can be found when needed. Different

communications mediums are for instance instant messaging, discussions boards, wikis,

real time audio communication and web conferencing. Communication is stretched

across time and place, in the fact that communication tools can control versions and

store communications for searching.

Documentation needs in functionality vary in different software processes. The most

comprehensive solutions are communications servers where all different types of

communication are stored in the same data repository and meta data connect that data to

people, roles, artifacts, tasks and other communications. In the other end of the

spectrum most communication is handled face-to-face and some communication is

handled with specialized tools and only persisted when explicitly required.

Communications tools are divided in this project to the subgroups of Documentation,

Direct communication, and Wiki and knowledge base.

4.2.1 Persistent documentation
Documentation is an essential way of delivering information in a structured and

persistent way. Documentation includes technical documentation and development

documentation as well as customer and end user documentation.

 27

The technical documentation is often formed of requirements documentation, modeling

of the software, and documentation of solutions, integrations and frameworks.

Requirements documentation can be documented on many different levels and with

tools ranging from small physical cards to vast structured documents. The modeling of

the software is made of abstractions that enable understanding software. Models are

often made of the software architecture on different levels, different architecture models

might include software architecture, software integration, business infrastructure, and

data architecture. The solutions are often documented to maintain an understanding of

the complete software. Solutions documentations often contain contain. The

documentation of integrations, integration interfaces and frameworks which can be used

for different types of integration are also very important to document thoroughly.

Customer and end user documentation is documentation that is written based on the

need and requirements of the end users. The technical parts often include instructions

for use like installation instructions, integration instructions, and user interface

instructions.

The actual software code is also a form of documentation, both the code comments as

well as the actual code. Tests, test results and other metric data of the software can also

be considered documentation of the software. Documentation is often a dominant form

of communication from the developers through time and to the product stakeholders.

The documentation created in the activities in [IEEE std. 1074-1997] group “A.3.1

Requirements activities” are a good example of persistent documentation.

Documentation is produced with tools like word processors, documentations tools,

reporting tools, and communications servers.

4.2.2 On demand documentation
There is a constant influx of data to a large project, especially a dispersed project

requires a large amount of data to be created, stored, and used. Some data that is created

on demand is never intended as actual documentation, but is unstructured or structured

only through keywords, and will be deleted when it has served its purpose.

The large majority of on demand documentation is written by developers for themselves

 28

and managed in personal files. Other on demand documentation resources are

discussion boards or instant messaging logs. On demand documentation is informal, but

it is still often useful for someone else in the course of development or in maintenance

of the software. The on demand documents become searchable artifacts if they are

transferred to communications servers or other shared documenting resources.

Tools that aid with wiki and knowledge base support are wikis and knowledge base

software as well as communications servers.

4.2.3 Direct communication
Direct communication are the forms of more directed communication between human

resources like meetings, phone discussions, instant messaging, and email. Direct

communication can be between developers, for developer - product owner

communication or communication between stake holders. Direct communications are

very important and include often face-to-face communication. Direct communication is

sometimes but definitely not always persisted.

Direct communication is one of the most important factors in less process driven

methodologies. The more strongly the process is process driven, the more exact

documentation of all information is done. Communication is the key issue in agile

projects from the start of requirements and modeling to final acceptance tests. All

information must be transferred between the developers and the product owners so the

actual business requirements are transferred as well as possible to the final product.

Tools that help with direct communication are e-mail, instant messaging, telephone and

web conference software.

4.3 Development activities
Source code management is a functional group that span most activities in [IEEE std.

1074-1997] groups “A.3 Development Activity Groups” and “A.4 Post Development

Activity Groups” as well as sections “A.5.1 Evaluation Activities”, and “A.5.2 Software

Configuration Management Activities”. [IEEE std. 1074-1997]

Source code management includes a wide range of activities with the common

 29

denominator that the activities revolve around the actual writing of, and management of,

source code as well as the deployment of the source code. Another important factor is

that the tools that are used in these activities integrate closely with the developer IDE.

This section is divided in to the sub activities of Writing source code, Deployment, and

Quality assurance.

4.3.1 Writing software source code
Software source code writing activities include writing software source code and

managing versions of the source code (software configuration management). These

activities are integral to software development and need efficient tools to be handled

properly. Writing software source code is mostly done in an integrated development

environment, where the text editor is integrated with at least the development kit, of the

source code language, and possibly with syntax highlighting, build tools, and run time

environments. Modern integrated development environments are modular and include

tooling for a wide variety of development needs.

Software configuration management (or revision control) is the task of tracking and

controlling changes in software. Software configuration management enables the

company to securely develop software and different versions of software, while creating

branches of development easily and merging changes across branches and versions.

Software configuration management, to the extent described above, is impossible

without software configuration management tools.

The tools for writing software source code are from more simple to more complex: text

editor, version control system, source code generator, and integrated development

environment.

4.3.2 Deployment
Deployment activities include the building of the source code, managing the integration

of all required resources, and deploying the software to a server or installing the

software. Building the software includes solving dependencies and updating all required

resources to build a software program. The building of the source code can often be

done using multiple different tools. The software can often be built by a development kit

 30

for the programming language or more complex building tools that enable more

elaborate functionality.

All different pieces of source code and other resources that constitutes a software

program can be developed independently. Independent development of artifacts means

that multiple developers work on the same program. The integration of code from

multiple developers can be tedious and the management of this integration is addressed

by practices like continuous integration. The building of software code can be

automated by the use of automated build tools that create builds at standard intervals or

when changes occur. Build tools can also initiate quality assurance tasks.

Tools to aid in software deployment activities include build tools, deployment tools,

repository managers, and constant integration tools.

4.3.3 Quality assurance
Quality assurance activities include a number of activities related to verifying the

quality of code. Some popular quality assurance activities include testing the software

on different levels, making code reviews, running source code analysis, and measuring

software performance. Modern testing is done using testing frameworks for different

levels of testing. The testing frameworks enable a structured way to test software and

enable testing disciplines to evolve.

One of the lowest levels of testing is unit testing. Unit tests strive to verify the

functionality of a single module (unit). Unit tests help to avoid degradation of code in

addition to verifying the functionality of a module. Other important testing levels are

acceptance tests that verify the functionality that has been described in the requirements

of the software. Acceptance tests are often done in web environments by tools that test

the user interface with different browsers. A third important testing level is performance

testing that often tests the nonfunctional requirements like response times and numbers

of concurrent users.

Other important quality assurance practices include source code analysis and review.

The analysis of source code can be automated to verify that the source code has been

written according to coding conventions. Many different metrics can be used to strive

 31

for better software code. Code reviews are the reviews of software code by someone

who has not written the software code. Reviews can be done in multiple levels of

process ranging from a very strict review according to an established process or in a

very informal way asynchronously.

Tools that help in quality assurance are testing frameworks for all different levels on the

software from unit tests to acceptance testing and stress testing utilities as well as code

analysis tools and code review tools.

4.4 Tool functionality and categorization table
This section presents a table of the most important functionality according to the

previous sections. All later references to functionality groups refer to the functionality

discussed in this chapter. Table 4 is created based on this chapter.

The table contains the headings and subheadings of this chapter and an exemplary tool

class that is suitable for this functionality. The table combined this information to

provide a table of reference of this chapter. The table does not strive to be exhaustive of

all activities in general software development but an aid for more meaningful

elaboration of the concepts in the following chapters of this thesis.

Tool Capability Tool Functionality Exemplary tool category
Project
Management

Process Management Process engineering framework
Resource Management and
Requirements Prioritization

Project management tool

Process Visibility Application life-cycle tool
Communication Persistent documentation Enterprise content management

On Demand Documentation Wiki software
Direct Communication Instant messaging

Development
Activities

Writing Software Source Code Integrated development
environment

Deployment Deployment tool
Quality Assurance Unit testing tool

Table 4: Tool functionality table

 32

5 A software development tool selection process
The tool selections of this study will be done using a basic tool selection process. The

tool selection process consists of the following steps.

1. Define goals of the tool selection effort

2. Create evaluation criterion for the tool selection

3. Define metrics for the requirements

4. Select tools for evaluation

5. Review individual tools

6. Order the tools

7. Select the best tool

The first step of defining the goals of the selection process is the most important part of

the selection. The justification of the selection effort is defined in the goals of the

selection, if the goals are not properly set, then the tool selection can not address the

issues that have prompted the selection.

The second step of the selection process is creating evaluation criterion for the tool

selection. The evaluation criterion that are selected aim to reflect the main goals as well

as possible. The goals of the selection effort are often not directly usable as criteria in

the realm of the tools, which is why the goals must be translated in to evaluation

criterion. The evaluation criterion can be a simple list of criteria like an example set of

criteria in Table 5 or a complex matrix of hierarchical criterion and criterion groups. A

more general set of selection criteria is suitable for selecting many different types of

software development tools, while more complex criterion are often used to compare

similar tools and find subtle differences in functionality.

 33

1. Ease of Use
2. Power
3. Robustness
4. Functionality
5. Ease of Insertion
6. Quality of Commercial support

Table 5: Example of tool evaluation criteria [Firth et al., 1987]

Defining metrics for the selection criteria is the next step in the selection process. The

metrics are used to assign different relative values to the criteria that are used. The

ordering of tools becomes more meaningful with criteria that is relatively quantified.

The actual selection and ordering of the tools are very difficult if the criterion do not

have a good set of metrics.

The next phase in the process consists of selecting an appropriate pool of tools for

evaluation. The pooling of tools, in a more complex selection situation, will be managed

by a selection process like the one described here. The pooling is important because

evaluating all possible tools is impossible. The selection of tools to a pool is made, in

less complex scenarios, using a light set of general criteria, based on the actual selection

criteria for the complete evaluation. This light set of general criteria can be for instance,

the cost of a selection tool, and the tool category.

