

Web Application Performance Testing

UNIVERSITY OF TURKU
Dept. of Information Technology

Jukka Palomäki
Master’s thesis

2009

ii

UNIVERSITY OF TURKU
Department of Information Technology / Faculty of Mathematics and Natural Sciences

JUKKA PALOMÄKI: Web Application Performance Testing

Master’s thesis, 53 pages
Software Engineering
December 2009

Web application performance testing is an emerging and important field of software
engineering. As web applications become more commonplace and complex, the need for
performance testing will only increase.

This paper discusses common concepts, practices and tools that lie at the heart of web
application performance testing. A pragmatic, hands-on approach is assumed where
applicable; real-life examples of test tooling, execution and analysis are presented right
next to the underpinning theory.

At the client-side, web application performance is primarily driven by the amount of
data transmitted over the wire. At the server-side, selection of programming language
and platform, implementation complexity and configuration are the primary contributors
to web application performance.

Web application performance testing is an activity that requires delicate coordination
between project stakeholders, developers, system administrators and testers in order to
produce reliable and useful results. Proper test definition, execution, reporting and
repeatable test results are of utmost importance.

Open-source performance analysis tools such as Apache JMeter, Firebug and YSlow can
be used to realise effective web application performance tests. A sample case study
using these tools is presented in this paper. The sample application was found to
perform poorly even under the moderate load incurred by the sample tests.

Keywords: Web application, performance testing, HTTP, JMeter, Firebug, YSlow

iii

TURUN YLIOPISTO
Informaatioteknologian laitos / Matemaattis-luonnontieteellinen tiedekunta

JUKKA PALOMÄKI: Web Application Performance Testing

Diplomityö, 53 sivua
Ohjelmistotekniikka
Joulukuu 2009

Suorituskykytestaus on tärkeä osa nykyaikaista ohjelmistotuotantoa. Web-sovellusten
määrän ja monimutkaisuuden alati lisääntyessä, niiden suorituskyvyn testauksen ja
validoinnin merkitys kasvaa varmasti. Tässä tutkielmassa tarkastellaan web-sovellusten
suorituskykytestaukseen liittyviä käsitteitä ja käytäntöjä teoriassa ja esimerkkien avulla.

Asiakkaan puolella sovelluksen suorituskykyyn vaikuttaa eniten verkon yli siirrettyjen
resurssien määrä ja koko. Palvelinpuolella suorituskykyyn vaikuttavat erityisesti
ohjelmointialusta, sovelluksen toteutuksen monimutkaisuus ja konfiguraatio.

Tuottaakseen luotettavia ja hyödyllisiä tuloksia, web-sovelluksen suorituskykytestaus
vaatii erityisen paljon koordinointia projektin eri osapuolten (projektin vetäjä, kehittäjät,
testaajat ja ylläpito) kesken. Testien määrittely, suunnittelu, toteutus ja testitulosten
toistettavuus ovat erityisen tärkeitä asioita testauksen onnistumisen kannalta.

Vapaan lähdekoodin, suorituskyvyn analysointiin tarkoitetut ohjelmat kuten Apache
JMeter, Firebug ja Yslow mahdollistavat tehokkaiden suorituskykytestien toteutuksen.
Tutkielmassa esitetään edellämainittujen työkalujen avulla yksinkertainen
suorituskykytesti. Esimerkkisovelluksen suorituskyky oli testien perusteella huono.

Asiasanat: Web application, performance testing, HTTP, JMeter, Firebug, YSlow

iv

ACKNOWLEDGEMENTS

Special thanks to Timo Knuutila (University of Turku), Tuomas Mäkilä (University of
Turku) and Teemu Tasanto (ATR Soft Oy) for your patience, support and critical
feedback during the long incubation of this work. I would also like to thank Eija
Karsten, Sinikka Järvinen and Riikka Vuokko for providing the document template and
verbal guidelines upon which to build my thesis.

Turku, December 2009

Jukka Palomäki

TABLE OF CONTENTS

1 INTRODUCTION... 2
1.1 Purpose... 2
1.2 Web applications.. 3

1.2.1 Client-server model ... 3
1.2.2 The HTTP protocol ... 4
1.2.3 Server-side implementation... 6
1.2.4 Client-side implementation.. 8

1.3 Performance testing.. 10
1.3.1 Rationale ... 10
1.3.2 Test types .. 11
1.3.3 Implementation.. 12

2 WEB APPLICATION PERFORMANCE... 13
2.1 Frontend performance factors... 13

2.1.1 HTTP request count .. 13
2.1.2 Caching of resources ... 14
2.1.3 DNS lookups ... 14
2.1.4 Redirects.. 15
2.1.5 Compression.. 15
2.1.6 Style sheets.. 15
2.1.7 JavaScript .. 16

2.2 Backend performance factors ... 16
2.2.1 Platform... 17
2.2.2 Implementation.. 17
2.2.3 Configuration .. 18

2.3 Remarks.. 18
3 WEB APPLICATION PERFORMANCE TESTING... 20

3.1 Preparing for performance tests.. 20
3.1.1 Defining acceptance criteria .. 20
3.1.2 Designing the test scenarios .. 22
3.1.3 Building the test suite .. 24

3.2 Performance test execution... 26
3.2.1 Validating the test suite ... 26
3.2.2 Creating a baseline .. 27
3.2.3 Benchmarking with multiple test runs ... 27
3.2.4 Reasons for performance test failure ... 28
3.2.5 Monitoring tests... 29

3.3 Analysis and reporting of test results.. 29
3.3.1 Test data collection ... 29
3.3.2 Test data analysis .. 30
3.3.3 Reporting results ... 31

4 CASE STUDY: WORDNET .. 33
4.1 Setup... 33
4.2 Tooling... 34

4.2.1 JMeter.. 34
4.2.2 Firebug .. 35
4.2.3 YSlow.. 36

4.3 Sample frontend analysis.. 36
4.4 Sample backend load test ... 40

4.4.1 The test scenario.. 40
4.4.2 Recording the test script .. 40
4.4.3 Executing the test script... 44
4.4.4 Analysing the test data... 48

4.5 Remarks.. 49
5 CONCLUSIONS... 50
BIBLIOGRAPHY.. 52

2

1 INTRODUCTION

1.1 Purpose

The purpose of this work is to discuss modern web application performance testing from

a theoretical and a practical standpoint, with an emphasis on the latter.

The reader is first presented with a comprehensive overview of web applications and

performance testing in general. Chapter 2 considers factors affecting web application

performance. Chapter 3 discusses web application performance test design and

implementation. Chapter 4 begins by introducing three commonly used performance

testing and analysis tools (Apache JMeter [10], Firebug [11] and YSlow [12]), each of

which is subsequently used in a sample case study that provides a hands-on perspective

to this paper. The case study walks through typical performance testing tasks and

provides some insight into common bottlenecks in web application performance via

examples. Finally, all key findings are presented as conclusions.

The reader is expected to possess basic knowledge in the fields of computing, software

engineering and web technology. Among other things, this means that the reader should

have some knowledge of markup languages such as the Hypertext Markup Language

(HTML) and Extensible Markup Language (XML), client-side browser scripting

languages such as JavaScript, as well as Cascading Style Sheets (CSS). Previous

knowledge of the Hypertext Transfer Protocol (HTTP) will surely prove beneficial.

Specific details regarding web server internals and configuration, web browser internals

and support, application server technologies and computer networking are omitted from

this paper. Furthermore, Rich Internet Application (RIA) technologies such as Ajax

(Asynchronous JavaScript and XML) are only discussed in limited detail where

applicable. This approach enables us to place an exclusive focus on the intended topic,

web application performance testing.

3

1.2 Web applications

Web applications are platform-independent1 software applications that are run on a web

server and/or application server, with the user interface rendered by the client’s web

browser, and communication taking place over a computer network.

The application architecture that powers traditional web applications is called the client-

server model. In this model, the client sends requests to a server, which in turn

processes the requests and provides responses. This is called the request-response cycle

and it lays the foundation for web applications and performance testing thereof. Most

web applications utilize the aging HTTP protocol to achieve this type of

communication. The following subsections explore these concepts in more detail.

1.2.1 Client-server model

A client-server application is a distributed system in which an application server

processes requests from (multiple) clients in order to provide a service to those clients.

There is a clear separation between the client and the server, and they are often run on

separate machines (though they may also reside on the same machine), with

communication between the two taking place over a computer network, such as a LAN

(Local Area Network) or the Internet. [8]

Application state is persisted at the server-side, with the client only storing necessary

tokens (e.g. browser cookies) that are used to distinguish clients from one another and

transient data that is manipulated in order to provide input to the server. The server also

manages application logic (excluding any logic embedded in the user interface, e.g.

client-side validation), as well as interfaces to external systems (such as databases) that

are often necessary for an application’s operation.

