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ABSTRACT
Kaisa Nieminen
Immunomodulation of allergic immune response during specific immunotherapy

Department of Pulmonary Diseases and Clinical Allergology, University of Turku
Annales Universitatis Turkuensis
Turku, Finland 2009

Atopic, IgE-mediated allergies are one of the major public health problems in Finland and other 
Western countries. These diseases are characterized by type 2 T helper (Th2) cell predominated 
immune responses (interleukin-4 (IL-4), IL-5) against ubiquitous environmental allergens. Despite 
of adequate pharmacological treatment, more than 20% of the patients with allergic rhinitis develop 
asthma. Allergen specific immunotherapy (SIT) is the only treatment currently available to affect to 
the natural course of allergic diseases. This treatment involves repeated administration of allergens 
to the patients either via sublingual route (sublingual immunotherapy, SLIT) or by subcutaneous 
injections (subcutaneous immunotherapy, SCIT). Successful treatment with SCIT or SLIT has been 
shown to provide long-term remission in symptoms, and prevent disease progression to asthma, but 
the immunological mechanisms behind these beneficial effects are not yet completely understood. 
Increased knowledge of such mechanisms could not only help to improve SIT efficacy, but also 
provide tools to monitor the development of clinical response to SIT in individual patients, and 
possibly also, predict the ultimate therapeutic outcome. The aim of this work was to clarify the 
immunological mechanisms associated with SIT by investigating the specific allergen-induced 
immune responses in peripheral blood mononuclear cells (PBMC) of allergic rhinitis patients 
during the course of SLIT and SCIT. The results of this work demonstrate that both therapies 
induced increases in the protective, Th2-balancing Th1 type immune responses in PBMC, e.g. by 
up-regulating signaling lymphocytic activation molecule (SLAM) and interferon gamma (IFN-γ) 
expression, and augmented tolerogenic T regulatory (Treg) cell type responses against the specific 
allergens, e.g. by increasing IL-10 or Forkhead box P3 (FOXP3) expression. The induction of 
allergen-specific Th1 and Treg type responses during SLIT were dependent on the treatment dose, 
favoring high allergen dose SLIT. During SCIT, the early decrease in Th2 type cytokine production 
- in particular of IL-4 mRNA and IL-4/IFN-γ expression ratio - was associated with the development 
of good therapeutic outcome. Conversely, increases in both Th2 (IL-5) and Th1 (IFN-γ, SLAM) 
type responses and IL-10 mRNA production were seen in the patients with less effective outcome. 
In addition, increase in Th17 type cytokine (IL-17) mRNA production was found in the PBMC of 
patients with less effective outcome during both SLIT and SCIT. These data strengthen the current 
hypothesis that immunomodulation of allergen-specific immune responses from the prevailing Th2-
biased responses towards a more Th1 type, and induction of tolerogenic Treg cells producing IL-10 
represent the two key mechanisms behind the beneficial effects of SIT. The data also give novel 
insight into the mechanisms why SIT may fail to be effective in some patients by demonstrating 
a positive correlation between the proinflammatory IL-17 responses, Th2 type IL-5 production 
and clinical symptoms. Taken together, these data indicate that the analysis of Th1, Th2, Treg ja 
Th17-associated immune markers such as IL-10, SLAM, IL-4, IL-5 and IL-17 could provide tools 
to monitor the development of clinical response to SIT, and thereby, predict the ultimate clinical 
outcome already in the early course of the treatment.

Keywords: immunotherapy, allergy, mechanisms, T-helper cell, cytokine, tolerance
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Atooppiset, IgE-välitteiset allergiat ovat yksi keskeisimmistä kansanterveydellisistä ongelmista 
Suomessa ja muissa länsimaissa. Näitä sairauksia luonnehtii tyypin 2 auttaja T-solujen muodostamat 
vasteet (IL-4, IL-5) ympäristön tavallisia allergeeneja kohtaan. Oikeasta lääkehoidosta huolimatta 
noin 20%:lle allergisista nuhapotilaista kehittyy astma jossain elämänvaiheessa. Ainoa tapa 
vaikuttaa allergisen sairauden kulkuun on siedätyshoito (SIT). Siinä potilasta totutetaan 
sietämään yhä suurempia allergeenimääriä antamalla allergeenia toistuvina annoksina joko 
kielenalussiedätyshoitona (SLIT) tai ihonalaissiedätyshoitona (SCIT). Siedätyshoito voi lieventää 
allergian oireita pitkäkestoisesti ja estää allergian pahenemisen astmaksi, mutta näiden vaikutusten 
taustalla olevia immunologisia mekanismeja ei vielä täysin tunneta. Tuntemalla siedätyshoidon 
immunologisia mekanismeja paremmin voitaisiin sen tehoa ehkä entisestään parantaa sekä 
hoitovasteen kehittymistä potilaissa seurata - mahdollisesti jopa ennustaa lopullista hoitotulosta. 
Tutkimuksen tarkoituksena oli selvittää siedätyshoidon taustalla olevia immunologisia 
mekanismeja tutkimalla allergeenispesifisiä immuunivasteita siedätyshoidettujen potilaiden 
valkosoluviljelmissä (PBMC). Tutkimuksen tulokset osoittavat, että sekä SLIT että SCIT lisäävät 
suojaavien Th1- (IFN-γ, SLAM)  ja Treg- (IL-10, FOXP3) soluvasteiden kehittymistä spesifisiä 
allergeeneja kohtaan. Th1- ja Treg-soluvasteiden muodostuminen allergeeneja kohtaan SLIT-
hoidon aikana riippui käytetystä hoitoannoksesta, suosien suuria allergeenipitoisuuksia. SCIT-
hoidossa varhainen lasku allergeenin indusoimissa Th2-tyypin immuunivasteissa, erityisesti IL-4 
mRNA ja IL-4/IFN-γ vasteissa, liittyi hyvän hoitotuloksen kehittymiseen. Sen sijaan heikosti 
siedätyshoidosta hyötyneillä potilailla tapahtui nousua sekä Th2- (IL-5) että Th1- (IFN-γ, SLAM) 
tyypin immuunivasteissa, mutta myös Treg- (IL-10) vasteissa. Myös tulehdusvastetta edistävän, 
Th17-soluille tyypillisen IL-17 mRNA:n ekspressio nousi potilailla, joilla siedätyshoidon kliininen 
teho jäi heikoksi (sekä SLIT että SCIT). Tämän tutkimuksen tulokset vahvistavat nykykäsitystä 
siitä, että allergeenispesifisten immuunivasteiden tasapainottuminen Th2-vasteista Th1-suuntaan 
ja tolerogeenisten Treg-soluvasteiden kehittyminen allergeeneja kohtaan ovat kaksi keskeistä 
mekanismia siedätyshoidon taustalla. Sekä SLIT että SCIT indusoivat pitkäaikaisia muutoksia 
näissä suojaavissa vasteissa PBMC soluissa. Tutkimuksen tulokset antavat viitettä myös sille, 
miksi siedätyshoito voi epäonnistua joillain potilailla osoittamalla, että tulehdusvastetta edistävän 
IL-17 sytokiinin ja Th2-sytokiinivasteiden sekä kliinisten oireiden välillä on positiivinen yhteys. 
Tämän väitöskirjatutkimuksen tulokset osoittavat, että analysoimalla allergeenien indusoimia 
Th1, Th2, Treg ja Th17 tyypin immuunivasteita (esim. IL-10, SLAM, IL-4, IL-5, ja IL-17) 
PBMC-soluissa siedätyshoidon aikana voidaan hoitovasteen kehittymistä seurata sekä hoidon 
tulosta jo sen alkuvaiheessa mahdollisesti ennustaa.

Avainsanat: siedätyshoito, allergia, mekanismit, auttaja-T-solu, sytokiini, toleranssi
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1	 INTRODUCTION

Allergic diseases are among the most common chronic illnesses in humans (Kay 2001). 
These diseases can manifest in any age group and in many different organs, with 
typical symptoms including asthma, rhinoconjunctivitis, gastrointestinal symptoms, 
and characteristic skin lesions (Johansson et al. 2001). It has been estimated that over 
500 million people worldwide suffer from allergic rhinitis, and over 300 million more 
from allergic asthma, and in many countries, the prevalence is increasing (Bousquet 
et al. 2008). Allergy as a term (from the Greek words allos meaning “other” and 
ergon meaning “work”) was introduced in 1906 by von Pirquet to distinguish immune 
responses that are harmful to host from protective immunity (Kay 2001). In 1967, it was 
recognized that immunoglobulin E (IgE) was the factor responsible for inducing the 
allergic reactions (Johansson 1967; Ishizaka & Ishizaka 1967). Atopy (from the Greek 
word atopos, meaning “out of place”) means the genetic or personal aptitude to produce 
IgE specific for common environmental antigens (allergens), and was introduced in 1923 
by Coca and Cooke to explain a series of hypersensitivity syndromes with hereditary 
transmission (Kay 2001; Johansson et al. 2001). Nowadays, the role of heredity is small 
(~30%) in the clinical expression of atopy and in the sensitivity to a particular allergen, 
with environmental factors appearing to predominate the genetic factors (Bousquet et 
al. 2001). T helper type 2 (Th2) cells, characterized by the production of cytokines, 
including interleukin-4 (IL-4), IL-5 and IL-13 are critical for the induction of allergen-
specific IgE synthesis in B cells and, thus, for the development and maintenance of 
allergic diseases. 

The means to manage allergic diseases are currently based on allergen avoidance, 
pharmacotherapy, allergen specific immunotherapy (SIT) and patient education 
(Bousquet et al. 2008). Of these, only allergen avoidance and SIT have the potential to 
affect to the natural course of allergic diseases (Bousquet et al. 1998). SIT is indicated 
for IgE-mediated allergic diseases to clinically relevant allergens (pollens, mites, animal 
dander, Hymenoptera venoms), and involves administration of allergen extracts or their 
derivatives in increasing doses until the achievement of a maintenance dose, which is 
typically continued for 3-5 years to provide long-lasting protective effects against the 
allergens that are responsible for producing the symptoms (Bousquet et al. 2008). SIT 
was introduced into clinical practice in 1911 and is traditionally given by subcutaneous 
injections of allergen extracts or their derivates under forearm skin (specifically 
posterior portion of the middle third of upper arm), and is therefore termed subcutaneous 
immunotherapy (SCIT) (Cox 2007). Alternative routes for performing SIT have been 
proposed sporadically since the 1920s (Esch 2008). Increasing body of evidence supports 
the safety and efficacy of sublingual immunotherapy (SLIT) as a propitious alternative to 
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SCIT, both in children and in adults (Esch 2008; Wilson et al. 2005; Penagos et al. 2006; 
Penagos et al. 2008; Larenas-Linnemann 2009). This therapy involves administration of 
allergens under tongue, where they are kept for few minutes and then swallowed. The 
hallmarks of SLIT are its improved tolerability and safety profile as compared to SCIT, 
and these features have also allowed home administration of SIT (Esch 2008). 

SIT is recognized as a biological response modifier, capable of influencing or down-
modulating the allergen-induced immune responses, and inducing allergen-specific 
tolerance (Bousquet et al. 1998). However, the immunological mechanisms behind this 
tolerance induction are not yet completely understood. It has been demonstrated that there 
is immune deviation from the predominated allergen-specific Th2 type cell responses to 
a more Th1 response, decrease in allergen-specific IgE production in favor of IgG4, 
and induction of tolerogenic T regulatory (Treg) cells that produce anti-inflammatory 
cytokines, including IL-10 and/or transforming growth factor beta (TGF-β) (James & 
Durham 2008; Moingeon et al. 2006). So far, however, nothing is known of the effects 
of this treatment on Th17 type immune responses, a recently characterized T helper cell 
subclass with pleiotropic functions, and no immunological marker for monitoring of the 
therapeutic response to SIT has been established. A more complete understanding of the 
immunological mechanisms that underlie successful SIT could improve the knowledge 
of the induction of allergen-specific tolerance, and thus, provide means to improve the 
clinical efficacy of this treatment (James & Durham 2008). It could also provide tools 
to monitor the development of clinical response to SIT in individual patients, and 
possibly also, predict the ultimate therapeutic outcome. The aim of this study was 
to deepen the understanding of the immunological mechanisms associated with SIT 
by investigating the in vitro allergen-induced immune responses, including Th17 type 
responses, in peripheral blood mononuclear cells (PBMC) of allergic rhinitis patients 
during the treatment, and by comparing these responses with clinical improvement. The 
aim of the study was also to investigate the dose-dependency of such responses during 
SLIT by comparing the responses between patients treated with low and high allergen 
doses.     
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2	RE VIEW OF THE LITERATURE

2.1	 Atopic allergies and allergic inflammation

2.1.1	 Atopy, allergy and allergens (definition, manifestations and prevalence)
Allergies are hypersensitivity reactions to innocuous environmental antigens initiated by 
immunological mechanisms (Johansson et al. 2001). Distinct from other hypersensitivity 
reactions that may occur in the body, allergies are mediated by IgE (termed type I 
hypersensitivity reaction). The antigens that can induce IgE synthesis in the body, 
that is sensitization, and subsequent allergic reactions, are known as allergens. Most 
allergens are soluble proteins or glycoproteins ranging from 2 to 60 kDa in molecular 
weight, although certain polysaccharides and some low molecular weight chemicals 
and drugs can also be allergenic (Johansson et al. 2001; Donnell & Grammer 2004). 
Depending on their route of introduction, the allergens can be classified either as 
airborne allergens (inhaled), food allergens (ingested), occupational allergens, drug 
allergens or hymenoptera venoms (Bousquet et al. 2002). Worldwide, airborne allergens, 
including pollens, animal dander, mites, and mold cause the most problems for people 
with allergies (The National Institutes of Health (NIH)). In Finland, the most common 
allergens causing sensitization are animal dander (cat, dog), and birch and timothy grass 
pollens (von Hertzen et al. 2006). The prevalence of allergic sensitization to at least one 
of the common environmental allergens in Finland has been shown to range from around 
35 to 47% based on recent epidemiological studies (Kilpeläinen 2001; von Hertzen et al. 
2006; Pallasaho et al. 2006). 

The genetic or personal aptitude to produce IgE against environmental allergens is known 
as atopy (Johansson et al. 2001). Atopy as such, though, does not indicate a symptomatic 
inflammation; it has been estimated that only 57% of those with specific IgE to inhalant 
allergens, have a symptomatic disease, i.e. allergic rhinitis or asthma (Bousquet et al. 
2008; Kerkhof et al. 2000). However, atopy increases the risk of developing symptomatic 
allergic disease during lifetime. Typically, an atopic person develops a spectrum of 
atopic diseases with age, sometimes referred as the ‘atopic march’. Gastrointestinal and 
eczematous skin symptoms, often caused by food allergens, predominate during the first 
years, whereas asthma and rhinitis to inhalant allergens develop later (Johansson et al. 
2001). 

Allergic diseases are increasing in prevalence at an alarming rate, particularly in 
countries with a western lifestyle, although in some countries with high prevalence, a 
plateau seems to be already achieved (Bousquet et al. 2008; Ascher 2006). In Europe, 
it has been estimated that approximately one-quarter of the population is affected by 
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respiratory allergies (Bousquet et al. 2008; Burney et al. 1996). The prevalence of 
allergic disorders, in particular allergic rhinitis and asthma, has steadily increased in 
Finland since the 1960s (Latvala et al. 2005). The reasons for the increased prevalence 
of allergic diseases in westernized countries remain unresolved, but environmental 
factors, including the urban lifestyle deprived from microbial contacts, and pollution, 
have been indicated to play an important role (Bousquet et al. 2008; Kilpeläinen 2001; 
von Herzen et al. 2006).

2.1.2	 Allergic immune reaction

2.1.2.1 Immunological basis of allergy I - the Th2/Th1 paradigm
The synthesis of specific IgE in B cells is dependent on CD4+ Th2 lymphocytes that 
secrete cytokines such as IL-4, IL-5, IL-9 and IL-13 (Table 1) (Galli et al. 2008). 
IL-4, in particular, is the key cytokine in inducing antibody isotype switch to IgE in 
B lymphocytes (Pene et al. 1988). In addition, IL-5 contributes to the pathogenesis 
of allergic inflammation by inducing the synthesis and differentiation of eosinophils 
from bone marrow precursors, which then recruit to the allergen-exposed tissues and 
sustain inflammation (Lopez et al. 1988; Clutterbuck et al. 1989). The biological 
functions of Th2 cytokines in allergic inflammation are summarized in Table 1. It 
has been demonstrated that allergen-specific CD4+ T cell clones of allergic patients 
produce cytokines predominantly of the Th2 type (Wierenga et al. 1991; Parronchi 
et al. 1991), and increased synthesis of Th2 type cytokines have also been found 
in cutaneous biopsies (Kay et al. 1991), nasal mucosa (Durham et al. 1992) and 
bronchoalveolar lavage (BAL) fluid (Robinson et al. 1993) obtained from allergic 
individuals after allergen challenge and during natural allergen exposure. Healthy 
individuals, by contrast, favour the production of Th1 type cytokines in response 
to allergens (Wierenga et al. 1991; Imada et al. 1995). Th1 cytokines, in particular 
interferon gamma (IFN-γ), are known to be important in the suppression of allergic 
immune responses. IFN-γ inhibits IL-4-induced Th2 cell development from naïve T 
cells (Maggi et al. 1992) and the production of IgE in B lymphocytes (Pene et al. 
1988). The induction of Th1 cell responses is dependent on IL-12, a heterodimeric 
cytokine composed of p35 and p40 subunits and produced by activated macrophages 
and B lymphocytes (Manetti et al. 1993). IL-12 also suppresses the synthesis of IgE 
by IL-4-stimulated human B cells (Kiniwa et al. 1992), and has the ability to suppress 
Th2 cell development (Manetti et al. 1993). 
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Table 1. Biological functions of Th2 cytokines in allergic inflammation (James & Durham 
2008).