The value of a tool must be determined to differentiate the tools in the selection pool.

Determining the value of an individual tool is done by reviewing the tool against the

selection criteria and metrics. A tool is awarded a value according to the review.

The tools can be naturally ordered after reviewing all tools in the selection pool. If the

selection metrics allow for weighting different selections criteria, then the tool order can

be compared with different weighting of the metrics.

 34

6 Software process management and improvement

6.1 Process authoring, publishing, enactment, enforcement
and improvement
The benefits, that are sought through software process improvement, are reducing

waste, increasing productivity, and rising quality. Organizations that have a stable

process (mature organizations) and that continuously improve their process can reap

rewards in superior quality products and increased customer and employee satisfaction.

Measurable examples of process development benefits are for example more accurate

project prediction, better return on investment, reduced time to delivery, fewer required

staff resources or reduced cost of rework. The emphasis on these different goals are

selected according to the target organization and the used software process

methodology. [Rozum, 1993] [Coleman Dangle et al., 2005]

An organization has to define processes for tasks and record results of executed

processes, to reap the benefits that process improvement promise. However, defining

processes and recording results can be done in many different ways and on multiple

levels of granularity. The software process is often authored and published using

dedicated tools to gain the best possible process definition. The process definition can

be written using a software process meta model. A well-known meta-model is the

Software & Systems Process Engineering Meta-Model (SPEM) [SPEM 2.0].

SPEM defines the different parts of the process meta model. The process structure is

defined in SPEM as follows:

Process Structure: This package defines the base for all process models. It

supports the creation of simple and flexible process models. Its core data

structure is a breakdown or decomposition of nested Activities that maintain

lists of references to performing Role classes as well as input and output

Work Product classes for each Activity. In addition, it provides mechanisms

for process reuse such as the dynamic binding of process patterns that allow

users to assemble processes with sets of dynamically linked Activities.

These structures are used to represent high-level and basic processes that are

 35

not textually documented. The structures are ideal for the ad-hoc assembly

of processes, especially the representation of agile processes and self-

organizing team approaches. [SPEM 2.0]

The software development process is published in some form, once it has been

authored. Publishing the software process is done using standard documents, hypertext

documents, application life-cycle management tools, or a combination of some of the

previous and other tools. Publishing the software process for enactment by a human is

called a process script, and the published process for enactment by a machine is called a

process program [Feiler and Humphrey, 1993]. The publication of the software

development process makes the process available to the users of the process. The

publication format impacts the way the process is enacted.

When a software project is executed using a published software process, then the

software process can be said to be enacted [Feiler and Humphrey, 1993]. A software

process enactment is strongly influenced by the publication of the software process. If

the software process has been published using some form of static document, then the

enactment is enforced by human resources. If the software process is published to

development tools, then it is often also enforced in those tools.

When a software process is in use and metrics of the process are gathered, then some

form of process improvement can be made. Improving the process is done by repeating

the phases of changing the old process, authoring a new process, and publishing it.

[Feiler and Humphrey, 1993]

Most process models are incompatible with small companies. Maturity based models

for software improvement like CMM can be disastrous for small companies [Shaikh et

al. 2009]. Other process management solutions are also problematic in very small

companies. One of the reasons is the software process maintenance. The next chapters

will discuss the problems and propose a solution for process management in small

companies.

 36

6.2 Problems and solutions to process maintenance in small
companies

6.2.1 Software process maintenance issues with dedicated
tools
A software process that has been authored using a software process meta model, can be

published in a process tool that can enforce the enactment of the process. Writing,

publishing and enforcing a software process model with dedicated tools, like application

life-cycle management tools, have some drawbacks when they are used in small

companies with versatile projects.

Software development process authoring, in systems where a dedicated process tool is

used, requires both human resources and infrastructure for the process authoring. The

tools are used by process engineers and require some extra skills. The process authoring

and maintenance is easier with a process authoring tool than with plain old documents.

If the processes are authored on an fine granularity level, then a very large number of

processes must be authored for companies with diverse projects. The authoring

feedback cycle can become very long if there are multiple processes for different project

types and limited resources for process authoring and software process improvement.

Software process publishing and enforcement are often integrated into an application

life-cycle management tool. The integration of publishing means that software

development tasks are visible in the application life-cycle management tools. The

enforcement becomes automated to some degree by the application life-cycle tool, with

the requirement of artifacts or acknowledgments in the tool. Application life-cycle

management tool integration presents some problems for smaller companies. A life-

cycle is managed automatically by an application life-cycle management tool for

development tools that integrate seamlessly into the management tool. Most application

life-cycle management tools have a limited set of supported tools for integration. Being

dependent on tools that integrate with the application life-cycle management solution

can form dangerous vendor lock-in or a preference for more complex or expensive

tooling, than what is actually needed. Some resources are also required for maintenance

of the skills needed to use the application life-cycle tools and the other development

tools, when integrated to the application life-cycle management tool.

 37

6.2.2 Software process maintenance issues with a separate
process document
A software process that has been authored to a separate resource, for instance an HTML

page, faces its own set of challenges for a small software development company. This is

a competing way to, the previously mentioned, dedicated application life-cycle

management tools, and can be combined with other methods of process management.

Authoring a separate software development process provides a lot of freedom, for

example, because the process tools do not require working integrations with the

software development tools. On the other hand, authoring a separate process does

require more human resources, to verify the enactment and enforcement of the software

development process, and the actual verification can be very difficult.

Authoring a software process document separately does not necessarily require a

dedicated authoring tool, and it gives a lot of freedom of the form authored process.

Authoring a software process without dedicated authoring tools, such as authoring the

process in a text document or HTML, becomes very tedious or impossible to maintain if

the process requires active modification, updating, or the process is subject to constant

software process improvement.

The publishing of a software development process can be done in printed documents or

on a web page. A problem with the separately published process is that the management

of the published resources can be difficult. The problems manifest themselves especially

in situations where a new version of the process is published and older versions exists,

for instance, in printed form. In these cases the propagation of changes must be

managed with human resources.

The enactment and enforcement of a separate process have a few challenges. To actually

enact the process all developers must actively be aware of the process, understand the

process, and perform according to the process. The enactment also includes the

propagation of changes in the process to the organization. All mentioned enactment

tasks require a lot of resources. For instance, resources are required to notify people of

the process and developers use time to read and understand the process.

Another challenge, for the separately authored process, is the enforcement of the

 38

process, to actually verify that a process is followed. The verification, that a process is

followed, is difficult and requires a verification process and resources to follow the

verification process. Resources that are required for enforcement are, for instance, that

people fill in reports on what they do and process engineers verify the results.

All issues mentioned in this section apply for all separately published processes, but

especially in cases where the organization grows larger. The complexity of the process

maintenance, and especially the process enactment and enforcement efforts, are difficult

and expensive with a separately authored software process.

6.2.3 A software process maintenance solution for small
companies
I propose a third method to author, publish, and enforce parts of a software process, the

method is to author, publish and enforce the process practices in day-to-day

development tools and integrate software process improvement into daily development

work. This method is called Implicit Process Improvement with Day-to-Day

Development Tools or IPIDDDT. IPIDDDT strives to solve the problems, that other

software process maintenance methods present, for small companies with versatile

projects and very limited resources. The solutions that are presented here reflect the

issues that are discussed in the previous Sections 6.2.1 and 6.2.2.

The solutions to process authoring in the new IPIDDDT method is to find a way to

author the process using day-to-day development tools, while at the same time making

them instantly available and visible for the developers. This means that the development

tools must be selected and the settings of the tool altered, as well as a template that is

elaborated on so that the way to solve a certain task is always done in a similar manner.

Multiple processes are easy to maintain because the processes also use the same tools as

others and the granularity is always limited by the tools modifiability and capability in

making templates.

The solution for publishing a process is to maintain all settings and templates in a

common repository. Any issue that do not have an existing solution can be added to the

repository with ease. The publication of the process in the day-to-day development tools

enables the process to be easily accessible and removes the need for extra knowledge of

 39

tools just for the sake of the process.

Enactment and enforcement of the process is solved because only things that are in the

development tools are enforced. If the developer uses the tools and templates from the

common repository, then no additional enforcement should be needed. A developer can

disregard the process settings or templates, but disregarding the process is not prompted

by efficiency penalties.

The staleness and slow feedback cycles of the process maintenance are addressed by a

community type solutions to the maintenance of the process. The authored process is

available to all in the repository and it can be updated and improved by all users. The

process is readily available for optimization, and it is easy to maintain and keep

relevant, with little extra effort. The most important issue is, as well as the access, that

the culture of process improvement has to be active in the company.

The problems of traditional process improvement efforts for small companies are listed

in Table 6. The table lists problems and solutions that the IPIDDDT model could

provide.

Problem Solution
The process management requires
dedicated infrastructure

The process management is transferred to
the day-to-day development tools

The process enactment requires extra
effort from developers

The process enactment is integral in the
development work

The process improvement requires
dedicated resources

The process improvement is integrated in
day-to-day work

Numerous project type processes require a
large maintenance effort

Project tasks are defined as processes only
when needed

Complete methodologies address non-
issues

Process areas are selected only when
actual ROI is evident

Process improvement requires a dedicated
effort

Process improvement is integrated into
day-to-day work

Software process authoring requires extra
effort

Process authoring is integrated into day-to-
day development tools

Table 6: Problem - solution table for the IPIDDDT method

The drawbacks to the IPIDDDT solution are numerous from the perspective of a general

 40

solution for all software process requirements, but IPIDDDT is not an explicit process

as such. On the other hand, the IPIDDDT drawbacks are quite few in the case of a small

company, that fits the profile of multiple project and process types, little or no dedicated

resources for the software process, and a small number of concurrent developers on

projects. The strengths and weaknesses of the proposed solution are presented in Table

7.

