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Abstract

Fluent health information flow is critical for clinical decision-making. How-
ever, a considerable part of this information is free-form text and inabilities
to utilize it create risks to patient safety and cost-effective hospital admin-
istration. Methods for automated processing of clinical text are emerging.

The aim in this doctoral dissertation is to study machine learning and
clinical text in order to support health information flow.

First, by analyzing the content of authentic patient records, the aim is to
specify clinical needs in order to guide the development of machine learning
applications. The contributions are a model of the ideal information flow,
a model of the problems and challenges in reality, and a road map for the
technology development.

Second, by developing applications for practical cases, the aim is to con-
cretize ways to support health information flow. Altogether five machine
learning applications for three practical cases are described: The first two
applications are binary classification and regression related to the practical
case of topic labeling and relevance ranking. The third and fourth ap-
plication are supervised and unsupervised multi-class classification for the
practical case of topic segmentation and labeling. These four applications
are tested with Finnish intensive care patient records. The fifth applica-
tion is multi-label classification for the practical task of diagnosis coding.
It is tested with English radiology reports. The performance of all these
applications is promising.

Third, the aim is to study how the quality of machine learning applica-
tions can be reliably evaluated. The associations between performance eval-
uation measures and methods are addressed, and a new hold-out method is
introduced. This method contributes not only to processing time but also
to the evaluation diversity and quality.

The main conclusion is that developing machine learning applications for
text requires interdisciplinary, international collaboration. Practical cases
are very different, and hence the development must begin from genuine
user needs and domain expertise. The technological expertise must cover
linguistics, machine learning, and information systems. Finally, the methods
must be evaluated both statistically and through authentic user-feedback.
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Chapter 1

Introduction

This doctoral dissertation studies machine learning and clinical text in or-
der to support health information flow. Because of emphasized demands on
reliable solutions in health care, special care is shown to performance eval-
uation. This discussion is broadened from clinical applications to machine
learning theory in general.

1.1 Clinical text and human language technology

Efficient access to the gathered health information is critical for accurate and
timely decision making in clinical settings (i.e., includes direct observation
of the patient), or more generally, in health care. Health information refers
to “any information, whether oral or recorded in any form or medium, that

a) is created or received by a health care provider, health plan, public
health authority, employer, life insurer, school or university, or health
care clearinghouse, and

b) relates to the past, present, or future physical or mental health or
condition of an individual, the provision of health care to an individual,
or the past, present, or future payment for the provision of health care
to an individual”

(US Department of Health & Human Services, 1996). By using electronic
health information systems, millions of gigabytes of health information are
generated annually as electronic health records (or electronic patient records
in hospitals), and these volumes of data are significantly larger than in many
other domains (Cios and Moore, 2002).

For example, every year in Finland with a population of circa five mil-
lion, about thirteen million general practitioner or occupational health-care
physician visits, almost seven million specialized care outpatient visits, and
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Figure 1.1: Electronic health records and health communication in practice

over a million specialized health care periods take place (Stakes, 2008, pp.
105, 116). Each of these events is documented in health records (Decree
99/2001 of the Ministry of Social and Health concerning documenting and
storing patient information), and because of increasing storing capabilities
in the electronic form, larger and larger quantities of content is gathered
and stored.

At the same time, the content of health records has became increasingly
complex and unintelligible. A considerable part of health records is free-
form written or spoken text, narratives (Figure 1.1). Narratives are an
easy, nuanced and natural way of expression. In health care, they are often
a necessity for a thorough and precise explanation of a given event. However,
this expressive power inherently bears a substantial ambiguity and personal
differences in vocabulary and style (Lovis et al., 2000). This complicates the
use of the gathered information.

Information search from narratives is often difficult, laborious, and time
consuming. Currently, narrative information is severely underutilized in
clinical judgment and decision making. Electronic health information sys-
tems have been shown, instead of freeing up time for direct care, to lead
health care professionals spending more time on laborious, unproductive
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data manipulation and formatting (Pierpont and Thilgen, 1995; Smith et al.,
2005). In addition, evidence has been given that these systems support in-
formation gathering but not its active utilization (Snyder-Halpern et al.,
2001). Pointedly, from the point of view of narrative information, electronic
health records are currently like write-only memories.

As a remedy for the current situation, standardization and structuring
of narratives have been proposed. Indeed, a standard, more compact, and
unambiguous language can ease information access (i.e., satisfying “human
information needs through natural, efficient interaction with an automated
system that leverages world-wide structured and unstructured data in any
language” (Allan et al., 2003)) and improve search results. However, this
approach has also some problems.

First, substituting numerical and structured data for narratives is labo-
rious and leads easily to differences and errors in the coding. Nurses use on
average from 12 percent to 35 percent of their working time on electronic care
documentation (Hakes and Whittington, 2008; Banner and Olney, 2009). If
the narratives are structured and typed manually, nurses’ time available for
other duties will only decrease: According to the analysis of health records
related to approximately 5,600 admissions and 41,000 complete patient-
days, the number of items that nurses type into the records has increased
by 26 percent from circa 1,200 items per patient-day in 2000 to circa 1,500
items per patient-day in 2005 (Manor-Shulman et al., 2008). This does
not cover narrative parts of the records. The amount of narratives that
nurses write is substantial: the patient-wise average is over 11 pages dur-
ing an intensive care in-patient period alone (see Section 2.5). Moreover, if
the standardization and structuring are performed manually, text ambiguity
and personal differences are bound to cause inconsistencies.

Second, dispensing with narratives against structured data may lead to
a significant information loss because of limiting the expressive power (Lovis
et al., 2000; Walsh, 2004). In addition, this approach offers weaker support
to individualized care (Tange, 1996; Tange et al., 1997).

In conclusion, increased standardization and structuring contributes to
information access. However, research should aim to develop automated
ways that achieve this outcome more systematically and retain the benefits
of narratives, that is, the expressive power and ease of production.

Tools for automated processing of narratives, human language technol-
ogy (HLT) can be used to support information flow in patient narratives
(Figure 1.2). This covers both producing and using information; informa-
tion flow is defined as “links, channels, contact, flow of communication to
pertinent people or groups in the organization” (Glaser et al., 1987). The
HLT approach is increasingly gaining the interest of both health care practi-
tioners and academic researchers. It allows supporting not only health care
professionals’ work, but individuals (i.e., patients or customers of health
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Figure 1.2: Human language technology for producing and using health records

care services, or citizens) could also use the technology themselves to ease
in accessing their health data, and in the future, even enter data to their
records.

HLT refers to computational tools that analyse and generate natural,
human language. These analysis and generation techniques compose the
field of natural language processing. A closely related field is text mining,
or text data mining; typical tasks in both natural language processing and
text mining are

e classifying textual documents according to the similarity of their con-
tents,

e retrieving documents whose content matches the query, and ranking
the output list in the relevance order,

e extracting information about specific predetermined topics, and
e summarizing the document content.

However, to make a distinction, text mining refers to analyzing a large
collection of narratives and producing an output that can also be inferred,
and not explicitly stated in the input. Because this dissertation does not
focus on large data collections and an inferred output only, the broader term
of natural language processing is more adequate. Moreover, because the
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overall goal is to concretize the development of real-life health applications,
I prefer using the term HLT.

Tailoring is needed in order to obtain HLT solutions for highly spe-
cialized language in electronic health records. The records contain specific
professional jargon, which limits the linguistic coverage of tools for general
languages (Huang et al., 2005; Laippala et al., 2009). The earliest health-
related entries on HLT are from the early 1970s', and as pioneering stud-
ies Becker (1972); Anderson et al. (1975); Hirschman et al. (1976); Collen
(1978); Young (1982); Chi et al. (1983); Shapiro (1983); as well as Gabrieli
and Speth (1986) can be mentioned. This PubMed search returns almost
2,200 references which shows that HLT is gaining more and more interest.
However, the successful application of systems developed for one language to
another is not straightforward (see, e.g., from English to Portuguese (Castilla
et al., 2007) and from English to Swedish (Velupillai et al., 2009)). At the
moment, HLT is rarely used in electronic health records, in particular with
Finnish and many other European languages, although promising results
have been accomplished in very specific tasks, as this dissertation will illus-
trate. More work is needed to connect these components and actors together
to develop more comprehensive solutions that establish themselves in elec-
tronic health records.

1.2 Machine learning and performance evaluation

HLT aims to understand textual content, which requires not only linguis-
tic techniques but also machine learning. Machine learning, with its origin
in computer science, mathematics, and statistics, is a field with a focus
on techniques that enable machines (i.e., computers) to learn to carry out
specific tasks by following a certain automated learning algorithm. Tradi-
tionally, the techniques are divided into supervised, unsupervised, and semji-
supervised learning. In supervised learning, the task is to learn a mapping
that connects an input with its desired output. In other words, a data set
defining the desired outputs called gold standard (aka reference standard)
is known in advance and exploited in learning. In contrast, in unsupervised
learning, the learning algorithm is given the inputs without the desired out-
puts. Finally in semi-supervised learning, some inputs are associated with
the desired outputs to be used in learning.

Performance evaluation assesses learning and generalization capabilities
of machine learning applications and algorithms, and it is used for training,
model selection, and testing. With supervised techniques, training refers to
the process of selecting among a set of candidates the mapping that best

'Hanna Suominen conducted a PubMed search on 2009 November 21. It utilized the
MeSH hierarchy with the query “(natural language processing OR (text mining).”
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Figure 1.3: Performance evaluation as a process

performs in the task in question. The data used for this purpose is called a
training set. The mappings often include parameters, or the learning is based
on some other kind of parametrization. Model selection (a.k.a. validation)
refers to fixing the values of the parameters by evaluating performance with
a spectrum of various values and choosing the best. The data used for
this purpose is called a wvalidation set. Finally, testing assesses the final
performance and the related data is called a testing set.

Performance evaluation can be seen as a cascaded process (Figure 1.3,
Spéarck Jones and Galliers (1996, pp. 19, 20), Hirschman and Thompson
(1997), Paper VI): The first step is to specify the learning task (e.g., to
identify the patients with a given diagnosis from a collection of narratives).
The second is to define the evaluation criterion (e.g., the correctness of di-
agnosis coding output). The third is to select an evaluation measure that
describes this criterion (e.g., the proportion of correct diagnoses to all diag-
nosing decisions). The fourth — and the last — step consists of choosing and
implementing an evaluation method that determines a value for the measure
by specifying the use of data.
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Hold-out techniques constitute one of the most popular groups of per-
formance evaluation methods. They are based on setting a part of the data
aside. For example, the data can be divided into disjoint sets so that a
third is used for training, a third for model selection, and a third for test-
ing. In particular, N-fold cross-validation and leave-one-out cross-validation
are widely used. In N-fold cross-validation, data is divided into N approxi-
mately equal sets. Each set is used in turn for testing while the rest are used
for training and model selection. During each repetition, the performance
is evaluated by using the chosen measure. The final value of the measure
is obtained by averaging the the N values. Leave-one-out cross-validation
refers to the special case of N-fold cross-validation, where one data point in
turn is held out for testing.

Getting reliable results from the performance evaluation is difficult. The
steps of the performance evaluation process are mutually dependent and each
of them includes a number of options to choose from (Dietterich (1998), Ben-
gio and Grandvalet (2004), Paper VI). The choices and their implementation
must be made carefully in order to develop high-quality machine learning
applications and algorithms. Further, the dependences between the evalu-
ation steps are poorly understood. Finally, the more complex outputs and
hybrids of machine learning components are needed, the more difficult the
evaluation gets.

1.3 Research objectives

The aim of this doctoral dissertation is to study and concretize the appli-
cation of machine learning to processing textual health records (Table 1.1).
My research questions are

1. Why is HLT needed in the clinical practice?

a) What is the ideal information flow like?
b) What are the problems and challenges in reality?

¢) Which tasks can machine learning support?
2. What are the methods to build this support?

a) Which existing machine learning methods can be applied?
b) What kind of method development is needed?

c) What is the achieved performance in terms of statistical metrics?
3. How is quality evaluated reliably?

a) How should the evaluation measure be selected?
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b) How should the evaluation method be selected?

¢) How should the evaluation method be implemented?

The first category of questions addresses clinical information needs. Its
purpose is to ensure clinical significance of the study, and a deeper under-
standing of the data in order to lay groundwork for the HLT development.
Of the three question categories, it is closest to health and information sys-
tems sciences. Based on these clinical needs, the second question category
focuses on evaluating and developing machine learning applications. This
applied machine learning research goes hand in hand with the basic ma-
chine learning method development, and motivates the third question cate-
gory. The third category broadens the discussion from clinical applications
to machine learning theory in general by addressing reliable performance
evaluation. Additional motivation for performance evaluation comes from
the emphasized quality requirements for clinical HLT because of care safety.
The iterative phase of clinical trials and further method development is out-
side the scope of this dissertation.

In comparison with Figure 1.2, my focus is on supporting health care
professionals in the use of gathered narratives. All data is in written form,
and it has been produced by nurses, physicians, and radiologists. The main
domain is Finnish intensive care units (ICUs). This is complemented with
HLT for automated analysis of English narratives from a US radiology de-
partment. ICUs have been chosen for two reasons: First, its complexity,
information intensity, multi-professionalism, and fast pace due to critically
ill patients, emphasize fluent information flow and increase needs for decision
support. Second, the information needs of ICU professionals can be assumed
to be internationally similar. Therefore, HLT supporting decision making
should be internationally applicable. Based on a comparison of Canadian,
Finnish, Northern Irish, Swiss, and US health care professionals working
in intensive care, psychiatric care, public health, and short and longterm
care, decision making in ICUs is internationally most similar (Lauri and
Salantera, 2002).
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1.4 Contributions

The contributions of the dissertation are summarized as follows:
1. Clinical needs

a) Model of the ideal information flow
b) Model of the problems and challenges in reality
¢) Road map for the HLT development

2. Machine learning applications and their performance

a) Practical case of topic labeling and relevance ranking

e Two applications: binary classification and regression
e Three topics: breathing, blood circulation, pain
b) Practical case of topic segmentation and labeling
e Two applications: supervised and unsupervised multi-class
classification
e Six topics: breathing, hemodynamics, consciousness, rela-
tives, diuresis, other
c¢) Practical case of diagnosis coding

e One application: multi-label classification
e 45 diagnosis codes

3. Evaluation reliability

a) Associations between evaluation measures related to the five clin-
ical applications

b) Associations between hold-out methods and their implementation

¢) A new hold-out method for a particular learning algorithm

1.5 Organization of the dissertation

This research summary is designed to stand alone as an independent entity,
where the ideas and methods introduced in Papers I-VII have been con-
nected together and some new results are introduced. The learning meth-
ods are elaborated in a detail in the referred papers. (See Table 1.1.) The
dissertation is organized according to the three main research questions into
the chapters of Clinical needs (Chapter 2), Machine Learning Applications
(Chapter 3), and Performance Evaluation Methods and Evaluation Reliabil-
ity (Chapter 4). Performance evaluation measures are discussed separately
for each machine learning application in Chapter 3.
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Chapter 2 analyses the clinical HLT needs in Finnish intensive care by
addressing both the ideal information flow and reality with narratives. The
outcome is a road map that combines the ideal information flow with future
HLT components. Because the results are mainly previously unpublished,
the discussion is relatively detailed.

In accordance with the road map, Chapter 3 presents five applications
of machine learning to support the flow. Four applications ease information
access through automated relevance evaluation between a given search topic
and text segments: the first is for binary classification to topically relevant
and irrelevant segments, the second for gradual relevance ranking, the third
for automatically dividing text into topical segments and simultaneously as-
signing the topic labels in a supervised manner, and the fourth application
performs the topic segmentation and labeling task in an unsupervised man-
ner. These four applications are tested with Finnish ICU nursing narratives,
that is, narratives written by nurses to describe nursing care. The fifth ap-
plication is for diagnosis coding, and it is tested with English narratives
written by physicians and radiologists.

Chapter 4 discusses performance evaluation methods for machine learn-
ing algorithms and applications. It takes a particular learning algorithm as
an example and introduces an evaluation method for this algorithm. This
hold-out method is computationally efficient, contributes to evaluation reli-
ability, and allows holding out multiple inputs simultaneously. The method
is described in the referred paper.

Finally, Chapter 5 concludes the dissertation, discusses its significance,
and presents topics for future work.
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Chapter 2

Clinical Needs

This chapter specifies clinical needs for HLT in intensive care. First, as
authentic health records are a prerequisite for this thesis, legal and eth-
ical aspects are discussed. For a more thorough and detailed discussion,
see Suominen et al. (2006) and Paper I.

Then, the chapter describes an ideal ICU information flow and addresses
its current problems and challenges via data-driven analysis. The results
are mainly previously unpublished: Preliminary results have been described
in Suominen et al. (2009a), the chapter extends it with an emphasized focus
on ICU information flow as a whole.

I have conducted the extension with authors of Suominen et al. (2009a)
as well as with Jari Forsstrom (Salivirta & Partners, Finland) and Juha
Perttild (Turku University Hospital, Adult Intensive Care Unit, Finland).
My role has been the first author. Together with Lundgrén-Laine, I have
been responsible for the study conception, design, data analysis, and draft-
ing of the manuscript. Lundgrén-Laine has performed the data collection
and provided ICU documentation and decision making expertise. I have
automated content analysis and performed statistical analyses. Salanteré,
Forsstrom, Perttild, Karsten, and Salakoski have critically commented on
the study, and Salanters, Karsten, and Salakoski have supervised it.

Based on this data-driven analysis, the chapter then combines the de-
tected needs with the ideal model of the information flow in a road map for
developing HLT. It considers the care documentation and text use process
in accordance with the ideal ICU information flow model. Its aim is to focus
the development in order to create comprehensive HLT solutions by meet-
ing the user needs. Finally, the chapter compares the road map with related
work.

The road map is previously unpublished. Its initial version without the
proof-reading component is described in our abstract and poster Suominen
et al. (2008c), and paper Lundgrén-Laine and Suominen (2009). We have
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discussed potential HLT components and their benefits in Suominen et al.
(2005), Paper I, Suominen et al. (2006), and Lundgrén-Laine et al. (2009).
However, these papers do not combine the components in any way.

2.1 Legal and ethical aspects

Authentic health records are a prerequisite for this thesis; without them
developing intelligent, domain-tailored HLT solutions and evaluating their
quality is impossible. In total, two confidential sets of Finnish health records
have been used in this thesis (Details of their content and collection are
addressed in Sections 2.3 and 3.1.5). Storing and using this data in HLT
development requires careful consideration and compliance with legal and
ethical principles.

The Finnish legislation related to personal data or health care does not
address HLT as a special case. In most instances, when researchers and tool
developers access electronic health records for study purposes, they follow
the security procedures designed for accessing electronic health records for
health care purposes (Berman, 2002). For example, when using Finnish
electronic health records, researchers must conform to general Finnish laws,
such as the Act on the Status and Rights of Patients 785/1992; Medical
Research Act 488/1999; Personal Data Act 523/1999; Medical Research
Decree 986/1999; and Decree 99/2001 of the Ministry of Social and Health
concerning documenting and storing patient information. As an exception
to the general requirement of the patient’s consent (Statutes of Finland,
Act on the Status and Rights of Patients 785/1992), Statutes of Finland,
Personal Data Act 523/1999 declare that health records may be processed
for the purposes of scientific research if

1. “the research cannot be carried out without data identifying the person
and the consent of the data subjects cannot be obtained owing to the
quantity of the data, their age or another comparable reason,

2. the use of the personal data file is based on an appropriate research
plan and a person or a group of persons responsible for the research
have been designated,

3. the personal data file is used and data are disclosed therefrom only for
purposes of historical or scientific research and the procedure followed
is also otherwise such that the data pertaining to a given individual
are not disclosed to outsiders, and

4. after the personal data are no longer required for the research or for the
verification of the results achieved, the personal data file is destroyed
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or transferred into an archive, or the data in it are altered so that the
data subjects can no longer be identified.”

In this thesis, I have adhered to the following practice in order to ensure
patient confidentiality:

Permits. Owing to the quantity of the data needed in machine learn-
ing development, health records have been collected without patients’ con-
sent. Instead, we have furnished favorable opinions from ethical commit-
tees (Hospital District of South Karelia, record number 8/01; Hospital Dis-
trict of Southwest Finland, record number 401/2005; Jorvi, record number
11.1.2001; Kainuu Central Hospital, record number 1/2001; Lapland Hos-
pital District, record number 1.2.2001; Satakunta Central Hospital, record
number 7.2.2001) and proper permits from the respective hospital author-
ities having the right to acknowledge the permissions. The legal research
officer of the Hospital District of Southwest Finland has also been consulted
for assuring good research practice.

