Petri Salmela

On Commutation and Conjugacy
of Rational Languages and
the Fixed Point Method

Turku CENTRE for COMPUTER SCIENCE

TUCS Dissertations
No 115, March 2009

On Commutation and Conjugacy of

Rational Languages and the Fixed
Point Method

Petri Salmela

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in
Auditorium II on 3rd April, 2009, at 12 noon.

University of Turku
Department of Mathematics
FIN-20014 Turku, Finland

2009

Supervisor

Professor Juhani Karhumaéki
Department of Mathematics
University of Turku
FIN-20014 Turku

Finland

Reviewers

Professor Lucian Ilie

Department of Computer Science
University of Western Ontario
Middlesex College 368

London, Ontario, N6A 5B7
Canada

Professor Sylvain Lombardy

Laboratoire d’informatique Gaspard Monge
Université Paris-Est Marne-la-Vallée

77454 Marne-la-Vallée Cedex 2

France

Opponent

Doctor Juha Kortelainen

Department of Information Processing Science
University of Oulu

P.O. Box 3000

FIN-90014 Oulu

Finland

ISBN 978-952-12-2259-7
ISSN 1239-1883

To my wife, Karoliina

Abstract

The research on language equations has been active during last decades.
Compared to the equations on words the equations on languages are much
more difficult to solve. Even very simple equations that are easy to solve for
words can be very hard for languages. In this thesis we study two of such
equations, namely commutation and conjugacy equations. We study these
equations on some limited special cases and compare some of these results
to the solutions of corresponding equations on words. For both equations we
study the maximal solutions, the centralizer and the conjugator. We present
a fixed point method that we can use to search these maximal solutions and
analyze the reasons why this method is not successful for all languages. We
give also several examples to illustrate the behaviour of this method.

Keywords: Formal language, finite automata, language equation, com-
mutation, conjugacy, biprefix code.

ii

Acknowledgements

First of all, I want to thank my supervisor, Professor Juhani Karhuméki for
support and guidance during the research for this work and already before
that. It has been pleasure to work with him.

Special thaks are due to Professor Lucian Ilie from University of Western
Ontario, Canada and Professor Sylvain Lombardy from Université Paris-
Est Marne-la-Vallée, France for kindly accepting to review my thesis and
for their useful comments. It is a great honour for me that Doctor Juha
Kortelainen from University of Oulu agreed to act as my opponent for the
public defense of this disputation. I can not thank enough Doctor Milla
Kibble for carefully reading the thesis and correcting my language.

Department of Mathematics and Turku Centre for Computer Science
have provided excellent working conditions and financial support. The staff,
all friends and colleagues, have created outstanding atmosphere for research.
I also want to thank the math department floorball club Luiskaotsat for
unforgetable moments.

A special thanks to my friends in “aquarium”, Doctors Kalle Saari,
Roope Vehkalahti and Arto Lepisto, for several inspiring discussions on
mathematics, computers, judo and other topics.

Finally I want to thank my family for the support they have always given
to me. In particular, I want to thank my wife Karoliina for her love and
support.

Turku, March 2009 Petri Salmela

iii

v

Contents

Introduction

Preliminaries

21 Words Lo

2.2 Languages e
2.2.1 Rational languages and finite automata
2.22 Factors
223 Codes
2.2.4 Some properties of languages

Commutation of languages

3.1 Commutation
3.2 The centralizer and its properties
3.3 Conway’s problem
3.4 Fixed point approach for commutation
3.5 Singular languageso
3.6 Conway’s problem for 4-element sets
3.7 Commutation and lexicographic order

Conjugacy of languages

4.1 Conjugator
4.2 Word type solutionso
4.3 Finite biprefix codes
4.4 Examples
4.5 Fixed point approach for conjugacy

Examples of the fixed point approach

51 Thecase LT =S, =Cy(L)o i
52 Thecase LT =S, CC(L) .« v v v v v i i i
53 Thecase LT C Sy, =Cy(L) . . . oo i i
54 Thecase LT C Sy, CCy(L) « . oo v it
5.5 The centralizer as the limit

13
13
14
20
21
24
28
34

39
40
42
44
53
o6

6 Conclusions and open problems

A FAFLa — Finite Automata and Formal Languages

vi

89

91

Chapter 1

Introduction

Equations with variables and constants on some algebraic structures are
central notions in different areas of mathematics. In formal language the-
ory, the equations are naturally formed of words and languages. For word
equations we have several well known and strong results. For language equa-
tions, however, even simple equations can lead to very hard problems. One
example is the fundamental equation XY = Y X, the commutation equation
which is easily solved for words. For a given finite language X, this very
simple equation can even have non-recursively enumerable solutions Y.

