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4	 Abstract	

Teijo Pellinen
β1 integrin regulation

VTT Medical Biotechnology and University of Turku,
Department of Medical Biochemistry and Genetics, and
Turku Graduate School of Biomedical Sciences
Turku, Finland

ABSTRACT
Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular 
matrix proteins and to other cells. Integrins are important in embryonic development, 
structural integrity of connective tissue, blood thrombus formation, and immune defense 
system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is 
regulated by large conformational changes. Extracellular ligand binding or intracellular 
effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are 
thus able to mediate bi-directional signaling. Integrin function is also regulated by 
intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma 
membrane, and this has been shown to be important for cell migration and invasion 
as well. Deregulation of integrin functionality can lead to deleterious illnesses, such 
as bleeding or inflammatory disorders. It is also evident that integrin deregulation is 
associated with cancer progression.

In this study, a novel β1 integrin associating protein, Rab21, was characterized. Rab21 
binding to integrin cytoplasmic tail was shown to be important for β1 integrin endo- and 
exocytosis – intracellular trafficking. It was furher shown that this interaction has an 
important role in cell adhesion, migration, as well as in the final step of cell division, 
cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic 
traffic, can lead to defects in cell division and results in formation of multinucleated cells. 
Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy 
and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in 
ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also 
had impairment in cell division, which could be rescued by Rab21 re-expression. The 
work demonstrates an important role for Rab21 and β1 integrin traffic regulation in cell 
adhesion and division, and suggests a probable associaton with tumorigenesis.

In this study, β1 integrin activity regulation was also addressed. A novel cell array 
platform for genome-scale RNAi screenings was characterized here. More than 4500 
genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The 
effects on β1 integrin activity were analyzed upon knock-downs. The screen identified 
more that 400 putative regulators of β1 integrin activity in prostate cancer. In conclusion, 
this work will help us to understand complex regulatory pathways involved in cancer 
cell adhesion and migration. 

Key words: integrins, cell adhesion, cancer
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Teijo Pellinen
β1 integriinin säätely

VTT Medical Biotechnology and University of Turku,
Department of Medical Biochemistry and Genetics, and
Turku Graduate School of Biomedical Sciences
Turku, Finland

TIIVISTELMÄ
Integriinit ovat solukalvon adheesioproteiineja, jotka osallistuvat elimistön elintärkeisiin 
toimintoihin, kuten alkionkehitykseen, verenvuodon tyrehdyttämiseen sekä leukosyyttien 
kulkeutumiseen tulehtuneeseen kudoksen. Integriinit ovat inaktiivisia normaalissa tilassa, 
mutta aktivoituvat esimerkiksi soluväliaineen pilkistäessä verisuonten seinämän välistä tai 
tulehdusympäristössä missä mikrobi on päässyt tunkeutumaan kudokseen. Verisolujen ja 
immuunisolujen vajaatoimintaiset integriinit johtavat vakaviin sairauksiin, kuten veren-
vuototautiin (Glanzmann thrombasthenia) tai immunosupressiiviseen tilaan (leukocyte 
adhesion deficiencies, LAD I, III). Integriinien toiminnan säätelyn järkkymistä tapahtuu 
myös syöpäsoluilla, vaikkakin tätä ei ole tutkittu läheskään yhtä paljon kuin verisoluilla. 

Tässä työssä tarkasteltiin β1 integriinien säätelyä syövässä, ja erityisesti rinta- ja etu-
rauhassyövässä. Solukalvon reseptoriproteiineja, mukaan lukien integriinejä, säädellään 
myös niiden solunsisäisen liikenteen avulla. Integriinien kuljetus solukalvolta solunsi-
säisiin vesikkeleihin ja edelleen solun pinnalle uuteen kohtaan on osoitettu tärkeäksi 
solujen adheesion ja liikkumisen kannalta. Työssä löydettiin uusi β1 integriinien kul-
jetukseen osallistuva säätelyproteiini, Rab21. Tämä proteiini osoittautui merkittäväksi 
β1 integriinien välittämässä soluadheesiossa ja liikkumisessa. Näiden lisäksi huomattiin 
että Rab21 proteiinin välittämä integriinien solunsisäinen kuljetus on tärkeää myös so-
lunjakautumisen viimeiselle vaiheelle, eli sytokineesille. Työssä Rab21:n tai integriinien 
kuljetuksen estäminen johti sytokineesihäiriön kautta monitumallisten solujen muodos-
tumiseen, mitä pidetään yhtenä syövän syntymismekanismeista. Kromosomien DNA-
analyysi osoittikin rab21-lokuksessa deleetiota muutamissa syöpänäytteissä. Työn tu-
lokset viittaavat vahvasti siihen, että β1 integriinin solunsisäinen kuljetuksen säätely voi 
olla yhteydessä syövän muodostumiseen ja syöpäsolujen liikkumiseen elimistössä.

Lisäksi työssä tarkasteltiin integriinien aktiivisuuden säätelyä uudella soluarray-tekno-
logialla, joka mahdollistaa tuhansien geenien hiljennyksen erillisissä reaktioissa samassa 
määrityksessä. Työssä hiljennettiin siRNA-molekyylien avulla yli 4500 geeniä viljellyissä 
eturauhassoluissa ja tarkasteltiin kunkin hiljennyksen vaikutus β1 integriinien aktiivisuu-
teen vasta-ainevärjäyksillä. Menetelmällä löydettiin yli 400 mahdollista aktiivisuuden sää-
telijää, joista validoitiin 100 geeniä kahdeksassa eri eturauhassolulinjassa. Tulokset avaa-
vat uusia mahdollisuuksia syövän molekyylibiologisessa tutkimuksessa. Kaiken kaikkiaan 
työn tulokset auttavat ymmärtämään syöpäsolujen adheesio- ja liikkumismekanismeja.

Avainsanat: Integriinit, soluadheesio, syöpä
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INTRODUCTION1.	

The heterodimeric transmembrane integrins form important interactions with other cells, 
extracellular matrix proteins, and also with different soluble ligands. The combinations 
of 18 alpha and 8 beta subunits form 24 different heterodimers with additional splicing 
variants as well (Humphries 2000). Mouse knock-out studies have revealed embryonic 
lethality for β1, β8, α4, α5, and αV integrin knock-outs, but also severe defects in 
platelet aggregation (αIIb, β3, α2), leukocyte function (αL, αM, αE, β2, β7), and skin 
blistering or inflammation (α6, β4, α3, β6) (Hynes 2002). 

Regulated adhesion and deadhesion of platelets and leukocytes are fundamental for human 
health as well. The pathological conditions of leukocyte adhesion deficiencies derive 
from the lack of functional β2 integrins (LAD-I), deficiency in β2 integrin activation 
(LAD-III) (Kuijpers, van de Vijver et al. 2008), or absence of functional selectin ligands 
(LAD-II), of which the selectin ligand, PSGL1, was shown recently to regulate β2 
integrin activity as well (Zarbock, Abram et al. 2008). LAD-III syndrome influences also 
αIIbβ3 integrin inside-out activation leading to platelet aggregation defects and bleeding 
episodes (Pasvolsky, Feigelson et al. 2007; Kilic, Etzioni 2008). The importance of 
αIIbβ3 is well illustrated in the bleeding disorder Glanzmann thrombasthenia, where the 
integrin subunits contain mutations and platelets are unable to adhere properly or form 
proper platelet aggregates (Kato 1997). 

Deregulation of integrin expression is associated with cancer progression. Collagen-
binding α2 integrin is heavily downregulated in breast and prostate adenocarcinoma, 
but again upregulated in metastasis of the latter (Zutter, Krigman et al. 1993; Bonkhoff, 
Stein et al. 1993). In addition, α2β1 heterodimer seems to be highly expressed in prostate 
cancer stem cells (Collins, Berry et al. 2005; Mimeault, Batra 2007). A truncated isoform 
of platelet integrin αIIb is absent in normal prostate tissue, but is found in prostate 
adenocarcinoma with increased expression in metastatic foci in mouse metastasis model 
(Trikha, Cai et al. 1998; Trikha, Raso et al. 1998). Also β1 integrin, which will be the focus 
of this thesis, is consistently upregulated in prostate cancer, (Goel, Li et al. 2008). 

The large-scale cancer-genome sequencing studies demonstrate that cell-matrix and cell-
cell adhesion associated genes are among the highest scoring groups bearing somatic 
point-mutations or deletions/amplifications in protein coding sequences in breast and 
colorectal cancer (Sjoblom, Jones et al. 2006; Leary, Lin et al. 2008). Another genome-
scale study shows that in 24 pancreatic cancer samples sequenced, 92% had a genetic 
alteration in one or more genes coding for “invasion” genes and 67% in integrin or 
integrin proximal genes, including integrins ITGA4, ITGA9, ITGA11, as well as an 
important integrin outside-in regulator, ILK (integrin-linked kinase) (Jones, Zhang et 
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al. 2008). These studies further demonstrate that cell adhesion and integrin function can 
have important roles in human carcinogenesis.   

Expression levels of integrins are only one part of their story, and should only give 
direction of their existence or absence in certain tissue. Integrins’ function lies in their 
elaborate regulation of activity, which is the ligand binding capability. For example, 
platelet αIIbβ3 and leukocyte αLβ2 (LFA-1) are in inactivated bent conformation as cells 
are circulating in blood. Upon vessel injury or pathogen attack, these integrins quickly 
extend and open up for ligand binding on endothelial surface and become arrested. If 
this and the subsequent relaxation are not finely regulated, bleeding, thrombosis, or 
inflammation can prevail. 

Deregulation of integrin activity could also be important in the pathogenesis of cancer. 
In chronic myelogenous leukemia, BCR-ABL1 fusion oncoprotein is accounted for 
stronger β1 integrin-mediated cell adhesion to bone marrow stromal matrix proteins 
(Fierro, Taubenberger et al. 2008). In addition, BCR-ABL1 fusion results in aberrant 
adhesive properties and impaired leukocyte traffic due to constitutive inside-out activation 
of the β2 integrin LFA-1 (Chen, Malik et al. 2008). Crucial master regulators of integrin 
avidity (affinity plus clustering) are the small GTPase family members Rap1 and Rap2. 
The GTP-bound Raps are inactivated by GTPase activating proteins (GAPs), which 
hydrolyze GTP to GDP.  Rap GAPs are strongly associated with cancer. RAP1GAP locus 
(1p36.1-p35) can be deleted in squamous cell carcinoma (Lefeuvre, Gunduz et al. 2008) 
or protein CDS point-mutated in breast carcinoma (Sjoblom, Jones et al. 2006). Knock-
out mice of another Rap1/2 GAP, SPA-1, show diverse set of leukemia, and are strongly 
associated with invasion and metastasis (Minato, Hattori 2009). These studies suggest 
that constitutively active integrins could be associated with certain cancers. However, 
unlike in platelets and leukocytes, the regulators of integrin inside-out activation in 
cancer are still very poorly known. 

Integrins are also regulated by their cellular localization. Cell motility and migration 
require dynamic assembly and disassembly of adhesion sites (Ridley, Schwartz et al. 
2003). During the last few years, studies on intracellular integrin traffic have given 
important aspects on the mechanisms of cell migration (Caswell, Norman 2006). Recent 
studies also suggest that the endo-exocytic traffic of integrins could also play a role in 
cancer cell invasion (Caswell, Norman 2008).

The subject of this thesis is β1 integrin intracellular traffic and activity regulation. 
β1 integrin subunit forms dimers with α1, α2, α3, α4, α5, α6, αV, α7, α8, α9, α10, 
and α11 subunits. The ligands can be a diverse set of collagens, laminins, fibronectin, 
vitronectin, as well as VCAM-1 for α4β1. The first part of the work characterizes a 
novel association of β1 integrins with a small Rab GTPase, Rab21. This association 
is shown to be important for β1 integrin endo- and exocytosis. Perturbations of Rab21 
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function by dominant mutations or siRNA silencing resulted in cell adhesion and 
migration defects. In the second part of the thesis, Rab21-regulated β1-integrin traffic 
was investigated in cell division. Perturbing integrin traffic resulted in cytokinesis failure 
and multinucleation. In the last part, β1 integrin activity regulators in prostate cells were 
studied with a novel siRNA-based cell spot microarray screening. The screen identified 
in prostate cells several proteins that are known regulators of integrin activity in platelets 
and leukocytes. In addition, many new positive and negative regulators were found, and 
from these results possible pathways for integrin activity regulation in prostate were 
drawn. 
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REVIEW OF THE LITERATURE2.	

2.1.	 Integrin traffic
Integrins are transmembrane proteins that can be endocytozed from plasma membrane 
to endosomal vesicles and recycled back to the plasma membrane. This endocytic 
integrin traffic enables cells to control adhesion in polarized manner during cell 
spreading or migration (Jones, Caswell et al. 2006). Endocytosis in general can be 
divided into 4 major pathways: clathrin-mediated endocytosis, caveolae-mediated 
endocytosis, clathrin- and caveolin-independent endocytosis, and macropinocytosis 
(Mosesson, Mills et al. 2008). 

Integrin internalization is mostly dependent on clathrin or caveolae (Table 1). The 
classical clathrin-mediated endocytosis transports cell-surface receptors to early 
endosomes and again to late endosomes or perinuclear recycling endosomes (PNRE), 
from where cargo can either be recycled back to the plasma membrane or targeted 
for lysosomal degradation. There are suggestions that early endosomes may work as 
converging points in caveolae- and clathrin-mediated endocytosis (Pelkmans, Burli 
et al. 2004). ADP-ribosylation factor GTPases (Arfs) are important in clathrin coat-
complex formation and vesicular budding, whereas Rab family GTPases regulate 
transport and tethering/fusion of membrane vesicles (Casanova 2007; Zerial, McBride 
2001). The most-studied of Rab GTPases is Rab5, which together with Rab21, Rab22, 
and Rab31 constitute the Rab5 subfamily, whose function is in the early endocytosis 
and for Rab31 also in anterograde traffic (Simpson, Jones 2005; Ng, Wang et al. 
2007). 

The regulation of integrin targeting to different endocytic compartments is poorly known, 
whereas regulators of integrin recycling have been well characterized. Both Arf6 and 
Rab11 contribute to β1 integrin recycling from the PNREs (Powelka, Sun et al. 2004). 
Recycling of α5β1 and αVβ3 through PNREs requires PI3K and AKT activity (Roberts, 
Woods et al. 2004). This “long-loop” recycling pathway is different form Rab4-assisted 
“short-loop” recycling pathway, which requires growth factor stimulation and protein 
kinase D (PKD) activity (Woods, White et al. 2004). 

Recently, the endocytic recycling of integrins has gained a lot of attention in relation 
to its role in cancer cell metastasis, and especially in invasion (Caswell, Norman 
2008; Ramsay, Marshall et al. 2007). Many studies show how perturbing integrin 
endocytic traffic leads to impaired cell adhesion, transwell migration, 2D cell motility, 
or reduced 3D matrigel invasion (see Tables 1 and 1b and Figure 1). Caswell and co-
workers (2007) found an important role for Rab25 in the regulation of α5β1 integrin 
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recycling to pseudopodial projections in invasive ovarian cancer cells (Caswell, 
Spence et al. 2007). Rab25 is highly expressed in metastatic ovarian and breast cancer 
(Cheng, Lahad et al. 2004), where its cancer promoting functions could be associated 
with integrin regulation. Another group showed that the expression of αVβ6 and its 
positive regulator of endocytosis, HAX-1, correlate with more advanced invasive oral 
carcinoma (Ramsay, Keppler et al. 2007). Knocking-down HAX-1 decreased integrin 
endocytosis and was associated with reduced matrigel invasion of squamous cell 
carcinoma cells. These studies with the clinical evidence imply that integrin traffic 
could have a role in cancer metastasis, although this has not been shown by in vivo 
experimental analysis yet.

Cells adhering to 2D extracellular matrix (ECM) surfaces form specialized adhesion 
complexes, focal adhesions (FAs). These structures are composed of clustered ligand-
bound integrins and endoplasmic complexes of proteins linking integrins to bundled 
actin cytoskeleton. FAs, although missing or different in 3D environment, are specialized 
platforms in extracellular force sensing and intracellular signal amplification, as several 
adaptor and effector proteins are bundled together (Broussard, Webb et al. 2008). 
Mutations in FA proteins can participate in formation of various pathologies, such as skin 
Kindler syndrome (FERMT1/Kindlin-1), lung cancer metastasis (paxillin), or chronic 
myelogenous leukemia (BCR-ABL1) (Lai-Cheong, Tanaka et al. 2008; Jagadeeswaran, 
Surawska et al. 2008; Weisberg, Sattler et al. 1997). FA turnover, the assembly and 
disassembly, is critical for cell motility (Broussard, Webb et al. 2008), and recent studies 
suggest that this turnover is coupled to integrin endo/exocytosis. Nichimura and Kaibuchi 
(2007) showed that a clathrin adaptor protein, NUMB, localizes to proximity of focal 
adhesions by binding to β1 and β3 integrin cytoplasmic tails and mediates integrin 
internalization from these structures, a process which is determined by a delicate balance 
of NUMB phosphorylation by atypical PKC (Nishimura, Kaibuchi 2007). Also, Ezratty 
and others (2005) showed that dynamin, which is implicated in β1 integrin endocytosis, 
modulates FA disassembly associated with actin dissociation and microtubule growth 
to FAs (Ezratty, Partridge et al. 2005). More recent still unpublished work form the 
same group shows that microtubule plus-ends direct clathrin-adaptor proteins, DAB1/2, 
to focal adhesions and mediate integrin endocytosis with FA disassembly (personal 
communication with Greg Gundersen). 

It has been suggested that FA disassembly is associated with reorganization of the 
actin cytoskeleton, such that the link between integrins and actin is lost (Mitra, Hanson 
et al. 2005). Different cytoskeletal adaptor proteins, such as talin, filamin, paxillin, 
zyxin, and alpha-actinin form this link, with an important regulatory role of different 
FA protein phosphorylation, such as FAK and Src family kinases. This brings us to 
a model, where a very sensitive and delicate phosphorylation/dephosphorylation 
balance determines the loss of integrin-actin connection, growth of microtubules to the 
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structure with endocytic machinery proteins, and subsequent vesicular internalization. 
Future imaging improvements might enable us to see constant endo/exocytic traffic 
of integrins and focal adhesion proteins within the small subregions of the structure. 
There are probably tens of different proteins that might be involved in the regulation. 
However, it would be important to find out the major regulators and the stimulus that 
initiates the disassembly and how this is coupled to endocytic machinery. As the work 
of Gundersen and Kaibuchi suggest, integrin endocytosis from focal adhesions could 
be mediated by clathrin route. However, the molecular mechanisms that regulate 
integrin internalization outside focal adhesions are also of great interest.

Table 1. Regulators of integrin endocytosis.

Gene/molecule Name Description Reference

CAV1 Caveolin 1 α5β1 integrin is important for fibronectin (Fn) endocytosis 
via CAV1-dependent pathway. However, α5β1 can be 
endocytozed without Fn. Could be important for ECM 
remodeling as Fn is degraded after endocytosis.

(Shi, Sottile 
2008)

CD151 CD151 The CD151 cytoplasmic motif YRSL, which is bound 
by AP-2, is needed for CD151 vesicular localization 
and endocytosis. CD151 associates with α3-, α5-, and 
α6β1 integrins through extracellular domain and is co-
endocytozed with these integrins. Mutation of YRSL motif 
impairs CD151 endocytosis toghether with its associated 
integrins, which is however a fraction of total integrins. 
YRSL mutation also decreased transwell migration to Fn 
or Lam1.

(Liu, He et al. 
2007)

CDH13 
(T-cadherin, 

T-CADH, 
H-CADH)

cadherin 13, 
H-cadherin 

(heart)

Over-expression of T-CADH in keratinocytes suppressed 
internalization of both β1 integrin and cholera toxin 
(CTX), a marker of caveolae-mediated endocytosis. 
T-CADH also reduced EGFR phosphorylation. T-CADH is 
considered as tumor suppressor.

(Mukoyama, 
Utani et al. 2007)

EGFR epidermal 
growth factor 

receptor 
(erythroblastic 

leukemia 
viral (v-erb-b) 

oncogene 
homolog, avian)

Constitutively active mutant form of the EGF receptor 
(EGFRvIII) in ovarian cancer cells led to reduction in 
integrin α2 surface expression, defects in cell spreading, 
and disruption of focal adhesions. EGFR and α2 integrin 
internalized to separate locations, α2 primarily to golgi 
and ER. Integrin endocytosis was caveolae-mediated.

(Ning, Zeineldin 
et al. 2005)

(Ning, Buranda 
et al. 2007)

F11R (JAM-A) F11 receptor,  
Junctional 
adhesion 

molecule A

Co-localizes with β1 integrin in vesicles in neutrophils 
and co-clusters with β1 upon integrin stimulation. JAM-
A-deficient cells have impaired β1 integrin endocytosis 
leading to defects in uropod detachment and cell 
motility.

(Cera, Fabbri et 
al. 2009)
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Gene/molecule Name Description Reference

HAX1 HCLS1 associated 
protein X-1

HAX-1 associates with αvβ6 integrin in squamous cell 
carcinoma cell lines by directly interacting with the α6 
cytoplasmic tail. Knock-down of HAX-1 impairs transwell 
migration against αvβ6 ligand, TGFb LAP, but not against 
other integrin ligands. Knock-down cells have defect in 
clathrin-mediated αvβ6 and transferrin internalization. 
Also knock-down of clathrin or expression of DN EPS15 
decreased migration against LAP. HAX-1 also needed for 
VB6 invasion to matrigel.

(Ramsay, 
Keppler et al. 

2007)

IQSEC1 (BRAG2); 
ARF6

IQ motif and Sec7 
domain 1; 

ADP-ribosylation 
factor 6

Knock-down of Arf6 GEF, BRAG2, increased cell adhesion 
to Fn and enhanced spreading to Fn. BRAG2 knock-down 
cells had more surface β1-integrin, but ARF6 knock-
down cells had less surface β1 integrin, implying that 
BRAG2 and Arf6 are needed for β1 integrin traffic, either 
endocytosis or recycling or both.

(Dunphy, 
Moravec et al. 

2006)

L1CAM (L1) L1 cell adhesion  
molecule

Antibody cross-linking of L1 results in L1 and α3β1 
integrin co-clustering on cell surface and subsequent 
internalization to Rab5-positive endosomes. Clathrin coat 
assembly inhibition with modansyl cadaverine (MDC) or 
deletion of the AP2/clathrin binding motif (RSLE) from 
the L1 cytoplasmic domain inhibits L1/β1 endocytosis 
and transwell migration of HEK293 cells.

(Panicker, Buhusi 
et al. 2006)

LGALS3 (Gal-3) Galectin-3 Gal-3 induces β1 integrin endocytosis with Gal-3, which 
is cholesterol-dependent and inhibited by lactose. 
This caveolae-dependent internalization is coupled to 
actin reorganization and increased spreading of breast 
carcinoma cells.

(Furtak, Hatcher 
et al. 2001)

NUMB, AP2A1  
(AP-2), PRKCI 

(aPKC), PARD3 
(PAR-3)

numb homolog  
(Drosophila); 

adaptor-related 
protein complex 

2; alpha 1 subunit,  
protein kinase C, 

iota; 
par-3 partitioning 

defective 3 
homolog (C. 

elegans)

The clathrin adaptor NUMB localizes to leading edge of 
cells around FAs and directly binds to β1 and β3 integrin 
cytoplasmic tails through its PTB domain. Knock-down 
of NUMB, AP-2, or clathrin inhibited β1/β3 endocytosis 
and cell migration. aPKC and PAR-3 bind to NUMB and 
regulate its polarized localization. Phosphorylation of 
NUMB by aPKC inhibits endocytosis, but phosphorylation/
dephospohorylation cycle is needed for endocytosis 
however.

(Nishimura, 
Kaibuchi 2007)

PRKCA (PKCa);  
PI3K; Dynamin

protein kinase C, 
alpha;

PKCα associates and partially co-localizes with active, 
ligand-bound β1 integrin in recycling endosomes and 
multivesicular bodies (MVBs) together with transferrin 
and Rab11 in MCF7 and MDA-MB-231 cells. Phorbol ester 
activation of PKCα results in increased endocytosis of 
β1 integrin, which is dynamin dependent. PKCα over-
expression increases MCF7 transwell migration.

(Ng, Shima et al. 
1999)
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Gene/molecule Name Description Reference

SERPINE1, 
(PAI-1)

serpin peptidase 
inhibitor, 

clade E (nexin, 
plasminogen 

activator 
inhibitor type 1), 

member 1

Addition of PAI-1 to HT1080 cells initiates detachment 
from Vn, Fn, or collagen I. PAI-1 initiates LRP-1-dependent 
endocytosis of uPA-uPAR-αV-integrin complex, not free 
integrin.

(Czekay, 
Aertgeerts et al. 

2003)

Sphingolipids  
and cholesterol

Glycosphingolipid C8-LacCer or cholesterol addition 
to fibroblasts induces β1 integrin activation, clustering 
and increases caveolae-mediated integrin endocytosis, 
leading to cell rounding and transient detachment. 
Endocytosis is preceded by Src activation, Cav-1 
phosphorylation by Src, actin depolymerization, and 
RhoA dissociation from PM.

(Sharma, Brown 
et al. 2005)

TNF (TNFA) tumor necrosis 
factor (TNF 

superfamily, 
member 2)

Exposure of TNFA to lung endothelial cells resulted in 
increased α5β1 integrin endocytosis and recycling. This 
could have a role in endothelial cell monolayer interaction 
with ECM and monolayer permeability.

(Gao, Curtis et al. 
2000)

Table 1b. Regulators of integrin recycling.

Gene Name Description Reference

ACAP1; CLTC ArfGAP with 
coiled-coil, 

ankyrin repeat 
and PH domains 
1; Clathrin heavy 

chain

ACAP1 directly interacts with clathrin and this is needed 
for β1 integrin and Glut4 recycling in adipocytes. Arf6 
and GAP-activity are needed for the assembly of the 
complex.

(Li, Peters et al. 
2007)

Arf6; Rab11 ADP-ribosylation  
factor 6; 

RAB11A, member 
RAS oncogene 

family

Dominant negative ARF6-T27N or Rab11-S25N efficently 
blocked serum-stimulated β1 integrin recycling from 
recycling compartments. Also a mutant Arf6 Q37E/S38I 
that inhibits actin rearrangements inhibited recycling. 
Recycling was important for 2D MDA-MB-231 cell 
migration.

(Powelka, Sun et 
al. 2004)

EHD1 EH-domain  
containing 1

Knock-down of EHD1 in Hela cells leads to β1 integrin 
and transferrin accumulation in recycling endosomes as 
a result of recycling defect (12G10 chase assay). Similar 
results using human fibroblasts or MEFs deficient with 
EHD1. EHD1-/- MEFs have increased focal adhesion 
formation and active β1, suggesting a general defect in 
endo- and exocytic traffic.

(Jovic, Naslavsky 
et al. 2007)
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Gene Name Description Reference

LGALS1 (Gal1) lectin, 
galactoside-

binding, soluble, 
1 (Galectin-1)

Gal-1 knock-down leads to accumulation of β1 integrin, 
vimentin, and PKCe in perinuclear region in glioblastoma 
cells.

(Fortin, Le 
Mercier et al. 