Research material. Before receiving the research material, all patient
names and other similar pieces of personal information have been replaced
with anonymous identification numbers. The researchers do not have access
to de-identification keys. The only exceptions are unstructured parts of nar-
ratives, whose content cannot be fully de-identified automatically. All par-
ties with permission to access the research material conform to the Finnish
legislation, and have signed a written vow of silence as well as a contract
specifying the required data protection actions. The material is stored be-
hind passwords and used only for HLT development. Results are published in
a way that guarantees the anonymity of individual patients. This anonymity
is also assured, when providing material (i.e., examples illustrating common
lexical and linguistic features) needed to tailor commercial HLT (e.g., Ling-
soft FInTWOL Finnish Morphological Analyzer) to the research domain.
When the study ends, the research material will be returned to its original
hospital. There the data will be filed for possible future use. The hard
drives, where researchers stored the data will be destroyed.

Risks. Research ethics and risks are carefully considered. We have stud-
ied them in detail in Suominen et al. (2006) and Paper 1. However, despite
carefully conforming to the legislation and good scientific practice (National
Advisory Board on Research Ethics, 2002), the risk of violating patient
confidentiality in HLT development still remains. The main risks in this
thesis arise from the unstructured parts of narratives that have not been
de-identified and from a possibility to deduce the patient identity by com-
bining the gender, date, location and other similar details. However, no
data is used in this thesis to recognize the identity of individual people and
special care has been paid to data protection.
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Figure 2.1: Ideal information flow

2.2 1Ideal information flow in intensive care

The need for a fluent information flow is emphasized in intensive care. ICUs
are highly specialized hospital wards delivering care for acutely and criti-
cally ill patients, who require continuous monitoring and observation of vital
signs (Ambrosius et al., 1997; Society of Critical Care Medicine, 2007). As
a result, a vast amount of data, both as narratives and in a numerical or
structured format, is accumulated during care, and they are used to support
clinical decision-making.

For high care quality it is necessary to get a picture of what is relevant in
health records. That is, the patient information should flow fluently between
the crucial decision-making points of admission and discharge (Lundgrén-
Laine et al. (2009), Figure 2.1). Because the emerging HLT methods as well
as computational and linguistic resources are enabling the development of
tailored methods for clinical narratives (see Chapter 1 and Section2.6), my
focus is on narratives. Electronic patient records in ICUs already offer nu-
merous decision support tools based on processing numerical and structured
data (Hanson and Marshall, 2001; Weaver et al., 2005).
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ADMISSION DOCUMENT

PREVIOUS/OTHER DISEASES:

 RR disease

o Chr. FA

ANAMNESIS:

18.3 heavy chest pain started. In Loimaa, strong ST changes. Angiography and discovery of a tight main stenosis. LAD good, substantial changes in RCA
and LCX. Tumefaction and intubation in the morning of 19.3 in TUH. DRUGNAME —infusion started. ICU ad. for the emergency operation.

O room:

Before perfusion, the patient has low pressures. A balloon pump will be placed, DRUGNAME going in. Pulmonal pressures high > DRUGNAME and
DRUGNAME. At the end of perfusion had to start DRUGNAMEinfusion also. Got 4 x ice plasma and don. thrombocytes.

Dg: MCC

Oprtn: Reconstr. coron. cordis No. IV

1 Ao -> DRUGNAME 140mi/h

o Ao -> DRUGNAME 103 mith

1 Ao -> DRUGNAME 154 mi/h

DAILY NURSING NOTES

Long night s.

RR tryed st. easily rise even to very high values towards midnight, towards morning RR level went down and became steady. p slightly tachycardic.

Profuse diuresis.

Towards midnight fillpressures occ. highish, towrads morning went down subst.

Suff Cl (c. level 2), rised ad 2.5 at morning.

With 40 % vm .oxidation on the low side, ventilates well. Put 50 % mask, which outcomes good ox. Br.exercises with benett go well. The wound of the r. leg
dripped pl. of tissue fluid st., dressings changed to the bottom once, Ext. tired pat., is opening eyes occ. and tryes to answer to the posed questions but
lacks the strength often.

long shift

hemod: RR still mainly high and pulse tachy. Pulse occasionally sinus rhythm. Got 2 ampoules of DRUGNAME every hour before noon; this steadied pulse
only slightly. In the afternoon, after DRUGNAME RR down very strongly.Pulmonal cannula rmved

breathing: in the thx scan increased pleural fluid; continued the patient’s heavy “drying.” Oxygenation improved during the day

diuresis been very profuse, DRUGNAME cont with the previous dose because of the lung situation

concioussnes: in the morning been very tired again, during the forenoon perked up a bit. But still not up to talk lots. During the afternoon has started to finger
tubes and pass away. Got DRUGNAME 5 mg iv., which decreased the pressure substly and also made verytired. Also after DRUGNAME is extr. exhausted
excretion of the right leg has smwt decreased, edema throughout too

per os taken some drinks and a little bit of gruel in the afternoon

DISCHARGE DOCUMENT

REASON FOR THE ICU ADMISSION AND ANAMNESIS

Verbatim copy of the admission document, except O room replaced with operation.

BREATHING: Ox problems at the beginning, when the situ improved started to wean 22.3. Extubated 23.3. before noon Thick, yellow mucus from tubes,
sufficient extubation with the 40/50% ventimask. 24.3 with 28% VM oxygen 9.5 and CO2 5.6. 23.3 in the THX- scan increased pleural fluid and mild
incompensation scan.Continued hevy minussing (DORUGNAME 10mg x 6 iv.) 24.3 the amount of pleural fluid gone down. DRUGNAME stopped at11, will be
given when needed according to the response.

HAEMODYNAMICS: Pulse tachycardic,extrasystoles, fimmer. Adission RR low. DRUGNAMES infusions of a large dosage. Filling. However, Cl quite low.
IABP 1:1. 20.3. started DRUGNAME, when the rhythm did not convert with electricity. 21.3. DRUGNAME stopped As a new finding, left branch dissociation,
which improved 20.3 C.| 1.5 —-> started DRUGNAME infusion. Currently RR even too high. Pulse: FA, tachycardic.

CONSCIOUSNESS AND MOOD: ICU started DRUGNAME infusion, got DRUGNAME boluses too. DRUGNAME stopped 23.3. after extubation, afterwards
still very tired, but trying to kooperate, however. 25.3. tired and speeking is difficult, answers with single words. Slightly towards perking up.

NUTRITION: Small portions of liquid bo. taken.

EXAMINATIONS:

1 18.3 esophagus -Ukg performed by H. Suominen: A clear liquid diaper around the heart , good contraction.

1 20.3 esophagus- Ukg/ K. Haverinen: Septum is faint, contracts mod. Mitral- and aortic valve ok. No explanation for LHS branch dissociations been found.
INFECTION SITUATION: 23.3 CRP 32

EXCRETION:

Profuse diuresis, because DRUGNAME 10 mg iv every 4h.26.3 Diuresis at 6 -->: 12 ->1090 ml

Motion: -

Drains: After o profuse drainbleeding, Hb low, needed a lot of red cs.In the esophagus-ukg observed liquid diaper around the heart and impending
tamponation. Obsed the situation until next 8 a.m., when the cnclsn was resternomy, where found 2 points of bleeding, which fixed. O bleeding 750 ml
FLOW: AO-LAD 75 mi/min AO-LOM-LPL 120 mi/min AO-RCA 180 mi/min

After the resternotomy the bleeding went down and changed to serous. Drains (x 3; in front of the heart + both pleuras) removed 22.3

SKIN CONDITION AND CARE: R. leg wound bled a lot. Bandage changed at least once a day. Stitched up from the point of bleeding on 15.3. Sternum
wound tidy. Left buttock has a decubitus ulcer; 15.3. started caring with DRUGNAME + PRODUCTNAME. Skin sensitive all over; nicks caused by tapes etc.
PAIN MANAGEMENT: DRUGNAME, which makes very tired.

SPECIAL CARE: 19.-23.3. IABP

RELATIVES: Two sons been in contacts, also the male friend visited. Son has called and knows about the discharge to Loimaa.

BELONGINGS: Clothing bag collected from the w. Two children’s drawings and a card -> put into the clothing bag.

OTHER INSTRUCTIONS

- Blood s. vary -> insulin DRUGNAME-infusion. Insulin cut out for the transit.

- Potassium high and changed PL-K to Na 0.3 at 12.

Figure 2.2: Style-preserving illustration of Finnish intensive care nursing narra-
tives translated to English
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The analysis addresses nursing narratives, because they cover the whole
ICU in-patient period and are recorded at all times, during every shift.
Nursing documentation is based on the process of gathering information
from the patient, setting goals for care, documenting nursing interventions
and evaluating the delivered care. All clinicians of multi-professional ICU
team use nursing narratives in decision making.

The ICU nursing narratives can be grouped with respect to the time of
writing into admission documents, daily nursing notes, and discharge docu-
ments (Figure 2.2). An admission document is a compact patient description
at the time of ICU admission. Daily nursing notes are written during the ac-
tual ICU stay and stored into patient- and nursing shift-specific documents.
They are mostly used for information exchange among the clinicians in the
unit. In this thesis, the file containing all daily nursing notes of the patient
is called a daily nursing note document. Discharge documents aim at trans-
ferring summarized information from the ICU to other wards to assure the
continuity of care.

2.3 Patient record data

To specify clinical needs for HLT, we analyse narratives written in a Finnish
ICU for adults (Figures 2.3 and 2.4). The ICU is located in a university-
affiliated hospital and is a 24-bed mixed medical closed unit accommodating
approximately 2,000 admissions per year (1,815 in 2006). In 2006, the av-
erage length of stay (LOS) was 3.3 days with a standard deviation of 4.9
days. The normal, planned strength of the nursing personnel is twenty on
the morning shifts, eighteen on the evening shifts and twelve on the night
shifts. In comparison, the unit has at least two ICU physicians constantly
on duty. The ICU has been using electronic patient records since 2002.

Our data includes nursing narratives from 516 patient records between
2005 January 1 and 2006 August 1. They have been collected with proper
permissions retrospectively and de-identified (see Section 2.1). Due to the
development of documentation practices, the most recent patients were se-
lected; collecting the data started on 2006 August 1. Our inclusion criterion
is LOS of at least five days, because fluent information flow is likely to be
challenged with protracted in-patient periods. The number of records ful-
filling this criterion is 516 out of the total number of 2,789 patients that
have been taken care of in the ICU during the time period.
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Photo: Helja Lundgrén-Laine

Figure 2.3: Finnish intensive care

Photo: Helja Lundgrén-Laine

Figure 2.4: Multi-professional and multilingual intensive care (note a Finnish-
Swedish-Finnish dictionary in the bottom)
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The writing style in the nursing narratives is telegraphic and highly
domain-specific with a substantial amount of unit-specific terminology, head-
ings and other documentation practices (Figure 2.2). Admission and dis-
charge documents are guided by default headings in order to direct the use
of a specific structure. However, the personnel can remove and modify the
headings, as well as use other headings. There are no default headings for
the daily nursing notes.

In addition to nursing narratives, the data include the following struc-
tured or numerical demographics about the patients: Structured data are

e admission type (449 emergency, 67 elective),

e main ICU diagnostic group with respect to the International Classifi-
cation of Diseases, 10th Revision (ICD-10, 115 individual groups are
present in the data),

e sex (183 female, 333 male),

e ICU outcome (398 recovering, 21 in the middle of care, 29 no care
outcomes, 57 dead, 11 missing value), and

e ward to which the patient was discharged (155 medical ward, 242
surgical ward, 56 other hospital, 56 dead, 1 missing value).

Numerical data are
e age (minimum 6, maximum 88, mean 59, standard deviation 16),

e LOS in days (minimum 5.0, maximum 58, mean 11, standard deviation
7.3), and

e average nursing intensity scores (referred to as score, i.e., evaluations
of care needs of the patient, varies from one (i.e., low need for care)
to five (i.e., a high need for care), minimum 2.2, maximum 4.6, mean
3.2, standard deviation 0.37).

2.4 Analysis aspects and methods

The first analysis aspect is the amount of narratives per patient and de-
mographics that contribute to the large amount, and thus challenge the
information flow. For instance, the admission type could be an explanatory
factor because of considerable differences between the groups of elective pa-
tients being prepared for a planned operation and emergency patients.
The amount of text per patient is studied through the minimum, max-
imum, mean and standard deviation of the number of words in admission,
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daily nursing note, and discharge documents. For daily nursing note doc-
uments, not only the total amount but also seven other number-of-words
variables are considered: (1) the average amount written per day; (2-5) the
cumulative amount written during the first one, two, three and four days
of stay; and (6, 7) for patients with long enough LOS, the amount written
during the first week and two weeks of the stay.

Demographics that contribute to the large amount are specified statis-
tically. We divide the 516 patients into five approximately equally sized
groups according to the number of words in the daily nursing note docu-
ment. Thus, as an example, patients belonging to group 1 have the shortest
daily nursing note documents and those in the following group have the next
smallest amount of documentation. In addition, because there are so many
diagnostic groups present and consequently only few patients per group, we
merge the groups into two granularities using the ICD-10 tree and features
of diseases as guidelines. The first granularity contains nine disjoint groups:

1. Infections (36 patients),
2. Tumours (23 patients),
3. Endocrinology, nutrition and metabolism (8 patients),
4. Diseases of muscle and nervous system (29 patients),

5. Cardiovascular diseases and problems in conduction system (217 pa-
tients),

6. Lung diseases (64 patients),
7. Diseases of the abdominal cavity organs (42 patients),

8. Unclassified symptoms or abnormal clinical and laboratory findings (11
patients), and

9. Traumas, intoxications and extrinsic factors (86 patients).
The second granularity has four disjoint groups:

1. Cardiovascular diseases and diseases of muscle and nervous system
(i.e., old 4 and 5, 246 patients),

2. Lung diseases and infections (i.e., old 1 and 6, 100 patients),

3. Diseases of the abdominal cavity organs and metabolism problems (i.e.,
old 3 and 7, 50 patients), and

4. Other (i.e., old 2, 8 and 9, 12 patients).
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Logistic regression is performed separately for the two granularities of di-
agnostic groups but all other demographics are the same in both analyses,
and the procedure is repeated for the seven other number-of-words vari-
ables. Then, the eight number-of-words variables with the respective four-
level diagnostic groupings are compared using the Kruskal-Wallis test due to
the skewed distributions. In further pairwise comparisons with the Mann-
Whitney U, the Holm variation of the Bonferroni correction is applied. All
statistical analyses are performed with SAS 9.1. For information regarding
the statistical tests, see, for example, (Norman and Streiner, 2000, pp. 71,
139-144, 225, 226).

The second analysis aspect is the content. As structuring eases efficient
accessibility of narratives, headings are studied. In these analyses, content
analysis is used. This method is defined as a systematic, replicable technique
for compressing many words of text into fewer content categories based on
explicit rules of coding, and it also allows for monitoring shifts and changes
in documentation style and content (Miles and Huberman, 1994; Stemler,
2001). Various heading spellings with the same meaning are combined into
one heading. A similar methodology of comparing headings with their con-
tent is used in (Hyun and Bakken, 2006) with English nursing narratives
from the USA.

Manual and semi-automated techniques are used in parallel. For the
completely manual phase, three admission, daily nursing note, and discharge
documents are chosen so that they reflect the variability of the narratives.
The documents include

1. the admission, daily nursing note, and discharge document of the pa-
tient on whom the largest amount of narratives is stored (the admission
document and daily nursing note document of this patient were the
largest), as the problems related to the utilization of stored informa-
tion are likely to be more evident when the amount of narratives is
large,

2. the shortest admission, daily nursing note, and discharge document to
observe the contrast between long and short narratives, and

3. the admission, daily nursing note, and discharge document correspond-
ing to the patient whose daily nursing note document is closest to the
average size of this document type.

The headings in all daily nursing note documents are studied semi-auto-
matically, because default headings are not used to guide this part of the
documentation. For this purpose a heuristic based on the assumption that
a heading is separated from the text by a colon and a space character is
applied. The heuristic has 99 percent precision and 90 percent recall (see



2.5 Problems and challenges in the information flow 25

Section 3.1.3) when applied to the three daily nursing note documents con-
sidered in the manual phase.

2.5 Problems and challenges in the information
flow

2.5.1 Amount

An overwhelming amount of nursing narratives (Table 2.1) challenges the
fluency of the information flow: The largest admission, daily nursing note,
and discharge document had about seven, 48, and four pages (A4 paper, 3
cm margins on every side, Times New Roman font, font size 12, single line
spacing, i.e., approximately 270 words per page), respectively. On average,
3,000 words (c. 11 pages) of nursing narratives were written about a patient
during the entire ICU in-patient period the daily amount being about 200
words. The average size of the admission document was about 250 words and
the respective numbers for daily nursing note and discharge documents were
2,100 and 400. In conclusion, the volume of text is challenging for efficient
accessibility and hence, there is a risk of not using all gathered information
in patient care. In addition, summarizing the content or creating overviews
and trends about a certain aspect must be laborious and difficult.

However, the amount of text per patient varied substantially. As an
example, the five shortest daily nursing note documents contained 480, 590,
600, 620, and 640 words each, whereas the five longest daily nursing note
documents had 8, 600; 9,600; 12,000; 12,000; and 13,000 words each. This
creates motivation for specifying the demographics that contribute to the
large text amount.

Logistic regressions (Table 2.2) gave evidence of a high nursing intensity
contributing to the large amount of daily nursing notes. The interpretation
is that when the patient has a high need for nursing care, there are also
many things to document. Contrary, more daily nursing notes were written
about the elective patients than about the emergency patients especially in
the beginning of the ICU stay; the admission of elective patients to the ICU
is arranged beforehand and the medical status of these patients is carefully
checked in advance, and thus, it would have been expected that emergency
patients have more things to be documented. This finding may illustrate a
potential problem in the information flow: It seems that in the beginning
of the ICU period, emergency patients require such intensive nursing care
that the personnel has no time for writing nursing narratives. As expected,
there was a significant positive relationship between the total amount of
daily nursing notes and LOS.
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Table 2.2: Results of logistic regressions aiming to identify the demographics that

increase the amount of daily nursing notes

Reprint from Suominen et al. (2009a)
Lists only the effects with the 95% Wald confidence limit strictly below one or

strictly above one.

Groups refers to the diagnostic group granularity, score to the average nursing

intensity score, and em. and el. to the emergency and elective admission types.

Amount

1st day

1st day

1st day

1st day

1st 2 days
1st 2 days
1st 3 days
1st 3 days
1st 3 days
1st 3 days
1st 3 days
1st 4 days
1st 4 days
1st 4 days
1st 4 days
1st week

1st week

1st week

1st 2 weeks
1st 2 weeks
1st 2 weeks
1st 2 weeks
Total

Total

Total

Total

Total

Total

Daily average
Daily average
Daily average
Daily average

Groups

O O O O O OO kOO OO O RO O R R0 OO OO RO O

Effect

score
em. vs. el.
score
group 2 vs. 9
score
score
score
score
em. vs. el.
group 2 vs. 9
group 6 vs. 9
score
em. vs. el.
score
em. vs. el.
score
score
group 6 vs. 9
score
score
group 3 vs. 9
group 6 vs. 9
score
LOS
score
LOS
group 2 vs. 9
group 6 vs. 9
score
score
group 2 vs. 9
group 6 vs. 9

Odds
ratio
3.041
0.579
2.688
0.380
2.645
2.401
6.364
5.659
0.479
0.313
0.441
6.600
0.563
6.300
0.535
7.982
8.733
0.340

35.046
44.819

0.013
0.073
5.007
2.880
4.699
2.889
0.292
0.380
7.658
7.070
0.310
0.349

95 % Wald

(1.904-4.857)
(0.353-0.950)
(1.699-4.330)
(0.157-0.919)
(1.659-4.216)
(1.492-3.864)
(3.890-10.412)
(3.431-9.331)
(0.344-0.976)
(0.128-0.765)
(0.228-0.852)
(4.023-10.828)
(0.341-0.929)
(3.799-10.449)
(0.554-0.904)
(4.282-14.877)
(4.757-16.033)
(0.162-0.752)
(7.774-157.989)
(8.922-225.149)
(< 0.001-0.445)
(0.013-0.412)
(2.826-8.872)
(2.540-3.260)
(2.621-8.425)
(2.551-3.270)
(0.100-0.854)
(0.170-0.851)
(4.642-12.633)
(4.247-11.768)
(0.127-0.757)
(0.180-0.679)

confidence limit
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According to Kruskal-Wallis tests comparing the amount of daily nurs-
ing notes and the rougher diagnostic grouping, the largest amount of daily
nursing notes was written about patients belonging to group 4. Other. The
groups with the second and third largest amount were 1. Cardiovascular
diseases and diseases of muscle and nervous system and 3. Diseases of the
abdominal cavity organs and metabolism problems, respectively. The small-
est amount of daily nursing notes was written about patients of group 2.
Lung diseases and infections. The order of the four groups was always the
same when the relationship between the amount of daily nursing notes and
diagnostic groups was statistically significant (p < 0.05, all comparisons ex-
cept the total amount). The pairwise comparisons verified that the amount
of daily nursing notes written about group 2 was statistically significantly
smaller than that about groups 4 and 1. The difference between groups 3
and 4 was statistically significant in the case of the amount of daily nursing
notes written during the first week of care.