In this work, we concentrate on the commutation equation XY =Y X
and the conjugacy equation XZ = ZY. The commutation equation was
first considered in 1971 by John Conway, [7]. He introduced the so-called
Conway’s problem that concerns the rationality of the largest solution of the
commutation equation. Later this equation was studied in several papers.
Many basic results and conjectures on commutation, the centralizer and
some other equations were formulated in 1989 by Ratoandromanana [30].
In that paper the centralizer was called the normalizer.

Karhumaéki and Petre researched the centralizers of finite sets, especially
three word sets and three word codes, in [17]. They also pointed out that
the complement of the centralizer of a finite set is recursively enumerable.
Harju and Petre studied codes and omega codes in [9] and tried to apply
results on formal power series to languages. Commutation with ternary sets
and codes were again studied in [16] and [15] by Karhuméki, Latteux and
Petre. They proved that the centralizer of any three element set or any
rational code is rational.

The fixed point approach for finding the centralizer of a given rational
language was given by Culik, Karhuméki and Salmela in [10]. This gives a
method for finding the centralizer in several cases using an iterative proce-
dure. In this method the centralizer is defined as the maximal fixed point
of a certain mapping. A more rough fixed point method had already been

introduced by Conway in [7]. This fixed point method gives us one way
of proving that the complement of the centralizer of any rational language
is recursively enumerable. In fact, in [19] and [20] Karhumé&ki and Petre
show that whether the given language is finite, rational or recursive, the
centralizer is, in each case, Co-RE.

Finally, in 2004, Kunc solved the general case of Conway’s problem and
gave it a negative answer in [22]. In [23] he showed that even finite languages
can have non-recursively enumerable centralizers. After that, the research
on Conway’s problem has concentrated on searching for boundary between
positive and negative answers. A positive answer for Conway’s problem
has been proved for several special cases. For example, Frid solved the
commutation of so-called factorial languages in [8].

As with the commutation equation, the conjugacy equation also has a
very simple solution for words, but is very hard to solve for languages. This
is natural, since commutation is a special case of conjugacy. The conjugacy
of languages has been studied for example in [2].

Application areas of commutation and conjugacy include natural com-
puting, formal grammars and games. For example Kari, Mahalingam and
Seki have researched so called pseudo-commutativity, i.e., a certain kind of
conjugacy equation, in [21]. Their research was motivated by properties of
DNA.

Next let us outline the content of this thesis, chapter by chapter.

In Chapter 2, we introduce some basic notation and terminology which
we will be using in the rest of the work. Also some fundamental and fre-
quently used results are given.

In Chapter 3, we study the commutation equation on rational languages.
We define the notion of a centralizer, the largest solution of the commuta-
tion equation, and introduce some of its properties. Conway’s problem is
a famous problem concerning the rationality of the centralizer of rational
languages that has been extensively researched during the last decade. This
problem was proved to have a strong negative answer in general, but is still
being researched for various special cases.

In this chapter we also introduce the fixed point method which can be
used to compute the centralizer of a given rational language. This method
works for most rational languages, but there are also languages for which
this method alone does not give a result. Finally we study commutation,
centralizers and Conway’s problem for singular languages, 4-element lan-
guages and languages a with certain special element with respect to a given
lexicographical order. This chapter is partly based on articles [10, 25].

In Chapter 4, we discuss the conjugacy equation XZ = ZY which can
be seen as a generalization of the commutation equation. We generalize for
conjugacy some notions and results that we already have for commutation.
For example, we define the conjugator, that is, the largest solution of the

conjugacy equation for given languages X and Y.