2008)

PI3K; AKT (PKB); 
and GSK3

PI3K; v-akt murine  
thymoma viral 

oncogene 
homolog; 

and glycogen 
synthase kinase 3

Chemical inhibitors of PI3K, expression of DN AKT, 
or knock-down of AKT1/2 inhibited both short-loop 
αvβ3 and long-loop αvβ3/α5β1 recycling to PM. GSK3 
phosphorylation and inactivation by AKT was important 
for recycling and fibroblast spreading on vitronectin or 
fibronectin.

(Roberts, Woods 
et al. 2004)

PRKCE; VIM Protein kinase C,  
epsilon and 

Vimentin

PKCε phosphorylates Vimentin in endocytosed vesicles. 
PKCe activity dissociates PKCε-Vim complex from 
endocytic vesicles. Expression of Vim mutant that cannot 
be phosphorylated by PKCε (S4,6,7,8,9A) resulted in 
vesicular PKCε and β1 integrin with defect in integrin 
recycling. PKC inhibitor BIM-1 impairs α2 integrin vesicular 
movement.

(Ivaska, 
Vuoriluoto et al. 

2005)

PRKD1  
(PKD1)

protein kinase D1 
(PKC-µ)

PKD1 Ser-916 is critical for interaction with αvb3 and 
for Rab4-mediated short-loop recycling of this integrin. 
Inhibition of αvβ3 recycling by DN PKD1 S916A impairs 
fibroblast directional motility, by mechanism that involves 
increased α5β1 long-loop recycling and signaling to Rho-
ROCK-Cofilin (random migration).

(White, Caswell 
et al. 2007)

PRKD1  
(PKD1); RAB4

protein kinase D1 
(PKC-µ)

PKD1 associates with c-terminal β3 integrin cytoplasmic 
tail. PDGF induces PKD1 activity, which is needed 
downstream of Rab4-mediated αvβ3 recycling.

(Woods, White 
et al. 2004b)

RAB11FIP1  
(RCP)

RAB11 family  
interacting 

protein 1, RAB11 
coupling protein

αvβ3 inhibition (cilengitide, RGD-peptides, ospteopontin) 
increases α5β1 recycling in ovarian cancer cell line, by 
mechanism that is dependent on RCP association with 
α5β1 and Rab11. This contributes to random migration 
with strong ruffles at cell front, but also 3D FN-matrigel 
invasion. EGFR is recycled with the same complex, 
increasing its signaling to AKT.

(Caswell, Chan et 
al. 2008)

RAB25  
(RAB11C)

RAB25,  
member RAS 

oncogene family

Rab25 interacts directly with β1 integrin cytoplasmic 
tail and is important for ovarian cancer cell line A2780 
or fibroblast invasion in Fn-matrigel. Ectopic expression 
increases migration persistence in cell-derived matrix with 
pseudopod morphology and actively recycling pool of 
α5β1 at the pseudopod tip.

(Caswell, Spence 
et al. 2007)



	 Review of the Literature	 19



20	 Review of the Literature	

Figure 1. Integrin traffic. The most studied pathways for integrin internalization are caveolin- 
or clathrin-dependent. This can be due to better knowledge of these pathways and existing 
molecular tools to study these pathways. However, caveolae-mediated endocytosis internalize 
at least β1 integrins, α2β1 and α5β1, of which the latter can be endocytozed with or without 
its ligand, fibronectin (Fn) (Shi, Sottile 2008). Contrary to integrins, which are recycled back to 
the PM, Fn and other ECM proteins end up in lysosomes for degradation. Exogenously added 
sphingolipids, cholesterol, or carbohydrate-binding galectin-3 (Gal-3) induces caveolae-mediated 
β1 integrin endocytosis. Whereas Gal-3 is known to enhance integrin-mediated adhesion and 
integrin activity, sphingolipids or cholesterol addition round up and even detach fibroblasts 
from substratum (Sharma, Brown et al. 2005; Kahsai, Cui et al. 2008). Ning, Zeineldin, and 
others (2007) have shown that constitutively active EGFR induces α2β1 integrin endocytosis via 
caveolae, and that the two receptors traffic to distinct locations, α2β1 ending-up in golgi and ER. 
Interestingly, a GPI-anchored cadherin, T-CADH, suppresses EGFR phosphorylation and inhibits 
β1 integrin endocytosis through caveolae (Mukoyama, Utani et al., 2007). Clathrin-mediated 
endocytosis could be coupled to focal adhesion disassembly and the clathrin adaptor proteins 
AP-2 and NUMB could have both a structural and regulatory role in this process. AP-2 adaptor 
is required for co-endocytosis of α3β1–L1 adhesion protein and α3β1-CD151. The tetraspanin 
CD151 and L1 adhesion protein contain an YRLS-motif, where AP-2 binding is required for 
the endocytosis and integrin-mediated migration. Dissociation of CD151 from α3β1 with anti-
CD151 antibodies leads to integrin inactivation and reduction in cell adhesion to laminin-10/11 
(Nishiuchi, Sanzen et al. 2005). An AP-2-binding protein, NUMB, localizes to the vicinity of 
focal adhesions and is required together with AP-2 for β1 integrin internalization from these 
structures. The clathrin-mediated integrin internalization studies suggest a positive role of this 
process in cellular migration or invasion (see Table 1). Integrins traffic to different endosomal 
compartments, early and late endosomes, which are connected to lysosomes, multivesicular 
bodies, golgi, ER and exocysts. Recycling occurs from recycling endosomes (RE) or perinuclear 
recycling endosomes (PNRE). Here they are collectively called recycling endosomes. The most 
studied integrin recycling pathways rely on Rab family GTPases, Rab4, Rab11A, and Rab25 as 
well as Arf6 GTPase. The growth-factor-stimulated fast-recycling (short-loop) Rab4 pathway 
carries αvβ3 integrins, is dependent on protein kinase D1 (PKD1) kinase activity, and inhibits 
the slow-recycling (long-loop) Rab11 pathway, which transports α5β1 integrin (White, Caswell 
et al. 2007). The Rab4-mediated αvβ3 recycling reflects cells’ ability to migrate persistently, 
whereas the Rab11 pathway enhances cell motility with impaired directionality. Interestingly, 
the random motility correlates with cells’ ability to invade into fibronectin-containg matrigel 
(Caswell, Chan et al. 2008). If atypical PKCs (aPKC), PKCζ and PKCι, as well as the classical 
PKCα are implicated in integrin endocytosis, the novel PKCε regulates β1 integrin recycling. 
PKCε associates with β1 integrin positive endosomes and stimulates β1 integrin recycling by 
phosphorylating N-terminal serines in vimentin intermediate filament protein (Ivaska, Vuoriluoto 
et al. 2005). It would be interesting to study whether this correlates to vimentin’s ability to induce 
epithelial-mesenchymal transition in cancer.
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2.2.	 Cytokinesis
During cell division, vast morphological changes can be seen starting from rounding 
up in prometaphase, cell elongation during chromatid separation, ingression of plasma 
membrane during cytokinesis, and finally elongation and separation of daughter cells 
from each other (Glotzer 2001). These events are dependent on dynamics of the actin 
and microtubule cytoskeletons as well as membrane turnover. It is very interesting that 
the molecular machineries in cytokinesis resemble that of cell adhesion and migration. 
These include the family of Rho GTPases, its downstream effectors ROCK, myosin light 
chain kinase (MLCK or MYLK), cofilin etc., but also vesicular trafficking regulators 
such as Rab11, Arf6, and the exocyst complex (Ridley, Schwartz et al. 2003, Glotzer 
2005; Pellinen, Ivaska 2006). There are studies showing that adherent cells require 
matrix adhesion for cytokinesis. For example chondrocytes with inactive β1 integrin 
have impaired cytokinesis, which is most probably due to defects in adhesion to collagen 
II and fibronectin in these cells (Aszodi, Hunziker et al. 2003). In addition, Reverte and 
others (2006) have shown that perturbation of β1 integrin activity by mutations lead to 
impaired microtubule spindle assembly in mitosis, which results in defective cytokinesis 
(Reverte, Benware et al. 2006). These results suggest a mechanistic link between cell 
division and cell adhesion.  

The last step of cell division is the cytokinesis, where daughter cells are physically 
separated by ingression and cleavage of the membrane. In metazoan symmetric cell 
division, the localization of furrowing at the plasma membrane is determined by spindle 
pole-growing astral microtubules and central spindle microtubules (see Figure 2). The 
stability of microtubules in the central equatorial region allows centralspindlin proteins 
(MKLP1, CYK-4) to assemble to the central spindle (Odell, Foe 2008). This activates 
polo-like kinase 1 (PLK1), which activates RhoA through phosphorylation of Rho GEF, 
ECT2. RhoA action through its effectors (formins, ROCK, Citron kinase) is fundamental 
for furrow ingression as this pathway ultimately leads to myosin II activation and actin 
polymerization, which are needed for acto-myosin-driven contraction and formation of 
contractile actin ring (Piekny, Werner et al. 2005). This actin ring contraction bundles 
central spindle microtubules together and tightens them to form the midbody structure, 
where the final abscission occurs.



22	 Review of the Literature	

Figure 2. Metazoan symmetric cytokinesis. Separation of cytosol and sister chromatids occurs 
by ingression or invagination of plasma membrane (arrows). This equatorial midplane region 
(midzone) accumulates non-kinetochore antiparallel microtubules originating from centrosomes 
(central spindle). In addition to central spindle and kinetochore spindle, centrosomes direct the 
growth of astral spindle microtubules towards cortical plasma membrane, where they associate 
with actin (actin not shown). Stabilized astral and central microtubules decide the location of 
furrow formation by reqruiting RhoA activating protein ECT2 to the equatorial midplane (see 
text for details). RhoA effector, ROCK, is needed for myosin II activation and actin contraction, 
whereas another effector, mDia1 (formin) is needed for actin polymerization through profilin 
action (not shown). Together they enable the formation of contractile actin ring, which ingresses 
to form the midbody structure, where final abscission occurs.	   

During cytokinesis, a constant flow of membrane vesicles is transported to ingression 
and abscission sites. This apparently golgi- and endosome-derived material brings new 
membrane to the growing surface of ingressing plasma membrane (Goss, Toomre 2008; 
Albertson, Cao et al. 2008). For example Rab11 and its interacting protein FIP3 traffic via 
centrosome-associated spindle microtubules to cleavage furrow in endosomal vesicles 
(Wilson, Fielding et al. 2005). FIP3 (Nuf) modulates RhoA (Rho1) activity via RhoGEF2 
in Drosophila and regulates actin polymerization in cleavage furrow (Cao, Albertson et al. 
2008). Thus, it is clear that vesicle membrane flow in the furrow is not only for increased 
need in surface area, but also for effector functions in the process. FIP3 is also needed for 
the final midbody abscission, where it is recruited by binding to centralspindlin protein 
Cyk-4 (also called MgcRacGAP). This displaces ECT2 from binding to Cyk-4 allowing 
contractile ring to dissassemble (Simon, Schonteich et al. 2008). Interestingly, FIP3 and 
Rab11 bind to secretory exocyst complex, whose components also participate in the final 
abscission, but also in the ingression (Gromley, Yeaman et al. 2005; Cascone, Selimoglu 
et al. 2008). What exactly these endocytic or secretory vesicles are carrying as cargo and 
what their specific roles are in cytokinesis is still unknown.
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Cytokinesis failure often leads to formation of a binucleate cell, with tetraploid progeny. 
Tetraploidy is considered to be a transient pathway to aneuploidy through subsequent 
erroneous chromosomal segregations. As aneuploidy feeds more and more random errors 
in cell division, changes gene expression signature, and accumulates DNA replication 
errors, its suggested role in tumorigenesis is mounting (Ganem, Storchova et al. 2007). 
Recently, Rancati and others created fast adaptive evolution in yeast by knocking MYO1 
gene (myosin II) and causing cytokinesis failure (Rancati, Pavelka et al. 2008). The 
failure resulted in formation of polyploidy, leading to aneuploidy, high variation in gene 
expression, and ultimately, selection for fittest cytokinesis phenotypes with specific 
changes in transcriptome. Similar evolution could also occur in tumorigenesis.

2.3.	 Integrin activity regulation

2.3.1.	Introduction
Integrins are bidirectional signaling proteins. Extracellular ligand binding to integrin 
induces signal transduction across the plasma membrane in so-called outside-in 
activation. A stimulus from inside the cell can activate integrins to bind ligand, a process 
called inside-out activation. The current model is that integrins exist in equilibria of 
different conformations: 1) bent (inactive); 2) extended (primed); 3) extended and 
ligand-bound, where the different integrin conformations bear affinity differences to 
ligand as much as 10 000-fold (Luo, Carman et al. 2007). Ligand binding and tensile 
force favors the extended open conformation. Work on leukocytes and platelets suggests 
that rapid integrin activation occurs through inside-out activation (Alon, Ley 2008), 
whereas subsequent ligand binding and clustering (avidity) then stabilizes bond strength 
(Shattil, Newman 2004). During outside-in signaling integrins form connection to actin 
cytoskeleton through proteins that bind to conserved motifs in the cytoplasmic tails of 
β subunits. This further stabilizes bond strength, but also allows clustering of many 
cytoskeletal adaptor and effector proteins to regulate actin polymerization, cross-talk 
with receptor tyrosine kinases, and downstream signaling to MAP-kinases (Shattil, 
Newman 2004; Guo, Giancotti 2004; Cox, Natarajan et al. 2006).

The studies on regulation of integrin activity have been mainly carried out in platelets and 
leukocytes. This is due to the obvious bleeding or inflammatory pathological conditions 
associated with impaired integrin function in these cells (Glanzman thrombastenia, 
thrombosis, leukocyte adhesion deficiencies I, III). Blood cells also carry integrins 
in inactive conformation when circulating in blood, but in the site of vessel injury or 
inflammation, integrins need to be rapidly activated. Thus the nature of these cells makes 
them perfect for integrin activity studies, and will be discussed here in more detail.
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2.3.2.	Talin is the proximal integrin regulator  
The final step in integrin activation is the binding of talin to the beta cytoplasmic tail 
(Tadokoro, Shattil et al. 2003; Petrich, Marchese et al. 2007; Nieswandt, Moser et al. 2007; 
Manevich, Grabovsky et al. 2007; Bouaouina, Lad et al. 2008). Talin interacts directly 
through its head FERM domain with NPXY (NPLY in β3) motif in beta cytoplasmic 
tails but also through its rod domain with the membrane proximal α-helix. A suggested 
mechanism for proximal integrin activation is that talin opens up the alpha and beta 
cytoplasmic tails by disrupting the salt bridge between membrane proximal α-helices 
of the cytoplasmic tails (Vinogradova, Velyvis et al. 2002; Rodius, Chaloin et al. 2008). 
This leads to conformational changes that increase the affinity of the extracellular domain 
to ligand (Luo, Carman et al. 2007). The FERM domain binding to NPLY is important 
for inside-out activation (Tadokoro, Shattil et al. 2003; Tanentzapf, Brown 2006; Zhang, 
Jiang et al. 2008), whereas the rod domain is essential for mediating interaction with the 
cytoskeleton. Intact talin is required for substrate adhesion and focal adhesion formation 
and actin polymerization in adhesion plaques (Zhang, Jiang et al. 2008). It is suggested 
that the rod domain may only bind to beta-tail when the integrin is activated and ligand-
bound (Rodius, Chaloin et al. 2008; Tanentzapf, Brown 2006). Taken together, results 
suggest that talin is critical for bi-directional integrin signaling where the head FERM 
domain activates the integin conformational change and the rod domain further stabilizes 
the activated state by interacting with actin cytoskeleton and allowing force generation to 
substrate. The sustained adhesion and force generation is maintained by integrin outside-
in signaling through proximal adaptor and effector proteins that will be discussed later.

2.3.3.	Platelet integrin αIIbβ3 activation
Circulating platelets are activated when they form contacts with injured vessel wall 
exposing extracellular matrix proteins. Under physiological or high shear flow, the platelet 
glycoproteins GPVI and GPIb bind to collagen and collagen-associated von Willebrand 
factor (vWF) multimers, respectively, and tether platelets to the subendothelium 
(Andrews, Berndt 2008). This leads to inside-out activation of the platelet integrin 
αIIbβ3, allowing it to bind fibrinogen and vWF. During activation, platelets secrete 
alpha- and dense granules that contain platelet agonists ADP and thromboxane A2 
(TXA2), which enhance αIIbβ3 activation through GPCR-signaling pathways and 
recruit new platelets (see Figure 3). Different in vivo-produced serine proteases, such 
as plasmin and thrombin cleave vessel wall proteins increasing the platelet coverage of 
the subendothelium (Komorowicz, McBane et al. 2002). Activated platelets twist the 
αIIbβ3 into high-affinity conformation allowing it to bind also soluble ligands in the 
bloodstream. Outside-in signaling of αIIbβ3 allows platelets to spread on fibrinogen 
and to form aggregates by platelet-platelet interactions through cross-linking fibrinogen 
multimers. Thrombus stability is maintained by correct cytoskeletal architecture, where 
outside-in signaling of αIIbβ3 plays a major role. Somatic mutations in αIIbβ3 may lead 
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to bleeding disorder, Glanzmann thrombasthenia, where platelets are unable to adhere 
properly or form proper platelet aggregates (Kato 1997). Another important platelet 
integrin is α2β1, which by binding to collagen I activates αIIbβ3 through pathways 
that are dependent on GPVI crosstalk with α2β1 (Nakamura, Kambayashi et al. 1999; 
Bernardi, Guidetti et al. 2006). Other evidence suggests that α2β1 integrin outside-in 
signaling in platelet activation can function also independently of GPVI (Inoue, Suzuki-
Inoue et al. 2003).

Figure 3. Platelet activation. Inside-out activation is triggered by platelet surface glycoprotein 
binding to endothelium-exposed collagen and/or von Willebrand Factor (vWF) (left). Cytoplasmic 
signaling pathways lead to conformational change of αIIbβ3 integrin that allows it to bind 
extracellular soluble fibrinogen and vWF. Cytoplasmic calcium flux activates alpha and dense 
granule secretion, which further activate platelet integrins. Ligand-bound αIIbβ3 signals to 
actin cytoskeleton and enhances calcium flux, which together strengthen and stabilize ligand 
binding allowing platelets to aggregate, contract, and form the blood clotting thrombus (outside-
in signaling, right). Agonists secreted from platelets and endothelium contribute to sustained 
platelet activation.   

2.3.3.1.	Inside-out activation of αIIbβ3

2.3.3.1.1.	A Complex of adaptor proteins recruit talin to activate αIIbβ3 integrin
Studies on CHO reconstitution model system demonstrate that αIIbβ3 integrin inside-out 
activation upon chemokine or phorbol ester stimulation is dependent on an “activation 
complex” consisting of PKCα, Rap1, RIAM, and talin (Han, Lim et al. 2006). Further 
studies have shown that knock-down of RIAM inhibits talin recruitment to αIIbβ3 
integrin (Watanabe, Bodin et al. 2008). RIAM is a Rap1 effector protein, which binds to 
profilin and ENA/VASP proteins and is important in actin polymerization during integrin 
activation (Lafuente, van Puijenbroek et al. 2004). Two other adaptor proteins, ADAP 
(Fyb) and SKAP-55, play roles in recruiting RIAM and Rap1 to plasma membrane thus 
facilitating integrin activation in T-cells (Menasche, Kliche et al. 2007). In platelets, 
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ADAP forms a complex with another SKAP, SKAP-HOM. However, the knock-down 
of ADAP, but not SKAP-HOM, leads to αIIbβ3 integrin activation defects upon GPCR 
agonist or vWF-GPIb stimulation (Kasirer-Friede, Moran et al. 2007) (see Figure 4). 

Phosphorylation of ADAP by Src family kinases (Fyn, Lyn) allows adaptor protein SLP-
76 to bind ADAP through its SH2 domain (Musci, Motto et al. 1997). SLP-76 has been 
recognized as an important mediator of αIIbβ3 outside-in signaling, but also of collagen/
GPVI-mediated inside-out activation of αIIbβ3 (Judd, Myung et al. 2000; Bezman, Lian 
et al. 2008). Mice deficient with SLP-76 show bleeding diathesis and decreased survival 
(Clements, Yang et al. 1998; Pivniouk, Tsitsikov et al. 1998), a moderate phenotype 
that could be seen as a result of an impairment of both the outside-in and inside-out 
signaling of αIIbβ3. In comparison, the knock-out of the Fcγ receptor (FcRγ), which is 
implicated in collagen and vWF-stimulated calcium signaling and integrin inside-out 
activation through Syk,  shows only a platelet aggregation defect, but no bleeding or 
decreased survival (Poole, Gibbins et al. 1997). However, the knock-out mice of both 
Syk or its downstream player PLCγ2 have lethal bleeding diathesis (Cheng, Rowley et 
al. 1995) or severe internal bleeding (Wang, Feng et al. 2000), again probably due to 
their importance in both inside-out and outside-in αIIbβ3 integrin activation (see chapter 
outside-in signaling). Altogether, the above studies suggest that there is an important 
adaptor complex consisting of SLP-76 – ADAP – SKAP – RIAM, which is important in 
recruiting the inside-out activation players Rap1 and talin, but also in modifying the actin 
cytoskeleton for sustained adhesion through outside-in signaling of αIIbβ3 integrin.
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Figure 4. Inside-out activation of platelet integrin αIIbβ3. Platelets adhere to von Willebrand 
factor (VWF), collagen, and laminin exposed in injured vessel walls (bottom). Glycoprotein GPVI 
and a glycoprotein complex (GPIX-GPIb-GPV) initiate Src family-mediated phosphorylation 
directly to downstream adaptor proteins or to adaptors through Fc-receptor gamma (FcRγ) – Syk 
pathway. Spleen tyrosine kinase (Syk) is activated either by Src family phosphorylation or binding 
to phosphorylated immunoreceptor tyrosine activation motif (ITAM). Phosphorylated adaptor 
proteins (SLP-76 and ADAP) are recruited to αIIbβ3 integrin proximity by another adaptor 
protein RIAM, which is an effector for activated Rap1 and associates also with integrin activator, 
talin (Tln1). The adaptor proteins form the platform for effector proteins and actin cytoskeleton 
for integrin activation. Another ECM-stimulated pathway employs nitric oxide (NO), cGMP, and 
protein kinase G (PKG) cascade. This requires phophorylation of ERK2 kinase, but the final 
mechanism of integrin activation in this pathway is unclear (see text for details). PLC-gamma 
(PLCγ2) is important for second messenger generation (DAG, calcium). These messengers 
activate Rap1 either directly or through protein kinase C. Calcium and PKCs are also important 
in alpha- and dense granule secretion, which contain various GPCR agonists. GPCR-binding 
agonists activate neighboring platelets, but also self-activate in autocrine fashion. GPCRs signal 
to integrins through PLC-beta or PI3K-dependent pathways. Recently, Kindlin-3 binding to beta3 
tail was shown critical for platelet integrin activation as well (Moser, Nieswandt et al. 2008).     

β

γ
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2.3.3.1.2.	PLCγ2 and PLCβ drive second messanger generation for platelet activation
PLCγ2 and PLCβ are lipid kinases generating calcium and DAG downstream of collagen/
vWF and GPCR signaling, respectively (Suzuki-Inoue, Wilde et al. 2004; Mangin, Yuan 
et al. 2003; Offermanns, Toombs et al. 1997). The platelet agonists ADP, thrombin, and 
TXA2 signal through their cognate GPCRs to activate the G protein, Gαq leading to 
PLCβ activation, platelet aggregation, and granule release (Offermanns, Toombs et al. 
1997). Platelet agonists may also activate Rap1b independent of PLCβ activity.  This 
pathway requires Gαi-dependent activation of PI3K, especially the catalytic isoforms 
p110β and p110γ (Schoenwaelder, Ono et al. 2007) (see Figure 4). 

Phospholipases catalyze the formation of inositol 1,4,5-triphosphate (IP3) and 
diacylglycerol (DAG) from inositol 4,5-bisphosphate (PIP2). DAG activates PKCα, and 
IP3 induces the mobilization of calcium through IP3 receptor channel (ITPR1) from the 
endoplasmic reticulum. In platelets, calcium is needed for the activation of Rap1b through 
the action of calcium and DAG-dependent Rap1 GEF, CalDAG-GEF1 (RASGRP1) 
(Crittenden, Bergmeier et al. 2004), but also for the activation of the calcium and DAG-
dependent PKCα (Franke, Akkerman et al. 1997; Tabuchi, Yoshioka et al. 2003). A rare 
genetic CalDAG-GEF1 mutation causes a “leukocyte adhesion deficiency”-disease 
(LAD-III syndrome) with a clear abrogation of integrin inside-out activation in both 
leukocytes and platelets (Pasvolsky, Feigelson et al. 2007). Mice deficient with this 
protein show impaired platelet aggregation and prolonged bleeding times (Crittenden, 
Bergmeier et al. 2004). When Rap1b function is required for both GPCR-dependent 
and -independent integrin activation (Chrzanowska-Wodnicka, Smyth et al. 2005), 
CalDAG-GEF1 activity is required only for thrombin-stimulated GPCR (PAR4) - and 
Gαq-mediated activation pathway of integrin (Cifuni, Wagner et al. 2008). This pathway 
synergizes with ADP-stimulated Gαi pathway and ADP secretion-stimulating PKCα 
pathway.

Tec family kinases Tec and Btk can induce calcium mobilization by stimulating 
PLCγ2 (Quek, Bolen et al. 1998) or by store-mediated calcium entry (SMCE), which 
is independent of PLCγ2 function (Pasquet, Quek et al. 2000; Redondo, Rosado et al. 
2005). Activation of Tec kinases in platelets may occur through activation of ITAM-
bearing receptors GPVI-FcRγ (collagen) or Fc receptor FcγRII (antibody crosslinking) 
or by thrombin (Quek, Bolen et al. 1998; Redondo, Rosado et al. 2005; Oda, Ikeda et al. 
2000). Tec kinases can be also directly activated by heterotrimeric G-proteins, Gαq and 
Gα12 (Jiang, Ma et al. 1998).	

2.3.3.1.3.	Nitric oxide – cGMP signaling; activator and inactivator?
The L-Arginine – NO – cGMP - pathway (see Figure 5) has been linked to inactivation 
of platelets (Radomski, Palmer et al. 1990; Chrzanowska-Wodnicka, Smyth et al. 2005). 
Platelets make nitric oxide (NO) and L-Citrulline from L-Arginine in a reaction catalyzed 
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by the enzyme nitric oxide synthase 3 (NOS3 or eNOS) (Radomsky et al., 1990). The 
reaction requires calcium as a cofactor, and it has been suggested that the increased 
calcium during platelet activation leads to suppression of aggregation depending on this 
particular pathway (Chrzanowska-Wodnicka, Smyth et al. 2005). NO activates guanylyl 
cyclase (GC) leading to the generation of cyclic guanosine monophosphate (cGMP) and 
subsequent activation of protein kinase G isoforms (PKGs), but also protein kinase A 
(PKA).  Some time ago, however, vWF stimulated GPIb signaling was characterized as 
novel activator of L-Arg – NO – cGMP – PKG signaling leading to inside-out activation 
of αIIbβ3 integrin (Li, Xi et al. 2003). PKG deficient platelets showed reduced responses 
to vWF or to small amounts of thrombin and the knock-out mice had longer bleeding 
times. Li and others have further shown that cGMP-activated PKG leads to p38 and 
ERK2 phosphorylation, and that inhibition of p38 by dominant negative construct 
abolishes the integrin inside-out activation in a CHO reconstitution model (123 cells) 
(Li, Zhang et al. 2006). The same group also showed that the Src family kinase Lyn and 
its downstream PI3K-AKT1/2 activation are important for cGMP generation and PKG 
phosphorylation (Yin, Stojanovic et al. 2008; Yin, Liu et al. 2008) (see Figure 4). These 
results could imply that the NO – cGMP pathway has activating role in the early inside-
out activation of αIIbβ3, but during the prolonged platelet activation and aggregation 
(outside-in signaling) the pathway gains inhibitory effect. The mechanism by which p38 
or ERK2 induces integrin activation has not been studied.     