Cytokine Function(s)
IL-4 Promotes IgE and (with IL-10) IgG4 production in B cells

Induces Th2 cell development and inhibits Th1 differentiation
Induces expression of adhesion molecules by endothelial cells
Induces mucus production from mucosal glands
Up-regulates co-stimulatory molecules on B cells
Up-regulates expression of low-affinity IgE receptor (CD23)

IL-5 Induces eosinophil differentiation, activation and survival
Enhances IL-4 induced IgE synthesis in B cells

IL-9 Promotes mast cell and basophil growth 
Promotes eosinophil development (in synergy with IL-5)
Up-regulates high-affinity IgE receptor on mast cells (FceRI)

IL-13 Promotes IgE and (with IL-10) IgG4 production in B cells
Induces expression of adhesion molecules by endothelial cells
Induces mucus production from mucosal glands
Up-regulates expression of low-affinity IgE receptor (CD23)

The development of Th2 cells is influenced by many transcription factors, the key lineage 
commitment factor involving GATA-binding protein 3 (GATA-3) (Zheng et al. 1997; 
Zhang et al. 1997). GATA-3 regulates Th2 cytokine gene expression in naïve CD4+ T 
cells (Zheng et al. 1997; Zhang et al. 1997). It concomitantly inhibits the differentiation 
of Th1 cells by cell-intrinsic mechanism that is not dependent on IL-4 and that may 
involve repression of IL-12 signaling (Ouyang et al. 1998).

2.1.2.2	 Immunological basis of allergy II – Treg cell deficit
The imbalance between Th2 and Th1 cell responses formed the basis of understanding 
allergic immune responses for more than two decades since the discovery of these two 
subsets in the late 1980s. More recently, T regulatory cells (Treg) have been discovered 
as another pivotal subset of CD4+ T cells with implications for allergic disease (Holgate 
& Polosa 2008; Groux et al. 1997). These cells are characterized by the expression of 
transcription factor forkhead box P3 (FOXP3) and IL-2 receptor (CD25) (Fontenot 
et al. 2003; Yagi et al. 2004). FOXP3 is required both for the development of Treg 
cells, as well as maintenance of their regulatory function (Fontenot et al. 2003; Yagi et 
al. 2004). In healthy individuals, Treg cells are involved in the active suppression of 
proliferation and Th2 type cytokine production against allergens, whereas in allergic 
subjects, deficits in their capacity to suppress allergen-specific CD4+ T effector cell 
functions have been found (Ling et al. 2004; Grindebacke et al. 2004; Bellinghausen 
et al. 2005). It has also been demonstrated that in healthy individuals, allergen-specific 
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Treg cells are present in higher frequencies than their effector counterparts (Th1, 
Th2), and secrete high amounts of IL-10 and TGF-β when stimulated with allergen, 
whereas in allergic subjects, the Th2 cell subset and IL-4, IL-5 and IL-13 responses 
predominate (Jutel et al. 2003; Akdis et al. 2004). The importance of Treg cells in 
the immunosuppression of allergic immune responses has been further emerged from 
studies showing that beekeepers, who have naturally become tolerant to bee venom 
after being stung several times by bees, have increased numbers of venom-specific 
IL-10-producing Treg cells and increased production of IL-10 in response to bee 
venom allergen (Akdis et al. 1998). In addition, adoptive transfer of allergen-specific 
CD4+CD25+ cells in mice has been shown to prevent allergen-induced Th2 responses 
and IgE production, as well as airway eosinophilia (Cottrez et al. 2000; Stock et al. 
2004).

The mechanisms by which Treg cells exert their immune regulatory activity on allergen-
specific CD4+ T effector cells are largely dependent on the secreted cytokines IL-10 
and TGF-β (Taylor et al. 2006). It has been demonstrated that IL-10 can inhibit the 
proliferation and cytokine production by both Th1 and Th2 cells, and induce long-
term antigen-specific anergy in CD4+ T cells (Del Prete et al. 1993; Groux et al. 1996; 
Francis et al. 2003). IL-10 also inhibits IL-4-mediated IgE synthesis in B cells, while 
induces IgG4 production (Punnonen et al. 1993; Jeannin et al. 1998; Akdis et al. 1998). 
IL-10 also suppresses survival and cytokine production of eosinophils (Takanaski et 
al. 1994) and prevents mediator release from mast cells and basophils (Pierkes et al. 
1999; Royer et al. 2001). Similarly, TGF-β has been shown to suppress both Th1 and 
Th2 type cytokine responses (Fargeas et al. 1992; Jutel et al. 2003), and proliferation by 
allergen-stimulated PBMC (Jutel et al. 2003) but, instead of inducing IgG4, it directs the 
synthesis of IgA in B lymphocytes (Jutel et al. 2003; Cazac & Roes 2000). Furthermore, 
neutralization of either IL-10 or TGF-β in the allergen-stimulated PBMC of healthy 
individuals has been shown to result in an increased proliferation and in increased 
synthesis of Th2 type cytokines, including IL-4, IL-5, and IL-13, indicating their active 
involvement in the suppression of allergic immune responses also in vivo (Akdis et al. 
1998; Jutel et al. 2003). The anti-allergic immune effects of IL-10 and TGF-β in vitro 
are summarized in Table 2.

Treg cells are also capable of inducing apoptosis and depletion of allergen-specific 
T effector cells by direct cell-to-cell contact mechanisms independent of soluble 
IL-10 or TGF-β (Sun et al. 2007; Nagato et al. 2007). The cell-contact dependent 
immunosuppression by Treg cells has been shown to involve surface molecules such as 
cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1), as well 
as cell surface-bound TGF-β (Taylor et al. 2006; Nakamura et al. 2001; Akdis et al. 
2004). 
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Table 2. Anti-allergic immune effects of Treg type cytokines IL-10 and TGF-β (Jutel et al. 
2006).

Cytokine Functions
IL-10 Suppresses the synthesis of allergen-specific IgE and induces IgG4 

Blocks B7/CD28 costimulatory pathway on T cells
Suppresses allergen-specific Th1 and Th2 cells 
Inhibits dendritic cell maturation, leading to reduced MHC class II and 
costimulatory ligand expression
Upregulates FOXP3 expression
Reduces release of proinflammatory cytokines and histamine by mast cells

TGF-β Suppresses the synthesis of allergen-specific IgE and induces IgA 
Suppresses allergen-specific Th1 and Th2 cells
Down-regulates FcεRI expression on Langerhans cells 
Associated with CTLA-4 expression on T cells

2.1.2.3	 Immediate (type I) hypersensitivity reaction
Allergic hypersensitivity reaction is typically a biphasic reaction, involving an immediate, 
early-phase reaction, occurring within seconds to minutes of allergen exposure, and a late-
phase response, peaking within hours (Galli et al. 2008). Chronic allergic inflammation 
may result if the allergen exposure is frequent or persistent. 

The immediate allergic reaction is an IgE-mediated mast cell-driven response. 
Mast cells are tissue resident inflammatory cells, and increased numbers have been 
found in mucosa of patients with allergic disease (Bentley et al. 1992; Wilson et al. 
2001b; Nouri-Aria et al. 2005). These cells express high-affinity FcεRI receptors and 
have specific IgE bound on their plasma membrane (Galli et al. 2008; Ying et al. 
1998). The cross-linking of IgE and their corresponding receptors on mast cells by 
binding of bivalent or multivalent allergen molecules results in the release of various 
proinflammatory mediators to the surrounding milieu. These mediators include 
histamine, and serine proteases such as tryptase, that are stored preformed in the 
intracellular granules, and lipid mediators such as cysteinyl leukotrienes (CysLT) 
and prostaglandins (e.g. prostaglandin D2, PGD B2 B

), that are rapidly formed from 
membrane phospholipids following mast cell activation (Bousquet et al. 2001; Galli 
et al. 2008). These mediators give rise to the acute signs and symptoms of allergic 
inflammatory reaction, which typically peak at 15-30 min after allergen exposure, and 
resolve within 1-3 hours (Till et al. 2004; Galli et al. 2008). The signs and symptoms 
of this response may vary according to the site of the reaction, but can include 1) 
vasodilatation, producing erythema (reddening) of the skin and conjunctiva, 2) 
increased vascular permeability, leading to tissue swelling and, in the eyes, to tear 
formation, 3) contraction of bronchial smooth muscle, causing airflow obstruction and 
wheezing, and 4) mucus hypersecretion, exacerbating airflow obstruction in lower 
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airways and causing a runny nose (Galli et al. 2008). Mast cells can also synthesize 
several cytokines, chemokines and growth factors that increase adhesion molecule 
expression on vascular endothelial cells and promote the recruitment of other immune 
effector cells from circulation to the site of allergic inflammation (Kay 2001; Galli et 
al. 2008). Among these mediators are Th2 cytokines such as IL-13, proinflammatory 
cytokines such as IL-8 (also known as CXC chemokine ligand 8, CXCL8) and tumor 
necrosis factor-alpha (TNF-α), and chemokines such as CC chemokine ligand 2 (CCL2, 
formerly known as monocyte chemotactic protein-1, MCP-1) (Bousquet et al. 2001). 
Usually, mast cell mediators are released only locally, but a rapid and systemic release 
of these mediators from mast cells, or basophils, that also express FcεRI, can lead to 
a serious, and potentially fatal, allergic hypersensitivity reaction termed anaphylaxis 
(Galli et al. 2008). Anaphylactic reactions are often associated with stinging insect 
(Hymenopthera venom) hypersensitivity, latex allergy, and some forms of food allergy 
(seafood, nuts).

Mast Cell

Allergen

Specific IgE

Fc RI histamine
tryptase
cysteinyl leukotrienes (CysLTs)
prostaglandins (e.g. PGD2)
platelet-activating factor
cytokines (e.g. IL-4, IL-13, TNF- )
chemokines (e.g. IL-8, CCL2)
growth factors (e.g. IL-3, IL-5, CM-SCF)

Cross-linking of Fc RI-bound IgE

Release of soluble mediators

• Increased fluid secretion
• Increased peristalsis

Expulsion of gastrointestinal 
tract contents (diarrhea, 
vomiting)

• Decreased diameter
• Increased mucus secretion

Congestion and blockage of airways 
(wheezing, coughing, phlegm)
Swelling and mucus secretion 
in nasal passages

• Increased blood flow
• Increased permeability

Increased fluid in tissues causing increased 
flow of lymph to lymph nodes
Increased cells and proteins in tissues
Increased effetor response in tissues

Gastrointestinal tract Airway Blood vessels

Figure 1. Events associated with immediate IgE-mediated (type I) hypersensitivity reaction. 
Allergic individuals have specific IgE bound on their mast cells through high-affinity FcεRI 
receptors. Upon allergen encounter and cross-linking of the FceRI, mast cells release both 
preformed and newly-synthesized mediators, including histamine, cysteinyl leukotrienes 
(CysLTs) and cytokines that act on local blood vessels to increase vascular permeability, induce 
smooth muscle contraction and increase mucus production, which give rise to the acute signs and 
symptoms of the allergic reaction. Chemokines released by mast cells also induce the recruitment 
of other inflammatory cells, in particular eosinophils and Th2 cells, to the allergic site, which 
characterizes the late phase allergic reaction (modified from Janeway et al. 2001).  
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Figure 2. Mediators of late-phase allergic reaction (modified from Galli et al. 2008 and Janeway 
et al. 2001). Late-phase allergic reactions typically occur within hours of allergen exposure and 
are mediated by the actions of innate and adaptive immune cells that have been recruited to the 
site of the allergen exposure from circulation, as well as by inflammatory mediators that are 
secreted by tissue-resident cells. Eosinophils and neutrophils, for example, are potent sources 
of proinflammatory mediators, including cysteinyl leukotrienes (CysLTs) and cytokines that 
induce mucus hypersecretion and smooth muscle cell contraction, enzymes such as elastase 
and collegenase that activate matrix-degrading metalloproteinases, and basic proteins such as 
eosinophil cationic protein (ECP), eosinophil peroxidase (EPO) and major basic protein (MBP) 
that can induce tissue damage. Macrophages produce proinflammatory cytokines and activate Th2 
cells, that in turn produce cytokines such as IL-4, IL-5, IL-13 and IL-9 and induce IgE synthesis 
in B cells. Together these mediators and cells sustain inflammation at the affected site, which can 
lead to tissue remodeling and chronic inflammation, if the allergen exposure is persisting. MIP-
1a, macrophage inflammatory protein (also known as CCL4); GM-CSF, granulocyte-macrophage 
colony-stimulating factor.
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2.1.2.4 Late-phase reaction
Depending on the allergen dose and allergen sensitivity of the subject, a second phase of 
allergic inflammation, the late-phase reaction, may occur (James & Durham 2008). This 
reaction typically develops 2-6 hours after the allergen challenge, often peaks within 
6-9 h, and has fully resolved after 1-2 days, if there is no repeated exposure to the 
allergen (Galli et al. 2008). This response is clinically manifested by an edematous, 
red and slightly indurated swelling in the skin, sustained blockage in the nose, and by 
prolonged wheezing in the lung (Kay 2001). It involves infiltration of inflammatory cells 
from circulation to the allergen-exposed tissue, including neutrophils, that accumulate 
early, eosinophils, which appear shortly after, and then basophils, which are followed by 
mononuclear cells, including monocytes, that differentiate into tissue macrophages, and 
T cells, in particular of those that express Th2 type cytokines (Kay 2001; Charlesworth 
et al. 1989; Zweiman et al. 2000; Varney et al. 1993; Wilson et al. 2001b). The infiltrated 
inflammatory cells secrete proinflammatory mediators that sustain inflammation and, 
thereby, contribute to the development of chronic inflammation, which is especially 
noticeable in allergic asthma (Holgate & Polosa 2008). Persistent allergic inflammation 
is often associated with changes in the structural cells at the affected tissue and, in many 
cases, with markedly altered function of the target organs (Galli et al. 2008). 

2.2	 Specific immunotherapy (SIT)

2.2.1	 General 
Specific immunotherapy (SIT; also known as allergen immunotherapy or allergen 
vaccination, as well as hyposensitization, or desensitization) is the practice of repeated 
administration of specific allergens to a patient with an IgE-mediated condition for the 
purpose of providing protection against the allergic symptoms and inflammatory reactions 
associated with natural exposure to these allergens (Cox et al. 2007). This treatment, 
originally described by Noon in 1911, was developed to treat ‘hay fever’ or seasonal 
allergic rhinitis caused by pollen allergens, but is now expanded to include treating 
allergies caused by other allergen sources too, such as Hymenoptera venoms, house dust 
mites, animal dander, cockroaches and fungi (Esch 2008; Cox et al. 2007; Bousquet et 
al. 2008). SIT is recognized as a biological response modifier, capable of influencing 
the allergen-driven immunological responses, and is, alongside with allergen avoidance, 
the only treatment currently available to affect the natural course of allergic diseases 
(Bousquet et al. 2008). The treatment is indicated for patients over 5 years of age who 
have a demonstrated IgE-mediated allergic disease (i.e. history of allergic symptoms, 
positive skin prick test and/or in vitro-determined specific IgE, which correspond to 
the clinical symptoms), whose symptoms are inadequately controlled by medication or 
allergen avoidance, who have adverse effects from medication, or who wish to reduce 
the long-term use of medication (Cox et al. 2007; Bousquet et al. 2008). 
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2.2.2	 Regimens (SCIT, SLIT)
The traditional route for administering allergens to the patients during SIT is by 
subcutaneous injection (SCIT). This treatment is, however, not without a risk of 
developing serious, and potentially fatal, systemic reactions, in particular during the 
induction phase (the risk ranges from <1% when using the conventional regimen to even 
>36% when using rush schedules) (Cox et al. 2007; Bousquet et al. 2008). Therefore, other 
routes, including intranasal, oral, bronchial, and sublingual routes, have been explored 
as an alternative to SCIT (Esch 2008; Bousquet et al. 1998). Sublingual immunotherapy 
(SLIT) was introduced in 1986 and accepted by the World Health Organization (WHO) 
for routine clinical use in 1998 (Penagos et al. 2006; Bousquet et al. 1998). SLIT involves 
administration of allergen extracts in the form of tablets or drops under tongue, where 
they are kept for 2-3 min and then swallowed. Its hallmarks are improved tolerability 
and safety profile as compared to SCIT, and these features have also allowed home 
administration of SIT (Esch 2008). Only few clinical cases on anaphylactic reactions 
following SLIT have been published: one case was on latex immunotherapy, two other 
on multi-allergen vaccine, and one on overdose of maintenance dose (Bousquet et al. 
2008; Dunsky et al. 2006; Antico et al. 2006; Eifan et al. 2007; Blazowski 2008). The 
increased tolerability of SLIT is likely to relate to the low prevalence of effector cells, 
including mast cells, basophils and eosinophils, in the oral mucosa (Lima et al. 2002; 
Marcucci et al. 2007; Esch 2008).

SCIT typically involves a build-up phase (also known as the up-dosing, introduction, or 
dose-increase phase) during which the allergens are introduced to the body, by starting 
with very low quantities, and increasing them until the achievement of maintenance 
dose, which is typically continued for 3-5 years to induce long-lasting protective effects 
against the allergens that are responsible for producing the symptoms (Cox et al. 2007; 
Bousquet et al. 1998). In SCIT, the starting dose is generally 1000-10,000-fold less 
than the maintenance dose, the latter being typically in the range of 5-20 µg of major 
allergen for inhalant allergens, and 100 µg for Hymenoptera venom (Cox et al. 2007). 
Several build-up schedules have been generated for SCIT, the most common one (often 
termed conventional schedule) involving administration of increasing doses of the 
allergens at 1 to 2 week intervals, when the maintenance dose is achieved within 4 to 6 
months. Accelerated schedules such as cluster and rush SCIT, enable achievement of the 
maintenance dose in a much shorter period, even within 1-3 days when using the rush 
schedule, or within 4-8 weeks, when using the cluster schedule, but these methods are 
associated with a higher risk of generating severe adverse reactions (Cox et al. 2007). 
The risk of generating systemic adverse reactions during the accelerated schedules has 
been reduced by the usage of depot or modified extracts instead of the aqueous ones 
(Mellerup et al. 2000; Cox 2006). After the maintenance dose is achieved, the dose is 
typically given in every 4-8 weeks for Hymenoptera venom, and 2-4 weeks for inhalant 
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allergens (Cox et al. 2007). The interval between injections, though, can be progressively 
increased as tolerated to 4 to 6 weeks according to other practice guidelines (Li et al. 
2003). 

