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ABSTRACT: The aim of this study was to characterize the cellular mechanisms 

leading to the beneficial effect of anti-oxidative gene therapy and pro-angiogenic 

stem cell therapy in acute peripheral ischemia. Post-ischemic events aim to re-

establish tissue blood perfusion, to clear cellular debris, and to regenerate lost 

tissue by differentiation of satellite cells into myoblasts. Although leukocytes have 

an essential role in clearing cellular debris and promoting angiogenesis, they also 

contribute to tissue injury through excessive ROS production. 

First, we investigated the therapeutic properties of extracellular superoxide 

dismutase (SOD3) gene transfer. SOD3 was shown to reduce oxidative stress, to 

normalize glucose metabolism, and to enhance cell proliferation in the ischemic 

muscle. Analysis of the mitogenic Ras-Erk1/2 pathway showed SOD3 mediated 

induction offering a plausible explanation for enhanced cell proliferation. In 

addition, SOD3 reduced NF-κB activity by enhancing IκBα expression thus 

leading to reduced expression of inflammatory cytokines and adhesion molecules 

with consequent reduction in macrophage infiltration. 

Secondly, we sought to determine the fate and the effect of locally transplanted 

mesenchymal stem/stromal cells (MSCs) in acute ischemia. We showed that a vast 

majority of the transplanted cells are cleared from the injury site within 24 hours 

after local transplantation. Despite rapid clearance, transplantation was able to 

temporarily promote angiogenesis and cell proliferation in the muscle. Lack of 

graft-derived growth factor expression suggests other than secretory function to 

mediate this observed effect. 

In conclusion, both SOD3 and MSCs could be utilized to alleviate peripheral 

ischemia induced tissue injury. We have described a previously unidentified 

growth regulatory role for SOD3, and suggest a novel mechanism whereby 

transplanted MSCs enhance the reparative potential of the recipient tissue through 

physical contacts. 

 

Keywords: SOD3, Mesenchymal stem/stromal cell, Oxidative Stress, Angiogenesis, 

Inflammation, Cell proliferation, Peripheral Ischemia 
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TIIVISTELMÄ: Iskemian jälkeiset tapahtumat pyrkivät palauttamaan 

verenkierron kudokseen, poistamaan kuolleiden solujen jäänteet ja lopuksi 

korvaamaan menetetyt solut satelliittisolujen erilaistumisen kautta. Tämän 

tutkimuksen tavoitteena oli määrittää antioksidatiivisen geeniterapian ja 

verisuonten uudismuodostusta edistävän kantasoluterapian vaikutuksia lihaksen 

parantumiseen perifeerisessä iskemiassa. 

Tutkimme superoksidismutaasi 3 (SOD3)-geeniterapian vaikutusmekanismia 

iskeemisessä lihaksessa. SOD3 vähensi lihaksen happiradikaalistressiä, normalisoi 

kudoksen metaboliaa ja lisäsi solujen jakaantumista. SOD3 lisäsi solun 

jakautumista välittävän Ras-Erk1/2 signalointiverkoston aktiivisuutta, mikä tarjoaa 

mahdollisen selityksen SOD3:n aiheuttamalle solun jakaantumisen lisäykselle 

kudoksessa. Tulehdusta välittävien tekijöiden analyysi osoitti SOD3:n vähentävän 

NF-κB transkriptiotekijän aktiivisuutta, johtaen vähentyneeseen makrofagien 

kerääntymiseen kudokseen. 

Toisena tavoitteenamme oli määrittää mesenkymaalisen kantasolusiiroksen 

(mesenchymal stromal cells, MSC) vaikutus ja siirrettyjen solujen kohtalo 

akuutissa alaraajaiskemiassa. Suurin osa kantasoluista tuhoutui vuorokauden 

kuluessa paikallisesta siirteestä, mistä huolimatta kantasolut kykenivät 

väliaikaisesti edistämään verisuonten muodostumista ja solujen jakaantumista. 

Emme kuitenkaan havainneet kantasoluista lähtöisin olevia eritettäviä 

kasvutekijöitä, mikä viittaisi muun kuin eritystoiminnan olevan tehtyjen 

havaintojen takana. 

Yhteenvetona, tulostemme mukaan sekä SOD3 että MSC:t ovat 

hyödynnettävissä lieventämään perifeerisen iskemian aiheuttamaa kudosvauriota. 

Osoitimme aikaisemmin tuntemattoman kasvua edistävän vaikutuksen SOD3:lle ja 

näytimme MSC:n edistävän vastaanottajakudoksen omaa parantumisprosessia 

fyysisen kontaktin kautta. 
 

Avainsanat: SOD3, mesenkymaaliset kantasolut, happiradikaalistressi, uudissuonitus, 

solunjakautuminen, tulehdus,perifeerinen iskemia 
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 ABBREVIATIONS 
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Akt/PKB Akt/Protein kinase B 
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BM  Basement membrane 

 Bone marrow 

BMT  Bone marrow transplantation 

CAD  Coronary artery disease 
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CCL Chemokine (C-C motif) ligand 

CCR Chemokine (C-C motif) receptor 

CD  Cluster of differentiation 

CLI  Critical limb ischemia 

CREB   cAMP responsive element binding protein 
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EC  Endothelial cell 

 Extracellular 

ECM Extracellular matrix 

EGFR  Epidermal growth factor receptor 

EPC Endothelial progenitor cell 

Erk   Extracellular signal regulated kinase 

FDG  18-Fluorodeoxyglucose 

FGF Fibroblastic growth factor 
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GEF  Guanine nucleotide exhange factor 

hESC  Human embryonic stem cell 

HIF  Hypoxia inducible factor 

H2O2 Hydrogen peroxide 
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ICAM   Intercellular cell adhesion molecule 

IFN Interferon 

IkB Inhibitor of kB 

IKK  IkB kinase 

IL  Interleukin 

IVIS  In vivo imaging system 

JNK  c-Jun terminal kinase 

LPS  Lipopolysaccharide 

MAPK  Mitogen activated protein kinase 

MCP   Macrophage chemoattractant/chemotactic protein 

Mek MAPK/Erk kinase 

MHC  Major histocompatibility complex 

MIP  Macrophage inflammatory protein 

MMP Matrix metalloproteinase 
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MSC Mesenchymal stem/stromal cell 
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NF-κB  Nuclear factor-κB 

NO  Nitric oxide 

NOS  Nitric oxide synthase 

Nox  NADPH oxidase 

O2•
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PAD  Peripheral artery disease 

PDGF Platelet derived growth factor 

PDGFR  PDGF receptor 

PET  Positron emission tomography 

pfu  Plaque forming unit 

PECAM  Platelet endothelial cell adhesion molecule 

PI3K  Phosphatidyl inositol 3-kinase 

PKC  Protein kinase C 

PLC  Protein lipase C 

PlGF Placental growth factor 

PMN  Polymorphonuclear neutrophil 

PTP Protein tyrosine phosphatase 

Redox Reduction/oxidation 

RNS Reactive nitrogen species 

ROS  Reactive oxygen species 

RTK  Receptor tyrosine kinase 

SMC  Smooth muscle cell 

SOD Superoxide dismutase 

TGF-β Transforming growth factor 

TNF  Tumor necrosis factor 

VCAM  Vascular cell adhesion molecule 

VEGF  Vascular endothelial growth factor 

VSMC  Vascular smooth muscle cell 

vWF von Willebrand factor 

XO  Xanthine oxidase 
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 INTRODUCTION 

Assuming similar increase in life expectancy as has been experienced in past 

decades, children born today in Finland are expected to reach 83 years of age if a 

girl, and 76 years if a boy. As the incidence of peripheral artery disease (PAD) is 

12-20% in people over 65, a tremendous increase in the number of PAD patients is 

to be expected in the future. Although usually asymptomatic, PAD has prognostic 

value for coronary artery disease, and may lead to critical limb ischemia that may 

leave amputation as the only treatment option. 

PAD may be caused by any condition causing stenosis of major conducting 

arteries in the limbs. Insufficient blood flow (i.e. ischemia) initiates a cascade of 

events aiming to re-establish blood flow and to ensure recovery and proper 

function of the affected tissues. Most notable events in post-ischemic tissues are 

disturbance of tissue redox balance by increased production of reactive oxygen 

species (ROS), angiogenesis after activation of vascular endothelial cells, massive 

infiltration of inflammatory leukocytes, and regeneration of lost tissue by 

proliferating stem and progenitor cells. 

Extracellular superoxide dismutase (SOD3) and mesenchymal stromal cells 

(MSCs) have both been utilized for therapeutic purposes in varying pre-clinical 

disease models, albeit based on different mechanisms of action. SOD3 is an 

antioxidative enzyme converting superoxide into hydrogen peroxide whereas 

MSCs are though to mediate beneficial effects through e.g. promotion of vascular 

growth. Both have also been proposed to possess anti-inflammatory activity. 

Several hypotheses have been suggested to contribute to MSC-mediated tissue 

recovery but the field is riddled with controversial reports thus hindering 

advancement into clinical trials. 

The aim of this study was to characterize the cellular mechanisms mediating 

the therapeutic properties of SOD3 gene transfer. Furthermore, our goal was to 

delineate the early events after MSC transplantation in order to decipher the 

current controversy on the mode of their therapeutic action. To avoid restrictions 

of autologous cell transplantation, we compared primary bone marrow derived 

MSCs to a novel MSC population derived from embryonic stem cells that could 

potentially provide an unlimited source of material for cell therapy. 
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 REVIEW OF LITERATURE 

1 Skeletal Muscles and the Blood Vessels that Feed Them 

Muscle is a tissue specialized for contractile function, thus being responsible 

for producing body movements. Muscle contraction is dependent on the energy 

carried by ATP which is produced either by oxidative phosphorylation or 

anaerobic glycolysis. Due to high metabolic rate muscle is highly dependent on 

abundant blood supply. 

1.1 Skeletal muscle 

Skeletal muscle is composed of terminally differentiated multinucleated 

myofibers held together by connective tissue that continues as tendons that attach 

the muscle to bone. Myofibers are surrounded by thin layer of connective tissue, 

the endomysium. Bundles of myofibers are surrounded by a thicker layer of 

connective tissue named the perimysium and finally, thick epimysium surrounds 

the muscle. The perimysium contains small arteries and veins that branch into 

capillaries within the endomysium. Myofibers form by fusion of myoblasts that 

originate from self-renewing population of myogenic stem cells. Muscles of the 

trunk and the limbs originate from presomitic mesoderm while muscles of the 

head are derived from several sources, e.g. paraxial head mesoderm and the 

prechordal mesoderm (Sambasivan and Tajbakhsh, 2007). Stem cells giving rise to 

limb muscles are highly dependent on function of a paired-box transcription factor 

Pax3. Pax3 mediates migration of muscle stem cells to the limb and subsequently 

up-regulates expression of the myogenic regulatory factors (MRFs) together with 

homeodomain transcription factor Six1 (Giordani et al., 2007; Grifone et al., 2005; 

Relaix et al., 2004). Myogenesis is controlled by distinct transcriptional regulators 

depending on the location of the stem cells. However, regardless of the location of 

the cells myogenic signals converge on the MRFs: Myf5, MyoD, Mrf4, and 

Myogenin. Mice triple mutant for Myf5, MyoD, and Mrf4 completely lack skeletal 

muscle and myoblasts as myogenesis is halted at the progenitor cell stage (Kablar 

et al., 2003; Kassar-Duchossoy et al., 2004; Rudnicki et al., 1993). In contrast, 

Myogenin plays an essential role in fusion of myoblasts to form myofibers (Hasty 

et al., 1993; Nabeshima et al., 1993; Rawls et al., 1995; Venuti et al., 1995).  

Terminally differentiated myofibers are not capable of further proliferation, yet 

skeletal muscle has remarkable regenerative potential. This is due to satellite cells 

located between the plasmamembrane of myofibers and their basement membrane. 

Normally quiescent satellite cells are activated to proliferate and fuse to make 

myofibers in case of injury. The capacity of muscle to regenerate after repeated 

injuries can be attributed to satellite cell self-renewal (Collins et al., 2005; Zammit 

et al., 2006). The microenvironment maintaining the satellite cells, i.e. the satellite 

cell niche, is limited to myofiber plasmamembrane and the surrounding basement 

membrane. Live myofibers reduce satellite cell proliferation in response to 

mitogen exposure in vitro suggesting that myofibers function to maintain satellite 

cell quiescence (Bischoff, 1990). The developmental origin of satellite cells is yet 
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to be convincingly resolved. Two embryonic sources have been suggested, either 

the myogenic lineages derived from somites (Armand et al., 1983) or an 

endothelial/myogenic precursor derived from embryonic vasculature (Cossu and 

Mavilio, 2000; De Angelis et al., 1999). 

 

 

Figure 1. Structure of skeletal muscle. Individual myofibers (myocytes) are surrounded 

by a layer of connective tissue called the endomysium. Perimysium encloses bundles of 

myofibers, and finally, the muscle is enveloped by the epimysium. Blood vessels lie within 

the connective tissue. Nuclei of the multinuclear myocytes cannot be distinguished from 

satellite cell nuclei based on basic light microscopy. Staining for specific markers such as 

Pax3 or Pax7 is required to recognize satellite cells. 

1.2 Circulation and Pre-Natal Formation of Blood Vessels 

1.2.1 Vascular Structure 

Healthy living tissue requires constitutive transport of gases, nutrients, 

hormones, and circulating cells by the cardiovascular system to maintain tissue 

homeostasis. The vascular network traverses the body beginning form the aorta 

and branching successively to smaller arteries finally reaching the size of 

arterioles, terminal arterioles (metarterioles), and capillaries. From capillaries 

blood is collected into post-capillary venules that converge to larger veins finally 

draining into the right atrium of heart. Exchange of gases and nutrients takes place 

predominantly at the level of capillaries while arterioles are mainly responsible for 

regulating tissue perfusion. 

Blood vessels share the same basic structure comprised of three layers: tunica 

intima, tunica media, and tunica adventitia. The tunica intima is formed by a layer 

of endothelial cells covering the internal surface of blood vessels and surrounded 

by a basement membrane with pericytes embedded within it. The tunica media is 

mainly responsible for the thickness of arterial walls; it is made up of several 

layers of smooth muscle cells alternating with layers of elastic fibers. In veins, 

large proportion of the tunica media is composed of connective tissue with 

abundance of elastic fibers. Finally, the tunica adventitia is the outermost layer 

comprised of connective tissue and nerves. In large blood vessels tunica adventitia 

also contains capillaries supplying the smooth muscle cell layer. Due to abundance 
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of collagen fibers tunica adventitia anchors the blood vessel to the surrounding 

tissue. In contrast to larger vessels, capillaries are formed only of the tunica 

intima, i.e. a single layer of endothelial cells surrounded by pericytes within the 

basement membrane. 

1.2.2 Vasculogenesis 

The blood vasculature is the first organ to develop during embryogenesis. De 

novo formation of blood vessels is called vasculogenesis encompassing endothelial 

cell differentiation and subsequent formation of the vascular plexus. Endothelial 

cells and hematopoietic cells originate from common mesodermal ancestor, the 

hemangioblast (Jaffredo et al., 2005). Hemangioblasts form blood islands in the 

yolk sac giving rise to angioblasts at the periphery of the blood islands, and to 

hematopoietic stem cells at the centre (Choi et al., 1998). Angioblasts proliferate 

and differentiate to endothelial cells resulting in lumen formation that allows blood 

flow. Similar process occurs within the embryo, and the primitive vasculatures of 

the yolk sac and the embryo interconnect. Further development of the vascular tree 

happens mainly by angiogenesis, sprouting of new blood vessels from pre-existing 

ones. Finally, the vasculature matures by recruiting pericytes and smooth muscle 

cells, both of which are indispensable for proper vascular function (Abraham et al., 

2008; Armulik et al., 2005). 

Vascular endothelial growth factor (VEGF) is a crucial regulator of 

vasculogenesis and angiogenesis, mutation of single vegf allele leads to embryonic 

lethality (Carmeliet et al., 1996; Ferrara et al., 1996). In addition, a number of 

studies in knock-out animals have demonstrated the importance of platelet derived 

growth factor (PDGF) (Hellstrom et al., 1999; Lindahl et al., 1997), transforming 

growth factor (TGF)-β (Dickson et al., 1995; Oshima et al., 1996), and 

angiopoietins (Suri et al., 1996) in vascular development. Although these studies 

have provided important insight into embryonic vascular development in mouse, 

the formation of limb vasculature has remained poorly described since most of the 

models lead to embryonic lethality before limb development has occurred. 

Interestingly, it has been suggested that Pax3 expressing precursors of the limb 

skeletal muscle also give rise to the limb endothelium, and the differentiation fate 

is controlled by extrinsic signals (Kardon et al., 2002). 

1.2.3 Vascular Cells 

Endothelial cells, pericytes, and smooth muscle cells each exhibit distinct 

morphological features depending on their location due to functional heterogeneity 

of blood vessels. However, ECs, Pericytes and VSMCs also demonstrate 

remarkable phenotypic plasticity depending on the surrounding microenvironment. 

Endothelial cells are most commonly identified by surface markers CD31 

(PECAM), CD34, von Willebrand factor, Tie-2 and PAL-E (Pathologische 

Anatomie Leiden-endothelium). However, aortic, venous, and lymphatic 

endothelia can be distinguished by additional markers, including alkaline 

phosphatase and Ephrin B2 for arteries, dipeptidylpeptidase, and Eph B4 (receptor 

for Ephrin B2) for veins, and 5´nucleotidase or Podoplanin for lymphatic 
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endothelia. A recent study by Hong indicates opposing phosphatidylinositol-3 

kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways 

in arterial specification (Hong et al., 2006; Lamont and Childs, 2006). In skeletal 

muscle and most other tissues, the vascular endothelium is continuous layer where 

ECs adhere together through tight junctions and adherens junctions (Aird, 2007). 

The endothelium is more than merely a passive wall. By regulating leukocyte 

traffic and initiation of angiogenesis endothelium is in central role in many 

pathogenic processes such as tumor growth, atherosclerosis, and diabetes. The 

integrity of vascular endothelium is maintained by contribution of vascular mural 

cells, but also by autocrine VEGF signaling (Lee et al., 2007). Thus, VEGF not 

only mediates blood vessel formation but is also crucial factor in maintaining 

vascular homeostasis. 

Pericytes are found at varying densities around pre-capillary arterioles, 

capillaries, post-capillary venules, and collecting venules (Allt and Lawrenson, 

2001; Armulik et al., 2005). Embedded within the basement membrane (BM), 

pericytes make contacts with the endothelial cells through gaps in the BM, named 

peg-socket contacts (Cuevas et al., 1984; Gerhardt and Betsholtz, 2003; Gerhardt 

et al., 2000; Tilton et al., 1979). Apart from their unique position, pericytes can be 

identified by several molecular markers, yet none of them is completely specific 

for pericytes or recognizes all pericytes regardless of the location (Armulik et al., 

2005). The pericyte coverage varies between 10-50% in vessel abluminal area and 

between 1:100 and 1:1 in pericyte:EC ratio (Shepro and Morel, 1993), with the 

lowest pericyte to EC frequency found in skeletal muscle. Pericytes are recruited 

to developing blood vessels by endothelial expression of PDGF-B (Hellstrom et 

al., 1999; Lindahl et al., 1997). Subsequently, pericytes are thought to mediate 

microvascular stabilization and permeability (Murakami and Simons, 2009; Sato 

and Rifkin, 1989), and contractibility and tone (Rucker et al., 2000). 

Smooth muscle cells are responsible for the involuntary rhythmic contractions 

of e.g. the respiratory and gastrointestinal tracts, and of course the vascular wall. 

The principal function of the vascular smooth muscle cells is to regulate blood 

vessel diameter, blood pressure, and distribution of blood flow. VSMCs do not 

exhibit cross striatation like skeletal or cardiac muscle since myosin and actin 

filaments are scattered diffusely throughout the VSMC cytoplasm. The actin 

filaments are anchored to dense bodies connecting to a network of intermediate 

filaments desmin and vimentin. Most common markers used for identification of 

SMCs are the myosin heavy chain isoforms SM-1 and SM-2, and smooth muscle 

actin (SMA)α despite its transient expression during skeletal and cardiac muscle 

differentiation (Ruzicka and Schwartz, 1988; Sawtell and Lessard, 1989). Smooth 

muscle cells are predominantly of mesodermal origin although a sub-population of 

neural crest cells contributes to vascular endothelium of the aortic arches and 

portions of heart (Kirby, 1988; Kirby and Waldo, 1995; Le Lievre and Le Douarin, 

1975). Within respiratory and gastrointestinal tract, SMC origin has been traced to 

the mesenchyme surrounding the airway or gut epithelium, respectively (Sparrow 

and Lamb, 2003; Young, 2008). 
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2 Tissue Response to Ischemia 

2.1 Ischemic Diseases 

In order to survive cells must reside within 100-200 μm of blood vessel 

depending on local oxygen consumption and delivery (Carmeliet and Jain, 2000). 

