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Abstract

Learning of preference relations has recently received significant attention
in machine learning community. It is closely related to the classification and
regression analysis and can be reduced to these tasks. However, preference
learning involves prediction of ordering of the data points rather than pre-
diction of a single numerical value as in case of regression or a class label
as in case of classification. Therefore, studying preference relations within
a separate framework facilitates not only better theoretical understanding
of the problem, but also motivates development of the efficient algorithms
for the task. Preference learning has many applications in domains such
as information retrieval, bioinformatics, natural language processing, etc.
For example, algorithms that learn to rank are frequently used in search
engines for ordering documents retrieved by the query. Preference learning
methods have been also applied to collaborative filtering problems for pre-
dicting individual customer choices from the vast amount of user generated
feedback.

In this thesis we propose several algorithms for learning preference rela-
tions. These algorithms stem from well founded and robust class of reg-
ularized least-squares methods and have many attractive computational
properties. In order to improve the performance of our methods, we in-
troduce several non-linear kernel functions. Thus, contribution of this the-
sis is twofold: kernel functions for structured data that are used to take
advantage of various non-vectorial data representations and the preference
learning algorithms that are suitable for different tasks, namely efficient
learning of preference relations, learning with large amount of training data,
and semi-supervised preference learning. Proposed kernel-based algorithms
and kernels are applied to the parse ranking task in natural language pro-
cessing, document ranking in information retrieval, and remote homology
detection in bioinformatics domain. Training of kernel-based ranking al-
gorithms can be infeasible when the size of the training set is large. This
problem is addressed by proposing a preference learning algorithm whose
computation complexity scales linearly with the number of training data
points. We also introduce sparse approximation of the algorithm that can
be efficiently trained with large amount of data. For situations when small
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amount of labeled data but a large amount of unlabeled data is available,
we propose a co-regularized preference learning algorithm.

To conclude, the methods presented in this thesis address not only the
problem of the efficient training of the algorithms but also fast regularization
parameter selection, multiple output prediction, and cross-validation. Fur-
thermore, proposed algorithms lead to notably better performance in many
preference learning tasks considered.
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sandr Mylläri. From the start Jorma directed my research by sharing his
perspectives on variety of machine learning problems that interested me a
lot. I would like to thank Jorma for his support throughout my research and
thesis-writing period as well as for his sound advice, teaching, and great com-
pany. I would like to thank Tapio for his supervision and encouragement in
addressing challenging research questions. He has been the supervisor who
also guided me as a group member of our lab, strengthening collaboration
with other researchers working at TUCS. I would like to acknowledge Alek-
sandr for his supervision and support, particularly during the first years of
my stay at TUCS. He has always had a good advice for me, would it be
scientific or practical question. Many thanks to Jouni Järvinen who has
always been able to make our long manuscripts much shorter with his sharp
comments.

I would like to acknowledge the thesis reviewers, Wei Chu and Kai Yu
whose suggestions increased readability and reduced ambiguity of the in-
troductory part of the thesis. I would also like to thank Tom Heskes who
kindly agreed to act as an opponent at the defense.

While working at TUCS I had a chance to learn from and to collabo-
rate with many researchers: Filip Ginter, Tapio Pahikkala, Sampo Pyysalo,
Hanna Suominen, Marketta Hiissa, Antti Airola and others. I am grateful
to Tapio for inspiring discussions and fruitful collaboration. Thanks to Filip
and Sampo who have been great source of insight on many problems ranging
from natural language processing to machine learning. I would also like to
thank Hanna and Antti who have been always prolific with new, cool ideas
during our joint project. It has been a pleasure to work with all of you guys.
Special thanks to Ion Petre and Vladimir Rogojin for organizing interest-
ing seminars on biocomputing and bioinfomatics that were fun to attend. I
would also like to acknowledge my collaborators and co-authors outside of

iii



TUCS, Fabian Gieseke and Willem Waegeman. It was great to visit you in
Dortmund and Ghent and to host you in Turku.

My particular gratitude goes to the administrative stuff of TUCS, Irmeli
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Chapter 1

Introduction

“How can we build computer systems that automatically improve with ex-
perience, and what are the fundamental laws that govern all learning pro-
cesses?” This central question defines the discipline of Machine Learning
(Mitchell, 2006) that is at the cross-border of the Computer Science and
Statistics. The answer to this question holds the key to develop systems
that are able to learn useful information from the massive amounts of data
and that will probably replace humans in many tasks. For example, machine
learning methods have already made significant progress in many real-world
applications, such as speech recognition, machine vision, robot control, and
are extensively used in data-intensive domains to aid the scientific discov-
ery process. There is no doubt that in the future machine learning meth-
ods would become increasingly important in modern society. This thesis
concerns particular kind of machine learning methods, namely kernel-based
methods for learning preference relations.

Preference learning (see e.g. Fürnkranz and Hüllermeier (2005)) is a
challenging task because it involves prediction of ordering of the data points
rather than a single numerical value as in case of regression or a class label
as in case of classification problems. It has large number of applications
in many domains such as information retrieval, bioinformatics, and natural
language processing which will be discussed throughout this thesis. Kernel-
based methods (see e.g. Shawe-Taylor and Cristianini (2004)), on the other
hand, represent very well founded and robust class of algorithms with many
attractive computational properties that make them particularly suitable
for learning complex tasks.

1.1 Kernel-Based Methods

The kernel-based methods represent a class of pattern recognition algorithms
that are used for various tasks such as classification, regression, preference
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learning, clustering, etc. One common approach for all kernel-based meth-
ods is the construction of the non-linear learning algorithm by mapping data
into high dimensional feature space, namely substituting linear inner prod-
uct by some kernel function. Thus, the values of kernel function of data
objects correspond to the inner product in mapped space (Aronszajn, 1950;
Scholkopf and Smola, 2001). Training the resulting kernel-based algorithm
can be considered as training the original linear algorithm using the mapped
objects in the feature space. The applications of kernel-based methods have
had notable success in many areas. This thesis concerns with development
of novel kernel-based methods for preference learning and their consequent
application to parse ranking task in natural language processing, query-
document ranking in information retrieval, and remote homology detection
in bioinformatics domain.

There are several reasons why kernel-based methods are applicable to
many real-world problems. Firstly, instead of manual construction of the
feature space for the learning task, kernel functions provide an alternative
way to design useful features automatically, therefore, allowing very rich
representations. Secondly, kernels can be designed to incorporate a prior
knowledge about the domain. This property allows to notably improve
performance of the general learning methods and their simple adaptation
to the specific problem. Finally, kernel methods are applicable in situations
where data representation is not in a vectorial form, thus avoiding extensive
pre-processing step.

Below we describe main properties of kernel functions and some basic
methods for their construction (for in depth review see Aronszajn (1950);
Scholkopf and Smola (2001); Herbrich (2002); Shawe-Taylor and Cristian-
ini (2004)). The usage of the kernels in the learning algorithm allows to
take advantage of the high dimensional feature space without computational
penalty that usually grows with the number of dimensions. For studying
kernel functions, properties of inner product spaces are used.