An Ena/VASP family member VASP (vasodilator-stimulated phosphoprotein) could be 
the effector determining the positive or negative role of cGMP and cAMP in integrin 
activation. VASP is phosphorylated by PKG and PKA at sites Ser239 and Ser157, 
respectively. It directly binds actin and focal adhesion proteins and is implicated in 
the regulation of actin polymerization and bundle formation, cell adhesion, migration, 
and axon guidance (Krause, Dent et al. 2003). The phosphorylation of Ser157 of VASP 
correlates with αIIbβ3 inhibition measured by soluble fibrinogen binding and platelet 
aggregation (Horstrup, Jablonka et al. 1994). The Ser157 phosphorylation by PKA inhibits 
also agonist-induced shape change from discoidal low F-actin to spherical high F-actin 
(Jensen, Selheim et al. 2004). Also, as the phosphorylation of VASP Ser239 by PKG 
correlates with reduced Rap1b GTP loading in plateles, Rap1-signaling to integrin could 
be the ultimate target of NO-cGMP-mediated platelet inhibition (Danielewski, Schultess 
et al. 2005). This idea has been further studied by the work of Isenberg and coworkers, 
showing that Thrombospondin-1 (Tsp1) ligation to CD36 or CD47 receptors is able to 
block the inhibitory effect of NO-cGMP-PKG-VASP pathway in platelet adhesion and 
aggregation (Isenberg, Romeo et al. 2008) (Figure 5). They also showed that NO lowered 
the Rap1 activity and that addition of Tsp1 reversed this inhibition. I suggest that during 
inside-out integrin activation, unphosphorylated VASP could assist in forming the actin 
scaffold together with the adaptor proteins, RIAM and vinculin, to which it directly 
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binds. During sustained activation, phosphorylation of VASP by PKA or PKG could lead 
to inhibition of this actin scaffold, dissociation of the RIAM – Rap1b, and abrogation of 
integrin outside-in signaling. In leukocytes, PKA phosphorylates directly the α4 integrin 
cytoplasmic tail (Y991), which disrupts paxillin adaptor protein binding to it (Goldfinger, 
Han et al. 2003). This inhibits α4β1 (VLA-4) outside-in signaling and anchorage to actin 
during adhesion strengthening on VCAM-1 under shear flow (Alon, Feigelson et al. 
2005). This means that PKA has distinct mechanisms of negative regulation of integrins 
in different cell types. However, this can be even more complex as cAMP can have a 
positive role in epithelial progenitor cell β1 and β2 integrin activation by stimulating the 
cAMP-activated Rap GEF, EPAC1 (Carmona, Chavakis et al. 2008).
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Figure 5. NO – cGMP pathway in platelet integrin activation. Nitric oxide synthase (eNOS) 
catalyzes the formation of nitric oxide (NO) from L-Arginine. Guanylate cyclase (GC) drives the 
formation of cGMP, which activates protein kinase G (PKG). cGMP also elevates cAMP levels 
by inhibiting the enzyme responsible for cAMP degradation (PDE3) (Sheth and Colman, 1995). 
The inhibitory effect of cGMP and cAMP in platelet function is mediated by VASP, as in VASP-
deficient platelets cGMP and cAMP are unable to inhibit aggregation (Aszodi et al., 1999). The 
phosphorylation of VASP at Ser157 and Ser239 correlates to reduced Rap1b activation, αIIbβ3 
activation, and platelet aggregation. VASP binds directly to actin and proximal integrin adaptors, 
and its Ser157 phosphorylation negatively affects its positive function in actin filament bundling 
and filopodia formation (Pula et al., 2006). NO – cGMP – PKG signaling may also activate 
αIIbβ3 through p38 and ERK2 MAP-kinases, and cAMP can be a potent activator of Rap1 in 
other cell types (see text). Altogether, NO signaling is very complex, probably due to rapid flux of 
the various second messangers involved in the pathway, which I suggest leads to intimate balance 
of phosphorylation/ dephosphorylation of VASP with dynamic effects on actin turnover.
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2.3.3.1.4.	ERK2 (MAPK1) and integrin activation in platelets
ERK2 seems to be a critical mediator of platelet integrin αIIbβ3 activation. Von 
Willebrand factor (vWF)-initiated NO-cGMP-PKG pathway requires ERK2 and p38 
phosphorylation for the early inside-out activation of the integrin. Also the collagen 
stimulated GPVI-FcRγ signaling results in thromboxane 2 (TXA2) formation and ADP 
secretion, which both activate ERK2 in Galpha(q)- and Galpha(i) (P2Y12)-dependent 
manner, respectively (Roger, Pawlowski et al. 2004). Thrombin acts synergistically with 
TXA2 to increase ADP and activate ERK2 through the P2Y12 Galpha(i) signaling (Falker, 
Lange et al. 2004). In addition, ERK2 activation itself is important for the production 
of TXA2 (Garcia, Quinton et al. 2005), which further enhances integrin activation 
through the GPCR-mediated signaling. αIIbβ3 integrin also promotes ERK2 activation 
by outside-in signaling through Rho signaling pathway (Mazharian, Roger et al. 2007). 
In this study integrin outside-in activation was analyzed by looking at cell spreading 
on fibrinogen after addition of PAR4 agonist peptide (PAR4-AP). ERK2 activation was 
dependent on PAR4-AP-induced ADP signaling and spreading to fibrinogen and resulted 
in myosin light chain (MLC) phosphorylation, whereas p38 phosporylation, which was 
integrin independent but ADP dependent, resulted in actin polymerization. Another group 
has showed that MLC binding to tyrosine phosphorylated αIIbβ3 is important for blood 
clot retraction and stabilization of thrombus downstream of ephrin receptors (Prevost, 
Woulfe et al. 2005). However, they did not look at the possible function of ERK2 in this 
model.  Thus, ERK2 activation can have roles in both the early wave integrin activation 
and late sustaining of fibrinogen binding, which is important for platelet aggregation and 
thrombus formation. 

2.3.3.2.	Outside-in signaling of αIIbβ3
Thrombus formation requires stabile platelet – platelet association, where αIIbβ3 integrins 
crosslink adjacent cells through fibrinogen binding. Integrin – fibrinogen interaction 
leads to changes in actin cytoskeleton and tyrosine phosphorylation of multiple proteins, 
which together sustain the activation state of the integrin and allow even tighter cell 
- cell association and clot retraction. Obviously, similar molecular requirements as in 
inside-out activation are required for sustaining of integrin activity and signaling to 
downstream proteins. As talin cross-links integrins to the actin cytoskeleton and enables 
force generation and spreading of cells to substrate, it must be crucial for the outside-in 
signaling as well. Zhang and others (2008) recently showed that talin1/talin2 deficient 
fibroblasts have deficiencies in sustained spreading and adhesion, although the initial 
spreading was not affected. The knock-out cells were unable to form focal adhesions with 
activated FAK, and F-actin was diffuse in the cytoplasm. However, the Src family kinase 
phosphorylation was not compromised, and inhibition of Src by PP2 abrogated the initial 
fibronectin – integrin-mediated spreading. This work nicely illustrated the importance of 
talin in sustaining the outside-in signaling of integrins to the actin cytoskeleton and to 
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focal adhesion – associated proteins, but also highlighted the role of Src family kinases 
in the early spreading. 

2.3.3.2.1.	 Src family kinases
Src family kinases (SFKs) (c-Src, Fyn, Lyn, c-Yes, and Hck) bind directly to β3-integrin 
cytoplasmic tails, whereas Lyn, c-Yes, and Hck also bind to β1 and β2 tails (Arias-
Salgado, Lizano et al. 2003). Mice platelets deficient in multiple Src-family kinases fail 
to spread on fibrinogen and show impaired general tyrosine phosphorylation, whereas 
c-Src-only-deficient platelets spread normally (Arias-Salgado, Lizano et al. 2003). 
Inhibition of SFKs by chemical inhibitors or truncation of β3-tail after tyrosine-759, 
where C-Src binds, or addition of RGT-peptide that mimics the C-terminus of β3-tail, 
impairs integrin outside-in signaling, but not inside-out signaling (Obergfell, Eto et al. 
2002; Xi, Bodnar et al. 2003; Su, Mi et al. 2008).  C-Src is constantly associating with 
αIIbβ3 in circulating platelets and becomes rapidly activated upon fibrinogen binding 
(Obergfell, Eto et al. 2002). In Obergfell’s model, c-src tyrosine kinase (Csk) also 
associates with αIIbβ3 and keeps c-Src inactivated by phosphorylating the inhibitory 
tyrosine-530. Fibrinogen binding to integrin releases the inhibitory Csk and c-Src is 
activated by the phosphorylation of its activation loop tyrosine-419. More recent work 
has demonstrated a role for PTP-1B (PTPN1) in the dephosphorylation of tyrosine-530 
of c-Src in platelets (Arias-Salgado, Haj et al. 2005). As Src family kinases have a 
prominent role in integrin outside-in signaling and will be discussed more below, the 
activation mechanism of Src family kinases is depicted in Figure 6.
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Figure 6. Mechanisms of Src family kinase activation. Src is in inactive conformation when 
the C-terminal inhibitory loop tyrosine Y530 is phophorylated. Several tyrosine phosphatases 
can release this inhibition by dephosphorylating the pY530 (Bjorge, Jakymiw et al. 2000). C-Src 
tyrosine kinase (Csk) is a negative regulator of Src family kinases. Autophosphorylation at Y419 
increases Src access to substrate. Other activators include CDC2 (CDK1) (Roskoski 2005) and 
the G-proteins downstream of GPCRs. G-proteins, Gαs and Gαi bind to the catalytic domain and 
change the conformation of Src, leading to increased accessibility of the active site to substrates 
(Ma, Huang et al. 2000).  

2.3.3.2.2.	 Signaling through Syk, SLP-76, and VAV1/3
Syk (spleen tyrosine kinase) is a kinase directly binding to C-terminal unphosphorylated 
β3 cytoplasmic tail, upon which Syk is activated (Woodside, Obergfell et al. 2001). 
It also becomes associated with αIIbβ3-integrin after platelet binding to fibrinogen, 
and is important in phosphorylating a Rac-GEF Vav1/3, and the adaptor protein SLP-
76 (Obergfell, Eto et al. 2002). SLP-76 is important for αIIbβ3-integrin outside-in 
signaling as its depletion in mice cause fetal hemorrhage and the platelets show impaired 
spreading and much lower overall tyrosine phosphorylation (Judd, Myung et al. 2000). 
Syk activation upon integrin ligation leads to formation of a complex consisting of 
SLP-76, an adaptor Nck, and a Rac effector, PAK1, which enhance cell spreading and 
lamellipodia formation in a CHO reconstitution model (Obergfell, Judd et al. 2001). 
SLP-76 associates with ADAP constitutively, but their phosphorylation and association 
with VASP is increased upon integrin binding to fibrinogen in platelets (Obergfell, Judd 
et al. 2001). Both Syk and SFKs phosphorylate Vav1 and Vav3, which have redundant 
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roles in platelets and are important in PLCγ2 activation and spreading on fibrinogen 
independently of Rac activation (Pearce, McCarty et al. 2007). Same authors also 
showed that spreading and lamellae formation in the absence of Vav1/3 can be induced 
by thrombin-stimulated GPCR-signaling through PLCβ and Rac activation. As in inside-
out activation of αIIbβ3, calcium mobilization through the action of PLCγ2 is needed for 
platelet spreading on fibrinogen and also for clot retraction (Wonerow, Pearce et al. 2003; 
Suzuki-Inoue, Hughes et al. 2007). Recently, an ITAM-bearing Fc receptor, FcγIIRa, was 
found to be involved in αIIbβ3 outside-in signaling leading to PLCγ2 phosphorylation 
(Boylan, Gao et al. 2008). This pathway requires SFK-mediated phosphorylation of the 
ITAM-motif and a subsequent association of Syk with ITAM. Altogether this means that 
Syk, SLP-76, Vav1/3, and PLCγ2 are all involved in both inside-out – and outside-in 
signaling of αIIbβ3.

2.3.3.2.3.	PKCs
Platelet agonist-stimulated αIIbβ3 inside-out activation is regulated by calcium and 
DAG-dependent (PKCα, CalDAG-GEF) or calcium-independent pathways (Gαi) 
(Cifuni, Wagner et al. 2008). PKCs are known to stimulate dense granule release 
containing ADP and TXA2 important for second wave integrin activation, and it has 
been shown that PKCα is upstream of Rap1 in αIIbβ3 activation (Han, Lim et al. 2006; 
Cifuni, Wagner et al. 2008). However, it was suggested by Giuliano and coworkers that 
PKCs are required for bidirectional αIIbβ3 signaling, where PKC activity is needed for 
the initial integrin activation, but also for maintaining the stationary platelet adhesion 
on vWF downstream of αIIbβ3 (Giuliano, Nesbitt et al. 2003). More recent work of 
the Shattil’s group has shown that PKCβ is activated by fibrinogen binding to αIIbβ3 
by 9-fold and that the PKCβ-deficient platelets have impaired spreading on fibrinogen 
(Buensuceso, Obergfell et al. 2005). They also showed that PKCβ associates with the β3 
cytoplasmic tail through the receptor for activated C kinase 1 (RACK1). Similar role in 
outside-in signaling was also found for PKCθ  (theta), which associates constitutively 
with αIIbβ3, but is phosphorylated only after fibrinogen binding (Soriani, Moran et al. 
2006). PKCθ phosphorylation downstream of αIIbβ3 correlated with integrin association 
with Syk and BTK, but also with phosphorylation of WASP, which is a positive regulator 
of Arp2/3-mediated actin polymerization.  

2.3.3.2.4.	Tyro3, CD40L, or Ephrin-B1 signaling leads to β3 integrin phosphorylation
Angelillo-Scherrer and others found a platelet dysfunction in mice lacking a Tyro3-
family ligand, Growth association specific 6 (Gas6) (Angelillo-Scherrer, de Frutos et al. 
2001). Platelets deficient with this protein protected mice against artificially induced-
thrombosis, but had normal bleeding times in tail cut experiments. Similarily, deficiency 
in any of the Tyro3-family receptor tyrosine kinases (Tyro3, Axl, or Mer) or delivery 
of soluble extracellular domain of Axl, protected mice against thrombosis (Angelillo-
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Scherrer, Burnier et al. 2005). They also showed that β3 integrin cytoplasmic tail 
phosphorylation is induced by Gas6 and is dependent on PI3K – AKT signaling. More 
recently, the redundancy of the three receptors was suggested by single, double, and 
triple knock-out models (Wang, Chen et al. 2007). Tail bleeding transections, platelet 
aggregation studies, and assays on dense granule secretion (ATP release) verified the 
importance of this RTK-family in hemostasis. 

CD40L is a platelet- and leukocyte-derived ligand for a tumor necrosis family receptor 
CD40 that plays a positive role on inflammation and thrombus formation by activating 
circulating leukocytes and platelets (Andre, Nannizzi-Alaimo et al. 2002). Furthermore, 
platelet surface-expressed CD40L mediates interaction with endothelial CD40 inducing 
endothelial cells to secrete chemokines and to express adhesion molecules for leukocyte 
arrest (Henn, Slupsky et al. 1998). Interestingly, André and coworkers (2002) showed 
that recombinant soluble CD40L binds directly via its KGD motif to purified αIIbβ3 and 
to activated platelets in β3 integrin-dependent manner. Mice deficient with CD40L had an 
impairment of thrombus stabilization, whereas mice lacking CD40 were normal. Further 
studies showed that CD40L ligation to αIIbβ3 increases β3-tail phosphorylation (Y759) 
and induces soluble fibrinogen binding (Prasad, Andre et al. 2003). An interesting finding 
in this study was that platelets on CD40L-coated surfaces aggregated and showed β3-tail 
phosphorylation much more that platelets on fibrinogen. The above findings suggest 
a stimulatory role for CD40L in outside-in signaling of αIIbβ3 integrin in platelets. 
Despite of the stimulatory role of CD40L in platelets and leukocytes, its use as a growth 
inhibitory molecule in several neoplastic tumors shows promising results (Tong, Stone 
2003).

Ephrins are either GPI-anchored or transmembrane ligands for Eph receptor tyrosine 
kinases that mediate bidirectional cell-cell signaling, but also modulate integrin adhesive 
function in a negative or positive manner (Nakamoto, Kain et al. 2004). For example 
EphA2 associates with FAK and upon Ephrin-A1 binding induces inactive conformation 
of β1 integrin and dephosphorylation of FAK by SHP2 phosphatase (Miao, Burnett et al. 
2000). Conversely, transmembrane ephrin-B1 and –B2 may stimulate integrin adhesion 
and outside-in signaling (Huynh-Do, Stein et al. 1999; Meyer, Hafner et al. 2005). In 
platelets, ephrin-B1 was shown to enhance soluble fibrinogen binding and aggregation 
upon thrombin or TXA2 agonist stimulation (Prevost, Woulfe et al. 2004). In another 
study by the same group, addition of GST-ephrin-B1, which oligomerizes through 
GST, substantially increased Tyr-773 phosphorylation of the β3-integrin tail in a Src-
dependent manner (Prevost, Woulfe et al. 2005). The phoshorylation also required the 
presence of soluble fibrinogen. The monomeric His-ephrin-B1 alone was not able to 
induce phophorylation, but was able to do so in the presence of His-Epha4 and ADP. 
The Epha4-ephrin-B1 interaction was shown to stimulate phosphorylation of Y773 
and Y785 and binding of myosin to β3-tail supporting clot retraction. Taken the results 
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together, they suggested a mechanism where ephrin-B1 – Epha4 interaction leads to Src 
association with Epha4 and subsequent phosphorylation of β3 integrin tail (Y773 and 
Y785), where myosin can bind and promote clot retraction. 

2.3.3.2.5.	Tetraspanins in integrin activation in platelets and cancer
Tetraspanins are membrane spanning small proteins that associate with several integrins 
and form tetraspanin microdomains, which at least in platelets are distinct from lipid raft 
microdomains (Israels, McMillan-Ward 2007). Platelets express at least five different 
tetraspanins – CD9, CD151, TSPAN9, TSSC6, and CD63, of which CD9, CD151, 
TSSC6, and CD63 are known to associate with αIIbβ3, and TSPAN9 with α6β1 in 
platelets (Israels, McMillan-Ward et al. 2001; Lau, Wee et al. 2004; Goschnick, Lau et 
al. 2006; Protty, Watkins et al. 2009). CD151 and TSSC6 (TSPAN32) have clear positive 
effects on platelet spreading and aggregation mediated by αIIbβ3 outside-in signaling 
(Lau, Wee et al. 2004; Goschnick, Lau et al. 2006). CD9 might have a positive role 
also in inside-out activation of αIIbβ3, as anti-CD9 mAbs stimulate soluble fibrinogen 
binding as well as platelet secretion and aggregation (Wu, Peng et al. 1999). 

CD9 has been extensively studied in various cancer cell lines and clinical tumour 
samples. Kotha and others have shown that ectopic expression of CD9 in CHO cells 
leads to enhanced β1 integrin activation upon RGDS peptide addition and also enhances 
cell migration depending on α5β1 integrin and PI3K-AKT signaling (Kotha, Longhurst 
et al. 2008). In prostate cancer cells (PC-3M-LN4), CD9 over-expression was shown to 
stimulate in vitro invasiveness, but had no effect on lymph node metastasis in a mouse 
model (Zvieriev, Wang et al. 2005). Although CD9 can potentiate adhesion and migration 
in in vitro experiments, its expression is largely diminished or can be even absent in 
metastatic tumors, such as in multiple myeloma, colon cancer, cervical cancer, small cell 
lung cancer, prostate cancer, and breast cancer (De Bruyne, Bos et al. 2008; Cajot, Sordat 
et al. 1997; Sauer, Windisch et al. 2003; Saito, Tachibana et al. 2006; Wang, Begin et 
al. 2007; Sauer, Kurzeder et al. 2003). For example Cajot and coworkers showed that 
in colon cancer, cells derived from primary tumor samples had higher CD9 expression 
and much greater migration potential compared to cell samples from metastatic regions 
(Cajot, Sordat et al. 1997). In multiple myeloma, CD9 is lost from plasma cells derived 
from active disease bone marrow samples due to epigenetic silencing, raising a question 
whether this could be a general mechanism of CD9 downregulation during cancer 
progression (De Bruyne, Bos et al. 2008). Interestingly, Hori and others have shown 
that CD9 expression increase is observed in severe vessel invasion, active lymph node 
metastasis, and in advanced stage of gastric cancer (Hori, Yano et al. 2004). The above 
examples imply that the relationship of CD9 and integrin activity regulation is complex 
and that integrins are probably not the only functional targets of CD9. Furthermore, CD9 
is known to complex with different integrins including αIIbβ3, α5β1 and α3β1, and it 
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could be that the CD9-integrin complex is different depending on cell type and also the 
effect on integrin activity either positive or negative in different environment. A good 
example of this is the work of Sauer and others (2003), which showed that CD9 is lost in 
most invasive cervical carcinomas, but can be highly re-expressed in certain “hot-spots” 
of transendothelial migration during lymph node metastasis.

2.3.4.	Integrin activation in leukocyte arrest and migration

2.3.4.1.	Chemokines trigger integrin activation during leukocyte rolling
Upon pathogen attack, tissue injury, or antigen encounter, various chemoattractants are 
produced and released from activated cells. This leads to selectin and integrin-mediated 
leukocyte rolling and arrest to vascular endothelial surfaces, integrin-mediated leukocyte 
spreading on endothelium, extravasation from lumen to the tissue, and chemotactic 
migration towards the attractant (Springer 1994) (Figure 7). Circulating leukocytes 
arrest to inflamed vascular endothelial surfaces by β2 integrins – LFA-1 (αLβ2) and 
Mac-1 (αMβ2) as well as by β1 integrin VLA-4 (α4β1) or by another α4 integrin, α4β7. 
Polymorphonuclear neutrophils are more dependent on LFA-1 and Mac-1 mediated 
arrest, whereas monocytes use primarily VLA-4. Leukocyte adhesion deficiency type I 
reflects the importance of β2 integrins in adaptive immunity, as in this genetic disease, 
β2 integrins are not properly expressed with a consequence of severe bacterial infections 
(Bunting, Harris et al. 2002). The arrest becomes possible during rolling of leukocyte 
on P- and E-selectin glycoproteins on endothelial membrane, but also by L-selectin 
expressed on leukocyte membrane. This rolling enables the association of leukocyte 
chemokine receptors (GPCRs) with endothelium-bound chemokines, leading to very 
fast and local inside-out activation of leukocyte integrins. The neutrophil arrest on 
endothelium is dependent on LFA-1 conformational change from intermediate to high 
affinity state (Green, Schaff et al. 2006). Similarly to platelets agonists, endothelium-
derived chemokines operate through GPCR - Gαi signaling to activate integrins. 
Recently it has become apparent that also the P- and E-selectin ligand PSGL-1 on 
neutrophil membrane can partially activate integrins by a pathway that is independent 
of Gαi signaling (Urzainqui et al., 2002), but signals through ITAM-motif containing 
receptors FcRγ and DAP12 (TYROBP) as well as Syk kinase (Zarbock, Abram et al. 
2008). This integrin activation pathway interestingly resembles that of platelet integrin 
initiated by GPIb or GPVI glycoproteins contacting with ECM proteins that signal also 
via FcRγ-ITAM-Syk pathway. Syk, which can bind directly to αIIbβ3 and is involved in 
outside-in signaling, associates also with LFA-1 and is critical for neutrophil adhesion 
and migration to inflamed tissue (Schymeinsky, Then et al. 2007).

The signaling from chemokine recpeptors to leukocyte integrins through Gαi also 
resembles that of platelet agonist-mediated integrin activation. Gαi2-null mice have 
50% reduction in neutrophil recruitment to sites of inflammation, and in vitro assays 
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show impaired neutrophil arrest on P-selectin, ICAM-1, CXCL1-coated flow chambers 
(Zarbock, Lowell et al. 2007). Similarly, the Gαi downstream effector, PI3Kγ (p110γ) 
has important role in neutrophil arrest, especially in the early adhesion strengthening, 
which is abrogated in PI3Kγ-null neutrophils (Smith, Deem et al. 2006). In effector T 
cells, PI3Kγ is important for migratory phenotype (Thomas, Mitchell et al. 2008; Martin, 
Schwartz et al. 2008). PLCβ, which is an effector of Gαq and Gβγ, is also important 
for certain leukocytes, since inhibition of PLC in monocytes leads to impaired arrest 
on VCAM-1 surfaces due to low affinity VLA-4 (Hyduk, Chan et al. 2007). However, 
PLCβ does not seem to have important role in T-cell migration to inflamed tissue, since 
the double knock-out (β2 and β3) has no overt effects (Lin, Wang 2000). 

2.3.4.2.	Integrin outside-in signaling strengthens adhesions
During integrin bond strengthening and cell spreading, the outside-in signaling from 
ligand-bound open integrin headpiece to cytoplasm is mediated by Src family kinases. 
Lck-deficient lymphocytes show impaired adhesion to VCAM-1 or fibronectin with 
reduced affinities, but also reduced chemotactic migration in primary T cells and natural 
killer cells (Feigelson, Grabovsky et al. 2001; Inngjerdingen, Torgersen et al. 2002). 
Triple-negative Src (lyn–/–hck–/–fgr–/–) or PP2-inhibited neutrophils have impaired 
adherence and arrest to ICAM-1 or HUVEC monolayer, and also show almost total 
block in HUVEC transmigration (Sarantos, Zhang et al. 2008). As IL-8 is able to induce 
ICAM-1-Alexa488 binding in triple KO cells, Src family kinases are not involved in the 
inside-out-, but outside-in signal transmission. Another Src-family kinase, Hck, plays a 
role in thrombohemorrhagic vasculitis. LPA- and TNFα-induced vasculitis is dependent 
on Mac-1 integrin binding to complement C3 on vessel walls, and subsequent Hck and 
Syk-mediated elastase secretion, as deficiency of any of these components prevents the 
disease-causing hemorrhage and thrombosis (Hirahashi, Mekala et al. 2006). The Syk 
kinase downstream of Src family kinases is also important for outside-in signaling. Syk is 
activated either by Src family kinase phosphorylation or binding of Src-phosphorylated 
immune tyrosine activation motif (ITAM) present in integrin-associating transmembrane 
proteins, such as FcRγ, Dap12, and CD3 proteins (Tsang, Giannetti et al. 2008). Syk-
null neutrophils have a defect in adhesion and a spreading to cremaster muscle venules 
with reduced extravasation to inflamed tissue or infiltration to wound in a mouse wound 
healing model (Schymeinsky, Sindrilaru et al. 2006; Schymeinsky, Then et al. 2007). 
Interestingly, double knock-out of FcRγ and Dap12 reduces the Syk phosphorylation 
and activation and concomitant adhesion and spreading to β2-integrin ligands (Mocsai, 
Abram et al. 2006). This means that immunoreceptor ITAM-based signaling is important 
in integrin inside-out activation, but also downstream of integrins after ligand binding. 
This is very similar to platelets, where FcRγ mediates GPVI and GPIb-induced inside-
out activation and FcγIIRa is important downstream of αIIbβ3. Mutation of tyrosine 
residues in Syk (Y348F or Y323F), which recruit downstream players Vav1/3 and 
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PI3Kdelta, respectively, leads to impaired directed migration by formation of excessive 
lamellae with no proper leading edge polarization (Schymeinsky, Sindrilaru et al. 2006; 
Schymeinsky, Then et al. 2007). 