Blood flow in resting skeletal muscle is in the range of 3-4 mL min-1 100g-1, 

relatively slow compared to heart, brain, kidney or liver (McNulty et al., 1995; 

Nair et al., 1995; Wahren, 1966). However, skeletal muscle has a tremendous 

capacity to increase blood flow in response to exercise or certain regulators of 

muscle metabolism, such as insulin or growth hormone (Baron et al., 1993; 

Fryburg et al., 1991). During intense exercise blood circulation is not able to 

supply skeletal muscle with sufficient oxygen. Thus, skeletal muscle resorts to 

anaerobic glycolysis for energy production and is regularly subjected to 

physiological hypoxia (Richardson et al., 1995). However, skeletal and cardiac 

muscles are also vulnerable to pathological ischemia, i.e. insufficient blood 

supply. 

The most common cause for ischemia is atherosclerosis, a progressive disease 

characterized by accumulation of lipids and fibrous elements into arterial walls 

(plaque formation). Thickening of the vascular wall due to plaque formation is 

compensated by artery enlargement, thus significant narrowing of the artery lumen 

(stenosis) is generated only after several cycles of plaque rupture and healing 

(Kiechl and Willeit, 1999). Atherosclerosis remains asymptomatic for decades, 

and the first manifestation of the disease is often either myocardial infarction 

(heart attack) or a stroke. Atherosclerotic coronary artery disease (CAD) is the 

leading cause of death in western world (Grech, 2003). When stenosis of coronary 

artery exceeds 50% in diameter, blood flow is reduced so much that angina may be 

experienced during stress (Grech, 2003). Furthermore, acute complications such as 

myocardial infarction arise when plaque rupture exposes lipids and initiates 

coagulation cascade leading to thrombus formation. The primary choices for 

treatment of chronic stable angina are coronary artery bypass or percutaneous 

transluminal angioplasty (O'Toole and Grech, 2003). 

Atherosclerosis is a systemic disease that may affect any artery. Atherosclerotic 

stenosis of a conducting artery of a limb leads to peripheral artery disease (PAD). 

Two classification systems based on severity of the symptoms have been 

developed for lower extremity PAD, Fontaine and Rutherford (Aslam et al., 2009). 

PAD symptoms progress from pain during walking that resolves at rest 

(claudication), to pain that also occurs at rest, and finally to ulceration and tissue 

loss. PAD affects 15-20% of Americans aged 70 or older. Majority of the patients 

are asymptomatic or express atypical leg pain, with only 10-35% exhibiting classic 

claudication (Hirsch et al., 2006). Critical limb ischemia (CLI), characterized by 

persistent rest-pain and tissue loss, affects 1-2% of patients (Norgren et al., 2007). 

Due to high prevalence of atypical and asymptomatic cases, PAD is highly under-

diagnosed. Early diagnosis would not only allow early intervention, but 

progression of PAD is a reliable predictor of CAD mortality and morbidity (Criqui 
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et al., 2008; Dunbar and Mohler, 2005). Progression of early PAD can be affected 

by life style choices such as exercise and cessation of smoking or by various 

pharmacological medicines (e.g. aspirin). The most effective treatment for CLI is 

revascularization of the affected tissue by percutaneous transluminal angioplasty 

or surgical treatment with endovascular or open vascular surgery using vein grafts 

or synthetic prostheses. However, 20-30% of patients with chronic CLI cannot be 

treated by any conventional approach leaving amputation as the only remaining 

option (Egorova et al., 2009; Norgren et al., 2007). 

2.2 Overview of Muscles Response to Ischemia 

Acute occlusion of e.g. femoral artery leads to rapid cessation of blood flow 

followed by oxygen depletion in the distal tissues. The subsequent events in the 

affected tissues aim to re-establish tissue reductive/oxidative (redox) balance and 

tissue blood perfusion, to clear cellular debris, and to regenerate lost tissue. The 

blood vasculature takes a central role in regulating these events by sensing 

perturbations in blood flow and by mediating subsequent angiogenic and 

inflammatory processes. Transcription factor hypoxia inducible factor (HIF)-1α 

has been titled the master regulator of hypoxic response (Wang and Semenza, 

1993). Activated HIF-1α induces genes associated with e.g. angiogenesis, glucose 

uptake, and energy metabolism (Semenza, 2000; Wenger, 2000). However, 

transcriptional profiles show distinct response to ischemia/reperfusion and 

hypoxia/reoxygenation in rat despite similar hypoxic burden (Aravindan et al., 

2005). Together with previous in vitro studies this suggests that mechanosensing 

of vascular shear stress is an important mediator of the transcriptional response to 

ischemia (Manevich et al., 2001; Wei et al., 1999). 

The most notable gene clusters up-regulated in response to ischemia are the 

inflammatory mediators, angiogenic factors, and stress-related transcripts (Lee et 

al., 2004; Paoni et al., 2002). Although pre-conditioning with repetitive short-term 

ischemia may afford some protection against ischemia by up-regulating 

antioxidative enzymes such as catalase and superoxide dismutase (Badhwar et al., 

2004), endogenous anti-oxidative defense may not be sufficient to overcome the 

oxidative insult after ischemia/reperfusion injury (Bolcal et al., 2007). Twenty-

four hours after experimental femoral artery ligation in mouse, the soleus muscle 

in the calf exhibits cellular swelling, focal necrosis, and interstitial edema. Two 

days later the edema has reduced, and muscle has been infiltrated by high numbers 

of leukocytes, mostly macrophages. Macrophage infiltration coincides with 

marked up-regulation of inflammatory cytokines and chemokines. At this point 

satellite cells have also begun to proliferate in order to regenerate myocytes later 

on. Transcriptional profile would suggest that satellite cells are proliferating 

during the first week after ischemic occlusion, and differentiate to myoblasts to 

regenerate myocytes during the second week (Paoni et al., 2002). At the early 

stages of injury, skeletal muscle adjusts to reduced oxygen supply by down-

regulating proteins associated with mitochondrial energy production and up-

regulating proteins involved in glycolytic pathway (Lee et al., 2004; Paoni et al., 

2002). 
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Figure 2. Tissue response to 

ischemic injury. (A) 

Following ischemic injury the 

muscle is rapidly infiltrated by 

polymorphonuclear neutrophils. 

Macrophages peak three days 

after injury and dispose dead 

neutrophils. (B) Neutrophils 

and macrophages produce an 

oxidative burst that is 

responsible for majority of 

ROS production in early 

timepoints. Production of 

ROS from endothelial cells is 

however later required for 

proper angiogenic response. 

(C) Pro-angiogenic genes are 

quickly up-regulated leading to steadily increasing capillary density within the muscle. (D) 

Due to reduced oxygen supply the muscle adjusts to anaerobic metabolism by up-

regulating glucose transporters and enzymes involved in anaerobic glycolysis. (E-F) 

Satellite cells begin to proliferate and differentiate into myoblasts and myocytes to renew 

dead muscle tissue. 

2.3 Tissue Redox Balance 

2.3.1 Dedicated Production of ROS 

Perhaps paradoxically, ischemia or hypoxia leads to rapid production of 

reactive oxygen species (ROS) from the vascular endothelium (Gorlach et al., 

2000; Zweier et al., 1988), myocytes (Jackson, 2009), and infiltrating leukocytes 

(Cambria et al., 1991). ROS include superoxide (O2•
-), hydrogen peroxide (H2O2), 

and the hydroxyl radical (OH-). Excessive production of ROS leads to cytotoxic 

effects by promoting e.g. DNA breaks and oxidative modification of proteins with 

subsequent depletion of cellular NAD and ATP pools (Ragu et al., 2007; 

Schraufstatter et al., 1987; Zweier et al., 1988). Indeed, ROS production has been 

suggested to contribute to muscle degeneration in muscular dystrophy and 

ischemia/reperfusion injury (Cambria et al., 1991; Haycock et al., 1996). 

Superoxide is produced by the mitochondrial electron-transport chain (Baudry et 

al., 2008), cytochrome P450 (Gottlieb, 2003), Xanthine oxidase (XO)(Baudry et 

al., 2008) and uncoupled nitric oxide synthase (NOS)(Heinzel et al., 1992; Sun et 

al.) but also by dedicated enzymes of the NADPH oxidase (Nox) family (Cross 

and Segal, 2004). 

The Nox complexes were first identified in phagocytes generating respiratory 

burst to kill pathogens. The Nox family has now grown to encompass seven 

members: Nox1, Nox2 (also known as gp91phox), Nox3, Nox4, Nox5, and dual 

function oxidases DUOX1 and DUOX2 (Leto and Geiszt, 2006). The best 

characterized member is the phagocytic Nox2 complex comprising enzymatically 



Review of the Literature 

 

19 

inactive membrane-associated heterodimer composed of gp91phox and p22phox 

subunits. Cytosolic regulatory subunits p47phox, p67phox, p40phox, and Rac1 or Rac2 

are recruited to the complex during enzyme activation.  NoxO1 and NoxA1, 

homologues of p47phox and p67phox are required for Nox1 activation whereas Nox4 

is constitutively active (Cheng et al., 2006; Martyn et al., 2006). Nox2 produces 

O2•
- by transporting electrons from NADPH through FAD (flavin adenine 

dinucleotide) and heme to oxygen at the opposite side of the lipid bilayer. 

However, the dual oxidases contain an N-terminal peroxidase domain which may 

release H2O2 rather than O2•
- as the primary product (Ameziane-El-Hassani et al., 

2005). 

In addition to the role of Nox2 in phagocytic oxidative burst, several studies 

have suggested the Nox enzymes as a major source of ROS in the vascular wall. 

Flow cessation induces rapid Nox-dependent superoxide production in endothelial 

cells leading to enhanced proliferation (Manevich et al., 2001; Wei et al., 1999). 

Vascular endothelial cells express low level of Nox2 that has been shown to be 

functional and inducible with PMA (Gorlach et al., 2000). Nox1 is also present in 

ECs but the main enzyme complex appears to be Nox4 (Ago et al., 2004; Lassegue 

et al., 2001). While Nox1 and Nox2 are structurally and functionally very similar 

needing cytosolic subunits for activation, no cellular regulatory factors have been 

recognized for Nox4. Importantly, Nox4 is localized to endoplasmic reticulum and 

the nucleus, thus it has been suggested to play a role in regulation of gene 

expression (Kuroda et al., 2005; Van Buul et al., 2005). The source of ROS may 

however vary in distinct conditions. For example, Al-Mehdi and others have 

shown pulmonary artery endothelium to rely on XO during hypoxia and Nox 

during ischemia (Al-Mehdi et al., 1998). However, recent study showed that 

hydrogen peroxide is in fact the primary product of XO in physiological 

conditions (Kelley et al.). 

2.3.2 Antioxidative Enzymes and Tissue Redox Balance 

Heme containing proteins, such as myoglobin of the muscle, are known to 

avidly convert H2O2 into more reactive hydroxyl radical (George and Irvine, 

1951). Thus, skeletal muscle may be especially susceptible to free radical 

mediated cellular injury. Skeletal muscle compensates for continuous oxidative 

stress by upregulating antioxidative enzymes, for example Mn superoxide 

dismutase (Ji et al., 2006). 

The first line of defense against ROS, and especially superoxide, is comprised 

of three compartmentalized superoxide dismutase (SOD) isoforms. SODs catalyze 

reaction: 

2O2•
-   +    2H+     →     O2   +   H2O2 

 

Cu/ZnSOD (SOD1) is located in the cytoplasm, nucleus, and the lysosomes 

while MnSOD (SOD2) is found from mitochondria. SOD3 is the only extracellular 

isoform, binding to heparin sulphate, collagen, fibulin-5, and hyaluronan of the 

extracellular matrix due to its C-terminal cluster of positively charged arginine 

residues (Folz and Crapo, 1994; Gao et al., 2008; Hjalmarsson et al., 1987; 
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Nguyen et al., 2004; Petersen et al., 2004b). SOD1 is a homodimer whereas SOD2 

and SOD3 form tetramers. SOD2 deficiency leads to perinatal lethality due to 

neurodegeneration and myocardial injury (Lebovitz et al., 1996). In contrast, 

SOD1 and SOD3 knock-out mice show relatively mild phenotypes. SOD1 

deficiency has been associated with female infertility and axon degeneration (Ho 

et al., 1998; Reaume et al., 1996), while mice lacking SOD3 do not display any 

spontaneous phenotype (Carlsson et al., 1995). SOD3 null mice are however more 

susceptible to ischemia/reperfusion injury and lung hyperoxia (Carlsson et al., 

1995; Park et al., 2005) and a recent study suggests that SOD3 protects the heart 

from oxidant-induced fibrosis and leukocyte infiltration (Kliment et al., 2009; van 

Deel et al., 2008).  

SOD3 was last of the three superoxide isoforms to be discovered (Marklund et 

al., 1982). It exists as a tetramer composed of two covalently linked dimers 

(Carlsson et al., 1996; Oury et al., 1996). Each SOD3 subunit contains four 

domains, the C-terminal domain being responsible for binding to the extracellular 

matrix (Hjalmarsson et al., 1987; Petersen et al., 2004b). However, rat SOD3 

differs from its murine, human, and rabbit counterparts as it has low affinity to 

heparin in physiological conditions (Carlsson et al., 1996). Furthermore, human 

SOD3 has an additional cysteine residue as compared to rabbit, mouse or rat, 

enabling alternative folding that results in enzymatically inactive form (Petersen et 

al., 2004a). Interspecies heterogeneity makes it difficult to extrapolate results from 

animal models to humans. The main SOD3 expression sites in vivo are the 

vascular wall, lung, kidney, thyroid gland, and epidymis (Marklund, 1984; Perry et 

al., 1993; Stralin et al., 1995) with minor expression also in liver, heart, brain, 

spleen, skeletal muscle, and intestine (Folz and Crapo, 1994; Folz et al., 1997). 

SOD3 represents only a minor part of total SOD activity in most of the tissues. 

However, SOD3 is highly expressed in VSMCs, and is responsible for 

approximately 50% of SOD activity in human aorta (Luoma et al., 1998). 

Once superoxide is converted to hydrogen peroxide by the superoxide 

dismutases, it is further processed into water by catalase and a large family of 

peroxidases. Peroxidases dispose H2O2 by oxidizing a secondary reductant such as 

glutathione (glutathione peroxidases). Catalases are able to utilize H2O2 itself as a 

reductant, oxidizing H2O2 to molecular oxygen. Because H2O2 is membrane 

permeable, intracellular peroxidases and catalase may participate in neutralization 

of extracellular H2O2. Physiological concentrations of intracellular H2O2 have been 

shown to range from 0.001 to 1 μM which corresponds to extracellular 

concentration of 0.01 to 10μM (Antunes and Cadenas, 2000; Stone and Yang, 

2006). 
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Table 1. Redox enxymes. 

Enzyme Reaction Cellular location 

Nox1 NADPH + 2O2 → NADP
+ + 2O2•

- + H+ Plasmamembrane 

Nox2 NADPH + 2O2 → NADP
+ + 2O2•

- + H+ 
Plasmamembrane, 
endosomes 

Nox4 NADPH + 2O2 → NADP
+ + 2O2•

- + H+ Nuclear membrane 

Xanthine Oxidase 
hypoxanthine + H2O + O2 → xanthine + 
H2O2 Cytoplasm 

  xanthine + H2O + O2 → uric acid + H2O2   

Myeloperoxidase H2O2 + Cl- → HOCl + H2O 
Lysosomes, PMN 
azurophilic granules 

Superoxide dismutase 1 SOD-Cu2+ + O2•
- → SOD-Cu1+ + O2 Cytoplasm 

 
SOD-Cu1+ + O2•

- + 2H+ → SOD-Cu2+ + 
H2O2  

Superoxide dismutase 2 SOD-Mn3+ + O2•
- → SOD-Mn2+ + O2 Mitochondria 

 
SOD-Mn2+ + O2•

- + 2H+ → SOD-Mn3+ + 
H2O2  

Superoxide dismutase 3 SOD-Cu2+ + O2•
- → SOD-Cu1+ + O2 Extracellular 

 
SOD-Cu1+ + O2•

- + 2H+ → SOD-Cu2+ + 
H2O2  

Catalase 2H2O2 → 2H2O + O2 Peroxisome 
Glutathione peroxidase 
(GPx) 2GSH + H2O2 → GS-SG + 2H2O 

Cytoplasm, Extracellular 
(GPx2 and 3) 

Glutathione reductase GS-SG + NADPH + H+ → 2GSH + NADP
+ Cytoplasm 

 

2.3.3 ROS Mediated Signaling and Cell Survival 

Hydrogen peroxide is able to permeate cell membranes at a rate with 

permeability coefficients ranging from 0.01 to 0.7 cm/min (Makino et al., 2004). 

However, in contrast to previous assumptions recent evidence suggests this to 

happen through aquaporin channels instead of direct permeability (Bienert et al., 

2007). Among ROS, H2O2 is the best candidate for use as a second messenger due 

to its ability to permeate cell membranes and its relatively long half-life. However, 

a major caveat in determining the role of H2O2 as a signaling molecule is the 

frequent use of supraphysiological concentrations in in vitro studies. Reassuringly, 

recent studies with lower concentrations have confirmed many of the previous 

findings (Fisher, 2009; Forman, 2007). Despite its short half-life, superoxide does 

have specific effects on some settings that cannot be attributed to H2O2 (Madesh et 

al., 2005). Increasing evidence shows that controlled perturbation of ROS balance 

is utilized in various signaling cascades including but not limited to activation of 

PI3K/Akt, NF-κB, and Ras-Erk1/2 pathways. At least in the context of angiotensin 

II-induced ROS formation in the vascular wall, the Nox complexes appear to be a 

major source for ROS production (Lassegue et al., 2001). 
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Transmission of extracellular signals by receptor tyrosine kinases (RTKs) 

through Ras to the MAPKs (mitogen-activated protein kinase) represents an 

archetypal example of cellular signaling cascade. ROS may activate this pathway 

at multiple steps. RTKs such as endothelial growth factor receptor (EGFR) and 

platelet-derived growth factor receptor (PDGFR) regulate a wide range of cellular 

functions extending from cell proliferation and differentiation to cellular migration 

and survival. Ligand binding induces RTK dimerization leading to activation of 

the intracellular C-terminal tyrosine kinase domain. Autophosphorylation of C-

terminal tyrosine residues recruits various proteins, most notably including c-Src 

kinase, phospholipase C (PLC), phosphatidyl inositol-3-kinase (PI3K), and 

adaptors Grb2 and Shc. The recruited proteins initiate a repertoire of subsequent 

effector cascades required for a specific response.  

The Ras GTPase is the critical link between RTK activation and extracellular-

signal regulated kinase (Erk). RTK activation stimulates Ras through Sos (Son-of-

Sevenless), a guanine nucleotide exchange factor (GEF) recruited by Grb2 to the 

activated RTK. Sos induces an exchange of GDP for GTP on Ras which allows 

Ras to directly interact with its target effectors such as Raf. The classical view of 

Ras function places the RTK and Ras on the plasma membrane. However, 

activated Ras proteins can be detected from various intracellular sites including the 

Golgi, endoplasmic reticulum, and the endosomes (Berthiaume, 2002; Casar et al., 

2009). Compartmentalization may determine the strength, duration and targets of 

Ras signaling thus influencing the ultimate outcome (Casar et al., 2009). Raf 

family kinases comprise crucial downstream effectors of Ras activation. Raf 

kinases exist in an inactive state in the cytoplasm wherein the N-terminal domain 

inhibits the C-terminal kinase domain. Raf activation follows complex process of 

protein interactions, membrane localization, phosphorylation of activating sites, 

and dephosphorylation of inhibitory sites. In contrast to the complexity of Raf 

activation, the subsequent Mek and Erk kinases are activated by simple 

phosphorylation of activation segments in their kinase domains. The kinase 

components of the MAPK pathway are brought together by scaffold proteins such 

as Paxillin which directs Erk activation at sites of focal adhesions (Ishibe et al., 

2004). Indeed, the scaffold proteins serve to insulate the MAPK module from 

irrelevant stimuli and to regulate its subcellular localization. The final effects of 

Ras-Erk pathways are mediated by transcription factors activated by Erk 

subsequent to dissociation from the scaffold protein and nuclear translocation. 

ROS may lead to Erk activation by interfering with multiple steps in the 

upstream signaling cascade. EGFRs and PDGFRs are known to be subjected to 

ligand-independent activation by ROS (Knebel et al., 1996). Furthermore, receptor 

activation by ROS is not necessary for ROS mediated Ras activation (Lander et 

al., 1996), nor is Ras expression needed for activation of Erk by ROS (Zou et al., 

1996). However, Mek inhibitors U0126 and PD98059 do prevent ROS mediated 

Erk1/2 activation indicating that ROS do not activate Erk1/2 directly (Lee et al., 

2006). Possible pathways leading to Erk1/2 activation include route via c-Src 

which leads to increased intracellular calcium levels activating protein kinase C 

(PKC) (Wang et al., 2001). PKC is known to target both Ras and Raf (Buhl et al., 
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1995). Finally, thiolate-dependent protein phosphatases utilize a deprotonated 

cysteine thiolate moiety in their reactive group making them vulnerable to 

reversible oxidative inactivation that may lead to up-regulation of kinase activity 

and subsequent Erk1/2 activation (Whisler et al., 1995). 

Mammals have at least a dozen MAPK genes, of which Erk 1 and 2, c-Jun 

terminal kinases (JNK1-3), and p38(α, β, γ, and δ)  are the best known. The JNKs 

and p38 MAPKs are activated in response to different stressors such as 

inflammatory cytokines, ionizing radiation, DNA damage, and oxidative stress. 