A vector space F is an inner product space, if there exists a real valued
symmetric bilinear map 〈·, ·〉 that satisfies

〈z, z〉 ≥ 0,∀z ∈ F (1.1)

and
〈z, z〉 = 0 if and only if z = 0. (1.2)

An inner product space is a vector space together with an inner product
on it. If the inner product defines a complete metric, then the inner product
space is called a Hilbert space. Properties of Hilbert spaces provide a formal
basis of constructing and understanding new kernel functions. The map
Φ : X → F is called feature map from the input space X into the feature
space F . The kernel function k : X × X → R is used to evaluate the inner
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product in the feature space with some feature map Φ as follows:

〈Φ(xi), Φ(xj)〉 = k(xi, xj). (1.3)

If some function can be represented as an inner product in the feature space,
then it is a valid kernel function. A common way of constructing new valid
kernel functions is by using closure properties of kernels. If k1 and k2 are
kernels over X ×X , α ∈ R+, f : X → R, Φ : X → F and k3 is a kernel over
F ×F , and B is a positive semidefinite matrix of dimension n×n, then the
following functions are kernels as well:

k(xi, xj) = k1(xi, xj) + k2(xi, xj)

k(xi, xj) = αk1(xi, xj)

k(xi, xj) = k1(xi, xj)k2(xi, xj)

k(xi, xj) = f(xi)f(xj)

k(xi, xj) = k3(Φ(xi), Φ(xj))

k(xi, xj) = xt
iBxj when X = Rn.

Further, let us define matrix K ∈ Rm×m as follows:

K =




k(x1, x1) · · · k(x1, xm)
...

. . .
...

k(xm, x1) · · · k(xm, xm)




The matrix K is called kernel matrix. It can be shown to be positive semi-
definite, however, in many cases we require positive definiteness, that is,
AtKA > 0 for all A ∈ Rm, A 6= 0. This can be ensured by performing
a small diagonal shift, that is, by adding λI to K, where I ∈ Rm×m is
the identity matrix and λ is a small positive real number. Kernel matrix
contains the evaluation of the kernel function on all pairs of inputs. Below
we demonstrate how kernel matrix is used in the learning algorithm.

1.1.1 Regularized Least-Squares Algorithm

One of the most fundamental and frequently applied to many real-world
problems, particularly related to regression analysis, is the least-squares
method. Initially proposed by Carl Friedrich Gauss around 1794 to deter-
mine the position of the asteroid based on previous observations, since then
it has had many derivatives. A regularization applied to Gaussian least-
squares allowed to deal with ill-posed problems, therefore avoiding numer-
ical instabilities when solving a system of linear equations (Tikhonov and
Arsenin, 1977). This method is also known as ridge regression. Recently,
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the algorithm has been formulated within kernel methods framework (Saun-
ders et al., 1998) and termed kernel ridge regression. It is also referred in
the literature as least-squares support vector machines (Suykens and Van-
dewalle, 1999), regularized least-squares (Poggio and Smale, 2003; Rifkin
et al., 2003), proximal support vector machines (Fung and Mangasarian,
2001). In this thesis we refer to the algorithm as regularized least-squares.
It is related to the Gaussian process (Rasmussen and Williams, 2005) and to
many other methods such as kernel partial least-squares (Rosipal and Trejo,
2001), kernel Fisher linear discriminant analysis (Mika et al., 1999), and ker-
nel independent and canonical correlation analysis (Bach and Jordan, 2003).
Below we briefly formulate regularized least-squares and demonstrate how
kernel trick allows the algorithm to learn non-linear relations.

Let us construct a training set from a given set of m data points. We
define a data point z = (x, s) to consist of an input x ∈ X and an output
s ∈ R, where X , called the input space, can be any set. Further, let X =
(x1, . . . , xm) ∈ (Xm)t be a sequence of inputs, where (Xm)t denotes the
set of row vectors whose elements belong to X . Correspondingly, we define
S = (s1, . . . , sm)t ∈ Rm be a sequence of the outputs. Finally, we define the
training set to be T = (X, S).

Let us denote RX = {f : X → R}, and let H ⊆ RX be the hypothesis
space. In order to construct an algorithm that selects a hypothesis f from
H, we have to define an appropriate cost function that measures how well
the hypotheses fit to the training data. Following Schölkopf et al. (2001),
we consider the framework of regularized kernel methods in which H is
Reproducing Kernel Hilbert Space (RKHS) defined by a positive definite
kernel function k. We also denote the sequence of feature mapped inputs
as Φ(X) = (Φ(x1), . . . ,Φ(xm)) ∈ (Fm)t for all X ∈ (Xm)t. Then the kernel
matrix is K = Φ(X)tΦ(X).

We define RKHS determined by the input space X and the kernel k :
X × X → R as

H =

{
f(x) =

∞∑

i=1

βik(x, xi), βi ∈ R, xi ∈ X , ‖f‖k < ∞

}
,

where ‖f‖k denotes the norm of the function f in H. Using RKHS as our
hypothesis space, we define the learning algorithm as

A(T ) = argmin
f∈H

J(f), (1.4)

where
J(f) = c(f(X), S) + λ‖f‖2

k, (1.5)

f(X) = (f(x1), . . . , f(xm))t, c is a real valued cost function, and λ ∈ R+

is a regularization parameter controlling the trade-off between the cost on
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the training set and the complexity of the hypothesis. By the generalized
representer theorem (Schölkopf et al., 2001), the minimizer of (1.5) has the
following form:

f(x) =
m∑

i=1

aik(x, xi), (1.6)

where ai ∈ R, that is, the problem of finding the optimal hypothesis can
be solved by finding the coefficients ai, 1 ≤ i ≤ m. Using this notation, we
rewrite f(X) = KA and ‖f‖2

k = AtKA, where A = (a1, . . . , am)t.
Note that Support Vector Machine (SVM) algorithm (Vapnik, 1998) can

be obtained by choosing c(f(X), S) in (1.5) to be a hinge loss

c(f(X), S) =
m∑

i=1

max(1 − sif(xi), 0). (1.7)

We use least-squares cost function to measure how well a hypothesis f ∈ H
is able to predict the labels of unseen data points:

c(f(X), S) =
m∑

i=1

(si − f(xi))
2. (1.8)

Rewriting the cost function (1.8) in a matrix form as

c(f(X), S) = (S − KA)t(S − KA),

and the algorithm (1.4) is

A(T ) = argmin
A

J(A),

where
J(A) = (S − KA)t(S − KA) + λAtKA. (1.9)

By taking the derivative of J(A) with respect to A

d

dA
J(A) = −2K(S − KA) + 2λKA

= −2KS + (2KK + 2λK)A,

setting it to zero and solving with respect to A, we obtain:

A = (K + λI)−1S, (1.10)

because K and therefore also (K + λI) is strictly positive definite.
The calculation of the solution (1.10) requires inversion of a m × m-

matrix. This operation is usually performed with methods whose computa-
tional complexities are O(m3), and hence the complexity of the regularized
least-squares regression is cubic.
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1.1.2 Examples of Kernel Functions for Structured Data

In some cases standard linear or Gaussian kernel functions (Shawe-Taylor
and Cristianini, 2004) do not allow to take advantage of the structured rep-
resentation of the data, thus leading to unsatisfactory results. To address
this, various kernel functions for structured data have been recently pro-
posed. Efficient computation of these kernel functions has been one of the
central parts of the kernel engineering task together with incorporation of
the prior knowledge into the kernel function. For example, string (Lodhi
et al., 2002; Leslie and Kuang, 2004) and graph (Kondor and Lafferty, 2002;
Gärtner et al., 2003; Kashima et al., 2004) kernels lead to notably better
results in many applications by taking into account the structure of the data
representation. As machine learning is a rapidly developing field, novel and
more general kernels functions such as universal kernels (Caponnetto et al.,
2008) are introduced. However, in this section we provide a brief overview
of some widely used kernel functions that are closely related to the ones
proposed within the scope of this thesis. First we describe the convolution
framework for constructing kernels for structured data, which is based on
the idea of defining kernels between the input objects by applying convolu-
tion sub-kernels for the parts of the objects. Then we describe some general
string and graph kernel functions.