The client’s task is to provide input so as to change the state of the system. The client

accomplishes this by composing input via the user interface and dispatching requests

1 A web application may be accessed from any platform with a suitable web browser.

4

that contain the necessary input, to the server. The server in turn processes the requests,

makes necessary and appropriate modifications to system state based on the input, and

provides a response that describes these changes. The client then updates the user

interface based on the response, to allow for the user to visualize the changes and

potentially provide more input via subsequent requests.

While this type of communication may appear as stateless (“do this, do that”),

consecutive requests are often logically inter-connected. Hence a mechanism for

maintaining a context for the client is necessary. The so-called session serves this

purpose. Sessions are often implemented by attaching tokens (such as textual session

keys), that identify the client, to requests. This allows for the server to identify the

source of the request and provide a stateful service that remembers what the client did

on previous requests, while processing the next.

1.2.2 The HTTP protocol

The HTTP protocol is a stateless application-level protocol that powers the web. It is

developed by the World Wide Web Consortium (W3C) and the Internet Engineering

Task Force (IETF). The current version HTTP/1.1 was made publicly available in 1999.

[4] As the protocol defines a request-response standard for client-server applications, it

is best described in terms of the request-response cycle.

In order to dispatch an HTTP request, a client first establishes a network connection

with the server, commonly a TCP (Transmission Control Protocol) connection on port

80, though any other reliable transport-level protocol and port would do. The client then

sends a request, which is composed of a number of headers and an optional body to the

server. The server processes the request and sends back a response, composed of a status

code, a number of headers and an optional body. Finally the connection is closed. [5]

A single physical network connection may be reused for multiple request/response

cycles to avoid the overhead of creating a new socket connection on each request. The

Keep-Alive header is used to control this behavior. In addition, multiple connections

5

may be run in parallel (which is the usual case with most modern browsers) to improve

concurrency and throughput. This is especially important since modern websites often

contain a large number of resources (images, scripts, style sheets, etc.) that need to be

fetched in order to fully render a single (HTML) document.

An HTTP request is always targeted to a particular server-side resource. This resource

may be static, such as an image or a static HTML document, or dynamic, such as a PHP

(Hypertext Preprocessor) script that produces dynamic content. The Content-Type

header in the response reveals the MIME (Multipurpose Internet Mail Extensions) type

of the response body. The HTTP status code and message are used to signal the client of

the response status and possible errors.

The most common HTTP status codes are 200 OK (indicating success), 302 FOUND

(indicating a redirect to another location) and 404 NOT FOUND (indicating a missing

resource). In case of a redirect, a client is required to follow the redirect to the secondary

URI (Uniform Resource Identifier). In case of an error status, it is up to the client to

decide what to do; most often the simplest course of action is to display a corresponding

error message to the user.

HTTP defines a number of different request methods, namely HEAD, GET, POST,

OPTIONS, PUT, DELETE, TRACE and CONNECT, each of which serves a slightly

different purpose. It is important to note that a particular web server may not support all

of the above methods (and this is in fact the usual case). The most important methods,

with respect to web applications, GET and POST, are discussed next.

GET is the most commonly used request method (such a request is indeed sent every

time one types a URI to a browser’s address bar and hits enter). A GET request is

usually dispatched in order to retrieve (read) a particular resource, such as an HTML

document or an image file, but it may also be used to submit data in order to alter

system state. [9]

6

A GET request carries all parameters in the request URI, and hence the request size is

often limited to a client-dependent maximum (as an example, Internet Explorer allows

up to 2083 characters in the URI [13]), though no maximum is specified in the HTTP

specification. A sample GET request and the corresponding response (body omitted for

brevity) are shown below. Also note the sample request parameter, conveniently named

as “parameter”.

GET /index.html?parameter=value HTTP/1.1

Host: www.example.com

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Etag: "3f80f-1b6-3e1cb03b"

Accept-Ranges: bytes

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-8

<response body omitted>

Unlike GET, POST is most often used to submit form data to the server in order to alter

system state [9]. The target resource for such requests is often a server side

script/component capable of producing a dynamic response. A POST request may

contain an arbitrary number of request parameters embedded in the request body, and

possibly multipart data to enable file uploads. POST also places no limits on the size of

the request data, though servers/applications may refuse to serve requests exceeding a

particular size limit.

The HTTP specification also defines the https: URI scheme, which adds a security layer

via SSL (Secure Sockets Layer) or TLS (Transport Layer Security) encryption to the

communication stack [4]. This scheme is commonly used for secure connections in e.g.

web-based banking applications. Further details about the https: URI scheme and data

encryption are, however, beyond the scope of this paper.

1.2.3 Server-side implementation

The server-side implementation of a typical web application consists of (but is not

7

limited to) the following components:

• HTTP server to handle incoming requests and provide responses

• Application container / scripting engine to host applications

• Application logic components

• Database backend

• Static resources

The HTTP server is responsible for forwarding incoming requests to the application

container / scripting engine, and for providing corresponding HTTP responses to the

client. Commonly used HTTP servers include Apache (httpd) and Microsoft IIS. Java

application servers also include embedded HTTP connectors to handle HTTP traffic.

Static resources (such as images and style sheets) are often served directly by the HTTP

server to avoid the overhead of dispatching such requests to the application container.

The application container provides a runtime framework and a further layer of

abstraction for applications that are run in it. Among other things, this involves mapping

requests to application components and wrapping raw HTTP requests and responses

with technology specific constructs (such as the HttpServletRequest and

HttpServletResponse interfaces of Java’s JSP/Servlet specification) to enable efficient

processing by application components.

Currently available application container / scripting engine technologies include

JSP/Servlet containers (Java-based, such as Apache Tomcat and Oracle WebLogic),

PHP (most often run as a module to the Apache web server) and ASP.NET (for

Microsoft IIS).

A web application is also typically backed by one or more databases. Databases are

used to store persistent application data. An application may also include file storage,

integrations to other systems via web services or message brokers such as JMS (Java

Message Service). It is important to realize that transactions across these resources

contribute to web application performance overhead.

8

In a clustered environment, multiple instances of a particular application may be

running at once, possibly on multiple physical servers, with the application container

infrastructure coordinating the instances. Clustering generally has a positive impact on

performance and scalability, since it allows for load to be distributed across multiple

application servers and/or application instances. Further details about clustering are,

however, beyond the scope of this paper.

1.2.4 Client-side implementation

The client-side of a typical web application is simply composed of the client’s web

browser. Such a client is commonly known as a thin client (as opposed to a thick

desktop-based client application). Nowadays browsers come in several varieties, but the

most commonly used browsers are Mozilla Firefox, Internet Explorer, Opera and Safari.

The browser is responsible for communicating with the web server over the HTTP

protocol, rendering the user interface of the web application, and enabling user input.

The user interface is commonly rendered as an HTML document which may contain

text, input fields, links to other documents/resources, embedded objects (such as Java

applets) as well as references to images (e.g. JPG or PNG images), scripts (e.g.

JavaScript) and style sheets (CSS). The client first retrieves the root HTML document

(which may be static or dynamic) with a GET request, parses the document text (as it

appears in the response body), and then resolves/retrieves any referenced resources via

subsequent GETs.

Finally scripts are executed, styles are processed and the document content (styled text

along with images, objects etc.) is rendered to the user. Please note that this serial

description of the flow of events is a simplification at best. Browsers may (and often do)

execute the steps concurrently, improving performance and, consequently, user-

experience. Section 2.1 provides additional coverage of client-side rendering issues.

User input is provided using the so-called forms. Forms are HTML elements that are

used to collect user input via input elements such as text fields, checkboxes, and select

9

boxes. Upon form submission (i.e. when the user clicks the submit button), the form

data is sent to the server via an HTTP request (commonly a POST, though the exact

request method is configurable via the form element’s action attribute) and the

corresponding response is rendered to the user.

A simple example form (with static HTML source code and a screenshot of the rendered

output) is shown in Figure 1. This particular form only contains a single text field and

the submit button. Upon submission, the name and value (as input by the user to the text

field) of the parameter “parameter” are sent to “resource.php” via a POST request.

<html>

<head>

 <title>Sample form</title>

</head>

<body>

 <form action="resource.php" method="post">

 Label:

 <input name="parameter" type="text" />

 <input type="submit" value="Submit" />

 </form>

</body>

</html>

Figure 1: Sample HTML form

An alternative/complementary technique to using forms is to simply provide

links/buttons that point to a particular resource (via the “href” attribute or by utilizing

JavaScript), along with necessary parameters. Such an action is always dispatched via a

GET request, and with fixed parameter value(s). A sample HTML snippet and

corresponding rendered output (a simple link or anchor) is shown in Figure 2. This

example also illustrates how multiple parameters are embedded to the request URI, by

using an apostrophe “&” as a delimiter.

Link

Figure 2: Sample HTML link

Upon clicking this link, a GET request, along with the parameter-value pairs, is sent to

10

the resource “resource.php” and a corresponding (dynamic) response is rendered to the

user. An obvious disadvantage with this type of input is that the request parameter

values are fixed. Hence it is most useful for representing actions that need no user input

(apart from the button click), e.g. a simple delete or export action.