Erk1/2 on the other hand mediates mitogenic and pro-survival effects in response 

to growth factors and cell stress. Consequently, aberrant regulation of Erk activity 

due to e.g. Ras mutations is frequently associated with cancerous growth. Some 

examples for transcription factors activated by Erk1/2 are the activator protein 

(AP)-1, c-Myc, and cyclic AMP responsive element binding protein (CREB). Erk 

may exert its effect on these factors either by direct phosphorylation or through 

intermediate kinases such as the RSKs (Gelain et al., 2006; Shaywitz and 

Greenberg, 1999; Sun et al., 2006; Turjanski et al., 2007). Transcription factors of 

the Jun (c-Jun, JunB and JunD) and Fos (c-Fos, FosB, Fra-1 and Fra2) families 

make up the AP-1 by forming homo or heterodimers. While c-Jun is under 

stringent regulation by JNK, Erk1/2 acts synergistically with JNK to activate AP-1 

by stimulating c-Fos expression. Transcription factors CREB and AP-1 stimulate 

prosurvival effects by activating genes such as VEGF-A and Cyclin D1 (Shen et 

al., 2008; Wu et al., 2007a). VEGF is well known to promote survival of 

myoblasts (Germani et al., 2003) and endothelial cells (Gerber et al., 1998; Lee et 

al., 2007), while Cyclin D1 is a crucial cell cycle regulator guarding the cell cycle 

G1/S transition (Takuwa and Takuwa, 2001). 

The mitogenic Ras-Erk pathway is closely intertwined with survival promoting 

PI3K/Akt pathway. As previously noted, activated RTKs may recruit PI3K. This 

leads to generation of 3’phosphorylated phosphoinositides that in turn recruit 

protein kinase B, also known as Akt. Activation of Akt in response to oxidants is 

dependent on tyrosine kinases; EGFR in HeLa cells (Takuwa and Takuwa, 2001), 

PDGFR in primary fibroblasts (Klotz et al., 2000), and Syk non-receptor tyrosine 

kinase in B-cells (Ding et al., 2000). Akt is known to suppress apoptosis by 

phosphorylation-dependent inhibition of pro-apoptotic factors such as forkhead 

transcription factors, caspase 9, and BAD (Datta et al., 1999; Kandel and Hay, 

1999). 
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Figure 3. Signaling downstream of receptor tyrosine kinases. 1) Ligand binding 

induces dimerization of the receptor tyrosine kinases. 2) This in turn enables 

autophosphorylation of the RTK intracellular domains that 3) are recognized by adaptor 

proteins such as Grb-2, and Gab1 and 2. Sos is a guanine nucleotide exchange factor that 

activates Ras by inducing Ras GTP-binding. Activation of Ras leads to phosphorylation of 

Erk, whereas recruitment of PI3K by the Gab-proteins leads to activation of Akt. 4) Akt 

promotes cell survival by inhibiting mitochondrial pro-apoptotic proteins. Furthermore, 5) 

Akt and Erk induce changes in gene expression by direct or indirect modulation of nuclear 

transcription factor activity. (*) Potential points for ROS-mediated activation: ROS are 

known to induce ligand-independent RTK activation but also activate several downstream 

kinases leading to Erk activation. 
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2.4 Inflammation 

2.4.1 Role and Initiation of Inflammation 

Accumulation of polymorphonuclear neutrophils (PMNs) to ischemic muscle 

occurs only hours after acute reduction in arterial perfusion. PMNs are then largely 

replaced by circulating monocytes that differentiate into macrophages in target 

tissue. Macrophages reach peak numbers few days after arterial occlusion. The 

main role of the infiltrating phagocytes is to clear cellular debris from cells that 

have died from necrosis. Macrophages are also required for tissue regeneration as 

they promote revascularization of the tissue and enhance satellite cell proliferation 

(Merly et al., 1999; Tidball and Wehling-Henricks, 2007). Upon activation 

phagocytic PMNs and macrophages produce potentially cytolytic Nox2 mediated 

oxidative burst (Entman et al., 1992; Nguyen and Tidball, 2003). Furthermore, 

degranulation of PMNs releases active myeloperoxidase that may compete with 

catalase for H2O2. MPO produces hypochlorous acid further enhancing PMN 

mediated cytotoxicity (Winterbourn, 1986). Prolonged or overly aggressive 

inflammation may prove to be detrimental to the host. Therefore, inflammatory 

process is tightly regulated by a coordinated program of resolution that is initiated 

already at few hours after beginning of the inflammatory reaction (Serhan et al., 

2008). 

Several overlapping mechanisms serve to initiate inflammatory response within 

ischemic tissue, these include cellular constituents released by necrotic cell death, 

cytokines, ROS, the complement system (Arumugam et al., 2004), and Toll-like 

receptor (TLR)-mediated pathways (Arumugam et al., 2009). All of these 

inflammatory triggers are able to activate transcription factor Nuclear factor (NF)-

κB which is considered a central regulator of inflammatory response. Indeed, NF-

κB is required for EC activation (Wrighton et al., 1996). NF-κB promotes 

expression of several inflammatory mediators such as cytokines (IL-1, IL-6, IL-8, 

TNFα), chemokines (MCP-1, MIP2), and cell adhesion molecules (E-selectin, 

ICAM-1, VCAM-1) (Collart et al., 1990; De Martin et al., 2000; Denk et al., 2001; 

Libermann and Baltimore, 1990; Mori and Prager, 1996; Shakhov et al., 1990; 

Shimizu et al., 1990; Ueda et al., 1997; Widmer et al., 1993). NF-κB comprises 

homo- or heterodimers formed by family of transcription factors including 

members RelA (p65), RelB, c-Rel, NF-κB1 (p50) and NF-κB2 (p52) (Karin and 

Ben-Neriah, 2000). Under basal conditions NF-κB is retained in the cytoplasm by 

inhibitory subunits IκBα, IκBβ or IκBε. The best characterized form of NF-κB 

activation follows phosphorylation of IκBα Ser 32 and 36 residues by the IKKs 

1/α and 2/β (IκB-kinase). Phosphorylation of IκBα directs it to proteasomal 

degradation thus revealing the NF-κB nuclear localization signal and allowing 

nuclear translocation and subsequent binding to target promoters (Karin and Ben-

Neriah, 2000). Rapid activation of NF-κB by degradation of IκBs is largely 

dependent on IKKβ, and is referred to as the canonical or classical NF-κB 

pathway. In what is named the alternative pathway, the IKKα mediates slower NF-

κB activation by promoting synthesis of NF-κB2 from its precursor p100 
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(Senftleben et al., 2001).  The classical NF-κB activation has been suggested to be 

the main mediator of pro-inflammatory gene expression. Indeed, TNFα-induced 

NF-κB-dependent gene expression of MCP-1, IL-8, ICAM-1, VCAM-1, and E-

selectin in endothelial cells has been suggested to be dependent on IKK2 (Denk et 

al., 2001). 

As previously mentioned, NF-κB is known to be regulated by ROS. ROS may 

affect NF-κB activity both positively and negatively, and the response is cell-type 

specific relying on several mechanisms (Gloire et al., 2006). However, many 

aspects of ROS-mediated NF-κB activation are not thoroughly understood. It is 

known that IL-1, and LPS (lipopolysaccharide) induce superoxide production 

through Rac1 which is involved in the assembly of the Nox complex (Abo et al., 

1991). Rac-induced ROS production is required for IL-1 and LPS-mediated NF-

κB activation (Bonizzi et al., 1999; Sanlioglu et al., 2001). Miller et al. showed 

recently that Nox1 located in signaling endosomes is required for TNF and IL-1 

induced NF-κB activation in smooth muscle cells (Miller et al., 2007). 

Furthermore, PI3K and PKC mediated signaling induce Nox2-dependent NF-κB 

activation in endothelial cells (Frey et al., 2006). ROS regulate NF-κB activity by 

e.g. promoting IκBα phosphorylation through both canonical and non-canonical 

pathways. Src-kinase seems to arise as a major contributor in this process as it has 

been shown to be able to directly phosphorylate Tyr42 residue on IκBα (Fan et al., 

2003) while also promoting canonical IKK mediated phosphorylation (Funakoshi-

Tago et al., 2005). 

Although most studies concentrate on cytoplasmic activation of NF-κB, NF-κB 

is also subject to direct oxidation that abrogates its DNA-binding activity in the 

nucleus (Toledano and Leonard, 1991). Inactivation of NF-κB in oxidative 

conditions is due to oxidation of critical Cys62 residue (Matthews et al., 1993). 

The same residue can be modulated by nitrosylation thus making NF-κB 

susceptible to NO mediated inactivation (Matthews et al., 1996). In addition, NO 

reduces NF-κB activation by inhibiting IκBα phosphorylation (Katsuyama et al., 

1998). As NF-κB has been shown to up-regulate inducible NOS (iNOS), it is 

thought to function as negative regulator of NF-κB through NO production (Xie et 

al., 1994).  
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Figure 4. NF-κB signaling. NF-κB may be activated by various stimuli, among them TNF 

or IL-1. 1) TNF- and IL-1-receptors mediate NF-κB activation by inducing 

phosphorylation of the IKKs. 2) Subsequently, IKKs phosphorylate IκB within the NF-κB 

complex 3) leading to ubiquitination and proteasomal degradation of the IκB subunit. 4) 

Dissociation of IκB from the NF-κB complex reveals nuclear localization signal allowing 

nuclear transport and regulation of gene expression. (*) ROS-mediated activation of NF-

κB: ROS activate NF-κB both through the canonical IKK 2/β pathway and by activation of 

Src kinase, which is able to directly phosphorylate IκB. (*) ROS-mediated inhibition of 

NF-κB: ROS may also suppress NF-κB activity by oxidizing the Cys62 residue that is 

critical for the DNA-binding of NF-κB. 

2.4.2 Leukocyte Extravasation 

Upon activation, endothelial cells upregulate adhesion molecules and 

chemokines initiating a complex cascade of cellular interactions leading to 

extravasation of leukocytes from the blood vessel lumen to the surrounding tissue. 

The main site for leukocyte trafficking in muscle is the post-capillary venules 

(Aird, 2007). Leukocytes penetrate the vascular wall either directly through the 

ECs (transcellular route) or by squeezing through the EC-EC junctions 

(paracellular route). Leukocyte transmigration can be divided into several steps 

including: rolling, activation, arrest, adhesion strengthening, crawling, 

transmigration, and migration through the basement membrane (Ley et al., 2007). 

The process of leukocyte extravasation is initiated when transient molecular 

interactions induce rolling of the leukocyte along the endothelium (Zarbock and 

Ley, 2009). Rolling is mainly mediated by L-selectin (CD62L), E-selectin 

(CD62E), and P-selectin (CD62P). While L-selectin is expressed in most 
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leukocytes, P- and E-selectin are found in inflamed endothelium. ECs store P-

selectin in the Weibel-Palade bodies which release P-selectin on the cell surface 

upon stimulation, such as oxidative stress (Akgur et al., 2000). In contrast, E-

selectin is mainly regulated at transcriptional level by e.g. NF-κB (Collins et al., 

1995). P-selectin glycoprotein ligand (PSGL)-1 is the dominant ligand for all of 

the three selectins. What enables selectins to effectively mediate rolling is their 

ability to strengthen the ligand-selectin bond when shear stress is applied 

(Marshall et al., 2003). In fact, selectins require shear stress to function properly, 

as rolling leukocytes stop and detach when flow is stopped (Finger et al., 1996). 

Although P- and E-selectin are the most important rolling molecules, integrins also 

take part in the process. Leukocytes can utilize α4β7 and α4β1 (Very late antigen 4, 

VLA4) to roll on mucosal vascular addressin cell adhesion molecule 

(MADCAM)-1 or on vascular cell adhesion molecule (VCAM)-1, respectively 

(Berlin et al., 1995). VLA4-dependent rolling has been detected on monocytes and 

T-cells (Chan et al., 2001; Singbartl et al., 2001). 

Rolling brings the leukocyte to close proximity with the endothelium and the 

secreted chemokines bound on glycosaminoglycans of the endothelial cell surface 

(Johnson et al., 2005). Chemokines act as chemoattractants directing leukocyte 

traffic and they are subdivided into C, CC, CXC, and CX3C families according to 

their structure. Fractalkine/CX3CL1 and lymphotactin/XCL1 are the only known 

members of the CX3C and C chemokine families, respectively. CC and CXC 

families are more diverse and far better characterized. Homeostatic chemokines 

such as CCL21 and CCL17 (L for ligand) and their receptor CCR7 (R for 

receptor) are constitutively expressed in lymphatic organs and mediate 

physiological leukocyte traffic (Bromley et al., 2008). Inducible chemokines on 

the other hand are expressed by various cell types and are strongly upregulated by 

e.g. NF-κB in response to inflammatory stimuli. A significant role has been 

suggested for MCP-1/CCL2 in ischemic injuries. MCP-1 is a potent attractant for 

monocytes, NK cells and T cells and its expression peaks early after femoral artery 

excision or myocardial infarction in mice (Kumar et al., 1997; Lee et al., 2004). 

Neutralizing antibody to MCP-1 reduces myocardial infarct size and infiltration of 

macrophages (Ono et al., 1999). In addition to its chemotactic properties, MCP-1 

may modulate cytokine expression by the macrophages. MCP-1 has been shown to 

induce IL-1 and IL-6 expression in monocytes (Jiang et al., 1992). 

The leukocyte arrest and adhesion strengthening are mediated by the integrins, 

a large family of receptors that bind endothelial immunoglobulin superfamily 

members VCAM-1 and ICAM-1. Integrins are heterodimeric receptors composed 

of 18 α and 8 β subunits. Integrins of subfamilies β2 and β1 are most commonly 

involved in mediating tight adhesion of leukocytes to the endothelium. Integrins 

are maintained in an inactive bent conformation in circulating leukocytes. 

Chemokine-induced GPCR activation induces conformational changes that enable 

tight interaction with the ligand and thus leukocyte arrest. Integrin avidity is 

however also regulated by valency, i.e. the density of integrin heterodimers per 

area of plasmamembrane involved in cell adhesion.  
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Before transmigration through the vessel wall, leukocytes crawl along the 

endothelial surface in search of suitable migration site. Leukocytes usually migrate 

through the paracellular route in places where there are gaps between pericytes 

and thus lower extracellular matrix deposition (Wang et al., 2006). Leukocytes 

may be able to home to these sites because they are more permissive to 

chemokines thus creating a chemotactic gradient. Crawling behavior has been 

described for monocytes and neutrophils in vitro and in vivo, and the process 

requires Mac-1 (Macrophage receptor1/CD11b/CD18/αMβ2 integrin) integrin and 

its endothelial counterpart ICAM-1 (Phillipson et al., 2006; Schenkel et al., 2004). 

In Mac-1 knock-out mice the crawling is disabled and promotes leukocyte 

extravasation through the transcellular route. Transcellular transmigration is 

poorly understood but appears to be substantially slower than the transcellular 

route (Phillipson et al., 2006). 

Transmigration via the paracellular route is permitted due to redistribution of 

intercellular junctional molecules. Molecules that might hinder transmigration, 

such as vascular endothelial (VE)-cadherin, may be redistributed away from 

junctional regions (Shaw et al., 2001). On the other hand, molecules that mediate 

EC-leukocyte interactions are brought into the junctional area. For example, 

platelet/endothelial cell adhesion molecule (PECAM-1/CD31) is stored in 

intracellular vesicular compartment, and is released to EC junctions to mediate 

transmigration (Mamdouh et al., 2003). Modulation of the EC cell junctions to 

allow leukocyte transmigration can be triggered by e.g. integrin binding to 

VCAM-1 and ICAM-1. Integrin binding to VCAM-1 activates endothelial Nox 

complex leading to oxidation dependent PKCα activation and to localized actin 

structural changes that are required for lymphocyte migration (Abdala-Valencia 

and Cook-Mills, 2006; Matheny et al., 2000). In contrast, XO-derived Nox-

independent superoxide production has been suggested to mediate migration of 

monocytes through the blood-brain barrier due to disruption of tight junctions 

(Van der Goes et al., 2001). Either way, accumulating evidence suggest ROS to 

function in opening gaps between endothelial cells to enable leukocyte traffic 

(Cook-Mills, 2002). Specificity of leukocyte subtype migration may be achieved 

by distinct expression pattern of chemokines, adhesion molecules, and their 

ligands. Furthermore, ligand affinity and expression level of the chemokine 

receptors may contribute to the specificity of leukocyte adhesion (D'Ambrosio et 

al., 2002). 

The final obstacle between migrating leukocyte and the target tissue is formed 

by the basement membrane mainly composed of collagen IV and laminins 8 and 

10 (Hallmann et al., 2005). Leukocytes prefer to extravasate through gaps in the 

pericyte coverage where expression of ECM proteins is lower than average. 

Neutrophils express cell surface proteases that facilitate migration. Indeed, the 

“holes” in basement membrane that leukocytes prefer for transmigration are 

transiently enlarged after neutrophil migration (Wang et al., 2006). The 

extracellular matrix may also be degraded by endothelium associated matrix 

metalloproteinases (MMPs) which are activated by 1μM H2O2 derived from Nox 

produced superoxide (Cook-Mills, 2006; Deem and Cook-Mills, 2004). 
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Figure 5. Leukocyte adhesion and transmigration cascade. Leukocyte extravasation is 

characterized by a cascade of molecular interactions between the leukocyte and the 

endothelium. The process is understood in increasing precision and some of the key 

molecules involved in each step are listed. Notably, selectins are crucial for the capture and 

rolling of leukocytes whereas integrins are best described in mediating tight adhesion.  

Finally, matrix metalloproteinases enable permeation of the vascular basement membrane 

(Modified from (Ley et al. 2007)). 

 

2.4.3 Resolution of Inflammation 

Due to potentially detrimental effects, inflammatory reaction must be limited 

both in duration and in area. Contrary to early hypotheses of resolution through 

passive depletion of inflammatory mediators, a complex, actively driven process 

has begun to emerge. One of the mechanisms promoting resolution is the 

propensity of PMNs to succumb to spontaneous apoptosis and phagocytosis-

induced cell death (Kennedy and DeLeo, 2009). Apoptotic neutrophils are 

subsequently ingested by macrophages, thus neutrophils are disposed without 

releasing cytotoxic molecules that would damage the surrounding tissue. Uptake 

of apoptotic bodies triggers exit of the macrophage from the inflamed tissue 

through the draining lymphatics (Bellingan et al., 1996). Macrophages also 

promote resolution by secreting anti-inflammatory cytokines such as transforming 

growth factor (TGF)-β (Byrne and Reen, 2002).  

In addition to transcriptional regulation of pro-inflammatory cytokines, NF-κB 

also plays a crucial role in inflammatory resolution. For example, NF-κB mediates 

expression of IκBα which can effectively inhibit EC activation (Wrighton et al., 

1996). Furthermore, cytokines and chemokines are under post-transcriptional 

regulation by modulation of mRNA stability (IL-1, TNF, IL-6, CCL2, CXCL3, 

etc.) or by regulation of initiation of translation (TNF, CCL22, CCR3, etc) 

(Anderson). Finally, glucocorticoids comprise a group of anti-inflammatory 

mediators (such as prednisolone, dexamethasone, beclomethasone, and of course 

cortisol and corticosterone) that have been successfully utilized for therapeutic 

purposes. The use of glucocorticoid drugs is however limited by complications of 

the cardiovascular system, more specifically atherosclerosis and hypertension 

(Roy et al., 2009). Glucocorticoids bind cytoplasmic glucocorticoid receptor that 
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translocates to the nucleus upon ligand binding, and subsequently modulate gene 

expression to the extent that ~1% of the genome has been suggested to be 

regulated by these drugs (Rhen and Cidlowski, 2005). One of the described 

mechanisms is transrepression of NF-κB by activating histone deacetylase 2 that 

in turn reduces access of NF-κB to promoter region of its target genes (Ito et al., 

2006). 

2.5 Formation of New Blood Vessels 

Facing ischemia, the long-term survival of the affected tissue is critically 

dependent on the revascularization of the tissue. Blood vasculature is relatively 

quiescent during adulthood, formation of new blood vessels is mainly restricted to 

female reproductive cycle, wound healing, and pathological conditions such as 

atherosclerosis and cancer. In response to ischemia blood vasculature may extend 

either through de novo formation by differentiation of vascular stem cells (post-

natal vasculogenesis), or through remodeling of pre-existing vessels by sprouting  

(angiogenesis) or collateral artery growth (arteriogenesis). 

2.5.1 Post-natal Vasculogenesis 

Vasculogenesis has traditionally been considered to be restricted to the 

embryonic generation of the vascular tree. In 1997 Asahara was the first to provide 

evidence for circulating progenitor cells that contributed to neovascularization 

(Asahara et al., 1997). Subsequently it was shown that these bone marrow derived 

cells, endothelial progenitors (EPCs), were able to incorporate to the vessel wall 

and to differentiate not only into endothelial cells but also periendothelial cells 

expressing pericyte markers SMA, NG2 and desmin (Rajantie et al., 2004). This 

led to coining the term “post-natal vasculogenesis” which refers to homing of BM-

derived EPCs into sites of neovascularization to differentiate into vascular cells. 