We define three different kinds of word type conjugacies and show that
the conjugacy of two biprefix codes L and K is always of word type 2. We
illustrate different types of conjugacies and, in particular, different kinds
of word type conjugacies with several examples. Finally in this chapter we
generalize the fixed point method for the conjugacy equation and conjugator.
This chapter is partly based on article [3].

In Chapter 5, we apply the fixed point method for commutation to dif-
ferent kinds of examples. First we show, with examples, the existence of
different types of centralizers. Then we discuss the cases where the fixed
point method fails to reach the centralizer. In these cases the centralizer
is obtained only as the limit. We show a couple of examples where this
happens and analyze them to discover reasons for this behaviour and to find
ways to improve the fixed point method. We introduce two methods which
one can attempt to apply in conjunction with the fixed point method in
these cases.

While doing the research for this work, we used a computer program
called FAFLa [31]. In Appendix A, we describe some properties of this
program and show how some examples from this thesis were computed.

Chapter 2

Preliminaries

In this chapter we introduce several basic notions and results used in this
thesis and fix the terminology.

2.1 Words

The most elementary notion in formal language theory is a letter. A letter
is a symbol, such as z,y,a,b,0 or 1. A given set 3 of letters is referred to as
an alphabet. A word is a finite or infinite sequence of letters of an alphabet
Y, for example abbab. In this thesis we consider mainly finite words. The
length of a word is the number of symbols in the sequence and we use the
notation |w| for the length of word w. The empty word, €, is a special word
with no letters and its length is 0. In this work we mainly use the symbols
0,1,a and b for letters and denote words by the symbols u, v, w, z,y and z.
Letters can be viewed as words with length 1. The associative operation of
writing words u and v one after the other is called catenation and is usually
written as uv or uw - v. The power w" is a shorthand for the catenation of
the word w with itself n times.

We use X* to denote the free monoid of all words with letters from
the alphabet ¥, including the empty word. The notation ¥, on the other
hand, refers to the free semigroup of all nonempty words of 3X*. The freeness
refers here to the fact that each word of these monoids and semigroups has
a unique factorization as a product of letters in the given alphabet.

The reversal of a word w = ajas---a,, a; € %, is the word @ =
an -+ - asaq, in other words, the same word backwards. Also the notation
w™ can be used for clarity, for example in the case of (uv)™ = va.

The word u € ¥* is called a prefiz or left factor (resp. suffiz or right
factor) of the word w € ¥* if w = uv (resp. w = vu) for some word v € ¥*.
The prefix (resp. suffix) is called proper, if v is non-empty. This prefix
relation (resp. suffix relation) is often written as u <pef w (resp. u <guf w)

5

and the proper prefix (resp. suffix) relation as u <pref w (resp. u <gur w).
When w = uv (resp. w = vu) we also use the notation v = wv~"! for prefix
(resp. u = v~ 1w for suffix), which refers to the deletion of the word v from
the right (resp. left) of the word w. Generally, the word u € ¥* is called a
factor of the word w € ¥* if w = vuz for some words u, z € X*.

A word w € ¥* is said to be primitive if it is not a power of any other
word, in other words, for w # e, w = v for some v € ¥* implies that i = 1.
A word w is a root of word w, if w = u’ for some integer i. If a root of word
w is primitive, we call it a primitive root of word w and use the notation
p(w). The primitive root of a given word is unique.

2.2 Languages

Any subset of 3, i.e., any set of words, is called a language. A language that
does not contain the empty word ¢ is called e-free. We denote languages
with capital letters, such as A, B, L, K, X,Y and Z. The notation |L| refers
to the cardinality of the language L.

For languages, we can apply set theoretic operations, such as union (AU
B), intersection (A N B), complement (A®) and difference (A \ B). The
symmetric difference of languages A and B is the union of the differences
A\ B and B\ A. For the symmetric difference we use the notation

AAB = (A\ B)U (B\ A).

Catenation is extended for languages in a natural way, that is AB = {uv | u €
A,v € B}. Similarly the power L™ is a shorthand for the catenation of L
with itself n times. The language L* is the monoid U;>oL’ generated by L
and the language LT is the corresponding semigroup UizlLi generated by
L. The operation L* on language L is also called an iteration or the Kleene
star operation. We use the shorthand L’ with integer set I for the language
UierL'. Similarly L{%35} will denote L? U L? U L. The notations L=",
L<", LZ" and L>" refer to the languages Uo<i<n L, Uo<icn L, Uisn L
and J;~,, L', respectively.