2.5.2 Content in admission documents
The default headings in the admission documents were

1. Previous/other diseases and anamnesis,

2. Reason for admission,

3. Breathing,

4. Hemodynamics,

5. Diuresis,

6. Excretion,

7. Consciousness and mood,

8. Nutrition,

9. Pain management,

10. Skin and wound care,
11. Medical treatments,
12. Infections,

13. Special treatments,

14. Rehabilitation,

15. Belongings,
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16. Relatives,
17. Other.

In the longest admission document (about 2,100 words), precisely these
seventeen headings were used. Under each heading, several topics were dis-
cussed, and the same topic was often discussed under multiple headings as
the most common topic in this document, patient’s medical problems, il-
lustrates. However, when a particular topic was discussed under multiple
headings, the nurse’s viewpoint differed. For example, nurses discussed in-
tracranial pressure (ICP) under several headings. But under Hemodynamics
the effect of the heart rhythm on ICP was discussed, under Consciousness
and mood the optimum levels of ICP in relation to consciousness were de-
scribed, and under Pain management ICP values were used when estimating
analgesic actions. These observations were consistent with the analysis of
the admission document (about 420 words) of the patient with the average
size daily nursing note document. The only content in the shortest admission
document (8 words) was the patient ID, the default heading Previous/other
diseases and anamnesis and under it the phrase Previously been healthy. In
conclusion, this topical scattering challenged the fluency of the information
flow; to be able to create a general impression of ICP, for instance, requires
collecting all the related pieces and perspectives and performing this manu-
ally is time-consuming.

2.5.3 Content and information flow in daily nursing notes

On the basis of the semi-automatic content analysis of 516 daily nursing note
documents, headings were used to structure daily nursing notes on only half
of approximately 18,400 shifts in total. However, the headings seemed to be
quite well-established even though default headings were not automatically
given; the most commonly used headings were

1. Hemodynamics (n ~ 7,800),
2. Consciousness (n ~ 6,900),

3. Relatives (n ~ 5,700),

4. Diuresis (n ~ 5,400),

5. Breathing (n ~ 4,500),

6. Ozxygenation (n ~ 3,600), and

7. Other (n =~ 3,200).
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Other headings were used fewer than 600 times per heading. Of these, only
four were mentioned more than 100 times:

8. Excretion (n =~ 590),

9. Hemodialysis (n ~ 370),
10. Pulse (n ~ 160), and
11. Skin (n =~ 160).

However, as each heading had a considerable number of synonyms and
spellings, topical search from daily nursing notes seems even more prob-
lematic than from admission documents.

To illustrate the substantial amount of different spellings in the vocab-
ulary, originally at least 140 various spellings of the word hemodynamiik-
ka [hemodynamics] were present in daily nursing notes, when all differ-
ent capitalizations, spellings, and inflections were calculated. The nom-
inative hemodynamiikka was spelled in over thirty different ways: hemo,
hemod, hemodnamiikka, hemodunamiikka, hemoduynamiikka, hemodyamiik-
ka, hemodyanamiikka, hemodyanmiikka, hemodybamiikka, hemodyhamiikka,
hemodyknamiikka, hemodymaniikka, hemodymiikka, hemodyn, hemodynaa-
miikka, hemodynaamikka, hemodynakiikka, hemodynam, hemodynamiiakka,
hemodynamiiikka, hemodynamiika, hemodynamiikk, hemodynamiikka, hemo-
dynamaiikki, hemodynamkiikka, hemodynammiika, hemodynaniikka, hemo-
dynmiikka, hemodynnamiikka, henonynamiikka. As another example, the
medicine noradrenalisni [noradrenaline] had over 350 various spellings in
the daily nursing notes and over sixty variants of the nominative: nona-
drenalin, nonadrenalina, nor, norad, noradenaliini, noradenalina, noradere-
nalina, noraderenalini, noradernalina, nor-adr, nor.adr, noradr, noradrana-
lian, noradranlina, noradreanliini, noradreanlina, noradreliini, noradrelin,
noradren, noradrenal, noradrenalaina, noradrenali, noradrenalia, noradrena-
lian, noradrenaliia, noradrenaliiina, noradrenaliimi, noradrenaliin, noradre-
naliina, noradrenaliini, noradrenaliinna, noradrenalin, noradrenaline, nor-
adrenalini, noradrenallina, noradrenallini, noradrenanil, noradrenanilin, nor-
adrenenalina, noradrenliini, noradrenlin, noradrenlina, noradrenlini, noradr-
naliing, noradrnalina, noradrrenalin, noradrtenalin, norandrenalina, norar-
adrenalina, norarenaliini, norarenalina, noratrenaliini, nordarenaliini, nord-
renalitni, nordrenalin, nordrenalina, nordrenanili, noreadr, norradenalina,
norradrenaliini, norradrenalin, norradrenalini, norri, norrradrenalin.
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Table 2.3: Headings, their frequencies and words accumulation in the longest daily
nursing note document

Reprint from Suominen et al. (2009a)

Heading 1st 1/4 2nd 1/4 3rd 1/4 4th 1/4
Hemodynamics 23 19 17
Relatives 21 14 15
Consciousness 11 9 15
Diuresis 18 12 7
Oxygenation 13 13 9
Breathing 7 10
Other

Neurology

Excretion

Neurological status
Consciousness and ICP
Consciousness and mood
Heart and blood circulation
Infections 2
Basic care 1

Brain pressure
EEG

Freezing therapy
Head wound

Pain management
Rehabilitation and mood 1
Sedation

Situation of the head
Skin and wound care
Special treatments
Treatments 99
No headings 9 10 72
Column sum 133 103 11 2,400
Words 4,300 3,900 10 2,800
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The result of the manual content analysis of the daily nursing note doc-
ument (about 13,000 words) corresponding to the patient with the largest
amount of narratives verified the results of the semi-automated phase; the
document had several shifts where no headings were used and the most often
used headings were 1. Hemodynamics, 2. Relatives, 3. Diuresis, 4. Con-
sciousness, 5. Oxygenation, and 6. Breathing (Table 2.3). The systematic
use of the same headings in time can be interpreted as an evidence of a fluent
information flow from a shift to another even though this analysis did not
address information flow within daily nursing notes in detail. The number
of headings nurses used decreased during in-patient period, and in the last
quarter, only the seven most common headings were used!.

In the about-13, 000-word daily nursing note document, the topics nurses
discussed did not change whether headings were used to structure the text
or not, but when not using headings, nurses wrote more verbally, and gram-
matically correctly with a focus on basic care. The most common topics were
hemodynamical problems, skin condition, patient’s communication, and the
personnel’s conversations with the patient’s relatives. During the last quar-
ter, the emphasis was on the patient’s vital signs and the supportive work
concerning the close relatives of the patient. The amount of notes decreased
over time as the text seemed to get stylistically more and more telegraphic
(e.g., Blood pressure and pulse unchanged).

The problems related to topical scattering were evident. First, alto-
gether 407 individual headings were used the 13, 000-word daily nursing note
document. Second, nurses used headings which covered similar issues but
were not exactly synonymous, such as the pairs Oxygenation—Breathing and
Hemodynamics—Blood circulation. Third, as in the admission documents,
similar topics were discussed under several headings. For instance, ICP
was again discussed under multiple headings but from various perspectives.
Fourth, nurses often documented matters that can be seen as unrelated to
the heading. As an example, the topics under the heading consciousness
varied from medication to rehabilitation.

The daily nursing note document of average length (about 2,100 words)
had 92 headings in total. The headings most often used were 1. Hemody-
namics, 2. Relatives, 3. Consciousness, 4. Breathing, 5. Diuresis, and 6.
Other. The other headings used were Sedation and consciousness, Skin le-
sion, Drains, Oxygenation, Pulse, and Fxcretion. The stronger homogeneity
in the headings and topics of this daily nursing note document was probably
due to the smaller number of writers.

In the shortest daily nursing note document (about 480 words), the topics
nurses discussed did not change whether headings were used, and the head-

'The document was divided into shift-wise quarters (i.e., shifts 1-30, 31-60, 61-90,
91-120).
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ings were not used on one third of the shifts. The most common headings
were consistent with the headings of the longest document: 1. Hemodynam-
ics, 2. Relatives, 3. Consciousness, 4. Breathing, and 5. Diuresis. Parallel
heading pairs were also found.

2.5.4 Content and information flow in discharge

The default headings in discharge documents were
1. Reason for admission and anamnesis,
2. Breathing,
3. Hemodynamics,
4. Consciousness and mood,
5. Medical treatments,
6. Infections,
7. Nutrition,
8. Ezcretion

i. Diuresis after 6 a.m.,
ii. Defecation,
ili. Drains,

9. Skin and wound care,

10. Pain management,

11. Rehabilitation,

12. Special treatments,

13. Relatives, and

14. Belongings.

In the discharge document (about 710 words) of the patient with the
largest amount of narratives, all default headings were used. In contrast to
admission and daily nursing note documents, the same issue was mostly doc-
umented under only one heading (e.g., ICP under Consciousness and mood,
oxygenation under Breathing) and under each heading only topics closely
related to the heading were discussed. The focus was on medical and vital
problems. The structure and content of the document was the same as in the
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admission document of this patient, and the headings Breathing, Conscious-
ness and mood, and Rehabilitation contained the largest amount of notes.
Even though it is essential from the information flow perspective that the
content of the admission document reaches the discharge phase, this docu-
ment more adequately illustrated a problem in the flow: the phrases were
copied almost word for word from the admission document and the content
of the daily nursing note document was extremely poorly discussed. This is
probably due to the substantially large amount and incoherent structure of
daily nursing notes.

In the discharge document (about 450 words) of the patient with the av-
erage size daily nursing note document, the text was mainly directly copied
from the admission document. A few notes concerning the patients breath-
ing, consciousness, laboratory tests, and belongings were added. Texts from
daily nursing notes were not directly utilized.

The shortest discharge document (about 150 words) had all the default
headings but almost half of them included no notes. The writing style was
reminiscent of a checklist as, for example, some of the vital functions were
described only with the word OK. The document contained the patient’s
state at the time of discharge, but no other utilization of daily nursing notes
was observable.

2.5.5 Summary

The information flow in ICU nursing narratives is currently fragmented: The
first challenge is the overwhelming amount of text. This is likely to be par-
ticularly evident, when the in-patient period is protracted, the patient has a
high need for nursing care, elective admission type, or belongs to the diag-
nostic groups of Tumours, Unclassified symptoms or abnormal clinical and
laboratory findings, or Traumas, intoxications and extrinsic factors. Sec-
ond, it seems that clinical needs for HLT vary with patient demographics.
For example, support is needed in particular for documenting the care of
emergency patients. Third, the headings in daily nursing notes are lacking
a systematic naming, and notes in admission documents and daily nursing
notes are topically scattered. This complicates both the information ac-
cess and intelligibility. Finally, there is clear evidence of information flow
problems and support is needed to all phases: from admission documents
to daily nursing notes, from admission documents to discharge documents,
within daily nursing notes, and from daily nursing notes to discharge docu-
ments (Figure 2.5).



2.6 Road map for human language technology development to
support the information flow 35

mite
e )
M%

ADMISSION INTENSIVE CARE DISCHARGE

Admission Daily nursing notes Discharge
document document

Start TIME IN INTENSIVE CARE End

Figure 2.5: Current problems of the information flow: copying and pasting admis-
sion documents to discharge documents and emphasized fragments in time in using
daily nursing notes

2.6 Road map for human language technology de-
velopment to support the information flow

Next, I introduce a road map (Figure 2.6) for developing HLT to support
the fragmented information flow. Fragments in the information flow are re-
lated to using previously gathered texts in the later phases of the patient
care process. This problem can be generalized from the documents of a
given patient to also using text from previous patients. Hence, the road
map includes the data resource of the evidence-based practice repository in
addition to the patient’s admission document, daily nursing notes, and dis-
charge document. The repository contains both scientific research evidence
and the practice-based evidence represented in the previous patient records.
It supports information flow from the previous patient cases to the care of
the new patient and enhances capabilities to deliver evidence-based care.
The HLT components of the road map arise from the previously depicted
problems and challenges. The components include patient profile building,
supporting the writing, attention-focusing, summarizing, and proof-reading.
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Figure 2.6: Road map for developing human language technology

At the admission phase, the profile building component creates an in-
dividual patient profile by comparing the admission document with the
evidence-based practice repository. This component arises from different
patient demographics affecting the content and amount of narratives. For
example, the profiles of patients with different diagnoses may differ. In the
later phases, this individual profile can be used, for instance, to determine
a free-text documentation structure addressing the topics that are particu-
larly relevant for the profile. A more advanced example is to automatically
monitor the notes written during the in-patient period, and to generate re-
minders about, for instance, topics that are relevant for the patient profile
but do not seem to be addressed yet.
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Next, the phase with daily nursing notes is addressed with the support
the writing component. As discussed above, the patient profile and evidence-
based practice repository can be used together to direct the writing of daily
nursing notes suitable for the particular patient characteristics. The HLT
component is first used for generating a suitable document structure by com-
paring the patient profile of the new patient with the knowledge about pre-
vious patients. The structure contains the headings that are generally used
in daily nursing notes of similar patients. This standardizes the headings,
but the structure should be freely modifiable and its use optional. The HLT
component is then used for providing real-time documentation feedback.
The component analyses the correspondence of daily nursing notes with the
patient profile and the evidence-based practice repository, and based on the
analyses, provides feedback. For example, if management of pain is a com-
mon topic in the documents of previous similar patients, the component
may remind the user to document this topic. In conclusion, the component
that supports writing daily nursing notes promotes individualized care.

HLT can also be used for attention focusing during the in-patient period.
The attention-focusing component supports the use of previously gathered
narratives by analyzing the content of daily nursing notes and generating
statistics, trends and visualizations of both numerical and narrative data.
The component also compares daily nursing notes of the new patient with
the knowledge about previous patients, and generates alerts about poten-
tial threats. For example, an alarm about the risk of pressure ulcer could
be launched if notes about redness of skin have been recorded during the
previous shift. In addition, the component supports searching notes rele-
vant to a certain topic. The purpose of the component is to provide tools
to outline and predict the patients trajectory over time. In summary, the
attention focusing component supports direct clinical decision making and
evidence-based practice.

Finally, at the discharge phase and also already at earlier phases of the
ICU in-patient period, HLT can be used for summarization. The sum-
marizing component contains an interactive tool that analyses the content
of the admission document and daily nursing notes. The component first
helps in specifying the summarization topics based on the patient profile and
evidence-based practice repository. Also the target audience of the summary
can be taken into account, as the information needs vary from a ward to
ward (e.g., ICU, medical ward, traumatology unit, or pathology ward) and
from a profession to profession (e.g., general practitioner, heart specialist,
nurse, physiotherapist, or the patient). Fully automated summarization be-
ing an extremely difficult task, the component provides functions to search
information relevant to the user-specified topics and highlight the results
in their actual context. When the technology matures, steps towards fully
automated summarization can be taken.
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To make these advanced HLT components that support information ac-
cess work, proof-reading components are needed. The knowledge stated in
the narratives is not readily available for further automated analysis due
to the ambiguous nature of human language, where the meaning of a sen-
tence depends on its context and, on the other hand, a single meaning can
be expressed in a number of equivalent ways. A crucial step in resolving
this ambiguity is to find the correct syntactic structure of each sentence so
as to explicitly capture word and phrase relationships that are not evident
from the linear order of words. Parsing, the process of syntactic analysis of
natural language sentences, is thus a critical prerequisite for the majority
of advanced HLT components. It allows a deeper analysis of the text than
would be otherwise possible. In addition, performance of all HLT compo-
nents can be improved by developing spelling correction programs. Further
performance improvements can be gained by reducing text sparseness by
using and constructing domain-adopted terminologies through HLT as well
as increasing the intelligence of the proof-reading components in guiding the
author (Figure 2.7).

In conclusion, the proof-reading components are beneficial for other HLT
components but more importantly they contribute to text intelligibility for
health care professionals and the patients themselves. Intensive care is a
multi-professional domain, and thus several different profession groups write
and read narratives. These different profession groups may have difficulties
in understanding each others’ language. Further difficulties occur, when pa-
tients are discharged to other hospital wards and the non-ICU personnel read
discharge documents. Finally, patients often have problems in understand-
ing their own patient narratives (see Figure 2.2) even though the legislation
requires general intelligibility and clarity of patient records (Decree 99/2001
of the Ministry of Social and Health, Finland). Here language can be un-
derstood as a profession or ward-specific jargon (e.g., ICU or medical ward
nursing Finnish in Turku), or dialect (e.g., Finnish in Southwest Finland
or Eastern Finland) or as a language in its general meaning (e.g., Finnish
or English). With HLT, the language in electronic health records can be
brought nearer to the language of the target audience, and further support
can be given by offering term definitions from terminologies and references
for related care guidelines, studies, and other similar references. This in-
creased intelligibility supports not only health care professionals in decision
making but also cognitively empowers individuals to actively make decisions
concerning their health.

When applied to the evidence-based practice repository, the above dis-
cussed HLT components can be used to generate statistics, trends, visualiza-
tions, summaries and other overviews about patient groups. This capability
would benefit not only direct care but also health administration, research,
and education.
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Figure 2.7: Summary of the support for producing and using narratives

In summary, the HLT components offer many functions for producing
and using narratives (Figure 2.7). This supports both spoken and written
health communication, and personalized (i.e., individual profiles), predic-
tive (i.e., reminders and alarms), preventative (i.e., using existing records
and gathering new evidence), participatory (i.e., individuals and multi-
professional health care provider team) 4P health care.

2.7 Comparison with the previous work

The road map is consistent with studies related to clinical documentation
and the use of HLT. Let us consider the clinical motivation and data re-
sources first. By analyzing altogether 70 patient records from Finnish sur-
gical, neurological, maternity, and childrens wards, Karkkéinen and Eriks-
son (2003) show that nursing narratives are detailed descriptions of the
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nursing care process and evaluating their content is exhausting and time-
consuming. Further, based on the analysis of 35 Thai patient records from a
medical-surgical ward, crucial information is lacking from nursing narratives
in terms of topics and sufficiency of notes; narratives have inconsistencies,
irrelevant notes, and time-line gaps; and unsuitable default headings lead
to topical scattering, duplicated information, and increased documentation
time (Cheevakasemsook et al., 2006). Moreover, Hellesp (2006) analyses
narrative admission documents, care plans and discharge documents of 66
patients from Norwegian medicine and cardiopulmonary units and concludes
that broad default headings help nurses improve the completeness, structure,
and content of discharge documents, but the headings should differentiate
between various patient demographics. Finally, according to the comparison
of headings and their content in 43 different types of US nursing narratives
from a US hospital, the naming and content of headings is inconsistent, and
the same heading is used in various documents (e.g., Nursing Adult Ad-
mission History and Post Anesthesia Care Unit Discharge Criteria) (Hyun
and Bakken, 2006). In summary, admission, daily nursing note, and dis-
charge documents contain valuable information, but its flow within and be-
tween ICU admission and discharge needs support. For example, Weaver
et al. (2005) is a study related to the evidence-based practice repository. It
presents a strategy of using information technology as the underlying tool
to capture empirical evidence from electronic health records.

Let us now consider the HLT components. Proof-reading and terminol-
ogy building are addressed, for instance, in Ruch et al. (2003), Zhou et al.
(2006), and Laippala et al. (2009). Viewpoints connected to profile building
are studied by identifying patients with a given diagnosis, for instance, in
Pakhomov et al. (2006), Hripcsak et al. (2007), and Paper V. Paper III,
Jancsary and Matiasek (2008), and Paper IV are examples of studies with
a focus on documentation structure and topical search, and Meystre and
Haug (2006b), Zeng et al. (2006), and Pentz et al. (2007) develop methods
for extracting information from electronic health records. These studies are
also relevant for the summarization component. For example Gundlapalli
et al. (2007) addresses generating alerts. See, for example, Friedman and
Hripcsak (1999), Zweigenbaum et al. (2007), and Meystre et al. (2008) for
a more thorough review of related work. In conclusion, collaboration and a
road map to follow are needed to integrate these numerous distinct tools to
a compressive HLT solution.