In most trials showing the clinical efficacy of SLIT, maintenance doses in the range of 3 to 
more than 375 times higher than the maintenance dose of SCIT have been administered, 
and the current recommendation by the WHO is that doses at least 50-100 times higher 
than in SCIT should be administered, to reach the same level of efficacy (Moingeon et 
al. 2006; Bousquet et al. 2008). To achieve these cumulative doses, allergen preparations 
must be administered frequently (usually daily) and for long duration (usually year 
round) (Esch 2008). A possible explanation for this may be an inefficient delivery of 
allergens to the immune cells, such as oral dendritic cells, and their difficulty to ultimately 
induce a robust and protective T-cell response (Esch 2008). Also, current SCIT protocols 
usually rely on the use of an adjuvant (e.g. calcium phosphate or aluminum hydroxide), 
which are not employed in the sublingual administration (Moingeon et al. 2006). The 
favorable safety profile of SLIT has also unnecessitated the use of a build-up phase, 
thereby enabling the initiation of SLIT regimens directly with therapeutically effective 
maintenance doses (Lombardi et al. 2009).

2.2.3	 Clinical efficacy
Several recent meta-analyses of randomized placebo-controlled trials have concluded 
that both SCIT and SLIT are clinically effective in the treatment of allergic rhinitis and 
asthma in adult and pediatric patients (Abramson et al. 2003; Calderon et al. 2007; Wilson 
et al. 2005; Penagos et al. 2006; Penagos et al. 2008). Both treatments have been found 
to significantly reduce allergy symptoms and medication use when compared to placebo 
group. However, some controversy still exists between the different meta-analyzes in the 
clinical efficacy of SIT to confer for the reduction of allergic rhinoconjunctivitis symptoms 
as compared to pharmacological treatment in children (Wilson et al. 2003; Röder et al. 
2008). The discrepancies in the efficacy of SIT in the treatment of IgE-mediated allergies 
between different clinical trials have been suggested to relate with divergences in the 
methodological qualities of the trials, differences in the administration form and duration 
of SIT, and the use of different allergens or different allergen doses (Röder et al. 2008). 
SCIT has been shown to be effective against allergies due to pollens (birch and other 
Betulaceae; grass, Cupressae, cypress, olive tree, Parietaria, ragweed), animal allergens 
(cat), house dust mite, fungi (Alternaria) and cockroach (Cox et al. 2007; Bousquet et al. 
2008). In SLIT, the efficacy has been demonstrated against birch, cypress, grass, olive 
and Parietaria pollens, and house dust mite (Bousquet et al. 2008). 

A number of longitudinal clinical studies have shown that the therapeutic effects of SCIT are 
long-lasting, with clinical efficacy persisting for at least 3-6 years after its discontinuation 
in adults (Durham et al. 1999b; Passalacqua & Canonica 2002), and as recently shown 
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in children, even for 12 years (Cools et al. 2000; Eng et al. 2006). SCIT, when given 
prophylactically to children, may also reduce the onset of new sensitizations to unrelated 
allergens (Des Roches et al. 1997; Pajno et al. 2001; Eng et al. 2006), and prevent disease 
progression from allergic rhinitis to asthma (Jacobsen et al. 1997; Polosa et al. 2004; 
Jacobsen et al. 2007). It has been estimated that nearly 20% of patients with allergic 
rhinitis will develop asthma in 10 years time despite of an appropriate pharmacological 
treatment (Linna et al. 1992; Bousquet et al. 2001). Increasing body of evidence supports 
that SLIT can also prevent the development of new sensitizations and reduce the onset of 
asthma when initiated early in childhood (Di Rienzo et al. 2003; Novembre et al. 2004; 
Marogna et al. 2007a; Inal et al. 2007). SLIT has also been shown to confer for long-term 
remission in symptoms, lasting for at least 4-5 years after its discontinuation in children 
(Di Rienzo et al. 2003). The duration of efficacy of both SLIT and SCIT in the patients 
has been shown to depend on the length of the treatment course, with 3-4 years treatment 
period conferring for the best protection (Des Roches et al. 1996; Marogna et al. 2007a). 
SIT has also been shown to provide long-lasting protection against Hymenopthera venom 
anaphylaxis (Golden et al. 1996; Ross et al. 2000). SIT for Hymenopthera venom allergy 
is often referred as venom immunotherapy (VIT), and this term is hereafter used to indicate 
the mechanisms associated with this treatment.

2.3	 Immune mechanisms behind the beneficial effects of SIT

2.3.1	 Attenuation of immediate hypersensitivity reaction
The clinical efficacy of SIT is largely related to its capacity to inhibit immediate and 
late-phase allergic responses in the target organs upon subsequent allergen encounters. 
The changes in these responses can be experimentally tested by local application of 
allergens on the target mucosa e.g. in nose, lungs or skin by inhalation or intradermal 
injection, respectively - or in the case of pollen allergy, by investigating the responses 
during natural allergen exposure. Several studies have shown a significant reduction in 
the magnitude of immediate allergic reactions to the causative allergens in the allergen-
exposed tissues during SCIT, as shown by either diminished wheal-and-flare response 
in the skin (Iliopoulos et al. 1991; Varney et al. 1993; Durham et al. 1996; Hamid et al. 
1997; Nish et al. 1994; Durham et al. 1999a; Keskin et al. 2006), reduced sneezing and 
nasal congestion (Creticos et al. 1985; Iliopoulos et al. 1991; Otsuka et al. 1991; Durham 
et al. 1996; Klimek et al. 1999a; Keskin et al. 2006; Francis et al. 2008), or diminished 
airway obstruction in the lungs (Arvidsson et al. 2004). The dose of allergen needed to 
induce such responses has also been shown to increase several-fold during SIT (Creticos 
et al. 1985; Pene et al. 1998; Klimek et al. 1999a; Meissner et al. 1999; Durham et al. 
1999a; Keskin et al. 2006; Lent et al. 2006). 
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Significant reduction in the numbers of mast cells in skin (~5x) (Durham et al. 1999a) 
and nasal mucosa (Otsuka et al. 1991; Cengizlier et al. 1995; Nouri-Aria et al. 2005; 
Plewako et al. 2008) has been found after SCIT. In both sites, diminished or even 
abolished secretion of mast cell-derived mediators, including histamine and PGDB2B 
or N-α-Tosyl L-arginine methyl ester (TAME)-esterase in response to allergen challenge 
has been found (Creticos et al. 1985; Hedlin et al. 1989; Iliopulos et al. 1991; Nish et 
al. 1994; Dokic et al. 1996). In pollen-allergic patients, the post-seasonally recorded 
decrease in the numbers of mast cells in skin during SCIT was found to correlate with 
the clinical improvement during subsequent pollen season, although was not directly 
associated with the decrease in the size of the late-phase allergic reactions in skin 
(Durham et al. 1999a). SCIT has also been shown to blunt the usual seasonal increases 
in mast cells in nasal mucosa of pollen allergic patients, although this did not correlate 
with the clinical improvement during the season (Nouri-Aria et al. 2005).  

The immediate allergic responses to specific allergens have been shown to decrease 
already 3 months after the start of SCIT (Hedlin et al. 1989; Francis et al. 2008), and 
to remain low up to 3 years after its discontinuation in adult pollen allergic patients 
(Durham et al. 1999b). Recently, in children, there was no return of immediate allergic 
reactions to specific allergens until 12 years post-SCIT (Eng et al. 2006). Both in adults 
and children, the trend of return in immediate allergic reactions after SCIT to specific 
allergens was not associated with any relapse in clinical improvement though (Durham 
et al. 1999b; Eng et al. 2006).  

During SLIT, generally no changes in immediate skin or conjunctival responses to 
specific allergens have been found during the first 2 years of treatment (Pradalier et 
al. 1999; Lima et al. 2002; Bufe et al. 2004; Smith et al. 2004a; Valovirta et al. 2006). 
After the second treatment year, however, the patients were 6.8 times likely to show 
reduced nose running and 2.4 more likely to have reduced sneezing as compared to 
placebo-treated group (Smith et al. 2004a). In some studies, earlier reductions in 
rhinoconjuctivitis symptoms, occurring just 6 months after the initiation of treatment, 
was found (Marcucci et al. 2005a). In addition, reduction in seasonal ocular symptoms 
in some studies (Pradalier et al. 1999) but not all (Clavel et al. 1998), and reduction in 
bronchial asthma symptoms (Pradalier et al. 1999) were demonstrated just 4 months 
after the start of SLIT (Smith et al. 2004a). It has been demonstrated that nasal tryptase 
levels are decreased after allergen challenge after the third year of SLIT (Marcucci et al. 
2005b). However, only low numbers of mast cells are normally found to be present in 
the sublingual mucosa, and thereby, no changes in the mucosal tryptase levels have been 
found during the course of SLIT (Marcucci et al. 2001; Marcucci et al. 2007). 
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2.3.2	 Attenuation of late-phase allergic reaction
A second key feature of SIT, and the factor most likely to contribute to the capacity of 
this treatment to attenuate disease progression and pathogenesis, is the suppression of 
allergen-induced late-phase reactions. This has been demonstrated in skin (Iliopoulos et 
al. 1991; Varney et al. 1993; Nish et al. 1994; Durham et al. 1996; Hamid et al. 1997; 
Durham et al. 1999a; Lima et al. 2002; Plewako et al. 2004; Gardner et al. 2004a; 
Alexander et al. 2005), nose (Iliopoulos et al. 1991; Durham et al. 1996; Wachholz et 
al. 2002) and lungs (Oda et al. 1998; Arvidsson et al. 2004) during both SCIT and SLIT, 
as well as in skin after VIT (Jung et al. 1997; Nasser et al. 2001; Tarzi et al. 2006). In 
skin, the reduction in the late-phase allergic reactions during SCIT and VIT was found 
to be associated with the diminished infiltration of inflammatory cells, including T cells, 
eosinophils, basophils, neutrophils and macrophages from circulation to the allergen-
challenged site  (Varney et al. 1993; Nish et al. 1994; Nasser et al. 2001; Jung et al. 1997; 
Plewako et al. 2004). Similarly, in nose, decreased number of infiltrated inflammatory 
cells, in particular T cells and eosinophils, in response to allergen challenge was found 
during the course of SCIT (Furin et al. 1991; Durham et al. 1996). Biopsies taken in and 
out of pollen season from pollen allergic patients have also revealed significant seasonal 
decreases in the numbers of infiltrating T cells, as well as eosinophils and basophils, to 
nasal mucosa during SCIT (Furin et al. 1991; Wilson et al. 2001b; Wilson et al. 2001a; 
Wachholz et al. 2002; Nouri-Aria et al. 2005). The changes in the cellular infiltrates in 
nasal mucosa during SCIT have been shown to relate with the decreased concentration 
of eosinophil-associated inflammatory mediators such as eosinophil cationic protein 
(ECP, also known as RNASE 3, from ribonuclease, RNase A family, 3) and tryptase, 
in nasal secretions during allergen challenge (Klimek et al. 1999b; Keskin et al. 2006). 
In pollen allergic patients, the decrease in the numbers of eosinophils in nasal mucosa 
during pollen season during SCIT was found to correlate with the clinical improvement 
(Wilson et al. 2001a; Wilson et al. 2001b; Nouri-Aria et al. 2005). 

SCIT has also been demonstrated to blunt the usual seasonal increases in eosinophils in 
BAL fluid of pollen allergic patients with rhinoconjunctivitis and asthma (Rak et al. 1991). 
In addition, SCIT has been shown to blunt allergen-induced increases in eosinophils in 
peripheral blood and sputum of allergic asthma patients (Oda et al. 1998; Arvidsson 
et al. 2004). In some studies, both SCIT and VIT have been demonstrated to result in 
a diminished number of basophils in peripheral blood and/or their decreased mediator 
release (Plewako et al. 2006a; Jutel et al. 1996; Pierkes et al. 1999; Shim et al. 2003). 
In asthma patients, this inhibition was found to be directly associated with the decreased 
asthma symptom scores (Shim et al. 2003). SCIT has also been shown to result in a 
reduced concentration of eosinophil-associated inflammatory mediators, including ECP/
RNASE 3 and nitric oxide (NO) in serum (Arvidsson et al. 2004; Cevit et al. 2007). VIT 
has been shown to reduce the expression of RANTES (from Regulated upon Activation, 
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Normal T-cell Expressed, and Secreted, also termed CCL5), IL-8/CXCL8 and MCP-1/
CCL2 in PBMC (Akoum et al. 1998). 

The late-phase allergic reactions to specific allergens in skin have been shown to 
decrease significantly already 2 weeks after the initiation of SCIT, and thus, to occur 
earlier than the reduction in immediate allergic responses (Francis et al. 2008). The late-
phase skin response to specific allergens have been shown to remain virtually absent 
in the patients treated with SCIT for at least 3 years after the discontinuation, and to 
relate with the diminished infiltration of T cells and IL-4 mRNA+ cells in the allergen-
challenged skin (Durham et al. 1999b). The long-term immunomodulatory effects of 
SCIT on allergen-induced cellular infiltration have been also confirmed in nasal mucosa, 
wherein a sustained blockage of the usual seasonal increases in eosinophils and cells 
staining positive for chemokines eotaxin, RANTES/CCL5, CC chemokine receptor 3 
(CCR3), and TARC (from thymus and activation regulated chemokine, also known as 
CCL17) was found 3 to 5 years post treatment (Plewako et al. 2008). 

The suppression of late-phase allergic responses in skin (Lima et al. 2002), nose 
(Passalacqua et al. 1999; Ciprandi 2006b; La Grutta et al. 2007) and lungs (Ciprandi 
et al. 2006b; Marogna et al. 2005) have also been demonstrated during SLIT, although 
not in all studies (Valovirta et al. 2006). In conjunctiva, the reduction in the late-phase 
allergic reactivity after SLIT was found to be associated with the diminished infiltration 
of inflammatory cells, including eosinophils and neutrophils, from circulation, as well 
as with the decreased expression of intercellular adhesion molecule 1 (ICAM-1) on 
conjunctival epithelium in response to allergen challenge (Passalacqua et al. 1998). 
Similarly, in nose, decreased infiltration of inflammatory cells, including eosinophils and 
neutrophils, and decreased expression of ICAM-1 on nasal epithelium were found after 
the allergen challenge after the treatment with SLIT (Passalacqua et al. 1999; Ciprandi 
2006b; La Grutta et al. 2007). In pollen allergic patients, SLIT has also been shown to 
significantly reduce the usual seasonal increases in the numbers of infiltrating eosinophils 
in nasal mucosa (Marogna et al. 2005; Marogna et al. 2007b; Marogna et al. 2009). 
A trend toward diminished eosinophil count in peripheral blood has also been found 
during SLIT (Lue et al. 2006). After 6 months of treatment, there was also a significant 
reduction in the sublingual ECP/RNASE 3 concentration, but not of tryptase (Marcucci 
et al. 2005a). However, no changes in the inflammatory cells (CD1a+ dendritic cells, 
CD68+ macrophages, or total (CD3+) T lymphocytes) in sublingual mucosa have been 
found during the first 18 months of SLIT (Lima et al. 2002). Only low numbers of 
eosinophils have been normally found in the sublingual mucosa, with no changes in 
these cells during SLIT (Marcucci et al. 2007). However, SLIT has been shown to lead 
into decreased serum concentration of eosinophil-associated inflammatory mediators, 
including ECP/RNASE 3, IL-13, and prolactin (Passalacqua et al. 1998; Ippoliti et al. 
2003).
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2.3.3	 Immunomodulation of allergen-specific T cell responses

2.3.3.1 Induction of tolerogenic Treg cells
The ultimate goal of SIT is to increase tolerance to the allergens that are causing the 
symptoms. This tolerance can be induced in principle by two immunological mechanisms: 
either by induction of Treg cells that mediate active suppression of the allergen-induced 
immune responses or by inducing anergy (functional inactivation) and/or clonal deletion 
(apotosis) in allergen-specific T effector cells (Faria & Weiner 2005; Moingeon et al. 
2006). The primary factor that determines which form of peripheral tolerance develops 
is the dose of antigen administered. Low doses of antigen generally favor the generation 
of Treg-driven tolerance, whereas high doses of antigen favor anergy-driven tolerance 
(Friedman & Weiner 1994; Gardner et al. 2004b). SIT, initiated with very low allergen 
doses, and then increasing them up to the maintenance doses, is likely to involve both 
mechanisms. 

It has been demonstrated that there is induction of tolerogenic, allergen-specific 
CD4+CD25+ Treg cells, in particular of the IL-10-producing type, in peripheral blood 
during SCIT (Francis et al. 2003; Jutel et al. 2003; Gardner et al. 2004a), VIT (Akdis et 
al. 1998) and SLIT (Bohle et al. 2007). These cells are induced early, within 1-3 months 
after the initiation of these treatments (Akdis et al. 1998; Jutel et al. 2003; Gardner et 
al. 2004a; Bohle et al. 2007). In pollen allergic patients, SCIT has also been shown to 
result in local increases in IL-10 or TGF-β expressing cells, e.g. in nasal mucosa during 
pollen season (Nouri-Aria et al. 2004; Pillette et al. 2007). Several studies have also 
demonstrated increased peripheral IL-10 production during SIT; the expression has been 
shown to increase during SCIT for grass or tree pollens (Francis et al. 2003; Jutel et al. 
2003; Savolainen et al. 2004; Francis et al. 2008), dust mites (Gardner et al. 2004a) and 
cat (Verhoef et al. 2005), during SLIT for grass or tree pollens (Savolainen et al. 2006; 
Bohle et al. 2007; Burastero et al. 2008) or dust mites (Ciprandi 2006a; Ciprandi 2006b) 
and during VIT for bee or wasp venom (Bellinghausen et al. 1997; Akdis et al. 1998; 
Pierkes et al. 1999; Nasser et al. 2001; Faith et al. 2003; Fellrath et al. 2003; Tarzi et al. 
2006). In some studies, increase in peripheral TGF-β production has been shown during 
SCIT (Jutel et al. 2003; Lent et al. 2006) and SLIT (Burastero et al. 2008). 