This concludes the introduction to web applications. For further details about HTTP,

HTML, CSS, JavaScript and related web (application) technologies, please refer to [14].

1.3 Performance testing

Performance testing is an important and emerging field of software engineering that is

applied in order to measure application performance under varying load, identify

performance problems and bottlenecks, and to verify that an application meets set

performance criteria. This commonly involves measuring system throughput and latency

with a varying number of (simulated) concurrent users, over extended periods of time,

and with different load profiles (usage scenarios). [3]

1.3.1 Rationale

As is the case with other types of software testing, performance testing is often

overlooked or even left out all together. In part this can be attributed to common myths

with regard to performance testing. One such misconception is that performance testing

is done solely for the purpose of breaking a system. This is however not the case, though

performance tests can also be run in order to identify the saturation point (i.e. the

maximum amount of load, discussed later in this chapter) for an application. [7]

For any complex application, it is important that testing (performance testing included)

is done early and often. This not only allows for identifying (performance) problems

early in the development cycle, further enabling early refactoring and other corrective

action, but it also helps to reduce future maintenance costs which usually make up for a

large part of an application’s total cost.

Performance testing can also be used to examine the scalability (measure of how

11

effectively an application responds to added resources), reliability (measure of how

robust and fault-tolerant an application is) and resource usage (processing, memory, etc.

analysis through profiling) of an application, as well as to compare different application

vendors’ solutions for performance. There are in fact several distinct kinds of

performance testing; these are discussed next.

1.3.2 Test types

According to [1], the four basic types (the LESS approach) of performance testing are:

• Load testing

• Endurance testing

• Stress testing

• Spike testing

Load testing is conducted in order to determine how an application behaves under

varying load. This involves varying the number of simulated concurrent users, test

duration and test steps. As the name implies, endurance testing is carried out to examine

an application’s long-term behavior under moderate load. Endurance testing is indeed

often coupled with profiling in order to identify resources that may be depleted (through

resource leaks) over extended periods of time.

Stress testing, on the other hand, is executed for the purpose of finding the saturation

(i.e. breaking) point of an application and to examine how gracefully (throttling down,

crashing, etc.) the application (and the surrounding runtime) is able to navigate such a

situation. Spike testing is a special case of stress testing and is used to determine how

well an application responds to sudden increases in load.

In addition to the basic types listed above, there are two other important types of

performance testing, namely scalability testing and frontend analysis. Scalability testing

is carried out to examine how an application scales to handle increased load (i.e. serve

more users) with added resources. Scalability tests can be implemented by running one

or more of the above types of performance test against setups with differing resources

12

and comparing the results. If a significant increase in application performance and/or

capacity is observed, as a result of adding to available resources, then the system is said

to scale well. Frontend analysis is about observing client-side rendering performance.

1.3.3 Implementation

Performance tests are commonly implemented as a set of scripts that are run to generate

load to the target application instance(s). This is achieved by utilizing a number of load

injector machines, each running a separate instance of the test set. [7] Most currently

available performance testing tools allow for running such distributed tests in a

coordinated fashion. For small-scale scenarios, however, it may be adequate to use a

single injector, as most load testing tools can effectively simulate multiple concurrent

users even from a single injector.

Test scripts may be crafted by hand or recorded by using an appropriate tool. For web

applications, scripts are often recorded by simply tracking the HTTP traffic between the

client and the target application with a proxy server. Depending on testing tool used, the

scripts may be fitted to include conditional tests, parameterization (e.g. dynamic user

credentials), loops, assertions, timers and random test elements. Scripts may be recorded

or written in a number of (programming) languages, such as XML, C, Java or Python.

An essential part of performance testing is reporting. Hence performance testing tools

must offer means of analyzing and/or exporting test results. The number and quality of

recorded metrics depend on the type of test and tool used. Common result metrics for

web applications include response time and the HTTP response status code. Results are

commonly published in textual format, e.g. XML or CSV (Comma-separated values), or

graphical charts (e.g. line, bar, pie or scatter charts).

This concludes the short introduction to performance testing. Factors affecting web

application performance are discussed next. Further details about performance testing,

including specification, design and implementation issues, appear in chapter 3.

13

2 WEB APPLICATION PERFORMANCE

The factors affecting web application performance (i.e. page rendering or response

times, to good or bad) can be roughly divided into two categories: client-side (frontend)

performance and server-side (backend) performance. These factors are discussed next,

along with some concrete advice for improving application performance in the general

case. The final section provides limited discussion on the relative importance of these

factors, and on how they are related to web application performance testing. Material in

this chapter is based on [2], unless otherwise noted.

2.1 Frontend performance factors

At the client-side, the key to good performance is to minimize network traffic2. Below

we address some common ways to accomplish this. Furthermore, sections 2.1.6 and

2.1.7 provide guidelines on how to improve page rendering performance by optimizing

style sheets and JavaScript, respectively.

2.1.1 HTTP request count

As explained in section 1.2.4, a single HTTP request is typically used to fetch the root

HTML document. The root document may, however, refer to an arbitrary number of

other resources, such as images, scripts or stylesheets. Each of these resources must be

fetched with a subsequent HTTP request. Each HTTP request adds to performance

overhead since it creates network traffic between the client and server. Thus it is

immediately obvious that reducing the number of referenced resources and,

consequently, the number of HTTP requests, will improve application performance.

In a related vein, Ajax allows for HTTP requests to be dispatched asynchronously with

Javascript code, without reloading the entire HTML page along with all of its referenced

resources (as opposed to the traditional web programming model as described in section

1.2.4). Hence, generally speaking, Ajax greatly improves frontend performance, because

2 Because a real computer network provides only limited bandwidth, and network latency grows with the
physical distance between a client and server, it makes sense to minimize the amount of transferred data.

14

it reduces the total number of HTTP requests. But like any other Javascript code, poorly

devised Ajax code can also hinder web page rendering performance. For further

information about Ajax, see e.g. [14].

2.1.2 Caching of resources

To reduce the number of HTTP requests, browsers are keen to cache resources. This

means that a browser is able to store certain resources (such as images, style sheets and

scripts) locally, instead of fetching them over the network each time. This behavior is

controlled by a number of request and response headers. A client can perform a

conditional GET request by supplying the If-Modified-Since header. In response to a

conditional GET, if the resource has not changed, the application server may return a

304 Not Modified response with no body; this reduces the amount of transmitted data.

An application server may choose to supply the Expires and/or Cache-Control response

headers with responses; these are used to signal the client that a resource should only be

re-retrieved after a particular date or period of time has passed. Proper use of the above

headers may result in a significant reduction in the number of HTTP requests. Thus

caching should be used, whenever possible, to improve application performance.

2.1.3 DNS lookups

IP (Internet Protocol) addresses, such as 132.49.12.36, are used to locate servers on the

Internet. These numerical addresses are, however, hard for a human to remember.

Luckily, the Domain Name System (DNS) exists to provide a mapping between a

human-readable hostname (such as “www.google.fi”, embedded in resource URIs) and

the corresponding IP address.

Unfortunately this mapping comes with a cost. A typical DNS lookup (to resolve the IP

address) for a particular hostname takes approximately 20-120 milliseconds to

complete. Even with DNS caching, this reduces performance. Thus the number of DNS

lookups should be reduced to a minimum (by minimizing the number of distinct hosts

15

serving resources) to improve application performance.

2.1.4 Redirects

Redirects are used for a multitude of purposes, such as tracking user movement (by

proxying requests via trackers), and the redirect-after-post [15] technique, which is used

to prevent the “double submit” problem after submission of a form that uses the POST

request method. It is important to realise, however, that a redirect always requires the

client to dispatch an extra HTTP request to the secondary URI, which implies reduced

performance. Thus redirects should be avoided to improve application performance.

2.1.5 Compression

The body of an HTTP response can be compressed to reduce the amount of transmitted

data. A client can indicate support for compression by using the Accept-Encoding

request header with an appropriate compression method. Conversely, the application

server may supply the Content-Encoding header to indicate a compressed response

body. A commonly used compression method is gzip [16]. Compression should be

applied to reasonably-sized (> 2KB) text responses to improve application performance.

2.1.6 Style sheets

As any other static resource, style sheets should be cached by the browser to reduce the

total number of HTTP requests. Caching of style sheets is enabled by using external

(rather than inline or embedded) style sheets, which allow for the style sheet to be

requested separately from the main document, and by appending the appropriate caching

headers (as discussed in section 2.1.2) to responses.

Because browsers often utilize progressive rendering, i.e. render whatever content is

available as soon as possible, misplaced references to style sheets can delay the

rendering of a web page by forcing the browser to defer rendering of the entire

document until those references have been resolved. It is thus appropriate to put

16

references to style sheets at the top of the HTML document to allow for proper

progressive rendering and, consequently, improved application performance.