When comparing the entire road map with previous work, similar ideas
are described in Goodwin et al. (2003) and Heldt et al. (2006). Goodwin
et al. (2003) provides a model for building nursing knowledge with data
mining methods, but it does not explicitly include HLT and it is from the
perspective of the clinical environment on a more abstract level. The road
map in Heldt et al. (2006) is technically more detailed than ours: It contains
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the major modules of an advanced patient monitoring system aiming to
improve the efficiency, accuracy and timeliness of clinical decision making
in the ICU. Although clinical notes are explicitly considered, it does not
identify HLT interfaces.
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Chapter 3

Machine Learning
Applications

This chapter presents three practical cases of applying machine learning to
support the information flow: The first two cases, that is, (1) topic labeling
and relevance ranking and (2) topic segmentation and labeling, ease infor-
mation search and the third one is for diagnosis coding. The case of topic
labeling and relevance ranking has two supervised machine learning appli-
cations: binary classification and regression. The case of topic segmentation
and labeling includes both a supervised and unsupervised multi-class clas-
sification application. The case of diagnosis coding discusses a supervised
multi-label classification application.

3.1 Topic labeling and relevance ranking

In this section, machine learning is used to support the information flow
by aiding in information search. The aim is to ease information access
through automated relevance evaluation between a given search topic and
text segments. This clinical application is more thoroughly explained in
Section 3.1.1, and it is related to the Attention focusing and Summarization
components of the road map for developing HLT (Figure 2.6) and the phase
of using narratives (Figure 2.7). The learning task, task-specific performance
evaluation measures, and related work are described in Sections 3.1.2, 3.1.3,
and 3.1.4, respectively. Sections 3.1.5, 3.1.6, 3.1.7, and 3.1.8 specify the data
consisting of Finnish ICU nursing narratives, linguistic processing, learning
methods, and performance evaluation setting. Finally, Sections 3.1.9 and
3.1.10 report and summarize the results.
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3.1.1 Clinical application

The aim is to support the information flow by developing HLT tools that
aid users in finding information relevant for their interests. The clinical
application can be visualized as follows: The user defines a topic of interest,
and then the tool highlights the relevant parts of the narratives. The user
can select the relevance evaluation scale: In the simplest case, the tool has
the granularity of relevant versus irrelevant (Figure 3.1). But it can have
several degrees (Figure 3.2), up to continuous relevance scaling.

The tool is of clinical significance, because it expedites text browsing.
In addition, it does not lose the original context of the highlighted text
segments. Further, relevance-degree evaluation can be seen as helpful for
writing discharge documents, because segments with the largest topical rel-
evance should summarize the most essential information. Text segments
with smaller topical relevance could be used to focus the attention of profes-
sionals’ in direct care toward potential weak signals of some particular issue
in order to examine them more carefully.

The focus is on topic labeling and relevance ranking of text segments. In
other words, text is assumed to be readily divided into segments consisting
of one matter or thought, and the task is to evaluatev the topical relevance
of each segment.

The topics that are considered include Breathing, Blood circulation, and
Pain. These topics are chosen for three reasons. First, they represent cru-
cial intensive care aspects. The emphasis in ICU nursing is on monitoring,
assessment and maintenance of breathing, blood circulation, and other vi-
tal functions (Ward et al., 2004). Similarly, regular pain assessment and
management are crucial but extremely difficult (Sessler et al., 2008; Suomi-
nen et al.,, 2009b). Second, nurses evaluate ICU patients’ care needs and
nursing intensity regularly, and in this task, they use narratives to support
their decision making. In Finland, the evaluations are based on the Oulu
Patient Classification (Kaustinen, 1995; Fagerstrom et al., 2000), which dis-
tinguishes six different areas of ICU nursing: planning and co-ordination of
care; breathing, circulation and symptoms of diseases; nutrition and medica-
tion; personal hygiene and excretion; activity, movement, sleep and rest; as
well as teaching, guidance in care, follow-up and emotional support. Within
the first area, nurses evaluate breathing, blood circulation and pain. Third,
due to the nature of pain evaluation generally, and especially in ICU pa-
tients, we assume that pain is documented differently from breathing and
blood circulation. This is of interest from a machine learning ability view-
point.
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INPUT OUTPUT
fumlly contacts: daughter called family contacts: daughter called (two
daughters)
(two dﬂughters) consciousness: Pat. flinches
consciousness: Pat. flinches breathing: a couple of times
breathing: a couple of times coughed yel. mucus comes.
coughed yel. mucus comes. Reacts to SUCEIONS by biting intub.
I.{eacts to suctions b'y biting tube + coughing. oxygen
intub. tube + coughing. oxygen uptake not ok --> 02 21
uptake not ok —-> 02 21 oxygen oxygen whiskers -> adjusts
whiskers -> adjusts well well
. N SCALE
hemodynamics: p. |~ | v, also hemodynamics: p. |~ v, also OXYgen
oxygen uptake | ™ v at couple uptake | v at couple of
of minutes intervals. ekg m minutes intervals . ckg control in
control in the morning the morning

Figure 3.1: Identification of topically relevant text segments

3.1.2 Learning task

The focus is on topic labeling and relevance ranking of text segments. In the
simplest case (Figure 3.1), the task is to infer for each segment the relevant
topics. This belongs to the family of text classification tasks in machine
learning. In the more advanced case (Figure 3.2), the task is to infer an
ordering of the text segments with respect to their relevance to a given
topic. This is known as text ranking in the machine learning community.
The most extreme cases with a continuous relevance-scale belong to the
family of text regression tasks.

The topic labeling task comprises three binary classification tasks, one
for each topic. All three topics are considered separately, because one seg-
ment can be relevant for many topics. For each segment and topic in turn,
the task is to decide, whether or not the segment contains relevant infor-
mation about the topic. The relevant segments are called positive instances
and irrelevant negative instances.

Our binary classification task can be formalized as follows: The training
instances are again (z1,%1), ..., (Tm,Ym), where x; € X represents the
text segment i, y; € ) is the corresponding topic label, X the input space
(i.e., if x; is a feature vector, then X' a space containing all possible feature
vectors of the size |z;|), and Y the output space. In binary classification
Y ={-1, +1}, where —1 (resp. +1) is for negative (resp. positive) instances
by convention. The task is to learn by observing the training data a function
(i.e., a classifier) f : X — Y that predicts an output f(z) € {—1, +1} for
an input x € X. Naturally, the goal is to make as few classification mistakes
as possible.
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INPUT TOPIC OUTPUT
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Figure 3.2: Topic-relevance evaluation

A text regression task is, in a sense, a generalization of a binary clas-
sification task, where the output values y; € R instead of only {—1, +1}.
The output value can be interpreted as a topical relevance-score, with the
larger value indicating the stronger topic-relevance. Again, the goal is to
have as a good prediction function as possible. Solutions for the classifica-
tion and ranking tasks can be constructed from regression results. Namely,
the binary division between positive and negative instances can be obtained
by simply placing a threshold that halves the output. When the evaluation
scale contains several relevance-degrees, the ranking of segments is obtained
by placing more thresholds.

3.1.3 Performance evaluation measures

We evaluate the performance separately for every topic. Thus, binary classi-
fication measures and ranking measures for one topic at a time are discussed
next. The section is based on our study (Suominen et al., 2008b).

Perhaps the most intuitive binary classification performance evaluation
measures are accuracy and error, defined as the proportions of correctly and
incorrectly identified instances. Their values belong to an interval [0, 1], but
with accuracy, the value one corresponds to the best performance whereas
with error, being one minus accuracy, the value zero means the optimum.

However, when the numbers of positive and negative instances are strongly
of an unequal size, accuracy and error may give misleading results. For
example, let us assume that ninety-five percent of the text segments are
irrelevant to the topic of Breathing. Then, without any learning from ob-
servations, we get a classifier with only a five percent error by labeling all
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segments as irrelevant to Breathing. Problems also arise, if the proportion
of instances left correctly unlabeled (true negatives, Npy) is excessively
large when compared to the numbers of true positives (Nrp), false positives
(Npp) and false negatives (Npy). In addition, the number of true nega-
tives may even be unknown, as in the case of applying text classification to
identify documents relevant to a query given to a web search engine.
Precision (i.e., the proportion of correctly classified positive instances
from all positive instances in the output of the classifier), recall (i.e., the
proportion of correctly identified positive instances from all instances that
should have been identified as positive), and many other classification mea-~
sures based on these are independent of true negatives. Hence, they are
also applicable when the number of true negatives is unknown or excessively
large. Both precision and recall get values between zero and one, with higher
values indicating the better the performance. As recall can be trivially in-
creased at the cost of decreased precision by assigning more instances to the
class, and vice versa, both two measures must be considered together. One
possibility is to select a measure, such as F' that combines the measures.
In case of F', a weighted harmonic mean of precision and recall is taken.

In other words,
1

1 1
ﬁprecision + (1 - B) recall

where 3 € [0, 1] is a factor determining the weighting of precision and recall.
The most common choice is to weight precision and recall evenly, that is, to
select B = 0.5, which leads to a measure known as F1, F' measure or balanced
F score. The values of (3.1) are between zero and one, with higher values
indicating the better the performance.

All previously mentioned binary classification measures are sensitive to
the relative number of positive and negative instances. This class distri-
bution dependence can be problematic if, for example, the distribution is
different in the gold standard than it is in the actual application. AUC' (Han-
ley and McNeil, 1982) is a measure invariant to class distribution (see, e.g.,
Fawcett and Flach (2005)). On the other hand, unlike precision, recall and
F, it incorporates the number of true negatives. The interpretation of AUC
is that it is the probability that, given a randomly chosen positive instance
and a randomly chosen negative instance, the classifier will correctly distin-
guish them (Cortes and Mohri, 2004). This can be seen from the following
probabilistic definition:

F=

(3.1)

o = Zumniy= 0@ > f) 52)
Y+y-
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where y; and y_ are the numbers of positive (y; = +1) and negative (y; =
—1) instances in the gold standard and

5(e) = 1, if the expression e = TRUE
~ ] 0, if the expression e = FALSE

The values of AUC belong to an interval [0, 1], with larger values indicating
better performance.

Note that AUC' is equivalent to MannWhitney U (see Section 2.4): First
the AUC value for the label predictions and gold standard is calculated.
Then, a vector of the predicted outputs that should have been positive (i.e.,
elements are those f(z;) that have y; = 4+1) and a vector of the predicted
outputs that should have been negative are formed, and the MannWhitney
U value for those two vectors is computed. Finally, AUC = U/(y+y—).

The relation of AUC' to precision, recall and F is easy to see from a
more traditional definition based on computing the receiver operating char-
acteristic (ROC) curve first and then calculating the area under the curve.
Instead of assuming the system output to be a positive or negative label for
each input instance, many classification algorithms produce first a regression
output, as explained in Section 3.1.2. The ROC curve refers to plotting the
recall (a.k.a. true positive rate) at certain levels of the false positive rate
Npp/(Npp + Nry) obtained by varying the values of the threshold param-
eter between negative and positive instances from the minimum threshold
value (i.e., the one resulting all instances to be positives) to the maximum
(i.e., the one resulting all instances to be negatives) (Figure 3.3). In addition
to the area under the curve (i.e., AUC'), the ROC curve provides information
about the trade-off between recall and false positive rate: The analysis of
the curve from left to right corresponds to assigning more instances as pos-
itives. That is, improving the performance in terms of recall at the expense
of increased false positive rate.

In addition to classification, AUC can be applied in regression and rank-
ing tasks as well, because only the pairwise order of the instances with
respect to the classification topic (i.e., information defining which of the
two instances is larger), is needed. However, there are ranking task-specific
measures too.

Established ranking measures are based on evaluating the extent to
which the output ranking agrees with the gold standard ranking, typically
by determining their correlation. Consequently Kendall’s 7 and other gen-
eral measures of rank correlation applicable (see, e.g., Siegel and Castellan
(1988, pp. 235-254) and Kendall and Gibbons (1990) for further informa-
tion about the rank correlation coefficients). However, in evaluating ranking
performance, it is essential to take into account the possibility of tied ranks,
where two or more instances have the same rank in either output ranking
or the gold standard ranking. In order to address the issue of tied ranks,
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Recall

False positive rate

Figure 3.3: ROC curve corresponding to the content expert Eo and classifier C(Es)
in the topic of Blood circulation

tie-corrected versions of rank correlation measures have been defined. In par-
ticular Kendall’s 7, (Kendall and Gibbons, 1990, p. 40), a tie-corrected rank
correlation measure, has gained popularity in evaluating machine learning
performance. It is formally defined as

9(f(X),Y)
Valf(X), f(X))g(YY)

Ty =

: (3.3)

where

g(f(X),Y) =Y sign(f(x;) — f(z;))sign(y; — y;),

ij=1

f(X) is a vector containing the output ranking of the input X of m feature
vectors x;, Y = (y1, ... , Ym) is the respective gold standard, and

—1, if the expression ¢ < 0
sign(e) = ¢ 0, if the expression e = 0
1, if the expression e > 0

When the compared rankings are identical, 7, = 1; when one ranking is
reverse of the other, 7, = —1; otherwise, 7, € (1,1).
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3.1.4 Related work

Text classification and ranking are established areas in machine learning
research. Trends! in their recent health care applications are an extrac-
tion of certain specific information from patient records and identification
of patients with a given diagnosis (Table 3.1). In addition, applications to
generate alarms and ease information search or browsing are described. Of
these applications, diagnosis coding can be seen as a direct text classification
task whereas others apply classification and ranking among other HLT tech-
niques. For example, information extraction applications also need methods
to automatically distinguish the relevant text segment.

Regardless of the wealth of studies with promising results, clinical appli-
cations are still relatively rare (Collier et al., 2006), and little research exists
on the application domain of nursing narratives (Bakken et al., 2005). For
example, from the fifteen studies summarized in Table 3.1, only four report
an application that is in clinical use or trial phase, and none of the studies
is specifically tailored for nursing narratives. None of the studies address
Finnish. The investigation of ICU narratives is explicitly mentioned in two
studies.

'Hanna Suominen and Helji Lundgrén-Laine conducted a PubMed search on 2007
November 12. We utilized the MeSH hierarchy with our query “patient records AND
(natural language processing OR language technology OR decision support systems, clin-
ical OR decision support OR decision making) AND (narrative* OR note* OR text*)”
and limits published in the last 2 years, Humans, English. Our search returned 42 docu-
ments, of which we both considered the fifteen cited in Table 3.1 as related to health care
applications of human language technology.
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3.1.5 Patient record data

The Finnish patient record data considered in this section is collected in
2001 from fifteen ICUs for adults. From every unit, the records of three
patients have been chosen; the inclusion criterion is an alphabetized order
on the collection day. The records include the patient’s admission situation
and daily nursing notes for one 24 hour period. The total number of records
is 43, as two units have sent only two patient records instead of the three
requested. The data is divided into training and test sets in which the
narrative statements from the individual documents are aggregated, but the
recognition of individual patients is impossible.
The text style in the nursing notes varies in length.

o Virtsa tummaa. [Urine dark.],
o Aiti soittanut. [Mother called.],
e p ok. [P OK.], and

o Sao2 < 90. [Sao2 < 90.]

illustrate short sentences containing only one matter, whereas

o Valuskelee herkdsti verta (kadntamdlld kasivarren sidoksiin verta) kat-
sottu thonsiirros, hematoomainen, saatu hematooma osin pois -> pddlle
rasvataitos + kompr. kostea vety(?) taitos.

[Is bleeding easily (blood to arm bandages when turning) the skin graft
checked, haematomic, the haematoma partially removed -> a paraffin
gauze dressing on top + a compr. moist hydrogen(?) dressing.] and

o Pulssi epatasaista anest. laakari kaynyt katsomassa ekg nauhaa (otettu

ennen leikkausta) sinusextroja, ekg kontrolli huomenna aamulla, kddn-
nolla potilas muuttui siniseksi ja saturaatio putosi 50, 100% hapella
ambutuksella tilanne korjautui sedaatiota nostettu.
[Pulse uneven anaesthetist checked the EKG tape (measured before
the op) extra systoles, EKG control tomorrow morning, became bluish
when turning him around and the saturation decreased to 50, with
100% oxygenation with ambutus the situation improved, sedation in-
creased.]

are example sentences with multiple matters.

In order to normalize the style of the nursing notes, a content expert is
used to divide the text into segments consisting of one matter or thought.
After manual segmentation, the data contains 1,363 segments, with the
average length of 3.7 words.

Three content experts (E1, Eo, and E3) are asked to annotate the patient
data. Their task is to evaluate the content of the each text segment and
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mark those related to the topics of Breathing, Blood circulation, and Pain.
All three annotators are registered nurses and specialists in nursing docu-
mentation. F; and Fy have a long clinical experience from ICUs, whereas
FE5 is an academic senior nursing science researcher. The annotation guide-
line is to label a segment if it includes relevant information about the given
topic.

The annotations are used directly, as they are in the topic labeling task
(Figure 3.1). In order to evaluate the performance of the topic classifiers in
supporting health communication, we obtain both classifiers’ performance
with respect to the content experts as well as content expert against other
content expert comparisons.

For the text ranking task (Figure 3.2), the gold standard ranking for
each text segment is obtained by calculating the number of content experts
that have labeled it as belonging to the given topic. The resulting gold stan-
dard associates each text segment with a rank from zero to three and the
magnitude of this rank is assumed to reflect topic-relevance. The assump-
tion is based on seeing the disagreements between the experts as a valuable
resource that reflects different experiences, knowledge and expertise areas.

3.1.6 Linguistic processing

Topic labeling and relevance ranking are our first machine learning applica-
tions for clinical text. Hence, our aim is to assess feasibility of the machine
learning approach. This justifies our focus on comparing content experts’
opinions and machine learning outputs with very little investment in lin-
guistic processing.

Before the machine learning phase, we perform the following linguistic
processing: First, to unify the data, punctuation marks and special char-
acters are separated from words with spaces and all letters are converted
to lower case. Then, in order to reduce different inflection forms of the
words, the data is linguistically processed using the Snowball stemmer for
Finnish (Porter and Boulton, 2006).

3.1.7 Learning methods

The automated learning tasks are performed by using the reqularized least-
squares (RLS) algorithm (see, e.g., Rifkin (2002) and Poggio and Smale
(2003)), a kernel-based learning algorithm that is also known as the least-
squares support vector machine or the subset of regressors method (Suykens
and Vandewalle, 1999). RLS has been shown to have a state-of-the-art per-
formance in classification and regression, and it has been successfully mod-
ified for other problems such as ranking (see, e.g., Pahikkala et al. (2009)).
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To define the algorithm formally, let the set of training instances be
{(x1, y1)s ... s (@m, ym)}, where x; € X describe the text segments, X is a
space of bag-of-words vectors, and y; is the gold standard output. For topic
labeling, y; € {—1, +1} and for relevance ranking y; € {0, 1, 2, 3}.

The RLS algorithm can be considered as a special case of the following
regularization problem known as the Tikhonov regularization:

min > (0 = f(@)? + Al (3.4
1=1

where f : X — R is a function defining the output of the algorithm, \ €
R, is a regularization parameter, and || - || is a norm in a reproducing
kernel Hilbert space defined by a positive definite kernel function k. The
kernel function k(z;, z;) evaluates the similarity of instances z;, z; € X and
the reproducing kernel Hilbert space basically guarantees that k exists and
distances between input vectors can be measured (i.e., k(z;,z;) exists for
all z;, x; € X and | - ||y is well-defined). The least-squares loss function
(yi — f(x;))? is used to select a classifier that performs well with training
instances and the regularizer A||f||2 controls overfitting. By the Representer
Theorem (Scholkopf et al., 2001), minimizers of equation (3.4) have the form

f(z) = Zaik(x, x;), (3.5)
i=1

where «; € R.
The RLS algorithm is trained for each of the topics separately. The
kernel function is the cosine of the word feature vectors, that is,

N (x, x;)
k(z, z;) = —<x, pYr—

3.1.8 Performance evaluation

Performance evaluation contains three aspects: the content experts’ agree-
ment on topic labeling, the performance of the topic labeling application,
and the performance of the text ranking application. All the statistical
analysis is performed with SPSS 11.0 for Windows.

Content experts’ agreement is assessed separately for each topic by using
Cohen’s k (Cohen, 1960). Cohen’s k is an inter-annotator agreement mea-
sure that considers the two annotators being compared as equally competent
to make judgments, places no restriction on the distribution of judgments
over topics, and takes into account that a certain amount of agreement is to
be expected by chance. Formally, it is defined as

_A- A
C1-A

K
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Table 3.2: Inter-annotator agreement (Cohen’s k and 95 percent confidence in-
terval) of the content experts Ey, Es, and Es on the topics of Breathing, Blood
circulation, and Pain with the data of 1,363 text segments

Reprint from Paper 11

Comparison Breathing Blood circulation Pain
E; vs. Es 0.73 (0.68-0.78) 0.89 (0.85-0.92) 0.88 (0.82-0.94)
Ey vs. FEs 0.67 (0.62-0.72) 0.81 (0.77-0.86) 0.79 (0.73-0.86)
FE5 vs. FEj 0.85 (0.82-0.89) 0.87 (0.83-0.90) 0.76 (0.69-0.83)

where A is the proportion of times the annotators agree and A, the propor-
tion of times they would be expected to agree by chance. The values of Kk < 0
for poor agreement, and values between zero and one denote agreement; the
closer to one, the better the agreement.