2.3.4.3.	Integrins and leukocyte transmigration
Prior to transmigration, leukocytes laterally migrate on the endothelial apical surface 
to cell-cell junctions, and this movement is dependent on functional LFA-1 and Mac-1 
on monocytes and ICAM-1 and ICAM-2 on endothelium (Huang, Larbi et al. 2006). 
Neutrophils, however use mainly LFA-1/ICAM-1 interaction for the arrest, but Mac-1/
ICAM-1 interaction during lateral intraluminal crawling (Phillipson, Heit et al. 2006). 
The squeezing through endothelial junctions (paracellular diapedesis) is dependent 
on various adhesion molecules – β2 integrin associations with ICAM-1 and ICAM-2, 
homophilic interactions by JAM-A, CD99, and PECAM-1 expressed on both leukocytes 
and endothelium (Nourshargh, Krombach et al. 2006; Lou, Alcaide et al. 2007). 
Interestingly, during diapedesis VLA-4 is interacting with a secreted protein acidic 
and rich in cysteine (SPARC), whose KO impairs in vitro leukocyte transmigration 
and in vivo migration to inflamed peritoneum (Kelly, Allport et al. 2007). Leukocyte 
transmigration has been mainly studied with neutrophils and monocytes, but recently 
T lymphocytes were found to use Wnt/Fzd/β-catenin canonical signaling for induction 
of MMP expression needed for transmigration through EC and basement membrane in 
vitro and in vivo (Wu, Crampton et al. 2007). 

Of these different adhesion molecules, at least PECAM-1 (CD31) is regulating integrin 
function. The immune tyrosine inhibition motif (ITIM) bearing PECAM-1 upon 
oligomerization induces β1- and β2-mediated T cell adhesion and spreading to VCAM-
1 and ICAM-1 (Tanaka, Albelda et al. 1992). In a CHO expression model, antibody-
assisted oligomerization of PECAM-1 induces α5β1-mediated adhesion and spreading 
to fibronectin (Zhao, Newman 2001). Also PECAM-1 homophilic interaction on 
transmigrating neutrophils upregulates α6β1, which is important for invasion through 
perivascular basement membrane (Dangerfield, Larbi et al. 2002). Importantly, PECAM-1 
deficient platelets show impaired spreading on fibrinogen with a defect in clot retraction 
due to failure in outside-in αIIbβ3 signaling (Wee, Jackson 2005). These studies together 
with examples of CD99 regulating integrin adhesive properties (Hahn, Kim et al. 1997; 
Kasinrerk, Tokrasinwit et al. 2000; Bernard, Raimondi et al. 2000), it can be suggested that 
leukocyte integrins are critical during endothelial transmigration and basement membrane 
invasion, but they need to work together with different adhesion molecules.

2.3.4.4.	Integrin α4β1 (VLA-4) has unique properties
VLA-4-mediated rolling and adhesion to VCAM-1 is important for monocytic cell 
lineage and T-cell arrest on endothelial surfaces (Ley, Laudanna et al. 2007). VLA-4 is 
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also important in spreading and transmigration of leukocytes across the inflammation 
activated endothelium. Multiple myeloma cells utilize this integrin in trafficking to bone 
marrow stroma, and also melanoma cells in transmigration across endothelium (Sanz-
Rodriguez, Ruiz-Velasco et al. 1999; Sanz-Rodriguez, Hidalgo et al. 2001; Klemke, 
Weschenfelder et al. 2007). α4β1-integrins are unique as they have a subset of semi-
activated or extended state conformations that can spontaneously bind to VCAM-1 in the 
absence of selectin or chemokine activation, and this characteristic could be mediated 
by leukocyte Src-family kinase, Lck (Feigelson, Grabovsky et al. 2001). According to 
Chigaev and others, the extension or unbending accounts for increased ligand capture 
efficiency, and this population can be increased by chemokines (Chigaev, Waller et al. 
2007). The correct spatiotemporal regulation of VLA-4 affinity during transmigration 
is critical, as rendering the integrin constitutively active by arginine substitution with 
alanine in the conserved α4 GFFKR tail, immobilizes cells due to aberrant trailing tail 
detachment (Imai, Park et al. 2008). 

In addition to its unique heterogeneous affinity states in resting leukocytes, α4β1 is 
also differently regulated in its inside-out and outside-in signaling. Rap1 GTPase, which 
is known to positively regulate at least αIIbβ3, αLβ2 and other β1 integrins, is not 
playing a role in α4β1 activation in T-cells (Ghandour, Cullere et al. 2007). Similarly, as 
shown by the same authors, the Rap1 GEF, CalDAG-GEF1, whose nonfunctionality is 
the primary cause of type III leukocyte adhesion deficiency (LADIII), does not mediate 
VCAM-1 binding in T-cells. Another interesting feature of α4 integrin is that paxillin 
adaptor protein binds directly to its cytoplasmic tail and mediates important outside-in 
signaling by stabilizing linkage to actin and polarizing Rac GTPase to leading edge 
during leukocyte migration (Hyduk, Oh et al. 2004; Manevich, Grabovsky et al. 2007; 
Rose 2006). Mice bearing a mutation in α4 tail (Y991A) that disrupts paxillin binding 
have defective mononuclear leukocyte recruitment to sites of inflammation (Feral, Rose 
et al. 2006). Paxillin binding to non-phosphorylated Y991 of α4 tail is important for 
talin1 association and anchorage to actin during adhesion strengthening on VCAM-1 
under shear flow (Alon, Feigelson et al. 2005). However, during migration, paxillin is a 
negative regulator of Rac activation by recruiting an Arf-GAP protein that decreases the 
active Rac (Nishiya, Kiosses et al. 2005). Paxillin binds to high affinity ligand-bound non-
phosphorylated integrin at the sides and posterior of the cell enabling PKA-mediated α4 
tail phosphorylation at the leading edge during directed cell migration (Goldfinger, Han 
et al. 2003; Lim, Han et al. 2007). Thus, paxillin has a dual role in leukocyte trafficking – 
Firstly to mediate adhesion strengthening during arrest and secondly, to promote proper 
polarization for cell migration. It could be that Rac-assisted lamellae formation does 
not favor too stabile integrin bond formation, and this is probably why PKA activity 
dislocates paxillin from α4 tail. 
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The stabilization of integrin bonds is mediated by other GTPases – The Rho family 
GTPases. Inhibition of Rho GTPases by C3 transferase was shown by Laudanna and 
others (1996) to block formyl peptide or IL-8 induced adhesion of reconstituted B-cells 
to purified VCAM-1. Stimulation by agonists was also shown to increase the cellular 
levels of GTP-loaded RhoA. In a recent and elegant study of Pasvolsky, Grabovsky et 
al. (2008), RhoA was shown to be critical for LFA-1 extension prior to ligand binding. 
However, this was only restricted to CXCL-12 (SDF-1) induced activation, but not 
to induction with another CXCR4 ligand, CXCL-9, which surprisingly showed only 
outside-in LFA-1 activation independent of RhoA. Whether the same applies to VLA-4 
was however not studied. Also, it would be interesting to see whether the constitutive 
suppression of LFA-1 activation by RhoH is also amenable to VLA-4 function, as it 
has been shown that RhoH by inhibiting NFKB, Rac1, Cdc42, and RhoA signaling, 
suppresses LFA-1 activation in resting T-cells (Cherry, Li et al. 2004).

Table 2. Regulators of integrins in leukocyte arrest and migration. Negative regulators are 
with red color.
Gene Integrin Cells Function Reference
CBLB 
(CBL-B); 
YWHAB (14-
3-3b)

LFA-1 bone marrow-
derived  
mononuclear 
phagocytes 
(BMDMs)

Phagocytes deficient with CBL-B had increased 
adhesion to endothelium in vitro and peritoneal 
recruitment in vivo, which was dependent on 
LFA-1 activity upregulation. Cbl-b deficiency 
resulted in increased phosphorylation of T758 
beta2-tail of LFA-1 and enhanced association of 
14-3-3b protein with the beta2-chain.

(Choi, Orlova 
et al. 2008)

CCL21 LFA-1 Naive T cells, 
plt/plt mice 
lack CCL21 in 
peripheral lymph 
node HEVs

plt/plt mice (lack CCL21) have defect in T cell 
homing to PLN. plt/plt T cells roll but don’t arrest 
in HEVs. Intracutaneus CCL21 addition to plt mice 
rescued phenotype, which was LFA-1 dependent. 

(Stein, Rot et 
al. 2000)

CCL21; 
CCL25;  
CCL28; 
CXCL12

α4β7 Lymphocytes Immobilized chemokines induced arrest on co-
immobilized MAdCAM-1. Potential role for these 
chemokines in the arrest of lymphocytes on 
postcapillary venules in the gut.

(Miles, Liaskou 
et al. 2008)

CD44 VLA-4 Murine T cells CD44 associates with active VLA-4 through its 
tail. CD44-hyaluronan interaction promotes VLA-
4-VCAM-1 interaction and firm arrest in laminar 
flow in vitro assay. Activated lymph node T cells 
recruited to inflammatory peritoneal cavities, but 
CD44 w/o tail or CD44-/- cells did not.

(Nandi, Estess 
et al. 2004)

CD81; PRKCB 
(PKCb)

VLA-4, 
VLA-5

Primary murine B 
splenocytes from 
wt or CD81-/- mice 
and monocytes 
(U937), effect not 
seen in T cells

CD81 KO cells had decreased rapid sub-second 
adhesion strengthening to VCAM-1 or FN, but no 
change in sVCAM-binding or clustering. Outside-
in avidity enhancment. DAG-like phorbol ester 
PMA increased VLA-4 avidity (clustering), but not 
if CD81 was depleted or PKCb inhibited.

(Feigelson, 
Grabovsky et 
al. 2003) 

CD9; 
CD151

VLA-4, 
LFA-1

Peripheral blood 
lymphocytes 
(PBLs)

Knock-down of CD9/CD151 or addition of 
CD9-large extracellular loop (LEL)-glutathione 
S-transferase (GST) peptides prevented 
lymphocyte transendothelial migration and 
increased lymphocyte detachment under shear 
flow. Tetraspanins associate with adhesion 
molecules and regulate their function.

(Barreiro, 
Yanez-Mo et 
al. 2005)
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Gene Integrin Cells Function Reference
CSK MAC-1 Granulocytes CSK-deficient granulocytes showed 

hyperadhesiveness to serum, which was β2 
integrin dependent. Cells also bound more 
soluble fibrinogen, but also MAC-1 expression 
higher. CSK-/- cells had 5-fold higher HCK kinase 
activity, higher paxillin and SYK phosphorylation, 
implying stronger outside-in signaling.

(Thomas, 
Schmedt et al. 
2004)

CX3CL1 (FKN) VLA-4 T-cells, human 
intestinal 
microvascular 
endothelial cells 
(HIMECs)

TNFa, IFNG, or leukocyte adhesion increased 
FKN surface expression by HIMECs. IBD mucosa 
contained significantly more CX3CR1+ leukocytes 
than control mucosa. FKN increased adhesion to 
VCAM-1 and HIMEC transmigration. FKN activates 
β1 integrins measured by 12G10 mAb.

(Sans, Danese 
et al. 2007)

CXCL12 (SDF-
1a)

VLA-4 periferal blood 
lymphocytes 
(PBLs)

Immobilized CXCL12 induced firm adhesion to 
VCAM-1 in laminar flow chamber. LDV peptide-
based small molecule that preferentially binds 
high-affinity VLA-4 reduced PBL firm adhesion to 
VCAM-1 by 90% and increased rolling. VLA-4 high 
activity is induced.

(DiVietro, 
Brown et al. 
2007)

CXCL13 LFA-1,  
a4b7

B cells CXCL13 induces adhesion to ICAM-1 and 
MAdCAM-1 under static and flow conditions. 
CXCL13 null mice have decreased B cell 
adherence to HEVs of mesenteric lymph nodes 
and payer’s patches. Superfusion of CXCL13 
rescues adherence. CXCL13 activates Rap1GTP, 
and if Rap effector RAPL is depleted, partial 
failure in ICAM-1 adherence. 

(Kanemitsu, 
Ebisuno et al. 
2005)

CXCL9; CXCR3 LFA-1 Lymphocytes CXCL9 triggers robust Gi-mediated activation 
of LFA-1 adhesiveness to both low and medium 
densities of ICAM-1 under shear flow conditions, 
but not changes in LFA-1 conformation. RhoA 
23/40-independent outside-in activation, post-
ligand stabilization. PMA works similar manner, 
but independent of RhoA.

(Pasvolsky, 
Grabovsky et 
al. 2008)

DAP12 
(TYROBP); 
FcRg 
(FCER1G); 
SYK

LFA-1, 
Mac-1

Neutrophils and 
macrophages from 
wt or KO mice

Double KO (DAP12, FcRg) neutrophils have 
decreased adhesion and spreading on fibrinogen 
or poly-RGD, and defective degranulation and 
oxidative burst. Only partial migration defects 
agains chemokine gradient. Tyr phosphorylation 
of Vav, Pyk2, Erk, p38, SYK was impaired upon 
integrin ligation. The ITAM-binding SYK SH2-
domain is critical for integrin outside-in signaling.

(Mocsai, 
Abram et al. 
2006)

DOCK2 LFA-1, 
VLA-4

Pr. Splenocytes 
or T lymphocytes 
from WT mice or 
DOCK-/- mice

DOCK-/- cells had impared motility on purified 
ICAM-1 or VCAM-1 and on endothelial basal layer. 
No effect on affinity or adhesion strengthening.

(Shulman, 
Pasvolsky et al. 
2006)

DOCK2 LFA-1,  
VLA-4, 
a4b7

B cells DOCK-/- B cells had impaired static adhesion 
to ICAM-1, VCAM-1, and MADCAM-1. IVM 
demonstrated impaired adhesion to PLN and PP 
venules. T cells had no defects. DOCK2 important 
for T and B cell migration however.

(Nombela-
Arrieta, Lacalle 
et al. 2004)

DOCK2 ND Neutrophils fMLP and PMA induced Rac1 and Rac2 GTP-
loading, but 70% less if DOCK2-/- neutrophils 
used. C5a- or fMLP-induced chemotaxis was 
>95% inhibited in DOCK2-/- neutrophils. Also 
defects in superoxide production. Null cells 
migrate slower in 2D and have lower persistence. 
DOCK2 associates with PIP3 and stabilizes it to 
leading edge.

(Kunisaki, 
Nishikimi et al. 
2006)
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Gene Integrin Cells Function Reference
DRD2; DRD3 VLA-4,  

VLA-5
T cells from 
peripheral blood  
of healthy donors.

Dopamine or agonist -hydroxy-DPAT (DPAT) 
induced T cell adhesion to FN. Dopamine 
antagonist or VLA-4/5 mAb can inhibit this. 

(Levite, 
Chowers et al. 
2001)

EPAC 
(RapGEF)

VLA-4 or  
VLA-5 
and 
LFA-1

Endothelial 
progenitor cells  
(EPCs)

EPAC activator 8-pCPT-2’-O-Me-cAMP increased 
cell adhesion to HUVECs and FN. Also migration 
increased. Also increased polarization of ITGB1/
B2 and CD44 to front and back in suspension. β1 
affinity increased, when measured with HUTS21 
mAb FACS. EPC homing to ischemic limbs 
increased.

(Carmona, 
Chavakis et al. 
2008)

EPAC1 
(RapGEF3)

VLA-4 U937 monocytes 
and  
human periferal 
blood monocytes 
(PBMs)

8CPT-2Me-cAMP activated Rap1 and  
promoted cell adhesion to fibronectin and 
endothelial cells. Epac1 activation resulted in 
a rapid and significant increase of activated 
β1 on the cell surface followed by their down-
modulation (12G10 FACS). They also noted 
that serotonin activates Rap1, through cAMP 
dependent way.

(Lorenowicz, 
van Gils et al. 
2006)

Formyl 
peptide 
(FP, fMLP); 
C5a; 
PAF; CXCL12

VLA-4 Monocytes U937 
and human blood 
monocytes

Treatment of U937-FPR cells with either FP or 
SDF-1 resulted in sVCAM-1/Fc binding at 30 
s. Immobilized chemokines induced arrest on 
VCAM-1, and was blocked by soluble VCAM. FP 
or CXCL12 increased HUTS-21 mAb binding. CytD 
inhibited rolling and arrest, but not high affinity 
integrin.

(Chan, Hyduk 
et al. 2001)

GNAI2 (Gai2) LFA-1 Neutrophils CXCL1 or LTB4-induced arrest was decreased 
in GNAI2-/- cells in flow chamber coated with 
P-sel/ICAM-1/chemokine. Also in vivo cremaster 
muscle venule recruitment defect in GNAI2-/- 
mice. In peritonitits or lung inflammation model, 
GNAI2-/- hematopoietic cells had decreased 
recruitment.

(Zarbock, 
Deem et al. 
2007)

GNAS (Gαs); 
HRH2; ADRB2

Lymphoma U937, 
pr. monocytes

Decreased VLA-4 ligand binding (LDV-FITC) after 
Gαi stimulation and decreased aggregation. Gαs - 
cAMP is inhibitory.

(Chigaev, 
Waller et al. 
2008)

HCK, 
FGR, 
VAV1, RAC2, 
PAK

ND Neutrophils Chemotactic peptide formyl-methionyl-
leucyl-phenilalanine (fMLP) induced F-actin 
polymerization and cell migration through 1µm 
pores, but not if Hck/Fgr-/- neutrophils used. Also 
VAV1, PAK phosphorylation decreased in null 
cells with no effects on PI3K or PLC activities.

(Fumagalli, 
Zhang et al. 
2007)

HCK; 
FGR

LFA-1 Neutrophils Rapid arrest or adhesion of Hck/Fgr-/- neutrophils 
to co-immobilized ICAM1/P-Sel/chemokine 
was unaffected. Also, chemokine stimulation 
did not show integrin affinity defects in KO 
cells measured with soluble ICAM-1. However, 
neutrophil spreading defect on β2 substrates. 
Also, defect in in vivo arrest to inflamed muscle 
venules of >60 micrometer in diameter. Outside-
in signaling.

(Giagulli, 
Ottoboni et al. 
2006)

HCK; 
FGR; 
LYN

LFA-1 Polymorphonu-
clear leukocytes 
(neutrophils)

Src inhibitor PP2 or KO cells  
(lyn–/–hck–/–fgr–/–) had decreased adhesion, 
arrest, and transmigration on HUVECs due to 
impaired outside-in signaling or LFA-1. Src 
inhibition decreases sICAM-1 binding to cells, but 
IL-8 can overcome this, suggesting that Src is not 
involved in inside-out activation, but outside-in 
activation.

(Sarantos, 
Zhang et al. 
2008)
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Gene Integrin Cells Function Reference
HCK; 
SYK; 
C3; 
ELA

Mac-1 Neutrophils Thrombohemorrhagic vasculitis was induced 
by TNFa and LPS. Mac-1 binding to C3 activated 
HCK, SYK and elastase release leading to 
pathological thrombosis. Mac-1 null mice were 
normal.

(Hirahashi, 
Mekala et al. 
2006)

HRAS LFA-1 Jurkat T-cells Constitutively active HRAS (D12) inhibits CXCL12-
induced soluble ligand binding. CA or DN HRAS 
(D12/N17) abrogate LFA-1 avidity, not VLA-4.

(Weber, 
Ostermann et 
al. 2001)

IFNG (IFNγ); 
STAT1

ND Monocytes IFNG inhibited migration in chemotactic chamber 
assay in response to CCL2 gradient. This was 
dependent on STAT1. Inhibition correlated with 
decreased phosphorylation of PYK2, JNK, and PAK, 
as well as lower GTP-loading of CDC42 and RAC.

(Hu, Hu et al. 
2008)

IL-6 VLA-4 macrophages,  
primary 
monocytes

IL-6 increased adhesion to fibronectin, migration 
on fibronectin and HUVEC transmigration. 
Correlated well with increased β1 integrin 
activation measured with 9EG7 mAb FACS.

(Clahsen, 
Schaper 2008)

IL-6; IL-11; 
PTPN11 
(SHP2)

VLA-4 primary T-cells IL-6 increased transwell migration when coated 
with fibronectin. IL-6 increased β1 integrin 
activation measured with 9EG7 mAb FACS. IL-6 
independent of Gα, since PTX had no effect. IL-6 
induction was dependent on gp130-dependent 
activation of SHP2 (PTPN11), but not STAT 
activation.

(Weissenbach, 
Clahsen et al. 
2004)

IL-8, ERK1/2 
(MAPK3)

LFA-1, 
Mac-1

Neutrophils ICAM-1 expressed on endothelial L cell monolayer 
induced rolling and arrest under flow only upon 
IL-8 induction. ERK1/2 inhibitor decreased this 
efficiently. IL-8 effects dependent on Gαi.

(Simon, Hu et 
al. 2000)

LAD 
(SH2D2A, 
TSAd)

ND T cells CXCL12 induced T cell transwell migration that 
was inhibited by LAD knock-down. LAD interacts 
with Gβ upon agonist stimulation. Lad associated 
with the tyrosine kinases LCK and Zap-70 upon 
chemokine stimulation. Chemokine induced 
PYK2 and paxillin phosphorylation, which was 
absent in LAD knock-down cells.

(Park, Park et 
al. 2007)

LCK VLA-4,  
VLA-5

T-cells LCK-deficient cells show impaired adhesion to 
VCAM-1 and FN, and lower affinity for ligand 
as measured by high-affinity b1 recognizing 
antibodies, 15/7, HUTS4, HUTS21, 9EG7, but also 
VLA-4 binding LDV-peptide or soluble VCAM-Ig.

(Feigelson, 
Grabovsky et 
al. 2001)

LCK; 
CSK; CXCL12 

Human naive 
T-cells and NK 
cells, Jurkat cells

LCK-deficient cells show decreased chemotaxis 
upon CXCL12 induction. Rescued by expression 
of LCK, but not if CSK is cotransfected. CXCL12 
induced LCK phosphorylation. From inside-out 
activation to outside-in signaling.

(Inngjerdingen, 
Torgersen et 
al. 2002)

LTB4; LTB4R 
(BLT1)

LFA-1 Cytotoxic T 
effector  
CD8+ cells wt or 
LTB4R-/-

LTB4 superfusion to cremaster muscle venules 
increased T cell accumulation due to arrest and 
integrin activation. In acute peritonitis, LTB4R was 
required for efficient T cell recruitment. Also in 
IVM of cremaster muscle venules, T cell sticking 
was dependent on LTB4R expression.  Also in 
vitro chemotaxis was affected. 

(Goodarzi, 
Goodarzi et al. 
2003)

LYN LFA-1 primary CD34+  
stem/progenitor 
cells, and Mo7e, 
HL-60, and Nalm-6 
myeloid cell lines

Lyn knock-down (KD) decreased directed 2D 
chemotactic migration against CXCL12 gradient. 
KD increased attachment to stromal cells and to 
purified ICAM-1, not VCAM-1. Lyn kinase inhibits 
the affinity of LFA-1 to ICAM-1. Also fMLP induces 
LYN activity. 

(Nakata, 
Tomkowicz et 
al. 2006)
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Gene Integrin Cells Function Reference
MIF; 
CXCR2 (IL8RB)

VLA-4, 
LFA-1

Monocytes and 
lymphocytes

MIF mediates mononuclear cell arrest to 
endothelium through CXCR2, CD47, CXCR4 
and VLA-4. Increases chemotaxis. Stimulates 
also lymphocyte arrest on ICAM-1 by LFA-1 
conformational change, as measured with 
mAb 327C. CXCR2 genetic deletion decreased 
leukocyte recruitment to MIF-induced peritonitis. 
Also, high fat-diet apoe-/- mice had decreased 
atherosclerosis if MIF was blocked with 
antibodies.

(Bernhagen, 
Krohn et al. 
2007)

MYLK 
(MLCK1), 
PYK2 (PTK2B, 
FAK2)

LFA-1 Neutrophils Ex vivo LPS-induced lung injury model, where 
MYLK-null neutrophils had decreased recruitment. 
Adhesion and transmigration in vitro abolished 
on endothelial layer. In vivo transalveolar 
migration impaired. Impaired soluble ICAM-1-Fc 
ligand binding. C-SRC, PYK2 phosphorylation 
decreased 80/60%. MYLK interacts with PYK2 and 
phosphorylates it. MYLK null neutrophils migrate 
faster but not directly on 2D.

(Xu, Gao et al. 
2008)

PI3K; CXCL12; 
CCL19; CCL21

LFA-1 Lymphocytes Any one of these chemokines increased adhesion 
to ICAM-1 and HEV Payer’s patches. Adhesion 
was Gα and PI3K dependent when ICAM-1 at 
low densities. PI3K needed for clustering not 
affinity regulation as measured with soluble 
125I-ICAM-1.

(Constantin, 
Majeed et al. 
2000)

PIK3CD 
(PI3Kdelta, 
p110d)

VLA-4 periferal blood 
lymphocytes 
(PBLs) and THP-1 
cells

p110d inhibitor IC87114 was efficient in blocking 
adhesion and spreading on VCAM-1, but also in 
β1 integrin affinity upregulation. No effects on 
ICAM-1. RAC1 and CDC42 activity upregulation 
involved. (See SYK)

(Ferreira, 
Isaacs et al. 
2006)

PIK3CG 
(PI3Kg), 
p110-gamma; 
CXCL1; CXCR2 

LFA-1 Leukocytes PI3Kgamma null mice showed an 80% decrease 
in CXCL1-induced leukocyte adhesion in venules 
of the exteriorized mouse cremaster muscle. 
Defect in integrin bond stabilization. In vitro 
chamber flow adhesion to P-selectin/ICAM-1/
CXCL1 substrate was abrogated.

(Smith, Deem 
et al. 2006)

PIP5K1C 
(PIP5KC)

LFA-1 T lymphocytes PIP5KC is a downstream effector of both RHOA 
and RAC1 and is activated by phospatidic acid 
(PLD1 product). It binds directly talin1. Knock-
down decreased static and flow adhesion to ICAM-
1, showed a defect in the ability to bind soluble 
ICAM-1, and prevented binding of high-affinity 
LFA-1 reproter mAb327C. No effects on binding of 
LFA-1 extension reporter KIM127. Regulates the 
final conformational trasnsition of LFA-1. RHOA, 
RAC1 and PLD1 contribute to PIP2 levels. 