Mobilization of EPCs has been found to be significantly increased in response 

to myocardial or peripheral ischemia (Asahara et al., 1999). The true contribution 

of EPCs on neovascularization is nevertheless very controversial as the extent of 

EPC contribution on vessels of ischemic tissue has varied from non existent 

(Zentilin et al., 2006) to almost 90% of the vascular endothelium (Crosby et al., 

2000). Controversy may partly arise from the difficulty to reliably define EPCs as 

they share many surface markers (e.g. CD34, CD133 and VEGFR2) with the 

hematopoietic stem cells (HSCs). Indeed, it has been suggested that EPCs and 

HSCs are derived from a common precursor, the hemangioblast (Flamme and 

Risau, 1992). EPCs are thought to lose CD133 expression and gain endothelial 

markers in culture (Peichev et al., 2000); however, Rehman et al. showed that 

most of these cells express pan-leukocyte marker CD45 and monocytic marker 

CD14 (Rehman et al., 2003). Further evidence for traditionally defined EPCs 

actually being angiogenic macrophages has started to emerge. For example, EPCs 

co-stimulate T-cells as efficiently as monocytes (Piaggio et al., 2009) and the 

observed upregulation of endothelial markers in culture may actually be due to 

platelet contamination (Prokopi et al., 2009). Despite the emerging consensus that 

EPCs are not true endothelial progenitors, it is clear that they do enhance vascular 
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repair. However, this may be mediated by growth factor secretion rather than 

differentiation into vascular endothelium (Pearson). 

2.5.2 Collateral Growth (Arteriogenesis) 

Collateral is a vessel that provides a natural bypass around the site of occlusion. 

Collaterals form by arteriogenesis, a process wherein small vessels connecting 

branches of major arteries gradually enlarge to increase bulk blood flow to the 

ischemic tissue. Collateral growth is rarely limited to a single vessel, instead many 

small collaterals develop. However, smaller collaterals tend to regress while few 

larger ones increase in diameter to provide more efficient blood supply (Heil and 

Schaper, 2004). Despite dramatic increase in the size of the collateral vessels, 

functional conductance only reaches 40% of normal in the vascular periphery 

before collateral development is halted due to reduced wall stress (Ito et al., 1997). 

Exogenous addition of growth factors such as FGF-2 has failed to increase 

maximal conductance (Lazarous et al., 1995), this is believed to be caused by 

reduced wall stress due to collateral enlargement, and self-limiting vessel 

tortuousity due to vessel lengthening (Heil and Schaper, 2004). However, full 

conductance was reached one week after femoral artery ligation in rabbits by 

increasing fluid shear stress (FSS) (Eitenmuller et al., 2006). Indeed, 

arteriogenesis is not induced directly by ischemia as collateral development begins 

proximal to the occlusion site. Instead, physical forces seem to play a major role in 

intiating arteriogenesis (Heil and Schaper, 2004). 

Vascular wall is affected by circumferential wall stress that mainly affects the 

SMCs, and FSS which only affects the endothelium. Compelling evidence 

suggests endothelial cells as the main instigators of arteriogenesis, namely, 

endothelial denudation and inhibition of endothelial NOS (eNOS) and iNOS by L-

NAME (NOS inhibitor) prevent arteriogenesis (Guzman et al., 1997). Further 

evidence is provided by SMC behavior, SMCs lose their contractile phenotype in 

order to proliferate but migrate toward the endothelium before they can divide. If 

SMCs were to initiate collateral development, they would be expected to 

proliferate within the outer adventitial vessel layers (Schaper, 2009). The 

mitogenic signal promoting SMC proliferation is however not yet known. 

Perivascular leukocyte accumulation has been shown to be important for 

collateral development. Endothelial cells attract macrophages to collaterals 

through chemokines such as MCP-1. Local MCP-1 delivery improves 

arteriogenesis (Ito et al., 1997) while MCP-1 deficiency leads to reduced 

perivascular macrophage infiltrate and impaired blood flow recovery (Voskuil et 

al., 2004). However, lymphocytes have also been shown to support arteriogenesis, 

although this too appears to be mediated by macrophage recruitment. CD4 knock-

out mice exhibit 25% reduction in blood flow recovery after femoral artery 

occlusion at least in part due to reduced macrophage accumulation (Stabile et al., 

2003). Studies on CD8 deficient animals have suggested that CD8+ cells recruit 

CD4+ cells by expressing IL-16 (Stabile et al., 2006). In both these cases, deficient 

arteriogenesis was rescued by reconstitution of the absent cell population. 
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2.5.3 Angiogenesis 

Angiogenesis is responsible for extending capillary networks thus fulfilling the 

need for cells to be within 100-200 μm of the closest blood vessel. In addition to 

sprouting, vascular network can be extended by division of parent vessels by 

transendothelial cells (bridging) or by periendothelial cells (intussuception). 

However, little is known about these processes and their physiological roles 

(Adams and Alitalo, 2007) whereas vascular sprouting is understood in increasing 

precision and is known to play an important role in for example wound healing 

and the menstrual cycle. Furthermore, Judah Folkmans hypothesis for 

angiogenesis-dependent tumor growth has been confirmed, showcasing the 

importance of angiogenesis also in pathological conditions (Folkman, 1971; 

Semenza, 2008). 

The most important stimulus for angiogenic vascular growth is hypoxia. 

Endothelial cells lie in prime position to sense perturbations in local oxygen levels, 

and are equipped with several mechanisms to do so. Oxygen sensing mechanisms 

include not only mitochondrial mechanisms, but also prolyl hydroxylase domain 

proteins (PHD1-3) and factor inhibiting HIFs (FIH) (Fraisl et al., 2009). PHDs and 

FIHs inhibit HIF-1α function through O2•-dependent hydroxylation of specific 

proline or asparagyl residues, respectively, thus leading either to proteasomal 

degradation or to prevention of interaction between HIF-1α and its transcriptional 

coactivator p300 (Kaelin and Ratcliffe, 2008). During lowered oxygen tension 

HIF-1α is stabilized enabling transcription of its downstream targets such as 

VEGF, and inducible nitric oxide synthase (iNOS) (Liao and Johnson, 2007). 

HIF-1α is ubiquitously expressed and virtually all cells can therefore up-

regulate VEGF under ischemic conditions. VEGF family is comprised of seven 

members: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E (viral), VEGF-F 

(snake venom), and the Placental growth factor (PlGF) (Roy et al., 2006). VEGFs 

have distinct biological properties but VEGF-A is the most studied member of the 

family and is in fact often simply referred to as VEGF. Among the VEGFs, 

VEGF-A, and VEGF-D seem to have the most profound angiogenic effects 

(Rissanen et al., 2003). VEGF-A is expressed as at least six different splice 

variants leading to products with different affinities to ECM components such as 

heparin (Houck et al., 1991; Lange et al., 2003; Poltorak et al., 1997; Tischer et al., 

1991). The shortest isoform VEGF121 does not bind the ECM whereas VEGF145, 

VEGF165, VEGF189 and VEGF206 have increasing binding activity. Mice 

expressing only VEGF120 (mice VEGFs are one amino acid shorter than their 

human counterparts) do not survive to adulthood indicating that binding of VEGF 

to the ECM is required for proper function (Ruhrberg et al., 2002). Two VEGF-B 

isoforms have been found whereas VEGF-C and VEGF-D are expressed as single 

proteolytically activated forms. VEGF-B has a weak angiogenic effect while 

VEGF-C promotes lymphangiogenesis. VEGF-D appears to be the most versatile 

member of the family as it is potent inducer of both angiogenesis and 

lymphangiogenesis (Rissanen et al., 2003). PlGF may promote angiogenesis by 

e.g. up-regulating VEGF-A (Bottomley et al., 2000), but results concerning PlGF-

mediated angiogenesis are controversial. 
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VEGF family members prompt cellular responses by binding to the dimeric 

receptor tyrosine kinases VEGFR-1 (Flt-1), VEGFR-2 (Flk-1, KDR), and 

VEGFR-3 (Flt-4). VEGF receptors have seven extracellular immunoglobulin-like 

domains, a single transmembrane domain, and an intracellular tyrosine kinase 

domain. Knockout mice for any of the three receptors die at early embryonic stage 

(Dumont et al., 1998; Fong et al., 1995; Shalaby et al., 1995). Upon ligand 

binding, VEGFRs form hetero- or homodimers leading to subsequent activation of 

signaling events such as the PI3K-Akt pathway that promotes cell survival and 

migration (Gerber et al., 1998; Yang et al., 2004) or the PLC-PKC-MAPK 

pathway that induces cell proliferation (Kroll and Waltenberger, 1997; Takahashi 

et al., 1999). Nuclear mediators of VEGF-induced cellular actions include the 

CREB transcription factor which may be activated by e.g. PKC (Mayo et al., 

2001). VEGFR-2 binds VEGF-A, VEGF-C and VEGF-D, and takes a central role 

in mediating VEGF function in ECs (Zachary and Gliki, 2001). In contrast, 

VEGFR-1 is only weakly mitogenic and actually seems to restrain angiogenesis 

induced by VEGFR-2 (Fong et al., 1995). This inhibitory role may be potentiated 

by the presence of soluble VEGFR-1 (Kendall and Thomas, 1993), and its affinity 

to VEGF-A that is about an order of magnitude higher than that of VEGFR-2 

(Waltenberger et al., 1994). Finally, as opposed to modulation of angiogenesis, 

VEGFR-3 mediates lymphangiogenesis by inducing proliferation, migration and 

survival of lymphatic ECs after binding VEGF-C and VEGF-D (Makinen et al., 

2001; Veikkola et al., 2001). 

Angiogenesis is initiated by NO-induced vascular dilation and VEGF-induced 

vascular leakage. Vascular leakage involves redistribution of cell junctional 

molecules such as PECAM-1 or vascular endothelial (VE)-cadherin. VEGF 

induces phosphorylation of VE-cadherin through Src, consequently disrupting VE-

cadherin stability at adherens junctions (Dejana et al., 2008). Subsequently, matrix 

metalloproteinases degrade the ECM allowing migration of proliferating EC and 

releasing growth factors sequestered within. Disruption of the vascular integrity 

permits extension of vascular sprouts formed by proliferating ECs which are led 

by tip cells, endothelial cells that express high level of VEGFR-2 to sense 

concentration gradient of VEGF-A (Adams and Alitalo, 2007). Migration of ECs 

can be guided by mechanical forces such as fluid shear stress (mechanotaxis), and 

by both soluble (chemotaxis) and matrix bound (haptotaxis) growth factors 

(Lamalice et al., 2007; Li et al., 2005). Subsequently, growing vascular sprouts 

interconnect with either pre-existing vessels or with other sprouts and blood flow 

is established by lumen formation. Rather little is known about the lumen 

formation but studies in zebrafish have suggested that lumen forms by intra- and 

intercellular fusion of large vacuoles (Kamei et al., 2006). 

Newly formed blood vessels are prone to regress in absence of stabilizing 

signals. The tip cells secrete platelet derived growth factor (PDGF)-B which 

attracts pericytes and smooth muscle cells that are required for stabilization of the 

newly formed blood vessel (Hellstrom et al., 1999). The pericytes maintain EC 

quiescence by secreting TGF-β which inhibits endothelial proliferation and 

migration, and reduces VEGFR-2 expression (Mandriota et al., 1996). 
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Furthermore, pericytes produce angiopoietin-1, a growth factor that binds receptor 

Tie-2. Tie-2 is predominantly expressed in endothelial cells, and promotes EC 

survival and mural cell attachment (Patan, 1998). However, impaired pericyte 

recruitment in Tie-2 knockout mice may be secondary effect following EC death 

(Jones et al., 2001a; Puri et al., 1999). Like arteriogenesis, angiogenesis is not only 

dependent on endothelial cells, pericytes and SMCs, but leukocytes have an 

important role in supporting angiogenesis. Especially macrophages have an 

important role as they secrete large amounts of angiogenic factors such as VEGF, 

PDGF, IL-8, and prostaglandins (Sunderkotter et al., 1994). Macrophages also 

digest the ECM enabling EC migration (Anghelina et al., 2004). Macrophage 

recruitment is driven by MCP-1 (CCL2) which is upregulated in ECs in response 

to both VEGF and ischemia (Yamada et al., 2003). 

The role of reactive oxygen species in RTK signaling and inflammation has 

already been described above demonstrating the importance of ROS in wide 

variety of cellular processes. Akin to EGFR or PDGFR, VEGFRs induce ROS 

production upon activation through Rac-dependent stimulation of the associated 

Nox2 complex (Ushio-Fukai et al., 2002). VEGFR autophosphorylation is 

subsequently enhanced by PTP inactivation. Nox2 deficient (gp91phox-/-) mice 

exhibit impaired angiogenesis in hindlimb ischemia (Tojo et al., 2005). 

Intriguingly, Nox2 produced superoxide appeared to originate from inflammatory 

cells at earlier 3 day time point while EC-produced ROS dominated at 7 days. 

Furthermore, Tojo et al. showed that H2O2 instead of superoxide was responsible 

for the angiogenic effect. The role of H2O2 in angiogenesis is supported by 

numerous in vitro studies wherein low H2O2 concentrations promote EC 

proliferation and tube formation (Yasuda et al., 1999). Deciphering the role of 

ROS on vascular function is complicated by tight connection with reactive 

nitrogen species (RNS). Superoxide is eager to react with NO to produce 

peroxynitrite (ONOO). SOD3 competes with NO for superoxide and has been 

suggested to be important modulator of NO bioavailability (Jung et al., 2003). 

Therefore some of the effects seen after interfering with ROS homeostasis may in 

fact be due to resulting changes in NO/ONOO balance. 

2.6 Stem Cell Contribution 

2.6.1 Tissue Resident Muscle Stem Cells 

Stem cells can be defined as self-renewing cells capable of differentiation into 

multiple cell types. According to the most stringent classification fertilized egg 

and embryonic stem cells capable of producing any cell type of the body are the 

only true stem cells. However, multipotent and unipotent cells with more restricted 

differentiation potential are often referred to as somatic stem cells. Production of 

induced pluripotent stem cells with transient exposure to appropriate transcription 

factors (Stadtfeld et al., 2008; Zhou et al., 2009), and demonstrations of 

multipotential differentiation capacity in numerous cell populations have caused 

further confusion in nomenclature (Tsai et al., 2002). 
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Although necessary, angiogenesis and inflammation are not alone sufficient to 

restore muscle function after injury. Injury provokes muscle resident stem cells, 

the satellite cells, to proliferate in order to later differentiate into myoblasts that 

fuse either with existing muscle or together to form new myotubes. Proven 

myogenic potential (Konigsberg et al., 1975; Kuang et al., 2008) and self-renewal 

capacity (Collins et al., 2005; Montarras et al., 2005) have warranted the definition 

of “stem cell” for satellite cells. According to general consensus satellite cells are 

recognized by expression of Pax7, a paired box transcription factor highly 

redundant with its homolog Pax3 (Bosnakovski et al., 2008; Relaix et al., 2004). 

However, additional markers such as CD34 and Myf5 show heterogeneity of the 

satellite cell pool (Beauchamp et al., 2000; Kuang et al., 2007). Interestingly, 

Pax7+Myf5+ cells (~90% of Pax7+ cells) seem to be committed myogenic 

progenitors whereas Pax7+Myf5- cells (the remaining ~10%) represent a putative 

stem cell population that can give rise to Pax7+Myf5+ cells (Kuang et al., 2007). 

Satellite cells reside in a well defined niche that controls their proliferation and 

differentiation (Kuang et al., 2008). Upon activation, satellite cells coexpress Pax7 

and MyoD, subsequently up-regulating the myogenic regulatory factors (MRFs) 

and down-regulating Pax7 leading to myogenic differentiation. A recent study by 

Lepper et al. showed that, contrary to earlier assumption, Pax7 is not required for 

muscle regeneration in adult tissue although it is essential up to the juvenile period 

(Lepper et al., 2009). Gene expression studies suggest that cell proliferation in 

post-ischemic muscle peaks at around 3 days after injury. At this point MyoD and 

Myf5 also appear remaining up-regulated until 14 days have passed (Paoni et al., 

2002). Satellite cell proliferation coincides with maximal macrophage infiltration. 

In fact, myoblasts derived from satellite cells secrete MCP-1 and CX3CL1 to 

attract macrophages that subsequently support further myoblast proliferation 

(Chazaud et al., 2003). 

2.6.2 Alternative Origins of Skeletal Muscle 

Satellite cells are thought to be solely responsible for muscle growth and 

regeneration in physiological conditions (Sherwood et al., 2004). However, cells 

residing within the vascular wall or circulating in the blood stream may contribute 

to muscle regeneration in pathological conditions. Stem and progenitor cell 

populations reported to possess myogenic potential include e.g. pericytes and 

mesenchymal stromal/stem cells whereas EPCs have been suggested to improve 

tissue healing mainly through enhanced vascular growth. 

In 1982, pericytes were for the first time suggested to serve as progenitors for 

the surrounding tissue during injury (Richardson et al., 1982). Subsequently, 

evidence for myogenic potential of skeletal muscle derived pericytes has been 

obtained in vitro both by co-culture with myotubes and in presence of myogenic 

media (Dellavalle et al., 2007). It is notable that pericytes isolated from mouse 

retinas only fuse with existing myotubes but do not appear capable of myogenic 

differentiation (Kirillova et al., 2007). Pericyte-like cells have been suggested to 

form a continuous subendothelial network that could be responsible for 

multilineage potential found in adipose tissue and skeletal muscle (Andreeva et al., 
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1998; Farrington-Rock et al., 2004). Although pericytes are now believed to 

display osteogenic, chondrogenic and adipogenic potential (Doherty et al., 1998; 

Farrington-Rock et al., 2004) the results should be viewed with care due to lack of 

definitive markers for this cell population (Armulik et al., 2005). However, even in 

the absence of myogenic differentiation, pericytes do play an important role in 

muscle regeneration by supporting stabilization of newly formed blood vessels. 

Several studies have demonstrated incorporation of bone marrow derived cells 

into diverse tissues including not only skeletal muscle but also heart, liver, and 

brain (Bittner et al., 1999; Brazelton et al., 2000; Ferrari et al., 1998; Gussoni et 

al., 1999; Krause et al., 2001; Lagasse et al., 2000; Mezey et al., 2000; Orlic et al., 

2001). A possible explanation for myogenic differentiation potential within the 

bone marrow is the presence of mesenchymal stromal cells (MSCs). MSCs were 

first discovered in the bone marrow by Friedenstein who named the cells as colony 

forming units-fibroblastic (CFU-F) (Friedenstein et al., 1974). Almost twenty 

years later Caplan renamed the cell population as mesenchymal stem cells due to 

their self-renewal capacity and differentiation potential (Caplan, 1991; Pittenger et 

al., 1999). Recently, the international society for cellular therapy proposed 

mesenchymal stromal cell as a more accurate term leaving the stem cell 

designation to cells that duly deserve it (Horwitz et al., 2005). Notably, the 

acronym MSC can be used in either case. The minimal criteria defining 

mesenchymal stromal cells include: plastic adherence in standard culture 

conditions, expression of cell surface markers CD105, CD73 and CD90, and lack 

of surface markers CD45, CD34, CD14 (CD11b), CD79α (CD19) and HLA-DR. 

Furthermore, MSCs are required to exhibit adipogenic, chondrogenic, and 

osteogenic differentiation potential in vitro (Dominici et al., 2006). First 

discovered in the BM, MSCs have been subsequently isolated from numerous 

tissues (da Silva Meirelles et al., 2006), this has led to suggestion that MSCs might 

have perivascular localization and might actually represent pericytes (da Silva 

Meirelles et al., 2008; da Silva Meirelles et al., 2006). Saito et al. were the first to 

demonstrate that injection of MSCs into dystrophic muscle is able cure affected 

myotubes by providing newly synthetized dystrophin to the cell (Saito et al., 

1995). More recent studies have provided highly controversial results regarding 

the engraftment efficiency of transplanted MSCs (Gang et al., 2009; Muller-

Ehmsen et al., 2006). 

 
Table 2. Characteristics of the mesenchymal stromal/stem cells. 

Mesenchymal Stromal/Stem Cells   

Plastic adherent   
Surface markers   
+ CD105, CD73, CD90 
- CD45, CD34, CD14 (CD11b), CD79α (CD19), HLA-DR 
Multipotential differentiation   
  Adipogenic 
  Chondrogenic 
  Osteogenic 
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3 Gene and Cell Therapy 

3.1 Gene Therapy 

In theory, gene and cell therapy have tremendous therapeutic potential in wide 

variety of pathological conditions. Both fields have faced huge expectations in the 

past which however have so far been largely unmet. Gene therapy can be defined 

as transfer of nucleic acids to somatic cells of an individual with a resulting 

therapeutic effect. Several strategies can be utilized for gene therapy (Fischer and 

Cavazzana-Calvo, 2008). First, loss-of-function mutations can be repaired by 

addition of a normal copy of the mutated gene. This approach is the most feasible 

with current techniques, and has achieved most success including the first gene 

transfer in man in 1989 (Pahwa et al., 1989) and the recent successes for treatment 

of adrenoleukodystrophy in two young boys (Cartier et al., 2009), and correction 

of colorblindess in squirrel monkeys (Mancuso et al., 2009). Second, small 

interfering RNAs can be utilized to inhibit expression of overly active gene due to 

gain-of-function mutation (Pelletier et al., 2006). And finally, mutation can be 

reverted although this is technically difficult, has only been achieved in vitro, and 

clinical application is long way ahead (Porteus and Carroll, 2005). 