Convolution Framework

Following Haussler (1999) and Watkins (1999) let us consider x ∈ X as a
composite structure such that x1, . . . , xN are its parts, where xn belongs to
the set Xn for each 1 ≤ n ≤ N , and N is a positive integer. We consider
X1, . . . , Xn as countable sets, however, they can be more general separable
metric spaces (Haussler, 1999). Let us denote shortly x̂ = x1, . . . , xN . Then
the relation “x1, . . . , xN are the parts of x” can be expressed as a relation
R on the set X1 × . . .×XN ×X such that R(x̂, x) is true if x̂ are the parts
of x. Then we can define R−1(x) = {x̂ : R(x̂, x)}. Now let us suppose that
x, y ∈ X and there exist decompositions such that x̂ = x1, . . . , xN are the
parts of x and ŷ = y1, . . . , yN are the parts of y. If we have the following
kernel functions

kn(xn, yn) = 〈Φ(xn), Φ(yn)〉, 1 ≤ n ≤ N,

to measure similarity between elements of Xn, then the kernel k(x, y) mea-
suring the similarity between x and y is defined to be the following general-
ized convolution:

k(x, y) =
∑

bx∈R−1(x)

∑

by∈R−1(y)

N∏

n=1

kn(xn, yn). (1.11)
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String Kernels

Let us consider two strings p = (p1, . . . , p|p|) and q = (q1, . . . , q|q|). The
similarity of p and q is obtained with the kernel

k(p, q) =

|p|∑

i=1

|q|∑

j=1

κ(i, j). (1.12)

By specializing κ in the general formulation (1.12), we obtain different sim-
ilarity functions for strings. If we set κ(i, j) = δ(pi, qj), where

δ(x, y) =

{
0, if x 6= y

1, if x = y,

then (1.12) equals to the number of matching characters in two strings. The
spectrum kernel (Leslie et al., 2002a) is obtained by using

κ(i, j) =
h−1∏

l=0

δ(pi+l, qj+l), (1.13)

in (1.12). A generalization of the spectrum kernel, that computes similar-
ity between two strings by taking into account subsequences rather than
substrings, is called the mismatch kernel. Restricting the number of mis-
matches to m between the subsequences of length h, the (h, m)-mismatch
kernel (Leslie et al., 2004) is obtained by using

κ(i, j) =

{
0, if

∑h−1
l=0 δ(pi+l, qj+l) < h − m

1, otherwise
(1.14)

in (1.12). The spectrum kernel (1.13) is a special case of the mismatch
kernel where m = 0. It can be observed that computing these kernels using
naive approach is O(k|p||q|). A much more efficient approach is to use trie
data structure (as described in Leslie and Kuang (2004); Shawe-Taylor and
Cristianini (2004)) that could reduce the computation to O(k(|p| + |q|)).

Graph Kernels

Another type of frequently used kernels for the text analysis tasks are graph
kernels (see e.g. Pahikkala et al. (2006)). Graph kernels are primarily ap-
plicable in the situation when graph based annotation of the text is present.
An example of this type of annotation is depicted on Figure 1.1. The ker-
nels described in Gärtner (2002) and Kashima et al. (2004) are based on the
random walks in two graphs. They can take into account various similarity
measures, for example, walks with equal first and last labels of the vertices,
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Absence.n of alpha-syntrophin.n leads.v to structurally aberrant.a neuromuscular.a synapses.n deficient.a in utrophin.n .

A
MVp A MVpMaJs

Jp

Mp
Ss

JsE

Figure 1.1: A sentence parsed with the link grammar parser (Sleator and
Temperley, 1991) that adds to the text syntactical annotation describing
different relations.

walks that have exactly all labels of the vertices matching, etc. Similarly to
Gärtner (2002) and Gärtner et al. (2003), we use the following notations.
We denote the set of real valued matrices of dimension i × j by Mi×j(R).
[M ]i,j defines the element of matrix M that is located in the i-th row and
j-th column. We define the set L = {lr}, r ∈ N, to be the index set of all
possible labels that could occur in the graph. Also, let G = (V, E, h) be
a graph consisting of the set of vertices V , the set of edges E ⊆ V × V ,
and a function h : V → L that assigns a label to each vertex of a graph.
We suppose that the function h is represented as a label allocation matrix
L ∈ M|L|×|V |(R) so that [L]i,j = 1 if the label of vj is li and 0 otherwise. The
adjacency matrix W ∈ M|V |×|V |(R) having the rows and columns indexed
by the V and where

[W ]i,j =

{
1, if (vi, vj) ∈ E

0, otherwise

corresponds to the edge set of the G.
The rest of this section is mainly based on Gärtner et al. (2003). Let us

consider two graphs G and G′. The vertex set of the graph G× that would
take into account common walks between the vertices of the G and G′ is
V× ⊆ V × V ′. The graph G× has a vertex iff the labels of the vertices in
corresponding graphs G and G′ have the same label. Furthermore, there is
an edge between the vertices in graph G× iff there are edges between the
corresponding vertices in both graphs G and G′. Let us denote the adjacency
matrix of the graph G× as W×. Then we have the product kernel

k×(G, G′) =

|V×|∑

i,j=1

[
∞∑

n=0

wnWn
×

]

i,j

, (1.15)

where wi ∈ R, wi > 0, is the sequence of weights. This kernel can be
computed efficiently using exponential or geometric series, if the limit in
(1.15) exists.

Another example where similarity is measured based on the start and
the end vertices of the random walk can be formulated as follows. We will
use the fact that [Wn]i,j is the number of walks of length n from vertex
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vi to vertex vj , where Wn denotes the nth power of the adjacency matrix
of the graph G. Moreover, if the labels of the graph vertices are taken into
account, [LWnLt]i,j corresponds to the number of walks of length n between
vertices labelled li and lj .

We denote by 〈M, M ′〉F the Frobenius product of matrices M and M ′,
that is, 〈M, M ′〉F =

∑
i,j [M ]i,j [M

′]i,j . Further, let γ ∈ Mn×n(R) be a
positive semidefinite matrix. The kernels kn between the graphs G and G′

can be defined as follows:

kn(G, G′) =
∑n

i,j=0[γ]i,j〈LW iLt, L′W ′jL′t〉F . (1.16)

It is interesting to notice that several specializations of this kernel func-
tion lead to different feature spaces and consequently have very different
interpretations. If, for example, we set the [γ]i,j = θiθj , where θ ∈ R+ is a
parameter, we obtain the kernel

k̂n(G, G′) = 〈L
( n∑

i=0

θiW i
)
Lt, L′

( n∑

i=0

θiW ′i
)
L′t〉F , (1.17)

which can be interpreted as an inner product in a feature space, in which
there is a feature Φk,l per each label pair (k, l) so that its value Φk,l(G) for
a graph G is a weighted count of walks of length up to n from the vertices
labelled l to the vertices labelled k.

1.2 Learning Preference Relations

Recently, the task of learning preference relations (see e.g. Fürnkranz and
Hüllermeier (2005)) has attracted considerable attention in machine learning
research. This task involves prediction of ordering of the data points rather
than a single numerical value as in case of regression or a class label as in
case of classification problems.

Preference learning is often used in web search engines and recommender
systems. Nowadays when large amount of information about customer pref-
erences is available through different types of data, such as clickthrough or
vote based, learning these preference relations could lead to significant in-
crease in search engine or recommender system performance. Computerized
methods for discovering preferences of individuals are useful in any field
where focus towards personalization of products and services is needed.