(Bolomini-
Vittori, 
Montresor et 
al. 2009)

PLC; 
CALM; 
FP; CXCL12; 
CCL5

VLA-4 U937 monocytes 
and human 
periferal blood 
monocytes (PBMs)

Inhibition of PLC or calmodulin, not PI3K or PKC, 
decreased VLA-4 affinity to ligand (LDV-FITC, 
sVCAM-1) upon chemokine induction. Also 
decrease in arrest to HAEC monolayer.

(Hyduk, Chan 
et al. 2007)

PLD1 LFA-1 T lymphocytes PLD1 is RHOA and RAC1 effector. Inhibition of 
RHOA or RAC1 consistently prevented PLD1 
activity triggering by CXCL12. N-butanol, the 
scavenger of PLD1 product phosphatidic acid, 
inhibited T lymphocyte static adhesion to ICAM-
1, tethering under flow, and extended or high-
affinity LFA-1. Tat-P1-PLD1 peptide, which blocks 
RHOA-PLD1 interaction, also inhibited adhesion 
and LFA-1 affinity upregulation.

(Bolomini-
Vittori, 
Montresor et 
al. 2009)
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Gene Integrin Cells Function Reference
PRKCZ 
(PKCzeta, 
PKCz); CCL21 

LFA-1 Lymphocytes PKCz regulates lateral mobility, not affinity by 
CCL21 stimulation. CCL21 induced a consistent 
and rapid increase of PKCz kinase activity. 
Important for adhesion to low density ICAM-1.

(Giagulli, 
Scarpini et al. 
2004)

PSGL1; SYK; 
TNFα; CXCL1/
CXCR2

LFA-1 Neutrophils Blocking LFA-1 not Mac-1 increased neutrophil 
rolling velocities on E-selectin/ICAM-1 surface. 
E-selectin is required for LFA-1 activity in the 
absence of chemokines. SYK is required for E-sel 
and P-sel integrin activation. Intermediate LFA-1 
is needed for slow rolling but high affinity LFA-1 
for arrest. SYK is needed for slow rolling, TNFa 
and CXCR2 for arrest.

(Zarbock, 
Lowell et al. 
2007)

PSGL1; SYK; 
FGR; DAP12 
(TYROBP); 
FcRγ

LFA-1 Neutrophils E-selectin–mediated phosphorylation of SYK 
and slow rolling was abolished in neutrophils 
from fgr–/– mice. Neutrophil recruitment into 
the inflamed peritoneal cavity was suppressed in 
DAP12–/– Fcrγ–/– mice.

(Zarbock, 
Abram et al. 
2008)

PXN (Paxillin) VLA-4 Jurkat T-cells, 
human PBLs

PXN KD decreased adhesion to low/medium not 
high concentration VCAM-1 under shear flow but 
not static. No affinity changes when measured with 
VCAM-Fc or 15/7 anti-LIBS. Outside-in signaling 
mediated by PXN increases shear resistance.

(Manevich, 
Grabovsky et 
al. 2007)

RAC1; CDC42 LFA-1 T lymphocytes Tat–Rac1-N17(DN) inhibited CXCL12-triggered 
static lymphocyte adhesion to ICAM-1 or lowered 
amounts of lymphocytes arresting to ICAM-1 under 
flow for <1s, <3s, <10s, suggesting a role for inside-
out and outside-in activation. Rac1 inhibition or 
siRNA knock-down prevented CXCL12-induced 
LFA-1 extended or high-affinity conformations 
(KIM127, 327C) in primary T lymphocytes. In 
contrast Tat–Cdc42-V12(CA) or Tat–Cdc42-L61(CA) 
decreased all these parameters.

(Bolomini-
Vittori, 
Montresor et 
al. 2009)

RAC1; WAVE2; 
RAP1;  RAPL; 
CCL25; CXCR9 

VLA-4 CD4+CD8+ and 
CD4+CD8– 
T-cells

Knock-down of any one of these genes decreased 
CCL25-CCR9-induced adhesion to FN or VCAM-1. 
RIAM KD had no effect. Thymocyte RAC1-WAVE2 
and RAP1-RAPL pathways for inside-out signaling 
and stimulated adhesion.

(Parmo-
Cabanas, 
Garcia-Bernal 
et al. 2007)

RAP1; 
CalDAG-GEF1; 
PLC; 
SPA-1 (SIPA1); 
RAP1GAP

LFA-1 Primary CD3+  
human T cells

CXCL12 or PMA induced Rap1 GTP-loading. PMA-
induced adhesion to ICAM-1, not VCAM-1 or FN, 
was decreased if SPA-1 or RAP1GAP expressed. 
SPA-1 decreased active conformation of LFA-1 as 
measured with KIM127 mAb. CalDAG-GEF1 KD 
decreased static and flow adhesion to ICAM-1. 
PLC inhibitor (U73122) or calcium chelator BAPTA 
decreased adhesion to both substrates.

(Ghandour, 
Cullere et al. 
2007)

RAP1; 
PLC; 
Ca2+ 

VLA-4 Eosinophils Inhibition of PLC (U73122) or Ca2+ depletion 
(ETGA) abolished cell adhesion to VCAM-1. Also 
decrease in attachment to HUVECs under flow by 
U73122, which was specific to VLA-4. Correlates 
with RAP1 activity.

(Ulfman, Kamp 
et al. 2008)

RAP1; SPA1 
(SIPA1); 
CCL21; CXCL4 
(PF4) 

LFA-1, 
VLA-4

Lymphocytes Chemokines increased adhesion to ICAM-1 and 
VCAM-1 and MBEC4- transmigration only under 
shear flow. RAP1 was activated within seconds 
and this was inhibited by RAP1 GAP, SPA1 
expression. Dominant active Rap1V12 induced 
adhesion, transmigration, and polarization of 
lymphocytes.  

(Shimonaka, 
Katagiri et al. 
2003)
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Gene Integrin Cells Function Reference
RAP1B VLA-4 B cells In vitro adhesion to VCAM-1 and chemotactic 

migration was impaired in RAP1B-null B cells. 
Also defect in B cell homing to lymph nodes. 
CXCL12-induced PYK2 phosphorylation 
decreased in RAP1B-/- cells.

(Chen, Yu et al. 
2008)

RAPL 
(RASSF5)

LFA-1,  
VLA-4

Lymphocytes, 
thymocytes,  
dendritic cells

Adhesion of RAPL-null T and B cells  
to ICAM-1 or VCAM-4 was reduced to 75-80% 
upon CCL21 or CXCL12 induction. Transmigration 
through endothelial cells also impaired. RAPL-
null T cells failed to become polarized and form 
LFA-1 patches by CCL21. Null mice have defective 
lymphocyte homing to lymphoid tissues. 
Impaired DC adhesion, migration, and traffic to 
lymph nodes. 

(Katagiri, 
Ohnishi et al. 
2004)

RASGRP1 
(CalDAG-
GEF1)

LFA-1 Neutrophils and 
primary T 
cells from LADIII 
patients

LADIII neutrophils or primary T cells defective in 
arrest on TNFa-stimulated endothelium. CXCL12-
induced in vitro arrest on immobilized ICAM-1 
and chemokines failed. Extension/high affinity 
LFA-1 failure. Also partial defects in VLA-4 arrest.

(Pasvolsky, 
Feigelson et al. 
2007)

RHOA, ROCK beta2 Monocytes C3 RHOA inhibitor inhibited monocyte transwell 
migration through HUVEC layer. No effects on 
adhesion or spreading. Tail retraction defect 
by C3 or RBD of Rhotekin on serum or HUVECs. 
Constitutively active ROCK rescued C3 inhibition. 
C3 mislocalizes beta2 to trailing tail.

(Worthylake, 
Lemoine et al. 
2001)

RHOA; CCL21; 
CCR7; CCR10 

LFA-1 Lymphocytes 23–40 and 92–119 P1-RHOA peptide mimetics 
prevented rapid adhesion to ICAM-1 induced 
by CCL21. RHOA important for LFA-1 inside-out 
activation and lateral mobility. RhoA inhibition in 
lymphocytes decreased arrest to PP-HEVs.

(Giagulli, 
Scarpini et al. 
2004)

RHOA; 
CXCL12; 
CXCR4 

LFA-1 Lymphocytes RHOA inhibitory peptide, P1–23/40, when 
treated with lymphocytes, decreased rapid 
and stable adhesion to PP-HEV in vivo. Rho-
23/40- interfering peptide (P1–23/40) eliminated 
all CXCL12-triggered LFA-1 adhesion in vitro. 
CXCL12 induces extended LFA-1.

(Pasvolsky, 
Grabovsky et 
al. 2008)

SELE; 
p38 

LFA-1, 
Mac-1

Neutrophils SELE and ICAM-1 expressed on endothelial L cell 
monolayer induced rolling and arrest under flow 
w/o chemokine. p38 inhibitor decreased this 
greatly. Independent of Gαi.

(Simon, Hu et 
al. 2000)

ST3GAL4; 
CXCL1, CXCL8 
(IL8), CXCR2 
(IL8RB), 

LFA-1 Neutrophils CXCL1 or CXCL8 injection to inflamed mirovessels 
in ST3GAL4-null mice had marked leukocyte 
adhesion deficiency. Also, decreased leukocyte 
arrest on P-selectin/ICAM-1/CXCL1-immobilized 
chamber or transendothelial migration in vitro. 
Also in vivo extravasation on TNFa-inflamed 
cremaster muscle venules inhibited. Sialylation 
critical for chemokine interaction with its 
receptor. 

(Frommhold, 
Ludwig et al. 
2008)

SYK LFA-1 Leukocytes SYK-/- mice had decreased leukocyte adhesion 
efficiency to cremaster muscle venules. When 
stimulated with fMLP, no difference in the 
early point, but superfusion  more that 5min 
decreased adhesion. Also spreading defect on 
venules. Neutrophils tested in vitro also. Outside-
in signaling.

(Frommhold, 
Mannigel et al. 
2007)
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Gene Integrin Cells Function Reference
SYK LFA-1 Neutrophil-like  

HL-60 cells and 
monocytic THP-1 
cells

Inhibition or KD of SYK resulted in massive 
lamellae formation, polarization defect 
and directional migration defect. Polarized 
localization of SYK was dependent on β2 integrin 
and fibrinogen.

(Schymeinsky, 
Then et al. 
2005)

SYK, VAV1/3 LFA-1 Neutrophils In inflamed cremaster muscle, SYK-/- neutrophils 
revealed a defect in adhesion and migration, 
with decreased extravasation to inflamed tissue. 
Mutation in VAV1/3 binding site (Y348F) caused 
excessive lamellae formation and migration 
defects.

(Schymeinsky, 
Sindrilaru et al. 
2006)

SYK; PIK3CD 
(PI3Kdelta)

ND PMNs SYK-/- neutrophils transfected with SYK Y323F, 
which cannot bind p110δ, showed impaired 
lamellae polarization and directed migration. 
Also Syk-/- neutrophils incabable of infiltrating 
to wound in mouse healing assay. p110d is 
downstream of SYK. 

(Schymeinsky, 
Then et al. 
2007)

TLN1 VLA-4 Jurkat T-cells, 
human PBLs

Knock-down decreased adhesion to all 
concentrations of VCAM-1. This correlated 
with VLA-4 affinity decrease measured with 
soluble VCAM-1/Fc-beads or 15/7 anti-LIBS. 
TLN1 is responsible for CXCL12 induced affinity 
upregulation, but is not involved in shear 
resistance (affinity maturation).

(Manevich, 
Grabovsky et 
al. 2007)

TLR2; 
CD14

MAC-1 Monocytes P. gingivalis fimbriae binding to macrophages 
leads to inside-out activation of MAC-1, but 
not if CD14 or TLR2 is knocked-out. CD14-TLR4 
axis is important for adhesion and endothelial 
transmigration, where Rac and PI3K downstream.

(Harokopakis, 
Albzreh et al. 
2006)

VAV1/3 MAC-1 Neutrophils VAV1/3 are phosphorylated in neutrophils 
adhering to complement fragment C3bi through 
αΜβ2. VAV1/3-null cells have decreased adhesion 
strength and spreading to C3bi. VAV1/3-null 
cells arrest in response to fMLP but exhibit 
significantly reduced sustained adhesion in 
vivo. Defects in AKT, PAK, PYK2, PXN, MLC 
phosphorylations, not SFKs, when plated on 
C3bi, but no changes if cells in suspension and 
CXCL12-induced. VAV1/3 is downstream of 
integrin activation.

(Gakidis, 
Cullere et al. 
2004)

2.3.5.	T-cell receptor signaling to integrins LFA-1 and VLA-4
A beautiful example of integrin regulation is the immunological synapse (IS) that is 
formed between antigen presenting cell (APC) and T cell. As IS matures, antigen-bound 
T cell receptor (TCR) is accumulated in the central region of the conjugate and integrins 
(LFA-1 and VLA-4) are accumulated at the periphery of the complex, thus forming 
the central and peripheral supramolecular activation clusters (cSMAC, pSMAC), 
respectively (Monks, Freiberg et al. 1998). Formation of mature IS requires integrin-
mediated adhesion together with cytoskeletal rearrangements (Wulfing, Davis 1998). 
TCR binding to antigen stimulates integrin adhesiveness (Dustin, Springer 1989) and 
together these receptors mediate important signals for T cell to activate transcription, 
proliferate, and differentiate (Van Seventer, Shimizu et al. 1990). The convergence 
between TCR and integrin signaling is at least at the level of transcriptional regulation, 
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as both stimulate MAPK signaling to activate transcription (Wang, Shibuya et al. 2008; 
Perez, Mitchell et al. 2003). However, the convergence is already at the level of receptor 
complex formation, as TCR and integrins share many of the same molecular constituents 
downstream of them. The adaptor complexes and effector proteins important for integrin 
activation downstream of TCR are also important for sustaining integrin adhesion and 
linking integrins to the cytoskeleton. Src family kinases, Syk (Zap-70), PLCγ, Vav1/3, as 
well as the adaptors SLP-76 and ADAP are needed for platelet integrin αIIbβ3 outside-
in signaling. Similarly, SLP-76 and ADAP are phosphorylated and activated by integrin 
ligation during IS formation in T cells (Nguyen, Sylvain et al. 2008; Suzuki, Yamasaki 
et al. 2007) and Vav1 is activated downstream of LFA-1 activation (Sanchez-Martin, 
Sanchez-Sanchez et al. 2004). 

Most of the integrin activation studies in IS formation focus on cell adhesion to purified 
integrin ligands or to APC, as well as integrin localization and clustering during conjugate 
formation showing that the effect is downstream of TCR, but disregard whether it is 
also downstream of integrin ligation (see Table 3). The discrimination between inside-
out and outside-in integrin signaling during IS formation is not so straightforward, 
though. If adhesion defect can be rescued by PMA, it only means that activation of 
PKC, which can be upstream or downstream of integrin, can rescue the defect. It is 
also misleading to say that the effect is upstream of integrin, if exogenous addition of 
integrin activating antibody or manganese can rescue adhesion or IS formation. The 
use of manganese and activating antibodies (ligand mimetics) in excess stabilize the 
active conformation and rule out the slightest possibility for integrin to be in inactive 
conformation and at the same time superactivate all the remaining integrins that are 
not affected from within. The above-mentioned assays are wrongly interpreted in too 
many studies. Integrin affinity to its ligand can be analyzed by measuring soluble ligand 
binding to cell surface. If for example TCR activation by mAb cross-linking (anti-CD3, 
anti-CD8) induces soluble ICAM-1 or VCAM-1 binding or integrin clustering, but fails 
to do so after knock-down of the studied gene, the gene regulates inside-out activation of 
integrin. Failure in sustained adhesion or spreading on integrin ligand, can be regarded 
as a defect in outside-in signaling. Additionally, antibodies mAbKIM127 and mAb327C 
detect extended or high affinity conformations of LFA-1, respectively, and can be used 
for verifying whether the effect is on affinity or clustering. A monovalent Fab should be 
used for affinity measurements as whole antibody induces clustering. Studies of integrin 
activation during IS formation are listed in Table 3 with short descriptions. Most of the 
proteins involved in IS formation are the same as discussed earlier in platelet activation 
and leukocyte arrest. Figure 8 puts together the proteins that have been considered as 
important integrin inside-out regulators downstream of TCR stimulation.
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Figure 8. TCR signaling to integrins in immunological synapse (IS). Stable conjugate 
formation between antigen presenting cell (APC) and T cell requires integrin-mediated 
adhesion and signaling, which is activated by TCR signaling within a supramolecular activation 
complex (SMAC). Co-stimulatory receptors recruit and activate Src kinases (Lck, Fyn), which 
phosphorylate ITAMs (I) in TCR. Phosphorylated ITAMs and Src kinases recruite and activate 
Zap-70 (Syk in platelets), which together with TEC kinase, Itk, phosphorylate proximal adaptors 
(LAT, SLP-76) and effectors (Vav1/3, PLCγ1), leading to actin polymerization and calcium/
DAG flux. Adaptor complex, ADAP - SKAP-55 - RIAM recruits activated GTP-loaded Rap1 
and integrin binding cytoskeletal protein Talin1 (Tln1) to activate integrins (LFA-1, VLA-4). 
PKCs, and especially PKCtheta, act upstream of Rap1 by activating Rap GEFs. Also Abl, which 
is recruited by WAVE2, is able to phosphorylate and activate a Rap GEF (C3G). Protein kinase 
D1 (PKD1), which is an effector kinase of PKCs and associates with C-terminal β1 integrin 
tail, is needed for the recruitment of activated Rap1 to IS. Another Rap1 effector, RAPL, and its 
interactor, MST1 (STK4), are involved in LFA-1 traffic and clustering to IS. Thus, Rap1 GTPase 
is the central player in integrin activation regulation in the formation of SMAC, and especially at 
the level of integrin recruitment and clustering (see Table 3 for references).
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Table 3. Regulators of TCR and BCR signaling to integrins.
Gene Study description Reference
ADAP; SKAP-
55

SKAP-55-/- T cells show defects in β1 and β2 integrin adhesion, LFA-1 clustering, 
production of the cytokines IL-2 and IFNg, and proliferation. SKAP-55 is the effector 
of ADAP-SKAP-55 complex. TCR/CD3 microcluster localization at the IS reduced in -/- 
cells. Subset of peripheral T cells has no defects.

 (Wang, Liu 
et al. 2007)

ADAP-
SKAP55-
RIAM-Rap1

SKAP55/RIAM complex is essential for TCR-mediated  
adhesion and for efficient conjugate formation between T cells and antigen-
presenting cells. RIAM is needed for Rap1 localization to IS and integrin activation.

(Menasche, 
Kliche et al. 
2007)

αPIX 
(ARHGEF6); 
PAK2

αPIX-/- T cells form impaired IS with B cells loaded with OVA II peptide. Pak 
phosphorylation down and LFA-1 clustering to IS weaker upon TCR-stimulation. 
However, no differences in Rac or Cdc42 GTP loading, but GIT1 expression is lower. 

(Missy, Hu et 
al. 2008)

CD2 CD2 physically interacts with both Lck and Fyn inside lipid rafts. CD2 can mediate the 
interaction between the two kinases and the consequent boost in kinase activity in 
lipid rafts.

(Nunes, 
Castro et al. 
2008)

CD2;  
CD28;  
CD3;  
CD7 

Antibody cross-linking increases soluble FN binding, HUTS-21 (active b1 recognizing 
ab) binding to Jurkat and peripheral T cells. Also adhesion to immobilized FN is 
increased.

(Woods, 
Cabanas et 
al. 2000)

CD2; 
CD3

CD2- or CD3-ligation leads to LFA-1-mediated increase in T cell  
adhesion. CD3-triggered adhesion is transient, whereas CD2 causes persistent 
stimulation. Both trigger PKC activation as does PMA.

(van Kooyk, 
van de 
Wiel-van 
Kemenade 
et al. 1989)

CD28;  
LCK; 
PKCtheta

Anti-CD3 triggers Lck-driven membrane localization of PKCtheta. CD28 needed for 
proper PKCtheta localization in the cSMAC and LFA-1 localization in the pSMAC for 
sustained T cell activation (>4hours). 

(Huang, Lo 
et al. 2002)

CTLA-4 Anti-CTLA-4 increases cell adhesion to immobilized ICAM-1 and is additive to anti-
CD3. Anti-CD3 increases LFA-1 clustering and anti-CTLA-4 is additive. Anti-CD3 fails 
to induce LFA-1 clustering and adhesion, when CTLA-4 depleted. CTLA-4 ligation 
activates Rap1 and is additive to CD3-ligation. Rap1-N17 can block CTLA-4 increased 
adhesion and Rap1-V12 can mimic CTLA-4 in its cooperation with anti-CD3.  

(Schneider, 
Valk et al. 
2005)

CTLA-4 Anti-CTLA-4 (CTLA-4 ligation) increases T cell motility on ICAM-1. CD3 ligation 
decreases cell motility or arrests cells on ICAM-1-coated plates. Coligation with CD3 
and CTLA-4 reverses the arrest or speed reduction. CTLA-4 positive CD4+ cells fail 
to stop upon peptide challenge in cervical lymph nodes followed by two photon 
microscopy. More transient contacts with APCs in vitro if CTLA-4 positive cells.

(Schneider, 
Downey et 
al. 2006)

DNAM1 
(CD226)

DNAM1 associates with LFA-1. Mutant (Y-F322) CD226 transferred into naive CD4+ 
helper T cells (Ths) inhibits interleukin (IL)-12-independent Th1 development 
initiated by CD3 and LFA-1 ligations. Proliferation induced by LFA-1 costimulatory 
signal is suppressed in mutant (Y-F322) CD226-transduced naive CD4+ and CD8+ T 
cells in the absence of IL-2.

(Shibuya, 
Shirakawa et 
al. 2003)

ITK/RLK ITK/RLK-deficient cells or Itk-deficient cells showed decreased adhesion to ICAM-2 
upon CD3 ligation, but PMA stimulus was intact. TCR-stimulated Tyr phosphorylation 
of Vav1 and ADAP, but not Pyk2, is intact in Tec kinase-deficient cells. LFA-1, Tln1, 
Vav1, PKCtheta, Pyk2, and actin fail to polarize in T cells towards anti-TCR beads. Vav1-
/- cells have same phenotype, suggesting that Tec kinases are needed for correct 
Vav1 localization and integrin clustering.

(Finkelstein, 
Shimizu et 
al. 2005)
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Gene Study description Reference
PKCtheta; 
RapGEF2 
(PDZGEF1); 
Rap1

Direct phosphorylation of RapGEF2 at Ser960 by PKCtheta regulates Rap1 activation 
and LFA-1 adhesiveness to ICAM-1. In OT-II TCR-transgenic CD4+ T cells, clustering of 
LFA-1 after Ag activation was impaired in the absence of PKCtheta.

(Letschka, 
Kollmann et 
al. 2008)

PKD1 
(PRKD1)

Expression of PKD1 lacking PH-domain blocks CD3- or PMA-stimulated adhesion of 
Jurkat cells to FN. CD3/PMA stimulation increases PKD1 or PH mutant localization to PM 
β1 integrins, but integrin clustering defective if PH mutant used. KD of PKD1 decreases 
adhesion to FN. PMA stimulates association of PKD1 and Rap1, and CA Rap1 associates 
constitutively. CD3/PMA induces Rap1 GTP loading but not if PKD1 PH-mutant expressed. 
Complex formation of Rap1-PKD1-ITGB1 upon stimulation. PH domain not needed for 
PKD1-ITGB1 association. Rap1 activation requires ITGB1 expression and its c-terminus.

(Medeiros, 
Dickey et al. 
2005)

PLCG1; 
CalDAG-GEF; 
RAP1

TCR cross-linking triggered persistent Rap1 activation, and SDF-1  
(CXCL12) activated Rap1 transiently. PLC inhibitor, U73122 abrogated Rap1 activation 
triggered by both the TCR and SDF-1 (CXCL12). PLCg1-deficient Jurkat T cells showed 
a marked reduction of TCR-triggered Rap1 activation and adhesion to intercellular 
adhesion molecule-1 (ICAM-1) mediated by LFA-1

(Katagiri, 
Shimonaka 
et al. 2004)

RAP1 Anti-CD3, phorbol-dibutyrate, or ionomycin activate Rap1A in T cells. V12Rap1A 
thymocytes from transgenic mice (CD2 promoter) have increased binding to FN 
(VLA-4), 130kD FN (VLA-5), and to ICAM-1 (LFA-1). MgCl2 and EGTA increase cell 
adhesion to ICAM-1 or binding of soluble ICAM-1, suggesting that V12Rap1A does 
not modulate affinity, but clustering (avidity), which is also shown by confocal.  

(Sebzda, 
Bracke et al. 
2002)

RAP1 IgG+ A20 B cell lymphoma or A20 B cells spread on immobilized anti-IgG or anti-LFA-1, but 
not to anti-CD40 or anti-FcgRII. 10-µM CytD or LatA almost totally blocked this and PP2 
about 70-80%. RapGAP2 expression or Rap1N17 blocked spreading on these antibodies. 
Plating cells on antibodies activates Rap1. Rap activation is critical for formation of LFA-1-
containing pSMACs and for LFA-1 to enhance Ag accumulation at the IS. Particulate BCR 
ligands induce the formation of F-Actin-rich cups via Rap activation. BCR signaling to ERK 
and AKT is compromised when Rap1GAPII expressed (Ig-bead adhesion stimulation).

(Lin, 
Freeman et 
al. 2008)

RAPL; MST1 
(STK4)

RAPL binds directly and activates MST1 kinase activity. MST1 can activate LFA-1 
adhesion, which requires the kinase activity and C-terminal regulatory region of 
MST1. KD impairs adhesion and LFA-1 polarization. KD also impairs IS formation and 
adhesion upon CCL21 or TCR ligation. No affinity changes.

(Katagiri, 
Imamura et 
al. 2006)

SKAP55 KD reduced LFA-1 clustering around CD3-TCR and reduced T cell-APC conjugation 
(50%) even with intact CD3-TCR capping. SKAP-55 needed for LFA-1 inside-out 
activation upon TCR stimulus. SKAP-HOM (SKAP-55R) can’t rescue the defect.

(Jo, Wang et 
al. 2005) 

SKAP55 SKAP-55 expression induces T cell adhesion to FN and ICAM-1 and increases LFA-1 
clustering at IS. Needs SH3-domain, which binds ADAP, for these effects. T cell - APC 
conjugation leads to SKAP-55 localization to lipid rafts.

(Wang, 
Moon et al. 
2003)

SLP76 - 
ADAP

ADAP binding to the SLP-76 SH2 domain is needed for  
TCR-induced integrin adhesion to FN or ICAM-1 and T cell–APC conjugation. PMA 
rescues the defect. ADAP binding to VASP has no role in conjugate formation.

(Wang, 
McCann et 
al. 2004)

SLP76 - 
GADS

SLP-76 peptide that binds Gads is used to inhibit interaction. Peptide inhibits partly 
Jurkat adhesion to FN and ICAM-1 upon TCR-stimulation (OKT3 ab) or PMA-stimulation 
and manganese restored the defect (not outside-in signaling). No effects on conjugate 
formation however. Maybe not as important as SLP-76 - ADAP - SKAP55 interaction.