The IL-10+ cell population found in the nasal mucosa of SCIT-treated patients during 
pollen season has been shown to represent an immunization-induced phenomenon, as 
there is no increase in such cells in the nasal mucosa of healthy individuals during pollen 
season (Nouri-Aria et al. 2004). The Treg cells induced during SIT thereby represent 
an inducible subset of the Treg cells (iTreg) in the body, generated by immunization in 
the periphery, whereas the naturally occurring Treg cells (nTreg) that maintain tolerance 
against self antigens, develop in thymus (Bluestone & Abbas 2003; Faria & Weiner 2005). 
The nTreg cells constitutively express high levels of FOXP3, whereas it is induced in 
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iTreg cells following activation (Ziegler 2006). Several subtypes of iTreg cells have been 
identified, including the predominantly IL-10-producing type 1 Treg cells (Tr1), and the 
predominantly TGF-β-producing Th3 cells (Taylor et al. 2006; Chen et al. 1994; Groux 
et al. 1997). Oral immunization has been shown to favor the induction of Th3 subtype 
in mice (Chen et al. 1994). It has been demonstrated that FOXP3 mRNA expression 
increases in PBMC and nasal mucosa during SCIT, and it co-localizes to CD4+ T cells 
expressing CD25 (Radulovic et al. 2008). FOXP3 expression has also been shown to 
increase in PBMC during SLIT (Bohle et al. 2007).

Besides of inducing IL-10 and/or TGF-β production in Treg cells, both VIT and SCIT 
have also been shown to increase IL-10 production in antigen-presenting cells (APC), 
including monocytes and B cells (Akdis et al. 1998; Nouri-Aria et al. 2004). After VIT, 
nearly 41% of the IL-10-producing cells in peripheral blood were identified as CD14+ 
monocytes or as CD19+ B cells, and after grass pollens SCIT, 35% of the IL-10 mRNA+ 
cells in nasal mucosa were found to be CD68+ macrophages (Nouri-Aria et al. 2004). 
Likewise, a large proportion (~35%) of TGF-β mRNA+ cells in the nasal mucosa after 
grass pollen SCIT was characterized as CD68+ macrophages (Pillette et al. 2007). The 
induction of Treg type immune responses during SIT are summarized in Table 3.

It has been demonstrated that the early induction of IL-10 production by PBMC 
coincidences with the suppression of late-phase allergic reactions in the skin both during 
SCIT (Gardner et al. 2004a; Francis et al. 2008) and VIT (Nasser et al. 2001). The 
blocking of either IL-10 or TGF-β in the PBMC cultures in vitro has been shown to result 
in full restoration of the SIT-induced suppressions in allergen-specific T cell proliferation 
and Th2 and Th1 cytokine production (Bellinghausen et al. 1997; Akdis et al. 1998; 
Jutel et al. 2003; Faith et al. 2003). IL-10 production induced during SIT has also been 
shown to contribute to the inhibition of proinflammatory mediator release from allergen-
stimulated peripheral blood leukocytes (Pierkes et al. 1999) and the reduced expression 
of CD28-family costimulatory molecules on CD4+ T cells (Bellinghausen et al. 2004), 
since these responses are restored by IL-10 neutralization. In SLIT-treated patients, the 
increase in IL-10 production during the treatment was found to be associated with the 
diminished lymphoproliferation of PBMC to specific allergen (Burastero et al. 2008), as 
well as to correlate with TGF-β production (Savolainen et al. 2006). The increased IL-
10 production during SLIT has also been shown to correlate with the increased forced 
expiratory flow values (Ciprandi 2006a), as well as with the decreased nasal responses 
to decongestion testing (Ciprandi et al. 2007).

2.3.3.2 Induction of Th2/Th1 shift
In addition to inducing Treg cells, immune deviation from the predominated Th2-biased 
responses to a more Th1 type in allergen-specific T effector cells is another important 
phenomenon associated with SIT. During SCIT for grass or tree pollens (Ebner et al. 
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1997), dust mites (Secrist et al. 1993; Oda et al. 1998; Benjaponpitak et al. 1999; Fu et 
al. 2003; Jutel et al. 2003; Gardner et al. 2004a) and animal allergens (Pene et al. 1998; 
Meissner et al. 1999; Smith et al. 2004b; Tazaki et al. 2004; Verhoef et al. 2005; Lent et 
al. 2006), as well as during VIT for Hymenopthera venoms (Jutel et al. 1995; McHugh 
et al. 1995; Akdis et al. 1996; Akoum et al. 1996; Bellinghausen et al. 1997; Akdis et al. 
1998; Faith et al. 2003; Fellrath et al. 2003; Tarzi et al. 2006), a significant reduction in 
the allergen-induced proliferation by specific T cells, and a shift in the peripheral allergen-
specific Th2/Th1 balance, as shown by either decreased Th2 type cytokine (IL-4, IL-5, IL-
13) production and/or increased synthesis of Th1 type cytokines (IFN-γ, IL-12), has been 
demonstrated. Some studies, however, have failed to demonstrate any significant changes 
in the peripheral allergen-specific T cell responses during SCIT (Till et al. 1997; Klimek et 
al. 1999a; Wachholz et al. 2002; Francis et al. 2003; Francis et al. 2008), but rather, have 
found a shift away from the predominated allergen-induced Th2 type immune responses 
towards more Th1 type in target organs (Klimek et al. 1999a; Wachholz et al. 2002). 

Local alterations in allergen-specific Th2/Th1 cell balance during SCIT have been 
demonstrated in numerous studies. Decreases in the numbers of cells expressing mRNAs 
for Th2 type cytokines (IL-4, IL-5) and/or increases in the numbers of cells expressing 
mRNAs for Th1 cytokines (IL-2, IFN-γ) or IL-12 have been found after allergen challenge 
for example in the skin (Varney et al. 1993; Nasser et al. 2001; Hamid et al. 1997) and 
nose (Durham et al. 1996). SCIT has also been shown to blunt the usual seasonal increases 
in IL-5 or IL-9 mRNA expressing cells in the nasal mucosa of pollen allergic patients 
(Wilson et al. 2001a; Wachholz et al. 2002; Nouri-Aria et al. 2005). In addition, SCIT has 
been shown to block the usual seasonal increase in IL-4 and IL-13 production in PBMC 
(Giannarini & Maggi 1998; Gabrielsson et al. 2001). Decreased concentration of IL-5 and 
increased concentration of IFN-γ have also been found in the nasal secretions of SCIT-
treated patients (Klimek et al. 1999a). These local changes have been shown to correlate 
with the clinical improvement. For example, in pollen allergic patients, the increase in the 
numbers of IFN-γ mRNA+ cells and the decrease in the numbers of IL-5 mRNA+ cells in 
nasal mucosa during SCIT were found to closely correlate with the clinical improvement 
during the pollen seasons (Durham et al. 1996; Wilson et al. 2001a).  

In skin, the increase in the numbers of IL-12 mRNA+ cells, most (55-80%) of which 
were found to co-localize to CD68+ macrophages, has been shown to correlate with the 
decrease in the numbers of IL-4 mRNA+ cells and the increase in the numbers of IFN-γ 
mRNA+ cells in dermis after allergen challenge during SCIT (Hamid et al. 1997). This 
finding suggests that the shift in allergen-specific Th2/Th1 balance during SCIT may 
be driven by IL-12. SCIT has also been shown to result in increase in peripheral IL-12-
producing CD14+ monocytes and IFN-γ-producing CD56+ natural killer (NK) cells in 
patients with allergic asthma (Plewako et al. 2006b). However, in sublingual mucosa, no 
changes in IL-12 mRNA+ cells have been found during SLIT (Lima et al. 2002). 
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Studies on allergen-specific T cell responses during SLIT have demonstrated reduced 
allergen-induced lymphoproliferation (Fanta et al. 1999; Bohle et al. 2007), increased 
synthesis of IFN-γ (Cosmi et al. 2006; Ciprandi et al. 2008a) and inhibition of IL-5 increase 
(Savolainen et al. 2006) in PBMC. However, some studies have failed to demonstrate 
any significant changes in peripheral allergen-specific T cell responses during SLIT, due 
to low dose treatment protocols (Rolinck-Werninghaus et al. 2005; Dehlink et al. 2006). 
The capacity of SLIT to induce changes in peripheral allergen-specific T cell responses 
has been shown to depend on the therapeutic allergen dose, as shown in trials involving 
both high allergen dose and low dose treated groups (Savolainen et al. 2006; Lent et al. 
2006). The dose-dependency of SLIT in inducing immune deviation in allergen-specific 
immune responses is thus similar to as earlier demonstrated for SCIT (Pene et al. 1998). 
In allergic rhinitis patients, the increase in IFN-γ production in the PBMC during SLIT 
was found to correlate with the clinical improvement (Ciprandi et al. 2008a). The changes 
in allergen-specific Th2/Th1 type immune responses in PBMC and target tissues during 
SIT are summarized in Table 4.

IL-18 and SLAM are two molecules suggested to play a role in the Th2/Th1 shift during 
SIT (Laaksonen et al. 2003; Savolainen et al. 2004). SLAM (signalling lymphocytic 
activation molecule, CD150) is a self-ligand, transmembranic, cell-surface glycoprotein 
belonging to the CD2 subset of immunoglobulin superfamily, and is preferentially 
expressed on Th1 cells over Th2 cells (Cocks et al. 1995; Castro et al. 1999; Hamalainen 
et al. 2000). It has been demonstrated that SLAM induces proliferation and IFN-γ 
production in T cells, and reverses the cytokine production profile of Th2 clones to a 
Th0/Th1 type (Aversa et al. 1997; Carbadillo et al. 1997). In SCIT-treated patients, a 
significant increase in SLAM mRNA expression was found after 1 year of treatment, and 
this response tended to increase even earlier, by the time of reaching the maintenance 
dose, in patients developing a good therapeutic outcome (Laaksonen et al. 2003). IL-
18, in turn, is a macrophage-derived cytokine originally defined as a factor capable of 
inducing IFN-γ production in T cells (Okamura et al. 1995). Its effects in vitro, however, 
have been shown to depend on co-stimulatory factors, in particular of IL-12. In the 
presence of IL-12, IL-18 has been shown to enhance IFN-γ production in T cells and 
B cells, inhibit IgE-production, and prevent antigen-specific Th2-like cell development 
(Micallef et al. 1996; Yoshimoto et al. 1997; Hofstra et al. 1998). In the absence of IL-12, 
in contrast, IL-18 has been shown to induce IL-18 receptor alpha (IL-18Rα) expression 
on mast cells and basophils, and to stimulate IL-4 and IL-13 production, resulting in 
increased IgE levels (Yoshimoto et al. 1999). IL-12 mRNA expression has been shown 
to increase in macrophages in peripheral blood and target mucosa during SCIT (Hamid 
et al. 1997; Plewako et al. 2006b). Accordingly, increased IL-18 mRNA expression has 
been found in the PBMC of patients treated with SCIT (Savolainen et al. 2004). 
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Another mechanism by which SIT has been suggested to induce immune deviation in 
allergen-specific Th2/Th1 balance is by inducing selective apoptosis of memory Th2 
lymphocytes (CD45RO+ CD4+IL-4+ cells) thereby increasing the proportion of allergen-
specific IFN-γ+ cells (Guerra et al. 2001). Nearly 40% of the Th2 cells expressing 
IL-4 obtained from SCIT-treated patients have been shown to undergo apoptosis when 
exposed to specific allergen - a phenomenon which has not been found in the untreated 
allergic controls (Guerra et al. 2001). This concords with the findings made in mite-
sensitive patients with asthma, and in pollen allergic patients suffering from allergic 
rhinitis, in whom hardly any allergen-specific CD4+ T cell clones could be established 
after 3 months of SCIT, and the ones that were established after 1 year or 18 months of 
the treatment, had shifted their cytokine production pattern to a Th1 or Th0 type (Oda et 
al. 1998; Ebner et al. 1997). It has been reported that very high allergen concentrations 
induce T cell deletion (Critchfield et al. 1994; Gardner et al. 2004b). SCIT has also 
been shown to induce apoptosis of monocytes in an allergen-specific manner, thereby 
affecting the capacity of these cells to present allergens to specific T cells (Monteseirin 
et al. 2003). Yet another mechanism by which SCIT has been suggested to influence on 
allergen-specific T effector cell responses is by modulation of co-stimulatory molecule 
expression on T cells, rendering them less susceptible to the activation by APCs (Plewako 
et al. 2004; Piconi et al. 2007). 

2.3.4	 Antibody isotype switch and induction of serum-blocking activity
The third main category of immunological changes induced against the allergens during 
SIT is the modulation of specific antibody responses (Moingeon et al. 2006). During 
SCIT, there is usually an initial rise in serum allergen-specific IgE concentration during 
the up-dosing and early maintenance phases, which then progressively declines over a 
period of months to years to the same or lower level compared to baseline (Jutel et al. 
2006; Lichtenstein et al. 1973; Geich et al. 1982; Francis et al. 2008). In pollen allergic 
patients, SCIT has also been shown to result in blunting of the usual seasonal increases 
in serum allergen-specific IgE (Lichtenstein et al. 1973; Gleich et al. 1982; Nouri-Aria 
et al. 2004; Keskin et al. 2006). Accordingly, SLIT for grass pollen allergens has been 
shown to result in an initial rise in serum specific IgE levels, which thereafter have been 
shown to decrease over a period of several months back toward the baseline (Lima et 
al. 2006; Dahl et al. 2008). SLIT, however, appears not to be able to blunt the usual 
seasonal increases in serum allergen-specific IgE in pollen allergic patients, but rather, 
has been shown to result in a diminished expression of allergen-specific IgE in the nasal 
secretions, and this effect has been shown to depend on the treatment dose, favoring high 
allergen dose treatment (Marcucci et al. 2005a). 

Both SCIT and SLIT have been shown to result in a significant and sustained increase in 
serum allergen-specific IgG concentration, in particular IgG4, and this effect has also been 



34	 Review of the Literature	

shown to be treatment dose dependent (Nouri-Aria et al. 2004; Keskin et al. 2006; Rossi 
et al. 2007; Francis et al. 2008; Lue et al. 2006; Lima et al. 2006; Dahl et al. 2008). It has 
been demonstrated that allergen-specific IgG antibodies begin to increase early, within 
7-12 weeks after the initiation of SCIT (Jutel et al. 2003; Keskin et al. 2006; Francis et 
al. 2008). Some studies have shown that the dominant immunoglobulin type during the 
early course of SCIT is IgG1, whereas IgG4 begins to appear in significant quantities 
after prolonged immunization (Peng et al. 1992; McHugh et al. 1990). However, some 
studies have found simultaneous increases in IgG1 and IgG4 during the early phase of 
SCIT (Jutel et al. 2003; Keskin et al. 2006). Modest increases in serum allergen-specific 
IgA, in particular IgA2, levels, have also been found during SCIT for pollens (Pilette et 
al. 2007; Francis et al. 2008) and dust mite (Jutel et al. 2003; Fu et al. 2003), as well as 
after SLIT for dust mite (Bahceciler et al. 2005). The increase in allergen-specific IgA 
response during SCIT has been shown to coincidence with the induction of specific IgG 
responses (Jutel et al. 2003; Franciset al. 2008). In addition, increased levels of IgG 
and IgA have been found in the nasal secretions after pollen SCIT (Platts-Mills et al. 
1976). The increases in allergen-specific IgG4 and IgA responses during SIT have been 
shown to relate with the associated increases in IL-10 and TGF-β production (Akdis et 
al. 1998; Jutel et al. 2003). Addition of IL-10-producing Treg cells to B cell cultures has 
been shown to result in the preferential production of IgG4 (Satoguina et al. 2005), and 
the IgA-containing serum fraction of SCIT-treated patients has been shown to correlate 
with local TGF-β production and induce IL-10 production in monocytes (Pilette et al. 
2007). A kinetic study has revealed that the allergen-induced IL-10 production by PBMC 
precedes that of IgG4 increase in serum during SCIT, suggesting that the early IL-10 
responses may be required for the induction of IgG4 synthesis in B cells (Francis et al. 
2008). 

During dust mite SCIT, significant increases in allergen-specific IgA, IgG4 and IgG1 
were found just 70 days after the start of the treatment, with no change in allergen-specific 
IgE (Jutel et al. 2003). Accordingly, during grass pollen SLIT, increases in specific IgG4 
and IgG1 were seen already 90 days after the initiation of the treatment without any 
consistent change in the allergen-specific IgE throughout the 1.5 years observation 
period (Pfaar & Klimek 2008). The changes in allergen-specific IgE levels during SIT 
have thus suggested to be hardly explained by the diminished clinical responsiveness to 
allergen since the decrease in serum IgE is late, relatively small and does not correlate 
with clinical improvement (Jutel et al. 2006).

SIT has also been shown to induce serum-blocking activity, mediated by allergen-specific 
IgG, but not either IgA or IgM (van Neerven et al. 1999; Pillette et al. 2007). This activity 
has been observed both after grass pollen (van Neerven et al. 1999; Wachholz et al. 2003; 
Pillette et al. 2007; Francis et al. 2008) and house dust mite SCIT (Schubert et al. 2009), 
as well as after grass pollen SLIT (Dahl et al. 2008). The IgG-containing serum of SCIT-
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treated patients has been shown to inhibit the formation of allergen-IgE complexes, and 
thereby, to prevent allergen-IgE binding to CD23+ B cells and subsequent allergen-
presentation to T cells, resulting in the inhibition of proliferation and cytokine (IL-4, 
IL-5, IFN-γ and IL-10) secretion by allergen-specific T cells (van Neerven et al. 1999; 
Wachholz et al. 2003). The IgG-containing serum of SCIT-treated patients has also been 
shown to inhibit allergen-induced histamine release from basophils (Francis et al. 2008; 
Schubert et al. 2009) and mast cells in an allergen-specific manner (Platts-Mills et al. 
1976; Lambin et al. 1993; Garcia et al. 1993; Visco et al. 1996). The serum blocking 
activity has been shown to be induced early, within 6 to 12 weeks after the initiation 
of SCIT (Francis et al. 2008; Schubert et al. 2009), and to occur earlier when using 
the clustered schedule as compared to the usage of conventional up-dosing schedule 
(Schubert et al. 2009). It has been demonstrated that the serum-blocking activity persists 
for up to 2 years after the end of SCIT, and correlates with the sustained remission in 
clinical symptoms (Wilcock et al. 2005). A summary of the clinical and immunological 
changes associated with SIT is presented in Figure 3.
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T cells
Decreased allergen-induced proliferation
Induction of Treg cells
Increased secretion of IL-10 and TGF-b
Suppression of Th2 cells and cytokines
Decreased number in late-phase responses

B cells
Decreased synthesis of specific IgE
Increased synthesis of IgG4 and IgA

APCs
Suppressed IgE-facilitated antigen presentation

Clinical parameter
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Long-term cure
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Figure 3. A summary of clinical and immunological changes associated with SIT (modified from 
Jutel et al. 2006).