Automated learning of preference relations constitutes a challenging task.
Several ways of addressing this problem have been proposed, most of them
having pros and cons. For example, a simple approach to learn preference
relations is to regress the corresponding preference scores of the data points
and order them accordingly afterwards. However, in this case the learning
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objective and the error function of the algorithm notably differ from each
other. Thus, the performance of this approach is not usually satisfactory.
Another possibility is to reduce the preference learning task to classification
on the pairs of data points (Frank and Hall, 2001). A drawback of using this
approach is that the number of the data points under consideration grows
quadratically. However, several efficient ways of the reduction of preference
learning to classification task have been proposed (Park and Fürnkranz,
2007; Ailon and Mohri, 2007). Recently, moving beyond pairwise preference
learning was studied by Xia et al. (2008), where lists, rather than pairs of
preference relations, are considered.

Various kernel-based algorithms have been proposed, such as RankSVM
(Herbrich et al., 1999; Joachims, 2002), Gaussian processes for preference
learning (Chu and Ghahramani, 2005b), collaborative ordinal regression (Yu
et al., 2006), magnitude preserving ranking (Cortes et al., 2007), RankRLS
(Pahikkala et al., 2007), and non kernel-based, such as RankBoost (Freund
et al., 2003), RankNets (Burges et al., 2005), pairwise preference learning
methods (Fürnkranz and Hüllermeier, 2003). Furthermore, many adapta-
tions of these algorithms for various ranking problems have been studied.
For example, SVMPerf (Joachims, 2006) is used to optimize information re-
trieval error measures. Sparse RankRLS (Tsivtsivadze et al., 2008b) makes
ranking algorithm applicable in situations when large amount of data is
available. Semi-supervised extension of the preference learning algorithms
(see e.g. Chu and Ghahramani (2005a); Tsivtsivadze et al. (2008a)) can be
used in case a little amount of labeled but large amount of unlabeled data
is at hand.

In situations when not only preferences of the data points are available,
but also their magnitudes, the magnitude preserving ranking algorithms can
be used (see e.g. Pahikkala et al. (2007); Cortes et al. (2007)). Most of the
time the underlying assumption for the data is that preference relations are
transitive. Learning non-transitive preference relations (see e.g. Baets et al.
(2006)) can be useful in many situations, for example, when using customer
feedback in recommender systems, cyclic preferences can occur. Recently,
we proposed a simple method for learning non-transitive preferences by re-
duction to the classification of the edges of the preference graph (Pahikkala
et al., 2008).

The preference learning problem can be formulated within various set-
tings depending on the type of the information provided to the learning
algorithm as well as the problem at hand. For example, several problem
settings have been recently proposed such as object ranking, label ranking
(Fürnkranz and Hüllermeier, 2005), and multiple label ranking (Brinker and
Hüllermeier, 2007).

In object ranking we aim to predict a preference relation among the
objects in X . In this case the preference relation is P ⊆ X × X . In label
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ranking the situation is different. Then we have also the set Y of labels. We
would like to predict for any object x ∈ X a preference relation Px ⊆ Y ×Y
among the set of labels Y, where each label y ∈ Y can be thought of as an
alternative. An element (y, y′) ∈ Px means that the object x prefers the label
y compared to y′, also written as y ≻x y′. As described in Fürnkranz and
Hüllermeier (2005), one can distinguish between weak preference (�) and
strict preference (≻), where y ≻x y′ ⇔ (y �x y′) ∧ (y′ �x y). Furthermore,
y ∼x y′ ⇔ (y �x y′) ∧ (y′ �x y).

One commonly used example to illustrate this label ranking task is doc-
ument ranking in information retrieval. Every input consists of the query
and the document that is retrieved by the query. If query retrieves more
than a single document then we obtain set of query document pairs, where
each document corresponds to the label and the query to the object. Fur-
thermore, because we would like to learn preferences between the documents
that belong to the same query, we consider only the query-document pairs
that contain exactly the same query to be relevant to the task. Similar
problem occurs in natural language processing, namely parse ranking task.
Here the sentence and the parse are considered as an object and a label,
respectively. We are given a set of sentences and each sentence is associated
with a set of parses. The task is to find the correct ordering of the parses
of a sentence.

1.2.1 Learning Tasks

The problem of learning preference relations is related to standard clas-
sification and regression tasks. In particular, one can consider preference
learning within classification framework as a problem of classifying pairs
of data points. When the data points have not only preferences, but also
magnitudes available, one can also cast preference learning as a regression
problem.

Classification example
An input x ∈ X gets assigned to a single label yx ∈ Y. Then a set of
pairwise label preferences is simply induced by the class labels, namely
Px = {(yx, y)|y ∈ Y \ {yx}}.

Regression example
This is similar to the classification example, but in this case an example
x ∈ X gets assigned to a real valued label y ∈ R. Now the set of preferences
is obtained from real valued scores, which induce total order over the whole
set of inputs.
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Ranking example
An input x ∈ X gets assigned to the total order of the labels, that is, ≻x

is transitive relation such that y ≻x y′ or y′ ≻x y holds for all pairs of
labels (y, y′).

One approach for learning preference relations is based on estimation of
the utility (scoring) function. In this scenario, we can use the predicted
scores to rank the data items accordingly (see e.g. Har-Peled et al. (2002);
Pahikkala et al. (2007)). On the other hand, approaches for learning pair-
wise preferences are also widely used. In order to rank the labels for a
new object, predictions for all pairwise label preferences are obtained and a
ranking that is maximally consistent with these preferences is derived.

In the following sections we consider problems having a total order in-
duced over the set of the preferences. This is the case when every data point
has a real score associated with it, therefore indicating not only the direction
of the preference but also its magnitude. In some real-world situations this is
a typical setting. However, frequently preferences without magnitudes can
be available to the learning algorithm (e.g. clickthrough data (Joachims,
2002)). We address the issue of learning from pairwise preferences without
scores in Pahikkala et al. (2009).

1.2.2 Label Ranking in Scoring Setting

We assume that the (true) preference relation Px is transitive and asym-
metric for each object x ∈ X . As training information, we are given
a finite set T = {(zi, si)}

m
i=1 of m data points, where each data point

(zi, si) = ((xi, yi), si) ∈ (X × Y) × R consists of an object-label tuple zi =
(xi, yi) ∈ X ×Y and its score si ∈ R. We say that two data points ((x, y), s)
and ((x′, y′), s′) are relevant, iff x = x′. Considering two relevant data points
((x, y), s) and ((x, y′), s′), we say that object x prefers label y to y′, if s > s′.
If s = s′, the labels are called tied. Accordingly, we write y ≻x y′ if s > s′

and y ∼x y′ if s = s′.

A label ranking function is a function f : X × Y → R mapping each
object-label tuple (x, y) to a real value representing the predicted relevance
of the label y with respect to the object x. This induces for any object
x ∈ X a transitive preference relation Pf,x ⊆ Y×Y with (f(x, y), f(x, y′)) ∈
Pf,x ⇔ f(x, y) ≥ f(x, y′). Informally, the goal of our ranking task is to find
a label ranking function f : X ×Y → R such that the ranking Pf,x ⊆ Y ×Y
induced by the function for any object x ∈ X is a good “prediction” for the
(true unknown) preference relation Px ⊆ Y × Y.
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1.2.3 Object Ranking

Similarly to label ranking setting, we are given a set of objects X . However,
here each object does not have a set of labels associated with it, but we
would like to rank objects themselves according to some preference relation
P ⊆ X × X . Every object has an associated score s ∈ R, which can be
interpreted as the “goodness” score, based on which ranking occurs.

As training information, we are given a finite set T = {(zi)}
m
i=1 of m

data points, where each data point zi = (xi, si) ∈ (X × R) consists of an
object xi ∈ X and its score si ∈ R. When considering two data points (x, s)
and (x′, s′), we say that the object x is preferred to x′ if s > s′. If s = s′,
the objects are called tied. Accordingly, we write x ≻ x′ if s > s′ and x ∼ x′

if s = s′. Similar description of the object ranking task is presented in
Fürnkranz and Hüllermeier (2005), where preferences between the objects
not necessarily have an associated magnitude.