Strengths Weaknesses
Process management and improvement is
driven by developers for developers

Process enforcement is limited in the tools

Process management forces the process to
addresses few key areas

Some complete and complex
methodologies are difficult or impossible
to implement with tools alone

Multiple process fragments enable a
multitude of projects with low overhead

No single homogenous complete
repeatable process

Cheap constant process improvement is
part of the system

High-level predictability and automatic
metrics are difficult to implement

Control and focus on the actual
development activities.

No control over managerial or
organizational processes

Table 7: Strengths - weaknesses table for the IPIDDDT method

The IPIDDDT method aims to provide just enough process stabilization by enforcing

some form of discipline through tool selection and practices related to those tools. The

selection of tools must be done with much care so that the overhead that is removed

from traditional process management is actual reduced waste.

The IPIDDDT method has a focus on actual developer practices and not on managerial

and organizational issues. The method is not suitable for large organizations because it

has no clear dimension in organizational questions. The IPIDDDT method could be

combined with Scrum to deliver a more scalable and complete process.

This system of solutions builds upon the agile concepts where the developers must have

freedom and independence in their work, which is limited by peer selected methods and

tools, but is is extended to the process realm as well. The process improvement targets

are set up by the developers and leaders but the actual process is authored and

maintained by the developers. This method is presented in Chapter 7.

 41

7 The IPIDDDT method

7.1 Implicit process improvement through day-to-day
development tools

7.1.1 IPIDDDT basic principles
IPIDDDT is a method to enforce some software development practices in an

organization with the use of selecting software development tools and implementing

tool downloading and managing practices. The software development process is not

explicitly authored as a complete process, but it is programmed into the tools that the

developers use, without an actual process definition language. The process is constantly

changing because all developers can modify the process at will. The freedom of the tool

settings to change and the fact that the process is not authored but programmed into the

tools, signify that the process is not explicit but implicit.

One of the cornerstones of IPIDDDT is tool selection. Tool selection embraces the fact

that the tool that is used shapes the way a task is done. Through this knowledge process

management is turned upside down. In a traditional model of process management task

is authored to a process, and published. A developer on a project uses the process to

identify a task and the process specifies how that task will be done. The following

sequence takes place in the IPIDDDT model.

Recurring tasks are identified and a suitable tool is selected for the work. Then when the

task recurs in a new project, the selected tool already identifies a way to solve that task.

The IPIDDDT model embraces the fact that the selected tool has an impact on how the

task is viewed and how the task is solved. The tools settings are modified to reflect the

solution.

Recurring tasks may be more or less complex and only selecting an appropriate tool

does not guarantee a certain type of solution to the task. Templates and tool

configurations are the solution for more direct control. Templates and tool

configurations are used to direct the solutions, so that similar tasks are solved in a

similar way, which enables better prediction on the resource consumption and outcome

of the task, and enables knowledge transfer.

 42

Process improvement is an integral part of IPIDDDT because when using a template in

day-to-day development, developers improve on the templates as needed. In this way

the templates never get stale. The selection, incorporation and customizing of libraries

as well as creating own libraries of reusable components support the software process.

7.1.2 IPIDDDT examples
Examples of ways to define a process with the use of development tools are:

– Requiring certain artifacts at specified moments of development

– Unit tests by made with a testing framework

– Acceptance tests for functional requirements

– HTML mockup before development process

– Requiring the use of a certain tool or template for communicating certain issues

– Use of version control

– Use of bug tracking

– Listing requirements in Wiki

– Configuring development tools in the repository to enable some specific actions

– Downloading all development tools from a tool repository, where the tools

are configured for the organizations needs.

– Starting projects and tasks with wizards that are configured for the

organization. For instance, starting a web project with a wizard that has a

certain package structure which includes test packages and a deployment

descriptor that includes references to the default libraries.

– Using artifact repositories and automated dependency management for

external and internal libraries. Artifact repositories create control over which

libraries and versions are used.

 43

7.2 IPIDDDT implementation

7.2.1 IPIDDDT implementation process
Implementing the IPIDDDT method, for a software development company, can be done

using an implementation process. A suitable implementation process is presented in

Section 7.2. The implementation process defines a set of steps that enable a company to

start using the IPIDDDT model. The implementation process aims to be short and

applicable to the target organization type - a small agile organization. The described

process can seem complicated because the process is explained only in brief and on high

abstraction level, but it is illustrated more verbosely in the implementation example in

Chapter 8.

The IPIDDDT method implementation assumes that a target company exists (or is

defined in a theoretical case), that the target company is relatively small, and the target

company strives to gain some benefit through agile practices. The IPIDDDT method

implementation process is split up into five steps, some steps can be further divided into

smaller sub-process steps. The main steps are

1. Selecting general selection criteria to define initial pool

2. Selecting the extreme pools for the the tool selection

3. Tool selection according to the IPIDDDT targets

4. IPIDDDT modification and customization of the tools

5. IPIDDDT management and iteration.

The IPIDDDT target definition and IPIDDDT tool selection follow, in general, the

general tool selection process that is defined in Chapter 5, and the selection process

includes three iterations of the tool selection process. The IPIDDDT model uses the

software development tool categorization of Chapter 4, to select tools for certain

categories and to help discuss the tool selection in general.

 44

7.2.2 Selecting general selection criteria to define initial pool
Creating the general pooling of tools by selecting a set of very general criteria for the

tools. These general criteria can be criteria like “The company does not have in-house

infrastructure, no tools that require in-house infrastructure are considered.” The criteria

can also be very general like “The tools should be considered 'agile'”. This set of criteria

is only a general reference for the tool criteria and is used mainly in creating the tool

selection pool of the first phases. The tool pooling is not done explicitly in this section,

but the tools that are selected in the next sections are considered in reference to this

pooling criteria, as well as the primary criteria of that selection.

The sub-process steps are

1.1 Define the organizations size, resources, and scope.

1.2 Define the organizations general process type.

1.3 Refine the organization size and general process type to general criteria that

serve as a tool for creating the general pool of tools.

The first step of the software process Step 1.1 consists defining of the organizations

size, resources, and scope. The definition of the company is required for selecting

feasible tools for a certain company with certain resources.

Process Step 1.2 requires to define the company's general process methodology, or the

desired general process methodology. This methodology is the general methodology

where solutions to the process improvement goals are searched and the methodology

will be essential in the selection of tools in each subsequent selection.

The process Step 1.3 is the refining of the findings of Steps 1.1 and 1.2 to tool

requirements. These tool requirements form the implicit tool pool for the first two

selections, and the secondary selection criteria for all subsequent selections.

7.2.3 Selecting the extreme pools for the the tool selection
The next two tool selections are more specific pooling selections. The selections aim to

form two extremes that are sustainable in this type of software development. The goal

 45

of the first selection is to be a very process oriented selection, which includes all

software development tools that can be justified in this type of development. The goals

of the second selection is to select the bare minimum tool set, that is conceivable in this

type of development. These two extremes will form the tool selection pool for the tool

selection of implementation process Step 3, even though the last selection is not

confined between these two extremes.

The two pooling selections that strive to find the extremes follow mostly the general

tool selection method that was presented in Section 5. The differences to the general

tool selection method are that I) the primary goals are already established by the tool

selection rationale and the criteria from the first process step, and II) the final phases of

review and selection are done less rigorously, to provide a tool category and a good

exemplary tool to represent that category.

The steps of this process completed twice, firstly the a) -process and secondly the b)

-process. The steps of the process are the following:

2.1 Using the goals of a) “extensive tool selection” and b) “lean tool selection”

to create the main requirements for the tools

2.2 Using the implicit tool pool from the process Step 1.

2.3 Selecting a tool group in reference to each tool category.

The first step of the selection process is finding the goals of the selection. The goal of

the first selection is to find a very process oriented tool set, which includes all software

development tools that can be justified in this type of development. The goal of the

second selections is to select the bare minimum tool set that is conceivable in this type

of development.

The criteria of the first process step and the extensive tool selection rationale for the

selected process methodology, are modified into criteria, in step a). In step b), lean

concepts are used to determine if the selected tools are actually necessary, or could the

target company manage with simpler of fewer tools.

The metrics for these selections is a very hierarchical system where the primary criteria

 46

is the criteria mentioned as the goals, and the secondary criteria are all the ordered

criteria from the first process step. The first process step includes also the implicit

pooling that limit some tools as being out of the scope of this organization.

The selection is done using the criteria that was presented in the previous process step,

and the implicit tool pool that is formed by the criteria of the first process step. The

selection and ordering of tools is done for each category separately and using the tool

taxonomy that is presented in Chapter 4.

The next step of the selection process is the selection of tools, in this case only tool

groups are selected and perhaps an exemplary tool that embody most criteria well. The

tool groups that are selected form the two extremes for the tool selection pool of the

next process step.

7.2.4 Tool selection according to the IPIDDDT targets
Selecting tools according to the IPIDDDT rationale is the next process step after

creating the extreme of pools tools in the previous process step. The tool selection of the

IPIDDDT method follows the general tool selection method of Section 5.

The steps of the selection process for the IPIDDDT method are:

3.1 The selection of process improvement targets and refining them to the

primary requirements for the tool selection of the organization.

3.2 Combine the primary requirements and the requirements of the first process

step (Step 1) as the secondary requirements to a hierarchy to define the

requirements and metrics.

3.3 Use the range of tools for each taxonomy from the results of the previous

process step (Step 2) as the selection pool.

3.4 Review the tools from the pool against the requirements and selection pools

to select the best tools.