(Jordan, 
Maltzman et 
al. 2007)
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Gene Study description Reference
SRC family; 
PI3K 
(p110δ); 
VAV1/2; 
RAC2; RAP1

LFA-1 pSMAC formation is needed for efficient antigen accumulation. Src-family 
kinases critical for BCR-induced IS-formation. Rac2-deficient B cells exhibit lower 
amounts of Rap1-GTP and severe actin polymerization defects. BCR stimulation leads 
to activation of Rac2 via Src family kinases, PI3K, Vav1/2. Rac2-/- cells have decreased 
binding to ICAM-1, cell adhesion to ICAM-1 bilayers, and deficiency in Ag clustering. 
CA Rac2 rescues mutant BCR B cell adhesion to ICAM-1.

(Arana, 
Vehlow et al. 
2008)

Src kinases; 
ADAP; 
SLP76; 
JNK

LFA-1 ligation induces actin cloud formation and requires ADAP, SLP-76, and JNK, but 
not ZAP-70 or TCR. Outside-in signaling of LFA-1 forms actin cloud at the center of T 
cell - APC interface, and this lowers the threshold for T cell activation. JNK is activated 
upon adhesion to anti-CD3 or anti-LFA-1 measured by phospho-Jun. JNK inhibitor 
also abrogates IS formation (CD3 clustering)

(Suzuki, 
Yamasaki et 
al. 2007)

TLN1 
(Talin1)

Decreased adhesion and spreading to ICAM-1-Fc in siRNA-treated cells upon CD3 
crosslinking or PMA. See that cells don’t adhere to ICAM-1 without any stimulation. 
Tln1 KD causes reduced LFA-1 affinity in ctrl and PMA-stimulated cells (measured by 
antibody), but no differences when affinity stimulated from outside by manganese. 
However, adhesion defect is not rescued by manganese, because also LFA-1 
clustering and polarization defect on anti-CD3 beads. Talin1 is required for T cell-APC 
conjugation (superantigen-bearing Daudi B cells).

(Simonson, 
Franco et al. 
2006)

VAV1 Whereas basal adhesion is same, anti-CD3 stimulation increases adhesion to FN, 
COL4, Lam, Vn, or ICAM-1, but not if Vav1-null cells used. PMA or Mg2+ rescued 
defect. Null cells have defective conjugation with APCs, because defect both in TCR 
and LFA-1 clustering. WASP-null cells have TCR cluster defect but not LFA-1 cluster 
defect. PYK2 not phosphorylated upon TCR- or LFA-1-stimulation in VAV1-null cells. 
Inside-out- and outside-in activation.

(Krawczyk, 
Oliveira-dos-
Santos et al. 
2002)

WAVE2; 
ABL1;  
CRKL;  
C3G;  
RAP1

TCR-stimulation (anti-CD3) increases T cell binding to FN and ICAM, but not if 
WAVE2 KD cells. Anti-CD3 increases Rap1 GTP-loading, not if WAVE2 depleted 
(Vinc. siRNA no effect). siRNA of Crkl or C3G (RapGEF) inhibit CD3-stimulated Rap1 
activity and adhesion to FN/ICAM-1. Crkl and C3G needed for β1 localization to IS 
upon superantigen (SEE)-pulsed Raji B cell encounter and β1 activation upon PMA 
or a-CD3. Abl1 regulates TCR-mediated activation of Rap1 and integrin affinity 
maturation, where WAVE2 is needed for Abl localization. No effects on Zap70 or 
PLCg1 phophorylation.

(Nolz, Nacusi 
et al. 2008)

WAVE2; 
ARP2/3;  
Vinculin 
(Vinc);  
Tln1

TCR-stimulation leads to WAVE2-Arp2/3-Vinc-Tln1 complex  
formation at the IS. KD of WAVE2 or Vinc inhibits activation-dependent induction of 
high-affinity integrin binding to VCAM-1.

(Nolz, 
Medeiros et 
al. 2007)

ZAP70;  
LAT

CD3/TCR-mediated increases in β1 integrin adhesion  
and activation of PI3K are abrogated in Zap-70-null Jurkat cells. Substitution Y315F 
of Zap-70 abrogates kinase activity, phosphorylation of LAT cytoplasmic tail and 
adhesion as well as PI3K induction. Also LAT-deficient Jurkat cells have decreased 
β1-mediated adhesion.

(Goda, 
Quale et al. 
2004)

2.3.6.	Summary of integrin activity regulation in platelets and leukocytes
As seen above, platelets and leukocytes share common regulatory pathways for integrin 
inside-out activation as well as outside-in signaling to cytoskeleton. Figure 9 puts the essential 
together and shows the schematics from inside-out activation to outside-in signaling. 
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Figure 9. Common pathways in integrin activity regulation and signaling in platelets and 
leukocytes.  A. Inside-out activation. The stimulus for integrin activation initiates from the exposed 
ECM proteins in endothelial walls for platelets. Selectin-mediated rolling and signaling as well as 
antigen encounter lead to leukocyte integrin activation. Different GPCR agonists sustain platelet 
integrin αIIbβ3 activity, whereas in leukocytes different chemokines are essential for early integrin 
inside-out activation during leukocyte arrest on endothelial wall. The essential players downstream of 
ECM receptors and T cell receptor (TCR) are the Src family kinases and Spleen tyrosine kinase (Syk) 
or Zap70 in leukocytes. Src family kinases either directly activate Syk/Zap70 or by phosphorylating 
tyrosines in ITAM-motifs, where Syk/Zap70 then bind and become activated. The integrin proximal 
adaptor complex SLP-76/ADAP/SKAP/RIAM is formed upon Syk/Zap70 and TEC kinase family 
(TEC, Btk, Itk, Rlk) mediated phosphorylation. This adaptor complex then recruits Rap1a/b GTPase 
and talin1/2, of which the former is known to regulate integrin clustering and the latter integrin affinity 
by directly binding to conserved NPXY motif in beta-tails of integrin heterodimers. Talin binding to 
beta-tail disturbs salt-bridge interaction between alpha and beta tails and leads to a conformational 
change in the extracellular part (red) by swing-out of the beta-integrin hybrid domain (boxed). Now, 
the extended integrin heterodimer can more readily bind to its ligand, and is thus activated from within 
the cell. Here the example is leukocyte integrin LFA-1, where ligand binds to the headpiece alpha 
I domain. αIIbβ3 does not contain alpha I domain, and the ligand binding is mediated by the beta-
propeller of the alpha-integrin and the I-like domain of beta-integrin B. Outside-in signaling. Ligand 
binding to integrin stabilizes integrin extended conformation with the headpiece I domains open. 
Integrins signal to cytoskeleton and to transcriptional regulation through various adaptor and effector 
proteins, of which only some are drawn here. The details of signaling to cytoskeleton and references 
can be found in the text. For integrin regulated transcriptional regulation, readers are suggested to read 
Giancotti, Ruoslahti (1999) and Aplin, Stewart et al. (2001). * Src = Src family kinases (Fyn, Lyn, 
Lck, Hck, Fgr). ** Subunits of PI3K. The integrin conformational change cartoon was modified from 
Alon and Ley (2008).
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2.4.	 Integrin regulation in cancer
Deregulation of integrin expression is often associated with cancer progression.  
Collagen-binding α2 integrin is heavily downregulated in breast and prostate 
adenocarcinoma, but again upregulated in metastasis of the latter (Zutter, Krigman 
et al. 1993; Bonkhoff, Stein et al. 1993). In addition, α2β1 heterodimer seems to be 
highly expressed in prostate cancer stem cells (Collins, Berry et al. 2005; Mimeault, 
Batra 2007). A truncated isoform of platelet integrin αIIb is absent in normal prostate 
tissue, but is found in prostate adenocarcinoma with increased expression in metastatic 
foci (Trikha, Cai et al. 1998; Trikha, Raso et al. 1998). Also β1 integrin is consistently 
upregulated in prostate cancer, (Goel, Li et al. 2008). The importance of β1 integrin 
has been studied with mouse models. Targeted β1 integrin deletion in mouse breast 
cancer model (MMTV/PyV MT) or in pancreatic cancer model (Rip1Tag2), results in 
significantly reduced primary tumour growth in both cancers, but also reduces metastasis 
of the latter (White, Kurpios et al. 2004; Kren et al., 2007).

Whereas the primary tumour invasion might occur even in the absence of integrin 
adhesion (Friedl, Wolf 2003), the arrest to endothelium and subsequent extravasation 
is dependent on this (Lammermann, Bader 2008). Humphries, Olden and others 
(1986) have shown that systemic injection of melanoma cells can result in pulmonary 
metastasis, but co-injection of integrin ligand-mimetic peptide, GRGDS, dramatically 
inhibits this. Thus, it is the extravasation step of metastasis, where integrin function and 
activity regulation could play important roles. This is evident for example in chronic 
myelogenous leukemia, where BCR-ABL1 fusion oncoprotein results in aberrant 
adhesive properties and impaired leukocyte traffic due to constitutive inside-out 
activation of the β2 integrin LFA-1 (Chen, Malik et al. 2008). Also, strong β1 integrin-
mediated cell adhesion to bone marrow stromal matrix proteins induced by BCR-ABL1, 
accounts for part of the malignant phenotype (Fierro, Taubenberger et al. 2008). In a 
xenograft model of leptomeningeal leukemia, an adherent subpopulation of a cell line 
with constitutively active β1, β2, and β3 integrins (L1210-A), when injected to blood 
stream, shows much higher metastatic potential and lower survival as compared to the 
parent cell line (L1210-S) (Brandsma, Reijneveld et al. 2002). Also human melanoma 
cell lines with high metastatic potential (MV3, BLM), but not those of low metastatic 
potential (IF6, 530), adhere and migrate on VLA-4 integrin ligand VCAM-1 without 
chemokine stimulation due to constitutively active VLA-4 (Klemke, Weschenfelder et 
al. 2007). These studies suggest that constitutively active or dysregulated integrins could 
be associated with certain cancer cell extravasation and apparently stronger cancer cell 
– endothelial cell interactions could contribute to this. However, it is also suggested that 
neutrophils and platelets could help circulating cancer cells to arrest on endothelium. 
For example, Liang and Dong (2008) have shown that association of melanoma cancer 
cells with polymorphonuclear neutrophils (PMNs) promotes transmigration through 
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endotehelium in high shear conditions, whereas direct integrin VLA-4 /VCAM-1 
interaction is sufficient in low shear conditions. Felding-Habermann, O’Toole and others 
(2001) showed that breast cancer cells with constitutively active αVβ3 from metastatic 
xenograft tumours adhere to collagen-activated platelets and become co-arrested in 
laminar flow conditions in vitro. They also showed that expression of constitutively 
active β3 (D723R) in β3-null breast cancer cells, but not that of β3 WT, leads to platelet 
interaction and high vitronectin haptotactic migration in vitro, as well as strongly increased 
pulmonary metastasis in vivo. Earlier, Filardo, Brooks et al. (1995) have demonstrated 
an important role for talin-binding NPLY-motif in β3-tail in melanoma cell migration in 
vitro and in pulmonary metastasis in chick embryo in vivo assay.

Upon ligand binding, integrin cytoplasmic tails form connection to actin cytoskeleton 
through adaptor proteins, such as talin, paxillin, and vinculin (Geiger, Bershadsky et 
al. 2001). These adaptors also recruit different kinases important for integrin outside-in 
signalling, such as focal adhesion kinase (FAK), Src family kinases (c-Src, Fyn, Lyn, 
Lck), Abelson tyrosine kinase (Abl), and spleen tyrosine kinase (Syk). The role of integrin 
outside-in signalling in platelets is to strengthen cell–cell adhesion through fibrinogen 
cross-linking for aggregate formation, and in leukocytes to strengthen post-arrest 
adhesion to endothelium before leukocyte extravasation. The molecular mechanisms 
and contribution of different focal adhesion proteins in platelet and leukocyte integrin 
activation are well characterized (Shattil, Newman 2004; Guo, Giancotti 2004; Cox, 
Natarajan et al. 2006; Alon, Ley 2008). However, in spite of the well acknowledged roles 
of FAK, Src family kinases, and Abl in cancer promotion, their role in the process of 
cancer cell extravasation has not been studied (Mitra, Schlaepfer 2006; Sirvent, Benistant 
and Roche 2008). It is very probable that the constitutive nature of integrin activity and 
adhesion is partly maintained in cancer cells by these crucial integrin regulators, whose 
aberrant function is then reflected to aberrant adhesive interactions with other cells and 
extracellular matrix.
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AIMS OF THE STUDY3.	

Cell migration is a complicated process involving simultaneus adhesion and deadhesion in 
different locations of a motile cell. As integrins are pivotal molecules mediating adhesion 
to extracellular proteins and other cells, the regulation of integrin function must also be 
important for cell motility. Cell migration requires fast changes in integrin locations and 
function, and cannot be regulated solely by transcriptional control of integrin expression. 
Recent findings in cell biology research demonstrate that cell surface receptors, including 
integrins and G-protein coupled receptors, are not internalized only for degradation, but 
also for recycling back to the plasma membrane. And it is this endocytic trafficking that 
could determine the polarization and localized activation of integrins in migrating cells. 
In spite of elegant studies on integrin recycling mechanisms, the endocytic routes and 
pathways are still very much unknown. The first aim of the studies was to identify 
important regulators of β1 integrin endocytosis during cell migration and secondly 
to broaden this to dividing cells as well.

Another level on integrin regulation lies in its conformation. Integrins are able to change 
their conformation and ligand-binding capacity in subsecond time-scale. Proteins from 
within the cells, by binding to cytoplasmic tails of integrins, can mediate conformational 
changes through transmembrane domain all the way to ligand-binding head domain, 
which then increases binding capacity (affinity) for the ligand. The third goal of the 
study was to identify proteins regulating β1 integrin conformational changes or 
stability of ligand binding in prostate cancer cells.
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MATERIALS AND METHODS4.	

DNA constructs
If constructed in-house, bold character.

pEGFP-Rab21 and pRluc-Rab21, and their variants (I, II); DsRedm-Rab21 (II); pEGFP-
Rab5A (I) (Gomez et al., 2003); pYGFP-Rab7 (I) (Wilcke et al., 2000); pEGFP-Rab9 (I) 
Barbero et al., 2002); pEGFP-Rab11 (I) Lebrand et al., 2002); pAWNEOα2 (I), (Ivaska et 
al., 1999); pEGFP-α2 and variants (I); pIRES2-α2-EGFP and variants (II); pGBKT7-α2 
and variants (I); pGADT7-Rab21 (95-222) (I); pSilencer Rab21-shRNA (I).

siRNAs
Rab21 siRNAs  (see different target sequences in I) (I, II)
Clathrin heavy chain siRNA (Predesigned SMART POOL from Dharmacon) (II)
FIP3 siRNA (Target: AAGGCAGTGAGGCGGAGCTGT)
Scramble siRNA (Qiagen AllStar, 1027281) (I, II, III)
Scramble siRNA (Ambion Silencer negative control) (I, III)
siRNAs in CSMA, see original publication III Materials and Methods

Cell lines
Cell line Species/origin Used in
MDA-MB-231 human breast carcinoma (I, II)
HT-1080 human fibrosarcoma (I)
Hela human cervical cancer (I)
Saos-2 human bone osteosarcoma (I)
Saos-2 with ITGA2 human bone osteosarcoma modified (I)
CHO hamster ovary (I, II)
HEK-293T human embryonic kidney (I, III)
PC3 human prostate cancer (I)
GD25b1 and variants murine fibroblasts (II)
MEFs murine embryonic fibroblasts (II)
VCaP human prostate cancer (III)
KFr13 and KF28 human ovarian cancer
NCI-H460 human lung cancer (II)

Antibodies
Target Description Used in
EEA1 rabbit pAb Santa Cruz (I)
Rab5A rabbit pAb Santa Cruz (I)
Rab7 rabbit pAb Santa Cruz (I)
Rab11 rabbit pAb Santa Cruz (I)
Caveolin-1 rabbit pAb Santa Cruz (I)
Rab21 rabbit pAb (Opdam et al., 2000) (I)
Rab21 rabbit pAb generated in (II) (II)
β1-integrin mouse mAb P5D2 hybridoma bank (I, II)
β1-integrin mouse mAb AIIB2 hybridoma bank (I)
β1-integrin mouse mAb Mab1997, Chemicon (I, II)
β1-integrin mouse mAb HUTS-21, Amersham (I)
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Target Description Used in
β1-integrin mouse mAb 12G10, Chemicon (I, III)
β1-integrin rat mAb 9EG7, Amersham (II, III)
β1-integrin mouse mAb Mab2252, Chemicon (I)
β1-integrin mouse mAb P4G11, hybridoma bank (I)
α5-integrin mouse mAb Mab1949, Chemicon (I, II)
α5-integrin mouse mAb BIIG2, hybridoma bank (I)
α2-integrin rabbit pAb AB1936, Chemicon (I, II)
α2-integrin mouse mAb MCA2025, Millipore (I, II)
α1-integrin rabbit pAb AB1934, Chamicon
α1-integrin mouse mAb Mab1973, Chamicon (I)
α6-integrin rabbit pAb MAB699, Chemicon (I)
β3-integrin mouse mAb M109-3MBL, MBL (II)
EGFR mouse mAb, 151-IgG, hybridoma bank (I)
Collagen I mouse mAb RAHC11, Imtek (I)
alpha-tubulin mouse mAb 6160-100, Abcam (II)
Biotin-HRP Cell Signaling Technologies (II)
Plk1 14209-50, Abcam (II)
clathrin ab21679, Abcam (II)
GFP rabbit pAB, InVitrogen (I)

Reagents and compounds
Reagent Application Used in
Phalloidin-488/561/647 Filamentous actin staining, InVitrogen (II, III)
DAPI Nuclei staining (I, II, III)
Lipofectamine 2000 Transfection, InVitrogen (I, II, III)
HiPerfect Transfection, Qiagen (II)
Fibronectin Cell dish coating (I, II)
Collagen Cell dish coating (I, II)
Laminin Cell dish coating (I, II)
Vitronectin Cell dish coating
Affi-Gel 10 pAb purification, Biorad (II)
WST-1 Cell proliferation, Roche (II)
NHS-SS-Biotin Cell surface protein labeling, Pierce (I, II)
GFP-RBD Detection of active Rho (II)
Coelenterazine Renilla luciferase substrate, Nanolight (I)

Methodology
Method Used in
Cell culture (I, II, III)
DNA cloning (I, II)
Yeast two-hybrid (II)
Cell array siRNA screening (III)
Immunoprecipitations and Western blotting (I, II)
Integrin internalization and recycling (I, II)
Immunoelectron microscopy (I)
Immunofluorescence microscopy (I, II, III)
Live-cell microscopy (I, II)
Adhesion and migration assays (I, II)
Matrigel invasion assays
RT-PCR (II, III)
Sucrose gradient fractionation (II)
Statistical analysis (I, II, III)



	 Results	 61

RESULTS5.	

5.1. 	 Rab21 regulates β1 integrin traffic

5.1.1. 	Rab21 associates with αβ1 integrins in α-tail dependent manner (I)
Many proteins are known to bind integrin beta-cytoplasmic tails, but only few to alpha-
tails. NMR studies however show that alpha and beta-tails associate weakly with each 
other, and integrin inside-out activation disrupts this interaction. This could mean that 
alpha-tails have also important function in integrin functional regulation. To study what 
proteins might bind to integrin alpha-tails, alpha2 integrin cytoplasmic tail was used as 
bait in yeast two-hybrid screening. 

Yeast two-hybrid screen of mouse embryonic cDNA library with α2-integrin cytoplasmic 
tail identified C-terminal Rab21 (residues 95-222) as a “hit” in several yeast clones. 
Further yeast rematings and biochemical immunoprecipitation assays identified α-integrin 
membrane proximal conserved motif GFFKR important for the association (I: Fig 1D, 
E). Several point mutations in the tail confirmed arginine (R) as critical amino acid in the 
motif for association. Immunoprecipitations were done in CHO cells expressing different 
cytoplasmic variants of α2 integrin. CHO cells don’t express endogenous α2 integrin 
and thus are suitable for ectopic expression of this integrin or its mutant variant. 

Immunoprecipitation studies included a novel assay for protein association by using 
a luciferase tag. Rab21 WT or mutants were expressed as fusion proteins with Renilla 
luciferase (Rluc) in different cell lines. Immunoprecipitations with anti-α2 or anti-β1 
integrin antibodies enriched Rab21 luciferase activity, whereas control precipitations did 
not (I: Fig 1b, C; Table S1). Best association was seen with a Rab21 mutant unable to 
dissociate GTP, whereas a GDP-locked Rab21 mutant or Rab21 prenylation mutant had 
lower association with β1 integrins (I: Fig 1B, C). This would imply that the association 
favors membrane localization (prenylation) and endosomal vesicles where Rab5 family 
effectors are working in a GTP-dependent manner (Zerial, McBride 2001). Rab21 
belongs to the Rab5 family, and the downstream effectors of Rab5 are well characterized 
(Christoforidis, Zerial 2000).  Endogenous Rab21 was also shown to associate with β1 
integrins in MDA-MB-231 cells (I: Fig 1F). 

5.1.2. Rab21 affects β1 integrin localization and intracellular traffic (Ι, ΙΙ)
The close relative to Rab21, Rab5 is required for early endosome fusion and motility of 
early endosomes on microtubules (Nielsen, Christoforidis et al. 2000; Nielsen, Severin 
et al. 1999). To study the localization of Rab21 and its effects on β1 integrin, Rab21 
was expressed as fusion with EGFP in MDA-MB-231 cells and β1 integrin was stained 
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with different antibodies. Confocal microscopy analysis revealed that Rab21 expression 
dramatically influenced β1 integrin localization in MDA-MB-231 cells (I: Fig 2A, B). 
In Rab21-expressed cells, active β1 integrin was enriched in intracellular vesicles. 
Expression of different mutant variants of Rab21 revealed that it’s GTP-locking resulted 
in strong intracellular accumulation of β1 integrins, whereas GDP-locked mutant or 
prenylation mutant resulted in focal adhesion localization of β1 integrins (I: Fig 2D, 
E, F, G, H, I). These results implied that Rab21 could possibly regulate integrin traffic 
between plasma membrane and endocytic vesicles. In addition, as the Rab21-positive 
vesicles contained both active β1 integrin and its ligand collagen I, the results could 
suggest that β1 integrins and collagen are co-endocytozed (I: Fig 2L).

Cell biotinylation in +4 oC is practical for labeling cell surface proteins, as endocytosis is 
non-existent in this temperature. Transferrin labeled cells on > +20 to 22 celcius allows 
endocytosis to occur. By using this method, Rab21 was found to associate only with the 
internalized population of β1 integrins (I: Fig 3A), suggesting that Rab21 is not involved 
in reqruitment of β1 integrins for endocytosis, or regulating integrin clustering or lateral 
mobility in the plasma membrane, which are often prerequisites for receptor endocytosis. 
However, Rab21 overexpression increased the early 10 minute internalization and 
subsequent recycling of β1 integrin, whereas Rab21GDP inhibited endocytosis and 
Rab21GTP increased intracellular accumulation of β1 integrins, confirming that Rab21 
does regulate β1 integrin endocytic traffic (I: 3B). Similarly, knocking-down Rab21 
expression by shRNA silencing resulted in reduced β1 integrin endocytosis (I: 3C). 
However, Rab21 expression did not affect transferrin receptor endocytosis; which is 
classical marker of clathrin-mediated endocytosis (I: Fig S2A) (Hirst, Robinson 1998). 

As Rab21 associates with β1 integrins through alpha-subunit tail GFFKR-dependently, a 
mutant version with point mutations was tested in CHO cell endocytosis. α2AA mutant 
integrin (GFFAA) when expressed in CHO cells was not internalized, whereas another 
mutant, a2ARA (GFFARA), which retains integrin association, was nicely endocytosed 
(II: Fig 4D, E).

β1 integrin cytoplasmic domain contains two NPXY motifs, which bind to clathrin 
adaptor proteins and are required for clathrin-mediated endocytosis of other cell surface 
receptors, such as transferrin receptor, IGF2R, and LRP1 (Ohno, Stewart et al. 1995; 
Owen, Evans 1998) To study in more detail the β1 integrin endocytosis, β1 integrin 
deficient fibroblasts expressing WT β1 integrin or mutant β1 integrin, where the two NPXY 
tyrosines were substituted with phenylalanines (β1 YYFF), were used. Expression of this 
mutant β1 integrin blocked its endocytosis and also resulted in β1 integrin accumulation 
into focal adhesions (II: 5A). A reduction of β1 integrin endocytosis was also seen in 
another cell line cloned from embryos carrying an YYFF mutation in germline (II: 5B). 
In addition, β1 integrin endocytosis was also reduced in GD25 WT cells upon inhibition 
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of clathrin coat formation with monodansyl cadaverine (MDC) (II Fig S5). This suggests 
that in these fibroblast cell lines, β1 integrin endocytosis occurs mostly through clathrin-
dependent mechanism. However, over-expression of Rab21 in clathrin-inhibited cells 
(YYFF and MDC) rescued the endocytosis defect, verifying that Rab21 can induce a 
non-clathrin endocytosis of β1 integrins.

What could be the mechanism by which Rab21 positively affects integrin endocytosis, 
if it does not associate with the plasma membrane β1? Easiest explanation would be 
that Rab21 is generally regulating some endocytosis pathway, which would be other 
than clathrin-mediated. Immunofluorescent stainings with different endosomal markers 
demonstrate that β1 integrins partly colocalize with early endosomal marker EEA1 (I: 
Fig 1 G), which is the convergence point for clathrin and caveolae-mediated pathways. 
β1 integrin was also accumulated in GFP-Rab5 or GFP-Rab21 positive vesicles with 
patches of caveolin lining the membrane. Immunogold labeling and electron microscopy 
revealed that some GFP-Rab21-positive large vesicles had a physical appearance of 
multivesicular bodies (MVBs) with Lamp1 co-localization (I: Fig S1, not shown). MVBs 
have been earlier demonstrated to associate with β1 integrin recycling (Ng, Shima et al., 
1999). The above results would suggest that Rab5 and Rab21 target β1 integrins via 
early endosomes through pathways dependent on caveolin endocytosis or caveosome 
maturation, and that at least Rab21 could target β1 integrins to MVBs, but this remains to 
be studied. A study of Hagiwara and others (2009) would support the caveolin-pathway, 
as they show that caveolin-1 directly interacts with Rab5 and stimulates its GTP-loading 
and cholera toxin B (ChTB) endocytosis.

Endogenous Rab21 was also seen associating with F-actin, and depolymerization of 
F-actin with cytochalasin impaired GFP-Rab21-positive vesicle motility at the cell 
periphery (not shown). This could mean that Rab21 affects integrin endocytosis by 
affecting the actin cytoskeleton, which is accumulated in integrin adhesion contacts. 
Rab5 is known to regulate the actin cytoskeleton dynamics in processes forming circular 
or peripheral ruffles by activation of PI3K and Rac GTPases (Lanzetti, Palamidessi 
et al. 2004; Palamidessi, Frittoli et al. 2008). These ruffles are transient (5 to 20 min) 
structures, and are implicated both in cell migration and macropinocytosis (Buccione, 
Orth et al. 2004). Whether Rab5 and Rab21 regulate β1 integrin endocytosis through 
pathways dependent on macropinocytosis would be of great interest to study.