3.1.1 Gene Transfer Vectors 

Optimal gene therapy vector would provide long term stable and regulated 

expression of the transgene in the target tissue without toxic side effects or 

activation of immune response. Gene transfer vectors can be divided into viral and 

non-viral vectors. Non-viral vectors may rely on naked plasmid DNA or different 

carrier molecules such as liposomes (cationic lipid bilayers) whose advantage is 

low immunogenicity, ease of production and high DNA-carrying capacity. The 

disadvantage of liposomes and other non-viral vectors is their low transduction 

efficiency and transient expression of the transgene (Pathak et al., 2009). Due to 

their natural propensity to carry genetic material into cells, viral vectors have 

dominated gene therapy field. Most common viral vectors are adenoviruses, 

retroviruses, lentiviruses, herpesviruses, and adeno-associated viruses. In viral 

vectors, sequences essential for replication are replaced by treatment and 

regulatory sequences rendering the virus replication deficient. 

Adenoviruses are non-enveloped viruses with linear double-stranded DNA 

genome approximately 36 kilobases in length (Cao et al., 2004). The major 

advantages of adenovirus for gene therapy are high in vivo transduction efficiency, 

ease of production, and ability to transduce terminally differentiated non-dividing 

cells. On the other hand, the biggest disadvantage is high immunogenicity which 

prevents repeated administration due to formation of neutralizing antibodies (St 

George, 2003). As wild type human adenoviruses exist in at least 47 different 

serotypes, immunogenicity can be avoided to some extent by using vector based 

on different serotype. The first generation adenoviral vectors are based on 

serotypes 2 and 5 with deletions in regions E1, E2, and E3 of the viral genome 

(Cao et al., 2004). Adenovirus provides transient transgene expression which 

declines due to loss of vector DNA within 1-2 weeks of the gene transfer. 
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Coxackie-adenovirus receptor (CAR) and αv integrins serve as receptors for most 

adenoviruses. However, as these are down-regulated during muscle maturation 

adenoviral transduction efficiency of skeletal muscle is relatively weak. In 

contrast, satellite cells and myoblasts are more susceptible to adenoviral infection 

due to more prominent CAR expression (Nalbantoglu et al., 1999). 

RNA viruses of the retrovirus family have been extensively utilized for gene 

transfer due to their ability to integrate their genome into the host cell leading to 

stable long term expression of the transgene.  Use of retroviruses in vivo is 

restricted by their inability to transduce non-dividing cells such as terminally 

differentiated myocytes. Therefore, retroviruses are mainly used in ex vivo 

applications such as the much publicized X-SCID (X-linked severe combined 

immunodeficiency) trials that led to leukemia in 3 out of 20 patients and caused a 

major setback for the whole gene therapy field (Cavazzana-Calvo et al., 2000; 

Fischer and Cavazzana-Calvo, 2008; Gaspar et al., 2004; Hacein-Bey-Abina et al., 

2003). A separate genus of the retrovirus family, lentiviruses, seem to constitute a 

safer option as they display substantially weaker genotoxicity (Montini et al., 

2009). Further advantage for lentiviruses is provided by their ability to transduce 

non-dividing cells, although transduction of skeletal muscle and myocardium 

seems to remain low (Kang et al., 2002). 

 
Table 3. Gene therapy vectors. 

Vector Advantages Disadvantages 

Naked plasmid, Low immunogenicity Low transduction efficiency 
liposomes, etc. Ease of production Transient expression 
Adenovirus High transduction efficiency High immunogenicity 
  Ease of production Transient expression (<2 weeks) 
  Ability to transduce non-dividing cells Low transduction efficiency in muscle 
Adeno-associated 
virus Long expression Limited DNA capacity 
  Ability to transduce non-dividing cells Difficult production 

  
Tropism for skeletal muscle and 
myocardium   

  Low immunogenicity  
Retrovirus Stable gene expression Unable to transduce non-dividing cells 

    Genotoxicity 
    Limited capacity 
   Low titers 

Lentivirus Ability to transduce non-dividing cells 
Low efficacy except in hematopoietic 
cells 

  Low immunogenicity Relatively difficult production 
  Stable gene expression Relatively low titers 
  Low genotoxicity   
  High DNA-capacity   
Herpes simplex-virus High efficacy Unable to transduce non-dividing cells 
  High DNA capacity Cytotoxicity 
  Ease of production   
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3.1.2 Antioxidative Gene Therapy – Extracellular Superoxide Dismutase 

The role of reactive oxygen species has long been appreciated in numerous 

pathological conditions including diseases of the central nervous system 

(Halliwell, 1992), vascular diseases (Palinski et al., 1989), pulmonary diseases 

(Ryrfeldt et al., 1993), ischemic conditions (Darley-Usmar et al., 1989), and 

cancer (Cerutti, 1985). Among SOD isoforms, SOD3 could be best suited for 

therapeutic applications due to its inherent stability in the extracellular space. 

SOD3 has been shown to have a half-life of 15-20 hours within vasculature 

(Karlsson et al., 1993), and approximately 85 hours in muscle or subcutaneous 

tissue (Karlsson et al., 1994). Studies utilizing both transgenic mice and SOD3 

gene transfer have attempted to resolve the therapeutic potential of SOD3 over-

expression. While most of the studies concentrate on atherosclerotic, ischemic or 

pulmonary disease models, the studied conditions range from paracetamol-induced 

liver injury to antigen induced arthritis (Dai et al., 2003; Laukkanen et al., 2001b), 

and from erectile function to cancer (Bivalacqua et al., 2003; Chaiswing et al., 

2008; Tanaka et al., 2001). 

The cardioprotective effect of SOD3 has been reported in several studies 

starting from the early 1990’s. Recombinant human SOD3 was first shown to 

reduce oxygen radicals in isolated rat hearts (Johansson et al., 1990) with 

subsequent recovery (83% alone and 103% when administered together with 

cardioplegic solution) in left ventricular developed pressure. Furthermore, SOD3 

therapy led to reduced creatine kinase release marking alleviated myocardial 

damage (Hatori et al., 1992; Sjoquist et al., 1991). More recently, reduced infarct 

area and improved contractile function were achieved by systemic injection of 

SOD3-adenovirus (Li et al., 2001; Li et al., 1998). In addition to the acute damage 

caused by myocardial ischemia/reperfusion injury, ROS are strongly implicated in 

atherogenesis, the most common cause for occlusion of both myocardial and 

peripheral arteries. 

Atherogenesis is initiated by subendothelial accumulation of oxidized low 

density lipoprotein (LDL) particles. SOD3 is highly expressed by macrophages of 

the atherosclerotic lesions both in WHHL rabbit and human (Luoma et al., 1998). 

Despite high SOD3 expression, markers for oxidized lipoproteins 

(malondialdehyde-lysine and hydroxynonenal-lysine) and peroxynitrite-modified 

proteins (nitrotyrosine residues) were detected in lesions with abundant 

macrophage infiltrate suggesting that disturbed redox balance plays an important 

role in atherogenesis. This view is supported by observations of reduced SOD3 

content in plasma of patients who have had myocardial infarction (76 ng/ml vs. 

110 ng/ml in healthy people) (Wang et al., 1998), and in coronary arteries of 

patients with CAD (63 U/mg protein vs. 126 U/mg in healthy controls) 

(Landmesser et al., 2000). However, neither transient adenovirus mediated over-

expression nor knock-out studies have managed to provide support for the role of 

SOD3 in atherogenesis (Laukkanen et al., 2001a; Laukkanen et al., 2001b).  

Although SOD3 appears to have little role in atherogenesis, management of 

restenosis and neointima formation has been more successful (Durand et al., 2005; 

Ozumi et al., 2005). Local catheter-mediated gene transfer was able to reduce 



Review of the Literature 

 

41 

neointima formation in balloon-denuded rabbits 2 and 4 weeks after gene transfer 

(Laukkanen et al., 2002). Further studies showed that AdSOD3 gene transfer 

simultaneously with endothelial denudation and stenting resulted in accelerated 

endothelial proliferation and enhanced endothelial recovery (67.4% vs. 10.8% at 6 

days and 89.3% vs. 45.1% at 28 days)(Brasen et al., 2007). 

Alongside the vascular compartment, the lung is clearly an interesting tissue to 

study redox-mediated cellular events. Lung is also one the tissues with highest 

endogenous SOD3 expression. In fact, JF1/Msf mice possess a single nucleotide 

polymorphism in SOD3 promoter resulting in decreased pulmonary SOD3 content 

and reduced ventilation efficiency (dead space volume/total lung 

capacity)(Ganguly et al., 2009). Folz et al. have constructed mice with targeted 

over-expression of SOD3 in alveolar type II and nonciliated bronchial epithelial 

cells (Folz et al., 1999). Exposure of these mice to >99% oxygen for up to 84 

hours resulted in significantly reduced wet/dry weight ratio and approximately 

50% reduction in PMN infiltration into lungs of SOD3 transgenic animals. PMN 

infiltration was suggested to be repressed by inhibition TNFα, MIP-2, and ICAM-

1 expression (Folz et al., 1999). Following the report by Folz, additional studies 

have supported the anti-inflammatory role of SOD3 in lung injuries. SOD3 

transgenic mice show reduced lung pathology in response to influenza- or 

hemorrhage-induced lung injury (Bowler et al., 2001; Suliman et al., 2001). 

Notably, hemorrhage-induced pulmonary NF-κB and myeloperoxidase activity 

were reduced by roughly 50% (Bowler et al., 2001). Furthermore, LPS-induced 

lung inflammation is exaggerated in SOD3 knock-out animals but ameliorated in 

SOD3 transgenic animals. SOD3 overexpression diminished expression of LPS-

induced TNFα, MIP-2, ICAM-1, VCAM-1, E-selectin, and P-selectin suggesting 

that SOD3 is able to attenuate inflammatory response through inhibition of 

proinflammatory cytokine and adhesion molecule expression (Bowler et al., 2004). 

3.2 Cell Therapy 

Bone marrow transplantation (BMT) represents a quintessential cell therapy 

approach wherein healthy stem cells are used to reconstitute diseased tissue. Long-

term success with BMT was first achieved in 1968 when infants with X-linked 

lymphopenic immune deficiency and Wiscott-Aldrich syndrome were treated with 

allogeneic transplantation (Albertini and Bach, 1968; Gatti et al., 1968). With 

advances in histocompatibility testing and donor registries, BMT continues to 

develop into technique with better survival rate and less toxic effects (such as 

graft-versus-host-disease). Beside hematopoietic stem cells that form the basis for 

BMT, other cell populations with varying differentiation states have been studied 

as potential cell therapeutics. In the context of skeletal muscle muscle, satellite 

cells, mesenchymal stromal cells, and endothelial progenitor cells are the most 

notable examples. However, the field is plagued by controversial reports and 

failure to convincingly demonstrate the mechanism by which different cell 

populations are able to mediate tissue healing (Boyle et al., 2006; Oettgen et al., 

2006). 
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3.2.1 Mesenchymal Stromal Cell-Mediated Therapy 

Because of ethical problems and possible teratogenicity associated with 

embryonic stem cells (Hyun, ; Knoepfler, 2009), mesenchymal stem/stromal cells 

have surpassed them as the most interesting cell population for cellular therapy. 

The use of MSCs for cell therapy usually relies on their ability to home to injured 

tissue after systemic delivery. Although MSCs preferentially home to site of injury 

(Li et al., 2002), they are known to spread to various tissues in mice and baboons 

with highest cell numbers found in lungs, gastrointestinal tissues, kidneys, liver 

and skin (Devine et al., 2003; Francois et al., 2006). In mouse myocardial 

infarction, injury homing can be enhanced by left ventricular cavity infusion 

leading to reduced lung uptake (Barbash et al., 2003). Homing efficiency can also 

be affected by in vitro culture conditions as 1-day exposure to 1% oxygen 

improved engraftment efficiency in chick embryos (Hung et al., 2007b). 

Furthermore, drastic (90%) reduction in MSC homing to BM has been reported 

after only 24 hours in standard culture (Rombouts and Ploemacher, 2003). 

Requirement for specific tissue homing can be circumvented in tissues that are 

accessible for direct in situ administration. This however does not affect other 

changes in cellular behavior due to extensive in vitro expansion, such as potential 

genomic instability (Rubio et al., 2005; Shahdadfar et al., 2005; Wang et al., 

2005). 

Knowledge about the therapeutic application of MSCs to enhance healing of 

ischemic tissue is largely based on studies of myocardial infarction. Bone marrow 

derived MSCs are able to induce functional improvement in pre-clinical studies of 

myocardial infarction with modest success also in clinical trials (Giordano et al., 

2007). Therapeutic efficacy has also been achieved in critical limb ischemia using 

diverse populations of bone marrow mononuclear cells (Miyamoto et al., 2006; 

Tateishi-Yuyama et al., 2002) but more importantly, MSC transplantation was 

recently shown to increase blood flow in murine hind limb ischemia model 24 

hours after transplantation (Rosova et al., 2008). Furthermore, therapeutic success 

in pre-clinical models spans diverse disease models such as experimental 

autoimmune encephalomyelitis (EAE), Diabetes, and wound healing (Fiorina et 

al., 2009; Hanson et al., ; Rafei et al., 2009). The efficacy of MSC transplantation 

in these diseases appears to be mediated, at least partly, by immunomodulatory 

function (Uccelli et al., 2008). However, multipotential differentiation capacity in 

vitro suggested that MSCs could be used to promote tissue regeneration through 

tissue engraftment and differentiation (Prockop, 1997). Although this may indeed 

be the case in some circumstances (Sasaki et al., 2008; Wu et al., 2007b), it has 

become evident that functional improvements are achieved even in absence of 

efficient engraftment (Iso et al., 2007; Kinnaird et al., 2004b). 

A heated discussion about differentiation potential of stem cells arose when 

hematopoietic and neural stem cells were shown to differentiate into multiple cell 

lineages representing all three germ cell layers: ectoderm, mesoderm, and 

endoderm (Clarke et al., 2000). Concomitantly, several reports suggested 

multilineage differentiation potential for MSCs bringing up high hopes for their 

therapeutic use (Majumdar et al., 1998; Muraglia et al., 2000; Prockop, 1997). 
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Studies in vivo suggested that MSCs could ameliorate myocardial infarction 

through differentiation into new myocytes and vascular cells (Orlic et al., 2001; 

Tang et al., 2006; Tomita et al., 1999). Despite improvements in heart function, 

observed stem cell engraftment has generally been rather modest (Iso et al., 2007; 

Noiseux et al., 2006). Together with reports suggesting cell fusion to be 

responsible for the observed “transdifferentiation” (Hung et al., 2007b) this raised 

serious doubts about differentiation as the mediator of stem cell induced 

therapeutic effect. 

In the midst on controversy, it has become clear that MSCs are able to promote 

vascularization of ischemic tissue (Sanz et al., 2008). Re-vascularization is an 

integral part of the post-ischemic healing process and considerable amount of 

evidence now suggests that MSCs secrete a large number of soluble factors that 

not only impede adaptive immune reaction (Uccelli et al., 2008) but also promote 

angiogenesis and arteriogenesis (Al-Khaldi et al., 2003; Gnecchi et al., 2006; 

Kinnaird et al., 2004b). More specifically, MSCs secrete growth factors such as 

VEGF, FGF, IGF, angiogenin, IL-6, and MCP-1 that activate endothelial 

PI3K/Akt pathway to promote cell survival, proliferation, and migration thus 

leading to enhanced angiogenic vascular growth (Hung et al., 2007a; Kinnaird et 

al., 2004a; Potapova et al., 2007; Sadat et al., 2007). MSC secretory function is 

enhanced by hypoxia which leads to up-regulation of e.g. VEGF-D, PlGF, and 

MMP-9 (Kinnaird et al., 2004a; Ohnishi et al., 2007). Indeed, it is likely that 

transplanted MSCs are activated by local microenvironment to produce growth 

factors that promote tissue healing. 

Although beneficial in their own right, the therapeutic applications of MSCs 

can be further enhanced or expanded by ex vivo gene transfer. Recent report 

showed enhanced perfusion recovery in peripheral ischemia after MSC mediated 

prostacyclin synthase gene transfer as compared to MSCs or adenoviral gene 

transfer alone (Ishii et al., 2009). In addition, attempts have been made towards 

improving MSC bone forming capacity in vivo or supporting long term HSC 

growth in vitro by gene transfer of bone morphogenic protein (BMP) or hTERT, 

respectively (Kawano et al., 2003; Tsuda et al., 2003). Perhaps the most intriguing 

application is however the use of MSCs as carriers for oncolytic genes into 

tumors. These studies are warranted by observations that MSCs are able to home 

to sites of active tumorigenesis after intravenous administration (Nakamizo et al., 

2005; Nakamura et al., 2004). MSC-mediated tumor delivery of pro-inflammatory 

cytokines (such as IFN-α, IFN-β, IL-2, IL-12, or CX3CL1) (Chen et al., 2008; 

Elzaouk et al., 2006; Nakamizo et al., 2005; Nakamura et al., 2004; Ren et al., 

2008a; Ren et al., 2008b; Studeny et al., 2002; Studeny et al., 2004; Xin et al., 

2007), suicide genes (thymidine kinase, cytosine deaminase, and TRAIL) 

(Loebinger et al., 2009; Matuskova et al., ; Miletic et al., 2007), and oncolytic 

viruses (Komarova et al., 2006; Stoff-Khalili et al., 2007) have led to significantly 

reduced tumor burden. However, there is evidence that MSCs could in fact support 

tumor growth and metastasis through immunesuppression and pro-angiogenic 

action (Djouad et al., 2003; Karnoub et al., 2007; Nauta et al., 2006). 
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3.2.2 Stem Cell Source 

Stem cell therapy requires high numbers of cells and therefore extensive in 

vitro expansion is usually needed. For autologous therapy, the most feasible 

sources for MSCs are the bone marrow and the adipose tissue. Although MSCs are 

relatively easily expanded in vitro, successful application of autologous stem cell 

therapy in clinical setting can be limited by ability to quickly produce enough 

cells. Nevertheless, a major advantage for MSCs is their apparent 

immunomodulatory action which could potentiate their use in allogeneic 

transplantation in addition to potential use as direct immunomodulatory 

therapeutics (Aggarwal and Pittenger, 2005; Uccelli et al., 2008). Although human 

MSCs express intermediate levels of major histocompatibility complex (MHC)-I 

and can be induced to express MHC-II, they probably do not stimulate alloreactive 

T-cells due to lack of co-stimulatory molecules (Di Nicola et al., 2002; Majumdar 

et al., 2003). In addition, MSCs have been shown to reduce expression of MHC-II 

and costimulatory molecules CD40 and CD86 in dendritic cells consequently 

leading to reduced T-cell activation (Djouad et al., 2003; Nauta and Fibbe, 2007). 

MSCs also arrest proliferation of CD8+ and CD4+ T-cells (Benvenuto et al., 2007; 

Krampera et al., 2006), as well as natural killer cells (Krampera et al., 2006; 

Sotiropoulou et al., 2006; Spaggiari et al., 2006), and diminish PMN mediated 

oxidative burst through IL-6-dependent mechanism (Raffaghello et al., 2008). 

Despite ethical dilemmas associated with them, embryonic stem cells could 

offer virtually unlimited source of material for cell therapy. Therapeutic 

application of ESCs requires reproducible and safe methods to generate desired 

cell types suitable for transplantation. MSCs have recently been successfully 

derived from embryonic stem cells (Barberi et al., 2005; Olivier et al., 2006; 

Trivedi and Hematti, 2007; Trivedi and Hematti, 2008), and their 

hypoimmunogenic nature could enable use in allogeneic “from-the-shelf” 

applications. This approach is however complicated by difficulty to choose 

optimal in vitro culture conditions as they may have significant effect on MSC 

phenotype (Mannello and Tonti, 2007). It is known that MSCs from different 

mouse strains have different media requirements for optimal expansion (Peister et 

al., 2004). Mouse MSCs are also prone to genomic instability and subsequent 

tumorigenicity in culture (Tolar et al., 2007). Although human MSCs are 

genetically more stable than their mouse counterparts, spontaneous transformation 

has been reported also in human cells during long term culture (Rubio et al., 2008; 

Rubio et al., 2005; Wang et al., 2005). Clinical trials have however shown 

relatively little adverse effects and no in vivo tumorigenicity related to stem cell 

therapy suggesting that therapeutic use of MSCs is safe and feasible (Boyle et al., 

2006). 
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 AIMS OF THE STUDY 

Ischemic skeletal muscle goes through a complex sequence of events aimed to 

re-establish sufficient blood supply and to preserve tissue functionality. However, 

endogenous processes may prove to be insufficient to retain tissue function. The 

aim of this thesis was to study gene and stem cell therapy, and their therapeutic 

mechanisms in the context of acute peripheral artery occlusion. More specifically, 

we utilized superoxide dismutase 3 (SOD3) and mesenchymal stem/stromal cells 

(MSCs) to restore tissue redox balance and to promote revascularization, 

respectively. 

 

The specific aims of the study were divided as follows: 

 

I Characterize the effect of adenovirus mediated SOD3 over-expression 

on post-ischemic skeletal muscle healing, including tissue metabolism, 

redox balance, angiogenesis, inflammation and cell proliferation. 