The first step of the sub-process, Step 3.1 selection of process improvement targets and

refining them to requirements for the organization, is a sub-process in itself. The sub-

 47

process consists of the following self-explanatory steps:

3.1.1 Selecting a set of company targets or benefits that can be reached

through process improvement.

3.1.2 Verifying each target is measurable, so striving for the targets can

be considered methodical process improvement.

3.1.3 The targets will be broken up to more concrete results that can be

translated to concrete tool requirements or process methodology

practices.

The next process Step 3.2 forms the metrics and complete requirements for the tool

selection. The step combines the primary requirements that are formed in Step 3.1 and

the secondary requirements that are formed in the process Step 1 are combined in a

hierarchical system. This hierarchical system is the requirements and metrics for the

selections process.

Process Step 3.3 presents the tool selection pool. The pool is formed from the results of

process Step number 2. Process Step 2 a) presented an extreme with the most elaborate

tool set conceivable with the primary limitations from process Step 1, and Step 2 b)

presents a very lean set of tools with the same primary limitations. The selection pool,

or range of tools is the range that is positioned between these two extremes, the results

from 2 a) and 2 b). The pool is not totally constraining and it can be exceeded at need,

but the range presents a good reference.

Process Step 3.4 consists of reviewing tools and tool groups between the extreme tool

selections from Steps 2 a) and 2 b). The review is done using the tool categorization for

each category separately but taking the other selections into account. A final tool

selection is done using this review of tools.

7.2.5 IPIDDDT tool configuration and customization
The next process Step “4 IPIDDDT tool configuration and customization” includes

tasks to enable the process. This process phase is very important because the actual day-

to-day development tool part of IPIDDDT is defined in this process step.

 48

The software development tool configuration sub-process steps are:

4.1 Establish process for tool and tool configurations distribution.

4.2 Set up initial tools (selected in process Step 3) in the repository of Step 4.1

and modify and configure the tools.

4.X Maintain and improve the IPIDDDT configuration in day-to-day operation.

The first process Step 4.1 strives to establish a process to distribute the software and the

software configurations. Creating the distribution process includes the implementation

of a repository structure, to maintain the software that is used, the configurations to that

software and to maintain all templates. The process of software distribution can be

created, after the implementation of the repositories. The distribution process defines

how the repositories are used and how the changes made in the repository will be

propagated throughout the organization.

The second Step 4.2 consists of setting up the repositories and the tools initial

configurations. This step varies a lot depending on the tools, repositories, and the

organization type.

The final Step 4.X is an ongoing step, that should be started and continued until the next

iteration of the improvement effort. The Step 4.X consists of maintaining and improving

the configurations and settings of the software development tools that have been

selected. This process is also able to switch tools, in case a newer version or a better

tool emerges. The switching of tools, like the tools that function as repositories for the

process tools, can be difficult or impossible in normal use. These tools, that can not be

switched in normal use, must be switched in the large improvement iterations of

implementation process Step 5.

7.2.6 IPIDDDT method iteration in constant process
improvement
The process Step 5, or the iteration of the IPIDDDT implementation, is done after a

substantial time or change in the composition of the organization of the initial setup of

IPIDDDT. The aim of this process step is to select new tools and re-align the tooling

 49

and the goals according to the changing environment of the organization.

The sub-process of process Step 5 consist of

5.1 Verify progress based on the improvement metrics defined in process Step

3.2.

5.2 Update the IPIDDDT goals according to reviewed priorities and progress

and rerun the process steps 3 – 5, or in case of organizational changes rerun

steps

Process Step 5.1 is verifying the progress based on the improvement metrics set up in

process Step 3.2. The progress is verified by evaluating the metrics, and selecting which

goals have been attained, which goals have not been reached and an analysis into the

possible reasons of the success of the IPIDDDT effort.

The second Step 5.2 stands for the iteration of the IPIDDDT implementation process.

The IPIDDDT implementation process will be iterated completely in the case of

significant changes in the organization or in case of problems in the initial tool setup. If

the improvement effort has been a general success and the organization structure has

stayed mainly the same, then only the last process Steps 3 - 5 are necessary to repeat.

7.2.7 The IPIDDDT implementation process chart
The IPIDDDT implementation process steps have been gathered on the level of the

main process and the first level sub-process steps in the following Table 8. The process

steps have been presented in more detail in the previous sub-sections of Section 7.2. The

table is not a complete reference, as some sub-process steps are not visible, but the table

gives a good overview of the process steps.

 50

Process step Sub process step
1 Selecting general
selection criteria to
define initial pool.

1.1 Define the organizations size.
1.2 Define the organizations general process type.
1.3 Refine the organization size and general process type
rationale to general tool selection criteria, that serve as a
tool for creating the general pool of tools and the secondary
criteria for each selection.

2 Selecting the extreme
pools for the the tool
selection. First process
steps starting with a) and
then starting with b).

2.1 a) Using the goals of “extensive tool selection” to create
the main requirements for the tools.
2.1 b) Using the goals of “lean tool selection” to create the
main requirements for the tools.
2.2 Using the implicit pool of tools defined by process step
number 1.
2.3 Select a tool group in reference to each tool category in
the tool categorization.

3 Tool selection
according to the
IPIDDDT targets.

3.1 The selection of process improvement targets and
refining them to the primary requirements for the tool
selection of the organization. (Consists of a sub-process.)
3.2 Define and setup metrics for the improvement goals, to
enable verification of the improvement effort.
3.3 Combine the primary requirements and the requirements
of the first (1) process step as the secondary requirements to
a hierarchy to create the requirements and metrics.
3.4 Use the range of tools for each taxonomy from the
results of the previous process step (2) as the selection pool.
3.5 Review the tools from the pool against the requirements
and selection pools to select the best tools for each category.

4 IPIDDDT modification 4.1 Establish process for tool installation and configurations
distribution
4.2 Set up initial tools (selected in process step 3) in
repository and modify and configure the tools.
4.X Maintain and improve the IPIDDDT configuration in
day-to-day operation.

5 IPIDDDT process
improvement process

5.1 Review progress based on the improvement metrics set
up in process step 3.2 section.
5.2 Update the IPIDDDT goals according to reviewed
priorities and progress and rerun the process steps 3 – 5, or
in case of organizational changes rerun steps

Table 8: Steps of the IPIDDDT method implementation process

 51

8 Implementing IPIDDDT for a theoretical case

8.1 IPIDDDT implementation
A method called IPIDDDT has been presented in Chapter 7. The IPIDDDT method is a

method to enable process benefits with an implicit process that is programmed into the

tools of the software development organization. This Chapter 8 presents a theoretical

case where the IPIDDDT method is implemented. The method implementation is done

on a high abstraction level because the scope of this thesis is not to make an actual

implementation, but to present the method in a more concrete format than the

presentation in Chapter 7.

The method implementation follows the process steps of the implementation process.

Step 1. “Selecting general selection criteria to define initial pool” is presented in Section

7.2.2, the step is implemented in sections 8.2.2 and 8.3. The second Step 2. “Selecting

the extreme pools for the the tool selection” of the process is presented in Section 7.2.3,

and used in Sections 8.2.2 and 8.2.3, as well as Step 2 a) in Section 8.4 and Step 2 b) in

Section 8.5. The third Step 3. “Tool selection according to the IPIDDDT targets” is

presented in Section 7.2.4 and used in Section 8.6.

The method implementation is not performed completely because of the high

abstraction level as well as the difficulty of implementing some steps without a concrete

organization. The steps that are outside the scope of this theoretical implementation are

Step 4. “IPIDDDT modification” and Step 5. “IPIDDDT process improvement process“.

Step 4 is only briefly brushed upon in Section 8.7 while the theory was presented in

Section 7.2.5. Step 5, that was presented in Section 7.2.6, is a step that is not discussed

at all in Chapter 8.

The theoretical nature effects some aspects of the process implementation case. The

affected areas are

I) The following company is presented on a general level, and everything that is

required is extrapolated from that.

II) The metrics are a very general subjective ordering.

 52

III) Tool groups are more important than actual tools.

IV)The review of tools is done on a very high abstraction level and simply for the

purpose of presenting a method.

V) The review, ordering and selection are done simultaneously in the sections

where the selection is presented. These process implementation details should be

done in a more exact fashion in a true implementation case.

8.2 Describing the target company and project

8.2.1 Target justification
The target project and process are described according to the authors personal

experiences in small scale software development. The project and process improvement

targets are examples of issues that often need to be addressed in small scale software

development. The target company and process and project targets are presented to

enable a goal oriented presentation of the IPIDDDT method implementation.

8.2.2 Small project development
This section enacts the IPIDDDT implementation process Step 1.1 where the

organization size and type is defined. This Chapter 8 will try to implement the

IPIDDDT method for a theoretical software development company that represents a

larger group of companies. The implementing theoretical company will be defined in

this section.

The small scale development is done in a small software development company with

very small software development projects. A small project is a project that requires less

than two months of work for a single developer. The project also requires only one

software developer and possibly an architect at the beginning of the project. The roles

are handled by a single person and that one person creates all artifacts of that role. The

developers communicate directly with the customer. The projects are made in a single

iteration. The company's employee number is between 10 and 20 people. Returning

customers often buy another project on the same piece of software as the original

 53

project.

The company's projects are versatile web projects, most of the projects are written in the

Java programming language, and the rest in PHP or other web oriented languages. The

company installs the projects on externally hosted servers and maintains some of the

solutions.

8.2.3 Agile software development for small project development
This section enacts the IPIDDDT implementation process Step 1.2 “Define the

organizations general process type”. The process methodology that is selected to

achieve these targets is a generic agile software development process. A generic agile

software process stands for a software process that has the main agile traits. The main

agile traits are presented in Section 2.2. The process methodology is not a defined

software process, but a generic agile software process because the company size and

type as well as the process enactment system can not enact a complete software process

methodology. The tools that are selected are not selected to enable complete

methodologies but only certain principles and practices.