An object ranking function is a function f : X → R mapping each object
x to a real value from which the predicted preference (rank) with respect
to the other objects in x′ ∈ X can be deduced. This induces for any object
x ∈ X a transitive preference relation Pf ⊆ X × X .

1.2.4 Measuring Ranking Performance

In order to measure the ranking performance, we adopt two commonly used
measures, namely disagreement error and Kendall’s rank correlation coeffi-
cient τ . We assume that we are given finite set T = {(zi)}

m
i=1 of m data

points as described Section 1.2.3. To formulate Kendall’s correlation coeffi-
cient, let us define the function

F (zi, zj) =






1 if xi ≻ xj

−1 if xj ≻ xi

0 otherwise.

Let us define the score U(zi, zj) of a pair zi and zj to be the product

U(zi, zj) = F (zi, zj)F (f(zi), f(zj)).

If score is +1, then the rankings agree on the ordering of zi and zj , otherwise
score is -1. The total score is defined as

U =
∑

1≤i<j≤m

U(zi, zj).

The number of all different pairwise comparisons of the data points that can
be made is

(
m
2

)
= 1

2 · m (m − 1). This corresponds to the maximum value
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of the total score, when agreement between the rankings is perfect. The
correlation coefficient τa defined by Kendall (1970) is

τa =
U

1
2 · m (m − 1)

.

While τa is well applicable in many cases, there is an important issue that
is not fully addressed by this coefficient, namely tied ranks. To take into
account possible occurrences of tied ranks, Kendall proposes an alternative
correlation coefficient

τb =
U

1
2

√∑
i,j F (zi, zj)2 ·

∑
i,j F (f(zi), f(zj))2

, (1.18)

where 1 ≤ i, j ≤ m. With tied ranks the usage of τb is more justified
than usage of τa. For example, if both rankings are tied except the last
pair, then τb = 1 indicating complete agreement between two rankings,
while τa = 2

m
. Both τa and τb performance measures can be used also in

the label ranking setting. When considering the label ranking, the overall
ranking performance can be computed by estimating the ranking of the
labels associated with a single object and averaging over total number of
the objects afterwards.

On the other hand, we can use a simple disagreement error (see e.g. Dekel
et al. (2004)) to measure how well a hypothesis f ∈ H is able to predict the
preference relations Px for all instances x ∈ X (see Section 1.1.1). Thus, we
consider the following cost function that captures the amount of incorrectly
predicted pairs of relevant training data points:

d(f(Z), S, W ) =
1

2n

m∑

i,j=1

Wi,j

sign
(
si − sj

)
− sign

(
f(zi) − f(zj)

), (1.19)

where n =
∑m

i,j=1 Wi,j , f(Z) = (f(z1), . . . , f(zm))t ∈ Rm, sign(·) is the

signum function, S = (s1, . . . , sm)t ∈ Rm is a sequence of the outputs, and
W ∈ Rm×m denotes the adjacency matrix of the graph, that is, Wi,j = 1 iff
edge (zi, zj) is relevant for the learning task and Wi,j = 0 otherwise.

We expect the learning algorithm minimizing the disagreement error
(1.19) to perform well in ranking of the unseen data points. In Pahikkala
et al. (2009, 2007) and Tsivtsivadze et al. (2008b), we demonstrate that
by using least-squares approximation of (1.19) we are, in fact, regressing
the differences si − sj with f(zi) − f(zj) and in many cases this leads to
significantly better performance compared to regressing the scores of indi-
vidual data points and performing the ranking afterwards. The RankRLS
algorithm can be derived in similar manner as RLS regression described in
Section 1.1.1 by using using least-squares approximation of (1.19) instead of

14



(1.8). By denoting the Laplacian matrix L = D−W , where D is a diagonal
matrix whose entries are defined as Di,i =

∑m
j=1 Wi,j , the objective function

can be written as in Pahikkala et al. (2009):

J(A) = (S − KA)tL(S − KA) + λAtKA. (1.20)

It can be shown that the minimizer of (1.20) is

A = (KLK + λK)−1KLS. (1.21)

The computational complexity of the matrix inversion operation involved in
(1.21) is O(m3), thus, training of RankRLS algorithm has the same com-
plexity as training of standard RLS regression.
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Chapter 2

Research Overview

2.1 Research Objectives

In this thesis, we aim at introducing efficient algorithms that can be applied
for learning preference relations. These algorithms, formulated within the
kernel-based methods framework, allow the use of various non-linear func-
tions to improve the performance of the methods. Therefore, objectives of
this thesis include development of kernel functions for structured data that
are used to take advantage of various data representations and the prefer-
ence learning algorithms that are suitable for different tasks, namely efficient
learning of preference relations, learning with large amount of training data,
and semi-supervised preference learning.

In particular, we plan to address computational efficiency of the prefer-
ence learning algorithms by proposing the methods that scale linearly with
the number of training data points. Furthermore, we aim at studying ap-
proximation techniques to speed up the training and possible extension of
the algorithm that would make it applicable in situations when only small
amount of labeled data, but a large amount of unlabeled data is available.

2.2 Kernels for Structured Data

In the following section we describe several kernel functions proposed within
the scope of this thesis. Presented discussion is based on the publications
I-III.

2.2.1 Locality Kernels for Parse Ranking

With availability of structured data in many areas, particularly in natu-
ral language processing (NLP) (see e.g. Ginter et al. (2004)), many ap-
plications of kernel-based algorithms have been recently presented (see e.g.
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Shawe-Taylor and Cristianini (2004); Scholkopf and Smola (2001); Herbrich
(2002)). For example, Collins and Duffy (2001) described convolution ker-
nels for various discrete structures encountered in NLP tasks, which allow
high dimensional representations of these structures in feature space.

We propose a framework for constructing kernels that take advantage of
local correlations in sequential data. The kernels are designed to measure
data similarities locally, within a small window built around each matching
feature. Furthermore, we propose to incorporate positional information in-
side the window and consider different ways to do this. We call the kernel
functions constructed within this framework locality kernels (Tsivtsivadze
et al., 2008d).

The performance of the locality kernels is evaluated on the dependency
parse ranking task in the biomedical domain. The parses are generated by
the Link Grammar (LG) parser (Sleator and Temperley, 1991) which is ap-
plied to the BioInfer corpus (Pyysalo et al., 2007) containing 1100 annotated
sentences. The parser is based on broad-coverage hand-written grammar and
operates by generating all parses that are allowed by its grammar. To rank
the generated parses, it uses built-in heuristics. However, its ranking perfor-
mance has been found to be poor when applied to biomedical text (Pyysalo
et al., 2004). Therefore, we consider improving ranking performance of the
parser, by proposing a learning algorithm appropriate for the task.

We associate each sentence of the BioInfer corpus with a set of generated
parses. The manual annotation of the sentence, present in the corpus, pro-
vides the correct parse. Each candidate parse is associated with a goodness
score that indicates how close to the correct parse it is. The correct rank-
ing of the parses associated with the same sentence is determined by this
score. While the scoring induces a total order over the whole set of parses,
the preferences between parses associated with different sentences are not
considered in the parse ranking task.