  

II Clarify signal transduction events responsible for regulation of 

endogenous SOD3 expression. 

 

III Enlighten the signaling cascades mediating therapeutic effects 

downstream of SOD3 induction. 

 

IV Study the therapeutic potential of a novel hESC-derived MSC 

population in acute peripheral ischemia. 

 

V Determine the fate of locally transplanted MSCs, and study the 

mechanism by which they mediate their therapeutic effect. 
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 MATERIALS & METHODS 

Materials and methods are described in more detail in the original publications. 

1.1 Antibodies 

Antigen Ig class Supplier Application Used in 

vWF rabbit polyclonal Abcam IHC I, III 

Ki67 mouse IgG DakoCytomation IHC I, III 

3-nitrotyrosine rabbit IgG Millipore IHC I 

CD68 mouse IgG Serotec IHC II, III 

CD3 rabbit polyclonal Serotec IHC II, III 

Mek1/2 rabbit polyclonal Cell Signaling WB I 

pMek1/2 rabbit IgG Cell Signaling WB I 

44/42 MAPK rabbit polyclonal Cell Signaling WB I, III 

p44/42 MAPK rabbit IgG Cell Signaling WB I, III 

Akt rabbit polyclonal Cell Signaling WB I, III 

pAkt rabbit IgG Cell Signaling WB I, III 

IkBa mouse IgG Santa Cruz WB II 

PDGFBR rabbit IgG Santa Cruz WB III 

a-tubulin mouse IgG Sigma WB III 

Ras mouse IgG Millipore WB I 
* Abbreviations: WB=Western blotting, IHC=Immunohistochemistry 

1.2 Animals, Cells, and Viruses 

Animals  Description Source  / Reference used 
in 

Mouse, 
Balb/c  Local colony II 

Rat, Fischer 
344   Harlan I, II, 

III 
Cells    

HEK 293T Human embryonic kidney cells   I, II 
hESC-derived 
MSC 

Human embryonic stem cell derived 
mesenchymal stromal cells 

Dr. Peiman Hematti 
(Trivedi et al. 2007) III 

BM-MSC Human primary bone marrow mesenchymal 
stromal cells Dr. Peiman Hematti III 

Viruses      

Adeno SOD3 Replication deficient E1-partially-E3-deleted 
AdBglII 

Uni. Turku Biotechnology Centre 
(Laukkanen et al. 2000) I, II 

Adeno LacZ Replication deficient E1-partially-E3-deleted 
AdBglII Uni. Turku Biotechnology Centre I, II 

Lenti Luc produced using pWPXLd, psPAX2, and 
pMD2G plasmids Addgene III 

Lenti GFP produced using pWPXLd, psPAX2, and 
pMD2G plasmids Addgene III 
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1.3 Miscellaneous Reagents 

Reagent Application Supplier Used in 

Dihydroethidium bromide (DHE) ROS detection Invitrogen I 
X-Gal β-Galactosidase staining Promega I 
Dexamethasone (Oradexon) Anti-inflammatory treatment Organon II 
Cyclosporine A Immunosuppression Fluka Biochemica III 
Senescence staining kit Senescence staining Cell Signaling III 
Fentanyl fluanisone (Hypnorm) Anesthesia Janssen Pharmaceutica I, II, III 
Midazolame (Dormicum) Anesthesia Roche I, II, III 
Narcanti Anesthesia Bristol-Myers Squibb I, II, III 
Proteose peptone Induction of peritonitis Difco II 
IL-1β Induction of peritonitis R&D Systems II 
Heparin Peritoneal lavage Løvens Kemiske Fabrik II 
D-luciferin Bioluminescnet imaging (IVIS) Synchem III 
Hexadimethrine bromide Lentiviral transduction Sigma III 

1.4 Primers 

Target: Forward: Reverse: Tm 
used 

in 

huSOD3 CTT CGC CTC TGC TGA AGT CT GGG TGT TTC GGT ACA AAT GG 60 I 

huVEGF-A TCC GGG TTT TAT CCC TCT TC TCT GCT GGT TTC CAA AAT CC 55 I, III 

huVEGF-D CGG CAT ACG TTG GAG AGA TT ATC TTA GGG GTG GGG AGA GA 58 III 

huPDGFBR GTG AAC GCA GTG CAG ACT GT AGG TGT AGG TCC CCG AGT CT 55 III 

huAlu 1 CAT GGT GAA ACC CCG TCT CTA GCC TCA GCC TCC CGA GTA G 60 III 

huB-Act TGC GTG ACA TTA AGG AGA AG GCT CGT AGC TCT TCT CCA * I, III 

rSOD3 GAC CTG GAG ATC TGG ATG GA GTG GTT GGA GGT GTT CTG CT 60 I 

rCyc D1 AAC GTC ACA CGG ACT ACA GG TGT TCC ATG GCT GGG GCT CTT 55 I 

rVEGF-A CAA TGA TGA AGC CCT GGA GT TTT CTT GCG CTT TCG TTT TT 50 I, III 

rVEGF-D ATT ATT TGT GCA GCG GGA AA GGC ATT CTC CAG AAG CAA AG. 55 III 

rPDGFBR GGA GCT TCA CAG AGG ACT GG GAT CTG GGT GCC ATG AGA GT 55 III 

rTNFa AGA TGT GGA ACT GGC AGA GG CCC ATT TGG GAA CTT CTC CT 60 II 

rIL1a TCG GGA GGA GAC GAC TCT AA GAA AGC TGC GGA TGT GAA GT 58 II 

rIL6 CCG GAG AGG AGA CTT CAC AG ACA GTG CAT CAT CGC TGT TC 55 II 

rMIP-2 ATC CAG AGC TTG ACG GTG AC GGA CTT GCC GCT CTT CAG TA 55 II 

rMCP1 CTC ACC TGC TGC TAC TCA TTC ACT TGC TGC TGG TGA TTC TCT TGT AGT 55 II 

rICAM AGG TAT CCA TCC ATC CCA CA GCC ACA GTT CTC AAA GCA CA 55 II 

rVCAM TGA CAT CTC CCC TGG ATC TC CTC CAG TTT CCT TCG CTG AC 55 II 

rE-Selectin TTT TTG GCA CGG TAT GTG AA AGG TTG CTG CCA CAG AGA GT 57 II 

rP-Selectin TTC CCA CAC TTC CTT CTG CT CAC GCT GTA GTC GGG GTA TT 57 II 

rB-Act TCG TGC GTG ACA TTA AGG AG GTC AGG CAG CTC GTA GCT CT * I, II, III 

AdSOD3 GTT GCG TGA GCG GAA AGA TG GTG AGC GCC TGC CAG ATC TC 60 I 
common 
VEGF-A GGA CAT CTT CCA GGA GTA TGC AAC GCG AGT CTG TGT 55 III 

common 
VEGF-D GTT GCA ATG AAG AGA GCC TT TCC CAT AGC ATG TCA ATA GG 55 III 

* Used Tm varied between 55-60°C 
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1.5 Methodology 

In vitro Used in 

Adenovirus production I, II 
Lentivirus production III 
Cell culture I, II, III 
Transfection I, II 
Lentivirus transduction III 
Senescence staining III 
Luciferase reporter assay I, II 
Ras pull-down assay I 
Sonication and Fixation of cells III 
SOD3 protein activity assay I 
Concavalin A sepharose purification I 
PET imaging I 
Immunohistochemistry, DHE and X-Gal staining I, II, III 
Western blotting I, II, III 
Quantitative RT-PCR I, II, III 
Genomic PCR III 

In vivo  
Rat hindlimb Injury I, II, III 
Intramuscular injection I, II, III 
Mouse peritonitis model II 
IVIS, In vivo bioluminescent imaging (BLI) III 

1.6 Rat Hind Limb Ischemia Model 

 

 

 
Figure 3. Peripheral ischemia. Ischemia of 

the hind limb was induced by surgical 

ligation of the proximal and distal femoral 

artery, and the lateral circumflex femoral 

artery. Adenoviruses or cells were injected 

directly into the muscle either after the 

surgical operation during same anesthesia, or 

on the following day, respectively. 
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 RESULTS 

1.1 Therapeutic Properties of SOD3 Gene Transfer 

1.1.1 Adenovirus-mediated SOD3 gene transfer (I) 

Previous studies utilizing both gene transfer and knock-out techniques have 

established the protective role of SOD3 in ROS-mediated injuries such as brain 

edema, lung hyperoxia, and oxidant-induced myocardial injury (Carlsson et al., 

1995; Oury et al., 1993; van Deel et al., 2008). Although SOD3 constitutes only a 

minor part of total tissue SOD activity in most tissues, it is the main O2•
- 

scavenging enzyme in the extracellular space. Despite its evident role in the 

upkeep of extracellular redox balance, the cellular mechanisms mediating SOD3 

derived therapeutic effects have remained elusive. Peripheral limb ischemia is 

characterized by rapid post-ischemic ROS production, and thus represents an 

optimal target for antioxidative SOD3 gene therapy. In our studies we utilized a rat 

hind limb ischemia model wherein the femoral artery is surgically ligated during 

anesthesia. To achieve high temporal expression of the transgene we injected 

0.5x109 pfu of Adenovirus carrying either rabbit SOD3 (Laukkanen et al., 2000) or 

LacZ directly into ischemic muscle. Histological β-galactosidase staining showed 

transduction efficiency between 0.8 and 5% at different time points in the LacZ 

control group. SOD3 transgene expression was verified by RT-PCR analysis in the 

SOD3 group. Gene transfer increased muscle SOD3 activity from 1.5±0.31 U/mg 

(LacZ) to 2.6±0.09 U/mg (SOD3). Increased SOD activity was accompanied by 

reduced dihydroethidium and nitrotyrosine staining. Consequently, gene transfer 

resulted in functional up-regulation of SOD3 within the ischemic muscle. 

1.1.2 SOD3 gene transfer normalized metabolic performance of ischemic muscle 

(I) 

Decreased oxygen supply and subsequent oxidative stress up-regulate 

expression of glucose transporters and glycolytic enzymes in skeletal muscle 

(Semenza, 2000; Wenger, 2000). To analyze the metabolic state of SOD3 treated 

ischemic muscle we utilized ex vivo radiographic PET imaging 10 days after 

vessel ligation. FDG (18-fluorodeoxyglucose) was administered to the animals 30 

minutes before euthanasia, after which muscle samples were frozen, cut into 

sections, and imaged by radiography. FDG accumulation was assessed by an 

internal comparison between the healthy leg and the injured leg of each animal. 

Cells import FDG as they do normal glucose but they are unable to utilize it after 

phosphorylation by hexokinase resulting in accumulation of phosphorylated FDG 

within the cells. Accumulation of FDG was increased in the ischemic muscle as 

compared to the healthy leg in both experimental groups. However, compared to 

the LacZ control animals (134±0.5% higher signal in injured leg vs. healthy leg) 

SOD3 gene transfer resulted in significant reduction in FDG accumulation in the 

injured leg (41±0.1% higher signal as compared to healthy leg) indicating that 

SOD3 treatment was able to improve the metabolic performance of ischemic 

muscle 10 days after injury. 
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1.1.3 SOD3 does not promote angiogenesis but increases cell proliferation and 

alleviates inflammation (I, II) 

Next, histological analyses were performed to assess the tissue responses 

responsible for SOD3 mediated improvement in tissue metabolism. Histological 

staining for von Willebrand factor revealed similar angiogenic profile in SOD3 

treated animals and the LacZ control group. Capillary density increased from 3 

days until the 10 day time point but had already declined at 14 day time point. 

Staining for Ki67, a marker for actively proliferating cells, showed significant 

(p<0.05) increase in the number of proliferating cells in the SOD3 transduced 

muscle 3 and 7 days after vessel ligation. This suggests that SOD3 mediates tissue 

recovery by enhancing cell proliferation rather than by increasing angiogenesis. 

Although the difference in Ki67 staining was statistically significant, overall 

level of cell proliferation was rather low and thus unlikely to alone mediate tissue 

recovery. Post-ischemic muscle is rapidly infiltrated by polymorphonuclear 

neutrophils which are subsequently replaced by macrophages accompanied by low 

number of T-cells. Since previous studies have suggested an anti-inflammatory 

role for SOD3 in pulmonary injuries (Bowler et al., 2001; Folz et al., 1999), we 

analyzed the infiltration of CD68+ macrophages and CD3+ T-cells into the 

ischemic muscle. CD68 staining showed approximately 3-fold reduction in the 

area of macrophage infiltrate at 3 day time point in the SOD3 animals as compared 

to control group. However, even more dramatic reduction was apparent at later 

time points, reaching 12-fold difference 10 days post-ischemia. Further analysis 

showed 3-5 fold difference in the number of macrophages at all time points 

analyzed. It is of note that throughout the experiment macrophage numbers in 

LacZ animals remained higher than what was maximally observed in SOD3 

animals. SOD3 had a significant effect also on CD3+ leukocyte population but this 

was only evident at 10 day time point. In conclusion, SOD3 gene transfer 

enhances tissue recovery after ischemic insult through combined action of reduced 

macrophage infiltration and enhanced cell proliferation. 

1.1.4 Confirmation of the anti-inflammatory effect of SOD3 in mouse peritonitis 

(II) 

Analysis of the CD68+ and CD3+ leukocyte subsets in rat hind limb ischemia 

suggested a selective reduction in macrophage infiltration. Therefore, we wanted 

to further characterize the anti-inflammatory function of SOD3. Mouse peritonitis 

model was chosen due to its relatively simple execution and efficient analysis of 

accumulation of different leukocyte subtypes into site of inflammation. First, 

0.5x109 pfu of AdSOD3 or AdLacZ was injected into the peritoneal cavity of 

Balb/c mice. Approximately 72 hours later, peritoneal inflammation was induced 

by intra-peritoneal injection of 5% proteose peptone supplemented with IL-1β 

(total volume 1 ml). Finally, the animals were euthanized 18 hours after induction 

of inflammation, the peritoneal cavity was lavaged, and leukocyte subtypes were 

analyzed by cytochemical staining. AdSOD3 was administered 3 days prior to 

induction of inflammation to achieve high transgene expression at the time of 

acute inflammatory reaction. Indeed, SOD3 treatment significantly reduced total 
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leukocyte numbers in the peritoneal infiltrate by 39% (p<0.01) as compared to 

LacZ control animals. The observed effect was mostly due to reduced monocyte 

migration (67% reduction, p<0.01). However, infiltration of lymphocytes was also 

significantly reduced (33%, p<0.05) while there was no effect on neutrophils. 

To assess the true efficacy of SOD3 as an anti-inflammatory molecule, we 

tested Dexamethasone treatment as compared to PBS mock treated animals. 

Dexamethasone belongs to a group of very potent anti-inflammatory 

glucocorticoid drugs that in addition to their efficacy may cause severe side effects 

especially in long term use (Bulkley and Roberts, 1974; El-Helou et al., 2008; 

Kirton et al., 2006; Weinstein et al., 1998). Dexamethasone treatment half an hour 

before induction of peritonitis caused significant reduction (29%, p<0.05) in 

leukocyte infiltration into peritoneum. Similar to AdSOD3 treatment, the observed 

reduction was mostly due to lower monocyte migration (59%, p<0.05). The effect 

of dexamethasone on lymphocyte subset failed to reach statistical significance 

despite 53% reduction whereas there was clearly no effect on neutrophil 

migration. Leukocyte numbers found in peritoneum after adenoviral LacZ transfer 

were roughly double when compared to PBS control group. Despite this viral 

induction of inflammation, SOD3 mediated effect reduced monocyte and 

lymphocyte numbers to similar levels as dexamethasone. This would strongly 

suggest that SOD3 is potent inhibitor of acute inflammation. 

1.2 Redox Signaling – Cellular Responses to SOD3 

1.2.1 SOD3 activates the Ras-Erk and Akt signalling pathways (I) 

Reactive oxygen species were long considered merely as harmful side-products 

of cellular metabolism. However, we are now beginning to understand the extent 

to which controlled ROS production is involved in cellular processes. For 

example, low hydrogen peroxide concentrations are known to induce cellular 

proliferation through activation of small GTPase Ras (Aikawa et al., 1997). Since 

we found SOD3 to be able to mediate cell proliferation in vivo, we were prompted 

to investigate its role in mitogenic signaling cascades. Ras is known to be 

important mediator of mitogenic signaling often having a role in e.g. malignant 

tumor growth. Due to its crucial role in regulating cell proliferation we analyzed 

the effect of SOD3 on activity of Ras both in vivo and in vitro. Ras pull-down 

assay showed marked increase in the amount of GTP-bound active Ras in muscle 

samples from SOD3 treated animals at 7 day time point.  Ras activation was 

confirmed by in vitro analysis in HEK293T cells. Activation of Ras was strongly 

reduced by diphenyliodonium sulphate (DPI) treatment which inhibits the Nox 

complex thus diminishing superoxide production and depleting SOD3 from its 

substrate. In contrast, catalase decomposes H2O2 into molecular oxygen and water 

removing the end-product of SOD3-catalyzed reaction. However, catalase 

appeared to have no effect on SOD3 mediated activation of Ras. Since H2O2 is 

most likely mediating SOD3 derived activation of Ras, we wanted to verify 

activation of Ras by H2O2. Indeed, exposing cells to 500μM H2O2 caused 

activation of Ras to similar extent as SOD3 transfection. 
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Interaction of active Ras with its downstream partner Raf leads to consequent 

activation of the MAPK pathway constituting Raf (MAPKKK), Mek1/2 

(MAPKK), and Erk1/2 (MAPK). MAP kinases control gene expression by 

modulating phosphorylation of nuclear transcription factors such as AP-1 and 

CREB (Gelain et al., 2006; Shaywitz and Greenberg, 1999; Turjanski et al., 2007). 

However, the canonical signaling cascades display extensive cross-talk. 

Accordingly, Ras is known to activate not only the MAPK pathway, but also the 

PI3K/Akt pathway which is known to promote angiogenesis and cell survival 

(Wang et al., 1999). Due to their reported role in cell survival and growth, we 

analyzed the activation status of the MAPK and PI3K/Akt pathways both in vitro 

and in vivo. SOD3 was shown to increase phosphorylation of Mek1/2 and Erk1/2 

in ischemic muscle 7 days after injury. In in vitro studies SOD3 and H2O2 

activated Mek1/2 and Erk1/2, and SOD3 mediated activation was repressed by 

DPI. Intriguingly, SOD3 gene transfer had no effect on Akt phosphorylation in 

vivo but activated Akt in vitro. Conflicting data on Akt shows that in vitro culture 

conditions may significantly differ from in vivo tissue environment. However, as 

Akt is known to promote angiogenesis the in vivo data supports our observation 

that SOD3 had no effect on new vessel formation. 

Phosphorylation by protein kinases represents a central theme in regulation of 

signal transduction. Protein kinases form complex networks eventually leading to 

phosphorylation of nuclear transcription factors, including e.g. AP-1, CREB, and 

NF-κB. Notably, Ras-MAPK pathway promotes activation of AP-1, and CREB 

subsequently leading to up-regulation of e.g. Cyclin D1 and VEGF-A (Shen et al., 

2008; Wu et al., 2007a). We used in vitro luciferase assay to determine the 

transcriptional activity of AP-1/c-Jun, and CREB target promoters after SOD3 

transfection. Activity of each of the analyzed transcription factors was induced 2-3 

fold in response to SOD3 transfection. Intriguingly, activation of AP-1, and c-Jun 

were reproduced by H2O2 whereas activation of CREB was not. In addition, SOD3 

mediated activation of each transcription factor was prevented by DPI treatment 

but was unaffected by Catalase. In conclusion, activation of CREB and AP-1 

through Ras-MAPK pathway could explain SOD3 mediated increased cell 

proliferation. To further strengthen this view, we performed PCR analysis both in 

vivo and in vitro to assess the expression level of AP-1/CREB target genes Cyclin 

D1 and VEGF-A. Both were significantly increased in SOD3 treated animals as 

compared to either uninjured or LacZ treated control animals. Finally, in vitro 

analysis verified induction of VEGF-A and Cyclin D1 by members of the Ras 

signaling cascade: Ras, Braf, Mek1/2 and Erk1/2, as well as by SOD3. 

1.2.2 Autostimulatory feedback regulation is driving SOD3 expression (I) 

Due to the destructive potential of excessive ROS production, a strict control of 

redox enzyme expression is required for the maintenance of extracellular redox 

balance. Although SOD3 removes O2•
- from the extracellular space, the end-

product of SOD3 catalyzed reaction is H2O2 which in itself is moderately reactive 

and potentially hazardous in high concentrations. Consequently, previous studies 

have suggested tight regulation of SOD3 activity at both pre- and post-
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transcriptional levels leading to inability to achieve high expression of exogenous 

SOD3 in vivo (Laukkanen et al., 2002; Laukkanen et al., 2001b). Since SOD3 was 

able to mediate activation Ras and Akt we wanted to test the possibility of 

feedback regulation. In vitro quantitative PCR analysis showed dramatic increase 

in SOD3 mRNA expression in response to Ras, Braf, Mek, and Erk transfection. 