The lean software development tool selection principles are applied to modify the

selection of agile software development tools so that they apply better to the small

company and small project scenario that is presented in the previous Section 8.2.2.

8.2.4 Targeted process benefits
An explicit software process is always designed to achieve some goals for the enacting

company. The targets that can (and should) be achieved must be defined in order to

create a process that meets those needs. Process benefits in general were presented in

Section 2.2.2.

The process benefits that this company seeks are defined in three ways for the IPIDDDT

method. These three aspects are applied in Table 9.

1) There must be a clear process benefit that is aimed for, and that can be reached

with process improvement.

 54

2) Each benefit must be measurable, so true process improvement can exist.

3) Actual methods to achieve these goals are presented.

Process Benefit Benefit break up Actual methods or
practices

Increase in productivity and
employee satisfaction.
Measured by accuracy of
project prediction, return
on investment for projects,
and shorter time to
delivery.

The company will use
fewer tools that serve more
than one purpose.

Multipurpose tools

Methods, skills and
knowledge should be
distributed across he
organization.

Peer code review
Tools that enable sharing
(wiki, version control,
communication)

Better quality.
Measured by savings in
quality control.

Less defects found in the
final phases of product
delivery.

Test-driven development
Peer code review

Increase in customer
satisfaction
Measured by direct
discussion and number of
returning customers.

The final product meets
customer expectations
better.

Agile requirements process
with face-to-face
communication,
requirements mockups, and
requirements as functional
test cases.

Information and source
code of finished projects
should be available to more
than one employee.

Information management,
code management, and
program deployment from
old projects must be
standardized, and stored in
tools that enable sharing.

Increase in employee
satisfaction.
Measured by meetings and
average employment time

Employee skills must be up
to date.

New technologies and
methods that suit company
portfolio are tested on most
projects.

Skills and knowledge must
increase in company.

Peer code review
Pair programming

Table 9: Process benefit deduction for the target company

The most important process methods or practices that the tools should deliver can be

deduced from the last column of Table 9. The practices from the last column have been

placed in Table 10 below. Table 10 contains the practices that are enabled and enforced

through tool selection in the IPIDDDT selection phase in later sections.

 55

1. Multipurpose tools
2. Peer code review
3. Tools that enable sharing and communication
4. Test-driven development
5. Functional testing
6. Information management should be standardized
7. Source code management standardized
8. New technologies and methods that suit company portfolio are used in most projects

Table 10: Targeted software process methods and principles for the target company

8.3 General tool selection criteria
This section presents Step 1.3 “Refine the organization size and general process type

rationale to general tool selection criteria that serve as a tool for creating the general

pool of tools and the secondary criteria for each selection.” in the implementation

process. This step was presented in Section 7.2.2 of the implementation process. The

theory for the tool selection was presented in Chapter 5.

The tools are selected in this study using a set of selection criteria. The selection criteria

are not based on evaluation of the tools, but on a perceived value and view of the tools.

The most important selection criteria is different in all sections, while the rest of the

criteria are stable. The criteria are emphasized according to the target company and type

described in Section 8.2.

The company and project sizes are small which makes expensive tooling unsustainable.

Because of these reasons, the “Total cost of ownership including infrastructure” is one

of the most important factors to consider, in the selection. The total cost of ownership

includes at least initial costs, licenses, maintenance costs, infrastructure, and training.

The selection is made according to a perceived value of tools instead of an actual

evaluation. The perceived value is affected strongly by the fame of the tools, and the

number of articles naming them in the web communities. The most important reference

community for this selection is the agile community. An important criterion for the tool

selection is “High perceived value, esteem, or fame in the agile community”. A high

esteem often rises from being standards compliant, which enables the tool to be easily

 56

exchangeable to another standards compliant tool, which will protect an organization

from vendor lock-in.

The tools that are selected must be “Easy to use and versatile” because of the company

size and project versatility. Small projects mean that there are very small margins for

training to use new tools, especially complicated tools that are expensive to learn.

The hosting of tools is an important consideration that is closely tied to the total cost of

ownership. A tool that is hosted in-house requires infrastructure and manpower as well

as skills to maintain. These fixed costs can be problematic for a small company. On the

other hand, the externally hosted solutions can be far more expensive than an in-house

solution in a medium to long term scope. Versatility in hosting options is an important

consideration, which enables the company to choose a suitable tool to affect their cost

structure.

The basic selection criteria that where gathered in this section are presented in Table 11.

The table is referenced frequently in the following chapters.

1. Agility in Section 8.4,
1. Waste-Value ratio in Section 8.5,
1. Value according to IPIDDDT principles in Section 8.6.
2. Java tools with good usability in PHP and other web languages and concepts.
3. Total cost of ownership including infrastructure.
4. High perceived value, esteem, or fame in the agile community, with standards
compliance.
5. Ease of use and versatility.
6. Multiple hosting options → the tool can be hosted on site or at an external service.

Table 11: General tool selection criteria for the target company

8.4 Tool selection according to Agile principles
The selection of tools according to an agile criteria is done in this section, which enacts

the implementation process Step 2 a) “Selecting the extreme pools for the tool selection,

for the extensive tool selection”. The theory of this section is presented in Section 7.2.3.

 57

8.4.1 Selection criteria
The most important rationale or criteria for the selection is 1. Agile criteria in Table 11.

The agile criteria signifies that tools that support agile practices are emphasized and no

tools should be selected that require a rigid process or that need a lot of work to

maintain. The secondary selection criteria 2. - 6. are presented in Table 11.

The basis for the selection of the agile tool set is based on Section 3.1. The most

important factors in selecting tools with agile development in mind are the following:

The tools should work automatically and integrate seamlessly. Agile processes require

that the developers do not have to make an extra effort for the sake of the process, but

rather work as usual but according to the process guidelines, which itself creates

predictability and other process benefits. Another important aspect of agile software

development is that tools are not used for the sake of tools, but the tools have to deliver

tangible benefits and they can not create more than minimal overhead.

8.4.2 Project management tools
Project management tools were split up to the subcategories of Process management,

Resource management and requirements prioritization, and Process visibility in Section

4. The different categories are discussed in this section and the most appropriate tools

are presented for each category.

Agile process management tools that support agile processes can be application life-

cycle management tools like the Jazz framework which aim to support any type of

software processes and manage the process as a whole. The most extensive and rigid

application life-cycle management tools that enable agile processes are however rarely

used because their value to waste ratio is not evident, especially in smaller organizations

and diverse projects. Process authoring is also done with faster solutions than actual

process authoring tools. The most important process management tools for agile

companies are resource mapping and tracking across projects. Resource mapping and

tracking is often done using only the selected project management tools. The processes

employed for agile companies are authored to simple documents. Managing the process

with tools is not necessary in agile development.

 58

According to [Barnett and Schwaber, 2004] some sort of project management tools are

“should have” agile software development tools. Agile project management tools can be

the lightest possible tools, spreadsheets and wikis. More complex tools that are

employed are tailor made agile project management tools or agile application life-cycle

management tool sets. Agile project management tools are often wiki extensions that

follow the basics of a project: requirements, tasks, task assignment and project velocity.

Many more complex solutions combine the traditional software process and project

tools with templates and project models for agile projects. A complete industry has also

been built upon the notion of agile project management tools.

Agile software process methodologies manage resources and requirements in integrated

project management tools. If project management tools are not used then the other

solutions are lightweight solutions like spreadsheets and wikis. Spreadsheets and wikis

are often employed as support to the project management tools or, in case no project

management tools are used, then they are used as the sole means to handle resource and

requirements management. Agile software development often includes requirements

both in the form of images, mockups, and acceptance tests, these types of requirements

are references in the requirements prioritization solutions.

Process visibility metrics are essential, for any company that strives to reap any process

related benefits, like information on development velocity and project estimation. The

process visibility is addressed in software development tools, in agile companies, in the

same way as other development companies. Integrated project management tools for

agile development contain some type of velocity measurement. Visibility in the process

is integrated into agile project management tools to some degree, but to actually be

aware of the process development, some extra followups are needed with spreadsheets.

The process authoring and publishing solution that is selected for this company has to

be a system where the production of content and publishing is simple, fast and

immediately available to all. A good solution is an intranet content management system

that can be hosted on site or bought with a software as a service model. Possible

solutions that fit are WordPress type blogs or a Joomla type content management

system.

 59

The best project management solutions for agile companies are intuitive and effective

development tools. The tools that are chosen for a small company with limited resources

for process management are 1) intuitive and simple, 2) can be easily purchased as a

service, and 3) supports the agile mindset. One such product would be the Mingle

project management platform from ThoughtWorks. The project management solution

described might have problems to enable enough visibility to the process or managing a

large number of different types of resources, so spreadsheets will be applied for the

areas where project management has issues.

8.4.3 Communication
Communications tools were split up to the subcategories of Persistent documentation,

On demand documentation, and Direct communication in Section 4. The different

categories are discussed in this section and the most appropriate tools are presented for

each category.