5.1.3.	Rab21 influences cell adhesion and migration (I)
Several studies have shown a positive link between intracellular integrin traffic and cell 
spreading or migration (see Table 1 Litterature Review). As Rab21 regulates both the 
endocytosis and recycling of β1 integrins, it is very probable also that it positively affects 
cell adhesion turnover and migration. Indeed, Rab21 and Rab5 expression in PC-3 and 
Rab21 expression MDA-MB-231 cells increased cells adhering to collagen I during 
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30 min incubation (I: Fig 6A, B). Hovever, CHO cells with mutant α2AA integrins, 
were unable to increase their adhesion upon Rab21 expression (I: Fig 6E), suggesting 
that the effect of Rab21 on adhesion is dependent on the association and stimulation of 
integrin endo-exocytic traffic. Similarly, siRNA-mediated partial knock-down of Rab21 
in MDA-MB-231 cells decreased early cell adhesion to collagen (I: Fig6 D). 

Cell migration requires cell spreading at the leading edge and adhesion disassembly 
further back in the cell, and it has been suggested that during cell migration integrins 
would be endocytosed from the rear and transported through the cell to the leading edge 
(Bretscher 1989). Live-cell Rab21-vesicle tracking during active phase of cell spreading 
demonstrated that integrins could be trafficked at the leading edge (I: Fig 7A), rather than 
disassembling only at the cell rear. To study whether Rab21 is needed for cell motility on 
2 dimensional surfaces, mutant Rab21-expresssing or Rab21-deficient cells were used in 
scratch wound assays. Perturbation of Rab21 function by these means demonstrated that 
Rab21 is important for cell migration, but is not absolutely necessary (I: Fig 7B, C).

5.1.4.	Rab21 regulates β1 integrin traffic in cytokinesis (II)
There are clear similarities in the molecular requirments in cytokinesis and in cell 
adhesion/migration (Glotzer 2005; Ridley, Schwartz et al. 2003). It is also known that 
adherent cells often fail to undergo cytokinesis in suspension (Pugacheva, Roegiers et al. 
2006; Thullberg, Gad et al. 2007). These facts prompted us to look at possible function 
of Rab21 and β1 integrins in cell division. Perturbation of Rab21 normal function by 
expressing a GTP-locked Rab21 mutant lead to a cytokinesis failure and subsequent 
binucleation in NCI-H460 and GD25b1 cells (II: Fig 2A, B, C, S1A, B). Similarly, 
knocking-down Rab21 in NCI-H460 cells resulted in bi- or multinucleate cell formation 
(II: Fig 3A). During cytokinesis, Rab21-silenced cells had β1 integrin distributed all 
over the plasma membrane, whereas in control cells it was nicely accumulated to the 
cleavage furrow (II: Fig 3C), suggesting that β1 integrin traffic could be important 
during cytokinesis as well.

To look at the possible role of Rab21 association with αβ1 integrin in cytokinesis, CHO 
cell lines with wild type or mutant α2 integrins were used. α2 integrin mutant (α2AA), 
which is unable to associate with Rab21, caused a cytokinesis defect and binucleation in 
CHO expression model, wich nicely correlated with impaired α2β1 integrin endocytosis 
and absence of vesicular appearance in the cleavage furrow (II: Fig 4).

During the progression of cytokinesis, daughter cells separate by pulling themselves 
away from each other. Also Rab21 and β1 integrins traffic in a co-localized manner from 
the cleavage furrow to the opposing ends of newly forming daughter cells (II: Fig 3E). 
Antibody chasing experiments further verified that Rab21 silencing results in decreased 
β1 integrin traffic at the cleavage furrow during ingression (II: Fig 3F). However, 
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even more pronounced defect in traffic was seen during the stage when newly forming 
daughter cells should start to elongate away from each other (II: Fig 3F, lower panel). As 
perturbation of β1 integrin traffic leads to regression of cytokinesis during this late stage 
of plasma membrane ingression (II: Fig 2C, D), our studies suggest that β1 integrins are 
especially needed during the conversion where daughter cells start to elongate and pull 
each other apart.

As it was already shown, mutations in β1 integrin cytoplasmic tail two NPXY motifs 
(YYFF) blocks integrin internalization in GD25 cells and MEFs. Interestingly, when 
these cells were cultured on laminin (β1 specific), cells formed bi- and multinucleate 
phenotypes (II: Fig 5 C, D, 6A). To see whether these defects were associated with β1 
integrin traffic defect, Rab21 was expressed in GD25β1 (YYFF) cells and phenotypes 
were counted again to see whether Rab21 can rescue the defects. Indeed, Rab21 was 
able to rescue the normal mononucleate phenotype by rescuing β1 integrin endocytosis 
(II: 6A, B).

Cytokinesis failure often leads to tetraploidy and subsequent aneuploidy by aberrant 
chromosomal rearrangements in cell divisions, and thus may facilitate tumorigenesis 
(Fujiwara, Bandi et al. 2005). Analysis of CGH data in different cancer cells revealed a 
deletion of rab21 locus in one ovarian cancer cell line, KFr13, and in one prostate cancer 
sample (II: 7A, S6). These Rab21-deficient KFr13 cells showed multinucleate phenotype 
and later have been shown to be defective in β1 integrin endocytosis as well (II: Fig 7B, C, 
and not shown). This multinucleation was essentially due to a defect in Rab21 function, 
as re-expression of Rab21 in these cells rescued the normal mononucleate phenotype (II: 
Fig 7D). These results suggest that deregulated β1 integrin traffic due to non-functional 
Rab21 could be a driving force in tumorigenesis. Further studies should be addressed 
to look for possible somatic mutations in rab21 or other rab5-family genes in different 
cancer specimens and cell lines. Also changes in Rab5/21 regulator activities, such as in 
GEFs and GAPs in different cell lines, could be addressed. 

5.2.	 β1 integrin activity regulation in prostate cells

5.2.1.	Novel siRNA-based cell spot microarray screen (CSMA)
The fast development of RNAi tools is providing researchers with high-throughput 
screening possibilities to identify genes important in diseases such as cancer. The current 
silencing methods rely on microtiter-plate assays, where siRNAs are transferred to cells 
with so-called “reverse-transfection” protocol. Basically, cells are mixed with siRNA, 
liposome-based transfection reagent, and medium. Due to high reagent demand, the 
microtiter-plate set-up often requires mixing of different siRNAs into pools, from where 
“hit” wells are chosen for secondary screens with individual siRNAs per well. For the 
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assay read-out, most published genome-scale studies have relied on either simple bulk 
detection reagents (Martin, Jones et al. 2007) or model cell lines expressing reporter 
gene constructs (Lin, David et al. 2008). Only recent ground breaking genome-scale 
experiments from large screening consortia have managed to push applications towards 
more functional assay approaches including the use of wound healing assays as readout 
(Simpson, Selfors et al. 2008).

Cell microarray technologies have the great potential to miniaturize assay size and 
provide the means to multiply experiment repeats and thus yield statistical power. In 
2001, Ziauddin and Sabatini demonstrated the use of the first cell microarray, with cells 
growing as confluent carpet, and cDNA constructs transfected on pre-defined areas from 
top of the cells (Ziauddin, Sabatini. 2001). This system was later adapted for the use of 
synthetic siRNAs by Mousses, Caplen and others (2003). The pitfalls of this kind of 
assay set up are that cells are in direct contact with each other, creating the possibility of 
reagent or cell mixing between the neighboring transfection areas. Since these pioneering 
studies, cell microarray technology has not gained wider use in the scientific community, 
with exception of a few “proof-of-principle” studies about the feasibility of the system.

In this thesis, the final part of the work consists of a new cell microarray technology 
with an application of a screen for β1 integrin activity regulation. The system is 
based on siRNA transfection from pre-defined spots, where cells adhere and become 
transcriptionally silenced (see Figure 10). The spots consist of mix of Matrigel, liposome 
reagent, and siRNA, which all can be robotically spotted to pre-defined places on plastic 
plate. Cells adhere strongly to hardened Matrigel, “eat” the siRNA, and become silenced 
within few days. The advantage of this setup is that cells grow on separate spots and 
genes are silenced with no spot-to-spot mixing or reagent diffusion. The assay requires 
an optimized washing step after cell adherence to spots to minimize cells adhering to 
plastic between spots.
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Figure 10. Cell spot microarray protocol and assay setup for active β1 integrin screening. 
A. (1) Transfection reagent and siRNA are spotted with Matrigel-containing mixture to defined 
areas on assay plate. One spot contains one siRNA. (2) Cells are added on top of the spots with 
high confluency. (3) Cells adhere more rapidly to Matrigel spots, but loosely to plastic as well. 
(4) Assay plate is washed with medium to wash away unattached and loosely attached cells. Cells 
spread and grow on spots and take in liposome-complexed siRNAs from the spots. B. After two 
days of incubation, cells are fixed, permeabilized and stained with antibodies. Staining intensities 
are measured with confocal laser scanner (left). On the right are shown epifluorescent microscope 
images of individual spots. For analyzing β1 integrin activity, active ligand-bound β1 integrin 
(ITGB1) with two different conformation-specific antibodies were used. Both 12G10 and 9EG7 
are so called anti-CLIBS (cation- and ligand-influenced binding site) monoclonal antibodies that 
recognize only the ligand-bound active β1 integrin (Bazzoni, Ma et al. 1998). 12G10 and 9EG7 
stainings were normalized with anti-α2 integrin staining (Ab1936). Also filamentous actin was 
stained with phalloidin from the same assay plates (not shown). C. The strategy consisted of 
primary screen with one cell line, secondry screen with 100 chosen genes and 8 different cell 
lines, microscopic validations, and soluble ligand binding assay.

5.2.2.	Assay validation
To validate the method, GFP-expressing HEK293 cells were silenced on array spots 
containing different concentrations of siRNA against GFP. Optimized 835-µM 
concentration of siRNA in spots was sufficient to silence GFP in these cells during 
two days incubation (III: Fig 1C). The GFP knock-down efficiency as measured with 
laser scanner was about 75% with a p-value of 7x10-7 (n=150). The method was also 
validated with siRNAs against α2 and β1 integrins. Both knock-downs were analyzed 
with confocal microscopy directly from the immunostained spots. The results 
demonstrate that both integrins are nicely silenced (III: Fig 1D). As a control in these 
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experiments, siRNAs against PTK2 (FAK) were used. Its knock-down is known to 
result in accumulation of small immature focal adhesions, which was clearly visible in 
VCaP cell line as well. 

5.2.3.	Primary screen
VCaP cell line was used for studying the effects of 4850 different gene knock-downs. 
VCaP cell line is thought to be a good model for studying prostate cancer. It has been 
harvested from a vertebral metastatic lesion, and it contains many of the characteristics 
of clinical prostate carcinoma, including expression of PSA, PAP, and AR (Korenchuk, 
Lehr et al. 2001). It also bears the TMPPRSS2-ERG promoter fusion with androgen-
responsive promoter driving expression of an ETS transcription factor, ERG, which 
has been associated with cancer cell invasion (Tomlins, Rhodes et al. 2005; Tomlins, 
Laxman et al. 2008).

The results from primary screens were plotted according to staining intensities 
of active β1 integrin (III: Fig 2A).  The z-score plots demonstrate that a relatively 
small population of gene knock-downs showed statistically significant down- or 
upregulation of integrin activity (about 100 up and 100 down in both experiments). 
The primary screen VCaP results with 50 selected gene knock-downs resulting in β1 
integrin inactivation are shown in Table 4, and selected 50 genes increasing β1 integrin 
actitivy in Table 5.

5.2.4.	Secondary β1 integrin screen
A possible problem with siRNA screening is that one siRNA targeting to a specific gene 
has silencing effect against another gene (off-target effect). To overcome this problem, 
four new siRNAs were used for silencing again these selected 100 genes in VCaPs, but 
also in seven other prostate cell lines (III: Fig S1). In the secondary screens, stainings 
were done only with the other β1 integrin antibody, 12G10. However, experiments 
were done now twice with every cell line, yielding a total of 8 knock-downs per gene 
per cell line. In total this makes 64 knock-downs per gene. Comparison of the primary 
screen results with that of secondary screens demonstrated that about 85% of the knock-
downs showed same direction in integrin activity regulation (III: Fig 2C). However, 
more differences was seen when different cell lines were compared with each other (III: 
Fig 2D). This was of course anticipated, as these cell lines can be very different from 
each other. PC3 and ALVA31 are androgen insensitive, whereas VCaP, RWPE1, MDA-
PCA2B, and 22RV1 are androgen sensitive cell lines. The heat map clusters cell lines 
and genes according to the color pattern, implying that PC3 and ALVA31 would have 
much more similar responses to knock-downs compared to PC3 and VCaP for example. 
The replicate experiment with each cell line, however demonstrated that the assay is 
very repetitive and accurate, as heat-map clusters all the same cell line experiments 
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next to each other (III: Fig S2). The secondary screen heat-maps also show that gene 
knock-downs clustering to either extreme up or down in the figure, show same direction 
of integrin regulation in the cell lines. Whether these “master regulators” are specific 
to prostate cells or are also similar in other cell types as well, will be of future study 
interest. 
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5.2.5. 	Hit validation with soluble ligand binding and confocal microscopy
In addition to the use of conformation-specific antibodies, integrin ligand-binding 
capacity and activity can be probed with soluble ligand binding (see Table 2 in Litterature 
review). The antibodies we have used, 12G10 and 9EG7, are anti-CLIBS antibodies, 
which mean that these antibodies are able to bind to β1 integrin only when a stabilizing 
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cation (Mg2+) and a ligand are already bound to the integrin (Bazzoni, Ma et al. 1998). 
Thus, anti-CLIBS binding tells mostly about integrin-ligand stability in a given situation, 
which is largely dependent on intracellular connection to the actin cytoskeleton and 
its stabilizing adaptor proteins, such as talin, FAK, and paxillin, for example. Soluble 
ligand binding, on the contrary, could tell about three different things that are difficult 
to distinguish from each other. Firstly, soluble ligand binding capacity could reflect the 
pre-existing conformation of integrins, where rapid ligand binding would mean that 
cells have integrin conformation equilibrium more towards the extended or primed 
version. It could also mean that integrin conformational change form the inactive bent to 
primed extended conformation upon ligand binding is fast. Thirdly, directly after ligand 
binding, intracellular adaptor proteins and cytoskeleton must be reorganized in order to 
strengthen and sustain the ligand binding (affinity maturation). This might involve also 
integrin clustering, which is also largely dependent on actin cytoskeleton dynamics. To 
see whether different knock-downs could also affect β1 integrin ligand binding capacity, 
α5β1 integrin ligand binding (fibronectin-Alexa555) was studied with VCaP adherent 
cells in microtiter-well assay format. Labeled fibronectin was incubated with cells for 
30 minutes in 37 oC, allowing also outside-in signaling to occur. When these results 
were compared to those of the 12G10 stainings in secondary screen array, a very high 
correlation was marked (III: Fig 3A). The mechanisms, by which ligand binding is higher 
or lower in different experiments, will be interesting to follow up in the future. Rapid cell 
adhesion to immobilized ligands with time-scale of seconds or even sub-seconds could 
give insights into the affinity regulation. This type of adhesion could be measured for 
example with atomic force microscopy.

People usually believe what they see. This is why numerical values from laser scannings 
were also made visible to eye by using confocal fluorescence microscopy. Spinning disc 
confocal system was used for imaging several different spots from screening plates. 
Confocal microscopy gives high resolution three-dimensional images, but also enables 
pixel intensity measurements from the images. Images taken from VCaP cell line 
showed remarkable changes in β1 integrin activity upon gene knock-downs (III: Fig 4). 
The images also demonstrated that ligand-bound active β1 integrin was often found in 
addition to its normal basal localization, in cell-cell contacts and sometimes clustered 
in strong patches (siGRM6 and MAST2). VCaP cells grow on top of each other and β1 
integrin can be seen often enriched in between these cells. However, when β1 integrin 
activity is very low due to knock-down of certain gene, cells are unable to grow so 
much on top of each other. This could mean that VCaPs are producing extracellular 
matrix proteins themselves and adhere or cluster to each other through integrins and 
ECM cross-linking. 

From secondary screens, three “master regulator” genes were chosen for confocal studies 
in different cell lines (III: Fig 5). Of these genes, COL9A1 and CD9 knock-downs 
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inactivated integrin, except that in ALVA31 cell line COL9A1 siRNA had a slightly 
activating function, as was also seen in the heat-map (III: Fig 2D). For these gene knock-
downs, also invasion assays were carried out in ALVA31 cells. ALVA31 was chosen for 
its relatively high invasive capacity in previous assays (personal communication with 
Ville Härmä). The matrigel invasion assays showed that CD9 knock-down almost totally 
blocked ALVA31 cell invasion, whereas MASTL and COL9A1 increased it (III: Fig 5F). 
Further studies showed that MASTL knock-down resulted in collective growth to the 
matrigel rather than invasion. In addition, the high “hills” generated upon knock-down 
were hollow inside, suggesting some sort of lumen formation, which is characteristic to 
luminal prostate tissue. More studies on invasion will be required to see how β1 integrin 
activity regulation correlates with invasive or lumen formation capacity of prostate 
cells. 
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DISCUSSION6.	

6.1.	 Rab21 and β1 integrin traffic
The results in the thesis suggest that Rab21 is important for β1 integrin endocytic traffic. 
Perturbation of this traffic has consequences on cell adhesion, migration, and cytokinesis. 
The exact pathway of β1 integrin internalisation remains still to be solved. Our initial 
studies suggest however that Rab21 drives β1 integrin endocytosis to a non-clathrin-
dependent pathway, and that caveolae or caveosomes could be associated instead. The 
presence of GFP-Rab21 in multivesicular bodies (MVBs) and examples of previous studies 
(Ng, Shima et al. 1999) suggest that β1 integrins could also be targeted there. MVBs are 
normally linked to transmembrane protein degradation upon monoubiquitination. However, 
a recycling role for this compartment has been suggested at least for MHC class-II proteins 
and some lipid raft-associated proteins (de Gassart, Géminard et al. 2004).  Figure 11 
depicts the schematics of Rab21-mediated β1 integrin traffic. 

Figure 11. Rab21 controls β1 integrin traffic during cell spreading and migration. Rab21 
targets β1 integrins to early endosomes and caveolin-positive vesicles. This requires exchange 
of GDP to GTP in Rab21. Rab21 is also present in multivesicular bodies (MVBs), where β1 
integrins are also known to localize. The molecular architecture of different endocytic vesicles is 
constantly changing thus making it difficult to define exact locations of integrins. However, Rab21 
stimulates also β1 integrin recycling back to the plasma membrane. This endo- and exocytic 
traffic seems to be essentially important in the leading edge of migrating or spreading cells. 
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Rab21 is a Rab5-family GTPase, and Rab5A function has been linked to migration 
and cell-motility activation. Palmidessi, Frittoli and others (2008) showed that Rab5-
dependent general endocytosis is needed for Rac1 activation in early endosomes by a Rac 
GEF, Tiam1, upon growth factor stimulation. They also showed that Rab5 expression-
induced Rac recycling between plasma membrane and endocytic vesicles enhace actin 
dynamics, membrane ruffling, as well as cell motility in 2D. Finally, Rab5 expression 
was also shown to increase β1 integrin-positive protrusive structures and cell invasion in 
3D Matrigel and collagen, as well as modulate cell morphology plasticity. Rab5 and its 
guanine nucleotide exchange factor, Rin1, are also known to regulate receptor tyrosine 
kinase (RTK) internalization by a mechanism where growth factor-activated Ras binding 
to Rin1 activates its GEF-activity to Rab5 (Barbieri, Kong et al. 2003; Tall, Barbieri et al. 
2001). In a very elegant study, Jékely, Sung and others (2005) showed how Drosophila 
Rin1/2/3 homolog, Sprint, by inducing RTK endocytosis in correct place, controls the 
polarization of RTK signaling to actively internalizing pool and thus is important for 
polarized oocyte border cell migration in vivo. Also an E3 ubiquitin kinase, Cbl, and 
its binding to intracellular tyrosine-phosphorylated RTK tail together with Sprint, was 
required for efficient RTK endocytosis and polarized signaling from these structures. 
These above studies raise an important question; whether cell polarity guidance cues, 
such as those of RTK activating growth factors, could induce Rab5-mediated localized 
RTK endocytosis and signaling together with integrin endo/exocytosis. In other words, 
is localized RTK activation inducing also localized integrin endocytic traffic in polarized 
fashion for polarized cell motility? Similarily this question could also be extended to 
other guidance cues, cytokines and chemokines, as their receptor internalization and 
subsequent resensitization can also be regulated by Rab5 family GTPases (Seachrist 
J and Ferguson S 2003). It is also known that angiotensin receptor, AT1AR (AGTR1), 
upon agonist-binding, can activate Rab5-GTP loading and receptor endocytosis involving 
direct binding of Rab5 to the receptor (Seachrist et al. JBC 277 2002). 

Given the important well-established roles of integrin-RTK cross-talk in Ras-signaling, 
cell proliferation, and anchorage-independent growth, as well as GPCR signaling in 
integrin activity regulation, it would not be surprising to find coupling of endocytosis 
between these molecules as well. Indeed, α2β1 integrin endocytosis is stimulated upon 
EGF addition or expression of constitutively active EGFR in ovarian cancer cells (Ning, 
Buranda et al. 2006). Also, in cutaneous squamous cell carcinoma (SCC), inhibition of 
EGFR by inhibitors or siRNA-mediated knock-down of EGFR, both reduce caveolin-
mediated internalization of β1 integrin, whereas activation by EGF results in increase in 
its endocytosis (Mukoyama, Utani et al. 2007). A study from White, Caswell and Norman 
(2007) suggest that αvβ3 integrin recycling from endocytic vesicles back to plasma 
membrane is stimulated by growth factors and requires Rab4 and phosphorylation and 
kinase activity of protein kinase D1 (PKD1). They also show that this fast short-loop 
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recycling is important for persistent cell migration in scratch wound assays, whereas the 
Rab11-dependent long-loop α5β1 integrin recycling supports more random migration 
involving ROCK – phospho-cofilin signaling. Furthermore, co-regulated recycling of 
EGFR and α5β1 integrin from endocytic compartments to plasma membrane plays an 
important role in A2780 ovarian cancer cell invasion to fibronectin-containing Matrigel 
(Caswell, Chan et al. 2008). Here, a Rab11 effector protein, FIP1 (Rab-coupling protein, 
RCP) was found to be important in bridging α5β1 integrin and EGFR1 association for 
polarized recycling into protrusive F-actin structures in invasive cells. Interestingly, 
stimulation of α5β1 and EGFR1 recycling by inhibition of αvβ3 integrin function also 
increased the autophosphorylation of EGFR1 by EGF. These studies do suggest an 
important mechanistic link between integrin endocytic traffic and RTK phosphorylation 
and signaling. 

Do these integrin traffic regulators have any clinical significance in cancer? The Rab 
coupling protein (RCP) is found in an amplicon (8p11-12) in breast cancer, and a Rab11-
family member, Rab25 (Rab11C), is associated in metastatic breast and ovarian cancer 
and amplified in about half of these cancers (Cheng, Lahad et al. 2004; Wang, Goswami 
et al. 2004). Figure 12 shows Affymetrix analysis of Rab25 expression in 64 different 
cell lines and validates that Rab25 can be overexpressed in breast and ovarian cancer, 
but also in prostate cancer. Furthermore, hypoxic conditions, which are characteristic 
of many solid tumours, stimulate Rab11-dependent α6β4 integrin recycling and 
invasive migration by mechanisms that involves AKT-GSK3β driven stabilization of 
microtubules (Yoon, Shin et al. 2005). Also Rab5A can be overexpressed in metastatic 
human lung adenocarcinoma, whereas we have found deletion of rab21-locus in ovarian 
cancer cell line and in clinical prostate cancer specimen (Yu, Hui-Chen et al. 1999; 
II: 7A, S6), suggesting that enhanced integrin traffic could support metastasis, whereas 
its deregulation could promote carcinogenesis by other means, such as by cell division 
defect, which is discussed next. 

In addition to focusing on integrin traffic in cell migration, this thesis work also addressed 
the question of whether integrin traffic plays a role in cell division as well.  The conclusions 
were following: 1) β1 Integrin endocytic traffic regulated by Rab21 association with 
integrin alpha cytoplasmic tail, is important for adherent cell cytokinesis. 2) β1 integrin 
traffic is enriched in the furrow region during cytokinesis, which probably promotes 
proper actin constriction during ingression by mechanism that involves integrin-mediated 
adhesion in midzone region. 3) Perturbation of β1 integrin traffic also impairs later step 
integrin vesicle movement away from the furrow towards opposing poles, resulting in 
nascent daughter cell elongation defect. 4) Finally, these defects lead to regression of 
daughter cell separation and formation of bi- or multinucleated cell of nascent daughter 
cells or cell detachment and apoptosis. Figure 13 shows schematics of β1 integrin traffic 
during cytokinesis. The results of this work imply that deregulation of normal β1 integrin 
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Figure 12. Affymetrix expression analysis of Rab25, RCP, and Rab21 in 64 different cell 
lines. High expression of Rab25 can be seen in breast (red) and ovarian cancer cells (orange), but 
also in some prostatic cells as well (green). RCP seems to be well expressed in almost all the cell 
lines except in glioma cell lines. Lower Rab21 expression can be readily seen in KFr13 ovarian 
cell lines (bold), which have a heterozygous deletion in the rab21-locus, whereas breast cancer 
cell line, ZR751 has a heterozygous amplification of rab21 (not shown).
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traffic might have consequences on carcinogenesis as well. Especially, the formation 
of multiploidy and subsequent aneuploidy as a result of erraneus cytokinesis could be 
a driving force for genome instability, a hallmark of cancer (Ganem, Storchova et al. 
2007).

Figure 13. Model for β1 integrin traffic in cytokinesis. A. Normal cytokinesis. β1 integrins 
localize to plasma membrane and endocytic vesicles (green). During furrow ingression (5 min), 
β1 integrins move in dynamic fashion at the equatorial midzone concentrating more to the 
basal site of the cell. As cytokinesis proceeds, actin-myosin-based constriction bundles spindle 
microtubules allowing the midbody structure to form (black). Now, β1 integrins start to move 
and polarize more to the direction of doughter cell elongation, again at the basal site of the 
cells. As the endocytic traffic of integrins is needed for the formation of new adhesion sites 
during cell spreading or migration, it is conceivable that inhibition of the traffic would impair 
this phase of cytokinesis. B. Inhibition of β1 integrin traffic impairs cytokinesis. Knock-down of 
Rab21, inhibits the endocytic motility of β1 integrins at the cleavage furrow, but also decreases 
the amount of endocytozed integrin vesicles (5 min). During progression of cytokinesis, doughter 
cells are unable to elongate and separate from each other, leading to furrow regression and 
formation of binucleated cell. Many cells also detach from the substratum during this stage and 
undergo apoptosis.

What are the mechanisms by which perturbation of Rab21 lead to cytokinesis defect? 
As Rab21 knock-down impairs also the proper formation of midbody structure, it could 
have an additional role during the acto-myosin constriction. We have not seen defects in 
spindle microtubule assembly and its molecular constitutents, suggesting that something 
goes wrong with the actin machinery. Indeed, we see inhibition of Rho activity during 
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telophase upon Rab21 silencing (II: Fig 3D). This must however be partial, as furrowing 
should not initiate at all in the absence of Rho activity. The mechanism of how Rab21 
silencing stops telophase before final midbody formation is still difficult to decipher. 
It is also possible that the defects resulting from Rab21 silencing during the furrow 
ingression are independent of β1 integrin function. The same family GTPase, Rab5 (Rab5 
family), is known to activate Rac GTPase in early endosomes, which is important for 
actin dynamics (Palamidessi, Frittoli et al. 2008). Regulated actin dynamics is essential 
for furrow constriction during cytokinesis as well. To answer these questions, we should 
use the α2 or α5-integrin construct with a GFFKR-mutation, where Rab21 is unable to 
associate, and then follow integrin traffic in these cells.