Another source of poor performance with regard to style sheets are CSS expressions.

CSS expressions are a powerful way of dynamically controlling page layout and style,

because they are re-evaluated every time the page changes (upon window resize, for

example). Unfortunately this evaluation requires significant processing power and adds

to performance overhead. Thus CSS expressions should be avoided, whenever possible,

to improve application performance.

2.1.7 JavaScript

Like style sheets, JavaScript scripts should be externalized and cached whenever

possible to improve performance. But unlike style sheets, scripts should be placed at the

bottom (or as near the bottom as possible) of an HTML document for best performance.

This is because script execution not only blocks parallel downloads of resources, but

also effectively disables progressive rendering of elements appearing after the script.

Furthermore, because JavaScript is a rich programming language that allows the

developer to use arbitrary names for variables and functions, add comments, and format

code with an arbitrary amount of whitespace (spaces and tabs), script files can become

large, which implies reduced performance. To counter this, compression, minification

(trimming comments and whitespace) and obfuscation (minifying variable, function, etc.

names) should be utilized for improving application performance.

Finally, one should make sure that an external JavaScript script is never included to a

single HTML document more than once. Duplicate scripts require both duplicated

HTTP requests and processing effort, which implies reduced application performance.

2.2 Backend performance factors

A high-performance backend is able to to process a large number of concurrent client

requests with minimal response times. Factors driving this ability are considered next.

17

2.2.1 Platform

Selection of programming language and platform, runtime environment and

development tools all contribute to web application performance and scalability.

Programming languages and platforms affect performance because they vary greatly in

their implementation and runtime performance. As examples, compiled code (e.g. C++)

generally performs better than interpreted code (e.g. Java), static typing (of e.g. Java)

avoids the runtime overhead of dynamic typing (of e.g. Python), and dynamic semantic

checks (of, say, Java) can be useful for debugging and error detection, but incur

significant runtime overhead.

Updated versions of a particular platform typically include performance enhancements

not found in earlier versions. Vendor-specific performance may also differ (which is

often the case for e.g. application servers). Development tools affect performance by

promoting particular styles of development, application frameworks, libraries, as well as

deployment strategies and targets. Use of modern platform-architectural styles such as

cloud computing [17] can have a profound (positive) effect on an application’s

performance and scalability.

2.2.2 Implementation

Server-side code quality, architectural complexity and selection of third-party libraries

and/or modules can have a significant effect on application performance. Hence proper

selection of algorithms, architectural models and libraries, use of well-established

coding idioms, optimization of database queries, effective use of application

frameworks and efficient modularization, among others, are vital for good performance.

It is also important to realise that high-level approaches to application development

(utilizing various frameworks and a layered design) often simplify the task of the

programmer by hiding unnecessary implementation details, and make the system easier

to develop, comprehend and maintain due to separation of concerns. Unfortunately this

adds further layers of abstraction to the application stack, which may have an adverse

18

effect on performance due to increased indirection (e.g. longer method invocation chains

or the use of reflection in languages that support it). Fortunately, a modular or layered

design can also have a positive effect on scalability, which in turn can be harnessed for

improving application performance by adding to available server resources, such as the

number of processors or the amount of memory.

2.2.3 Configuration

Proper configuration of application and database servers (and clusters thereof) is often

vital for good application performance. An application server (and the application

running in it) must often handle requests from multiple concurrent clients. Thus the

configuration of thread pools, database connection pools, memory management (e.g.

garbage collection) etc. can have a substantial effect on performance. Proper

configuration of database properties, such as indexing, table spaces or caching is equally

important. Other external resources, such as file servers or message brokers may require

similar attention in order to achieve best performance.

2.3 Remarks

As suggested by [2], from a user’s perspective, frontend performance is more important,

as typically only 10–20% of the total response time is spent fetching the root HTML

document, which includes any (dynamic) backend processing. The remaining 80–90% is

spent rendering the response on the client-side (including the fetching of related

resources such as images, style sheets and scripts with subsequent HTTP requests).

It is, however, important to realize that while frontend performance typically makes up

for most of how the user perceives application performance, a poorly performing

backend can bring the entire application to its knees by taking a long time to process the

initial request, or by refusing to handle the request at all. It is ultimately the backend that

must handle high and unpredictable concurrent load over long periods of time.

With performance testing in mind, it is thus important to analyze performance in both

domains. Frontend performance should be measured in order to identify and enhance the

19

quality of the immediate user-experience. Backend performance should be measured in

order to determine maximum concurrent load, scalability and long-term application

behavior, among other things. Whereas chapter 3 focuses on backend performance (load

testing), the case study of chapter 4 incorporates examples of both frontend and backend

performance analysis using appropriate tools.

This concludes the introduction to web application performance aspects. The next

chapter will build upon the theory presented thus far to present a thorough discussion of

the intricacies of web application performance test design and implementation.

20

3 WEB APPLICATION PERFORMANCE TESTING

This chapter discusses practical implementation issues of web application performance

testing, including test preparation, execution and reporting. The focus is on backend

load testing. Performance testing is an activity that may occur concurrently with other

application development tasks, or be carried out after an application has been

successfully deployed into production. In general, our discussion does not assume any

particular phase in application lifecycle; where it does, the phase is clearly stated.

Material in this chapter is based on [1], unless otherwise noted.

3.1 Preparing for performance tests

The test preparation phase involves the definition, design and building of the test

environment and scripts. These items are discussed next.

3.1.1 Defining acceptance criteria

In order to establish performance (acceptance) criteria for an application, requirements

elicitation (as it appears in the initial application design phase) must include

performance considerations, such as projected user base and number of concurrent

users, typical usage scenarios, desired quality of service (e.g. in terms of maximum

response times) and maximum server resource utilization, to name a few. In a formal

process, the result of these considerations is the performance requirement document.

In addition, it is often necessary for the client and service provider to sign a Service

Level Agreement (SLA). The SLA is a formal, binding document on an application’s

performance acceptance criteria, agreed upon by both the client and service provider.

Further, established performance requirements are used to define a performance test

strategy (document). This strategy represents a high-level roadmap for performance

tests. Topics covered by the test strategy typically include (but are not limited to):

• Scope

• Metrics

21

• Objectives

• Load profiles

• Test environment

• Think time

• Test data

Scope defines the extent to which performance testing is conducted, including

disucssion of the components to be tested and the types of test to execute (e.g. LESS).

Metrics define the criteria by which system performance is measured. Common metrics

for web applications include response time and throughput. Relevant metrics should be

defined by consulting appropriate stakeholders.

Objectives represent the rationale for carrying out performance tests. Typical objectives

include verifying an application’s ability to handle a specified number of concurrent

users or asserting its ability to sustain high load over a long period of time without

resource leaks. Objectives must be conceived by consulting appropriate stakeholders.

Load profiles represent typical usage scenarios for the application. Realistic load

profiles should be deduced by consulting relevant business stakeholders.

Preliminary discussion of the test environment must be included in the strategy. The test

environment should resemble the production environment as far as possible. A

standalone performance test environment provides most accurate results since it is not

shared by interfering testing and/or production activities. Unfortunately such an

environment may be not be readily available; in this case performance test execution

should be isolated from other activities to ensure reliable results.

User think time, i.e. the time a user typically takes to “think” before executing a

particular action, such as submitting a form, must be addressed in the strategy. Think

times can have a profound effect on test relevance. Too short or long think times can

result in biased test results, due to unusually high or low transaction rates, respectively.

Last, but surely not least, performance test data must be addressed in the strategy. This

22

includes discussion of both dynamic input (user credentials, form data, etc.) as well as

test database setup. Test data should resemble that of production as far as possible to

enable reliable results. Hence if real production data is available, it should be used. If

not, sufficient amounts of realistic test data should be generated. Unfortunately test data

generation is a daunting and time consuming task, and lack of proper test data can

invalidate an otherwise legitimate test setup.

3.1.2 Designing the test scenarios

The test design phase captures the performance requirements and strategy of the

definition phase to produce a solid performance test design (blueprint), which is in turn

realised in the building phase. Needless to say, test design is the single most important

step in performance testing lifecycle. It is essentially composed of three components:

scenario, workload and tooling design. These concepts are discussed next.

A scenario is a collection of transactions3. In practical terms, a scenario is a sequence of

user actions, such as logging in to the system, clicking on a particular link, submitting a

form, and finally logging out of the system. Scenario design is vital for realistic

simulation of application usage in performance tests, and a prequisite for workload

design. A scenario should be composed of transactions that represent typical and/or

critical user actions, and have significant performance effects.

To identify frequently occurring transactions, stakeholders and e.g. application server

access logs should be consulted. It is important to study application usage over a

sufficiently long period of time, because usage patterns can vary greatly over time, based

on time of day, day of week, week of month, or even month of year. For example, in a

banking application, weekdays are likely to incur more load than weekends. Similarly, a

payroll application will likely have less use during the summer months due to vacations.