The reversal of a language L is defined naturally as the set of reversals
of the words in L

L=L"={weX|we L}

2.2.1 Rational languages and finite automata

One important class of formal languages are the so-called rational languages,
or reqular languages. This class is defined using the following rules:

e Singleton sets {¢} and {a} are rational languages for each letter a € X.

6

e If A and B are rational languages, then the catenation AB is a rational
language.

e If A and B are rational languages, then the union A U B is a rational
language.

e If A is a rational language, then the language A*, i.e., the Kleene star
of A, is a rational language.

In other words, the class of rational languages is the smallest set of languages
that includes all singleton languages and is closed under catenation, union
and iteration operations.

It is a well known fact that rational languages are exactly those languages
that can be recognized with a finite automaton. In this work we use the
following definition of a deterministic finite automaton, or DFA.

Definition 2.1. A deterministic finite automaton (DFA) is a five tuple
A=(Q,%,0,q0, F),
where
e () is a finite set of states,
e Y is a finite alphabet,
e):(Q XX — Q is a partial transition function,
e (is the initial state and
e [is the set of final states.

When the transition function § is extended to the function 6* : Q x ¥* —
Q) by defining

0*(q,e) = ¢ and 0*(q, aw) = §*(0(q,a),w)

for all words w € X* and letters a € 3, we say that the automaton A
recognizes the language

L(A) = {w € ¥* | §*(qo,w) € F}.

Finite automata can be illustrated by graphs where states are drawn as
nodes and a transition function is drawn as labeled arrows between nodes.
We use the notation where the initial state is marked with an incoming
arrow and final states have a double circle around them. See Figure 2.1 for
an example.

Figure 2.1: Deterministic finite automaton illustrated by a graph.

For each rational language L, there is more than one DFA which rec-
ognizes it. However, for a rational language L, the minimal DFA, the de-
terministic finite automaton with minimal number of states, is unique. We
use this fact when we use a computer program to manipulate languages.
Rational languages are represented by the DFAs that recognize them and
comparisons between rational languages are done using minimal DFAs.

For more about rational languages and finite automata see [32].

2.2.2 Factors

The left and right quotients of languages are defined as natural extensions
of corresponding notions on words.

Ly'L; = {u€ ¥ |vuc L for some v € Ly}
LiLyt = {ue¥* |u e L for some v € Ly}.

We use the notation Pref;(w) for the prefix of length 1 of a non-empty
word w, i.e., the first letter of the word. Similarly Pref,(w) and Suf,(w)
denote either the prefix and suffix of length n of word w, or w if |w| < n.

For languages we extend the notions of prefix and suffix as follows.

Pref;(L) = {Prefj(w) e X |we L,|w| > 1}
Pref, (L) = {Pref,(w) e ¥* |we L,|w|>n}
Suf, (L) = {Suf,(w) € X" |we L,|w| >n}

With Pref,(L) (resp. Suf.(L)) we refer to the set of prefixes (resp. suf-
fixes) of arbitrary length of language L, i.e., the language |J;~, Pref;(L)
(resp. ;> Suf;i(L)). Note that this set includes also the empty word ¢ as
the trivial prefix (resp. suffix) of length 0. For sets of all prefixes and suf-
fixes excluding the empty word we use Pref (L) and Suf (L), respectively.
If there is no risk of confusion, we use just Pref(L) and Suf(L).

If we have w = wv (resp. w = vu) where v € ¥* and u € L for a given
language L, then we say that w is a left L-factor (rvesp. right L-factor) of

8

w. If w = wuq---u, for some sequence of words u; € L for given language
L, then we say that this sequence is an L-factorization of word w. If the
word w can be expressed as a sequence w = uq - - - u,v with u; € L and v €
Pref, (L), then we call this sequence a left L-factorization of w. Respectively,
a sequence w = VU - -+ uy with u; € L and v € Suf,(L) is called a right L-
factorization of w.