Persistent documentation in agile software development is minimal. A concept that

embodies the principles of agile documentation is “just enough documentation” which

stands for creating the most efficient amount of documentation and scrapping

documentation that has served its purpose, documents should also aim to be “just barely

good enough” to be as effective as possible. Documents that are known to be of value

for a longer period are stored persistently as well as essential documentation of the final

product, but documentation of details or information with a lesser value is minimized in

favor of “on demand documentation”. The commented source code as well as many

other types of executable documentation like unit tests are preferred to ordinary plain

old documents. The tooling for source code commenting and unit tests are discussed in

Section 8.4.4. [Ambler, 2010]

On demand documentation is a very important part of documentation in agile software

development. Most documents that are written on demand are supporting a more direct

type of communication that is the preferred way to operate. Other on demand methods

of communication include any communication medium at hand like improvised

modeling with post-it notes and documenting the results with a digital camera. [Ambler,

2010]

 60

Direct communication is the main type of communication in agile software

development. Other forms of communication are often only for supporting direct

communication. Enabling direct communication between developers, as well as

developers and product owners, is essential because of the strong emphasis on direct

communication in agile development. Some agile practices present a user story

(requirement) as a promise for a future discussion between the developer and the

customer, instead of the actual fully described requirement. [Ambler, 2010]

The communication tools that are selected for this company need to be simple, fast and

support all the standard document formats that are used. All different types of

communication must be supported towards the clients as well as inside the company.

The following tool set was chosen for a small company and agile mindset.

OpenOffice.org office tools were selected, for persistent communication tools, because

the tools are versatile, support standards based formats, and the total cost of the tool is

low. The selection for on demand documentation is MediaWiki because of the ease of

use and sharing, and the versatile licensing options. Standard e-mail is used for most

non-live-communication with the user's preferred (free) client. Skype is used for instant

messaging and VOIP because of the versatility of the tool, the licensing options, and the

wide popularity of the program. Finally the presentation and conferencing needs are

handled with Vyew web-conferencing.

8.4.4 Development activities
Tools related to development activities were split up to the subcategories of Software

source code management, Deployment, and Quality assurance in Section 4. The

different categories are discussed in this section and the most appropriate tools are

presented for each category.

Agile software development considers source code management to be very important.

Source code management tools are used in modern software development and many

important agile concepts such as constant integration are impossible without source

code management tools like software configuration management tools. Many agile

practices like self-documenting code, self-testing code, automatic deployment, and

 61

constant integration affect and are affected by the different development activities

including source code management. Most software development is done using

integrated development environments. The value of the integrated development

environment is emphasized in agile software development because development tools

must integrate more seamlessly than in traditional development. An agile development

IDE must at least integrate the writing of source code to the software configuration

management tools and the unit testing tools.

Agile deployment management manages the configuration, building and deployment of

software to different servers as well as running the required automated quality

assurance. The level of automation and use of tools is strongly related to the

development practices that are used. A wide tool set is required, for example, in a

complete constant integration cycle with automated dependency management. The

complete constant integration cycle, with automated dependency management, requires

an automated build tool that fetches source code from the software configuration

management tools, fetches dependencies with dependency management, deploys the

changes using a build tool, runs the required quality assurance with testing tools, and

publishes the new version in the dependency management repository. [Fowler, 2006 (2)]

Quality assurance of software code is an integral part of all software development.

Quality assurance in agile companies is integrated to the development cycle. Integrated

and automated testing tools are required for sustainable agile development, where all the

code is tested in all iterations of the development effort. Integrated software

development signifies self-testing code and automated tests. Some unit testing

frameworks are needed to enable self-testing code on a unit level. Acceptance testing

frameworks are required to verify the functionality related to the customer requirements

of the software. Web based services require performance tests as well, for the

nonfunctional requirements of the software. Finally, user interface tests are required in

most web projects that have a user interface. All tests are run on all committed code at

short intervals in the case of constant integration. [Fowler, 2006 (2)]

The development solution that is selected for this company is a system where the

production of code is simple in a standard Integrated Development Environment (IDE).

The very broadly supported and available Eclipse IDE is selected because of the large

 62

number of development languages and community support that are available. The

source code will be managed on a subversion server for software configuration

management, automatic backup, as well as support for continuous integration.

The deployment tools that are selected are the CruiseControl framework that has gained

much popularity and supports constant integration, and it will be integrated with the

Maven build tool and a repository manager called Nexus, a repository manager for

Maven's dependency management. The source code will be automatically deployed to a

quality assurance server with CruiseControl and Maven. The quality assurance tools that

are selected are the xUnit family for unit testing, FitNesse for acceptance testing,

Selenium for user interface testing, and Jmeter for performance testing.

8.4.5 Summary of selected tools
A set of tools where selected for an agile company according to the rationale of agility

as presented in Section 3.1 and the general criteria presented in Section 8.3, Table 12

contains that selection. The selection is the upper bound of the tool selection pool

according to the IPIDDDT implementation process.

The general tools that were selected are common agile software development tools. The

tools are not to be taken literally as the best tools, but rather as representatives of their

tool types in this phase of the IPIDDDT process.

 63

Activity Sub Activity Tool
Project management Process management Mingle, WordPress

Resource management and
requirements prioritization

Mingle, OpenOffice.org Calc

Process visibility Mingle, OpenOffice.org Calc
Communication Persistent documentation OpenOffice.org write

On demand documentation MediaWiki
Direct communication E-mail, skype (voip and instant

messaging), Vyew (web-
conference)

Development
activities

Writing software source code Subversion, Eclipse
Deployment CruiseControl, Maven, Nexus
Quality assurance Junit, FitNesse, Jmeter,

Selenium

Table 12: Tool selection for a small agile company

8.5 Removing excess tools with concepts from Lean software
development

8.5.1 Selection criteria and rationale
Section 8.5 enacts the implementation process Step 2 b) “Selecting the extreme pools

for the tool selection, for the lean tool selection” the theory of this section is presented

in Section 7.2.3. I elaborated in Section 3.2 on what lean software development is, and

how lean software development concepts could be used to select software development

tools. This section will modify the set of agile development tools presented in the

previous chapter for a small software company. The tools will be selected using the

concept of Value-Stream mapping. A Value-Stream mapping will reduce the tools that

cause significant waste without significant value. Significant value will be assessed in

relation to the size of company as presented in Section 8.2.2 and methods that the target

company uses. The secondary criteria are presented in Table 11.

Software development in a small software company requires only a subset of the

software tools needed in agile software development in general. A company that has, on

each project, only one or two employees that are co-located do not need the same tool

infrastructure as a globally dispersed team that creates large pieces of software with a

 64

large number of iterations. The tools that are necessary and proportionate for this type of

organization will be chosen without much reference to the software process. Enforcing

the software process through tooling will be addressed in the next Section 8.6.

8.5.2 Project management tools
Project management tools were split up to the subcategories of Process management,

Resource management and requirements prioritization, and Process visibility in Chapter

4. The different categories are discussed in this section and the most appropriate tools

are presented for each category.

Process management in a small company requires that managerial tasks and resource

allocation is as easy and simple as possible, especially when the employee number and

project sizes are small, otherwise the process management would be wasteful. Another

important reason for process management is the visibility into several projects, and that

the information persist to a useful degree. A very simple solution is sufficient when the

number of employees is very small and the number of simultaneous projects is limited.

A tool that will suffice is spreadsheets because the management of projects is limited to

very few users and the management of projects is in the hands of the single users. All

management that bring actual value to the customer can be handled through

spreadsheets.

Managing a small company's resources can be done with simple tools like spreadsheets

when the employee number and other resources are limited. Another important

consideration is if the resources are managed by a single person or a few co-located

people. The requirements prioritization can also be handled by a spreadsheet that is

located on a shared drive. There are few reasons for a more complex solution in a small

company.

Process visibility is questionable to be of significance in this size and versatility of

projects because, for example, the predictability of small versatile projects is very poor

in proportion to the complete project size. Prediction of the next iteration is impossible

in cases where there is only a single iteration and predictions for other projects are

difficult in cases where the projects differ from each other significantly and the project

 65

is processed in an agile way. Process visibility is not managed in any other way than

with the existing spreadsheets.

8.5.3 Communication
Communications tools were split up to the subcategories of Persistent documentation,

On demand documentation, and Direct communication in Chapter 4. The different

categories are discussed in this section and the most appropriate tools are presented for

each category.

Persistent documentation will be managed with file shares and office tools. Creating and

storing documentation in a more complex fashion is too expensive for this simple type

of development. The solution for managing the documentation does not significantly

change between this and the previous agile section, but it differs in motivation.

On-demand documentation will be managed in the most suitable fashion selected

independently by the developers. The on demand documentation will not be shared

through the company because single developers with only a few projects manage their

own on demand documentation in their own projects. The coherent storing and

searchability of this data is not valuable in the waste-value sense of the word.

Direct communication will be managed with email, instant messaging, and VOIP. The

value of web conferencing is not evident in a company of this size. Web conferencing is

not required in internal communication because each projects only consists of co-

located developers. An on-demand solution is sufficient in the case of broadcast type

customer communications, if such need would arise.

8.5.4 Development activities
Tools related to development activities were split up to the subcategories of Software

source code management, Deployment, and Quality assurance in Chapter 4. The

different categories are discussed in this section and the most appropriate tools are

presented for each category.

Software source code will be handled with the eclipse IDE that will be the standard tool,

source code management is use full and will be handled with distributed source code

 66

management. Developers will manage their code locally with git and make backup

copies with git too. Code will be swapped between developers local git repositories

when switching projects or building on old code.

Deployment will be managed with simple build tools because versatile projects require

unique deployment settings and the project sizes are less then one iteration. Automated

quality assurance as well as continuous integration do not bring significant benefits to

projects that last less than one iteration.

Automated quality assurance presents a new level of complication to software

development. The complexity of automated quality assurance is added to iterative

development because it is done more than once. The project size in this company was

very small – less than one iteration and automated quality assurance must be considered

waste. Unit testing is a discipline which helps to prevent the code from degrading on

further development. Unit testing is also considered a waste in the case of small

versatile projects without any reasons to suspect continued development. Other quality

assurance tools that are used manually will have to be employed to meet customer

requirements.