Our method is based on the Regularized Least-Squares (RLS) algorithm
(see e.g Tsivtsivadze et al. (2005) or Section 1.1.1). We use grammatically
motivated features and the locality kernels to obtain significantly better
ranking performance than that of built-in LG heuristics. We extend the
results of Tsivtsivadze et al. (2006) by considering a framework for con-
structing kernels that take advantage of local correlations in sequential data
and benchmarking locality kernels against the locality-improved (Zien et al.,
2000) and spectrum (Leslie et al., 2002b) kernels, which also are designed
to be applicable to sequential data. In all experiments, we apply the F-
score based parse goodness function (Tsivtsivadze et al., 2005) and evaluate
the ranking performance with Kendall’s correlation coefficient τb (Kendall,
1970) described in Section 1.2.4. The results indicate that locality kernels
notably outperform baseline methods and the performance gain is statisti-
cally significant.
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2.2.2 Locality Kernels for Remote Homology Detection

An important task in computational biology is inference of the structure
and function of the protein encoded in the genome. In many cases the
similarity of protein sequences can imply structural and functional similarity
as well. Therefore, detecting these similarities can lead to useful discoveries
in pharmaceutical domain, as well as better drugs and shorter development
time. This task (detecting similarities) can be formulated as a classification
or bipartite ranking problem that treats proteins as a set of labelled examples
which are in positive class if they belong to the same family and are in
negative class otherwise.

Recently, there have been reported many applications of simple discrim-
inative approach for detecting remote protein homologies. For example,
Jaakkola et al. (2000) report good performance in protein family recogni-
tion by combining discriminative learning algorithm with Fisher kernel for
extracting relevant features from the protein sequences. Liao and Noble
(2003) improve the results by proposing a combination of pairwise sequence
similarity feature vectors with Support Vector Machines (SVM) algorithm.
Their algorithm called SVM-pairwise is performing significantly better than
several other baseline methods such as SVM-Fisher, PSI-BLAST, and profile
HMMs.

Despite notably better performance than many previously reported meth-
ods, the algorithms described in Jaakkola et al. (2000) and Liao and Noble
(2003) have a drawback, namely they use expensive step of generating the
features, which increases the overall computational time of the algorithm.
Instead, the idea to use a simple kernel function that can be efficiently
computed and which does not depend on any generative model or separate
pre-processing step is considered by Leslie et al. (2002a). They show that
simple sequence based kernel functions perform surprisingly well compared
to other computationally expensive approaches.

Following this direction, we address the problem of protein sequence
classification using the RLS algorithm with locality kernels (Tsivtsivadze
et al., 2007). The features of the locality kernels are the sequences con-
tained in a small window constructed around matching amino acids in the
compared proteins. Proposed kernels make use of different similarity eval-
uations within the windows, namely position insensitive matching : amino
acids that match are taken into account irrespective of their position, posi-
tion sensitive matching : amino acids that match but have different positions
are penalized, and strict matching : only amino acids that match and have
the same positions are taken into account. By incorporating information
about relevance of local correlations and positions of amino acids in the
sequence into the kernel function, we demonstrate significantly better per-
formance in protein classification on Structural Classification of Proteins
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(SCOP) database (Hubbard et al., 1997) than that of the spectrum and the
mismatch kernels (Leslie et al., 2002a, 2004; Leslie and Kuang, 2004). When
used together with RLS, the performance of the locality kernels is compara-
ble with some state-of-the-art methods of protein classification and remote
homology detection.

2.2.3 Graph Kernels and Representations

Another frequently encountered data structure in many tasks is graph. One
example where graph structures occur naturally are dependency parses (see
Figure 1.1). Recently, kernel functions for instances that are represented by
graphs were introduced by Gärtner (2002), Kashima and Inokuchi (2002),
Kondor and Lafferty (2002). Motivated by this research, we propose graph
representations and kernels for dependency parses and analyse the applica-
bility of the graph kernels for the problem of parse ranking in the domain
of biomedical texts (Pahikkala et al., 2006; Tsivtsivadze et al., 2008c).

Our approach builds on Tsivtsivadze et al. (2006), but in Tsivtsivadze
et al. (2008c) we further developed the method by designing graph represen-
tations for data and adapting the kernels for these graphs. Our results show
good performance in the task of parse ranking. We demonstrate that the
proposed approach has several computational advantages, and can be con-
sidered as a generalization over previously described method (Tsivtsivadze
et al., 2005). The results indicate that designing the graph representation is
as important as designing the kernel function that is used as the similarity
measure of the graphs.

2.3 Efficient Preference Learning Algorithms

In the following section we describe preference learning algorithms proposed
within the scope of this thesis. Presented discussion is based on the publi-
cations IV-VI.

2.3.1 Pairwise Regularized Least-Squares

There are many tasks where the aim is not to learn how to correctly classify
or regress data points, but to learn preference relations. For example, in
information retrieval or collaborative filtering a challenging task is to pre-
dict user preferences based on the preferences of the other users. In such
cases, it is typical to train algorithm on pairs of data points in order to
find the preferences. When data point pairs are constructed explicitly, it
can lead to quadratic increase in the size of dataset. To address this issue,
we propose a preference learning algorithm that minimizes the regularized
least-squares (RLS) error and has O(m3) computational complexity, where
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m is the number of the data points (Pahikkala et al., 2007). Our algorithm
possesses a set of computational properties (e.g. fast cross-validation, regu-
larization parameter estimation) that makes it in some cases more efficient
than other state-of-the-art (e.g. RankSVM) preference learning methods.
We refer to our algorithm as RankRLS. Detailed empirical study in terms of
runtime efficiency and predictive performance of the algorithm is reported
in Pahikkala et al. (2009).

RankRLS can learn preferences that are relevant to the task in question.
For each training data point, there is a vertex in the preference graph and two
vertices are connected if the corresponding data point pair is relevant. This
relevance information is conveyed into RankRLS by the Laplacian matrix of
the graph. We consider the relevant pairs, because in some cases it may be
harmful to the ranking performance to minimize the RLS error of all data
point pairs. Our experiments on parse ranking task confirm that RankRLS
trained to minimize the RLS error for every possible pair of training data
points has a lower performance than RankRLS that minimizes the error
only for the relevant pairs. Furthermore, we extend RankRLS algorithm so
that it can be used to learn not only from scored data, but also from a given
sequence of pairwise preferences and their magnitudes. We consider the case
in which algorithm learns scoring (utility) function that maps each possible
input to a real value. The function induces a total order for the inputs. The
direction of preference between two inputs is obtained by comparing their
predicted scores.

We demonstrate that the performance of the RankRLS method is com-
parable to RankSVM (Joachims, 2006) and RankBoost (Freund et al., 2003)
in information retrieval task. Furthermore, RankRLS significantly outper-
forms naive regression approach in parse ranking task.

2.3.2 Large-Scale Preference Learning

In many cases preference learning problems can be cast as a classification
of data point pairs (see e.g. Herbrich et al. (1999); Har-Peled et al. (2002);
Fürnkranz and Hüllermeier (2003); Ailon and Mohri (2007)). However, when
using this approach usually the number of data point pairs grows quadrati-
cally with respect to the size of the dataset. In situations when the size of
the dataset is large, the training of the algorithm could be infeasible. We
have previously proposed a preference learning algorithm (Pahikkala et al.,
2007) having computational complexity same as that of the standard RLS
regression, despite the fact that it takes into account data point pairs instead
of the individual data points. When using dual version of the algorithm, the
computational complexity is O(m3), where m is the size of the number of
data points.

To even further reduce computational complexity, we propose sparse
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RankRLS, a sparse regularized least-squares algorithm for learning prefer-
ence relations (Tsivtsivadze et al., 2008b). The algorithm is in particular
applicable to the situations when nonlinear kernel functions are used and
the number of data points is large. Formally, the computational complexity
of sparse RankRLS is O(mr2), where r is the number of basis vectors as de-
scribed in Tsivtsivadze et al. (2008b). Various methods for subset selection
have been proposed (see e.g.Vincent and Bengio (2002); Quinonero-Candela
and Rasmussen (2005)), however, for simplicity and computational efficiency
we consider random selection of basis vectors. In fact, r can be selected to be
much smaller than m and in some cases it can be considered as a constant.
Thus, our algorithm can efficiently perform ranking using a large amount of
training data together with high dimensional feature representations. It can
be observed that the algorithm approximates the error function that simply
counts number of incorrectly ranked data points.