2.4	 Th17 type immune responses in allergy

2.4.1	 The Th17 subset
Th17 cells represent the newest subset of CD4+ T lymphocytes identified in humans. 
These cells have been named according to their predominant secretion of IL-17 (IL-
17A), and they have been further characterized by the expression of transcription factor 
retinoic acid-related orphan nuclear receptor γt (RORγt), which is termed RORC, variant 
2, in humans (Wilson et al. 2007; Acosta-Rodriquez et al. 2007; Annunziato et al. 2007). 
ROCγt/RORC is required for the lineage commitment of Th17 cells (Ivanov et al. 
2006). The Th17 cells are contained within the CD45RO+ pool of peripheral CD4+ T 
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lymphocytes, and typically comprise less than 1% of peripheral CD4+ T lymphocytes 
(Annunziato et al. 2007). However, increased frequencies have been identified in the 
disease affected tissues of patients with chronic inflammatory diseases, such as reactive 
arthritis, psoriasis and Crohn’s disease (Infante-Duarte et al. 2000; Park et al. 2005; 
Annunziato et al. 2007). 

The development of Th17 cells is dependent on TGF-β in the context of inflammatory 
cytokines such as IL-1β, IL-6 and IL-23 (Korn et al. 2009). These cytokines are produced 
by activated APCs, such as macrophages and dendritic cells following activation. TGF-β 
is necessary for the induction of RORC, and the cytokines IL-1β, IL-6 and IL-23 induce 
IL-17 expression in naïve (CD45RA+) T cells (Manel et al. 2008; Volpe et al. 2008; 
Burgler et al. 2009). IL-23 has also been suggested to be required for the maintenance 
of Th17 cells (Korn et al. 2009). IL-23 is a heterodimeric cytokine composed of p40 
subunit in common with IL-12 and a unique IL-23p19 subunit (Oppmann et al. 2000). 
In humans, IL-23, IL-1β and IL-6 have been shown to enhance IL-17 production by the 
in vitro polyclonally activated CD45RO+ memory Th17 cells, but not to induce their 
proliferation (Wilson et al. 2007; Annunziato et al. 2007, Liu & Rohowsky-Kochan 
2008). 

The development of Th17 cells is inhibited by both Th1 and Th2 type cytokines (Wilson 
et al. 2007), whereas these cytokines appear not to have any immunomodulatory effect 
on the IL-17 production by polyclonally activated CD45RO+ memory Th17 cells (Liu 
& Rohowsky-Kochan 2008). In mice, the development of Th17 cells is prevented by 
IL-27, another novel member of the IL-12 cytokine family derived from activated APCs 
(Kastelein et al. 2007). This cytokine consists of an IL-12p40-related subunit known as 
Epstein-Barr virus–induced molecule 3 (EBI3) and a p28 subunit, and has been shown 
to favour Th1 polarization (Pflanz et al. 2002, Yoshimura et al. 2006). 

The requirement of TGF-β for differentiation suggests a reciprocal relationship between 
the Th17 and Treg cells (Korn et al. 2009). Recent data suggest also the capacity of 
Treg cells to convert into IL-17-producing Th17 cells under proinflammatory conditions 
(Voo et al. 2009; Beriou et al. 2009). The Th17 cells have been shown to be able to 
induce IgM, IgG and IgA, but not IgE synthesis in B cells, but to display low cytotoxic 
capability as compared to Th1 cells, as well as to resist suppression by autologous 
Treg cells (Annunziato et al. 2007). In addition, Th17 cells have been shown to act on 
bronchial epithelial cells to induce proinflammatory cytokine expression (Burgler et al. 
2009). A substantial proportion of the in vitro generated or ex vivo-derived memory 
Th17 cells have been shown co-produce IFN-γ or TNF-α (Acosta-Rodriquez et al. 2007; 
Annunziato et al. 2007; Wilson et al. 2007; Liu & Rohowsky-Kochan 2008).
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2.4.2	 Interleukin-17 (IL-17) 
IL-17 (IL-17A) is a homodimeric, proinflammatory cytokine of 155 amino acids, and 
the founding member of IL-17 cytokine family, which now includes six members (IL-
17A-F) (Fozziez et al. 1996; Korn et al. 2009). IL-17 was originally described as a 
cytokine produced by murine cytotoxic T cells and called CTLA-8 (Rouvier et al. 1993). 
In humans, the primary source of IL-17 was found to be the activated peripheral CD4 P+ P 
CD45RO P+ P memory T cells, which were later defined as Th17 cells (Yao et al. 1995; 
Fozziez et al. 1996). Nowadays, it has been demonstrated that other leukocyte types, 
including CD8+ T cells (Shin et al. 1998), natural killer T (NKT) cells (Rachitskaya 
et al. 2008), eosinophils (Molet et al. 2001), and macrophages (Song et al. 2008) are 
also capable of expressing IL-17, but so far no production by stromal cell types has 
been found. 

The receptor for IL-17 (IL-17R or IL-17AR) is ubiquitously expressed in tissues (Yao 
et al. 1997). Accordingly to this, IL-17 has been shown to act on a wide variety of 
stromal cell types, including epithelial cells, vascular endothelial cells, keratinocytes and 
fibroblasts to induce the secretion of proinflammatory cytokines such as IL-6 and IL-11, 
growth factors, including growth-related oncogene α (Groα, also known as CXCL1) 
and granulocyte colony-stimulating factor (G-CSF), adhesion molecules, including 
ICAM-1, and chemokines, in particular IL-8/CXCL8 that promote the recruitment and 
generation of neutrophils both in vitro and in vivo (Figure 4) (Yao et al. 1995; Yao 
et al. 1997; Fozziez et al. 1996; Molet et al. 2001; Kawaguchi et al. 2001; Jones & 
Chan 2002; Laan et al. 1999; Schwarzenberger et al. 1998). IL-17 has also been shown 
to act on leucocytes, including macrophages and eosinophils to induce the secretion 
of proinflammatory cytokines, as well as to promote the chemotaxis and survival of 
macrophages in vitro (Jovanovic et al. 1998; Sergejeva et al. 2005; Cheung et al. 2008). 
On the other hand, IL-17 has also been shown to suppress TNF-α- or rhinovirus-induced 
eosinophil-chemokine RANTES/CCL5 expression on bronchial epithelial cells and 
fibroblasts, and to inhibit TNF-α-induced Th2-chemokine TARC/CCL17 expression and 
antigen-uptake by dendritic cells (Andoh et al. 2002; Schnyder et al. 2005; Wiehler et al. 
2007), suggesting pleiotropic immunoregulatory functions. 

Several microbial stimuli, including bacterial lipopeptides, and pertussis toxin have been 
shown to induce the production of IL-17 from naïve CD4+ T lymphocytes (Infante-
Duarte et al. 2000; Chen et al. 2007), indicating the primary involvement of Th17 
type immune responses in antimicrobial defence. Also, mice deficient in IL-17R have 
been shown to have impaired host defence due to the reduced G-CSF and macrophage 
inflammatory protein 2 (MIP-2) production, and consequently diminished neutrophil 
recruitment (Ye et al. 2001). 
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IL-6, IL-8, -defensin 2  
IL-6, IL-8, CXCL1, CXCL6  -defensin 3, S100A8, S1000A9 
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Figure 4. Biological activities of IL-17 (modified from Oboki et al. 2008).

2.4.3	 Role of IL-17/Th17 cells in allergic inflammation

2.4.3.1 Th17 type immune responses in murine models of allergic asthma
Th17 type immune responses are required for allergen-specific sensitization, as mice 
deficient in either IL-17 or IL-17R have impaired allergen-specific cellular and humoral 
responses, including reduced Th2 cytokine production and IgE synthesis (Nakae et al. 
2001; Schnyder-Candrian et al. 2006). Epicutaneous sensitization in mice has been 
shown to result in cutaneous expression of IL-17, in increased serum IL-17 concentration, 
and to elicit IL-17-secreting CD4+ T cells in the draining lymph nodes and spleen (He 
et al. 2007). IL-17 and IL-23 expression, and the numbers of IL-17+CD4+ T cells, 
have been shown to increase in the lungs of sensitized mice after allergen challenge 
(Hellings et al. 2003; Schnyder-Candrian et al. 2006; He et al. 2007; Wakashin et al. 
2008). The increased infiltration of IL-17+CD4+ T lymphocytes to the lungs allergen-
challenged sensitized mice has been shown to be associated with a significant increase 
in the BAL fluid neutrophils and with enhanced airway hyperreactivity (AHR) (He et 
al. 2007; Wakashin et al. 2008). Neutralization of IL-23 prior to the allergen-challenge 
has been found to result in a reduced allergen-induced eosinophil and lymphocyte 
recruitment and in decreased Th2 cytokine production in the airways (Wakashin et 
al. 2008), indicative of the role of Th17 type immune responses in the enhancement 
of Th2-mediated allergic immune reactions. Furthermore, adoptive co-transfer of 
allergen-specific Th17 cells with the Th2 lymphocytes to the airways of sensitized 
mice has been shown to potentiate allergen-induced Th2 type inflammatory responses, 
resulting, for example, in increased recruitment of eosinophils and augmented AHR 
(Wakashin et al. 2008).  On the other hand, in mice with already established asthma, 
neutralization of IL-17 shortly prior to the allergen provocation has been found to 
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result in a greater bronchial eosinophilia, and in elevated expression of Th2 cytokines 
in the lungs (Hellings et al. 2003). Accordingly, in another study, administration of IL-
17 during the allergen challenge was found to result in a inhibition of eosinophil and 
lymphocyte recruitment to the mouse airways and to prevent mucus hypersecretion and 
hyperplasia of goblet cells, and these responses were reversed by the neutralization of 
IL-17 (Schnyder-Candrian et al. 2006). However, administration of neutralizing IL-
17 antibodies to the mice 4-7 days prior to the allergen challenge was found to be 
ineffective in preventing the recruitment of eosinophils to the airways or in inhibiting 
the Th2 type cytokine production in lungs (He et al. 2007), but the administration of 
neutralizing antibodies repeatedly during the inhalation challenge was found to result 
in an extravagated lung IL-5 and IL-4 expression, and in increased peripheral blood 
and bone marrow, but not bronchial, eosinophilia (Hellings et al. 2003).  

2.4.3.2 Th17 type immune responses in human allergy
Increased numbers of IL-17-expressing T cells and increased levels of either IL-17 
protein or mRNA have been found in the airways of patients with asthma (Molet et al. 
2001; Chakir et al. 2003; Bullens et al. 2006). In patients with severe allergic asthma, up 
to 20% of the infiltrating T cells were found to be IL-17+CD4+ T lymphocytes during 
acute exacerbation (Pene et al. 2008). The levels of IL-17 in the sputum of asthma 
patients have been shown to correlate with AHR (Barczyk et al. 2003), and with the 
disease severity (Chakir et al. 2003), although not in all studies significant differences 
between the mild or moderate-to-severe asthmatics, or between atopic and non-atopic 
asthmatics with regard of the bronchial IL-17 expression have been found (Bullens et al. 
2006). Allergic asthma patients have also been reported to have higher plasma levels of 
IL-17 as compared with healthy (Wong et al. 2001), and their PBMC have been shown 
to produce higher amounts of IL-17 in response to stimulation with the specific allergen 
(Hashimoto et al. 2005). However, some studies have reported normal serum IL-17 
levels in the patients with asthma, and normal spontaneous IL-17 production by their 
PBMC (Lei et al. 2008). In lungs, the expression of IL-17 was found to correlate with 
CD3γ expression, and with IL-5 and IL-8/CXCL8 mRNAs (Bullens et al. 2006). Both 
IL-17 and IL-8/CXCL8 responses were also found to correlate with sputum neutrophil 
count, but not with the numbers of eosinophils (Bullens et al. 2006).

Increased Th17 responses have also been found in patients with atopic dermatitis and 
allergic rhinitis (Toda et al. 2003; Koga et al. 2008; Ciprandi et al. 2008b; Ciprandi et 
al. 2009). In patients with atopic dermatitis, increased IL-17 expression and increased 
numbers of IL-17+CD4+ T cells were found in the disease-affected skin areas, with 
the responses being more associated with the acute skin lesions than with the chronic 
lesions, and to correlate with the disease severity (Toda et al. 2003; Koga et al. 2008). 
Increased frequencies of IL-17+CD4+ T cells have also been demonstrated in the 
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PBMC of atopic dermatitis patients but only in those with a severe disease (Koga 
et al. 2008). In allergic rhinitis patients too, increased serum IL-17 responses have 
been found more in association with the severe disease, as these patients often also 
have higher serum specific IgE level, lower allergen threshold dose during conjuctival 
challenge and a tendency toward a higher peripheral blood eosinophil count (Ciprandi 
et al. 2008b). During pollen season, a significant positive correlation was also found 
between the serum IL-17 levels, symptom severity scores, medication use and the 
peripheral blood eosinophil count in patients with severe allergic rhinitis (Ciprandi 
et al. 2009). The involvement of Th17 type immune responses in human allergy are 
summarized in Table 5.
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3	A IMS OF THE STUDY

Successful treatment with SCIT and SLIT has been shown to result in long-term 
remission in allergy symptoms and medication use in allergic rhinitis patients, as well as 
to prevent disease progression to asthma. The immune deviation from Th2 to Th1 type 
response in allergen-specific T cells, and induction of tolerogenic Treg cells have been 
suggested as the two key mechanisms behind these beneficial effects, but little is known 
of the kinetics of these responses in PBMC during the course of the treatments. Also, 
no immune marker associated with these immune responses and the clinical efficacy 
has been established that could be used to monitor the development of clinical response 
in individual patients during these modalities. In addition, nothing is known of the 
modulation of Th17 type immune responses, the newly described subset of CD4+ T cells 
in humans with implications in the pathogenesis of allergic inflammation, during SCIT 
or SLIT. The aim of this work was to clarify the immunological mechanisms associated 
with SCIT and SLIT and their clinical efficacy by investigating the in vitro specific 
allergen induced immune responses in peripheral blood mononuclear cells (PBMC) of 
allergic rhinitis patients during these treatments. 

The specific aims of this study were:

1. 	 to investigate allergen-specific Th2/Th1 balance during SLIT by simultaneous 
analysis of GATA-3, SLAM and IL-18 mRNA expression, and further correlate 
these parameters with clinical outcome (I)

2. 	 to investigate allergen-specific Th2/Th1 balance and Treg responses during SCIT 
by simultaneous analysis of IL-4, IL-5, IFN-γ, SLAM, IL-18 and IL-10 mRNA 
expression, and further correlate these parameters with clinical outcome (II)

3. 	 to investigate allergen-specific Treg and Th17 responses during SLIT by 
simultaneous analysis of FOXP3, IL-17, IL-23, and IL-27 mRNA expression, and 
further correlate these parameters with clinical outcome (III).

4. 	 to investigate allergen-specific Th17 responses during SCIT by simultaneous 
analysis of IL-17 and RORC mRNA expression, and further correlate these 
parameters with Th2 and Th1 responses, specific antibody (IgE, IgG4) production, 
and clinical outcome (IV).
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4	MATER IALS AND METHODS

4.1	S ubjects

A total of 80 subjects were included in this work (Figure 5). Seventy of the study subjects 
had skin-prick test verified pollen allergy, elevated serum allergen-specific IgE, and history 
of allergic symptoms. Forty of the allergic subjects were adults, aged between 16-44 years, 
and thirty children, aged between 5-15 years. In addition, ten healthy adults, aged between 
25-45 years were included as non-allergic controls in the SCIT studies II and IV. The 
study design and patient characteristics are presented in Figure 5. The patients in the SCIT 
studies II and IV were enrolled from the outpatient clinic of Department of Pulmonary 
Diseases and Clinical Allergology, Turku University Central Hospital. The patients in SLIT 
studies I and III were randomly selected from a single-centre, randomized, double-blind, 
placebo-controlled dose response phase II trial as earlier described (Valovirta et al. 2006). 
The studies were approved by local ethics committees (Turku University or Turku Allergy 
Centre), and performed with the patients’ written informed consent.
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Figure 5. Study design and patient characteristics. A total of 80 subjects were included, seventy 
of them having clinically documented allergic rhinitis due to tree or grass pollens. Thirty of these 
allergic subjects were children and randomized to receive sublingual immunotherapy (SLIT) for 
up to 2 years either with low allergen dose (group 1, weekly cumulative maintenance dose 24,000 
SQ-U, n=10), high allergen dose (group 2, weekly cumulative maintenance dose 200,000 SQ-U, 
n=10), or placebo (n=10). The remaining forty allergic patients were adults and treated either 
with subcutaneous immunotherapy (SCIT) (monthly maintenance dose 100,000 SQ-U, n=30), or 
pharmacotherapy only (n=10) for up to 3 years. Ten healthy adults served as non-allergic controls 
for the baseline analysis in SCIT studies. The cytokines and immune markers investigated in 
SLIT (I, III) and SCIT (II, IV) studies are displayed in the bottom panel of the figure.  
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4.2	 Specific immunotherapy

4.2.1	 Subcutaneous immunotherapy
Specific immunotherapy was conducted either by using the subcutaneous route (SCIT) 
or according to the sublingual-swallow method (SLIT). SCIT was performed in 30 adult 
allergic rhinitis patients, 18 of whom were treated according to the conventional up-
dosing schedule and 12 by using the clustered rush protocol. The up-dosing schemes 
are presented in Table 6. The up-dosing extract in the clustered rush SCIT regimen was 
a water-soluble extract of birch (Betula verrucosa) or timothy grass (Phleum pratense) 
pollen (Aquagen SQ; ALK-Abelló, Hørsholm, Denmark). The up-dosing extract in the 
conventional SCIT regimen was an aluminum hydroxide depot of birch (B. verrucosa) 
and/or timothy grass (P. pratense) pollen (Alutard SQ; ALK-Abelló). Total of 18 
subjects were treated with birch, 6 with timothy and 6 with a combination of these two 
allergens. The maintenance extract in both SCIT regimens was Alutard SQ, given at 
6-week intervals with dose 100,000 SQ-U for up to 3 years. The maintenance doses 
corresponded to 20 μg of major allergen of timothy grass pollen (Phl p5), and 15 µg of 
major allergen of birch pollen allergen (Bet v1).