2.2.3 Codes

If a language L is such that all words in L* have a unique L-factorization,
then we say that L is a code. This means that for all n,m > 1 and words
Uly.nn, Uy, V,..., VU, the condition

UL+ Uy = V1" Um

implies that
n=m and wu; =v; foralll <i<n.

It is worth noting that a code can never contain the empty word.

There are some special types of codes which we use in this work. A
language L is a prefiz set or prefix, if no word in L is a proper prefix of
another one. The only prefix set containing the empty word is {¢} and
all other prefix sets are codes, see [1]. These codes are called prefiz codes.
Similarly a language is a suffix set or suffiz, if no word in it is a proper suffix
of another. All suffix sets, except {€} are suffiz codes. If a language is both
a prefix and a suffix code, we call it a biprefiz code or bifix code.

If every word in language L has the same length, L is said to be a uniform
language. Uniform languages are a special case of biprefix codes.

2.2.4 Some properties of languages

The set p(3*) of all subsets of ¥*, in other words all languages over alphabet
Y., is a semiring. A semiring is an algebraic structure with two operations. In
this case the multiplication operation is the catenation and as commutative
addition we have the union operation. The empty set () is the identity
element for the union operation and for the catenation operation it is the
zero, i.e.,)- L = L-() = (). The identity element of the catenation operation
on the other hand is the set {¢}. The symbol U is commonly used for the
union operation, but in this work we often use the addition symbol + to
underline the semiring structure of p(X*).

A language R is called a root of language L, if L = R’ for some integer 1.
The language R is said to be a minimal root of L, if R is a root of L and R
is the only root of itself. In other words, if R = K7 for some integer j, then
K = R and j = 1. If R is the unique minimal root of L, then it is called the

9

primitive root and we use the notation R = p(L). We must note that not all
languages necessarily have a primitive root. Let us consider the following
example from [5]. Let L = {a’ | 0 <14 < 30, i # 1,8,11,23}. This language
has two minimal roots X and Y such that L = X? = Y2, Namely X =
{a'|i=0,2,3,7,10,12,14,15} and Y = {a’ | i = 0,2,3,7,12,13,14,15}. If
these languages had proper roots, these roots would be their subsets, since
the empty word is in both of them. On the other hand, if they had a common
root p, then the word aaa should be the longest word in p, since it is the
only available proper root of the word a!® = (a?)%, the longest word of both
X and Y. However, such a root does not exist. Languages in some special
classes do have unique primitive roots. For example, the set of all prefix
codes is a free semigroup (see [28]) and hence each prefix code has a unique
primitive root. On the other hand, whether a primitive root exists for all
codes is an open problem, see [15].

The freeness property of the set of all prefix codes will be used later in
this work and we state it here formally as a theorem. For the proof see [28].

Theorem 2.1. The family of all prefiz codes is a free monoid.

Note that the set {¢} is the unit element of the monoid of all prefix codes
and this is the only element of that monoid that includes the empty word.
The same result holds naturally also for suffix codes and biprefix codes. We
say that the prefix code L is indecomposable, if for prefix codes A and B
the equation L = AB implies that either A = L and B = {¢} or A = {¢}
and B = L. In other words, the language L cannot be decomposed into
two non-unit prefix code factors. Similarly we use the term indecomposable
with suffix and biprefix codes.

The language L is called periodic if all of its words are powers of the
same word, i.e., if L C t* for some word ¢t € ¥*.

For a word we can apply a special operation called circular shifting. This
operation moves the first letter of a word to the end of the same word. For
example circular shifting maps the word abbab to the word bbaba. Shifting
can also be done several times, letter by letter, or in the opposite direction
as reversed circular shifting. On languages we can apply circular shifting
by doing the circular shifting simultaneously on all words in the language.
The circular shifting maps for example the language {ab, bba, aaba} to the
language {ba, bab, abaa}. However, in this work we will use circular shifting
mainly on languages where all words begin with a common letter. In this
case language aL is mapped to the language La. For example, the language
{a, aba, aabb, abaa} maps to {a,baa, abba,baaa}.