We consider the case where every input is associated with its real val-
ued score. Thus, the total order of the data points can be obtained. The
algorithm can be used for both object ranking and label ranking tasks (see
e.g. Fürnkranz and Hüllermeier (2005) for in depth discussion about these
types of tasks), however, we only consider label ranking. According to this
setting, we define the input to consist of an object and its label.

A drawback of the standard RankRLS algorithm is that it can not be
trained with large amount of data efficiently. We demonstrate that the pro-
posed sparse RankRLS algorithm significantly outperforms basic RankRLS
in this situation. Because training of the existing kernel based ranking al-
gorithms, such as RankSVM (Herbrich et al., 1999; Joachims, 2002), could
be infeasible when the size of the training set is large, sparse RankRLS is
an efficient alternative to these methods, particularly, when nonlinear kernel
functions are used.

2.3.3 Sparse Co-Regularized Least-Squares

In many real-world situations only a limited amount of labelled data and
a large amount of unlabeled data is usually available to the learning al-
gorithm. Therefore, methods that can use unlabeled data in the training
process have been gaining more and more attention in recent years. Multi-
view algorithms (Blum and Mitchell, 1998) are frequently used to take into
account unlabeled data for increasing the learning performance. They split
the attributes into independent sets and perform learning based on these
different “views”. Informally, the goal is to find a prediction function for
each view such that it performs well on the labelled data and all predictions
“agree” on the unlabeled data as well. An example task where multi-view
approach is usually applied is the classification of web documents based
on two very distinct views: one containing representation of the document
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based on text related feature and the other view containing only link related
features. Closely related to this approach is the co-regularization framework
described in Sindhwani et al. (2005), where the same idea of agreement max-
imization between the predictors is central. Formally, the algorithm searches
for hypotheses from different Reproducing Kernel Hilbert Spaces (Schölkopf
et al., 2001) such that the training error of each hypothesis on the labelled
data is small and, at the same time, the hypotheses give similar predictions
for the unlabeled data. Within this framework, the disagreement is taken
into account via a co-regularization term.

We propose a semi-supervised preference learning algorithm that is based
on the multi-view approach (Tsivtsivadze et al., 2008a). Our algorithm, that
we call Sparse Co-RankRLS, minimizes a least-squares approximation of the
ranking error and is formulated within the co-regularization framework. We
consider a problem of learning a function capable of arranging data points
according to a given preference relation (Fürnkranz and Hüllermeier, 2005).
We aim at improving the performance of the learning algorithm by making
it applicable to situations when only a small amount of labelled data, but a
large amount of unlabeled data is available. Furthermore, the computation
complexity of the algorithm is linear in the number of unlabeled data points,
which is crucial when trained on large unlabeled datasets.

Empirical results reported in the literature show that the co-regularization
approach works well for classification (Sindhwani et al., 2005), regression
(Brefeld et al., 2006), and clustering (Brefeld and Scheffer, 2004) tasks. We
extend it to preference learning task. Moreover, theoretical investigations
demonstrate that the co-regularization approach reduces the Rademacher
complexity by an amount that depends on the “distance” between the views
(Rosenberg and Bartlett, 2007; Sindhwani and Rosenberg, 2008).

We test our algorithm, similarly to several other publications presented
in this thesis, on a parse ranking task (Tsivtsivadze et al., 2005). However,
we adopt slightly different setup from previously described, where we simu-
late unlabeled data by ignoring part of the labels present in the dataset. We
demonstrate that Sparse Co-RankRLS is computationally efficient when it
is trained on large datasets and the results are significantly better than the
ones obtained with the standard RankRLS algorithm.
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Chapter 3

Summary of Publications

This thesis consists of six publications. A short summary of each publication
is presented in this chapter.

3.1 Kernels for Structured Data

Paper I: Locality Kernels for Sequential Data and their Applica-
tions to Parse Ranking (Tsivtsivadze et al., 2008d)

Kernel functions introduced within the scope of this thesis concern improv-
ing performance of the algorithm by constructing feature space that allows
accurate and efficient learning. We describe a framework for constructing
locality kernels that take advantage of the correlations in sequential data.
These kernels use features extracted in the order of the appearance from
the sequence, construct local windows around matching features in order
to capture local correlations, and perform a position sensitive (or insensi-
tive) evaluation of the features within the window. Final validation results
demonstrate that the RLS algorithm with locality kernels performs signifi-
cantly better than several other methods in parse ranking problem. Further,
performance gain obtained with locality kernels is statistically significant.
Although empirical evaluation of the locality kernels was conducted on parse
ranking task, proposed kernels are not restricted for the particular domain
and can be applied to any sequential data where positional matching, or
local correlations can be useful.

Paper II: Kernels for Text Analysis (Tsivtsivadze et al., 2008c)

We demonstrate how to construct a kernel function that is appropriate for
the task in question and provide illustrative examples of several widely used
kernels. We start with basic principles for constructing kernels for natural
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language processing tasks and formulate “bag of words” kernels (Joachims,
1998), kernel for strings (Lodhi et al., 2002), word-sequence (Cancedda et al.,
2003) and other types of kernels applicable for sequential data. We also
demonstrate how to incorporate prior knowledge about problem domain into
the kernel function. Furthermore, for the tasks where data has graph based
structure (e.g. sentence with dependency annotation), we design graph rep-
resentations and kernels. These kernels are used to generate features that
are based on the start and end labels of random walks between vertices
in the graphs. Thus, the feature vector corresponding to a data point is
determined by the structure of the graph and the kernel function. Our
graph representations and the graph kernels are applied to the problem of
parse ranking in the domain of biomedical texts. Achieved performance is
promising when compared to our previous studies (Tsivtsivadze et al., 2005)
and could be even further improved by designing representations capturing
additional prior knowledge about the problem to be solved. The results un-
derline the importance of the design of a good graph representation for the
data points as well as applicability of the graph kernels to various tasks in
natural language processing, where the data points can be represented as
graphs. Introduced graph representation and kernels allow prior knowledge
about the learning problem to be incorporated into the learning algorithm.
This can significantly improve performance of the method as demonstrated
by our experiments.

Paper III: Locality Kernels for Protein Classification (Tsivtsivadze
et al., 2007)

Remote homology detection is an important task in computational biol-
ogy, because it can lead to inference of the structure and function of the
protein encoded in the genome. To incorporate domain knowledge about
the problem at hand, we make kernels that take advantage of local correla-
tions between the amino acids in the protein sequence. Using the framework
proposed in Paper I, we make locality kernels measure protein sequence sim-
ilarities within a small window constructed around matching amino acids.
The kernels incorporate positional information of the amino acids inside the
window and allow a range of position dependent similarity evaluations. We
use these kernels with regularized least-squares algorithm (RLS) for protein
classification on the SCOP database. Our experiments demonstrate that
the locality kernels perform significantly better than the spectrum and the
mismatch kernels. When used together with RLS, performance of the lo-
cality kernels is comparable with some state-of-the-art methods of protein
classification and remote homology detection.
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3.2 Efficient Preference Learning Algorithms

Paper IV: An Efficient Algorithm for Learning to Rank from Pref-
erence Graphs (Pahikkala et al., 2009)

We propose a method for learning preference relations called RankRLS.
Despite the fact that the number of possible data point pairs is quadratic,
training complexity of this algorithm is O(m3), that is, the same as of the
regularized least-squares regressor. RankRLS can learn preferences of the
data points that are relevant to the task in question, both from the scored
data and the data consisting of pairwise preferences without magnitudes.
For this purpose, the Laplacian matrix of the preference graph is used to
encode the information into RankRLS. We describe both primal and dual
formulation of the algorithm. The primal form is applicable in situations
when large amount of data points are available, but the amount of features is
limited. The dual form is used in the opposite case. We also present the ef-
ficient methods for training, cross-validation, parameter selection, and mul-
tiple output learning for RankRLS. We describe the extension of RankRLS,
initially proposed in Paper V, that is suitable for large scale learning and
demonstrate its computational benefits. Finally, the evaluation of the prefer-
ence learning algorithm is conducted on several tasks in information retrieval
and natural language processing domains. The obtained results demonstrate
that RankRLS algorithm is comparable to the state-of-the-art methods such
as RankSVM. Moreover, it outperforms naive approaches of regressing the
individual labels of the data points.