8.5.5 Summary of selected tools
A set of tools has been selected in this chapter. The tool selection was made by applying

lean concepts to the agile tool selection that was done in Section 8.4. The new tool set is

identified by being very light both in skills and expenses, imposing minimal control,

and allowing nothing to come in the way of development. The tools that are selected

after applying the lean concepts are presented in Table 13.

The selection that was made in this chapter emphasized immediate waste and value,

while disregarding any projections to future development. In lean concepts projected

value would be discussed with the concepts of temporary, or necessary waste, and they

would not be so hastily set aside. The next Section 8.6, that presents a way of expanding

the tool set through process needs, employ implicitly the concepts of temporary or

necessary waste for greater benefits at a later point in time.

 67

Activity Sub Activity Tool
Project management Process management OpenOffice.org Calc

Resource management and
requirements prioritization

OpenOffice.org Calc

Process visibility OpenOffice.org Calc
Communication Persistent documentation OpenOffice.org write

On demand documentation -
Direct communication E-mail, skype (voip and

instant messaging)
Development activities Writing software source

code
Subversion, Eclipse

Deployment Ant
Quality assurance FitNesse, Jmeter, Selenium

Table 13: Tool selection table after applying Lean concepts

8.6 The tool selection according to the IPIDDDT principles

8.6.1 Selection criteria and rationale
Section 8.6 enacts the implementation process Step 3 “Tool selection according to the

IPIDDDT targets” the theory of the implementation process step is presented in Section

7.2.4. The aim of Section 8.6 is to find a middle ground between the two selection

extremes from implementation Steps 2 a) and 2 b). The selection of tools will be done,

so that the tool selections enforces and enables software development practices that

where discussed in Section 8.2.4 and gathered in Table 10. The other selection criteria

are presented in Table 11.

8.6.2 Project management tools
Project management tools were split up to the subcategories of Process management,

Resource management and requirements prioritization, and Process visibility in Chapter

4. The different categories are discussed in this section and the most appropriate tools

are presented for each category.

The process management tools that where selected in the previous phases where either

Mingle and WordPress for an agile company and spreadsheets when the immediate

 68

value of the tool was measured with lean concepts. This section will try to identify how

or what process management tools might enable or enforce a benefit that was presented

in Table 10.

The best tool for process management is the one that enables or enforces most of the

process methods and principles, while keeping in mind the type of company that is

described. The process method 1. “Multipurpose tools” is best handled by the Mingle

solution. Mingle can be used for many communications needs and requirements

management needs. It enables also automatically some of the process metrics that are

needed for the process visibility. Mingle is the solution that excels in criteria number 3.

“Tools that enable sharing and communication” as well as provides a part solution for

the criteria number 6. “Information management should be standardized”. Mingle also

provides room to grow as well as the immediate benefits. Other tools do not perform

better in the other process methods and principles either so Mingle is the best solution in

this case.

Resource management and process visibility use very similar tools to the process

management section. The Mingle solution is the best solution according to the the same

rationale as in the previous paragraph.

The problems associated with Mingle are that its automatic metrics do not provide

complete visibility into all areas that might be interesting and that it is not open source

nor free software. On the other hand mingle has high esteem in the agile community. In

this case the process benefits outweigh these issues clearly and Mingle is the suggested

solution for this company.

In the previous chapters OpenOffice.org Calc would be used for visibility and other

tasks where mingle would not be able to reach. In reference to the criteria presented, an

extra tool would be wasteful in many ways and must be cut from the selection.

8.6.3 Communication
Communications tools were split up to the subcategories of Persistent documentation,

On demand documentation, and Direct communication in Chapter 4. The different

categories are discussed in this section and the most appropriate tools are presented for

 69

each category.

The previously selected communications tools for persistent documentation where

office tools for writing. Office tools are a standard way of communicating to customers

and end users and can not be disregarded. Other types of documentation should be used

in cases where other types of documentation are possible. Other types of documentation

are for instance HTML documents and HTML mockups to present the user interface in

stead of plain old documents. This setting is well in line with method: 1. “Multipurpose

tools” from Table 10, for the IDE for writing HTML. Graphics that are required for the

documentation should be created with the same tools as development graphics are

produced, a suitable tool for this is GIMP.

On demand documentation could be produced on a common server where it is available

to all or in a non structured way without centralized storage or sharing. The process

benefits that are aimed for especially in the view of “3. sharing and communication”

and “6. Information management should be standardized” favor a centralized model

where information related to certain projects is stored in a structured manner. In this

case a centralized project management system that includes a wiki has already been

chosen so the process target of “1. multipurpose tools” helps to define the solution as

Mingle.

Direct communications are important and they are handled in both the agile scenario

and the leaner version in much the same way. The process targets do not require any

changes to that selection, so the set from the previous phase: e-mail and Skype stands.

8.6.4 Development activities
Tools related to development activities were split up to the subcategories of Software

source code management, Deployment, and Quality assurance in Chapter 4. The

different categories are discussed in this section and the most appropriate tools are

presented for each category.

The management of development activities is the most important value adding process

of software development and tools to support it must be selected with much care. The

methods and principles of Table 10 address a number of issues especially in the

 70

processes relating to development activities. The practices of “2. peer code review”, “4.

Test driven development”, “5. Functional testing”, and “7. Source code management

standardized”, are all mainly development activities.

Writing software source code is done in an integrated development environment. The

integrated development environment that was proposed in the previous phases was

Eclipse. Eclipse is the best solution for a small company even in reference to the process

methods because the process methods do not bring new issues that would effect the

previous outcome.

The software configuration management tools that where presented previously where

Apache Subversion and Git. Apache Subversion is selected as a centralized software

configuration management tool and Git as a distributed one. There are both pros and

cons for the both solutions in the process methods and principles. “2. Peer code review”

could benefit from a distributed system where the reviewer could verify the code first

from a distributed repository before putting it in a quality assurance repository. On the

other hand “7. Source code management standardized” points to a tool with a more

standard process of operating like a centralized system. Apache Subversion is selected

because the peer code review can be managed in a centralized system as well and

automatic quality assurance like constant integration benefits from a centralized

management solution [Fowler, 2006 (2)].

The deployment tools that were presented previously where Maven, Nexus, and Cruise

Control versus simply Ant. Cruise Control is a very efficient tool for practices like

constant integration, but in the case of a small company where there is usually only one

programmer on each project, constant integration is not necessary. Automating the

dependency management and creating a way to enforce dependency and software

requirements is valuable for the process methods and principles “6. Information

management should be standardized”, “7. Source code management should be

standardized”, as well as “8. New technologies and methods that suit the company

portfolio are used in most projects” so Maven and Nexus are justified. The process

methods and principles of “4. Test-driven development” and “5. Functional testing” can

be handled well by Maven and the tools for quality assurance. The tools for quality

assurance are the same in both previous cases so there are no changes to those. The

 71

quality assurance tools are the xUnit frameworks, FitNesse, Jmeter, and Selenium.

8.6.5 Summary of selected tools
Tools that where selected for the target company and process with the IPIDDDT method

are presented in Table 14. The tools that were selected present a good set of tools that

would aid or benefit a company seeking the kinds of process benefits that were

described in Section 8.2.4. The solution set present a very small set of tools, developers

would work basically in two tools the project management system and the IDE, all other

tools would integrate inside these main tools.

The selection of a handful of tools does not signify process enforcement. But if the

selection includes unit testing tools then some level of unit testing is enforced. The

enforcement of the more strict process methodologies evolve from a simultaneous use

of tool selection and template and light process the way it was presented in Section 7.1.

Activity Sub Activity Tool
Project management Process management Mingle

Resource management and
requirements prioritization

Mingle

Process visibility Mingle
Communication Persistent documentation OpenOffice.org write,

eclipseIDE, GIMP
On demand documentation Mingle
Direct communication E-mail, skype (voip and

instant messaging)
Development activities Writing software source

code
Subversion, Eclipse

Deployment Maven, Nexus
Quality assurance Xunit, FitNesse, Jmeter,

Selenium

Table 14: Tool selection table after applying the IPIDDDT method

8.7 IPIDDDT practices after tool selection
The tool selection alone can not enable and enforce the software development practices

that the target company strives for. A way to further enable and enforce practices was

 72

presented in Section 7.2.5. The select software development tools need to be integrated,

configured, and managed to further enable and enforce software development practices.

The integration, configuration, and management of the tool set could probably be done

using the Maven build tools and the Nexus repository manager, another more

complicated file management solution, some custom made tools, or a combination of

the previous. The actual implementation of these process steps, is not within the scope

of this study, for this theoretical case.

 73

9 Conclusions

9.1 Conclusions on the IPIDDDT method
The IPIDDDT implementation process, that was presented in Section 7.2, was used, in

Chapter 8 for a theoretical case, to illustrate the use of the IPIDDDT method for a

company. The implementation was done on a fairly high level of abstraction and the

tools that were selected where examples of their tool class more than actual selected

tools. The selection was easy to do with the high level criteria. The general criteria

would probably be more complex and specific in a real world scenario.

The selected tools that were placed in the selection pools where logical and tools that

could well be seen in these kinds of scenarios. The final selection was done according to

the rationale presented and supported the selected methods. The selection method has

no clear problems from the point of view of the theoretical implementation case.

9.2 Further studies
The IPIDDDT method principles were presented on a high theoretical level but only the

tool selection was addressed in more detail. An important further study would go into

the actual modification of the development tools as well as the management of those

tools and changes in repositories. These two issues are more concrete, and related to the

actual software development tools, and the issues are outside the scope of this thesis, but

the extent of possible modification as well as the ease of management of the tool and

change repositories is a question for the success of the IPIDDDT method.

An important next step is to do an actual case implementation, where the actual

problems of the solution would be solved. The method has yet only been proposed and

sketched out, a further implementation test would probably call for modifications in the

actual method as well as the implementation process.