Words can be ordered using a variety of orders. The lexicographical order
<Jez ON the set X* is a total order defined as an extension of a total order
< on the alphabet 3. The lexicographical order is defined so that for words
u,v € X* we have u <je, v if and only if u is a proper prefix of v or u = ws

10

and v = wt for some words w € ¥*, s,¢ € X and Pref;(s) < Pref;(t). This
is the order used, for example, in dictionaries.

11

12

Chapter 3

Commutation of languages

3.1 Commutation
Commutation of languages X and Y is defined with a simple equation
XY =YX.

The equality of languages XY and Y X is relatively easy to check, for ex-
ample, for given rational languages X and Y. However, it seems to be very
hard to find general rules for when two given languages commute.

In combinatorics on words we have the following well known result [24].

Theorem 3.1. Let u and v be two words in X*. Then uv = vu if and only
if there exists a word t in ¥* such that u,v € t*.

The same kind of result holds for languages only in some special cases,
but general rules for the commutation of languages are not likely to be found.

To understand the difference between commutation of words and com-
mutation of languages, we can think of the commutation of languages at the
level of words. If languages X and Y commute for all words z; € X and
y1 € Y, then there exist words zo € X and yo € Y, such that

T1Y1 = Y222
and words xz3 € X and y3 € Y, such that
Yi1x1 = T3Y3-

Compared to the commutation of words, the commutation of languages gives
a dependency between several words, not just two of them, and is hence more
complicated.

13

It is easy to see the difference in difficulty between commutation of words
and languages with the following example from [6]. Let X and Y be lan-
guages:

X = {a,aa,aaa,ab,aba,b,ba},
Y = {a,aaa,ab,aba,b,ba}.

These two languages commute, but it is not obvious. As we can see from
this example, the commutation is not necessarily a result from some clear
structure in languages.

3.2 The centralizer and its properties

We fix one of the languages in the commutation equation XY = Y X and
focus on the maximal solution of this equation. We call the maximal solution
the centralizer and define it as follows.

Definition 3.1. The monoid centralizer or x-centralizer of a given language
L over alphabet Y is the maximal subset of the monoid ¥* with respect to
union, which commutes L. The monoid centralizer of L is denoted by C.(L).

In this work, however, we mostly consider the semigroup centralizer,
defined as follows.

Definition 3.2. The semigroup centralizer or +-centralizer of a given lan-
guage L over alphabet ¥ is the maximal subset of the semigroup ¥ with
respect to union, which commutes with L. The semigroup centralizer of L
is denoted by C(L).

Next we show that both of these centralizers exist for every language L
and that they are unique. For any given language L there always exists a
language which commutes with it. Especially, languages L*, LT and L* for
any integer i are such languages. Also the semigroup X1 always includes
subsets which commutes with L. If € ¢ L, at least Lt is such a subset, and
if e € L, then Y7L = X7 = LY and even X7 itself commutes with L.

Now the union of all languages which commute with L

J{A € o¥jAL = L4}
commutes also with L, since the distributive laws
Uza) =1L <U Ai> and | J(AL) = <U Ai> L
el el il el

hold for catenation and union operations and any index set I. The fact that
this union includes all languages which commute with L implies that it is

14

the unique maximal language which commutes with L, i.e., the centralizer
C.(L). Hence the centralizer C.(L) exists and is unique.

The uniqueness and existence of the semigroup centralizer Cy(L) is
proved similarly by replacing the monoid ¥* by the semigroup 7.

It is also useful to notice that the notion of a centralizer here is slightly
different from the usual meaning of a centralizer in algebra. In algebra the
centralizer is defined using elementwise commutation and the centralizer of
a given element x is the set of all elements commuting with it. In the case of
languages, i.e., in the semiring p(X*) of all languages over alphabet 3, this
would mean the set COM(L) = {A C ¥*|LA = AL}, using the notation
of [29]. However we will call the largest element of the set COM(L) the
monoid centralizer of the language L. In his book [7], Conway introduced the
centralizer originally with the name normalizer, which is not very accurate
either. Several basic results and conjectures on the commutation equation
were formulated in [30]. During the last few years the commutation equation
and its largest solutions have been under extensive research.

Next we introduce some basic properties of the above centralizers.

Theorem 3.2. For each language L the monoid centralizer C.(L) is a
monoid and the semigroup centralizer Ci (L) is a semigroup.