For evaluating the automated classifier in the topic labeling task, its out-
put is compared with the content experts’ opinions by using AUC' (3.2). Text
ranking performance evaluation is performed with Kendall’s 7, (3.3). The
same measures are also in use for model selection (A and threshold values).
For performance evaluation and model selection, the data is halved: The
first 708 text segments are used for training the classifier and the remaining
655 segments are used for testing. The division is done so that segments
from one patient record belong only in one of the two files. Leave-one-out
cross-validation on the training set is chosen for model selection. In total,
nine automated classifiers are trained, that is, a distinct classifier for each
annotator—topic pair. The number of text ranking applications is three, one
for each topic.

3.1.9 Evaluation results

This section describes the empirical results, and it is based on Papers II and
III. However, I have performed some additional analysis for the dissertation.

Gold standard topic labeling

The content experts labeled approximately twenty, fifteen and six percent
of the 1,363 text segments as belonging to the topics of Breathing, Blood
circulation and Pain, respectively. The pair-wise comparisons between the
annotations showed that text segments related to Blood circulation were
selected quite similarly, whereas the number of disagreements was larger in
Breathing and Pain (Table 3.2).

The performance of the algorithm was tested in two ways. First, the learn-
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Table 3.3: Classification performance (AUC and 95 percent confidence interval) in
the topics of Breathing, Blood circulation, and Pain with separate training (708 text
segments) and test sets (655 text segments)

Extended from Paper I1
C(FE;): the classifier trained with the data labeled by the content expert F;

Breathing

E,q Es Es
C(Ey) 0.86 (0.82-0.90) 0.74 (0.69-0.79) 0.72 (0.68-0.77)
C(E3) 0.83 (0.79-0.88) 0.88 (0.85-0.91) 0.86 (0.83-0.89)
C(Es3) 0.84 (0.80-0.88) 0.88 (0.84-0.91) 0.87 (0.84-0.91)
Blood circulation

Eq Ey Es
C(Ep) 0.89 (0.84-0.93) 0.93 (0.89-0.97) 0.91 (0.87-0.95)
C(E2) 0.88 (0.83-0.93) 0.93 (0.90-0.97) 0.91 (0.86-0.95)
C(Es3) 0.89 (0.84-0.93) 0.93 (0.90-0.97) 0.91 (0.86-0.95)
Pain

Eq Ey Es
C(Ey) 0.71 (0.61-0.80) 0.81 (0.72-0.90) 0.72 (0.63-0.81)
C(E2) 0.71 (0.61-0.80) 0.81 (0.73-0.89) 0.71 (0.62-0.80)
C(FEs) 0.67 (0.56-0.78) 0.77 (0.66-0.87) 0.71 (0.61-0.80)

ing ability was evaluated by comparing the output of the algorithm with
the opinions of the same content expert who had also labeled the training
data. Second, generalization capabilities of the algorithm were evaluated by
comparisons not only with the same content expert but also with the other
two experts. In all evaluations, separate training and test sets were used, as
explained in Section 3.1.8.

The results of the first evaluation showed that the algorithm was able to
learn the classification task (Table 3.3). The most encouraging results were
achieved in the topics of Breathing and Blood circulation. The topic of Pain
was more challenging to learn, as expected; in this topic, the algorithm had
the smallest amount of positive instances for learning and it seemed to be
difficult for content experts too. In the topics of Breathing and Blood circu-
lation, the performance of the algorithm was on a similar level regardless of
whose opinions it was trained with.
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Table 3.4: Number of text segments in the gold standard ranking

Rank Breathing Blood circulation Pain
Training Testing Training Testing Training Testing
0 D72 462 564 566 646 609
1 28 31 26 15 14 14
2 35 60 23 9 7 10
3 73 102 95 65 41 22
1-3 136 193 144 89 62 46

These results illustrate the extensive content of nursing narratives and
consequent difficulties in searching information. In addition, they justify the
selected performance evaluation measure.

Text labeling performance

The results of the second evaluation gave evidence of the relatively good
generalization capability of the algorithm across the content experts’ opin-
ions; the differences in the AUC' values were relatively small regardless whose
labeling was used in training or testing (Table 3.3). This was particularly
emphasized in the topic of Blood circulation. In terms of the average differ-
ence in the AUC value compared to the situation, where both the training
and testing data were labeled by the same content expert, the decrease was
negligible in the topics of Blood circulation and Pain (i.e., 0.00 and 0.01,
respectively). The decrease was somewhat larger in the topic of Breathing
(i.e., 0.06), where the content experts’ disagreement was also the largest
(Table 3.2).

Gold standard relevance ranking

The gold standard ranking contained considerably more text segments with
relevance rank zero than those with larger ranks (Table 3.4). In particular,
the data had very few instances with relevance ranks of one and two.

In the gold standard ranking, the topics of Breathing, Blood circulation,
and Pain had similar general characteristics of the ranks. For example,
in the topic of Breathing, text segments with the rank three were related
to issues such as oxygenation and the use of different kinds of respiration
devices, whereas segments with lower ranks described mucus in patients’
lungs, coughing, and issues related to pleural tubes. In the topic of Blood
circulation, segments with the highest rank were mostly about the progres-
sion of various measurement values, such as pulse or blood pressure; those
with two or one described issues such as body temperature and bluish skin
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Table 3.5: Ranking performance (Kendall’s 7, and 95 percent confidence interval)
in the topics of Breathing, Blood circulation, and Pain with separate training (708
text segments) and test sets (655 text segments)

Reprint form Paper 111
Breathing Blood circulation Pain
0.62 (0.56-0.68) 0.69 (0.61-0.76) 0.44 (0.30-0.59)

shade. In the topic of Pain, segments with the rank three commonly con-
tained keywords such as kipu [pain] or sdrky [ache], whereas segments with
rank one or zero included neither the word kipu [pain] nor its derivatives or
synonyms. Segments with the pain rank one or two covered implicit pain
indicators such as the quality of sleep and reactions to nursing interventions.

In conclusion, the gold standard ranking seems justified; segments with
a rank three had the most evident notes about the topic, and the connec-
tion to the topic became more implicit, when the relevance rank decreased.
However, the algorithm has extremely few observations with ranks one and
two for learning.

Relevance ranking performance

The best ranking performance was in the topics of Blood circulation and
Breathing(Table 3.5). The learning task related to the topic of Pain was
again more challenging. The main reason for this is the considerably smaller
number of relevant training instances; altogether only 62 out of 708 training
instances got the pain rank larger than zero in the gold standard ranking.
In the other two topics, where the text ranking application performed bet-
ter, the algorithm had more than twice the amount of relevant instances for
learning. As an example, all text segments including the word pddnsdrky [headache]
were ranked mistakenly to the pain rank zero instead of the correct rank
three because the training set did not contain this word. Evidence of the
importance of linguistic processing was provided in preliminary experiments;
the performance of the RLS algorithm was better with the stemmed data
than with the original data.

Finally, to illustrate the potential of text ranking for summarizing the
most essential information, let us consider a need to quickly build an overview
about issues related to blood circulation. In this case, the user could select
the sensitivity level to be, for example, fifty or one-hundred segments, and
then the ranking application would return the corresponding number of text
segments in ascending order of relevance (Figure 3.4). In the gold standard
ranking of 655 segments in the test set, the number of segments with ranks
zero, one, two, and three were 566, 15, 9, and 65, respectively (Table 3.4).
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Figure 3.4: Tested sensitivity level in the topic of Blood circulation

With the sensitivity level fifty, a great majority of returned text segments
(i.e., 45 segments) belonged to the blood circulation rank three in the gold
standard ranking. The number of returned segments with ranks one and two
in the gold standard were one and two, respectively. Two returned segments
(tilanne stabiili [situation stable] and nostettu infuusiota [lift in infusion])
were considered irrelevant in the gold standard.

With the sensitivity level of one-hundred text segments, 55 segments
with the rank three in the gold standard were returned. The number of
returned segments with ranks one and two in the gold standard were one and
five, respectively. However, the number of segments that were considered
irrelevant in the gold standard increased to 39. If all segments with ranks
one, two, or three in the gold standard had been returned, the number of
topically irrelevant segments should have been only eleven in the system
output of one-hundred segments.

In conclusion, the results of text ranking are promising. Learning was al-
ready possible with a relatively small number of topically relevant segments,
and the text summarization example showed that the application was able
to distinguish the most relevant text segments.
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3.1.10 Summary

The section has discussed binary classification and regression, and their
application to automated topic labeling and relevance ranking of patient
records. The results indicate a success of machine learning in the applica-
tions, but with better performance in the topics of Blood circulation and
Breathing than in the topic of Pain.

The performance differences are used to guide future research and also
my dissertation. First, the most crucial consideration for future research is
to divide text into segments automatically.

Second, the amount of topically relevant training instances had a sub-
stantial effect on learning ability. Consequently, more data is used in Sec-
tion 3.2.

Third, performance differences may indicate topical variability both in
terms of the textual content and learning task difficulty. Thus, more topics
are considered in Section 3.2. However, these topics (Breathing, Hemody-
namics, Consciousness, Relatives, Diuresis, and Other) do not explicitly
include the interesting, but challenging, topic of Pain. We have begun a
more detailed study of the topic in Suominen et al. (2009b). This study
reports how a group of ten nursing professionals were supervised to anno-
tate a set of 1,548 daily nursing notes, and based on these annotations,
builds a gold standard. The annotation aspects include the amount and
writing style of pain-related notes, pain intensity, and given pain care. The
conclusion is that more than half of the analyzed] documents contains in-
formation relevant for patients’ pain status or medication but it is usually
expressed indirectly. Although annotators’ pain intensity evaluations di-
verged, the substantial amount of pain-related notes encourages developing
computational tools for pain assessment.

Finally, the section gave empirical evidence of the importance of lin-
guistic processing to reduce the data sparseness. More sophisticated lin-
guistic processing is likely to contribute to the learning performance gen-
erally, and in particular in case of limited amount of data; it could en-
able recognizing kipu [pain], sirky [ache] and other topical keywords from
compounds (e.g., pddnsdarky [headache], kipuladke or sarkyladke [painkiller],
padnsdarkylddke [headache painkiller], and kipukynnys [pain threshold], deriva-
tives (e.g., kivulias [painful] and kivuton [painless]), as well as numerous
inflection forms in Finnish (e.g., kivun, kipuna, kipua, kivuksi, and kivusta).

3.2 Topic segmentation and labeling

This section continues the study with information search applications dis-
cussed in the previous section. Now, not only topically relevant segments
are labeled, but the application performs the automated text division into
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Figure 3.5: Topical segmentation and labeling

topical segments too. Furthermore, it addresses domain-tailored linguistic
processing, more topics and larger, but more focused, data. The application
is again related to the Attention focusing and Summarization components
of the road map (Figure 2.6) and the phase of using narratives (Figure 2.7).
The clinical application, learning task, task-specific performance evaluation
measures, and related work are described in Sections 3.2.1, 3.2.2, 3.2.3, and
3.2.4, respectively. Sections 3.2.5, 3.2.6, 3.2.7, and 3.2.8 specify the data
consisting of Finnish ICU nursing narratives, linguistic processing, learning
methods, and performance evaluation setting. Finally, Sections 3.2.9 and
3.2.10 report and summarize the results. The section is based on Paper IV.

3.2.1 Clinical application

The clinical application for information search is visualized in Figure 3.5.
Again, the user can specify topics of interest, and then the tool highlights
the narratives according to these topics. In order to serve clinical needs for
browsing nursing narratives, the topics that are used in the method devel-
opment are the most common ones of these records (see Chapter 2 and Sec-
tion 3.2.5): Breathing (including both Breathing and Ozygenation), Hemo-
dynamics, Consciousness, Relatives, and Diuresis. To enable fast browsing,
the application assigns for each word the most relevant topic only. However,
this approach loses the aspect of one text segment being relevant for many
topics. Text that is irrelevant to all topics is left unlabeled.
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3.2.2 Learning task

In text segmentation, the aim is to divide text into smaller semantically
coherent units by placing boundaries between its elements. The elements
can be individual words, but also sentences, paragraphs or other larger text
entities. In this dissertation, the element is a word and semantic coherence
means topical similarity. That is, the goal is automatic division of the
input text into topically coherent units by placing topic change boundaries
between words. This is known as topic segmentation. Not only topic change
boundaries are to be assigned but also the topics of the resulting segments.
Hence, the application is called topic segmentation and labeling.

Topic segmentation and labeling belongs to the family of multi-class clas-
sification in the machine learning task taxonomy. Topic segmentation alone
can be viewed as a binary classification task, where the choice is whether or
not to place a topic change boundary between two text elements of the input
text. If topic labeling is also considered, the task can be seen as multi-class
classification, where for each input word, one topic label is to be assigned
from a set of possible topics.

3.2.3 Performance evaluation measures

Evaluation of topic segmentation and labeling quality combines the criteria
for the topic segmentation task and topic labeling task. The section is based
on Suominen et al. (2008b) and Paper VI.

Because topic segmentation and labeling can be treated as text classi-
fication, many classification measures can also be chosen to be used here.
The use of accuracy, error, precision and recall measures is especially com-
mon (Hirschman and Mani, 2003, p. 416). If topic segmentation is con-
sidered alone, then each segment boundary produced by the segmentation
application is interpreted as correctly (true positive) or incorrectly (false
positive) placed. Undetected boundaries and potential segment breaks that
are correctly left without a boundary represent false negatives and true neg-
atives, respectively. Accuracy, error, precision, recall and other measures
based on the proportions of Nyp, Npp, Ny, and Npy can thus be defined
as previously. However, these measures are not sensitive to situations where
the segment boundary is almost correctly placed, but not exactly. As a
result, topic segmentation specific measures have been developed.

The P, measure (Beeferman et al., 1999) is a popular topic segmentation
specific performance evaluation measure (see Pevzner and Hearst (2002)).
Py, is a special case of the Pp measure (Beeferman et al., 1999), which is the
probability that two elements drawn randomly from the input are correctly
identified as either belonging or not to the same segment in the system out-
put with respect to the gold standard. Pp contains a distance probability
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distribution over the set of possible distances between two randomly cho-
sen text elements, and in P, this function is fixed so that it produces P
to the probability that a randomly chosen pair of text elements that are
k text units apart is assigned to the same segment in either the system
output or in the gold standard but not in both. The computation of Pj
can be viewed as sweeping a window with a fixed width k across the input
text [z1, X2, , X2, ..., Tp) (Figure 3.6). Following the explanation given by
Pevzner and Hearst (2002), Py is calculated by determining for each win-
dow location whether the outermost elements in the window are incorrectly
assigned to the same segment or to different segments in the system output.
When observing an inconsistency, the value of Py is increased by one. Fi-
nally, the value of P, is normalized to be a probabilistic measure, that is, to
belong to an interval [0, 1], by dividing by the number of comparisons taken
m — k, and for Py, smaller values indicate better performance. In practice,
k is set to be half of the average segment size in the gold standard.

Several properties of the P, measure, however, have been criticized
(Pevzner and Hearst, 2002). First, a topic segmentation performance evalu-
ation measure should also take into account almost correctly placed bound-
aries; P achieves the goal in most cases only with false positives, which
often causes them be penalized less heavily than false negatives. It can even
penalize slightly erroneous boundary placements more than pure false pos-
itives of equal magnitude. Second, P, may leave some topic segmentation
errors without penalization, and third, P often misses or under-penalizes
mistakes in small segments.

To address these drawbacks, another commonly used topic segmentation
performance evaluation measure, WindowDiff (Pevzner and Hearst, 2002)
has been developed. As P, WindowDiff can also be viewed as sweeping a
window with a fixed width k across the input text [z1, x2, ,z2, ..., T;], but
for each window position this measure compares the number of boundaries
within the window in the system output with the respective number in
the gold standard. The measure penalizes the segmentation application by
one whenever these numbers differ. Finally, the value of WindowDiff is
normalized by dividing by the number of comparisons taken m — k. As with
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Py, the value of WindowDiff belongs to an interval [0, 1], and smaller values
indicate better performance.

Also the WindowDiff measure has been criticized (Georgescul et al.,
2006): It is upbraided for weighting with the same normalization constant
irrespectively of having a larger or smaller number of segment boundaries
than supposed in the system output. This causes false negatives to be less
penalized than false positives even though the weighting should be equal for
both of these error types.

Another alternative to evaluate the quality of topic segmentation and
labeling application is to consider it as multi-class classification and use
classification evaluation measures with macro- or micro-averaging. This
is to get a joint performance estimate for all topics. By comparing the
system output with the gold standard, Npp, Ngp, Ny, and Ngy are defined
separately for each topic. Then, the overall performance is defined through
macro- or micro-averaging.

Let us consider F' (3.1) as an example. The macro-averaged measure
is achieved simply by calculating the average of the topic-wise F' values.
In contrast, micro-averaged F' evaluates the performance by computing the
measure value based on the global perspective of all binary decisions made.
If n; is the number of topics, then the adjusted numbers of true and false
positives and negatives are TP’ = > " TP, FP' = > " FP; and FN' =
>ty FEN;. Then the micro-averaged precision and recall are calculated by
using these adjusted numbers, and finally, micro-averaged F' is computed
from these. Macro-averaged F' emphasizes the significance of performing
well on all topics, including relatively rare ones, whilst micro-averaged F
weights each code assignment decision equally.

However, this approach sustains the previously discussed problem with
almost correctly placed segment boundaries. To address both topic segmen-
tation and labeling aspects, an evaluation setting can cover simultaneous
studying of two measures. For example, micro-averaged accuracy could be
chosen for the the multi-class classification task and WindowDiff for the
binary segment boundary assignment task. Another alternative is to use
information extraction measures that incorporate partially correct outputs
(see, e.g., Chinchor and Sundheim (1993); Hirschman et al. (2005)). How-
ever, they are less conventional in topic segmentation and labeling tasks,
and may require manual human judging.
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3.2.4 Related work

Topic segmentation and labeling is a well-studied HLT problem. In clinical
applications, it has been applied to English medical narratives from radiol-
ogy and urology departments (Cho et al., 2003). The method relies strongly
on hard-coded rules for headings, linguistic cues and lexical patterns seen
within training instances. Another example is the temporal order analysis
of English medical discharge summaries (Bramsen et al., 2006). This appli-
cation uses first a statistical parser to segment the sentences into clauses and
then two supervised classifiers to predict the segment boundaries and assign
for every segment pair their time-wise order. Finally, conditional random
fields (Lafferty et al., 2001) have been applied to topic segmentation and
labeling of typed English medical dictations (Jancsary and Matiasek, 2008).
The aim is to ease the job of the typist through automated text structuring.
The method is supervised.

Our topic segmentation and labeling task restricts the applicability of
existing machine learning methods. First, the method must produce a seg-
mentation given by the topics of interest that are declared in advance. With
unsupervised methods we can gain a free, ad hoc choice of topics and freedom
from manually annotating a large amount of training data. Unsupervised
methods commonly analyse the similarity (e.g., first uses of words, word
co-occurrence, repetition or semantic relations) of text before and after a
proposed segment boundary (see, e.g., Hearst (1997); Ferret (2002)). A
sudden drop in the similarity value indicates a likely change in topic. How-
ever, these methods do not typically allow specifying the topics in advance,
and topic-sensitive methods tend to be supervised. The supervised methods
are often based on probabilistic models for sequence labeling, for instance,
on conditional random fields or hidden Markov models (HMMs) (Rabiner,
1989; Yamron et al., 1998; Blei and Moreno, 2001; Gruber et al., 2007); the
approach is natural because segmentation is inherently given by the assigned
topic labels.

Second, we need a method for text, where segments are very short and
almost every document contains relevant information about all topics of
interest. Existing unsupervised topic segmentation methods require consid-
erably longer segments (e.g., the TextTiling method (Hearst, 1997) searches
for topic boundaries between contexts of two hundred tokens whereas in
our data, the average segment size is eighteen tokens) and those specifically
designed for short segments (see, e.g., Ponte and Croft (1997); Chang and
Lee (2003) for methods using the likely topic length and techniques similar
to query expansion in information extraction) do not consider pre-specified
topics.

Consequently, we aim at a minimally supervised, probabilistic model for
sequence labeling and compare performance of supervised and unsupervised
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Figure 3.7: Number of topics (Breathing, Hemodynamics, Consciousness, Rela-
tives, and Diuresis) discussed per shift

methods with varying amounts of training data. The method referred to
hereafter as LSA-HMM is based on HMMs because incorporating the likely
topic length into conditional random fields is difficult (Sarawagi and Cohen,
2005).