This led to modest 2-3 fold increase in SOD3 enzymatic activity. The role of Ras-

MAPK in controlling SOD3 expression was verified by U0126, a specific MEK 

inhibitor which significantly reduced SOD3 expression. Akt had no effect on 

either SOD3 mRNA expression or enzymatic activity. However, SOD3 was 

activated by H2O2 and NADPH, a substrate for the NOX complexes, whereas DPI 

treatment reduced SOD3 expression. Taken together, these observations suggest 

that SOD3 is under autostimulatory feedback regulation driving Ras activation and 

subsequent cellular proliferation. 

1.2.3 SOD3 suppresses NF-κB activity and down-regulates inflammatory cytokine 

and adhesion molecule expression (II) 

NF-κB is a key regulator of the inflammatory response having been shown to 

be both necessary and sufficient for endothelial up-regulation of adhesion 

molecules and cytokines (Denk et al., 2001). NF-κB mediates cellular responses to 

e.g. oxidative stress, cytokines, and bacterial or viral pathogens. In an inactive 

state NF-κB is confined to cytoplasm due to IκBα binding, and ectopic expression 

of IκBα effectively abrogates cellular expression of VCAM, IL-1, and IL-6 

(Wrighton et al., 1996). To test the effect of SOD3 on NF-κB activity, we 

performed in vitro luciferase assay in HEK 293T cells wherein the cells were 

transfected with SOD3 expression plasmid together with plasmid containing NF-

κB-responsive promoter upstream of luciferase reporter gene. Luciferase assay 

revealed a significant 50% (p<0.01) reduction in NF-κB activity due to SOD3 

transfection. Observed increase in expression of IκBα in vivo suggests that reduced 

NF-κB activity could indeed be responsible for diminished inflammatory 

leukocyte accumulation in the ischemic muscle. 

Due to its central role in regulating inflammatory signaling, cytoplasmic 

detention of NF-κB by increased IκBα expression could lead to reduced 

expression of inflammatory cytokines and chemokines. Therefore, we performed 

quantitative RT-PCR analysis of the in vivo expression level of some cytokines in 

ischemic muscle at 3 day time point. Quantitative RT-PCR showed 70-90% 

reduction in expression of TNFα, IL1α, IL6, MIP2, and MCP1 in SOD3 animals 

indicating diminished expression of several important inflammatory mediators. 

Furthermore, since TNFα, IL1α, and IL6 are important regulators of endothelial 

adhesion molecule expression we analyzed expression of ICAM, VCAM, E-

selectin, and P-selectin from the tissue. Expression of ICAM and VCAM was 

reduced by roughly 70% while E- and P-selectins were reduced by 90%. In 

conclusion, SOD3 is likely to inhibit leukocyte migration through inactivation of 

NF-κB which leads to diminished cytokine expression and subsequent inhibition 

of endothelial adhesion molecule up-regulation. 
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1.3 Mesenchymal Stromal Cells Mediating Recovery of Ischemic Muscle 

1.3.1 The graft is rapidly cleared after local transplantation (III) 

Peripheral ischemic muscle injury is characterized by early focal necrosis, 

followed by marked monocyte migration, satellite cell proliferation, and 

angiogenesis (Paoni et al., 2002). Gene therapy with AdSOD3 was able to 

alleviate inflammation and to enhance cell proliferation in the ischemic muscle, 

but had no observable effect on capillary density of the tissue. Since re-

establishment of blood perfusion is crucial for full recovery of ischemic tissue, we 

aimed to improve muscle angiogenesis by transplantation of mesenchymal stromal 

cells. We compared primary human BM-MSCs and a novel MSC population 

derived from human ESCs (Trivedi and Hematti, 2007; Trivedi and Hematti, 

2008). Despite reported hypoimmunogenicity and ability to avoid allograft 

rejection (Aggarwal and Pittenger, 2005; Uccelli et al., 2008), Cyclosporine A was 

given to the treated animals to avoid rejection of the MSC xenograft. Furthermore, 

we decided to concentrate on the early events after cell transplantation to 

determine the fate of the transplanted cells. Specifically, we wanted to see whether 

the transplanted MSCs were able to take part in vessel stabilization and maturation 

by engraftment and formation of pericyte coverage. 

In order to track the transplanted hESC-derived MSCs in ischemic rat muscle, 

the cells were labeled by lentiviral transduction with either GFP or Luciferase at 

passage 8. Cell morphology was assessed in vitro to ensure health of the cells after 

lentiviral labeling. In addition, cells were stained with β-galactosidase based 

staining kit to determine the degree of senescence in the cell culture. Human ESC-

derived MSCs sustained normal growth for several passages after viral labeling 

reaching passage 16 before becoming senescent. At 16 passages 56% of the cells 

were β-galactosidase positive as compared to only 3% at the earlier passage 8. 

GFP or Luciferase labeled hESC-derived MSCs were injected locally into the 

ischemic muscle 1 day after surgical ligation of the femoral artery. The 

transplanted cells were tracked with bioluminescent imaging (IVIS 50, Xenogen) 

immediately after transplantation, and 6 and 24 hours post-transplantation. 

Bioluminescent imaging (BLI) showed 71% decrease in signal intensity after only 

6 hours as compared to signal intensity right after transplantation. After 24 hours 

only 1.5% of signal intensity remained indicating that the transplanted cells are 

quickly lost after local transplantation. To assess possible engraftment and tissue 

distribution of the transplanted cells, GFP labeled cells were tracked 3 days after 

transplantation. To minimize tissue autofluorescence muscle samples were snap-

frozen in liquid nitrogen, cut into 10 μm tissue sections, and imaged with 

fluorescent microscope immediately after animal euthanasia. Interestingly, only 

few cells were found scattered throughout the tissue at this later time point. 

However, the presence of transplanted cells was verified by genomic and RT-PCR 

analysis to detect amplification of human Alu I sequence. While genomic PCR 

confirmed the presence of transplanted human cells in the ischemic rat muscle, 

RT-PCR showed that the cells were viable and still transcriptionally active. 

Overall, bioluminescent imaging together with fluorescent microscopy and PCR 
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analyses showed the cells to be rapidly lost from the transplanted site. However, 

lack of BLI signal elsewhere from the body would suggest that the cells do not 

accumulate in other sites, at least not in high enough numbers to generate 

detectable BLI signal. Due to ongoing acute inflammatory reaction at the time of 

transplantation the cells are most likely killed by the inhospitable environment, 

however, no experimental evidence was pursued to confirm this. 

1.3.2 MSCs promote tissue healing despite rapid clearance of the graft (III) 

Although tracking of transplanted cells was only done for the hESC-derived 

MSCs, for further studies animals were divided into five groups with different 

treatments: untreated controls, hESC-MSCs lysed by sonication, hESC-MSCs 

fixed in paraformaldehyde, live hESC-MSCs, and live primary human BM-MSCs. 

To evaluate the tissue response to MSC transplantation after acute ischemia, we 

performed histological analyses by immunostaining for vWF, CD68, CD3, and 

Ki67. Staining for von Willebrand factor at 3 day time point showed significant 

increase in capillary density in animals treated with either BM-MSCs (309±22 

capillaries/mm2), live hESC-MSCs (311±30 capillaries/mm2), or fixed hESC-

MSCs (288±12 capillaries/mm2) vs. untreated (210±28 capillaries/mm2) and lysed 

cell groups (237±43 capillaries/mm2). However, the effect was only transient as all 

experimental groups reached similar capillary densities by 9 day time point 

(approximately 400 capillaries/mm2). 

Since inflammation and angiogenesis are closely intertwined processes, and 

because MSCs have been suggested to have immunosuppressive function, we 

wanted to assess infiltration of CD68+ macrophages and CD3+ T-cells into the 

ischemic muscle. Macrophage accumulation was significantly increased in all 

groups as compared to untreated animals. More specifically, macrophage 

infiltration was significantly higher in animals treated with live or lysed hESC-

MSCs as compared to animals that received fixed hESC-MSCs or BM-MSCs. 

Analysis of CD3+ T-cells showed similar trend with highest cell numbers in Lysis 

group and hESC-MSC group. However, T-cell levels were rather low and none of 

the inter-group differences reached statistical significance. 

To further characterize the tissue response to transplantation we analyzed cell 

proliferation by immunohistological staining for Ki67. Untreated controls had low 

number of proliferating cells (4.7±0.6 cells/section). Treatment with lysed cells 

increased cell proliferation to 15±4.1 cells/section which however failed to reach 

statistical significance. In contrast, cell proliferation in the rest of the groups was 

significantly enhanced: fixed cells (21±4.2 cells/section, p<0.05), BM-MSCs 

(21±3.4 cells/section, p<0.05), and hESC-MSCs (38±2.6 cells/section, p<0.01). In 

line with analysis of angiogenesis, no significant differences were observed at 9 

day time point. Transient effect seen in angiogenesis and cell proliferation 

suggests that live or fixed MSCs are able to accelerate the endogenous recovery 

process early after ischemic injury. Intriguingly, tissue response to 

paraformaldehyde fixed cells was remarkably similar to live hESC-MSCs or BM-

MSCs. 
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1.3.3 Graft secretory function does not sufficiently explain enhanced tissue 

recovery (III) 

Assessment of MSC fate in ischemic tissue showed vast majority of the 

transplanted cells to be cleared from the site of transplantation within 24 hours. 

Furthermore, 3 days after transplantation the few cells found from the injured 

tissue were randomly dispersed and did not appear to be part of any particular 

tissue infrastructure, e.g. vasculature. Thus, to uncover a mechanism by which 

MSCs were able to mediate angiogenesis we investigated graft-mediated 

expression of VEGF-A and -D. Trophic factors, i.e. secretory function, has been 

suggested to be responsible for MSC mediated angiogenesis (Gnecchi et al., 2006; 

Kinnaird et al., 2004b). As VEGFs are key regulators of tissue angiogenesis their 

elevated expression could explain increased capillary density, as well as increased 

cell proliferation. We used species specific primers to qualitatively and 

quantitatively distinguish graft vs. host derived VEGF expression at 6 and 72 hour 

time points. Qualitative RT-PCR analysis revealed faint expression of human 

VEGF-A 6 hours after hESC-MSC transplantation whereas VEGF-D was only 

seen with rat specific primers. Graft-derived VEGF expression was not detected at 

the later 72 hour time point. We next performed quantitative RT-PCR analysis to 

further characterize graft vs. recipient derived VEGF expression profile. Analysis 

at 6 hour time point showed markedly higher expression of rat VEGF-A as 

compared to graft-derived VEGF-A. Because no human mRNA expression was 

observed in conventional RT-PCR analysis at 72 hour time point, general primers 

common for both human and rat sequences were used to analyze expression of 

VEGF-A and VEGF-D at this time point. The data showed 12-fold increase in 

VEGF-D expression in hESC-MSC treated muscle whereas VEGF-A was not up-

regulated. The expression data was further confirmed with assessment of human 

PDGFR-β expression by RT-PCR and western blotting. Analysis of PDGFR-β 

expression failed to detect cells of human origin, supporting rapid clearance of the 

graft. 

Finally, activation status of cellular mediators of angiogenic and proliferative 

responses, the Akt and Ras-MAPK signaling pathways, were analyzed. Both 

hESC-derived MSC and BM-MSC transplantation increased phosphorylation of 

Akt and Erk1/2 thus supporting the data that MSC transplantation is able to 

promote angiogenic and mitogenic responses in the recipient tissue. 
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 DISCUSSION 

1.1 SOD3 and MSC-Mediated Therapy – Seeking the Transgene and the 

Stem Cell Graft 

Despite their high immunogenicity adenoviruses have claimed the throne of the 

most studied gene therapy vector due to their easy production and high 

transduction efficiency in different tissues, including many non-dividing 

terminally differentiated cells (Cao et al., 2004). Adenoviruses generally use 

coxackie adenovirus receptor for entry into their target cells. Because skeletal 

myocytes down-regulate CAR upon differentiation they make a relatively poor 

target for adenoviral transduction (Nalbantoglu et al., 1999). On the other hand, 

myogenic progenitors such as the satellite cells can be effectively transduced by 

adenovirus. Based on X-Gal staining we observed an overall transduction 

efficiency of skeletal myotubes between 0.8 and 5% at different time points after 

local injection of 0.5x109 pfu AdLacZ (I, Figure 1A). No further analysis was 

conducted on other cell types within the skeletal muscle. This transduction 

efficiency is in line with previous attempts to transduce skeletal muscle by 

adenovirus (Huard et al., 1995; Kimura et al., 2004). Importantly, efficacy of 

SOD3 gene transfer is enhanced by binding of the secreted SOD3 on the 

extracellular matrix thus bringing non-infected cells under the influence of 

exogenous SOD3. The situation is however complicated by post-translational 

regulation of SOD3 by truncation of the C-terminal domain (Enghild et al., 1999) 

and by production of an enzymatically inactive form (Petersen et al., 2003). In our 

case, AdSOD3 gene transfer resulted in roughly two-fold increase in SOD3 

enzyme activity in Concanavalin A-purified muscle homogenates which is within 

the range that is usually achieved by exogenous SOD3 over-expression. Notably, 

2-3 fold increase in SOD3 concentrations has been shown to be sufficient to 

mediate therapeutic response in liver damages and neointima formation 

(Laukkanen et al., 2002; Laukkanen et al., 2001b). 

Cell therapy applications using MSCs have now proceeded into clinical trials, 

some say this may be too soon considering our lacking knowledge of the 

mechanism by which MSCs mediate their therapeutic effect (Boyle et al., 2006; 

Oettgen et al., 2006; Uccelli et al., 2008). However, so far only few pathologic 

complications have been reported suggesting that MSC therapy is safe. A central 

question regarding MSC-mediated therapeutic effect is the fate of the transplanted 

cells. Systemically delivered cells accumulate into the lungs but also travel to 

many other tissues including gastrointestinal tissues, liver, and skin (Devine et al., 

2003; Francois et al., 2006). Although MSCs show increased homing into sites of 

injury (Li et al., 2002) local delivery may be more appropriate, when applicable, 

because it enables more precise control over the number and functional phenotype 

of the transplanted cells. We utilized MSCs stably transduced with luciferase to 

determine their biodistribution after local intramuscular delivery. Bioluminescent 

imaging (BLI) showed 98.5% reduction in signal intensity within the muscle in 

only 24 hours whereas no signal was detected elsewhere in the body (III, Figure 

1G-J). Consequently, the cells did not appear to accumulate to any other location, 
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at least not in high enough numbers to generate BLI signal suggesting that the 

graft was destroyed on site. Despite rapid decrease in BLI signal, small number of 

transplanted cells was found three days after transplantation when GFP-transduced 

cells were followed by fluorescent microcopy (III, Figure 1K). Presence of the 

cells at this later time point was verified by PCR analysis (III, Figure 1L). Since 

transplantation provoked a significant increase in infiltration of CD68+ 

macrophages into the muscle (III, Figure 2A-B) despite Cyclosporine A treatment 

and alleged ability to avoid immunedefense (Aggarwal and Pittenger, 2005; 

Uccelli et al., 2008), we cannot rule out the possibility of local clearance of the 

graft by the infiltrating leukocytes. Previous reports on persistence of MSC graft in 

different injury models have varied extensively (Gang et al., 2009; Muller-Ehmsen 

et al., 2006; Orlic et al., 2001; Rosova et al., 2008; Tomita et al., 1999), our results 

fall within the lower range showing no functional engraftment within the target 

tissue. Thus, our results on MSC fate support the current consensus that 

engraftment is not the main mediator of MSC-induced therapeutic effect. 

1.2 Oxidative Imbalance and Skeletal Muscle Metabolism – Intervention by 

SOD3 

Ischemia/reperfusion injury induces considerable production of reactive 

oxygen species within the affected tissue. Controversial evidence exists regarding 

the timing of ROS production. While some studies have indicated ROS production 

only after re-introduction of oxygen into tissue due to reperfusion (Bertuglia and 

Giusti, 2003; Kurose et al., 1997), others have suggested this to occur already 

during ischemia (Baudry et al., 2008; Becker et al., 1999). Our model consisted of 

chronic ischemia where SOD3 gene transfer was done simultaneously with 

femoral artery ligation. Therefore this approach could not interfere with the 

immediate early ROS production from vascular endothelium (Baudry et al., 2008). 

In contrast, in our studies SOD3 was likely to blunt the leukocyte-derived 

oxidative burst and to reduce ROS production from ECs of the neovasculature at 

later time points (Tojo et al., 2005). We assessed oxidative stress in the AdLacZ 

and AdSOD3 transduced muscles by dihydroethidium staining demonstrating 

oxidative stress, and by nitrotyrosine staining indicating nitrosative stress. Both 

markers were reduced in the AdSOD3 group showing that the gene transfer was 

able to alleviate tissue oxidative stress (I, Figure 1B). As leukocyte-derived ROS 

have been shown to promote tissue damage in ischemic injury (Ragu et al., 2007; 

Schraufstatter et al., 1987; Zweier et al., 1988), SOD3 may directly protect the 

tissue from excessive oxidative burst from the leukocytes. 

Hypoxia and ischemia are distinct conditions evoking partly different gene 

expression patterns in affected tissue (Aravindan et al., 2005). One of the 

responses common for both is the stabilization of cellular HIF-1α. HIF-1α is an 

oxygen sensing transcription factor that promotes angiogenesis by activating 

VEGF expression. Other HIF-1α target genes include hexokinases 1 and 2, enolase 

1, lactate hydrogenase A, and pyruvate kinase, all of which play key roles in 

energy supply by anaerobic glycolysis (Lundby et al., 2009; Semenza, 2000; 

Wenger, 2000). A subset of skeletal muscle fibers express HIF-1α even in 
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normoxic conditions (Pisani and Dechesne, 2005) but HIF-1α is further up-

regulated in response to ischemia (Milkiewicz et al., 2004). Since the rate-limiting 

step for glucose use in skeletal muscle is glucose transport, it is important to note 

that HIF-1α also activates glucose transporter 1 (Ebert et al., 1995). HIF-1α-

induced shift towards anaerobic glycolysis and increased glucose transport might 

explain the observed increase in FDG accumulation within the ischemic legs as 

compared to healthy legs (I, Figure 1C). This shift was prevented by SOD3 gene 

transfer suggesting that SOD3 is able to normalize tissue metabolism. We did not 

analyze the relationship between SOD3 and HIF-1α but inhibition of HIF-1α could 

explain the effects seen in glucose metabolism. Although superoxide is known to 

activate HIF-1α in hypoxia-independent manner (Shi et al., 2009) only a couple of 

studies have shown SOD3 to affect HIF-1α activation (Suliman et al., 2004; Zelko 

and Folz, 2005). Both these studies concentrated on kidney cells but interestingly 

showed completely opposite relationship between HIF-1α activity and SOD3. 

Finally, it is possible that part of the radiographic signal in LacZ animals is caused 

by infiltrating leukocytes, especially since SOD3 was shown to diminish the 

leukocyte infiltrate (II, Figures 1 and 2). 

1.3 Effect of SOD3 on Leukocyte Infiltration 

Polymorphonuclear neutrophils are generally the first leukocyte subset to 

infiltrate inflamed tissue. Already at 3 days after ischemic injury the neutrophils 

have largely been replaced by macrophages that clean off the remains of dead cells 

(Paoni et al., 2002). In addition to their role in clearance of cellular debris, 

macrophages secrete growth factors and matrix modifying enzymes that together 

promote EC activation and subsequent angiogenesis (Anghelina et al., 2004; 

Sunderkotter et al., 1994). Although these functions make macrophages essential 

for the healing process, they also produce ROS and secrete inflammatory 

cytokines and chemokines that may lead to excessive inflammatory reaction and 

tissue damage (Kaul and Forman, 1996; Koj, 1996; Nguyen and Tidball, 2003). 

ROS are not only involved in leukocyte-mediated oxidative burst but also take part 

in many steps within the cascade of cellular events culminating in leukocyte 

extravasation. Therefore it is not surprising that SOD3 was suggested to have anti-

inflammatory effect in 1999 (Folz et al., 1999) with further evidence accumulating 

over the years (Bowler et al., 2001; Bowler et al., 2004; Suliman et al., 2001). 

Due to the reported anti-inflammatory effect, we determined the effect of 

SOD3 gene transfer on accumulation of CD68+ macrophages and CD3+ T-cells 

within ischemic muscle. Neutrophils were omitted from the analysis because their 

migration peaks too early for the transgene to affect them in our study setting. 

Histological analysis showed 3-fold reduction in the inflammatory area 3 days 

after vessel ligation in SOD3 vs. LacZ control animals as determined by the area 

occupied by CD68+ macrophages. The difference became even more prominent in 

the later time points and similar effect was seen in the number of macrophages (II, 

Figure 1). In contrast, we did not observe any difference in the number of T-cells 

between the groups in the 3 day time point. The role of T-cells in recovery of 

ischemic injury has remained uncertain as compared to macrophages and 
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neutrophils. Low numbers of T-cells have been suggested to attract neutrophils 

and macrophages to site of myocardial or peripheral ischemia/reperfusion injury 

(Stabile et al., 2003; Stabile et al., 2006; Yang et al., 2006). Whereas T-cell 

migration increased in LacZ animals until 10 days after vessel ligation, no such 

increase was detected in SOD3 treated animals (II, Figure 2). Due to late effect on 

T-cell accumulation, our results suggest that SOD3 has an indirect effect on them 

perhaps through inhibition of macrophage infiltration. Although these results 

confirm the previous suggestions for anti-inflammatory effect of SOD3, it seems 

to predominantly affect the macrophage subset. Inhibition of macrophage 

infiltration could lead to general reduction in inflammatory reaction due to reduced 

cytokine and chemokine secretion. 