Table 6. Up-dosing schedules used in SCIT studies II and IV.

Conventional Clustered rush
Number of subjects 18 12
Allergen extract Alutard SQ Aquagen SQ
  Birch 9 9
  Timothy 3 3
  Birch & Timothy 6 -
Dosage per visit (SQ-U)
Week 1 20 10-50-100-300
Week 2 40 500-800-1000-2000
Week 3 80 4000-6000-8000-10,000
Week 4 200 10,000-20,000-40,000
Week 5 400 50,000-50,000
Week 6 800 100,000*
Week 7 2000
Week 8 4000
Week 9 8000
Week 10 10,000
Week 11 20,000
Week 12 40,000
Week 13 60,000
Week 14 80,000
Week 15 100,000*

* maintenance dose, continued at 6-week intervals for up 3 years (modified from Laaksonen et 
al. 2003)
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4.2.2	 Sublingual immunotherapy
The allergen preparation in the SLIT studies (I and III) was a glycerinated mixture of 
SQ-standardized extracts of birch (B. verrucosa), hazel (Corylus avellana) and alder 
(Alnus glutinosa) tree pollens (ALK-Abelló). The patients were randomized in three 
equal-sized groups (n=10 in each): the groups 1 and 2 received active treatment and 
placebo group a diluent containing 50% glycerol and 50% saline buffer. The up-dosing 
was conducted within a 5-week period involving five weekly doses (Table 7). The 
maintenance dose was 4,800 SQ-U for group 1 and 40,000 SQ-U for group 2, given five 
times a week. The cumulative weekly dose in groups 1 and 2 thus corresponded to 3.6 
µg and 30 µg of major allergen Bet v 1/Aln g 1/Cor a 1, respectively. Each dose was kept 
under tongue for 3 min and then swallowed. SLIT continued for up 18 months.

Table 7. Up-dosing schemes used in SLIT studies I and III.

Group 1 Group 2
Number of subjects 10 10
Dosage per day (SQ-U)
Week 1 60 600
Week 2 160 1600
Week 3 600 4800
Week 4 1600 14,000
Week 5 4800* 40,000*

* maintenance dose, continued with 5 weekly doses for up 18 months (Valovirta et al. 2006)

4.3	C linical evaluation

4.3.1	 SCIT
Symptoms and medication scores: Allergy symptoms and the use of medication were 
scored post-seasonally prior to the commencement of SIT and thereafter after one, two 
and three years of therapy, and adjusted to pollen counts. The form included visual 
analogue scale (VAS) of nine different symptoms (conjunctival itching, erythema and 
discharge; nasal itching, blockage and discharge, nocturnal, daytime and cough induced 
by exercise). Medication was scored on scale 0-5 [not at all (0), occasionally seldom 
(1), occasionally often (2), almost daily (3), continuously (4), continuously with the 
maximal dose (5)] separately for peroral antihistamines, topical nasal steroids and 
eyedrops (cromones or antihistamine). The mean VAS of the nine different symptoms 
was calculated as percentage units of the maximal VAS score to represent seasonal 
symptoms. The natural logarithms of the mean seasonal pollen counts were calculated 
to represent seasonal pollen exposure (Winther et al. 2000). The percentage unit score 
of VAS symptoms was adjusted to pollen exposure by multiplication with the ratio 
of the natural logarithms of the longtime and seasonal mean pollen counts. The mean 
medication scores were calculated as percentage units of maximal medication scores 
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and adjusted to the pollen counts as described for the VAS scores. A combined symptom 
medication score (CSMS) was obtained adding together the mean VAS and medication 
scores.

Pollen counts: Pollen data originates from the monitoring site in Turku, Finland. Sampling 
and analysis were carried out according to the European standards (Mandrioli et al. 
1998). Pollen samples were taken with a Burkard spore trap (Burkard Manufacturing Ltd, 
Rickmansworth, Hertfordshire, UK). The trap was situated on the roof of a university 
building, 18 meters above the ground. All pollen counts were analyzed daily. The pollen 
season was 90% of the pollen total. Pollen counts were expressed as number of pollen 
grains / m3 of air and the mean seasonal count was used as a representative value for 
the season. High sampling site was representative for pollen types with high source as 
for instance birch trees, but grass pollen counts were often underestimated, because their 
source was at a low level and most pollen grains were settled close to the source area 
(counts 4.4 times higher at the ground level than on the roof) (Rantio-Lehtimäki et al. 
1991).

Validation of the visual analogue scoring form: For validation of the visual analogue 
scoring form, 20 allergic rhinitis patients filled a diary card for 7 weeks during birch 
pollen season. The severity of eye, nose and lung symptoms (0-3 points) and the use 
of medication were reported daily. The mean VAS of symptoms during one week was 
evaluated at the end of each week. Post-seasonally, after five to six months, without any 
earlier notice, the same patients were invited to fill the visual analogue scoring form 
used in this study to register their seasonal symptoms and medication in retrospect. To 
compare the results from these two forms, the results were calculated as percentage units 
of the maximal VAS or medication score. 

4.3.2	 SLIT
Patient Diary: Symptoms and medications were registered in a patient diary as earlier 
described (Valovirta et al. 2006). The children filled in their diary during the tree pollen 
season for 12 weeks. The following parameters were registered daily in the patient 
diary: 

Symptom Scores: Allergic, clinical symptoms were categorized as nose symptoms 
(runny nose, sneezing, blocked nose), eye symptoms (streaming and swelling, redness 
and itching) and lung symptoms (breathlessness, cough, wheeze and chest tightness). 
Each symptom was scored by the children: 0 = No symptoms, 1 = Slight symptoms, 2 = 
Moderate symptoms, and 3 = Severe symptoms. 

Medication: The children were supplied with medication for hay fever and asthma 
symptoms. The daily medication score for each child was calculated as the sum of 



	 Materials and Methods	 47

medication administered at a particular day: cetirizine tablets (10 mg) - 2 points/tablet; 
cromolyn eyedrops (40 mg/ml) – 1 point/drop; cromolyn nasal spray (5.2 mg/dose), 
terbutaline inhalation (0.25 mg/dose) and salbutamol inhalation (0.2 mg/dose) – 1 point/
puff; budesonide inhalation (200 µg/dose) and fluticasone propionate inhalation (100 
µg/dose) – 4 points/puff and 80 points per course of prednisolone (5 mg/tablet). 

Combined symptom medication score: The symptom and medication scores were 
averaged over the 12-week tree pollen season for each child and a combined symptom 
medication score (SMS) was obtained by adding together the two scores.

Post-SLIT asthma symptoms: A telephone survey for the assessment of asthmatic 
symptoms and the use of asthma medication among the study children was conducted 
five years after the commencement of SLIT as described earlier (Savolainen et al. 2006). 
The survey listed the possible use of any asthma medication during the past 12 months, 
including the latest prescribed medication and dosage, use of beta-agonists during the 
last two weeks and the number of months on inhaled corticosteroids. In addition, the 
daytime, nocturnal and exercise induced cough, dyspnea, and wheezing during the last 
12 months were registered. Based on the telephone survey, the 30 study children could 
be divided into two groups, one group with no signs of bronchial asthma (n=16) and 
another group being on inhaled steroids and/or having had asthmatic wheezing during 
the past 12 months. Some patients on inhaled steroids were asymptomatic.

4.4	 Blood samples

Blood samples were collected from the SCIT or SLIT treated patients yearly, before 
the commencement of SIT and after 1, 2 or 3 years of treatment, each out of pollen 
season. The blood samples from the untreated or placebo-treated allergic control patients 
were obtained at corresponding time points. The ten healthy subjects who served as 
non-allergic controls for the baseline analysis in SCIT studies II and IV donated blood 
samples only once, that is, when the studies were initiated.

4.5	 In vitro laboratory methods

4.5.1	 Antigens
The in vitro stimulation tests were performed with whole allergen extracts of birch (Betula 
verrucosa) or timothy grass (Phleum pratense) pollen (kindly provided by ALK-Abelló 
(Hørsholm, Denmark). Purified protein derivative (PPD) of M. tuberculosis (Statens 
Seruminstitut, Copenhagen, Denmark) served as an unrelated antigen for specificity 
determination of the SIT-induced immune responses.
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4.5.2	 Isolation and stimulation of peripheral blood mononuclear cells (PBMC)
Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood 
samples by Ficoll (Ficoll‑Hypaque, Pharmacia Biotech, Uppsala, Sweden) density 
gradient centrifugation. The PBMC were washed twice with Hanks’ balanced salt 
solution, and suspended in RPMI (Gibco, Life Technologies, Paisley, Scottland, UK), 
supplemented with 5% autologous serum, 2 mM L‑glutamine (Gibco, Life Technologies, 
Paisley, Scottland, UK), 100 U/ml penicillin and 100 µg/ml gentamycine (Nordvacc 
Media Skärholmen, Sweden). The PBMC were then applied on 48-well culture plates, 
at a density of 2x10 P

5
P cells per well, and incubated at +37˚C, in a humidified atmosphere 

with 5% CO B2B

 for three days. The stimulation was performed in the presence of 50 µg/
ml relevant whole allergen extract or 10 µg/ml PPD. The total culture volume in each 
duplicate culture was 400 µl. After 72 h stimulation, the PBMC were collected by 
centrifugation, suspended in 500 µl of Trizol reagent (Gibco Life Technologies, Paisley, 
Scotland, UK), and stored at -70°C. 

4.5.3	 Total RNA extraction and cDNA synthesis
Total RNA was isolated from PBMC according to Trizol instructions (Gibco Life 
Technologies) with the exception that prior to isopropanol precipitation, 1 µl of glycogen 
was added to enhance RNA precipitation. The extracted RNA was stored in 200 µl of 75% 
ethanol at -20°C, and prior to RT reaction, suspended to 20 µl of diethylpyrocarbonate 
(DEPC) treated water. The RT reaction was performed with First Strand cDNA Synthesis 
Kit (Pharmacia, Sweden) using oligo(dT) primers, and cDNA was stored at -70°C. 

4.5.4	 Real-time PCR (TaqMan) 
The amplification of β-actin, cytokine (IL-4, IL-5, IL-10, IL-17A, IL-18, IL-23p19, 
IL-27p28, IFN-γ, TGF-β1), SLAM, and transcription factor FOXP3, RORC (variant 
2), and GATA-3 cDNAs was performed in MicroAmp® optical 96-well reaction plate 
(Applied Biosystems, Foster City, CA, USA). Each well contained 1 µl of total cDNA, 
300 nM of sequence specific primers and 200 nM of dual-labelled fluorogenic probe in 
1x TaqMan® Universal PCR master mix (Applied Biosystems). A negative PCR control 
without template and a positive PCR control with a template of known amplification 
were included in each assay. The reaction was performed in ABI PRISM 7700 Sequence 
Detection System (Applied Biosystems) using the standard two-step run protocol 
(Step 1: 10 min at 95ºC, Step 2: 40 cycles of 15 sec at 95ºC plus 1 min at 60ºC). For 
analysis of IL-5, IL-10, IL-17A, IL-18, IL-23p19, IL-27p28, TGF-β1, FOXP3, RORC 
expression cDNA specific assay reagent kits were purchased from Applied Biosystems. 
The primer and probe sequences for the analysis of β-actin, SLAM, IL-4, IFN-γ and 
GATA-3 expression were designed using Primer Express software (Applied Biosystems) 
and labeled with FAM (6-carboxyfluorescein) at the 5` end and with TAMRA 
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(6-carboxytetramethylrhodamine) at the 3` end as described earlier (Hämäläinen et al. 
2000; Laaksonen et al. 2003). During PCR, the Ct values (the cycle number at which 
the detected fluorescence exceeds the threshold) for each amplification product were 
determined using a threshold value of 0.03. The cytokine, SLAM, and transcription factor 
(RORC, FOXP3 and GATA-3) specific signals were normalized by the constitutively 
expressed β-actin signals using the formula 2P

-∆Ct
P = 2 P

-(Ct,β-actin - Ct,Cytokine/SLAM/RORC/FOXP3/GATA-3)
P. 

The stimulation indexes, indicating the fold change in expression in allergen stimulated 
versus non-stimulated cultures were thereafter calculated by the formula 2 P

-∆∆Ct
P = 2P

-(∆Ct for 

stimulated culture - ∆Ct for unstimulated culture)
P as described in ABI PRISM 7700 SDS Relative Quantitation 

of Gene Expression-protocol by Applied Biosystems (User Bulletin #2, P/N 4303849). 
The obtained means of duplicates were used for statistical analysis. All analyses of all 
genes were performed in the linear range of the amplification, verified by dilution series 
of each cDNA. β-actin was not regulated during allergen stimulation (unstimulated CT: 
mean (SD): 18.20 (0.97), stimulated CT 18.19 (1.02), n=180).

4.5.5	 Serum specific IgE and IgG determination (IV)
Serum allergen-specific IgE and IgG B4 B

 antibodies were analyzed by Immuno-Cap (Phadia, 
Uppsala, Sweden). 

4.6	S tatistical analysis

Mann-Whitney U-test was used for unpaired, comparisons between the groups and 
Wilcoxon Signed Rank Test for paired comparisons within the groups. Correlation 
analyses were performed with a non-parametric Spearman Rank-Order Correlation test. 
A p-value <0.05 was considered to indicate a statistically significant difference. 
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5	RESULTS

5.1	 Clinical efficacy

5.1.1	 Changes in symptom and medication scores (I-IV)
Both SCIT and SLIT were clinically effective in terms of reducing seasonal allergy 
symptoms and rescue medication use. The adjusted end-point symptom and medication 
scores are presented in Table 9. From a subgroup of SCIT-treated patients (20 of 30) 
and untreated allergic controls (8 of 10) there were symptom and medication scores 
available after the complete 3-year treatment course. The patients in SLIT studies 
I and III were randomly selected from a single-centre, randomized, double-blind, 
placebo-controlled dose response phase II trial, and the clinical efficacy data for the 
total patient population has been previously published (Valovirta et al. 2006). The 
clinical efficacy in SLIT favored the high allergen dose treatment (group 2, cumulative 
weekly maintenance dose of 200,000 SQ-U compared to group 1, cumulative weekly 
maintenance dose of 24,000 SQ-U).

Table 9. Symptom and medication scores after SLIT and SCIT.

SCIT
SCIT No SCIT

Number of subjects 20 8
Treatment dose SQ-UP

aP 100,000 -
End-point symptomsPb P, mean (SD) -37.6 (7.0) -23.4 (6.1)
End-point medicationPbP, mean (SD) -35.3 (8.2) +2.3 (2.7)

SLIT
Group 2 Group 1 Placebo

Number of subjects 10 10 10
Treatment dose SQ-UP

cP 200,000 24,000 -
End-point symptomsPd P, mean (SD) 1.9 (1.6) 3.2 (2.7) 3.6 (3.4)
End-point medicationPdP, mean (SD) 3.6 (5.2) 4.9 (6.0) 3.9 (3.8)
Subjects with asthma/no asthma after 5 yrPeP 2/8 6/4 6/4

PaP 	at the maintenance phase, given at 6-week intervals
PbP 	after 3 years of treatment, as %-unit reduction of maximal scores and adjusted to pollen 

counts
PcP 	at the maintenance phase, weekly cumulative dose
PdP 	Sum of scores after 2 years of treatment, averaged over the 12-week pollen season
PeP 	Asthma incidence after 5 years of the commencement of SLIT based on a telephone survey; 

p = 0.038 for astma versus no asthma group according to chi-square test (Savolainen et al. 
2006).
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5.1.2	 Asthma symptoms after SLIT (III)
Based on the telephone survey, five years after the start of SLIT and 3 years post-
SLIT, the 30 study subjects included were divided into two groups, one group with 
no signs of bronchial asthma (n=16) and another group being on inhaled steroids 
and/or having had asthmatic wheezing during the past 12 months. There was more 
asthma in the low dose (group 1, 24,000 SQ-U/week) and placebo groups (12 of 20) 
than in the high dose treated group (group 2, 200,000 SQ-U/week, 2 of 10) (Table 
9; p=0.038, according to chi-square test, Savolainen et al. 2006). Altogether nine 
children were on inhaled corticosteroids five years later, two from the high dose 
group and seven from the low dose or placebo groups. These data suggests that high 
dose SLIT could be effective in preventing disease progression from allergic rhinitis 
to asthma in pediatric patients.

5.1.3	 Specific antibody responses during SCIT (IV)
In study IV, serum specific antibody responses during the first year of SCIT were 
monitored.  IgG4 levels significantly increased in the treated group (fold change from 
baseline 33.8 (27.4), median (MAD)) compared to untreated patients, in whom no 
change in IgG4 levels were found (fold change from baseline 1.0 (0.2)), (p<0.0001). 
There was also a slight but significant decrease in the level of specific IgE in serum 
in the SCIT-treated patients after 1 year of treatment when compared to untreated 
patients (fold change from baseline 0.8 (0.2) in treated vs. 1.2 (0.3) in untreated group, 
p=0.026).