Paper V: A Sparse Regularized Least-Squares Preference Learn-
ing Algorithm (Tsivtsivadze et al., 2008b)

One drawback associated with RankRLS algorithm presented in Paper IV is
that when using nonlinear kernel functions its computational complexity is
cubic with respect to the number of training examples. Particularly, training
of the algorithm can be infeasible on large datasets. To address this issue, we
propose a sparse approximation of RankRLS whose training complexity is
considerably lower than that of basic RankRLS. Formally, the computational
complexity of the algorithm is O(mr2), where m is the number of training
examples, and r is the number of basis vectors being much smaller than
m. Similarly to RankRLS algorithm, the proposed method is formulated
within kernel framework. The main advantage of sparse RankRLS is the
computational efficiency when dealing with large amounts of training data
together with high dimensional feature representations. The experiments
indicate significantly better performance compared to basic RLS regressor,
sparse RLS regressor, and basic RankRLS.

27



Paper VI: Learning Preferences with Co-regularized Least-Squares
(Tsivtsivadze et al., 2008a)

Both RankRLS and sparse RankRLS are supervised learning algorithms,
therefore, they can not take into account unlabeled data. However, in many
cases labelled data is scarce and large amount of unlabelled data is available.
These cases are frequently encountered in many real-world applications in-
cluding the ones in natural language processing, bioinformatics, etc. Within
the scope of this thesis, we propose a semi-supervised preference learning
algorithm that is based on the multi-view approach. Our algorithm operates
by constructing a predictor for each view and by choosing such prediction
hypotheses that minimize the disagreement among all of the predictors on
the unlabeled data. The algorithm is formulated within co-regularization
framework, thus, we call it Sparse Co-RankRLS. The computational com-
plexity of our algorithm is O(M3r3 + M2r2n), where n is the number of
unlabeled training examples, M is the number of views, and r is the num-
ber of basis vectors. Thus, our semi-supervised preference learning algorithm
has a linear complexity in the number of unlabeled examples, which is use-
ful in cases when a small amount of labelled, but a large amount unlabeled
data is available for training. The experimental evaluation of the method
shows significantly better performance of Sparse Co-RankRLS compared to
the standard RankRLS algorithm.
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Chapter 4

Conclusions

4.1 Research Conclusions

This thesis addresses the following issues concerning the development of the
preference learning algorithms: efficient learning of pairwise preferences,
sparse approximation for making the algorithms computationally feasible
when training on large datasets, and semi-supervised learning in case when
little amount of labelled, but large amount of unlabeled data is available. We
develop not only computationally efficient algorithms but also procedures
for fast regularization parameter selection, multiple output prediction, and
cross-validation.

The algorithms are formulated within kernel methods framework, that
makes them applicable to variety of tasks where the use of non-linear fea-
ture spaces is necessary. We further improve performance of the learning
algorithm by proposing kernel functions that are tailored for the task in
question, namely locality kernels for sequential data and graph kernels for
data consisting of graph representations. By using these kernel functions,
we not only are able to learn from structured data but also incorporate prior
knowledge about the problem for the algorithm.

The overall results obtained in this work suggest that indeed, introduced
kernel-based algorithms lead to notably better performance in many prefer-
ence learning tasks considered. They can be successfully modified to accom-
modate cases where efficient training with large amount of data is necessary
or labeled data is scarce but unlabeled data is abundant, which is the case
in many real world problems. Furthermore, we demonstrate applicability of
proposed methods to the parse ranking task in natural language processing,
document ranking in information retrieval, and remote homology detection
in bioinformatics domain. Due to general formulation of the algorithms they
can be suitable for learning preference relations in other domain as well.
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4.2 Future Work

Preference learning is rapidly growing research area with many novel con-
cepts and algorithms being proposed. Still, there are many problems to be
addressed both on theoretical and method development side. For exam-
ple, regularization plays crucial role for many machine learning algorithms
(e.g. sparse regularization, Tikhonov regularization, etc.). Recently, mani-
fold regularization has been introduced (Belkin and Niyogi, 2004) for variety
of semi-supervised learning tasks. Discovering regularizations that are par-
ticularly suitable for preference learning is one of the research directions
that might lead to increase in performance and efficiency of the learning
algorithms. Recently, we have demonstrated how to use large amount of
unlabeled data to boost the performance of the algorithm while learning
preferences (Tsivtsivadze et al., 2008a), however, much more detailed theo-
retical and empirical analysis is necessary.

Another challenging direction is multi-label (Brinker and Hüllermeier,
2007) multi-task preference learning that might be useful in many applica-
tions. Multi-task algorithms (Thrun and Pratt, 1998) aim at learning many
related tasks together. This is done by taking advantage of the commonal-
ities among the tasks. One particular example, where multi-task learning
could be applied, is information retrieval field (e.g. search, or collabora-
tive filtering problem (Yu and Tresp, 2005)) where simultaneous learning of
preferences of the users can be accomplished.

In many cases there is little motivation to learn the complete ordering of
the data points. For example, information retrieval measures such as Nor-
malized Discounted Cumulative Gain (NDCG) (Järvelin and Kekäläinen,
2002) can take into account the correct ranking only of the top N retrieved
results. In bioinformatics, ROC50 score takes into account true positives
only up to first 50 false positive results. Clearly, in this situation an al-
gorithm that would concentrate on learning the top ranked data points
correctly, on expense of possibly misordering the data points at the end
of the list, might be useful. P-norm push ranking algorithm (Rudin, 2006)
addresses this particular issue. Furthermore, SVMperf that is able to op-
timize NDCG measure has been recently proposed (Joachims, 2005, 2006).
Despite encouraging results obtained using these methods, the challenge is
further development of the computationally efficient algorithms to improve
performance of correctly predicting ranks of top N data points.

Nowadays, when the amount of available data for the training of the algo-
rithm increases rapidly, methods that are able to efficiently use large amount
of data are necessary. Therefore, various approximation techniques that al-
low learning with less computational expense than standard methods are
being proposed. For example, in Tsivtsivadze et al. (2008b) we demonstrate
one such extension to RankRLS algorithm. Other type of approximation
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algorithms are particularly applicable in case data matrix is sparse. Simple
gradient decent methods are proved to be invaluable for large-scale learning
(see. e.g. Chu et al. (2005); Bottou et al. (2007)). Considering preference
learning task, situations when algorithms have to scale to very large dataset
are frequently occurring in recommender systems, web search engines, etc.

The concept of pairwise learning has been thoroughly investigated by
many researchers. Moving beyond pairwise preferences is another promising
direction. For example, in Xia et al. (2008) an approach is proposed where
probabilistic ordering is considered on the level of the list of data points.
Thus, algorithms that can take advantage not only of the pairs, but also
lists of the preference relations, might lead to better results.
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