Transactions should also be prioritized based on the following qualities:

3 In this context, a transaction is a user action that results in server-side processing, typically an HTTP
request to a server-side application resource. It may (but is not required to) span a database transaction.

23

• Concurrency

• Number of user interactions

• Computational requirements

• Resource usage

Concurrency defines the degree to which a transaction is typically executed

simultaneously by concurrent users. A single transaction may be composed of multiple

user interactions (requests). Transactions may also have different computational

requirements in terms of required processing power and time. Resource usage refers to

the I/O4 operations incurred by a transaction, among other things.

Workload design builds on scenario design by assigning transactions (or scenarios) to

specific (simulated) user groups (such as the “customers”, “managers” and “support

personnel” of a banking application), assigning relative weights to the user groups and

to transactions within each group, and sequencing transactions within groups.

The relative weight of a user group or transaction denotes its relative importance and

commit rate (some groups use the appplication more actively, and some transactions

take place more often than others) within a test. Sequencing of transactions denotes the

ordering and timing of transactions during a test run within a user group. The sequence

of transactions is typically inferred from the corresponding scenario.

In goal-oriented workload design, performance tests are designed to assert certain

system qualities, such as high system availability or graceful degradation during

overload. In transaction-oriented design, performance tests are devised so that they

focus on particular, critical transaction types. Architecture-oriented workload design

focuses on verifying the scalability, robustness and efficiency of application

architecture, and as such requires intricate knowledge of its implementation. Growth-

oriented design places an exclusive focus on testing system scalability.

Tooling design involves the selection of performance testing tools. At a bare minimum,

4 Input/Output, such as file access

24

for web application performance testing, the tool(s) should provide the following

features, necessary for devising, running and analysing tests:

• HTTP protocol support

• Test script editing and recording capability

• Client-side cookie support (for session tracking)

• Ability to parameterize tests with input data (e.g. user credentials)

• Ability to run test scripts with an arbitrary number of users and iterations

• Ability to record relevant metrics (such as response time) at run time

• Test data export capability

In addition to the features listed above, for some applications, it may be necessary to

support data transport encryption (via HTTPS, see the end of section 1.2.2), basic

authentication or file uploads (multipart requests), among other things. For further

guidelines on performance testing tool selection, please refer to appendix B of [1].

3.1.3 Building the test suite

The purpose of the build phase is to implement the test design in a way that enables

successful test execution. At this stage, the target application must be deployable, and

must successfully implement all of the features that are to be tested. The build phase is

essentially composed of four tasks: creating a performance test plan, setting up a test

environment, developing test scripts, and setting up a test schedule. These items are

discussed next.

A performance test plan (document) saves the results of the test definition and design

phases (we will not repeat the items dicussed in the previous two sections here), and

appends a detailed plan of test execution, including plans for the remaining three tasks

above. In addition, a performance test plan typically includes discussion of any

assumptions, constraints and risk factors that are present in the design. A performance

test plan is thus an essential tool for the project manager, test designer, and testers alike.

25

Test environment construction is a crucial task in performance test setup. The goal is to

create an environment that most closely resembles production (otherwise the test results

would not apply to production). It spans the setup of both client-side machines (load

injectors, see section 1.3.3) and server-side application components (application servers,

database servers, firewalls, load balancers etc.) At the same time, it is a very domain,

environment and application-specific task that requires a lot of coordination between

stakeholders. Hence we only outline some important considerations below.

• Is a proprietary performance testing environment available?

• If not, can external noise (interference from other users) be eliminated?

• Does the test environment resemble production (w.r.t hardware and software)?

These considerations are typically driven by budget, time and resource constraints. It is

generally difficult (or next to impossible) to use a production environment for

performance testing, due to inherent noise from regular use and data integrity constraints

(performance tests must not modify real production data, such as the account balances in

a banking application). In a similar vein, a simulated environment that perfectly matches

production environment in both hardware and software, is generally too costly and time

consuming to implement. In practical terms, test environment setup is composed of:

• Hardware and software installation

• Hardware, software and network configuration

• Application build, deployment and configuration

• Client-side (load injector) setup

• Test data(base) setup

Once a test environment has been setup, test scripts5 can be devised for each relevant

scenario (or transaction). As explained in section 1.3.3, the scripts are either manually

written or recorded, depending on the complexity of the scenario and available tooling.

In either case, a script must be manually edited to include dynamic, environment or

user-specific input data (i.e. request parameters), and to modify think times (see relevant

5 A test script is a sequence of programmatic HTTP requests (transactions) to application resources. It
may include requests to static resources (such as images), but these are often omitted for simplicity.

26

part of section 3.1.1). Form tokens6 are a prime example of dynamic input. A form

token’s value varies per request (form reload) and renders the use of a static, recorded

value impossible7. In a similar vein, session tracking, if implemented by appending

session ids (that vary per browser session) to request URIs, must be taken into account

in script development. Caching of resources is another important consideration (see

section 2.1.2 for rationale). Each script should be smoke tested (by running it against the

test application) to assert correct runtime behavior and test data compatibility.

The final step in test preparation is to create a test schedule and assign testers to it. In a

shared test environment, where e.g. functional testing and development activities may

occur at arbitrary times, scheduling an isolated performance test might turn out to be a

challenge. This concludes our discussion of the test preparation phase.

3.2 Performance test execution

Performance test execution can be divided into three distinct phases: validation, baseline

creation and benchmarking. These are discussed next. Furthermore, sections 3.2.4 and

3.2.5 discuss typical reasons for test failure and test monitoring, respectively.

3.2.1 Validating the test suite

Prior to running actual tests, the entire test suite (of scripts) must be validated. For this

purpose, elaboration and self-satisfaction tests are executed. Elaboration tests are run to

verify that the system operates as expected during a performance test, and that the test

runs produce reasonable output data (metrics). They are also useful for:

• Verifying test data integrity

• Understanding system behavior when subjected to performance tests

• Establishing a proof-of-concept for performance tests (to management)

• Debugging any remaining issues with the test scripts and/or environment

• Familiarizing testers with the test suite and environment

6 Form tokens are hidden HTML form elements that are included to prevent a double form submit.
7 A test script must parse the token value from a previous response that was used to render the form.

27

• Tuning application parameters

Due to resource and time constraints, elaboration tests are often run with a small number

of concurrent simulated users and a limited number of runs. As the name implies,

additional self-satisfaction tests complement elaboration tests by building tester

confidence in the test suite and tooling (via repeated runs and peer/expert review) and by

asserting system readiness for the final performance tests.

3.2.2 Creating a baseline

To establish a point of comparison (reference) for future performance test runs, a

baseline is created. In other words, the results of the initial stable run(s) of the test suite

are recorded for future reference. Any subsequent test run (with the same configuration

and test data) can then be compared to the baseline to see whether performance has

improved or declined.

In particular, a baseline allows for application performance to be tracked across builds

and versions, though major application revisions may require a rebuild of the baseline

due to functional, architectural or platform-induced changes that render the comparison

unreliable. A baseline can also be used to identify performance deviations due to

configuration changes and tuning (see section 3.2.5 below).

3.2.3 Benchmarking with multiple test runs

Once a baseline has been setup, an arbitrary number of test runs (benchmarking) will

follow. In addition to running tests with each application revision, the need for repeated

test runs may arise due to failed tests (runtime errors, see section 3.2.4 below), test data

corruption, human error, or other unexpected conditions during test execution.

Endurance tests are clearly most susceptible to such problems due to inherently long

run-time.

Furthermore, multiple test runs provide more reliable results because they effectively

28

eliminate uncertainty due to transient factors (such as someone mistakenly using the

target application for other purposes during a performance test run) in the test

environment. In particular, repeatable results are likely to promote testers’ and

stakeholders’ confidence in the test environment and application performance.

Depending on the test data and the application functionality being tested, it may be

necessary to “reset” the test environment and/or database between test runs to a

particular state. For instance, in a banking application, the need for an intermediate reset

would arise with a test that creates an account with a particular number. If such a test

were to be run again without resetting the database, the account creation (and the

surrounding test) would fail due to a duplicate account number.

In a related vein, the word benchmark can also refer to the use of an external, industry-

standard performance benchmark provided by a third-party organization. It is carried out

by running a set of tests, that comply with the specifications of the industry-standard

benchmark, to produce a score. Benchmarks complement the results of proprietary

performance tests by allowing direct performance comparison (via scores) to

applications from other vendors. [3] Further details about benchmarks are, however, out

of the scope of this paper; refer to [3] for a more thorough discussion on the subject.

3.2.4 Reasons for performance test failure

A performance test run is considered as failed if it fails to produce reliable and useful

results. Typical causes for failed performance tests include application defects and

network congestion.

Whereas test scripts typically operate in a deterministic manner, i.e. execute a

predefined sequence of steps (requests), application defects8 may cause the application

to respond in a way that was not expected by the test script. In this case the script cannot

continue, and test execution is aborted with a runtime error.