Proof. A language A is a monoid (resp. a semigroup) if and only if A = A*
(resp. A = AT). We will prove the claim for the %-centralizer. For the
+-centralizer the claim is proved similarly.

First we show by induction on n that C,(L)"L = LC.(L)"™ for every
n > 0. First of all

C.(L)°L ={e}L = L = L{e} = LC.(L)°.
Next, if the claim holds when n < k, then it holds also for n = k + 1, as
Co(L)*'L = C (L)*C, (L)L = C(L)*LC,(L) = LC,(L)**!.

So C.(L)"L = LC.(L)" for every n > 0 and, by the distributive law, the
union of all these powers, i.e., C,(L)* also commutes with L. Since C.(L)
is the greatest language commuting with L, C,(L)* must be included in it.
The inclusion in the opposite direction is trivial and hence

Cu(L)" = Cu(L),
and the centralizer C,(L) is a monoid. O
Theorem 3.3. Ife € L, then C.(L) = X* and C4(L) = XT.

Proof. If € € L, then ¥*L = ¥* = LY* and XtL = ¥T = LY+, Hence
languages ¥* and ¥ are maximal subsets of monoid ¥* and semigroup ¥+
commuting with L, respectively. U

15

We will simply use the notation C(L) for the centralizer of L when there
is no risk of confusion or when a result holds for both monoid and semigroup
centralizers. We will mainly consider the +-centralizer if not mentioned oth-
erwise. Results for x-centralizers seem to be in most cases either trivial or
obtained in a similar way to results for +-centralizers. However, the connec-
tion between these two centralizers is unknown and no nontrivial relation
between them has been found. There are four different cases depending on
which one of these centralizers is considered and whether the empty word e
isin L.

The cases with € € L are covered in Theorem 3.3. The case € ¢ L with
+-centralizer is considered here. Most of the results for +-centralizers can be
applied almost analogously to the x-centralizers, by keeping in mind the fact
that we want to find the maximal subset of ¥* instead of ¥*. For example,
in some situations we must use the set of prefixes Pref,(L) instead of its
e-free counterpart Pref, (L) or the monoid L* instead of the semigroup L™.
This does not necessarily mean that C.(L) would be C; (L) U {e}. In fact,
for example if L = {a,ab,ba,bb}, then C.(L) = X* and C (L) = X\ {b},
as noted in [20]. Generally it is not known whether in general a problem on
one of these centralizers can be reduced to a problem on the other.

The following result holds for both semigroup and monoid centralizers
and hence we use the notation C(L) instead of C.(L) or C4(L).

Theorem 3.4. The centralizer of a language L is also the centralizer of the
language L™, i.e.,
C(L) =C(L").

Proof. Since C(L) commutes with L, it clearly, by induction, commutes also
with L™ for every integer n > 1. This implies, again by the distributive law,
that it commutes also with LT = [J,~; L™. Hence the inclusion C(L) C
C(L™). -

On the other hand, we know that L C L™ C C(L") and that C(L™) is a
semigroup. Hence C(L1)L* C C(L™") and

Le(LY)y Cc LtC(LT)y=C(LT)LT =C(L*)L*-L C C(L)L.
——
ce(Lt)

The inclusions naturally hold also the other way, with the same reasoning.
Hence C(LT) commutes with L and is included in C(L), the maximal set

commuting with L.
As a conclusion we obtain the claim C(L) = C(L™). O

We must note that the centralizers C(L) and C(L*), in both monoid and
semigroup cases, are not equal in general. That is because the language L*
includes the empty word € and by Theorem 3.3 we know that C,(L*) = X*
and C+(L*) = EJr.

16

The definition of the centralizer is simple, but it is not always an easy
task to find it. We can set some lower and upper bounds for the centralizer,
see [6].

Theorem 3.5. Let L C ¥T. The equation
LT CC(L) C Pref(LT) N Suf(L™)

holds and gives bounds for the centralizer C(L). Note that when we are
considering the +-centralizer, we interpret Pref(L") and Suf(L™) as e-free
prefizes and suffives of L™, and for the x-centralizer, the empty word is also
included.