The results demonstrate that Rab21-mediated β1 integrin traffic is necessary for successful 
cytokinesis, at least in adherent cells. This raises a question, whether abrogation or 
deregulation of normal integrin traffic could result in tetraploidy, subsequent aneuploidy, 
and carcinogenesis. Accordingly, CGH-analysis of gene copy number revealed rab21-
deletions in ovarian and prostate cancer specimens suggesting that this could hold true. 
Further unpublished studies in our lab has shown that perturbation of β1 integrin traffic 
in MEFs with repeated selection for survivors, created aneuploidy and highly invasive 
transformed phenotypes with major changes in gene expression profiles. Similar 
observations have been done recently by Rancati, Pavelka and others (2008), where 
they created adaptive evolution with yeast by perturbing cytokinesis and selecting for 
survivors. Here they showed that tetraploidy preceded aneuploidy and the survivors had 
specific gene expression changes. They also suggested that cancer drugs inhibiting cell 
division/cytokinesis could lead to undesired selection for aneuploid phenotypes with 
drug resistance. Thus, inhibition of cell division machinery as cancer targeting therapy 
could promote rather than suppress cancer progression in certain cases.  

6.2. 	 β1 integrin activity regulation in prostate cancer

6.2.1. 	Conserved hits in VCaP prostate cancer cell line
Important integrin regulators in platelets and leukocytes showed up as hits in VCaP 
screen. Due to the screening setup, which is 2 days silencing during sustained matrigel 
adhesion; the hits probably reflect more outside-in signaling of β1 integrins. However, 
as it can be seen from the literature review, integrin inside-out and outside-in regulators 
overlap significantly. The best characterized integrin regulators, Src family kinases and 
spleen tyrosine kinase Syk, do appear as strong hits in the screen (see table 6). Syk 
can be activated by Src family kinases, but also by immunoreceptor tyrosine activation 
motifs (ITAMs), which are present for example in CD3 subunits of TCR. As the T cell 
receptor co-stimulatory CD8B and the TCR subunits CD3D, CD3Z score high in the 
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list, it is tempting to speculate that ITAM-based signaling would also be stimulatory for 
prostate cancer integrins. Table 6 shows the results of genes that are well characterized 
regulators for platelet and leukocyte integrins, and Figure 14 depicts the platform for β1 
integrin activity regulation in VCaPs. 

Table 6. Well characterized integrin regulators show up in VCaPs. Shown are the z-scores of 
antibody intensities with two siRNAs per target. Each value represents the median of two siRNA 
knock-downs per target. Hck, Fyn, and Lck are Src family kinases. Genes with bold character 
were chosen for secondary screens and were validated in VCaP cell line and were tested in other 
prostate cell lines as well.

GENE NAME 12G10 9EG7 Phalloidin 1 Phalloidin 2

CD8B CD8b molecule -2.436 -2.347 -2.173 -1.788

CD3D CD3d molecule, delta -1.871 -0.930 -1.366 -0.668

CD3Z CD3z molecule, zeta -0.456 -0.853 -0.770 -0.579

HCK hemopoietic cell kinase -1.031 -1.333 -1.100 -1.175

FYN FYN oncogene related to SRC -1.125 -1.045 -0.905 -1.077

LCK lymphocyte-specific protein tyrosine kinase -1.264 -1.094 -1.383 -0.901

SYK spleen tyrosine kinase -1.275 -0.639 -1.206 -1.218

TEC tec protein tyrosine kinase -1.916 -1.360 -1.633 -1.038

NCK1 NCK adaptor protein 1 -1.687 -0.690 -0.999 -0.749

PIK3CG PI3K, catalytic, gamma, p110g -2.007 -1.023 -2.789 -0.738

PIK3R4 PI3K, regulatory, p150 -1.934 -1.818 -1.266 -1.241

AKT3 v-akt murine thymoma viral oncogene 3 -1.267 -1.740 -1.398 -1.628

ABL1 c-abl oncogene 1, receptor tyrosine kinase -4.299 0.348 -4.926 -1.178

PLCG1 phospholipase c, gamma 1 -1.030 -0.704 -0.541 -0.653

PAK3 p21 protein (Cdc42/Rac)-activated kinase 3 -1.665 -1.148 -1.243 -0.688
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Figure 14. The platform for positive integrin activity regulation in VCaP prostate cancer 
cell line. Src family kinases Hck, Fyn, Lck phosphorylate Syk and ITAM-receptors, as well as 
proximal integrin adaptors. Downstream of Syk are PLC-gamma and TEC-kinase, the former 
important in calcium and DAG release, and the latter in NCK phosphorylation. Adaptors, such as 
NCK, enable the recruitment of various effector proteins (ABL1) important in integrin activity 
regulation and in actin cytoskeleton modulation (Bubeck Wardenburg et al., 1998). In addition to 
generation of calcium and DAG via PLC-beta, GPCRs signal to integrins through PI3-kinases, 
and especially through the isoform p110-gamma (PIK3CG). Calcium and DAG activate PKCs, 
which are important for Rap1/2 GTPase activation. Rap1/2 is needed for activation of integrins 
by recruiting the final integrin activator, Talin (Tln). Probably due to redundancy, the screen 
did not show up PKCs, talin, or Rap GTPases in the screen. Talin has two isoforms (TLN1 and 
TLN2) and it’s known that integrin inactivation in certain cell lines requires the depletion of 
both isoforms (Zhang, Jiang et al. 2008). Integrin signaling is known to stimulate MAP-kinase 
activation and result in gene transcription modulation. The model suggested here also relates to 
platelet and leukocyte function, as upon activation, both are known to secrete various chemokines 
and small molecules to attract other platelets and leukocytes. In platelets, the secretion of alpha- 
and dense granules, which is mostly calcium-, PKC-, or MAPK-dependent, contributes to the so 
called “second wave integrin activation”, where GPCRs mediate stimulatory signals to integrins 
to sustain adhesion, aggregation, and thrombus formation. I suggest that a similar mechanism 
could function in VCaPs as well.     

6.2.2. 	GPCR signaling to β1 integrins in prostate cancer
Many gene hits in the screen are involved in GPCR signaling (Table 7). The signaling 
pathways initiating from GPCRs activate integrins and has been studied intensively in 
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leykocytes and platelets. GPCR functions in leukocytes to attract cells, arrest them by 
integrin activation, and promote chemotactic migration and extravasation to tissue. In 
platelets, GPCRs are activated in the second wave of integrin activation by thrombin, 
ADP, thomboxane, and different hormones to sustain adhesion and aggregation. The same 
activation pathways could be seen in cancer to promote invasive chemotactic migration 
from primary tissue towards endothelium, arrest cancer cells to endothelium in a distant 
site, transmigrate through endothelium and basement membrane to peripheral tissue, and 
finally induce aggregation and anchorage-independent growth. In one patient, different 
subpopulations of transformed cells could mediate different actions during metastasis 
progression and this certainly also reflects to the nature of different cancer cell lines in 
our study. For example, VCaPs are non-motile and are more likely to function as platelets, 
whereas PC-3 cells migrate and invade a bit more like lymphocytes do. The types of GPCRs 
and their ligands expressed in cells could have a role in this. Figure 15 shows some GPCR 
hits in VCaPs and possible downstream pathways for integrin activation. 

Table 7. Examples of GPCRs and ligands from VCaP primary integrin screen. Shown are 
the z-scores of antibody intensities with two siRNAs per target. Each value represents the median 
of the two siRNA knock-downs. Grey-colored genes are ones that have already been published 
to affect integrin activity (Tables 2 and 3), and genes with bold-character were validated in our 
secondary screens. Note that CCL19 and CCL21 are ligands for CCR10 and CXCL12 is a ligand 
for CXCR4. The cholinergic nicotinic receptors form heterocomplexes with each other, which 
could mean that knocking-down any one gene of the complex, would give the effect.  

GENE NAME 12G10 9EG7 Phalloidin 1 Phalloidin 2
ADORA1 adenosine A1 receptor -1.079 -1.213 -1.030 -1.195

BAI2 brain-specific angiogenesis inhibitor 2 -1.413 -1.476 -1.381 -1.164
BDKRB1 bradykinin receptor B1 -1.563 -1.691 -1.062 -1.390

CCL19 chemokine ligand 19 -0.606 -1.501 -0.440 -1.749
CCL21 chemokine ligand 21 -0.046 -1.658 0.121 -1.868
CCR10 chemokine receptor 10 -1.486 -0.391 -1.110 -0.366
CHRM3 cholinergic receptor, muscarinic 3 -0.817 -1.371 -1.165 -1.460

CHRNA2 cholinergic receptor, nicotinic, alpha 2 -1.191 -1.198 -1.152 -1.064
CHRNB2 cholinergic receptor, nicotinic, beta 2 -0.877 -1.107 -1.260 -1.314
CHRNB4 cholinergic receptor, nicotinic, beta 4 -1.045 -0.933 -1.271 -0.999
CXCL12 chemokine ligand 12 (SDF-1a) -0.716 -0.933 -0.930 -1.606
CXCR4 chemokine receptor 4 -1.533 -0.938 -1.547 -1.038
DRD1 dopamine receptor D1 -1.568 -1.083 -0.826 -1.188
DRD3 dopamine receptor D3 -1.335 -0.943 -1.251 -1.003
EDG5 sphingosine-1-phosphate receptor 2 -1.883 -0.581 -1.297 -0.873
EDG7 lysophosphatidic acid receptor 3 -1.158 -1.531 -1.132 -1.365

EDNRA endothelin receptor type A -1.923 -0.739 -1.588 -1.163
EDNRB endothelin receptor type B -1.524 -0.885 -1.051 -1.306
FPR1 formyl peptide receptor 1 -0.856 -1.614 -0.762 -2.371
FZD5 frizzled homolog 5 -2.031 -0.541 -1.368 -0.385

GPR109B G protein-coupled receptor 109B -1.123 -1.522 -1.393 -1.919
GPR143 G protein-coupled receptor 143 -1.266 -1.414 -1.169 -1.044
GPR75 G protein-coupled receptor 75 -1.863 -1.689 -1.414 -1.547
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GPR83 G protein-coupled receptor 83 -1.635 -1.009 -0.901 -0.651
GRIA2 glutamate receptor, ionotropic, AMPA 2 -1.576 -0.765 -1.393 -0.590
HRH2 histamine receptor H2 -0.699 -1.533 -0.790 -1.404
LTB4R  leukotriene B4 receptor -1.013 -1.527 -0.517 -1.464
OPN3 opsin 3 -1.665 -2.290 -1.525 -1.781

OR1A2 olfactory receptor, 1A2 -1.343 -1.295 -1.646 -1.198
OR2M4 olfactory receptor, 2M4 -0.929 -1.418 -0.666 -0.878
OR2W1 olfactory receptor, 2W1 -1.188 -1.968 -0.574 -1.845
OR7C2 olfactory receptor, 7C2 -2.034 -0.441 -1.482 -0.927
OR8B8 olfactory receptor, 8B8 -1.563 -0.885 -1.430 -1.169
OR8G2 olfactory receptor, 8G2 -1.792 -0.615 -1.109 -0.586
P2RY14 purinergic receptor P2Y, 14 -1.078 -0.769 -1.439 -0.870
P2RY2 purinergic receptor P2Y, G-protein coupled, 2 -1.195 -0.360 -0.762 -0.428
P2RY5 purinergic receptor P2Y, G-protein coupled, 5 -1.177 -1.456 -1.140 -1.519
TACR2 tachykinin receptor 2 -1.770 -0.962 -0.920 -0.827
TACR3 tachykinin receptor 3 -1.652 -0.720 -1.370 -0.654
TSHR thyroid-stimulating hormone receptor -1.512 -1.576 -1.299 -1.509

 
Figure 15. GPCR signaling to β1 integrins in VCaPs. The genes with green color are positive 
regulators of β1 integrin activity, as their knock-downs caused inactivation of the integrin in 
the screens. Red colored genes showed opposite effect in the screens. Chemokines, hormones, 
neuropeptides, lipids, and different small molecules bind to GPCRs and activate downstream 
signaling via G-proteins, Gα and Gβ/γ. The pathways downstream involve PLCβ, PI3-kinase 
subunits p110β/γ, Rho GTPases, MAP-kinase JNK, and Rap1/2 GTPases.
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The classical leukocyte integrin activation is initiated by different chemokines, such as 
CXCL12 (SDF-1a), CCL19 (SLC), and formyl peptides. Knock-down of chemokines or 
their cognate receptors decreases β1 activity in VCaPs as well. Knock-down of the critical 
GPCR effectors, the PI3K subtype p110γ (PIK3CG), also results in inactivation of β1 
integrin (zmed= -1.51). The other main pathway is the Galphaq-coupled PLCβ activation 
that is needed for calcium and DAG second messenger production and subsequent 
activation of Rap1/2. PLCβ did not appear in the VCaP hit list, but its homologues 
PLCD1 (zmed= -1.11) and PLCL3 (12G10 med= -0.93) did. Interesting PLC isoform is 
PLCε, which binds to Gβγ, is activated by Rap1/2 and RhoA, but also works as a Rap1 
GEF to activate Rap1 upon stimulation with lysophosphatic acid (LPA), sphingosine-
1-phosphate (S1P) or thrombin (Citro, Malik et al. 2007). LPA may also stimulate a 
RhoGEF, FLJ00018 to activate Rac1 GTPase (Ueda, Nagae et al. 2008). In PC3 prostate 
cancer cell line, LPA stimulates matrigel invasion through activation of RhoA and NF-
kappaB activity (Hwang, Hodge et al. 2006). Another known GPCR to activate Rac is the 
phosphatidyl serine receptor BAI1 (Brain-specific angiogenesis inhibitor-1), which acts 
at least through ELMO/DOCK Rac-GEF-complex (Park, Tosello-Trampont et al. 2007). 
Endothelin receptor A (EDNRA) induces JNK activation and cell migration through the 
adaptor protein NCK1, but is also mediating invasive phenotype via integrin-linked kinase 
(ILK), which could link endothelin recptors directly to integrin signaling (Miyamoto, 
Yamauchi et al. 2004; Rosano, Spinella et al. 2006). The purinergic recptors P2RYs that 
bind to adenosine or uridinine nucleotides, activate the classical PI3K (p110γ) and PLC 
pathways, but also increase calcium influx by activating purinergic calcium channels, 
such as P2RXL1 (zmed= -1.03), or transient-receptor potential calcium channels (TRPs) 
(Tolhurst, Vial et al. 2005). 

It is very surprising to find such many olfactory receptors (ORs) in the integrin activity 
screen. ORs couple to GalphaL, which is an olfactory bulb-specific G-protein. Its knock-
down also shows some response in VCaPs (zmed= -0.54). Interestingly, Regnauld and 
coworkers have shown the expression of olfactory specific GalphaL (Gaolf) in epithelial 
cancer cell lines, including a prostate cancer cell line LnCaP (Regnauld, Nguyen et al. 
2002). They showed that GalphaL was important in cellular invasion in transformed cells, 
but it also induced neuroendocrine differentiation of LnCaPs. ORs activate adenylate/
guanylate cyclase-dependent (AC/GC) cyclic-nucleotide-gated channels (CNGs), of 
which the isoform CNGA2 (zmed= -0.68) is olfactory-specific (Kaupp, Seifert 2002). 
CNGs form heterotetrameric complexes, such that CNGA2 associates with CNGB1 
(zmed= -1.10). Given the large repertoire of olfactory receptors in the screen hits and 
also their downstream players, olfactory receptors, whatever their ligands might be, 
could be interesting drug targets in prostate cancer. OR inhibition might cause severe 
defects in wine tasting sensibility, though. 
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Potassium channels have been recently identified as novel regulators of cell adhesion and 
migration. For example, α9β1 integrin can activate potassium inward rectifier channel 
Kir4.2/KCNJ15 (zmed= -1.39), whose knock-down decreases cell migration persistence 
and causes irregular lamellae formation (deHart, Jin et al. 2008). Another family 
channel, the delayed rectifier Kv2.1/KCNB1 potassium channel, interacts with FAK and 
enhances its phosphorylation at Y397 or Y576/577 upon fibronectin-integrin ligation 
and knock-down of this channel leads to impaired directional cell migration (Wei, Wei 
et al. 2008). Many GPCRs form complexes with G protein-gated inwardly rectifying 
K+ (GIRK) channels (Kir3s) and either activate or inhibit their function (Lei, Jones et 
al. 2003). The dopamine and acetylcholine receptors function in adhesion and migration 
modulation could be a result of GIRK channel regulation (Levite, Chowers et al. 2001; 
Varker, Williams 2002). Levite and coworkers have shown that exogenous addition of 
potassium to T-cells activates β1 integrin, even in the absence of chemokines (Levite, 
Cahalon et al. 2000). They also showed that the activation of β1 integrin with exogenous 
potassium or CCL4 (MIP-1b) can be blocked with inhibitors of Kv.3.1 channel/KCNA3 
(zmed= -0.73), suggesting that influx of potassium is important for β1 integrin activation 
in T-cells. Potapova and others have recently shown that stimulation of angiotensin 
receptor I (AGTR1), by binding to Rap1GEF, leads to activation of Rap1, and that this is 
greatly boosted by co-expression of Kv.3.4 potassium channel KCND3 (zmed= -1.42), 
which also associates with AGTR1 (Potapova, Cohen et al. 2007). Accordingly, AGTR1 
stimulation leads to inside-out activation of β1 integrin in cardiac fibroblasts (Stawowy, 
Margeta et al. 2005). Given the above facts, it is not surprising to see potassium channels 
as positive regulators of β1 integrin activity in VCaPs (KCND3, KCNJ15, KCNA3), but 
interestingly also a few as negative regulators (KCNQ4, KCNC3). 

Finally, the importance of GPCR signaling in β1 integrin activation can be validated by 
looking at negative regulators of GPCR signaling. Galpha GAP (ADRBK1/GRK2 zmed= 
+2.19) and arrestins (ARRB1/2 (+0.53) and ARR3 (+1.95)) knock-downs increase β1 
integrin activation in the screens. Very high β1 activation can be seen also by knocking-
down type III glutamate receptors GRM6/8 (+2.59/+0.93), whose functions are not well 
known.  

6.2.3.  T cell receptor signaling to β1 integrin in VCaPs
The contribution of CD8 and CD3 receptors in integrin activation in VCaPs suggests that 
T cell receptor (TCR) signaling could intensify β1 integrin ligand binding and possibly 
integrin signaling. Indeed, T cell receptor gamma-subunit is expressed in epithelia of 
prostate cancer as alternatively spliced isoform (TARP) (Essand, Vasmatzis et al. 1999; 
Wolfgang, Essand et al. 2000). Many TCR downstream players implicated in leukocyte 
integrin activation (LFA-1 and VLA-4 (α4β1) also show up as prominent hits in VCaPs 
(see Figure 16).
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Figure 16. TCR signaling to β1 integrins in VCaPs. Hits found in the screens are marked with 
black borders around the genes. Src family kinases (Lck, Fyn, Hck) are recruited to TCRs by co-
stimulatory proteins, such as CD4/8 and CD28. Src family kinases activate Syk by phosphorylation, 
but also by phosphorylating tyrosines in ITAM-motifs, where Syk binds and is activated. Lck also 
phosphorylates PKCtheta, which is known to activate Rap1 via RapGEF2. CD3 cross-linking or 
antigen stimulation recruits SLP76 and NCK adaptor proteins to TCR. NCK contributes to actin 
remodeling and polymerization during synapse formation by recruiting WASP protein (Barda-
Saad, Braiman et al. 2005), but can also activate WAVE1 (Eden, Rohatgi et al. 2002). WAVE1 is 
important for reqruiting ABL1 kinase, which can activate a Rap1-GEF, C3G (Nolz, Nacusi et al. 
2008). PAK (PAK1 in T cells) binding to NCK increases PAK kinase activity, cellular motility, 
and focal adhesion formation in endothelial cells (Bokoch, Wang et al. 1996; Master, Jones et al. 
2001; Stoletov, Ratcliffe et al. 2001). A T cell TEC-kinase, Itk, contributes to VAV1 mobilization 
and activation in T cells, but TEC-family kinases are also required for calcium mobilization via 
PLCγ upon antigen stimulation (Finkelstein, Shimizu et al. 2005; Takesono, Finkelstein et al. 
2002). Finally, the very proximal integrin activators consist of Rap1GTP, its effectors RIAM and 
RAPL, protein kinase D (PKD1), and talin (Tln1). Src family kinases and SYK are also important 
for integrin outside-in signaling. 
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One interesting feature of VCaP cell line is that is forms aggregates and grows on top 
of each other. Active β1 integrin staining demonstrates that there is a large population 
of active, ligand-bound β1 integrin in cell-cell contacts, sometimes as strong patches. 
I suggest that this integrin-mediated cell aggregation could be similar to platelet or 
leukocyte aggregation. It is also tempting to think that VCaP cancer cells could form 
“immunological synapses” with each other, displaying antigens as “antigen-presenting 
cells” and recognize them as “T cells”. CD1A is a lipid-antigen-presenting molecule 
on T cell surface, but was found to be a major hit in the VCaP integrin screen and 
was further validated to be a positive regulator of β1 integrins in all 8 tested prostate 
cell lines. It would be also interesting to find out whether prostate cells express MHC 
class molecules, and whether they have a contribution to integrin activity. The above-
mentioned ideas rise up a question, whether prostate cancer cells could have adopted a 
mechanism for immune escape by forming “immunological synapses” by themselves and 
thus preventing efficient immune cell encounter. Accordingly, from the screening results 
we should try to find proteins, which are important for cancer cell integrin activation, 
but unnecessary or even inhibitory for immune cells. Targeting these proteins in cancer 
would suppress cancer growth/metastasis, and at the same time stimulate immune cells 
to kill cancer cells.     

6.2.4.	Outside-in β1 integrin signaling in VCaPs
Outside-in integrin signaling stabilizes adhesions by anchoring integrins to the actin 
cytoskeleton. Thus, proteins implicated in actin polymerization and turnover would be 
expected to have consequences to integrin ligand-binding ability as well. It is also difficult 
to know whether a knock-down that results in integrin inactivation is due to direct effect 
on integrin conformation or due to indirect effect by cytoskeleton disruption. The cross-
talk between integrins and the actin cytoskeleton is probably also very different during 
static adhesion, cell spreading, or during cell migration. For example in the leading edge 
of a cell, a constant retrograde flow of actomyosin is required for efficient polarization 
and migration (Tan, Yong et al. 2008), whereas further back, the cell body has to form 
more stabile adhesions, such as focal or fibrillar adhesions, for cell to be able to pull the 
trailing tail of the cell. Figure 17 shows a model for β1 integrin outside-in signaling to 
cytoskeleton and also to possible gene transcriptional regulation in VCaP cell line.
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Figure 17. Possible pathways for β1 integrin outside-in signaling in VCaPs. In the figure, all 
genes except ones with brackets were found as positive regulators of β1 integrin in the screens. The 
additional genes with brackets are added to help in understanding the pathways. Integrin signaling 
to cytoskeleton is critical for adhesion maturation and strengthening. Integrin beta1-tail-interacting 
proteins talin (TLN1) and filamin (FLN) associate with the actin cytoskeleton. Src family kinases 
(Lck, Fyn, Hck) together with Syk also bind integrins and phosphorylate cytoskeleton-linked 
adaptor proteins, such as NCK1 and SLP-76. Src kinase activation involves dephosphorylation of 
the inhibitory loop tyrosine-530 by phosphatases. Adaptors recruit downstream effector proteins 
that can be kinases (PAK3, AKT3, ABL1, TEC, TNIK), GTPases (Rac1, Cdc42, Rap1/2), or lipid 
modifying enzymes (PLCG1) all important in cytoskeletal dynamics and/or cell polarization. 
These effectors also modulate focal adhesion proteins in strengthening or weakening the link to 
cytoskeleton (assembly/dissassembly). Additionally, the effector proteins signal through MAP-
kinases to activate transcription of several proteins, such as cytokines, chemokines, and ECM-
proteins important in adhesion regulation. Interestingly, many effector proteins signal to JNK 
MAP-kinase. The boxed proteins contain a CN-domain (Citron homology domain), and these 
proteins have been shown to function as effectors for Rac1/Cdc42 and Rap2 GTPases, but also 
to bind directly β1A integrin cytoplasmic tail (NIK). The CN-domain bearing proteins belong 
to STE20-familiy of serine-threonine kinases, whose member STK4 (MST1) shows effector 
functions for Rap1-RAPL in integrin clustering and polarization upon chemokine or TCR ligation. 
An interesting STE-kinase could be also STK11 (LKB1), which binds directly to Cdc42 and PAK 
and is important for motile cell leading edge polarization (Zhang, Schafer-Hales et al. 2008). 
Also its downstream substrates show up in the screen. Another STE-kinase with CH-domain 
(MRCKA) was recently shown to regulate actomyosin retrograde flow in the leading edge of 
migrating cells (Tan, Yong et al. 2008).  



88	 Summary and Conclusions	

SUMMARY AND CONCLUSIONS7.	

Since the finding of first integrins as fibronectin receptors during 80’s, the integrin 
field has taken a huge step forward. 18 different alpha-subunits and 8 beta subunits 
are known to form at least 24 different heterodimers, which can bind to multitude of 
ligands starting from extracellular matrix collagen to soluble blood fibrinogen. The very 
recent findings in integrin field have revealed mechanisms of conformational activation 
and elegant intracellular trafficking pathways in functional regulation of integrins. This 
work was also implemented to study regulatory mechanisms of integrins, and especially 
the β1 integrins. Firstly, the work illustrates how a cytoplasmic small GTPase, Rab21, 
associates with β1 integrins to regulate its intracellular trafficking to different locations in 
cells. This interaction was found to be important for cell adhesion to extracellular matrix 
protein collagen and migration on this as well. Furthermore, the studies demonstrated a 
new link between β1 integrin endocytosis and cell division. Perturbation of β1 integrin 
traffic by Rab21 silencing or mutations in β1 integrin cytoplasmic tail abrogated normal 
cytokinesis. The results demonstrate that deregulated β1 integrin endocytic traffic 
could be associated with tumorigenesis and cell migration during cancer progression. 
However, in vivo work in mice should be implemented in order to study more the effects 
of impaired integrin traffic in invasion or metastasis for example.

Integrin activity regulation is very well characterized at the structural level. Also many 
cytoskeletal adaptor and effector proteins are known to bind directly or indirectly to integrin 
cytoplasmic tails to regulate inside-out activation or outside-in signaling of integrins. The 
regulatory proteins have been characterized in blood cells. However, very little is known 
about integrin activation pathways in cancer. This work characterized and validated 100 
novel β1 integrin regulators in prostate cells. Results will give great possibilities to look at 
specific pathways and nodes in integrin regulation and will enable a large amount of new 
mechanistic studies to implement. Interesting findings included characterization of T cell 
specific pathways in prostate cancer cell integrin activity regulation. This could reflect 
cancer cells’ adaptivity to arrest or invade into endothelium during metastasis progression. 
Future in vitro and in vivo studies will be carried out to look at these possibilities. 
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