8 Concurrency bugs (due to the high number of concurrent users) are a common source of error in
performance tests. They are also notoriously difficult to debug due to their non-deterministic nature.

29

Network congestion is harmful to performance test execution for two primary reasons:

first, it may result in unusually high response times and poor throughput due to excess

network delays; second, complete connection failures generally cause a test to abort with

a network timeout error. In this respect, proper test network configuration is important.

3.2.5 Monitoring tests

We end our discussion of the test execution phase with test monitoring. Monitoring a

performance test involves keeping track of how the test is progressing. By monitoring a

test run, any errors are spotted immediately, allowing for the test to be cancelled and

restarted on the spot, which saves time. Monitoring typically includes tracking test script

or tool (console) output, application and database server logs, and observing realtime

server load statistics such as processor and memory usage through profiling.

Profiling is especially important when coupled with tuning (modifying application

and/or server configuration in order to find the best performing setup). Unfortunately

profiling and tuning are very broad topics in themselves, and hence were not included in

the scope of this paper; the interested reader may refer to [19] for further information.

3.3 Analysis and reporting of test results

Performance test result analysis typically involves three tasks: test data collection,

analysis and reporting. These tasks are discussed in the following subsections.

3.3.1 Test data collection

Test data is typically collected by observing test tool output logs. The number, format

and content of these logs is tool-dependent. A typical solution would be to output two

distinct log files, one containing a summary of the test run(s), and another containing the

raw test data. Runtime errors during a test run may also produce separate error logs. Log

files are typically in either XML or CSV format to enable efficient parsing and analysis

thereof. A typical9 test output log contains the sequence of transactions with the

9 Load testing a web application over HTTP

30

following columns and metrics (though this list is by no means exhaustive):

• User id

• Iteration

• Timestamp

• Transaction id

• HTTP status code

• Response time

• Error status

User id represents a tool-dependent identifier for a simulated user (a single test is

typically run with multiple simulated concurrent users), e.g. a running number. Iteration

represents the iteration number (in case of multiple iterations of the same test), which is

generally a running number. Timestamp represents the time of execution for the

transaction, which may be relative to test start time, and is typically given to millisecond

precision. Transaction id is a transaction (request) identifier, e.g. a predefined number.

HTTP status code is the response status code. Response time is the time elapsed from

sending a request to receiving a full response. Error status is a boolean that tells

whether the test failed due to a runtime error (in which case an error log is typically

created) or a bad HTTP status code (e.g. 404 not found, see section 1.2.2 for details).

Depending on the types of metric being collected, it may also be necessary to collect

persistent profiling data from server-side machines. This is usually achieved by

consulting relevant server logs and/or the output of dedicated profiler tools (that were

active during the performance test run). Server-side metrics are most useful for

investigating and pinpointing potential performance bottlenecks.

3.3.2 Test data analysis

Once test data has been successfully gathered, it must be analyzed. Analysis is carried

out by calculating (aggregate) metrics, such as average response time per time unit or

31

peak number of transactions per time unit, from the data. Furthermore, the (aggregate)

metrics may be compared to a baseline to produce a performance trend. A test tool may

incorporate the necessary facilities for data analysis. Alternatively, generic spreadsheet

tools (such as Microsoft Excel) may be used. At the server-side, enterprise-grade

management tools often incorporate sophisticated data analysis and reporting facilities.

According to [1], test data analysis serves the following purposes (non-exhaustive, in

order of relative importance):

• Checking whether all tests (transactions) were executed as planned

• Checking whether set performance criteria were met by the system under test

• Identifying performance bottlenecks and possible remedies

The first item is important because errors in a test run may render test data unreliable,

thus preventing further analysis. It is up to the performance analyst to decide whether a

particular number of failed transactions constitutes a failed test run. The second and

third items are at the heart of software performance testing. Test data must be compared

to specified criteria to determine whether application performance is within acceptable

limits. Performance bottlenecks may be identified by focusing on particular transactions,

application resources or server-side metrics.

3.3.3 Reporting results

Reports are the primary deliverable of performance tests. Hence they must convey all

the relevant performance metrics in a concise and self-evident manner. Reports are

typically created to serve the interests of different stakeholders, such as management,

developers or system administrators. Management is most interested to see how their

investment in performance testing and application development pays off. Developers

require detailed performance reports to be able to enhance application performance.

System administrators use their reports to determine an optimal runtime configuration.

As explained in section 1.3.3, reports may be produced in textual (tabular) format or

graphs. Whereas developers typically require intricate details (i.e. “raw” figures) on

32

application performance, for management, a handful of high-level and colorful pie

charts (along with proper justification) will likely suffice. When producing reports,

standard statistical analysis methods10 may be used, along with conventional11 tooling.

Spreadsheet tools can be used to provide dual representations (tables and charts) of data.

Within a report, it is important to highlight any anomalies in the test data. For example,

sudden and/or constant increases in response time or application/database server

resource usage may be indications of performance problems. Graphs are particularly

effective at conveying such trends.

This concludes our discussion of web application performance testing. The interested

reader may refer to e.g. [1], [3], and [7] for further information. Chapter 4 provides

examples of both test tooling and implementation.

10 Averaging, sampling and histograms, among others
11 Generally available (open-source or commercial), non-specialized

33

4 CASE STUDY: WORDNET

The purpose of this case study is to convey key ideas presented in the previous chapters

in a pragmatic manner. The web application under test is WordNet, a large lexical

database of English, publicly available on the internet, provided by Princeton

University. [21] This particular application was chosen because it couples an adequately

complex frontend with search functionality that provides a good candidate for backend

load testing.

We begin by describing the test setup (section 4.1) and test tooling (section 4.2). For

brevity, tool installation steps are not included. Section 4.3 describes a sample frontend

analysis, and section 4.4 walks through a simple load test. Finally, some generic remarks

about the test results are made.

4.1 Setup

The following setup was used to drive tests:

• HP Compaq nw8240 laptop computer

• Pentium M 2GHz processor, 1.5GB RAM

• Windows XP Pro SP3 operating system

• 54 Mbit WLAN (Wireless LAN) network

• 8/1 Mbit ADSL2+ internet connection

The following application versions were used:

• Firebug 1.4.2

• Apache JMeter 2.3.2

• Mozilla Firefox 3.5.2

• Sun JRE12 6u15

• YSlow 2.0.0b6

12 A Java Runtime Environment [22] is necessary to run JMeter.

34

All tests were run on a freshly booted machine with a minimal number of

simultaneously running (background) processes to avoid interference with the tests.

4.2 Tooling

This section provides a brief introduction to the open source performance testing and

analysis tools used in the case study. JMeter was selected primarily from personal

experience. It is also seemingly popular (with a Google hit count of 574,000 as of

December 2009). Firebug and YSlow were selected because they come highly

recommended by [2]. It must be noted that a number of alternative tools (both open

source and commercial) exist. For a listing of open source alternatives, refer to [18].

4.2.1 JMeter

Apache JMeter is a Java-based load testing tool. It can be used to load test applications

over a variety of protocols and APIs (Application Programming Interfaces), including

HTTP, SOAP (Simple Object Access Protocol), JDBC (Java Database Connectivity),

LDAP (Lightweight Directory Access Protocol), JMS, POP3 (Post Office Protocol) and

IMAP (Internet Message Access Protocol). JMeter is a lightweight desktop application

with a simple graphical user interface (GUI). It can also be run from the command line,

if necessary (e.g. in a headless13 environment).

JMeter runs on the Java Virtual Machine (JVM), so it is fully portable across machine

architectures and operating systems, and has native support for multithreading (i.e. tests

can be run with multiple simulated concurrent users and groups within a single

instance). JMeter allows for test scenarios to be recorded using a built-in proxy server. It

has a fully configurable, pluggable (via plug-ins) and scriptable (using e.g. BeanShell14)

test architecture, so all types of performance test (LESS and more) can be run with it. In

addition, multiple test iterations (runs), input parameterization, loops, assertions and

timers are supported out-of-the-box.

13 No display device (monitor) attached
14 BeanShell [20] is a lightweight scripting language for the Java platform

35

Pluggable samplers allow for a number of metrics to be recorded at test run-time. Basic

test data analysis and reporting facilities are also included; these can be extended by

installing appropriate plug-ins. JMeter uses a proprietary XML format to store test plans

(steps) and test result data alike.

With respect to web application performance testing, while JMeter effectively simulates

the behavior of a web browser (or, actually, multiple browsers), it is not a web browser.

In particular, JMeter does not render HTML, evaluate style sheets or execute JavaScript.