9.3 The possible significance of the IPIDDDT method
The IPIDDDT method is not revolutionary in what it does. To select tools and to

customize those tools for use with a software development practice like test-driven

 74

development is not uncommon. The revolution is in the methodical inversion of the

order and prioritization the process selection and improvement effort.

There are two distinct methods that are good to contrast with the IPIDDDT method. The

first method is the method to adapt a software development practice in a company. 1) A

software development practice that is considered beneficial is identified. 2) The practice

is adapted to the target company and the company's tools, new tools are incorporated if

needed.

The second method is the traditional software development company consensus for

ordering of events in the case of implementing a software process and software process

improvement. 1) A process engineering process is used to create a software process. 2)

The company practices and tools are adapted to the new process. 3) The process is

enacted in the company. 4) Process metrics are gathered and a process improvement

process is initiated.

The IPIDDDT method proposes a third way in the subsection of the two methods

presented above. The method has the following steps. 1) Define attainable process

benefits. 2) Choose practices that support reaching those benefits. 3) Choose the tool set

of the company to most effectively support and enable the selected practices. 4)

Improve the implicit process (tools, configurations and templates) constantly.

A few main differences between the three methods are presented below in Table 15. The

first method for adapting a single software development practice is under the heading

“Practice”, the implementation of a software process methodology is under the heading

“Process”, and the IPIDDDT methodology of using tools to implement some practices

that provide process rewards is under the heading of “IPIDDDT”.

 75

Practice Process IPIDDDT
“We change how we do
something and it results in
some change somewhere.”

“We change everything we
do and do it in a structured
way and everything
improves.”

“We strive for
improvements in a few key
areas and do an methodical
effort to gain the benefits.”

Small emphasis on tools Varying emphasis on tools Large emphasis on tools
Cheap Expensive Cheap

Table 15: Key differences in typical approaches and IPIDDDT to process benefits

The IPIDDDT model is very strong theoretically when comparing the basic models of

software development in Table 15 for the very small company, and the questions and

answers in Section 6.2 are real and acute in the world of small scale software

development. Hopefully this contribution can help create solutions to small companies

that enable them to create better quality with a smaller effort, and enable, for instance,

agile development benefits for companies with projects that last less then one iteration.

 76

Bibliography

Abrahamsson et al. 2002: P. Abrahamsson, O. Salo, J. Ronkainen, J. Warsta, Agile
software development methods, Review and analysis, 2002, VTT Technical Research
Centre of Finland, Vuorimiehentie 5, P.O. Box 2000, FIN-02044 VTT, Finland

Ambler, 2010: S. W. Ambler, Agile/Lean Documentation: Strategies for Agile Software
Development, 2010, http://www.agilemodeling.com/essays/agileDocumentation.htm,
8/15/2010

Agile Manifesto, 2001: K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, et al., Manifesto for Agile Software Development, 2001,
http://agilemanifesto.org/, 9/15/2010

Barnett and Schwaber, 2004: L. Barnett, C. Schwaber, Agile Development Teams Need
Tools, Too, 2004, Forrester Research, Inc., 400 Technology Square, Cambridge, MA
02139 USA

Brugge and Dutoit, 2004: B. Brugge, A. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns,and Java, second edition., 2004, Prentice Hall, NY, USA.

Byrnes and Phillips, 1996: P. Byrnes, M. Phillips, Software Capability Evaluation,
Version 3.0, Method Description, 1996, Carnegie Mellon University, Software
Engineering Institute, Pittsburgh, Pennsylvania 15213

Cockburn, 2004: A. Cockburn, What the Agile Toolbox Contains, Cross Talk,
November, 2004, http://alistair.cockburn.us/What+the+agile+toolbox+contains,
8/15/2010

Coleman Dangle et al., 2005: K. Coleman Dangle, P. Larsen, M. Shaw, M. V. Zelkowitz,
Software Process Improvement in Small Organizations: A Case Study, IEEE Software,
November/December, p. 68-75, 2005

Feiler and Humphrey, 1993: P. H. Feiler, W. S. Humphrey, Software Process
Development and Enactment: Concepts and Definitions, 1993, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, Pennsylvania 15213

Firth et al., 1987: R. Firth, V. Mosley, R. Pethia, L. Roberts, W. Wood, A Guide to the
Classification and Assessment of Software Engineering Tools, 1987, Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, Pennsylvania 15213

Fowler, 2006 (2): M. Fowler, Continuous Integration, 2006,
martinfowler.com/articles/continuousIntegration.html, 8/22/2010

IEEE std. 1074-1997: IEEE, IEEE Standard for DevelopingSoftware Life Cycle
Processes, 1997, The Institute of Electrical and Electronics Engineers, Inc. 345 East
47th Street, New York, NY 10017-2394, USA

Larman and Vodde, 2009: C. Larman, V. Vodde, Lean primer, Version 1.5, 2009,
www.leanprimer.com

Royce, 1970: W. Royce, Managing the Development of Large Software Systems,
Proceedings, IEEE WESCON, August, p. 1-9, 1970, The Institute of Electrical and
Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA

Rozum, 1993: J. A. Rozum, Concepts on Measuring the Benefits of Software Process
Improvements, 1993, Carnegie Mellon University, Software Engineering Institute,
Pittsburgh, Pennsylvania 15213

Schwaber, 2006: C. Schwaber, The Changing Face Of Application Life-Cycle
Management, 2006, Forrester Research, Inc., 400 Technology Square, Cambridge, MA
02139 USA

Schwaber, 2007: C. Schwaber, The Truth About Agile Processes, 2007, Forrester
Research, Inc., 400 Technology Square, Cambridge, MA 02139 USA

Shaikh et al. 2009: A. Shaikh, A. Ahmed, N. Memon, M. Memon, Strengths and
Weaknesses of Maturity Driven Process Improvement Effort, International Conference
on Complex, Intelligent and Software Intensive Systems, 481 - 486, 2009

Simons, 2002: M. Simons, How to Succeed at Offshore Agile Development, 2002,
http://www.informit.com/articles/article.aspx?p=25929&seqNum=5, 5/15/2010

SPEM 2.0: Object Management Group, Software & Systems Process Engineering Meta-
Model Specification version 2.0, 2008, http://www.omg.org/spec/SPEM/2.0/PDF

Zhu et al., 2006: H. Zhu, M. Zhou, P. Seguin, Supporting Software Development With
Roles, IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and
Humans, Vol. 36, November, 2006

	1 Introduction
	2 Background on software development processes and tools
	2.1 Software development
	2.2 Agile software development processes
	2.2.1 The agile development process
	2.2.2 Benefits of using a software development process
	2.2.3 Implementation of a software process methodology

	2.3 Application life-cycle management
	2.4 Software development tools
	2.4.1 The aim of software development tools
	2.4.2 Categorization of software development tools
	2.4.3 Selecting software development tools

	2.5 Definition of small scale software development

	3 Agile software process methodologies' relationship to software development tools
	3.1 Agile software development's view on tools
	3.1.1 Agile software development and tools
	3.1.2 Agile tools in practice

	3.2 Lean software development and selecting software development tools
	3.2.1 Lean software development concepts
	3.2.2 Waste in software development
	3.2.3 Tool value listing

	4 Software development tool categorization
	4.1 Project management
	4.1.1 Process management
	4.1.2 Resource management and requirements prioritization
	4.1.3 Process visibility

	4.2 Communication
	4.2.1 Persistent documentation
	4.2.2 On demand documentation
	4.2.3 Direct communication

	4.3 Development activities
	4.3.1 Writing software source code
	4.3.2 Deployment
	4.3.3 Quality assurance

	4.4 Tool functionality and categorization table

	5 A software development tool selection process
	6 Software process management and improvement
	6.1 Process authoring, publishing, enactment, enforcement and improvement
	6.2 Problems and solutions to process maintenance in small companies
	6.2.1 Software process maintenance issues with dedicated tools
	6.2.2 Software process maintenance issues with a separate process document
	6.2.3 A software process maintenance solution for small companies

	7 The IPIDDDT method
	7.1 Implicit process improvement through day-to-day development tools
	7.1.1 IPIDDDT basic principles
	7.1.2 IPIDDDT examples

	7.2 IPIDDDT implementation
	7.2.1 IPIDDDT implementation process
	7.2.2 Selecting general selection criteria to define initial pool
	7.2.3 Selecting the extreme pools for the the tool selection
	7.2.4 Tool selection according to the IPIDDDT targets
	7.2.5 IPIDDDT tool configuration and customization
	7.2.6 IPIDDDT method iteration in constant process improvement
	7.2.7 The IPIDDDT implementation process chart

	8 Implementing IPIDDDT for a theoretical case
	8.1 IPIDDDT implementation
	8.2 Describing the target company and project
	8.2.1 Target justification
	8.2.2 Small project development
	8.2.3 Agile software development for small project development
	8.2.4 Targeted process benefits

	8.3 General tool selection criteria
	8.4 Tool selection according to Agile principles
	8.4.1 Selection criteria
	8.4.2 Project management tools
	8.4.3 Communication
	8.4.4 Development activities
	8.4.5 Summary of selected tools

	8.5 Removing excess tools with concepts from Lean software development
	8.5.1 Selection criteria and rationale
	8.5.2 Project management tools
	8.5.3 Communication
	8.5.4 Development activities
	8.5.5 Summary of selected tools

	8.6 The tool selection according to the IPIDDDT principles
	8.6.1 Selection criteria and rationale
	8.6.2 Project management tools
	8.6.3 Communication
	8.6.4 Development activities
	8.6.5 Summary of selected tools

	8.7 IPIDDDT practices after tool selection

	9 Conclusions
	9.1 Conclusions on the IPIDDDT method
	9.2 Further studies
	9.3 The possible significance of the IPIDDDT method