3.2.5 Patient record data

Daily nursing notes described in Section 2.3 are used. To summarize their
characteristics, the data set includes 1.2 million words altogether (including
punctuation), which are stored into patient- and nursing shift-specific doc-
uments. On average, each shift contains about 70 words. The writing style
is telegraphic and highly specific with a substantial amount of unit-specific
practices and terminology. Approximately half of the shifts are structured
by using colon-separated, but non-standardized headings, as Hemodynamics,
HAEMODYNAMICS, H e m o d, and Homedynamics.

To create topic-annotated data for experiments, three shifts per patient
are selected from the records of 135 patients. The admission order is applied
in the selection, so that the first patients are chosen. We segment and label
the records manually by using the Knowtator tool (Ogren, 2006) of Protégé
3.3.1 Ontology Editor and Knowledge Acquisition System?. Irrelevant parts
are given the label Other. In the manually annotated data, the average
shift length is 78 words while the average segment length is only 18 words.
Typically, all or almost all five topics are discussed within one shift although
34 shifts contain none of the topics (Figure 3.7).

2See http://protege.stanford.edu/ [cited 2009 August 1].
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3.2.6 Linguistic processing

To reduce data sparseness caused by the highly inflective nature of Finnish,
we lemmatize the data using a tailored version of the FinTWOL Finnish
morphological analyser® (Koskenniemi, 1983). This work has been per-
formed in close collaboration with Lingsoft.

We have extended the vocabulary of the analyser with approximately
3,500 clinical terms. For every word analysed by FinTWOL, we used the
first lemma given. For example, a Finnish word haavan [wound’s] has the
candidate lemmas haapa [aspen| and haava [wound]. This reduces the data
sparseness and for our statistical methods, it does not matter that we use
the wrong meaning (aspen) as long as the same mapping is selected system-
atically. For words not in the FinTWOL lexicon, we preserve the original
spelling. This linguistic processing also separates punctuation marks and
special characters from words with spaces and converts words, other than
those intentionally capitalized, to lower case.

3.2.7 Learning methods

Three methods are compared: an unsupervised keyword search, HMM, and
LSA-HMM. These methods are described with more details in Paper IV.

Keyword search

The keyword search inherently resembles the structure of our data. It
searches for the occurrence of the five topic keywords (breathing etc.) and
assigns each word to a topic corresponding to the previous seen keyword.
The topic label is given the initial value other at the start of each shift.

HMM

Let us denote the topics of interest as ¢;,i € {1,...,Ng}. Our topic seg-
mentation and labeling task is to infer for the input word sequence w =
[w(1)...w(T)] the topic sequence ¢ = [¢(1)...q(T)], where w(t) belongs to
the vocabulary {wy, ..., wn,} of N, unique words and ¢(t) € {q1,...,qn,}
for all t € {1,...,T}. This can be modeled with a first-order HMM, where
w is observed and ¢ is hidden, a particular hidden variable ¢(t) only depends
on the previous hidden state ¢(t — 1), an observed variable w(t) is only de-
pendent on the value of the hidden variable ¢(¢), and the random variable
describing the start of the chain is uniformly distributed (Figure 3.8). For-
mally, if Q is the space of all hidden state sequences, we infer the best ¢ by

3See http://www.lingsoft.fi/ [cited 2009 August 1].
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through training and model selection.

LSA-HMM method

LSA-HMM is based on solving the optimization task (3.6) by using J para-
metrization for the transition probabilities P(q(t)|q(t — 1)) and applying
latent semantic analysis (Deerwester et al., 1990) (LSA) for the emission
probabilities P(w(t)|q(t)) (Figure 3.8). Here we aim to obtain these condi-
tional probabilities in a minimally-supervised manner, which does not re-
quire annotated training data. LSA-HMM is rather minimally supervised
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than fully unsupervised, because it contains certain parameterizations and
retains the capability for user-specified topics of interest. Further, the prob-
ability assumptions in HMMs are relaxed in LSA-HMM. To simplify the
notation, we will refer in the following text, whenever possible, to the con-
ditional probabilities P(wj|g;) and P(g;|g;) without the sequence index t¢.

Transition probabilities are based on a self-transition probability param-
eter 6 € (0,1) that controls the segmentation granularity. The transition
probability is then defined as

5 if j =1,
P(Qj“]i):{ 15

Ny—1

The probability of continuing the current topic is thus d, and the remain-
ing probability 1 — ¢ of switching a topic is distributed uniformly to avoid
supervised modeling assumptions.

Emission probabilities are based on LSA. LSA is a commonly applied
technique for inducing text similarity measures from co-occurrence statistics
in a large, unannotated data set. We use an LSA-based term-term similarity
measure. Because the topic keywords occur in the majority of shift-wise
documents and, more importantly, because different topics tend to co-occur
in a single document, we apply the Word Space model (Schiitze, 1998).
It generates a term-by-term matrix and only considers word co-occurrence
within a fixed context window. This allows sub-document distributional
properties to be accounted for.

We derive the value of the emission probability P(wj|g;) from the LSA
similarity Isa(w;, ¢;) of the word w; to the topic g;. This is based on the intu-
ition of, for example, P(pulse|hemodynamics) >> P(sister|hemodynamics).

We re-scale the LSA values in order to improve numerical comparabil-
ity across topics; the original LSA values are mutually incomparable. For
example, the top terms and their original LSA values for the topic of Hemo-
dynamics are

1. hemodynamiikka [hemodynamics] (1.000),
pulssi [pulse] (0.910),

sr [sr, sinus rhythm] (0.819),

rr-taso [rr-level, respiratory rate] (0.785),
korkeahko [quite high] (0.784),

sinusrythmi [sinus rhythm] (0.784),

NS gk N

rr [rr, ambiguous abbreviation (e.g., respiratory rate, regular respira-
tions, regular rhythm, Riva-Rocci, relative response, or relative risk]
(0.768),
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8. werenpaine [blood pressure] (0.716),
9. lisdlyonti [extrasystole] (0.673), and
10. ok [ok] (0.672).

Here, the similarity of the terms korkeahko [quite high] and sinusrythmi
[sinus Thythm] to the topic of Hemodynamics is indeed the same. However,
comparison across the topics is meaningless: For example, for the topic of
Other, defined as other NOT breathing NOT ... NOT diuresis, the top term
vatsa [stomach] has the original LSA value of 0.683. The re-scaling is based
on shifting the LSA value of the top term to 1.000, specifying the value
where the maximum LSA similarity to another topic is larger than for a
given topic, and assigning a minimal similarity of any word to any topic
(Figure 3.9). See Ginter et al. (2008) for a more detailed description of
re-scaling.

The final LSA-HMM model combines transition and emission probabil-
ities as defined above. This preserves the overall structure of HMM but
replaces the emission probabilities with a quantity that is not a probability.
The optimal state sequence is obtained by solving

T
arg maxlsa(w(1), (1)) [T1sa(w(®), a(t) P(a(®)]a(t - 1)).
t=2

3.2.8 Performance evaluation

The performance is evaluated by comparing three methods in terms of the
micro-averaged accuracy. The experiment is repeated with various amounts
of training data for HMM. Also the macro-averaged WindowDiff is reported,
but it evaluates topic segmentation quality independently of the topic labels.
The WindowDiff window size was set to half of the average segment size in
the manually annotated data, which is a standard way to set this parameter.

LSA is performed with the Infomap NLP software* (Dorow and Wid-
dows, 2003) on all text available in the 448 patient reports from which no
shift was selected for testing. The parameters for which supervision is needed
are 4, the left and right LSA context window width, and LSA re-scaling pa-
rameters. Their values are specified by a grid search on 60 annotated shifts.
To avoid over-fitting, the parameter selection shifts are held out from testing.

3.2.9 Evaluation results

The accuracy of the LSA-HMM was considerably better than that of the
keyword search, but, as expected, it was outperformed by HMM (maximal

4See http://infomap-nlp.sourceforge.net/ [cited 2009 August 1].
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Figure 3.9: Re-scaling the LSA values

accuracy on the test set of 204 shifts (c. 16,000 words) 0.67, 0.75, and 0.83
for the keyword search, LSA-HMM, and HMM, respectively (Figure 3.10)).
The supervised HMM method was allowed to learn from manually performed
“model solutions”, as opposed to LSA-HMM, which received only one key-
word per topic.

To reach the performance of LSA-HMM, HMM required approximately
3,600 words (c. 50 shifts) of manually labeled training data.

While not intuitive, the WindowDiff results (maximal values on the test
set of 204 shifts 0.16, 0.23, and 0.21 for the keyword search, LSA-HMM,
and HMM, respectively) were in disagreement with the accuracy results.
The keyword search resulted in better WindowDiff performance than even
HMM, and the performance of LSA-HMM and HMM was approximately
the same. However, WindowDiff does not take into account the assigned
labels, our key evaluation criterion. Thus, we do not view the WindowDiff
results as compromising the positive primary findings in terms of accuracy.

Linguistic processing improved the performance (Figure 3.10). However,
as expected, its significance diminished with increasing amount of training
data.
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Figure 3.10: Comparison of HMM and LSA-HMM methods and the benefit of
linguistic processing

3.2.10 Summary

The section has described applications of HMMs to topic segmentation and
labeling of patient records. It has addressed the clinical needs by consid-
ering topics that are crucial for creating overviews, developing a minimally
supervised method, evaluating the amount of manual annotation work, and
assessing the importance of domain-tailoring. The proposed minimally su-
pervised method is applicable to information search tasks with freely-chosen
topics and very little labeled data available. However, if the search topics are
established and resources for manual labeling exist, the supervised method
should be preferred because it offers better performance. From the method
development perspective, the results illustrate the differences between the
topics. For example, the segment length and the number of most relevant
terms vary.

3.3 Diagnosis coding

This section describes a multi-label classification application for the auto-
mated assignment of diagnostic codes to radiology reports. The application
is related to the Profile building, Attention focusing and Summarization
components of the road map for developing HLT (Figure 2.6) and the phase
of using narratives (Figure 2.7). Sections 3.3.1, 3.3.2, and 3.1.3 describe the
clinical application, learning task, and task-specific performance evaluation
measures. In Section 3.3.4 the related work is discussed. Sections 3.3.5,
3.3.6, 3.3.7, and 3.3.8 specify the data consisting of US radiology reports,
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linguistic processing, learning methods, and performance evaluation setting,
respectively. Finally, Sections 3.3.9 and 3.3.10 report and summarize the
results. Section 3.3 is based on Paper V.

3.3.1 Clinical application

The task is to assign the International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) (National Center for Health
Statistics, 2007) codes to English free-text radiology reports automatically
(Figure 3.11). All applicable codes are to be assigned to each report.

The task is given in the international medical natural language process-
ing challenge (Computational Medicine Center, 2007), and it is motivated by
US hospital administration and health insurance services; the assigned codes
serve as justification for having specific procedures performed. But the ap-
plication has also other uses: Both assigning codes and verifying previously
given codes is possible. The first application can make administration more
efficient, if the codes have not been entered to the patient record during the
care process. The second application can be used in direct care to verify
the given diagnoses and generate alarms for potentially missing or fallacious
codes.

3.3.2 Learning task

In multi-label classification, as opposed to binary classification, multiple la-
bels (e.g., Breathing, Blood circulation, and Pain) are considered. In binary
classification there was one topic-label (e.g., Breathing) and the task was
to assign instances either to the class of topically related (i.e., belongs to
the class of Breathing) or to the class of topically unrelated (i.e., does not
belong to the class of Breathing) objects. In other words, the multi-label
classification task can be restructured to multiple binary classification tasks
— one for each topic-label.

The difference in the multi-class classification is that in multi-label clas-
sification, each instance can belong to several classes at the same time. For
example, in the multi-class classification task considered in Section 3.2, the
constraint was that only one topic-label can be assigned to each text seg-
ment. In contrast, the topic labeling task in Section 3.1 belongs to the
multi-label classification family, because every segment could have been rel-
evant for all three topics.



Machine Learning Applications

a)

CLINICAL HISTORY

Eleven year old with ALL, bone marrow transplant on Jan.
2, now with three day history of cough.

IMPRESSION

1. No focal pneumonia. Likely chronic changes at the left
lung base. 2. Mild anterior wedging of the thoracic verte-
bral bodies.

ICD-9-CM CODING

786.2  Cough

b)

CLINICAL HISTORY

This is a 7-month - old male with wheezing.
IMPRESSION

Borderline hyperinflation with left lower lobe atelectasis
versus pneumonia. Clinical correlation would be helpful.
Unless there is clinical information supporting pneumonia
such as fever and cough, I favor atelectasis.

ICD-9-CM CODING

486 Pneumonia, organism unspecified

518.0  Pulmonary collapse

786.07 Wheezing

c)

CLINICAL HISTORY

7-year - old with history of reflux and multiple urinary tract
infections.

IMPRESSION

Interval growth of normal appearing kidneys.

ICD-9-CM CODING

V18.02 Personal history, urinary (tract) infection
d)

CLINICAL HISTORY

One UTI. Siblings with refluz.

IMPRESSION

Normal renal ultrasound.
1CD-9-CM CODING

599.0  Urinary tract infection, site not specified

Reprint from Paper V

Figure 3.11: Diagnosis coding task: narratives and codes
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3.3.3 Performance evaluation measures

In the challenge task, the aim is to evaluate the overall application quality,
and not to consider performance separately for individual binary diagnosis
coding tasks. The classification measures discussed in Section 3.1.3 can
be adjusted for this multi-label classification setting, and then macro- or
micro-averaged, as described in Section 3.2.3.

In addition to these measures, cost-sensitive accuracy is used in the
challenge. The organizers motivate this by clinical regulations enforcing over
and under-coding penalties to avoid additional risks of possible prosecution
for fraud and lost revenues (Pestian et al., 2007). If B; is the number of
instances that are assigned to the topic i either in f(X) or Y, then cost-
sensitive accuracy

CSA = (1  puFN +poFP’>C.

Z?:Cl B;

In the challenge the constant ¢ = 1, over-coding penalty p, = 1, and under-
coding penalty p, = 0.33.

3.3.4 Related work

Automated diagnosis coding has attracted wide attention both among health
care practitioners and academic researchers, especially in the USA. Ex-
amples of particularly successful automated diagnosis coding applications
are MedLEE, Medical Language Extraction and Encoding System and Au-
tocoder: MedLEE is routinely used in the New York Presbyterian Hospital
to parse English patient records and map them to Unified Medical Lan-
guage System (Bodenreider, 2004) (UMLS) codes (Mendonca et al., 2005).
Adapting it for ICD-9-CM coding has also been studied (Lussier et al., 2000).
Autocoder is implemented at the Mayo Clinic in Rochester, Minnesota to
assign unit specific ICD-9-CM-related codes to patient records and it has
resulted in a change in the coding personnel’s duties to code verification
and an 80% workload reduction (Pakhomov et al., 2006). In addition, for
example, Pakhomov et al. (2006); Hripcsak et al. (2007); Pakhomov et al.
(2007b) and Pakhomov et al. (2007a) discussed in Section 3.1.4 study auto-
mated recognition of patients with a given diagnosis.

Also the challenge has been popular. According to the report of the or-
ganizers (Pestian et al., 2007), the number of registrations is approximately
150, from six continents and more than twenty countries. The number of fi-
nal submissions is 44. The organizers’ review of all submissions suggests that
for this particular task, the choice of the classifier is not crucial for success,
but linguistic processing plays a key role; use of negations, the structure of
UMLS, hypernyms, synonyms, and symbolic processing contributes to the
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performance. More information about highly ranked submissions can be
found, for example, in Farkas and Szarvas (2008) (the first place), Goldstein
et al. (2007) (the second place), Paper VI (the third place), and Crammer
et al. (2007) (the fourth place).

3.3.5 Patient record data

The anonymized patient record data (Computational Medicine Center, 2007)
is collected from a US radiology department for children. The data has 1,954
patient records divided into the training set of 978 records and the test set
of 976. They are written in English and describe chest x-ray and renal pro-
cedures. The data consists of two subsections of the original patient records
that are seen as fundamental for assigning the ICD-9-CM codes: clinical
history provided by an ordering physician before the procedure and impres-
sion reported by a radiologist after the procedure (Figure 3.11). Similarly to
the ICU narratives, the style of these radiology reports is concise and highly
specific.

The data is accompanied with gold standard ICD-9-CM code annotation
obtained by a majority vote of three independent parties. The majority
vote is selected because the nature of the coding task is ambiguous: even
though official coding guidelines (Moisio, 2000, pp. 69-126) exist, unit-
specific detailed instructions are used to complement them. For example,
the official guidelines state that uncertain codes should not be assigned, a
definite diagnosis should be specified, when possible, and symptoms must
not be coded if the definite diagnosis is available.

Altogether 45 different codes in 94 combinations are present in the data.
The most common are

1. 786.2 Cough (n = 310),
2. 599.0 Urinary tract infection, site not specified (n = 193),

3. 593.70 Vesicoureteral reflux, unspecified or without refluxr nephropathy
(n = 161),

4. 780.6 Fever AND 786.2 Cough (n = 151), and
5. 486 Pneumonia, organism unspecified (n = 132).
The test set is released without ICD-9-CM coding, but it is restricted by

requiring that any combination of codes occurs at least once both in the
training and test data.
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Figure 3.12: Flow chart of the components

3.3.6 Linguistic processing

Our application for automated assignment of ICD-9-CM codes to free-text
radiology reports can be divided into two phases (Figure 3.12): This sec-
tion describes the feature engineering phase, where text is enriched through
linguistic processing and features that improve performance are extracted
from the input text. Section 3.3.7 then describes the classification phase,
where a cascade of two classifiers is used to assign the ICD-9-CM codes.

To start the linguistic processing, the training set is augmented with
a small set of artificial instances. Then, text is tokenized and the patient
records are represented as bag-of-words vectors. Then all data is semanti-
cally enriched using UMLS concepts and their hypernyms. Further, features
are marked for occurrence in a negative or conditional context. Finally, the
documents are represented as a set of binary features. This feature engi-
neering is explained in more detail next.

The training set is augmented with 45 artificial instances obtained by
concatenating the textual description of each of the 45 codes used in the
challenge with the descriptions of its parents in the ICD-9-CM tree. For ex-
ample, the artificial instance corresponding to the code 593.70 Vesicoureteral
refluz, unspecified or without reflux nephropathy is Diseases Of The Geni-
tourinary System. Other diseases of urinary system. Other disorders of
kidney and ureter. Vesicoureteral reflux. Vesicoureteral refluxr unspecified
or without reflux nephropathy. The strategy is based on the observation of
informative keywords appearing both in the radiology reports corresponding
to a given code and in the description of this code in the ICD-9-CM tree
(see, e.g., Figure 3.11a and 3.11c).
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The text is tokenized and UMLS concepts occurring in the text are
recognized using the MetaMap program (Bodenreider, 2004). This reduces
the data sparseness, because, for example, related expressions pneumonia
and superimposed pneumonia are both represented by the UMLS concept
C0032285. In addition, hypernyms of the UMLS concepts are also used to
enrich the data. Thus, the pneumonia-related UMLS concept C0032285 is
augmented so that it also contains the concept codes for respiratory tract
infection, disease caused by microorganism, bacterial infection, and other
hypernyms.

Contexts signaling uncertain or negative findings are identified in the
text using a list of common trigger expressions such as no, possible, sugges-
tive, and likely. In accordance with the coding guidelines, the goal is to avoid
assigning negative or uncertain codes. The scope of the identified negation
or conditional statement is assumed to continue to the end of the sentence.
Hypernyms are processed with special care so that, for example, no pneu-
monia does not imply no respiratory tract infection, as other respiratory
tract infections may be present.

3.3.7 Learning methods

A machine-learning approach using a cascade of two classifiers trained on
the same data is used to predict the codes. Both classifiers are trained with
the same data, and perform multi-label classification by decomposing the
task into 45 binary classification problems, one for each code.

In this setting, it is possible for a classifier to predict an empty, or im-
possible, combination of codes. Such known errors are used to trigger the
cascade: when the first classifier makes a known error, the output of the sec-
ond classifier is used instead as the final prediction. No further correction of
the output of the second classifier is performed as preliminary experiments
suggested that this would not further improve the performance.

The first classification method is RLS (see Section 3.1.7). RLS is used
in the challenge application because it has the following computational ad-
vantages (Pahikkala, 2008): Firstly, it is possible to calculate the cross-
validation performance of RLS on the training data without retraining in
each repetition. Secondly, the RLS solution can be computed for several
different values of the regularization parameter as efficiently as calculating
for only one. Thirdly, several learning problems on the same data set can be
solved in parallel, provided that the same kernel function is used with each
problem, as is the case in the challenge task. These properties are helpful
in testing which strategies improve the performance.