It simply dispatches the same HTTP requests (and receives the same responses) as a real

browser would, with the addition of recording response time, throughput and other

relevant metrics at the same time. [10]

4.2.2 Firebug

Firebug is a Firefox15 add-on that can be used for frontend performance analysis. It

enables a number of web application frontend development tasks (non-exhaustive list):

• HTML inspection and editing

• CSS inspection, editing and visualization

• JavaScript execution, debugging, logging and profiling

• DOM (Document Object Model) inspection

• Network traffic monitoring

For our purposes, the last item is clearly most important. Firebug’s network monitoring

facilities allow the user to track response times per HTTP request (i.e. per resource),

monitor browser cache usage, inspect HTTP request and response headers, and visualize

the entire loading of a web page (from the root HTML document to any referred

resources) on a timeline. Furthermore, Firebug’s JavaScript profiling capabilities may

come in handy when diagnosing script-induced performance problems. [11]

15 There is also a “lite” version of Firebug that can be used with any browser. Refer to [11] for details.

36

4.2.3 YSlow

YSlow is a Firefox add-on that integrates seamlessly with Firebug. YSlow analyzes and

grades frontend performance (like a benchmark, see section 3.2.3), and suggests ways to

improve it, based on a predefined set of rules (custom rule sets may also be defined).

Some of these rules were introduced in chapter 2.1. Grading is done on a scale of A

through F, where A denotes best performance. YSlow also provides views for inspecting

individual resources (e.g. size) and overall statistics (such as total page weight). [12]

4.3 Sample frontend analysis

This section depicts a simple frontend analysis. As example, we analyze the WordNet

homepage. We consider page load time, the number of HTTP requests, caching,

compression, and finally the YSlow grade and performance suggestions.

The first step is to launch Firefox. Once Firefox is up and running, we must enable

Firebug and YSlow for all web pages. Firebug is enabled by right-clicking on its “bug”

icon in the browser’s status bar (lower right corner of the screen) and selecting the “On

for All Web Pages” option. In a similar fashion, YSlow is enabled by right-clicking on

its “gauge” icon and selecting the “Autorun” option. These tasks are illustrated in

Figures 3 and 4 below.

Figure 3: Enabling Firebug in Firefox

Figure 4: Enabling YSlow in Firefox

To bring up the Firebug console, left-click on the Firebug icon. Now select the “Net”

(network) view by clicking on the corresponding tab. We haven’t loaded a page yet, so

the view is empty. The view should resemble that of Figure 5 below.

37

Figure 5: Empty Firebug network statistics view

The next step is to browse to the WordNet homepage. To do this, simply type the target

URL (http://wordnet.princeton.edu/) into the browser’s address bar and hit enter. As the

page loads, Firebug should update its view. The resulting view is illustrated in Figure 6.

Figure 6: Firebug network statistics for the WordNet homepage, empty browser cache

38

Looking at the statistics, 16 GET requests were made, with a total response time of

2.061 seconds, and a combined page weight of 86 KB. The requests are displayed in the

order in which they were sent, starting with the root HTML document. For each request,

HTTP method and status code, target host and file size are shown. By hovering the

mouse on top of a particular request, a detailed breakdown of the total response time for

the request is shown (the rectangular popup box in Figure 6 above). The timeline graph

on the right conveys the same data in a visual manner, with matching colors.

The page was initially loaded with an empty browser cache (see section 2.1.2). To

demonstrate the effect of a primed (i.e. full) browser cache, we now reload the page by

clicking on the browser’s reload button. The resulting statistics are shown in Figure 7

below. In a nutshell, by caching resources, the total response time was reduced to 1.036

seconds (a 50 % reduction), and the total amount of transferred data decreased from 86

KB to a mere 11 KB (a 90 % reduction).

As described in section 2.1.2, the browser sends a conditional GET request to retrieve a

resource that has been previously cached (even with an explicit reload of a page). In our

sample, all but one of the referred resources were in fact cached, and for each of those

resources the server returned a 304 status code to indicate that the cached version is

valid, avoiding the need to transfer data over the wire.

Figure 7: Firebug network statistics for the WordNet homepage, primed browser cache

39

We now turn our attention to YSlow. To view the YSlow grade and statistics for the

WordNet homepage, simply select the YSlow tab on the Firebug console. This is

illustrated in Figure 8 below. The view has been truncated for brevity. In particular, it

does not show all grading criteria, though unsatisfied criteria are shown at the top.

Figure 8: YSlow grade ‘C’ for the WordNet homepage

As can be seen from Figure 8, the WordNet homepage received a grade C, scoring 71

out of 100 points with the default ruleset (YSlow V2). While most of the tests passed

with flying colors (grade A), the number of HTTP requests was considered high due to a

large number of external style sheets (9). As a remedy, YSlow suggests combining the

style sheets. This would in fact reduce the total number of HTTP requests by

minimizing the number of referenced style sheets in the root HTML document.

Further, resources were not compressed, and none had a far-future Expires-header. As

explained in section 2.1.3, compression improves performance by reducing the amount

of transmitted data. A far-future Expires-header would further improve performance by

eliminating the conditional GET requests that now took place. YSlow also detected that

a Content Delivery Network (CDN)16 was not used to serve static content on the

WordNet homepage. Response times could be improved if these issues were addressed.

This concludes our sample performance analysis of the WordNet homepage.

16 A content delivery network is a collection of third-party servers that host static resources (such as
images and scripts) to reduce application server load. Please refer to e.g. [23] for further information.

40

4.4 Sample backend load test

The target of our sample load test is the WordNet online search, located at the URL

http://wordnetweb.princeton.edu/perl/webwn and accessible via the WordNet

homepage. The sample test is necessarily a black-box test17, since we do not have access

to the target application’s implementation and/or configuration details. Section 4.4.1

describes the sample test scenario. Section 4.4.2 walks through the process of recording

a test script that follows the scenario. In section 4.4.3 we run the test script with multiple

concurrent simulated users. The final section provides some analysis of the test results.

4.4.1 The test scenario

The test scenario is simple: a user opens the WordNet online search page, enters a

misspelled English word to the “Word to search for:” field and clicks on the “Search

WordNet” button, only to discover that the search returns no results. The tenacious user

then re-runs the search, this time with proper spelling, to obtain a non-empty result set.

4.4.2 Recording the test script

To record the test scenario, we first start up the JMeter load testing tool. Once JMeter is

running, we right-click on the “Workbench” item, and select the Add > Non-Test

Elements > HTTP Proxy Server option to enable the proxy server (pane) that is used to

record a test script. This is illustrated in Figures 9 and 10 below.

17 Black-box testing is carried out without any knowledge of the target application’s implementation. [24]

41

Figure 9: Enabling the HTTP proxy server pane in JMeter

Figure 10: The HTTP proxy server settings pane, with controls at the bottom

The default settings for the proxy server (running on port 8080) are fine for our

purposes. We then click on the “Start” button at the bottom of the pane to start the

server. The next step is to start up the Firefox web browser. Once Firefox is up and

running, we select Tools > Options… > Advanced > Network > Connection >

Settings… > Manual proxy configuration, and enter the values “localhost” and “8080”

to the “HTTP Proxy” and “Port” fields, respectively. Finally we save the settings by

clicking on “OK” twice. Refer to Figure 11 for proxy configuration details.

42

Figure 11: Configuring the JMeter HTTP proxy to use in Firefox

To record the script, we now simply execute the user actions as per the scenario, using

the browser. The proxy server intercepts all HTTP requests and generates the test steps

accordingly. We first open the WordNet online search form at the appropriate URL,

enter a misspelled keyword (“duk”) and run a search. Because the initial search returns

no results, we then then correct the spelling of the keyword (“duck”) and run the search

again. These steps are illustrated in Figures 12, 13 and 14 below.

43

Figure 12: WordNet online search form

Figure 13: Empty result set for the initial query with misspelled keyword

Figure 14: Non-empty search results for the second query with correctly spelled keyword

Once the above steps have been completed, it is necessary to stop the proxy. This is

44

accomplished by clicking on the “Stop” button in JMeter’s proxy server settings pane.

As a result, three GET requests (i.e. transactions, see section 3.1.2) are generated and

shown under the “Workbench” item, in the order in which they were dispatched. The

first GET request was used to load the search form, whereas the second and third

requests represent our failed and successful queries, respectively.

Figure 15 illustrates the resulting view with the first recorded request highlighted. As

shown, JMeter allows us to modify the details of a recorded request. We will later

utilize this capability to enable user-specific input.

Figure 15: HTTP request settings pane for the initial request that loads the search form

Test script recording is now complete. In the next section we see how the recorded

requests are configured to load test the target application with multiple simulated users.

4.4.3 Executing the test script

The sample load test is to be run with five concurrent users, two runs, and with a

different keyword-pair (misspelled and correct word) for each user. To accomplish this,

we must add necessary configuration items and the recorded requests to a test plan. We

begin by adding a User Parameters element to the plan. This element is used to provide

user-specific input, in this case the search keywords. To add this element, we right-click

45

on the “Test Plan” element and select Add > Pre Processors > User Parameters. This

brings up the User Parameters settings pane. We then click on the the “Add Variable”

button twice to add a row for each variable (misspelled word, correct word) and finally

click the “Add User” button five times to add columns for each simulated user. We then

enter the following values (see Table 1 below) to the fields.