5.1.4	 Correlation between in retrospect post-seasonally recorded symptom and 
medication scores and the seasonally recorded scores during SCIT (IV)

The clinical improvement during SIT is generally measured by means of changes in 
seasonal visual analogue scale of symptoms and medication scoring, usually recorded on 
a diary card basis during the season. The patients for SIT, however, are typically recruited 
post-seasonally, making the baseline evaluation of symptoms difficult. According to 
the results presented in study IV, the in retrospect filled post-seasonal visual analogue 
scale form is reliable and sufficient measure of symptom and medication improvement 
during SCIT. The retrospectively recorded VAS correlated well with symptoms (r=0.76, 
p<0.0001) and VAS (r=0.55, p<0.011) input in the diary card (seasonal weekly mean) 
(IV, Figure 1). The medication recorded retrospectively also correlated well with that 
recorded in the diary card (seasonal weekly mean) (r=0.86, p<0.0001) (IV, Figure 1). 
This allows an assessment of baseline symptoms in situations when patients are recruited 
post-seasonally.
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5.2	 IL-18, SLAM and GATA-3 expression in PBMC during SLIT (I)

5.2.1	 SLIT up-regulates allergen-specific IL-18 and SLAM mRNA expression in 
PBMC

In study I, peripheral Th1 and Th2 responses during SLIT were investigated. This was 
done by analyzing the expression of Th1 type immune markers IL-18 and SLAM, and 
the Th2 cell master transcription factor GATA-3 in in vitro allergen-stimulated PBMC 
after 0, 1 and 2 years of SLIT. Furthermore, the dose dependence of these responses were 
investigated by collecting the blood samples from the high dose (group 2, dose 40,000 
SQ-U per day with cumulative weekly dose of 200,000 SQ-U), low dose (group 1, dose 
4,800 SQ-U per day with cumulative weekly dose of 24,000 SQ-U) or placebo-treated 
children. The expression of IL-18 mRNA was significantly increased in the high-dose 
treated group (dose group 2) as compared to placebo group after 1 year of treatment 
(p=0.028) (I, Fig. 1). Also SLAM mRNA expression was increased in the dose group 
2 as compared to baseline after 1 year of treatment (p=0.028), but this increase was not 
significant compared to the placebo group (I, Fig. 1). No changes were seen in GATA-3 
mRNA expression during SLIT (I, Fig. 1).

5.2.2	 The up-regulation in IL-18 mRNA expression in PBMC during SLIT correlates 
with decreased late-phase cutaneous responses

After 2 years of treatment with SLIT, there was a significant inverse correlation between 
allergen-induced IL-18 mRNA responses in PBMC and late-phase reactions in skin (r= 
-0.41, p=0.041) (I, Fig. 3). No correlation was found between the late-phase skin reaction 
and SLAM or GATA-3 expression (data not shown). 

5.2.3	 The up-regulation in SLAM mRNA expression in PBMC during SLIT correlates 
with TGF-β and IL-10 mRNA expression

In dose group 2, the allergen-induced SLAM mRNA expression after 2 years of treatment 
correlated strongly with TGF-β mRNA (r=0.80, p=0.0037) and IL-10 (r=0.96, p<0.0001) 
mRNA expression (I, Fig. 2). There was no correlation between IL-18 and TGF-β or IL-
18 and IL-10 expression. Also, no correlation was found between IL-18 and SLAM 
mRNAs. Neither IL-18 nor SLAM correlated with any of the Th1 or Th2 cytokines 
IFN-γ, IL-4 and IL-5 during SLIT (data not shown).

5.2.4	 The up-regulation in either IL-18 or SLAM mRNA expression in PBMC during 
SLIT fails to correlate with the changes in symptom or medication scores

After 1 or 2 years of treatment with SLIT, there was no correlation between the allergen-
induced IL-18, SLAM or GATA-3 mRNA expression in PBMC and symptom or 
medication scores (data not shown).
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5.3	 Three-year follow-up of immunological changes in allergen-specific 
responses during SCIT (II)

5.3.1	 SCIT induces sustained increases in allergen-specific Treg and Th1 type 
cytokine responses in PBMC

In study II, the expression of Treg type cytokine IL-10, Th2 cytokines IL-4, IL-5, and Th1 cell 
markers IFN-γ, IL-18 and SLAM in response to specific allergen were investigated in PBMC 
during the complete 3-year course of SCIT. This was done by collecting blood samples at 
0, 1 and 3 years from the start of SCIT. The three-year follow-up samples were available 
from altogether 20 SCIT-treated patients and from 8 untreated allergic control patients. After 
the first treatment year, there was a significant decrease in the expression of IL-5 mRNA 
(p<0.05), a tendency towards diminished IL-4 mRNA expression, and a marked reduction in 
the IL-4/IFN-γ expression ratio (p<0.05) in the allergen-stimulated PBMC of SCIT-treated 
patients when compared to baseline (II, Table 3). These changes were accompanied with 
significant increases in the expressions of IFN-γ (p<0.02), IL-18 (p<0.02), SLAM (p<0.01) 
and IL-10 (p<0.01) mRNAs (II, Table 3). IL-18 (p<0.01), SLAM (p<0.01) and IL-10 (p<0.05) 
expressions remained up-regulated in the allergen-stimulated PBMC of SCIT-treated patients 
up to 3 years of SCIT, albeit declined from the first year responses (II, Table 3). In contrast, 
the immunomodulatory effects of SCIT on the allergen-induced IFN-γ and Th2 type cytokine 
responses and IL-4/IFN-γ ratio were no longer evident in the PBMC after 3 years of treatment 
(II, Table 3). No significant changes in either Th2 (IL-4, IL-5), Th1 (IFN-γ, SLAM, IL-18) or 
Treg (IL-10) type immune responses to specific allergen were found in the PBMC of patients 
who had not been treated with SCIT during the 3-year follow-up (II, Table 3).

5.3.2	 The early decrease in Th2 cytokine production is associated with the development 
of a good therapeutic outcome

Based on the changes in VAS scores after two years of treatment, the SCIT-treated patients 
were divided in two groups: those who benefited well from SCIT (>40 percentage unit 
reduction, n=12) and those who had less symptoms improvement (<40 percentage unit 
reduction, n=8) (II, Table 2). Comparison of the immunological markers with clinical 
improvement revealed that decreases in allergen-specific in vitro expression of IL-4 
mRNA and IL-4/IFN-γ ratio in the PBMC of SIT-treated patients after 1 year of treatment 
were associated with the development of a good therapeutic outcome, as set of by more 
than 40 percentage unit reduction in VAS symptom scores (II, Table 3). In patients with 
less symptoms improvement (<40 percentage unit reduction in VAS), however, there 
was significant increase in both IL-5 (p<0.02) and IFN-γ (p<0.02) mRNA expression, 
and a tendency towards increased IL-4 mRNA expression, during SCIT (II, Table 3). The 
increase in IL-10 mRNA expression after 1 and 3 years of treatment was also associated 
more with the less beneficial efficacy of SCIT than with the good therapeutic outcome, 
whereas the increases in the allergen-induced in vitro expressions of IL-18 and SLAM 
mRNAs had no association with the clinical efficacy of SCIT (II, Table 3). 
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5.4	 FOXP3 mRNA expression and Th17 type immune responses in PBMC 
during SLIT (III)

5.4.1	 Allergen-specific FOXP3 mRNA expression increases in PBMC during SLIT 
and correlates with specific IL-10 and TGF-β production

In study III, the expression of Treg-associated transcription factor FOXP3, and the 
Th17 associated cytokines IL-17, IL23, and IL-27 were investigated during SLIT. 
These transcripts were analyzed from the allergen-stimulated PBMC collected at 0, 
1 and 2 years of SLIT from the high dose (group 2, 200,000 SQ-U/week), low dose 
(group 1, 24,000 SQ-U/week) and placebo-treated children. After two years of SLIT, 
a significant increase in allergen-stimulated FOXP3 mRNA expression was found 
in the PBMC of high dose-treated children, both when compared to placebo-treated 
children (p=0.028) and the baseline expression (p=0.016) (III, Table 3). This increase 
was specific to the allergen, as there was no change in the PPD-induced FOXP3 
mRNA expression in the PBMC during SLIT. The changes in the allergen-induced 
FOXP3 mRNA responses significantly correlated with IL-10 mRNA in the whole 
study group after one year (r=0.44; p=0.0131) and two years (r=0.48; p=0.0068) of 
treatment, and with TGF-β1 mRNA expression after one year of treatment (r=0.54; 
p=0.0017) (III, Figure 1), but failed to correlate significantly within the individual 
dosing groups. 

5.4.2	 IL-17 mRNA expression remains unchanged in PBMC during SLIT, but 
correlates with clinical symptoms in the individual level

Allergen-induced IL-17 mRNA expression remained unchanged in the PBMC of all 
three dosing groups during SLIT when investigated at the group level (III, Figure 2). 
However, in the individual level, there was a significant positive correlation between the 
allergen-induced IL-17 responses and clinical outcome after 2 years of treatment both in 
the whole study group (r=0.38, p=0.039), and also, when the three dosing groups were 
analyzed separately, in the dose group 2 (r =0.74, p=0.027), but not dose group 1 (r= 
-0.14, p=0.68) or in placebo group (r= 0.44, p = 0.18) (III, Figure 3). A clear association 
of the elevated allergen-induced IL-17 mRNA responses with poor therapeutic outcome, 
as indicated by high symptom and medication scores, was also evidenced when the study 
population was divided into two groups based on the clinical outcome: good outcome 
(SMS<3, n=13) and poor outcome (SMS>3, n=17) (III, Table 4). A significantly 
(p=0.0024) higher allergen-induced IL-17 mRNA expression was seen in the group 
with poor outcome (SMS>3) (III, Table 4). When symptoms and medication were 
analyzed separately, the high IL-17A expression was associated more with symptoms 
than medication (III, Table 4). 
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5.4.3	 IL-27p28 mRNA expression remains low and unchanged in the PBMC during 
SLIT, but the expression of IL-23p19 mRNA progressively decreases the high 
dose treated group

After 1 (p=0.047) and 2 (p=0.013) years from the start of SLIT, a significant progressive 
decrease was seen in the expression of IL-23p19 mRNA in response to specific 
allergen in the PBMC of high dose treated children (group 2, 200,000 SQ-U/week) 
when compared to baseline (III, Figure 2). In placebo group, by contrast, there was 
a significant progressive increase in the non-stimulated expression of IL-23p19 in the 
PBMC after one (p=0.009) and two (p=0.005) years from the start of SLIT (III, Figure 
2). IL-27p19 mRNA expression remained low and unchanged in the allergen-stimulated 
and non-stimulated PBMC of all three different dosing groups during the 2-year course 
of SLIT (III, Figure 2). No significant correlation was found between the allergen- or 
non-stimulated expressions of IL-17, IL-23p19 and IL-27p28 mRNAs in the PBMC 
of children treated within the different dosing groups, or the whole patient population 
(n=30) investigated during the treatment (data not shown). 

5.4.4	 FOXP3 mRNA expression is transiently increased in the subsequent asthma group, 
but IL-23p19 expression progressively decreases in the non-asthma group

Based on the telephone survey, five years after the start of SLIT and 3 years post SLIT, 
the 30 study subjects were divided into two groups, one group with no signs of bronchial 
asthma (n=16) and another group being on inhaled steroids and/or having had asthmatic 
wheezing during the past 12 months. There was more asthma in the low dose (24,000 
SQ-U/week) and placebo groups than in high dose group (group 2, 200,000 SQ-U/week) 
(III, Table 1). Altogether nine children were on inhaled corticosteroids five years later, 
two from the high dose group and seven from the low dose or placebo groups. Allergen-
induced FOXP3 expression was transiently elevated in the PBMC of asthma group 
as compared to non-asthma group (p=0.013) after 1 year of SLIT but without change 
in comparison to baseline expression (III, Table 5). However, there was a significant 
progressive decrease in the allergen-induced IL-23p19 mRNA expression in the PBMC 
of non-asthma group during SLIT as compared to baseline expression (p=0.034 after 1 
year and p=0.044 after 2 years), whereas no change was found in the asthma group  (III, 
Table 5). Instead, there was a significant progressive increase in the asthma group the  
in non-stimulated expression of IL-23p19 mRNA during SLIT as compared to baseline 
(p=0.002 after 1 year and p=0.004 after 2 years) but no change in the non-asthma group 
(III, Table 5). Both non-stimulated (p=0.034) and allergen-stimulated (p=0.046) IL-
23p19 mRNA responses were significantly lower in the PBMC of non-asthma group 
after 1 year of SLIT as compared to asthma group (III, Table 5). There was no significant 
association between the antigen-induced IL-17A or IL-27p28 mRNA expression in 
PBMC and subsequent reported asthma (data not shown).
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5.5	 Th17 type immune responses (IL-17, RORC) in PBMC during SCIT (IV)

5.5.1	 Th17 type responses remain unchanged in the PBMC during SCIT, but correlate 
with clinical improvement in the individual level

In study IV, Th17 type immune responses against specific allergen in the PBMC during 
SCIT were investigated, along with Th1 and Th2 responses. These responses were 
analyzed from blood samples collected at 0 and 1 year from the start of SCIT from thirty 
study patients that had been treated with SCIT and from ten other allergic patients who 
served as untreated controls. After one study year, there were no significant differences 
in the fold changes from baseline in the mRNA expressions of allergen-induced IL-17 
and RORC between the SCIT-treated and untreated allergic control groups (IV, Table 
3). Also, no significant differences between these groups were found in the fold changes 
from baseline in the expressions of allergen-induced IFN-γ, IL-4, and IL-5 mRNAs 
(IV, Table 3). However, again in the individual level, there was a significant negative 
correlation found between the IL-17 mRNA fold changes from baseline and the combined 
symptom medication score in the SCIT-treated patients (r= -0.45, p=0.015), which was 
not observed in the untreated control patients (r= -0.094, p=0.80) or the allergic rhinitis 
group as a whole (r = -0.27, p=0.10) (IV, Figure 2).

5.5.2	 IL-17 mRNA expression during SCIT positively correlates with IL-5 mRNA, but 
has a negative association with serum specific IgE 

After 1 year of treatment with SCIT, there was a significant negative correlation between 
the IL-17 mRNA and IgE fold changes from baseline in the treated patients (r= -0.57, 
p=0.0024) and the whole allergic rhinitis group (r= -0.52, p=0.0013) but not in the 
untreated controls (r=0.03, p=0.92) (IV, Figure 3). In addition, there was a significant 
positive correlation between the IL-17 and IL-5 mRNA changes in the treated patients 
(r=0.37, p=0.048) and the whole allergic rhinitis group (r=0.35, p=0.030) but not in the 
untreated controls (r= -0.35, p=0.30) (IV, Figure 3). Significant positive correlations were 
also found between the IL-4 mRNA and IgE fold changes in the whole allergic rhinitis 
group (r=0.35, p=0.041) but only marginally in the treated patients (r=0.33, p=0.077) 
and untreated controls (r=0.58, p=0.099) (IV, Figure 3). Significant positive correlations 
were also found between IL-4 and IL-5 mRNA in treated patients (r=0.56, p=0.0027) 
and the whole allergic rhinitis group (r=0.50, p=0.0019) but not in the untreated controls 
(r=0.35, p=0.30) (IV, Figure 3). All other correlations remained non-significant.
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6	D ISCUSSION

6.1	 The up-regulation of Th1 and Treg type immune markers in PBMC 
during SLIT and SCIT indicates a Th2 to a Th1 shift in allergen-specific 
T cell responses, and induction of tolerogenic Treg cells

The two key mechanisms behind the beneficial effects of SIT have been suggested 
to include the induction of tolerogenic, allergen-specific CD4+CD25+ Treg cells 
that produce anti-inflammatory cytokines, such as IL-10 and/or TGF-β, and immune 
deviation from a Th2 to a Th1 type response in allergen-specific T cells. In pollen allergic 
patients, the numbers of FOXP3-expressing CD4+CD25+ Treg cells have been shown 
to increase in nasal mucosa during pollen season, and this increase has been found to 
correlate with clinical improvement, as well as with the suppression of local allergic 
inflammation, involving reductions in the numbers of mucosal IL-5 mRNA+ cells and 
eosinophils (Radulovic et al. 2008). Our laboratory and others have previously shown 
that allergen-specific IL-10 production is up-regulated in the PBMC during SCIT and 
SLIT (Francis et al. 2003; Savolainen et al. 2004; Savolainen et al. 2006; Cosmi et al. 
2006; Bohle et al. 2007; Francis et al. 2008; Burastero et al. 2008). In addition, in nasal 
mucosa and peripheral blood, there is increased expression of Th1 cytokines during the 
treatment with SCIT or SLIT (Durham et al. 1996; Ebner et al. 1997; Wachholz et al. 
2002; Cosmi et al. 2006; Bohle et al. 2007). In SLIT studies I and III, and SCIT study II, 
the induction and the kinetics of Th1 and Treg type immune responses during these two 
treatments were investigated, and increased expression of both Th1 (IL-18 and SLAM) 
and Treg type (IL-10) cell markers after SCIT and SLIT were found, thus supporting the 
role of these responses in underlying mechanisms of SIT. 