The second method in the cascade is the RIPPER rule induction-based
learning method (Cohen, 1995). The rules learned by the algorithm are
formulated in propositional logic. Each individual rule is a conjunction of
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individual conditions, which can be of the form A = v (A being a nominal
attribute), or A < v or A > v (A being a real valued attribute), where
A is a nominal attribute, and v a value. Rules are sequences learned for
recognizing positive instances, and they are applied in the class prediction.
RIPPER is used in the challenge application due to its excellent performance
with the challenge data and because it and RLS have quite differing learn-
ing principles. Consequently, RIPPER may succeed in cases where RLS
fails. RIPPER was not, however, chosen as primary classifier, because RLS
performs slightly better.

3.3.8 Performance evaluation

The primary performance measure is micro-averaged F1 (Flpicro), which
is the official challenge measure. In addition, the organizers have reported
macro-averaged F1 (Flyacro) and CSA, but they have no effect on the sub-
mission ranking.

The final evaluation is performed by the organizer through a comparison
of the system output and the majority vote gold standard on the test set 976
patient records. In the method development, different strategies to improve
the performance is tested by evaluating their effects using a 10-fold cross-
validation on the training set of 978 patient records.

3.3.9 Evaluation results

The learning task was difficult as illustrated by the small number of final
submissions (44 final submissions vs. approximately 150 registrations). The
mean, standard deviation and median of the 44 final submissions in terms
of Flpicro in the test set were 0.767, 0.133 and 0.799, respectively (Pestian
et al., 2007). By comparison, the pairwise inter-annotator agreement also
measured by using Flyicro in the test set was between 0.826 and 0.896, when
comparing individual annotators’ opinions against the gold standard (note
that because the gold standard was formed based on these annotations, the
numbers are likely to give an over-optimistic view on agreement between the
gold standard and content experts’ opinions on the coding task, in general),
and between 0.673 and 0.758 in the pairwise comparisons of the individ-
ual annotators’ opinions (Farkas and Szarvas, 2008). This advocates using
machine learning to assign ICD-9-CM codes in clinical practice; the perfor-
mance of the top ten submissions was between 0.850 and 0.891 (Table 3.6).

Our application scored, with Flyico = 0.877, the third place in the
challenge. While developing the application, the focus was on maximizing
Flicro, the official challenge measure. However, different performance eval-
uation measures emphasize different aspects: Flujcro = 0.877 illustrates a
good quality in relation to the number of code assignments. In terms of
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Table 3.6: Performance of top ten challenge submissions trained with 978 patient
records and tested with 976 records

Adapted from Computational Medicine Center (2007)

Rank Fliicro Flmacro Cost-sensitive accuracy
1 0.891 0.769 0.918
2 0.886 0.729 0.909
3 (our submission)  0.877 0.703 0.913
4 0.876 0.721 0.909
5 0.872 0.776 0.901
6 0.871 0.733 0.898
7 0.868 0.732 0.900
8 0.859 0.668 0.905
9 0.851 0.682 0.901
10 0.850 0.676 0.878

the over and under-coding penalty-bearing CSA measure, the performance
was even better, when compared to the other submissions. Flyacro = 0.703
would have given only the seventh place, but this measure evaluates the
performance in all 45 classes, and maximizing this was not the aim in the
challenge. According to the report of the challenge organizers (Pestian et al.,
2007), the choice of the classifier was not crucial for success, but use of nega-
tions, the structure of UMLS, hypernyms, synonyms, and symbolic process-
ing seemed to contribute to performance. These characteristics were also
evident in our method development.

When developing the application, a modular approach was adopted (Ta-
ble 3.7); different strategies to improve the performance were tested trough
cascading them. Only the modules that led to a better performance were
included. The good performance of the conjunctive rules (i.e., the RIP-
PER module) implied that the coding task could be reduced to recognizing
certain groups of informative keywords from the text (see also Farkas and
Szarvas (2008)). This justified the module of artificial ICD-9-CM instances.
Regarding the cascade of two classifiers, the identification of impossible code
combinations might not be as straightforward in a real-world setting as it
was in the challenge. The cascade is still likely to be applicable in a majority
of cases: Approximately 50 % of known errors triggering the cascade were
due to RLS not giving a code. In addition, the ICD-9-CM tree could be used
as a trigger, because, for example, codes both to a disease and its symptom
should not be assigned.
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3.3.10 Summary

The section has introduced a multi-label classification application for the
automated assignment of diagnostic codes to radiology reports. The appli-
cation demonstrates the usefulness of machine learning for clinical practice
and the importance of domain-tailoring. The experiences gained from the
challenge are beneficial for developing tools for real-world use. In addition,
the section concretizes multi-label classification tasks and the related per-
formance evaluation.



Chapter 4

Performance Evaluation
Methods and Evaluation
Reliability

This chapter addresses performance evaluation methods and evaluation reli-
ability. It is combines Papers VI and VII by summarizing the main results.

Paper VI discusses ways to ensure evaluation reliability in assessing
learning performance. It clarifies the steps of the performance evaluation
process (Figure 1.3) and their associations in classification applications.
In particular, the study addresses the AUC measure and cross-validation
method. The paper has also been the motivation for Paper VII and refer-
ence for Section 4.3.3.

Paper VII considers the problem of evaluating performance reliably with
the constraints of having a regression task, an overwhelming amount of data,
limited processing time, a supervised setting, and the RLS algorithm. It ad-
dresses this problem by adopting a faster learning algorithm (i.e., the sparse
version of the RLS algorithm), developing a faster performance evaluation
method (i.e., an efficient hold-out method) for this algorithm, and showing
that this method contributes not only to processing time but also to the
evaluation diversity and quality.

See Paper VI for a more elaborate discussion on all steps of the perfor-
mance evaluation process. Paper VII proves the algorithms and computa-
tional complexities that are presented next.

4.1 Sparse regularized least-squares algorithm

As explained in Section 3.1.7, the RLS algorithm has been shown to have
a state-of-the-art performance in regression and classification, and it is of-
ten used in practical applications. However, the computational complexity
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of training an RLS learner, O(m?), may be too tedious, if the number of
training instances, m, is large. To address this problem, several authors
have considered sparse versions of RLS in which only a part of the train-
ing instances, often called the basis vectors, are used as regressors while the
whole set is still used in the training process (see, e.g., Smola and Scholkopf
(2000) and Rifkin (2002)). This decreases the training complexity of RLS
to O(mn?), where n << m is the number of basis vectors. Next, to serve as
an introduction to our subsequent original contribution, an existing solution
to improve the complexity is described.

The proof of the decreased training complexity can be summarized as
follows: Let us first describe (3.5) and (3.4) in a matrix form. When X =

(1, oovy Tm),

fl@) = Y ok, @) = (k(z, 1), ..., k(@ 2m)) (01, .., o) T
=1

= k(z,X)A,
fa(X) = ((k(z1, X)A, ..., k(zm, X)A)T = KA, and
Ifle = ATKA.

Then the RLS minimization task (3.4) is

arg mfilng(A) = arg mfi‘n(Y —~KATY - KA) + MTK A,

where Y = (y1, ..., ym). This is solved by setting the derivative dg(A)/dA
to zero. The solution is

A= (KK +\K)'KY

whose computational complexity is O(m?) because of inverting the m x m
matrix (KK + AK).

In the sparse version, only the basis vectors B € 1, ..., m have a; # 0
n (3.5). When |B| = n, Mg denote a sub-matrix of M with rows indexed
by R, and Mpgc a sub-matrix of M with rows indexed by R and columns
indexed by C| this results in the sparse RLS minimization task

arg mjng(A) = arg mjn(Y —(Kp)TAY (Y — (Kp)TA) + MATKppA,

because

fle) = ) aik(e, =),
i€B

fa(X) = (Kp)TA4, and

Ifle = A'KppA.
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Again, the solution is obtained by setting the derivative dg(A)/dA to zero.
The solution is
A= (Kp(Kp)" + \Kgp) 'KgY.

Now, the computational complexity is dominated by computing Kp(Kpg)T:
the complexity of Kg(Kpg)T is O(mn?), whereas the inversion

(KB(KB)T + /\I(BB)f1

can be performed in O(n?) time with n << m.

4.2 Efficient hold-out method

A complementary approach to developing faster learning algorithms is to
address computational efficiency of performance evaluation methods used in
model selection and testing. Hold-out techniques, in particular cross-valid-
ation, are among the most commonly used of these. Recently, fast cross-
validation algorithms have been proposed for many learning algorithms (see,
e.g., Mullin and Sukthankar (2000) and Pahikkala et al. (2009)).

In Paper VII, we develop en efficient cross-validation method for the
sparse RLS. Let F' = {1, ..., m} index the whole data, B C F denote the
basis vectors, H C F denote the hold-out set, £ = H N B the intersection of
the hold-out set and the basis vectors, and L = H N B the intersection of the
non-hold-out set and the basis vectors. Then predictions for the hold-out
set can be calculated from

f7(Xn) = Ky (K, 7Kz, + \K1L) " Kg, Yo

This can be implemented efficiently given that Sparse RLS is trained in
advance for the whole data F' in O(mn?) time: the computational complexity
of holding out the set H is O(|H|3+|H|*n), and those of N-fold cross-validat-
ion and leave-one-out cross-validation are O(m3/N? +m?n/N) and O(mn),
respectively.

When compared with the previously proposed cross-validation method
for the sparse RLS (Cawley and Talbot, 2004), our method has several
advantages. First, our method is a hold-out method, which allows holding
out several data points simultaneously. Hence, it can be applied to cross-
validation in general, unlike the Cawley and Talbot’s leave-one-out cross-
validation method.

The second difference is related to the computational efficiency: In leave-
one-out cross-validation, the computational complexity of Cawley and Tal-
bot’s method is O(mn?), while that of ours is only O(mn). Further, our
algorithm can be combined with the simultaneous training of the sparse
RLS with several values of A\ so that this model selection can be performed
as efficiently as training just one instance of the sparse RLS.
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Third, our method allows holding out basis vectors too. Namely, Cawley
and Talbot’s method seems to assume that basis vectors are chosen first from
the whole training set and then leave-one-out cross-validation is performed
by holding out each of the remaining data points in turn. However, in certain
situations, a need for holding out basis vectors arises and consequently, we
assume that basis vectors and hold-out data can be selected independently.
Our method can also be used, when a basis vector is chosen to be held
out. The need for holding out basis vectors is elaborated next by addressing
cross-validation more thoroughly.

4.3 Evaluation reliability

This section motivates the use of our hold-out method from the reliability
point of view. First, it discusses different aims for cross-validation and then
three different cross-validation techniques.

4.3.1 Aims for cross-validation

Cross-validation can be used to find answers for various statistical questions
in machine learning. The question at hand determines the way cross-valid-
ation should be used. Dietterich (1998) represents a taxonomy of the ques-
tions. In this taxonomy, the first dividing factor is whether the machine
learning problem in question considers a single application domain or mul-
tiple domains. Our evaluation addresses machine learning in a single appli-
cation domain, as opposed to using the same algorithm for various learning
tasks such as classification related to finance and health care. The next
division in the single domain branch of the taxonomy is between evaluating

(a) how good are the predictors the learning algorithm usually creates, or

(b) how good is the predictor learned with the algorithm from a certain
training set.

In other words, the question (a) addresses the quality of a certain algo-
rithm in a given domain is evaluated whilst the question (b) corresponds to
evaluating a certain trained predictor.

For purposes of question (a), ten times repeated ten-fold cross-validat-
ion is recommended (Kohavi, 1995). Evidence supporting the selection of a
repeated cross-validation technique is also given in (Dietterich, 1998). The
justification is that the aim is to measure the quality of a learning algorithm
with unspecified user needs, and hence the evaluation method should take
into account the variability due to the choice of training and test sets.

In contrast, for purposes of the question (b) is considered, the training
set variability should be eliminated. This is because the predictor to be
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evaluated has been already trained and hence, also the user needs are known.
Leave-one-out cross-validation is particularly good for this purpose. It is an
almost unbiased estimator of the prediction performance, that is, the final
evaluation measure value is biased due to the removal of only one instance
from the training set.

4.3.2 N-fold and leave-one-out cross-validation

Let us now consider the evaluation task of answering to the question (a) with
the sparse RLS by using IN-fold cross-validation. For N-fold cross-validat-
ion, we prefer random selection of basis vectors, because using a selection
method that takes advantage of the whole training set outside cross-valid-
ation repetitions may cause biased performance estimators.

In our evaluation task, the variability caused by the selection of the basis
vectors should be taken into account in addition to the variability caused by
the training and test sets. This is emphasized with randomly selected basis
vectors. Taking the variability caused by the basis vector set into account
can be accomplished, for example, by selecting the basis vectors randomly
and separately for each cross-validation repetition. If we want, at the same
time, to preserve the computational efficiency, we can take into account the
variability caused by the selection of the basis vectors to some extent, if we
hold out part of the basis vectors in each cross-validation repetition.

For example, let us assume the evaluation task of assessing the sparse
RLS having n randomly selected basis vectors with the ten-fold cross-validat-
ion. We can start by training the sparse RLS with 11n/10 randomly selected
basis vectors. Then, we hold out n/10 of the basis vectors and one tenth
of the non-basis vectors in each repetition. Consequently, this cross-valid-
ation provides an approximation of the standard cross-validation estimator
in which one tenth of the basis vectors is changed in each repetition instead
of the whole set of basis vectors being changed. Compared to selecting all
basis vectors completely randomly for each cross-validation repetition, this
approach retains the computational efficiency, because we have no need to
train the sparse RLS again with new basis vectors.

Let us now consider the evaluation task of answering to the question (b)
with the sparse RLS trained with a fixed data set and basis vectors. Now,
the same set of basis vectors should be used in each cross-validation rep-
etition. Therefore, it makes sense to hold out only non-basis vectors and
have hold-out sets as small as possible, the extreme case being leave-one-
out cross-validation. Naturally, the fastest leave-one-out cross-validation
method results in the fastest training, model selection, and testing process.
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4.3.3 Leave-cluster-out cross-validation

For reliable performance evaluation, the test set has to be completely in-
dependent from the creation of the learner. With hold-out techniques, this
means assuring that no information leak between training, validation and
test sets exists. However, it is not easy in practice to notice all task-specific
data dependences that have to be taken into account when holding out data.

To illustrate the difficulties, let us consider the task of clinical topic la-
beling. At least four types of task-specific semantic dependences must be
taken into account when holding out data: patient profile, author, commu-
nity, and time. The aim is to label according to the topic-segment similarity.
Hence, the dividing factor should not be the patient profile, the author, the
community in which the text was written nor its writing time.

If the aim is to build a topic classification application for documents of
several patients, the documents of the same patient should be used only for
training, validation, or testing: A potential information leak occurs because
narratives about one patient are likely to be very homogeneous which makes
it easier for a learner to recognize notes relevant to a given topic if the test set
contain data about same patients as the training and validation sets. This
principle of independent training, validation, and test sets was followed in
Chapter 3.

Each author has an individual writing style, and as a result, texts written
by the same person are very likely to be more similar than those written by
two different people. If the aim is to build a topic classification application
for documents written by many nurses, the notes written by the same nurse
should be used only for training, validation, or testing. This was not possible
in Chapter 3 because the data did not include information regarding the
author.

Similarly, texts reflect the surrounding community and time, when it was
written. If the aim is to build a topic classification application for documents
of several health care units, the notes written in the same unit should be
used only for training, validation, or testing. Finally, the guideline for time-
dependence is to test the performance regularly and re-train the classifier if
necessary.

These examples illustrate that the assumption often made in the machine
learning studies of having independently and identically distributed data is
not met in many practical tasks. The conclusion is that for evaluation
reliability, we need an evaluation method that takes the data dependences,
or clusters, into account.

Leave-cluster-out cross-validation (Pahikkala et al., 2006) is a perfor-
mance evaluation method that meets this need. Each fold in the leave-
cluster-out cross-validation consists of the data points that form a cluster.
That is, the method generalizes leave-one-out cross-validation by holding
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out one cluster at a time. To explain the method and motivate its use for
the sparse RLS to answer the question (b), let us consider four empirical
examples.

Pahikkala et al. (2006) describes an experiment, where the effects of
clustered data are illustrated by comparing the leave-one-out and leave-
cluster-out cross-validation performance of a trained RLS. The task was
selecting the best answer from a set of candidate answers, that is, ranking the
candidates by the order of their correctness, in the case of sentence analysis.
A training data set was obtained by generating a set of parse candidates
for one hundred sentences. Each sentence had a known “correct” parse that
a parser is supposed to output for the sentence. Each candidate parse was
associated with a score value indicating its similarity to the correct parse.
The task of the trained RLS was, for each of the one hundred sentences, to
rank its candidate parses in the order of their score values. For this purpose,
an RLS regressor was trained by using the generated parses and their score
values.

In this example, the data set is heavily clustered according to the sen-
tences the parses were generated from. Due to the feature representation of
the parses, two parses originating from a same sentence almost always have
larger mutual similarity than two parses originating from different sentences.
Therefore, the clustered structure of the data has a strong effect on the per-
formance evaluation results obtained by cross-validation: Data points that
belong to the same cluster as the hold-out data point have a dominant effect
on the prediction.

The problem can be solved by performing cross-validation on the sen-
tence level so that all parses generated from a sentence are either always
in the training set or in the test set, that is, by using the leave-cluster-out
cross-validation. The experimental results confirm this conclusion.

Another example of taking clustered data into account at the method
implementation step is discussed in Saetre et al. (2007). The study discusses
the differences between two popular alternatives of doing ten-fold cross-
validation by using data describing protein-protein interactions. The first
alternative is to divide the data into ten groups before doing any analysis.
The second alternative is to perform linguistic processing and feature extrac-
tion on the whole corpus and then divide data into cross-validation folds.
The evidence in support of the serious information leak from creation of the
learner to testing is shown in the second alternative: it gave substantially
better impression of the performance.

As a third example of taking clustered data into account, we refer to Saeh
et al. (2005), were the method of leave-cluster-out is used to improve eval-
uation reliability in classifying chemical compounds as active or inactive in
biochemical processes of interest. A cluster is defined as active if it contains
an active chemical compound. In leave-cluster-out, one active cluster at
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a time is removed from training. Then, to further improve reliability, the
authors apply leave-core-out, where compounds that contain the same core,
that is, compounds that look alike, are left out one at a time. However,
this study does not focus on comparing evaluation methods but to improve
evaluation reliability in a particular machine learning application.

Finally, also Simon et al. (2003) emphasizes unreliability of performance
evaluation if it contains steps not in line with cross-validation. Their exper-
iments measure misclassifications in a genetic application when using two
types of leave-one-out cross-validation alternatives. In the first alternative,
hold-out instance is removed before any processing. In the second alter-
native, some analysis and processing is performed before the removal. As
expected, the results underscore better reliability with the first approach.

4.4 Evaluation results

This section contains the results of empirical comparisons of methods to
compute the cross-validation performance for the sparse RLS. In accordance
with Section 4.3, N-fold and leave-cluster-out cross-validation methods are
considered. To improve the reliability of the results, the experiments are
performed using parallel implementations in the MATLAB and Python pro-
gramming environments. In accordance with the sparse approach, large data
sets with multiple features are used.

As a preliminary experiment, we have confirmed the difference between
our and Cawley and Talbot’s leave-one-out methods: The results differ only
if holding out a basis vector. The experiment includes separate tests with the
number of basis vectors 0.1m, 0.3m, and 0.5m, and the difference between
results is always present. The tasks in the experiment also comprise the em-
pirical part of Cawley and Talbot (2004), but we do not consider them in the
actual experiments, because larger data sets are better suited to statistical
significance testing and should be used for sparse learning methods.

4.4.1 N-fold cross-validation

The variability caused by the basis vector selection was tested in four large-
scale regression tasks: Ailerons, Elevators, Pole Telecomm and Pumadyn®.
Ailerons contained 7,154 instances and forty features per instance. The
respective numbers were 8,752 and eighteen for Elevators; 5,000 and 48 for
Pole Telecomm; and 4,499 and 32 for Pumadyn. The kernel matrix K was
formed by using a Gaussian radial basis function kernel

k(z,2') = exp (—v]z — 2')?),

"Downloaded from http://www.liaad.up.pt/~1torgo/Regression/DataSets.html
[cited 2009 February 23].
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Figure 4.2: Variance and mean in the Elevators task

where v € R is a positive constant determining the width of the kernel.
Suitable « values were selected for each task in a preliminary experiment.
The positive definiteness assumption of K was assured by a diagonal shift
of 10771, where I is an identity matrix of an appropriate order. The tested
domain for X\ was {2720,...,271} in the Ailerons task, and {27%5,... 2%}
in other three tasks.