Variable name User 1 User 2 User 3 User 4 User 5

correct brick girl moon fight bomb

misspelled brik gilr muun figth bomp

Table 1: User-specific input

The variable names (in italics above) are later used to refer to the values when we setup

the corresponding requests. The pane should now resemble that of Figure 16 below.

Figure 16: The User Parameters pane with user-specific input values entered

To enable test execution, and to setup the desired number of users and runs, we add a

Thread Group element (i.e. a user group, see section 3.1.2) to the test plan. This is

accomplished by selecting Add > Thread Group from the test plan’s context menu. We

then input the desired number of concurrent users (5), runs (2), and the ramp-up period18

(5) to corresponding fields. The resulting view is shown in Figure 17 below.

18 The ramp-up period controls the rate at which simulated users start their scenario. In this case, users
start to execute the scenario at five second intervals. This prevents a sudden increase in application load.

46

Figure 17: Thread group setup

We must now add the recorded requests to the test plan. This is done simply by dragging

the requests to the thread group and selecting the “Add as Child” option. While doing

this, it is important to maintain the order of the requests. As we assign the requests to

the thread group, we also rename the requests to make it easier to identify them.

Renaming a request simply involves changing its “Name” attribute via the

corresponding request settings pane. The setup should now resemble that of Figure 18.

Figure 18: Request assigned to thread group, note the modified ‘Name’ attribute at the top

To enable dynamic, user-specific input, we must now set the value of the request

47

parameter, that corresponds to the search keyword, to refer to the User Parameters we

defined earlier. The appropriate parameter “s” is highlighted in Figure 18 above (under

the “Send Parameters With the Request” section). To pass in a dynamic search keyword

at run-time, we simply replace the recorded parameter value “duk” with the expression

${misspelled}. This expression refers to the variable defined in Table 1. We then

repeat the procedure for the correct search request, replacing the parameter value “duck”

with the expression ${correct}. This is illustrated in Figure 19 below.

Figure 19: Modifying a request parameter value to refer to the appropriate user parameter

JMeter is now able to supply the dynamic parameter values with requests at test run-

time. A final step is to add a listener to the test plan. A listener tracks test execution by

saving relevant metrics, and allows us to visualize test results once the test has been run.

Out of the box, JMeter provides a number of default listeners. We select the “Statistical

Aggregate Graph” listener that is available as an external plugin19. This listener

produces a nice aggregate graph with average response time and throughput.

To add the listener, we select the Add > Listener > Statistical Aggregate Graph option

from the test plan’s context menu. The final setup is illustrated in Figure 20 below. Now

that the test plan is complete, we start the load test by selecting the test plan item and

pressing CTRL + R on the keyboard, or by selecting Run > Start from the top menu.

Test execution can be tracked by monitoring the “gauge” label at the upper right corner

19 See http://rubenlaguna.com/wp/better-jmeter-graphs/

48

of the screen (see Figure 20). Once the label turns grey and shows a value of “0 / 5”, the

test has run to completion. The next section discusses basic result analysis with JMeter.

Figure 20: Final JMeter test plan with the statistical aggregate report listener added and visible

4.4.4 Analysing the test data

Once the test has run to completion, we can visualize the results by selecting the

“Statistical Aggregate Report” item. The resulting view is shown in Figure 21 below.

Figure 21: Test results as visualized by the statistical aggregate report

Looking at the graph, we see that the average response time was rather poor at 12

49

seconds, with values ranging from approximately 3 seconds to 22 seconds. Throughput

(the number of requests completed per time unit) was equally poor, averaging at a mere

0.4 transactions per second (or 24 transactions per minute). These observations confirm

what can be seen by using the application with a browser; the WordNet online search

does not generally perform very well, especially in the face of multiple concurrent users.

This concludes our sample load test of the WordNet online search.

4.5 Remarks

The previous sections covered typical performance test implementation tasks through

real-life examples. The two main aspects of web application performance testing,

namely frontend analysis and backend load testing, were covered. Our discussion was of

necessity simplistic, and only provided examples for a subset of the previously

discussed testing practices and tool features. With these considerations in mind, the

interested reader is encouraged to further evaluate these tools and practices for

him/herself. For this purpose, the sample tests provide a good starting point.

50

5 CONCLUSIONS

Through reading the previous four chapters, the reader should now possess a basic

understanding of the intricacies of web application performance testing. In the following

paragraphs we summarize some key findings, and provide pointers for future study.

In chapter 2, we identified the factors that determine web application performance. At

the client-side, performance is primarily driven by the amount of data transmitted over

the wire. At the server-side, selection of programming language and platform,

implementation and configuration are the primary contributors to application

performance. The performance effects of modern platform-architectural models such as

cloud computing are of particular interest, and represent a viable topic for further study.

Chapter 3 walked through the process of load testing a web application. We covered test

definition, design, execution and reporting issues, with an emphasis on practical

implementation. Performance testing was found to be an activity that requires delicate

coordination between project stakeholders, developers, system administrators and

testers, in order to produce reliable and useful results. Proper test definition and design

are of utmost importance. Baselining allows for application performance to be tracked

over time and across builds and versions.

Chapter 4 introduced three performance testing and analysis tools (Apache JMeter,

Firebug and YSlow) that can be used to realise effective web application performance

tests with minimal overhead. However, several alternative tools (commercial and open-

source) also exist. A comparison between the tools presented here and their alternatives

would also prove to be an interesting continuation to this paper.

Chapter 4 also provided a detailed walkthrough of typical performance testing tasks,

using the tools mentioned above. Our sample frontend analysis identified some typical

performance bottlenecks (lack of response compression and proper caching) in the

sample application. The sample load test conveyed the key ideas and test phases of

51

chapter 3 in a minimal but pragmatic manner. The target application was found to

perform poorly even under the moderate load incurred by our sample load test. The

results must be taken with a grain of salt, however. Since the tests were run in a black-

box manner, no guarantees can be made about the validity of the results, since external

noise from other users (that may very well number in the thousands, for all we know)

cannot be eliminated.

While this paper considered Ajax and other RIA technologies only briefly, future web

applications will increasingly utilise Ajax in their implementation. This means that

performance test tools and methodologies will also need to evolve. In particular, the

traditional request-centered (get root HTML page, get image, get stylesheet etc.)

approach to performance testing may need to evolve towards a more user-oriented

approach (open search page, type text into field, click submit, etc.).

In particular, use of functional test tools such as Selenium [25] or WebDriver [26] can

help the performance test designer to build more intuitive test scripts that lift the level of

abstraction from the HTTP request to that of a single user. This approach can greatly

reduce the complexity of the test scripts, rendering performance testing a less daunting

and less time-consuming process.

52

BIBLIOGRAPHY

[1] Subraya, B.M. 2006. Integrated Approach to Web Performance Testing – a
Practitioners Guide. IRM Press, United Kingdom.

[2] Souders, Steve 2007. High Performance Web Sites – Essential Knowledge for
Frontend Engineers. O’Reilly, United States.

[3] J.D. Meier et al., 2007. Performance Testing Guidance for Web Applications.
Microsoft Corporation, United States.

[4] HTTP specification (RFC2616). ftp://ftp.isi.edu/in-notes/rfc2616.txt

[5] HTTP (Wikipedia). http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

[6] HTML (Wikipedia). http://en.wikipedia.org/wiki/HTML

[7] Software performance testing (Wikipedia).
http://en.wikipedia.org/wiki/Software_performance_testing

[8] Client-server model (Wikipedia). http://en.wikipedia.org/wiki/Client-server

[9] W3C, 2004. URIs, Addressability, and the use of HTTP GET and POST.
http://www.w3.org/2001/tag/doc/whenToUseGet.html

[10] Apache JMeter. http://jakarta.apache.org/jmeter/

[11] Firebug. http://getfirebug.com/

[12] YSlow. http://developer.yahoo.com/yslow/

[13] Microsoft support article 208427. http://support.microsoft.com/kb/208427

[14] W3Schools. http://www.w3schools.com/

[15] Redirect After Post.
http://www.theserverside.com/tt/articles/article.tss?l=RedirectAfterPost

[16] GZIP file format specification. http://www.faqs.org/rfcs/rfc1952.html

[17] Cloud computing (Wikipedia). http://en.wikipedia.org/wiki/Cloud_computing

[18] Open source performance testing tools.
http://www.opensourcetesting.org/performance.php

[19] Software profiling (Wikipedia). http://en.wikipedia.org/wiki/Software_profiling

[20] BeanShell. http://www.beanshell.org/

53

[21] WordNet. http://wordnet.princeton.edu/

[22] Java. http://www.java.com

[23] Content delivery network (Wikipedia).
http://en.wikipedia.org/wiki/Content_delivery_network

[24] Black-box testing (Wikipedia). http://en.wikipedia.org/wiki/Black-box_testing

[25] Selenium. http://seleniumhq.org/

[26] WebDriver. http://code.google.com/p/selenium/