Implication of macrophage specific inhibition of leukocyte migration prompted 

us to use a mouse peritonitis model to confirm the effect. This model supported 

SOD3-induced reduction in total number of infiltrating leukocytes (II, Figure 3A) 

which was predominantly due to reduced monocyte/macrophage numbers (II, 

Figure 3B). To compare the efficacy of SOD3 as an anti-inflammatory mediator to 

existing medication we studied the effect of Dexamethasone treatment in 

peritonitis. Dexamethasone treatment (50mg/kg) reduced total leukocyte migration 

to similar extent as SOD3 treatment (II, Figure 4A). Inhibition of leukocyte 

migration was due to diminished macrophage and lymphocyte recruitment 

whereas no effect was seen in the neutrophil subset. Weak effect on neutrophils 

might be due to late time point analyzed (18h after induction of inflammation) as 

neutrophil numbers have been shown to peak as early as 4 hours after zymosan 

induced peritonitis (Getting et al., 1997). Determination of which leukocytes will 

eventually infiltrate target tissue can be affected by any step of the leukocyte 

extravasation process although transmigration forms the final obstacle. A report by 

Van der Goes showed that superoxide treatment of rat cerebral endothelial cells 

increases monocyte adhesion and transmigration by disrupting EC-EC junctions 

(Van der Goes et al., 2001). As H2O2 did not replicate the observed effects but 

they were abrogated by superoxide scavengers this suggests superoxide as 

mediator of monocyte migration. However, superoxide has also been implicated in 

mediating structural changes in EC actin cytoskeleton required for lymphocyte 

migration (Cook-Mills, 2002; Van der Goes et al., 2001). Therefore inhibition of 

superoxide-mediated alterations in EC junctions may be unlikely to explain the 

specific effect SOD3 seemed to have on macrophages. 

NF-κB is generally recognized as a central regulator of inflammatory gene 

expression up-regulating cytokines such as TNFα and IL-1α, and adhesion 

molecules ICAM-1 and VCAM-1 (Collart et al., 1990; De Martin et al., 2000; 

Denk et al., 2001; Mori and Prager, 1996; Shakhov et al., 1990). NF-κB can be 

transcriptionally activated by several stimuli including oxidative stress (Gloire et 

al., 2006). Therefore it represents an attractive candidate for mediating SOD3-

induced reduction in leukocyte traffic. Analysis by in vitro luciferase assay 

showed reduced NF-κB activity after SOD3 transfection. Increased IκBα 

expression in vivo in the SOD3 treated animals would support the role of NF-κB 

inhibition in mediating anti-inflammatory role of SOD3 (II, Figure 5A). This data 
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is well in line with previous findings of Nox1-dependent activation of NF-κB in 

ECs, highlighted by inhibition of NF-κB activation by DPI or SOD treatment 

(Miller et al., 2007). Furthermore, even earlier studies have previously reported 

that increased NF-κB activity correlates with Nox-derived superoxide production 

and is abrogated by SOD3 overexpression (Azevedo et al., 2000; Bowler et al., 

2001). SOD3-mediated inhibition of NF-κB may partly result from increased 

availability of NO (Jung et al., 2003) which is known to inhibit IκBα 

phosphorylation and subsequent degradation (Katsuyama et al., 1998). 

Since genes encoding cytokines TNFα, IL-1α, IL-6, MIP2, and MCP-1 contain 

NF-κB binding site in their promoters (Collart et al., 1990; De Martin et al., 2000; 

Denk et al., 2001; Libermann and Baltimore, 1990; Mori and Prager, 1996; 

Shakhov et al., 1990; Shimizu et al., 1990; Ueda et al., 1997; Widmer et al., 1993) 

we analyzed their expression in rat muscle by quantitative RT-PCR. All of the 

analyzed cytokines and chemokines were down-regulated in SOD3 animals (II, 

Figure 5B). MCP-1 is of special interest in this context because it is a potent 

attractant for monocytes (Kumar et al., 1997; Lee et al., 2004). Neutralizing 

antibody for MCP-1 has been shown to reduce myocardial infarct size and 

infiltration of macrophages (Ono et al., 1999). Consequently, significant reduction 

in MCP-1 expression in SOD3 treated animals could explain strong inhibition of 

macrophage infiltration. TNFα, IL-1α and IL-6 up-regulate endothelial expression 

of ICAM-1, VCAM-1, P-selectin, and E-selectin. In our studies expression of 

these adhesion molecules was reduced in SOD3 animals as compared to LacZ 

group (II, Figure 5C). The importance of these adhesion molecules for 

monocyte/macrophage migration has been clearly demonstrated both in vivo and 

ex vivo (Patel et al., 1998; Ramos et al., 1999). Nevertheless, ICAM-1, VCAM-1, 

P-selectin and E-selectin represent very general mediators of leukocyte 

extravasation (Ley et al., 2007) and therefore cannot explain such a strong specific 

effect on macrophage migration. Instead, this data could suggest a general 

reduction in endothelial activation which might be due to reduced expression of 

inflammatory cytokines and chemokines. Reduction in cytokine and chemokine 

expression may conversely be, at least partly, a secondary effect due to diminished 

macrophage infiltration. Notably, MCP-1 does not only enhance 

monocyte/macrophage migration but also induces expression of IL-1 and IL-6 in 

them (Jiang et al., 1992). Therefore, MCP-1 might have a central role in 

coordinating post-ischemic inflammatory reaction by modulating macrophage 

function. 
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1.4 Angiogenesis 

1.4.1 SOD3 is Not Sufficient to Promote Angiogensis 

Numerous in vitro studies have shown that application of low H2O2 

concentration on endothelial cells promotes EC proliferation and tube formation 

(Ushio-Fukai, 2006; Yasuda et al., 1999). The role of ROS in angiogenesis has 

garnered further support from in vivo studies wherein gp91phox knock out mice 

exhibit impaired neovascularization in hind limb ischemia as determined by laser 

Doppler imaging, capillary density and microsphere measurements (Tojo et al., 

2005). Scavenging of H2O2 by glutathione peroxidase mimetic ebselen also led to 

reduced neovascularization suggesting that it indeed is H2O2 that mediates 

neovascularization in vivo. In light of these experiments it would be tempting to 

draw a conclusion that SOD3 could promote angiogenesis. This view is supported 

by reduced blood flow in ischemic cremaster muscle of SOD3 knock out mice as 

compared to wild type animals (Park et al., 2005). We assessed vascular density in 

the ischemic tissues by immunohistochemical vWF staining. Vascular density 

increased in both LacZ and SOD3 groups without significant differences between 

the groups (I, Figure 2A) suggesting that, although necessary for 

neovascularization, SOD3 is not a major angiogenic factor.  It is not yet 

understood how exactly H2O2 is able to promote neovascularization but currently 

the strongest candidate is mediation of endothelial VEGF signaling (Ushio-Fukai, 

2007). However, since O2•
- reacts eagerly with NO to produce peroxynitrite this 

interaction cannot be disregarded either, especially as SOD3 lies directly in the 

path of NO diffusion from ECs to its target VSMCs. Regardless of the mechanism, 

endogenous SOD3 appears to be sufficient to maintain normal vascular growth in 

ischemic muscle without added advantage by exogenous SOD3 expression. 

1.4.2 A Novel Mechanism for MSC-Mediated Vascular Growth 

In a recent study it was shown that human MSCs increased blood flow in 

murine hind limb ischemia 24 hours after transplantation (Rosova et al., 2008). 

The amount of transplanted cells that survived for 2 weeks was only 0.2%. 

Accordingly, the current consensus on the mechanism mediating MSC-derived 

therapeutic effect has shifted from engraftment and transdifferentiation towards 

secretory function. MSCs secrete large numbers of growth factors in vitro, many 

of which are further up-regulated by hypoxia (Kinnaird et al., 2004a). Evidence for 

this trophic effect is provided by efficacy of MSC conditioned media in supporting 

EC survival, proliferation and tube formation in vitro (Hung et al., 2007a; 

Potapova et al., 2007), and by functional improvement in peripheral and 

myocardial ischemia that occurs far too quickly to be attributed to MSC 

differentiation (<72 h) (Gnecchi et al., 2006; Rosova et al., 2008). In agreement 

with these studies, we saw significant increase in vascular density 3 days after 

transplantation of either primary human BM-derived MSCs or hESC-derived 

MSCs (III, Figure 3B). However, the effect was only transient as there was no 

difference between the groups at 9 day time point (III, Figure 3C). Furthermore, 
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hESC-derived MSCs that were fixed in 3.7% formaldehyde prior to transplantation 

elicited similar angiogenic response as live cells whereas cells lysed by sonication 

did not. This would suggest that secretion of growth factors is not required for 

MSC-mediated angiogenesis. Inflammatory cells, especially macrophages, are 

essential mediators of tissue response to injury indicating that enhanced 

angiogenesis could have been due to enhanced leukocyte infiltration. This does not 

seem to be the case as all treated groups exhibited increased macrophage 

migration as compared to untreated controls without any correlation with the 

observed vascular densities. No differences were observed in T-cell accumulation 

between the groups providing further evidence that inflammatory reaction could 

not be solely responsible for increased angiogenesis (III, Figure 2C-D). 

To further analyze the secretory function of the graft as compared to 

endogenous growth factor production, we used species specific quantitative and 

qualitative detection of VEGF expression. VEGF-A is an essential regulator of 

angiogenesis (Carmeliet et al., 1996; Ferrara et al., 1996), it is secreted by the 

MSCs who up-regulate it by 2.5-fold in response to hypoxia (Kinnaird et al., 

2004a). Hypoxic MSC conditioned media reduces hypoxia induced apoptosis, and 

induces survival and in vitro tube formation in human aortic endothelial cells by 

activating PI3K/Akt pathway (Hung et al., 2007a). The effects were only partly 

inhibited by anti-VEGF, -IL-6, or –FGF antibodies suggesting other factors to be 

responsible for the observed PI3K/Akt activation (Hung et al., 2007a). Although 

we did see increased activation of Akt and Erk1/2 (II, Figure 5), our data shows 

the graft to be only a minor source for VEGF-A 6 hours after transplantation with 

subsequent reduction to undetectable levels by the 72 hour time point. However, 

VEGF-D has been suggested to be the strongest angiogenic effector among 

VEGFs in skeletal muscle (Rissanen et al., 2003). Our expression analyses showed 

VEGF-D to be solely derived from the recipient tissue in the analyzed time points. 

As opposed to VEGF-A, host VEGF-D expression was significantly up-regulated 

72 hours after transplantation suggesting that transplanted cells are able to boost 

the tissues own endogenous healing process. Rapid clearance of the graft, lack of 

graft-derived growth factors, and the ability of formaldehyde-fixed cells to 

promote angiogenesis suggest a novel mechanism wherein physical intercellular 

interactions between the MSCs and the recipient tissue mediates enhanced 

recovery. 

1.5 Cell Proliferation 

1.5.1 SOD3 in Mitogenic Ras Signaling 

Skeletal muscle is maintained and repaired by activation, proliferation, and 

differentiation of tissue resident satellite cells (Sherwood et al., 2004). Satellite 

cells reside in quiescent state between the myocyte plasmamembrane and the 

surrounding basement membrane. Disruption of this cellular niche provides cues 

for activation of the satellite cells resulting in sequential up-regulation of 

myogenic regulatory factors (MRFs) and subsequent differentiation into myoblasts 

that fuse to form myotubes (Cooper et al., 1999; Cornelison and Wold, 1997; 
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Yablonka-Reuveni and Paterson, 2001). Induction of genes associated with cell 

proliferation (such as cyclin A, cyclin B1, cyclin D1, and cyclin dependent kinase 

2) occurs on days 1-7 after acute hind limb ischemia in mouse (Paoni et al., 2002). 

Peak in satellite cell proliferation appears to coincide with the highest macrophage 

infiltration at 3 day time point. Analysis of Ki67 staining 3 and 7 days after 

ischemia showed increased cell proliferation in SOD3 animals as compared to the 

LacZ control group. At 10 day time point cell proliferation in SOD3 group had 

already been reduced to the level of LacZ animals (I, Figure 2B). Our studies 

concentrated on the muscles of the thigh, not the calf where ischemia is more 

severe after femoral artery ligation due to lack of collateral anastomoses that could 

provide supporting blood flow. This could explain why we did not see severe 

necrosis in the muscle (data not shown) and why the number of proliferating cells 

in the muscle was relatively low. However, the observation is supported by 

previous report that SOD3 gene transfer promotes endothelial recovery in stented 

arteries by accelerating EC proliferation (Brasen et al., 2007). 

To explain the mechanism causing the increased cell proliferation, we analyzed 

the activation status of Ras. The Ras-Erk1/2 pathway represents a quintessential 

mitogenic signaling cascade that has also been implicated in myoblast 

proliferation (Jones et al., 2001b; Shefer et al., 2001). SOD3 increased GTP-

binding active form of Ras both after AdSOD3 transduction in vivo, and after 

transient sod3 transfection in vitro (I, Figure 3A). SOD3-mediated Ras activation 

was attenuated by DPI and reproduced with H2O2 treatment suggesting that Ras 

activation is dependent on the end product of SOD3 catalyzed dismutasion 

reaction, and is regulated by Nox-derived superoxide production. The effect of 

SOD3 on Ras is most likely mediated by joint function of cell surface receptor 

tyrosine kinases and protein tyrosine phosphatases, known targets for oxidant 

mediated activation and inactivation, respectively (Whisler et al., 1995). To trace 

the signal transduction from Ras to changes in pro-survival gene expression, we 

showed activation Mek1/2 and Erk1/2, and their target nuclear transcription 

factors AP-1/c-jun and CREB in response to sod3 transfection (I, Figure 3B-C). 

As was true for Ras, activation of these Ras downstream targets was inhibited by 

DPI whereas all but CRE were activated by H2O2 treatment. Inability of H2O2 to 

activate CRE is intriguing since only reported functions for SOD3 are catalysis of 

the dismutasion reaction and inhibition of ECM degradation by blocking 

hyaluronan fragmentation (Gao et al., 2008). SOD3 induced signaling events were 

not affected by transfection of catalase, suggesting that as an intracellular enzyme 

catalase is not able to interfere with SOD3-derived H2O2 signaling. Transcriptional 

activation of AP-1/c-jun and CRE is known to promote expression of many pro-

survival genes, such as VEGF-A and Cyclin D1 which we showed to be 

upregulated by SOD3 both in vivo and in vitro (I, igure 4A-D). Activation of 

VEGF-A expression was likely mediated by Ras-Erk pathway because we did not 

see SOD3-mediated activation of Akt in vivo. In vitro Akt activation on the other 

hand shows that significance of findings obtained in cell culture models must be 

verified in vivo. Finally, discrepancy between increased VEGF-A expression and 

lack of angiogenic effect in SOD3 treated animals suggests an alternative function 
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for VEGF-A. Indeed, VEGF-A promotes new myoblast formation, enhances 

myoblast migration, and decreases apoptosis, suggesting a more general pro-

survival function (Germani et al., 2003). 

Since SOD3 was shown to promote cell proliferation through activation of the 

Ras-Erk signaling pathway, we next wanted to determine the possibility of 

feedback regulation of SOD3. Relatively little is known about the signaling 

cascades regulating SOD3 expression. SOD3 expression is stimulated by NO, 

angiotensin, and inflammatory cytokines such as interferon (IFN)-γ and 

interleukins 1 and 4. In contrast, SOD3 expression is repressed by TNFα, FGF, 

EGF, and PDGF (Fattman et al., 2003; Zelko et al., 2002). Suppression of SOD3 

expression by growth factors would suggest inhibitory role also for Ras pathway. 

However, transfection of RasV12, Braf V600E, Mek1, and Erk1 into HEK293T 

cells showed increased SOD3 production (I, Figure 4E-F). SOD3 expression was 

also inhibited by specific Mek-inhibitor U0126 further confirming the role of the 

Ras-Erk cascade in regulation of SOD3. We also tested the effect of NADPH, a 

substrate for Nox-derived superoxide production, and H2O2 itself on SOD3 

activation, both stimulated SOD3 expression whereas DPI had an inhibitory effect. 

In conclusion, this data suggests that SOD3 is regulated by positive feedback loop 

through H2O2 mediated Ras activation. 

1.5.2 Mesenchymal Stromal Cells and Endogenous Cell Proliferation 

Although angiogenesis represents the central mechanism by which MSCs 

enhance tissue recovery, satellite cell proliferation is crucial for the final 

regeneration of the tissue. Much like angiogenesis, cell proliferation in ischemic 

muscle was significantly increased 3 days after transplantation by formaldehyde-

fixed hESC-MSCs and live MSCs. Cell proliferation was diminished by the 9 day 

time point with some residual proliferation remaining in animals that received live 

cells. Since single GFP+ cells were scattered around the injury region instead of 

the cells occurring in groups, proliferation of the transplanted cells is unlikely to 

contribute to the analysis of cell proliferation in the tissue. 

 
Table 4. Therapeutic effects of SOD3 gene transfer and mesenchymal Stromal cell 

transplantation. 

Tissue response 
 

AdLacZ / 
Injury 

control 
AdSOD3 

 

hESC-
derived 

MSC 
BM-MSC 

 
Lysed 
MSCs 

Fixed 
MSCs 

Oxidative stress 100 % reduced - - - - 
Glucose metabolism 100 % reduced - - - - 
CD68+ macrophage 
infilration 100 % reduced increased increased 

highly 
increased increased 

CD3+ T-cell infiltration 100 % reduced 
not 

affected 
not 

affected 
not 

affected 
not 

affected 

Angiogenesis 100 % 
not 

affected increased increased 
not 

affected increased 

Cell proliferation 100 % increased increased increased 
not 

affected increased 
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1.6 hESC-Derived MSCs and Their In Vitro Characteristics 

One of the goals of our study was assess the therapeutic potential of a novel 

hESC-derived MSC population (Trivedi and Hematti, 2007; Trivedi and Hematti, 

2008). These cells have multipotential differentiation capacity in vitro and express 

cell surface markers CD105, CD73 and CD90, and lack surface markers CD45 and 

CD34, thus far complying with the minimal requirements for MSCs (Dominici et 

al., 2006). Furthermore, these cells express similar levels of MHCs and co-

stimulatory molecules as human BM-derived MSCs and do not provoke a T-cell 

response in co-culture experiments (Trivedi and Hematti, 2008). The hESC-

derived MSCs were readily transducible at passage 8 by lentiviral vectors carrying 

luciferase or GFP reporter genes. Importantly, the cells sustained normal growth 

for several passages after transduction until reaching senescence at passage 16. We 

were the first to compare these hESC-derived MSCs to BM-MSCs in vivo. Human 

ESC-derived MSCs elicited very similar therapeutic effect as BM-MSCs in our 

hind limb injury model. As utilization of MSCs does not require HLA-matching of 

donor and recipient tissues this suggests that hESCs may provide a potentially 

unlimited source of cells for cell therapy thus enabling quick treatment without the 

need for time consuming preparation of autologous cell transplant. 
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 IN CONCLUSION, 

Proper function of any given tissue is undeniably dependent on sufficient blood 

supply. Blood perfusion in resting skeletal muscle is relatively low but muscle has 

dramatic capacity to increase blood flow when needed (e.g. during exercise). If 

blood flow in skeletal muscle is obstructed, following ischemia leads to activation 

of endothelial cells, infiltration of leukocytes, and proliferation of satellite cells. 

Both endothelial cells and inflammatory leukocytes contribute to production of 

reactive oxygen species that may accentuate the injury. 

Superoxide dismutase 3 (SOD3) is an anti-oxidative enzyme converting 

superoxide into hydrogen peroxide. SOD3 is secreted to the extracellular space but 

is bound to cellular surfaces through interaction with heparan sulphate, collagen 

and fibulin-5. The therapeutic potential of SOD3 has already been studied in many 

injury models but the exact molecular mechanism mediating observed effects is 

yet to be presented. Likewise, the mechanism by which mesenchymal stromal cells 

contribute to tissue recovery is unclear. Currently the weight has shifted from 

engraftment and differentiation towards trophic function through secretion of 

growth factors. The goal of our study was to shed light on the mechanisms 

responsible for SOD3 and MSC-mediated therapeutic effects. 

This study demonstrated that SOD3 and MSCs enhance post-ischemic tissue 

recovery by contributing to several important steps of the healing process. The 

main findings of the study are: i) SOD3 promotes cell proliferation by activating 

the mitogenic Ras/Erk pathway. ii) Ras/Erk pathway activates SOD3 expression 

putting SOD3 under autostimulatory regulation. iii) SOD3 has strong anti-

inflammatory effect mediated by reduced NF-κB activity, specifically against 

monocyte/macrophage lineage. iv) MSCs do not engraft within ischemic muscle 

nor do they secrete significant amount of growth factors, instead, MSCs promote 

endogenous potential for tissue recovery through physical contacts with the 

recipient tissue. 

To conclude, we have presented a novel function for SOD3 in mediating 

mitogenic cell signaling. Furthermore, we show evidence that engraftment and 

secretory function are not sufficient to explain MSC-mediated therapeutic effect. 
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