The analysis included three experiments:

1. In the first experiment, thirty basis vectors were selected randomly
from the whole data. Then, the data was divided randomly into ten
folds so that each fold contained three basis vectors. The sparse RLS
regressor was trained and cross-validation error was computed using
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Figure 4.4: Variance and mean in the Pumadyn task

the fold partition. This process was repeated one hundred times with
different sets of basis vectors and different fold partitions.

2. In the second experiment, 27 basis vectors were selected randomly from
the whole data. Then the data was divided randomly into ten folds so
that no basis vectors were included in any fold. This experiment was
also repeated one hundred times.

3. The third experiment was the same as the second one but with the
thirty basis vectors selected initially in the first experiment.

The number of basis vectors was selected in a preliminary experiments in a
way that it is suitable for solving the tasks.
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The first two experiments were to confirm the hypothesis that a smaller
variance for the cross-validation estimator is obtained by varying the set of
basis vectors in each repetition. These experiments were used to evaluate
the error that the sparse RLS regressor does, when it is trained with 27
basis vectors: In the first two experiments each cross-validation repetition
contained 27 basis vectors. The sizes of the hold-out sets were approximately
m/10 in the first experiment and (m — 27)/10 in the second one, and the
difference between these sizes is negligible with large m. Furthermore, three
basis vectors were switched in each cross-validation repetition in the first
experiments while the basis vectors were the same in each repetition in
the second experiment. The effects caused by the selection of the basis
vectors were tested by repetitions. The mean squared error was used as a
performance evaluation measure, and the variance was computed with the
following formula:

2 1 ¢ i 2
ot =1 (MSE® — 11)?, (4.1)
=1

where r is the number of repetitions, MSE(® is MSE obtained from the
1th repetition, and pu is the mean cross validation error estimated from the
sample of repetitions. The results gave supportive evidence of obtaining
a smaller variance by varying the set of basis vectors in each repetition
(Figures 4.1-4.4). This was most evident in Elevator and Pumadyn tasks.

With the third experiment the benefit of having three additional basis
vectors in training was addressed; the first two experiments had 27 basis
vectors whilst the third one had thirty. The evaluation observed whether
the differences between MSE values for the experiment pairs were statisti-
cally significant. When the first and third experiment were compared, the
Wilcoxon signed-rank test was used, and for the other two pairs (i.e., 1st—
2nd, 2nd-3rd) the Wilcoxon rank-sum test was chosen (Wilcoxon, 1945).
These statistical tests were selected, because they do not assume a normal
distribution. The rank-sum test was used, because the second experiment
had a different set of basis vectors than the other two experiments.

In the results, additional basis vectors improved or did not change the
learning performance. The differences between MSFE values for the exper-
iments with 27 basis vectors were statistically significant (i.e., two-tailed
p < 0.05) only in six out of sixty comparisons. In contrast, the comparison
of experiments with 27 and thirty basis vectors almost always produced sta-
tistically significant differences in Ailerons and Pole Telecomm tasks; three
exceptions occurred in the Ailerons task with the largest and second largest
A values. In the Elevators task, the six smallest A\ values produced sta-
tistically significant differences between the first and third experiment and
between the second and third experiment. In the Pumadyn task, only the
comparison between the first and third experiment with the five smallest A
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values had a statistically significant difference. As we expected, the extra
basis vectors contributed to the performance (Figures 4.1-4.4).

4.4.2 Leave-cluster-out cross-validation

To study the effects of clustered data, the sentence analysis task of Section
4.3.3 is considered. The parse ranking data set? that had altogether 2, 354
instances was used: The total number of sentences was 501 and approxi-
mately five parse candidates were generated for each sentence. The feature
representation contained tens of thousands of different features. The ker-
nel matrix K was formed by using a linear kernel and ensured its positive
definiteness by a diagonal shift of 1077I. Due to the sentence-wise clus-
tered data, cross-validation was performed on the sentence level by holding
out one sentence at a time. Omne training instance per each sentence was
chosen as a basis vector randomly, totaling n = 501. This selection was
intuitive and its superiority over complete random selection was confirmed
empirically in a preliminary experiment.
The MSE of the following two methods was compared:

1. Our hold-out method, which was used so that the one cluster was
completely removed from the training set in each cross-validation rep-
etition. That is, the basis vectors were also removed.

2. A cross-validation method in which one cluster at a time was removed
except the basis vector associated to the cluster, that is, the basis
vector is preserved and the square loss is evaluated on it.

The Wilcoxon signed-rank test was used to evaluate whether the differ-
ences between MSE values for the two methods were statistically significant.
Because the first method always held out one parse more than the second
method (i.e., the basis vector), each sentence was analysed separately and
the significance was calculated using the average MSFE for the sentence. A
separate comparison was made for each \ value from 27° to 2!4.

The experiments clearly indicated that the ability to hold-out basis vec-
tors from training is necessary with clustered data (Figure 4.5). The second
method always gave an over-optimistic MSE, because when a sentence was
held out, the method was still allowed to learn from the respective basis
vector. The difference in the MSE values was statistically significant for all
twenty comparisons.

*Downloaded from http://staff.cs.utu.fi/~aatapa/software/RLScore/ [cited
2009 February 23].
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Figure 4.5: Cross-validation methods and the sentence analysis

4.5 Summary

The chapter discussed various hold-out methods and introduced a new hold-
out method and its implementation for the sparse RLS. The chapter included
both theoretical and empirical analysis of the method, and showed that the
new method is faster, more general, and in certain evaluation tasks, more
reliable than the previously proposed method. Namely, in N-fold cross-valid-
ation, holding out basis vectors in each cross-validation repetition decreases
the variance of the evaluation measure, and in tasks that do not fulfill the
assumption of independently and identically distributed data, hold-out basis
vectors are a necessity from the reliability point of view.
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Chapter 5

Conclusions, Significance,
and Future Work

5.1 Conclusions

In this doctoral dissertation, machine learning and clinical text were studied
in order to support health information flow. The contributions related to
clinical needs were a model of the ideal information flow, a model of the
problems and challenges in reality, and a road map for the HLT develop-
ment. Altogether five machine learning applications for clinical text were
described. Their performance was evaluated in three practical cases. Also
the associations between evaluation measures and methods were addressed.
Finally, a new hold-out method for a particular learning algorithm was in-
troduced. These contributions have received scientific recognition (e.g., a
student encouragement award from Suominen et al. (2006), the best paper
and presentation award from Suominen (2007), the third score in the Com-
putational Medicine Center’s 2007 Medical Natural Language Processing
Challenge (Computational Medicine Center, 2007)).

5.1.1 Clinical needs

For high-quality care, it is crucial that all the members of a multi-professional
health care provider team and the patients themselves have the means to
access, share, and utilize the gathered health records. Efficient information
access is emphasized in the information-intensive and complex domain of
health care, where clinicians are responsible for making decisions with sub-
stantial, or even life-and-death, impact on their patients’ lives. In intensive
care, these crucial decisions must be made extremely fast due to patients’
critical status. The relevant data must be accessible in a timely and intelli-
gible form, otherwise inabilities create risks to care safety and cost-effective
health care administration.
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A clear need for supporting the information flow of clinical narratives was
indicated in this dissertation. When compared with the ideal (Figure 2.1),
the flow from previous narratives is currently fragmented (Figure 2.5). This
is explained by the overwhelming amount and topical-scattering of text, as
well as unsystematic headings that complicate finding relevant information.

To address these fragments, the dissertation has introduced a road map
for developing HLT (Figure 2.6) in order to create comprehensive solutions.
The components of the road map support writing narratives, combining
various sources of information, focusing attention on a particular topic, as
well as searching and summarizing the content. These components take
individual patient profiles into account and include proof-reading. Proof-
reading contributes to text intelligibility to human-readers and performance
of the other components.

5.1.2 Machine learning applications and their performance

The five machine learning applications described in this dissertation are re-
lated to the patient profile building, attention-focusing, and summarization
components of the road map (Figure 2.6). The first two applications are
binary classification and regression related to the practical case of topic la-
beling and relevance ranking. The next two applications are supervised and
unsupervised multi-class classification for the practical case of topic segmen-
tation and labeling. These four applications are tested with Finnish ICU
nursing narratives. The fifth application is multi-label classification for the
practical task of diagnosis coding. It is tested with English narratives writ-
ten by physicians and radiologists. The performance of all these applications
is promising.

The experiences gained in the method development give evidence of the
following domain constraints:

1. alack of annotated data and consequent need for minimally supervised
methods,

2. a need for tailoring for highly specialized, telegraphic jargon,

3. aneed for linguistic processing to reduce problems related to the sparse
data,

4. the substantially small proportion of topically relevant text to irrel-
evant text that makes both the learning task and its performance
evaluation challenging, and

5. the differing learning-task design and difficulty for the different topics
and relevance-degrees
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(Suominen and Salakoski, 2009). In addition, an interdisciplinary approach
is needed for assuring the quality of the applications. In this dissertation, col-
laboration with nursing scientists, who are experts in clinical documentation
and decision making, has enabled us to identify problems, whose solutions
are of a substantial practical value. Information systems sciences connect
these clinical needs and machine learning tasks, which, in turn, belong to
the expertise of computer science.

5.1.3 Evaluation reliability

Emphasized demands on reliable solutions in health care has motivated the
third research aspect of the dissertation: performance evaluation. Special
care has been devoted to reviewing evaluation measures and justifying their
use.

In order to address evaluation methods and their implementation, the
dissertation has discussed hold-out techniques. In particular, taking depen-
dences into account when holding out data and different aims for cross-
validation have been addressed. Finally, a new hold-out method for sparse
RLS has been introduced. This method is computationally efficient, con-
tributes to evaluation reliability, and allows holding out multiple inputs
simultaneously.

5.2 Computer science: significance and future work

Models are pervasive in science and are widely used in almost every area of
business — from banking and insurance to health and medicine — to sup-
port decision making and improve human performance. Machine learning
has made significant advances in abilities to construct realistic models, but
the standard learning algorithms are not equipped to handle domain con-
straints. This dissertation has described the constraints related to health
care HLT by addressing clinical needs; linguistic features; information search
and diagnosis coding tasks; as well as reliable performance evaluation.

The dissertation has clarified performance evaluation and introduced a
new evaluation method. Getting reliable performance evaluation results is
difficult. Countless evaluation measures and methods exists for various ma-
chine learning tasks, but their relations are poorly understood. The value of
such systematic study has been shown, for example, in Reid and Williamson
(2009) in the case of binary classification. My dissertation has clarified the
relations between evaluation measures. It has also introduced a new per-
formance evaluation method that is particularly suitable for applications,
where the data does not fulfill the assumption of independently and iden-
tically distributed data. This assumption is not often met with real-life
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applications. When compared with previously proposed methods, the new
one is faster and allows holding out multiple inputs simultaneously.

The topical information search approach discussed in this dissertation
has the capability for scientific breakthroughs in automated step-wise sum-
marization tailored for given purposes, especially in well-defined sub-domains
such as Finnish ICU language. In machine learning, much of the ultimate
goal of building systems able to communicate in human language remains
out of reach for the current technology. For instance, fully automated sum-
marization is an extremely challenging task, and the current solutions do
not come close to meeting the quality requirements of clinical applications.
In automated summarization, the first step is to specify the topics to be
summarized. Human experts can do this, and automated content analy-
sis can be used to support the task, for example, by identifying the most
common topics. The dissertation addressed both of these view points. The
second step is to find the relevant segments automatically. The dissertation
developed these search tools by developing applications for automated topic
segmentation, topic labeling, and relevance ranking. The topic segmenta-
tion, labeling, and ranking results can be used to ease writing summaries
manually, or as an input for further automated summarization techniques.
From the method development perspective, this thesis has contributed to
the state-of-the-art in capabilities to segment short topics.

Future work should address the clinical need for minimally supervised
methods. With LSA-HMM, more work is needed for the unsupervised se-
lection of the model parameters. Furthermore, the use of the probabilistic
interpretation of LSA might lead back to a proper HMM, which would open
interesting directions for developing probabilistic models for sequence label-
ing. Another topic for further work would be to study the effect of various
other methods providing unsupervised similarity measures (e.g., Probabilis-
tic LSA (Hofmann, 1999) and Random Indexing (Kanerva et al., 2000)).
Studying word similarities is likely to cast light on the content and struc-
ture of narratives which gives insights into the design of HLT applications
too (Karlgren et al., 2008). When considering the topic labeling task alone,
unsupervised techniques for topic-specific segment scoring may be fruitful
in a multi-label classification sense (Buntine et al., 2005). Finally, a general
way of modeling the topic Other is needed for applications where some text
segments do not belong to any keyword-defined topic.

Finally, the connections between evaluation measures can be used in
future work to understand how various machine learning algorithms theo-
retically relate to each other. By understanding these relations, task-specific
constraints can be incorporated into learning. This study direction is emerg-
ing, but challenging; gaining significantly improved performance by incor-
porating constraints into training and model selection is challenging (Rako-
tomamonjy, 2004; Brefeld and Scheffer, 2005; Joachims, 2005). The previous
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work includes, for example,

e changes in the evaluation measure (Rakotomamonjy, 2004; Brefeld and
Scheffer, 2005; Joachims, 2005; Pahikkala et al., 2008a) or method (Bach
et al., 2005; Pahikkala et al., 2008b),

e penalizing various errors differently (Elkan, 2001; Scott and Nowak,
2005; Han et al., 2008),

e capabilities for the user to specify the acceptable risk level before-
hand (Geibel and Wysotzki, 2005; Defourny et al., 2008),

e exploiting prior knowledge about relationships between the data fea-
tures and learning task (Mannor and Tsitsiklis, 2006; Kveton et al.,
2008; Kotlowski and Slowinski, 2009), and

e as a remedy for data with missing values, semi-supervised machine
learning techniques with exploitation of task-specific constraints (Chang
et al., 2007).

This research will lead to better machine learning algorithms, prediction
models, and decision-making tools.

5.3 Health care: significance and future work

The dissertation has clinical significance, which in the future, can contribute
to individual patients, health care sciences, as well as the whole welfare of so-
ciety. This research has produced new information about clinical documen-
tation practices and HLT tailoring, as well as provided tools for supporting
information flow that can next be piloted and developed further. The results
of preliminary piloting confirm that health care professionals perceive the
tools as useful (Lingsoft, 2008, 2009a). The pilot study has been conducted
in the fall 2008, and it has included basic components for producing and
using narratives (Figure 2.7): linguistic and stylistic proof-reading, domain-
terminology building, and aid in understanding (i.e., linking to dictionaries
and terminologies).

The dissertation has been conducted as a part of the larger Louhi (Text
mining of patient records [Potilasasiakirjojen tekstin LOUHInta]) project!
that belongs to the FinnWell — Future Healthcare Technology Programme
of the Finnish Funding Agency for Technology and Innovation, Tekes (grants
40435/05, 40020/07). Through this project, the dissertation has a unique
position of being able to establish a living link between health care service

1See http://www.med.utu.fi/hoitotiede/tutkimus/tutkimusprojektit/louhi/
[cited 2009 August 1].
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providers, health terminology developers, software houses in patient infor-
mation systems and HLT, as well as research groups in health informatics.

The outcome of the collaboration has been a release of the first commer-
cial proof-reading program for clinical Finnish (Lingsoft, 2009b) and an es-
tablishment of the consortium in 2008. This IKITIK (Information and lan-
guage technology for health information and communication [Informaatio-
ja Kleliteknologiaa Terveystledon ja -Kommunikaation tueksi]) consortium?
continues this dissertation work with an aim to support producing and using
health information and communication by developing innovative, intelligent,
state-of-the-art clinical information and language technology solutions. Its
partners represent industry, academia, and health care service providers,

2See http://wuw.ikitik.fi/ [cited 2009 August 1].
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which promotes collaboration of all actors along the value chain of pro-
ducing and using health information (Figure 5.1). The partners integrate
the research results to commercial state-of-the-art platforms, and test the
outcome in real environment providing end-user feedback.

IKITIK collaborates with the international HEXAnord (HEalth teXt
Analysis network in the Nordic and Baltic countries; NordForsk project no.
9141) network®. The HEXAnord partners are the Danish Technical Univer-
sity, Denmark; University of Tartu, Estonia; University of Turku, Finland;
Vytautas Magnus University, Lithuania; Norwegian University of Science
and Technology, Norway; and KTH-Stockholm University, Sweden. In ad-
dition, international collaboration of IKITIK includes committed work in
ScanBalt? activities in the Baltic Sea region as well as promoting European-
level projects with governmental, academic, and industrial partners from
Estonia, Finland, Hungary, the Netherlands, Sweden, and Switzerland.

More knowledge is needed about performance of the methods in clini-
cal practice. In particular, evaluation of culture- and language-dependences
deserves more attention in future work, because due to confidentiality of pa-
tient narratives, little is known about international applicability of existing
solutions. A research plan and permits have already been established for
me to carry out in an international collaboration comparative research on
Finnish and Swedish patient records (Hospital District of Southwest Fin-
land, research permit number 2/09 and 3/09; Ethical Committee of the
Hospital District of Southwest Finland, record number 12.2.2009566 and
12.2.2009567; and Ethical Committee in Stockholm, EPN, record number
2008/5:2). This includes documenting style, structure, and content; envi-
ronmental factors such as the patient information system used; and applying
methods from one language to another. The Nordic health care system is
known for its good quality, and hence its modeling is justified. This may
enable transmitting the best Nordic health documentation practices and
informatics internationally.

In the future, HLT can improve intelligibility of health information and in
this way, support clinical decision making and empower patients cognitively.
Patient documentation

e is a legal obligation,

e stands as an official proof of all necessary and sufficient information,
which is needed for organizing, planning, performing and controlling
good quality patient care,

e must be clear, intelligible, and correct, and

3See http://dsv.su.se/en/research/ithealth/projects/hexanord [cited 2009
November 20].
“See http://www.scanbalt.org/ [cited 2009 November 20].
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e should use only a generally known and widely accepted terminology
and abbreviations

(Decree 99/2001 of the Ministry of Social and Health, Finland). This is an
increasingly complex demand in the world of globalization and unit-specific
practices (Section 2, Figures 2.4 and 5.2). Further, the knowledge stated
narratives is not readily available for further automated analysis due to
the ambiguous nature of human language, where the meaning of a sentence
depends on its context and, on the other hand, a single meaning can be
expressed in a number of equivalent ways. Currently, the records are pro-
duced and used by health care professionals. But individuals (i.e., patients
or customers of health care services, or citizens) could use the technology
themselves to ease accessing their health data, and in the future, even enter
data to their records (Figure 1.2). In conclusion, methods resolving ambi-
guity as well as problems in grammar and understanding the content are
needed to ease communication between health care professionals, improve
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the performance of automated methods, as well as enhance patients’ aware-
ness regarding their health and encourages them in promoting health.

HLT tools have also the potential to enhance the quality and efficiency
of care by improved access of health information. The tools will allow health
care professionals more time for direct care. Further, supporting their de-
cision making enables faster and more efficient identification and response
to evolving health status trajectories. This has positive impacts on care
outcomes, patient safety, as well as efficiency and profitability of health care
services. Moreover, the HLT-assisted text summarization can take informa-
tion needs of the target audience into account and extend the study from
ICUs to other hospital wards. This intra-organizational information flow has
been discussed, for example, in Ellingsen and Monteiro (2006) and Pinelle
and Gutwin (2006).

The same technology will allow systematic analysis of masses of textual
patient records, and use of this cumulative, knowledge-rich resource to en-
rich clinical evidence base. This enables better and more versatile usage of
knowledge gained with previous patients, when caring for new patients, and
consequently supports individualized care. In addition, these text mining
capabilities can be utilized in science by creating practice-based evidence.
Finally, ability to base care decisions on accurate, timely, and customized
views on relevant information is likely to cause a paradigm shift in decision
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making and administration in health care, analogously to what has already
happened in modern private companies utilizing advanced business intelli-
gence methods in their management and planning.

Health care service providers describe this electronic health record de-
velopment using a model containing evolving generations (Figure 5.3). The
first generation is the simplest, and it provides support to storing health
information, that is, this write-only memory. The later ones are incorpo-
rated with increasing functionalities, including all previous capabilities. The
second generation includes, in addition to storage, support to documenting
health care information, and the third for decision making. This is the level
of electronic health records that are currently used in health care, but HLT
components still belong largely to research. These generations are based
on Sensmeier (2003)and Handler (2004). Future generations, as increasing
machine intelligence is gained, include first the HLT components (i.e., the
fourth generation). The fifth generation electronic health records integrate
data, in all formats, within all wards in one health care unit. The sixth
generation supports continuity of care by combining all health data of in-
dividuals from all health care service providers, and it has the capabilities
to capture past care experiences in order to use them in future care. In
addition, individuals can supplement the data produced by health care pro-
fessionals with their own notes and use their own electronic health records.
The paradigm shift would be the result after six generations.
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