6.2	 The induction of tolerogenic Treg response and immune deviation from 
a Th2- to more Th1 type response in PBMC during SLIT is dependent 
on the treatment dose, favoring high dose SLIT 

It is known that low dose SCIT regimens are clinically ineffective (Bousquet et al. 2008; 
van Metre et al. 1980; Hirsch et al. 1982). In SLIT studies I and III, allergen-specific 
IL-18, SLAM and FOXP3 expressions were found to increase significantly only in the 
PBMC of children treated with high dose SLIT regimen (group 2, 200,000 SQ-U/week), 
who also had the greatest reduction in symptoms after the treatment. This demonstrates 
that the induction of tolerogenic, Treg type immune responses and the immune deviation 
from Th2 to a Th1 type response is, in fact, dependent on the therapeutic allergen dose, 
favoring high dose SLIT. This phenomenon has also been previously demonstrated in 
SCIT (Pene et al. 1998). 
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6.3	 The early decrease in Th2 type cytokine production during SCIT is 
associated with the development of a good therapeutic outcome 

A number of recent meta-analyses of double-blind, placebo-controlled trials support the 
clinical efficacy of SCIT in the treatment of allergic rhinitis and asthma (Abramson 
et al. 2003; Calderon et al. 2007). However, a significant heterogeneity in the clinical 
efficacy of SCIT between different clinical trials and different individuals still exists. 
When successful, a marked clinical improvement is often achieved already after one 
preseasonal treatment period, whereas a more pronounced and sustained clinical efficacy 
usually requires longer treatment courses, typically for at least 3 years. In accordance 
with the previous studies, we found that SCIT was highly effective in reducing seasonal 
symptoms and the need for rescue medication already after the first treatment year, and 
a further improvement in both of these parameters was seen after the second treatment 
year, which remained similar till the end of SCIT (II, Table 2). The decrease in allergen-
specific Th2 type cytokine responses after 1 year of treatment - in particular of IL-4 
mRNA and IL-4/IFN-γ expression ratio - were associated with the development of a 
good therapeutic outcome to SCIT. Conversely, increases in both Th2 (IL-5) and Th1 
(IFN-γ, SLAM) type responses and IL-10 mRNA production during SCIT were found in 
patients with less effective treatment. 

It has been previously published from our laboratory that allergen-specific IL-10 mRNA 
responses are increased early, by the time of reaching the maintenance dose, in PBMC of 
patients who benefited most from SCIT (Savolainen et al. 2004). A similar tendency was 
also found for allergen-induced IL-18 and SLAM mRNAs expression (Laaksonen et al. 
2003; Savolainen et al. 2004), whereas the responses were delayed, peaking not until the 
end of the first treatment year, in PBMC of patients who had less beneficial outcome. The 
early induction of allergen-specific IL-10 production in PBMC during SCIT and SLIT 
has also been reported by other investigators, but often without correlating to symptoms 
improvement at later stages of SIT (Francis et al. 2008; Bohle et al. 2007). In study 
II, we extended the investigation of allergen-specific immune responses and symptom 
improvement to cover the complete 3-year course of SCIT. At years 1 and 3 from the start 
of SCIT, we could not find any significant association between the increased allergen-
induced IL-18 and SLAM mRNA responses in the PBMC and clinical outcome, whereas 
high IL-10 mRNA expression was found in patients with less beneficial outcome. Thus, 
early immune deviation in the peripheral allergen-specific immune responses is critical 
for the development of good therapeutic outcome to SCIT.

6.4	 The Th1 and Treg type responses induced in PBMC during SCIT are 
sustained for years 

Previously, the evidence of immunological mechanisms behind SCIT has been collected 
from short-term studies, maximum of one or two years in duration, and studies extended 
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to cover the whole treatment period have been lacking. In the 3-year prospective study of 
SCIT in pollen allergic rhinitis patients (study II), it was demonstrated that SCIT induces 
long-term changes in allergen-specific immune responses in PBMC. Both Th1 (IFN-γ, IL-
18, SLAM) and Treg (IL-10) type immune responses that were induced against specific 
allergen during SCIT remained up-regulated in the PBMC for up to 3 years of treatment, 
albeit declined from the first year responses. These results concord with the results of 
study I where a peak in peripheral allergen-specific SLAM mRNA expression and a 
slightly more sustained increase in IL-18 mRNA expression were seen in the PBMC 
after 1 year of commencement of the high dose SLIT regimen (group 2, cumulative 
weekly maintenance dose 200,000 SQ-U). In a previous publication from our laboratory 
(Savolainen et al. 2006), a peak also in peripheral allergen-specific IL-10 production was 
seen after the first treatment year with 200,000 SQ-U/week dose SLIT regimen, but a 
decline back to baseline after two years of treatment. These findings suggest that there is 
a shift in allergen-specific immune responses from peripheral blood to target tissues after 
the first treatment year, where they contributed to clinical improvement. This suggestion 
is also supported by finding of Wachholz et al. (Wachholz et al. 2002) who found a shift 
from Th2 to Th1 responses in nasal mucosa of patients treated for 2 years with SCIT, but 
was not able to find a similar response in PBMC.

6.5	 Allergen-induced IL-17 responses correlate with symptom medication 
scores during SLIT and SCIT

It has been previously shown that serum IL-17 levels are elevated in patients with pollen 
allergic rhinitis (Ciprandi et al. 2008b; Ciprandi et al. 2009). However, until now, little 
has been known of the allergen-specific Th17 type immune responses in PBMC of pollen 
allergic rhinitis patients. In study IV, we found no differences in the allergen-induced in 
vitro IL-17 mRNA responses between allergic rhinitis patients and healthy subjects at 
the baseline, when measured outside of pollen season. The increased expression of IL-
17 mRNA in both groups compared to non-stimulated cells rather suggests a normal 
proinflammatory response against a foreign antigen. The cellular source of IL-17 in this 
experimental setup, though, remains to be further evaluated as several other cell types 
than Th17 cells, including CD8+ T cells (Shin et al. 1998), and NKT cells (Rachitskaya 
et al. 2008) have been shown to be capable of expressing IL-17. Recent data also suggest 
macrophages as a potential source of IL-17 (Song et al. 2008). Interestingly, in a mouse 
model of allergic asthma, macrophages rather than Th17 cells were found to be the major 
source of IL-17 in the airways, and these cells were also identified in BAL fluid specimens 
obtained from allergic asthma patients (Song et al. 2008). The enhanced specific allergen-
induced IL-17 mRNA responses found in the PBMC of some patients with poor therapeutic 
outcome after 1 year of SCIT in study IV could therefore be macrophage-derived, as there 
was no change in RORC mRNA expression in the PBMC during this treatment, suggesting 
that there was no propagation of allergen-specific Th17 cells. 
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There is evidence of synergistic effects between Th17 and Th2 type immune responses 
in the enhancement of allergic inflammation in mice (Wakashin et al. 2008). In addition, 
in allergic asthma patients, a significant positive correlation has been found between 
the bronchial IL-5 mRNA and IL-17 mRNA responses (Bullens et al. 2006). Both IL-
17 and IL-5 are capable of inducing eosinophil activation, resulting in the release of 
proinflammatory mediators to the surrounding milieu (Cheung et al. 2008). Bronchial 
IL-17 responses of allergic asthma patients have also been found to correlate with the 
disease severity (Chakir et al. 2003). Recently, in allergic rhinitis patients too, a significant 
positive correlation was found between the serum IL-17 levels and symptoms severity 
scores, medication use, and peripheral eosinophil count during pollen season (Ciprandi 
et al. 2009). Taken together, the results presented in paper IV with in vitro allergen-
induced IL-17 mRNA responses of the PBMC of SCIT-treated patients correlating with 
IL-5 mRNA expression, and also, inversely with the clinical improvement during SCIT, 
support these prior findings. 

During SLIT (study III), allergen-induced IL-17 mRNA expression was significantly 
increased in the study subjects with elevated combined symptom medication score (SMS) 
after two years of treatment. When the study population was divided in two groups based 
on the clinical outcome: good outcome (SMS<3, n=13) and poor outcome (SMS>3, 
n=17), a significantly (p=0.0024) higher allergen-induced IL-17A expression was 
seen in the group with poor outcome (SMS>3). When symptoms and medication were 
analyzed separately, the high IL-17A expression was associated more with symptoms 
than medication.

It has been demonstrated that allergen-induced IL-17 responses of macrophages are 
down-modulated by IL-10 (Song et al. 2008). The early induction of IL-10 production 
has been shown to be of importance in the induction of allergen-specific T cell anergy 
during SIT (Bellinghausen et al. 1997; Akdis et al. 1998), and in the attenuation of 
late-phase allergic reactions (Francis et al. 2008). Furthermore, it has been earlier 
shown that allergen-induced Th2 responses are decreased early in subjects responding 
clinically well to SIT, but remain elevated in those failing to respond (Benjaponpitak 
et al. 1999). Therefore, the increased allergen-induced IL-17 mRNA responses along 
with the enhanced IL-5 production in the PBMC of patients who had poor a therapeutic 
outcome after 1 year of treatment with SCIT could be a result from the delayed induction 
of tolerogenic Treg responses against the specific allergen (Paper IV). 

6.6	 IL-17 responses have a dual immunoregulatory role during SCIT

Besides the IL-17 responses were found to play a proinflammatory role in SCIT (Paper 
IV) by correlating positively with IL-5 mRNA expression and inversely with clinical 
improvement, a significant negative association was also found between the serum 
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allergen-specific IgE levels and IL-17 mRNA responses after 1 year of treatment. So far, 
though, little is known of the effects of IL-17 on immunoglobulin synthesis. It has been 
demonstrated that the deficiency in Th17 type cell responses in humans results hyper-
IgE-syndrome (Milner et al. 2008), suggesting that Th17 type immune responses could 
have an immunoregulatory role in the IgE synthesis in B cells. Therefore, IL-17 and the 
Th17 type responses could have a pleiotropic function during SIT. 

6.7	 Comparison of immunological mechanisms associated with SCIT and 
SLIT

Figure 6 schematically summarizes the immunological mechanisms found in this 
work to be associated with the high dose SLIT (200,000 SQ-U/week), low dose SLIT 
(24,000 SQ-U/week) and SCIT. It appears that the immunological mechanisms between 
SLIT and SCIT regimens are comparable, provided that high allergen dose treatment 
was used in SLIT. The immunological changes induced by high dose SLIT and SCIT 
regimens also appear to follow similar pattern of kinetics, with a peak in the protective 
peripheral Th1 and Treg type immune responses being seen after the first treatment year 
in both regimens, and thereafter a trend toward back the baseline. The subsiding of these 
responses from peripheral blood after the first treatment year suggests a shift to tissues 
where they contributed to clinical improvement. 

SLIT SCIT
n=20

IL-5

IL-4/IFN-

IL-4

1 30

*

*
*

*
*

*

*

High dose

1 20

*

*
*

n=10
Low dose

n=10

1 20

*

*

*
*

IL-5 IL-10IL-10 IL-18
IL-18IL-4/IFN- TGF- SLAM

FOXP3

IFN-

SLAM

Figure 6. Summary of immunological mechanisms associated with SLIT and SCIT (Papers I-III, 
and Savolainen et al. 2006). Asterisk denotes to a statistically significant difference in expression 
compared to baseline.
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The kinetics of immunological changes associated with SLIT and SCIT were investigated 
in this work at rather late time points, at years 1, 2 and 3 from start. It has been demonstrated 
that many immunological changes associated with SIT occur much earlier, within 
weeks or months from the start, or even days, depending of the administration form 
or schedule (e.g. conventional SCIT versus rush VIT). These data thus do not exclude 
the possibility that the dynamics of the immunological changes shown here may differ 
when investigated at earlier time points, for example at the beginning of the treatment. 
Not only the administration route and schedule used, but also the type of allergen (e.g. 
venom versus dust mite versus pollen) and the dose during the treatment are likely to 
influence on the kinetics of the immunological changes associated with SIT. However, 
one of the main objectives of this work was to investigate the kinetics of immunological 
changes associated with SCIT and SLIT in relationship with the clinical outcome and it 
is well known that the establishment of clinical improvement requires long periods of 
treatment, usually for at least a year, but often years to provide sustained improvement 
and long-term cure. 

In SCIT studies II and IV, some of the patients (n=12) were treated with clustered rush 
regimen and others by conventional schedule (n=18). However, subanalysis of immune 
responses within these populations revealed no significant differences in the magnitude 
or the kinetics of the responses at the investigated time points. This is likely to be due to 
the fact that in both regimens, like in SLIT, at 1 year, which was the earliest time point 
investigated, the maintenance dose had already been achieved long time ago, and thereby 
the possible influence of the up-dosing schedule on the responses had subsided. In SLIT, 
the therapeutic allergen dose though appeared to be a more determining factor in the 
capacity of this modality to induce changes in the allergen-induced immune responses 
(Figure 6). Subanalysis of the patients treated with birch and/or timothy grass pollen 
SCIT unfortunately was not possible due to numerically too unevenly distributed study 
population. 
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7	SUMMARY  AND CONCLUSIONS

In this work, immunological mechanisms associated with SCIT and SLIT have been 
investigated. This work demonstrates that both treatments induce an increase in the 
protective Th1 and Treg type immune responses against the specific allergens in PBMC. 
The early induction in Th1 and Treg type immune responses, concomitantly with the 
decreased expression of Th2 type cytokines, was associated with the development of a 
good therapeutic outcome to SCIT. Furthermore, the data of this work demonstrate that 
both treatments have long-term immunomodulatory effects on allergen-specific Th1 and 
Treg type immune responses in PBMC, that endure at least up to 2 to 3 years of therapy, 
whereas during SCIT, decreased Th2 type cytokine responses were seen only during 
the early therapy, at one year. The subsiding of these protective immune responses from 
peripheral blood after the first treatment year, when a peak in expression of both Th1 and 
Treg type responses was found, suggests a shift to mucosal tissues where they contributed 
to clinical improvement. Taken together, these data indicate that SIT induces a long-term 
immune reorientation of the pre-existing, inappropriate Th2-biased immune responses 
in allergic rhinitis patients. The data of this work also demonstrates that the capacity of 
SLIT to modulate allergen-specific immune responses is dependent on the treatment dose, 
favoring high allergen dose (cumulative weekly maintenance dose 200,000 SQ-U), as 
shown by inadequate induction of the protective Th1 and Treg type immune responses 
against specific allergens in children treated with low dose regimen (24,000 SQ-U/week). 

The specific findings of this work are:

1) SLIT up-regulates SLAM mRNA expression, an activation molecule associated with 
Th1 cells, and increases the expression of IL-18 mRNA, an APC-derived cytokine, in 
allergen-simulated PBMC. Both molecules have been earlier suggested to play a role in 
the Th2 to Th1 shift during SCIT. Both of these immune markers peaked at 1 year of 
treatment, and then subsided. A significant inverse relationship was found between the 
peripheral allergen-induced IL-18 mRNA responses and late-phase cutaneous responses 
after 2 years of treatment. Neither IL-18 nor SLAM, or GATA-3, mRNA expression 
correlated with the clinical symptoms or medication scores (I). 

2) SCIT induces a transient decrease in allergen-specific Th2 type cytokine (IL-5) 
production in PBMC after 1 year of treatment, but increases SLAM, IL-18 and IL-
10 expression in a sustained manner. However, a peak in SLAM, IL-18 and IL-10 
expression was also found after 1 year of the treatment. IFN-γ expression was transiently 
up-regulated in the PBMC only after 1 year of treatment. The early decrease in IL-4 
mRNA expression and IL-4/IFN-γ ratio were associated with the development of good 
therapeutic outcome, whereas both Th1 (IFN-γ, SLAM) and Th2 (IL-5) cytokines, as 
well as IL-10, increased in the patients with less beneficial outcome (II)
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3) SLIT leads to up-regulation of FOXP3 mRNA expression in allergen-stimulated 
PBMC, but only in those treated with high allergen dose, indicating dose-dependence 
of the response. The expression increased after 2 years of treatment. FOXP3 mRNA 
responses correlated with IL-10 and TGF-β mRNA production in the whole cohort, 
but not within individual dosing groups. The up-regulation in FOXP3 mRNA 
expression did not correlate with the changes in symptom or medication scores. 
IL-17 mRNA expression remained unmodulated between or within the different 
dosing groups during SLIT, but correlated with symptom medication scores in the 
level of individual patients. IL-23p19 mRNA expression, a cytokine involved in 
Th17 development and maintenance, decreased significantly and progressively only 
in the high dose treated group. The decrease in allergen-specific IL-23p19 mRNA 
expression during SLIT was also associated with the protection against subsequent 
asthma symptoms. No change in the originally low IL-27p28 mRNA expression was 
found in the PBMC during SLIT (III). 

4) No change in RORC or IL-17 mRNA expression was found in the allergen-stimulated 
PBMC of SCIT-treated patients 1 year of treatment when compared to untreated controls. 
However, a negative association was found between the reduced symptom medication 
scores and IL-17 mRNA fold changes among the treated patients. A significant positive 
correlation was also found between the IL-17 and IL-5 mRNA fold changes in the treated 
patients, and a negative association between the IL-17 mRNA and IgE changes after 1 
year of treatment, suggesting a pleiotropic role for Th17 type immune responses in SCIT 
(IV).  

Taken together, these data strengthen the current concept that immunomodulation of 
allergen-specific immune responses from the prevailing Th2-biased responses towards a 
more Th1 type, and induction of tolerogenic Treg cells represent the two key mechanisms 
behind the beneficial effects of SCIT and SLIT, by demonstrating long-term immune 
deviation towards such responses in the PBMC of patients undergoing these treatments. 
The data also give a novel insight into the mechanisms why SCIT and SLIT may fail 
to be effective in some patients by demonstrating a simultaneous up-regulation in both 
Th1 and Th2 type immune responses in the patients with less efficient outcome during 
SCIT, and by a positive correlation between the proinflammatory IL-17 responses and 
symptom medication scores both during SCIT and SLIT. In addition, this work suggests a 
mechanism for the established prophylactic efficacy of SIT against asthma development, 
as shown by a progressive decrease in the allergen-induced IL-23 responses in the PBMC 
of patients treated with clinically effective doses during SLIT, and in those reporting 
no asthma symptoms after SLIT, suggesting that successful treatment with SLIT 
could have the capacity to protect against proinflammatory, Th17-promoting immune 
responses. These findings suggest that Th17 type immune responses may play a role 
in the pathogenesis of allergic rhinitis, but further studies, involving larger cohorts and 
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analysis at protein level, as well as from target tissues are required to confirm these pilot 
studies. In conclusions, the results of this work indicate that analysis of a combination 
of Th1, Th2, Treg and Th17-associated immune markers such as SLAM, IL-4, IL-5, 
IL-10, and IL-17 from allergen-stimulated PBMC of SIT-treated patients during the 
treatment could provide tools to monitor the development of clinical response to SIT, and 
thereby, predict the ultimate clinical outcome. PBMC would represent an ideal tissue to 
investigate such SIT-associated efficacy indicators, as direct analysis from target organs 
is time-consuming and laborious.
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