Proof. The lower bound is clear, since L™ always commutes with L. The
upper bound can be proved by checking inclusions in both Pref(L™) and
Suf(L*) separately. We will consider the prefix case, the suffix case being
dual.

For every integer n > 1 and words z; € C(L) and x1,...,x, € L, there
exist words z9,...,2,4+1 € C(L) and y1,...,y, € L such that

ZiTi = YiZit1,
where 1 < ¢ < n. This implies that equation

Z1T1Tp = Y1 " YnZn+1

holds. Since € ¢ L, the length of every word y; is positive and so for n big
enough we have |y; - - yn| > |21]. Hence 21 € Pref(L™) for every word 21 in
the centralizer and so C(L) C Pref(L™). O

In most cases the centralizer of L is a proper subset of Pref(L™) N
Suf(L™).

Example 3.1. Let us take the finite language L = {a, bb, aba, bab, bbb} as an
example. It is obvious that the word b is in the language Pref(LT)NSuf(L™).
However, the word ab, that is catenation of a € L and b, does not have a
right factor in the language L and hence cannot be in the language C(L)L.
In other words L{b} € C(L)L. Thus the word b is not in the centralizer of
L and the centralizer is clearly a proper subset of Pref(L*) N Suf(L*). We
will use this same language L later in example 3.4 and show that in fact the
centralizer C4 (L) is the language L™.

Example 3.2. As another example we use the language L = {a, ab, ba, bb},
which was introduced after Theorem 3.3 and which we will consider again
in examples 3.3 and 3.5. For this language, the set Pref, (L™) N Suf, (L)
is the whole of X" = {a,b}". However, as was mentioned earlier, the cen-
tralizer is C4 (L) = X \ {b}. In this case both inclusions in the statement
of Theorem 3.5 are proper.

17

Another, slightly more accurate approximation can be given for the lower
bound, as mentioned in [10].

Theorem 3.6. For the set
Sy, ={wext|wL, LwC LL"}, (3.1)
the inclusions L™ C Sy, C C4 (L) hold.

Proof. The first inclusion LT C S}, is clear from the definition of S;. By
the definition of Sy, it is also clear that S;L C LLT C LSy and LSy C
LLT =L*tL C SrL. Hence LSy, = S L, in other words, S;, commutes with
L and is included in the centralizer C(L). O

Based on some examples that we have computed, the +-centralizer typ-
ically seems to be one of the languages L*, Sy, or ¥*. However, there are
also languages which have totally different centralizers.

Example 3.3. As an example of the case where the inclusion S;, C C(L)
is proper, we can again take a look at the language L = {a, ab, ba,bb} from
Example 3.2. The centralizer is C4 (L) = X1\ {b}. However C(L) and Sy,
are different, since for example bab € C. (L), but bab - bb ¢ LL™ implying
that bab ¢ ST.

Here the set Sy, is defined as a set of words with a certain property.
However, it is also possible to give an explicit formula for Sp. We also see
that this language S7, is rational, if language L is rational.

Theorem 3.7. The language S;, = {w € ¥t | wL,Lw C LL"} can be
represented as

Sp=%%\ (L—l (ST\LLT) U (ST LLY) L—1>. (3.2)

Proof. We start with the definition of Sz, in formula (3.1). Since
w€ Sy <= (Va€ L)(aw € LLT Awa € LL"),

we have the complement

wg¢S, <= (Ja€L)(aw¢ LLTVwa¢LL")
<= (JacL)awe ST\ LLT Vwa X"\ LL").

The complement of S7, can now be given as

YP\Sy, = {weXt|FaeL)(awe X"\ LLT)}
Ww e X" | (3a e L)(wae X\ LL")}
= LN (Zt\LLT)u(=t\LLY) L.

18

Finally, as the complement of this, we obtain
Sp=%%\ <L—1 (ST\LLT) U (ST\ LLY) L—1>.

O

The following results show that the size of the alphabet is not impor-
tant when studying the commutation of languages. We can assume that
alphabet ¥ is the binary alphabet Yo = {a,b}, since an arbitrary finite
n-letter alphabet ¥, = {aj,a2,...,a,} can always be encoded to a binary
one in such a way that the centralizer is preserved. We use the notation
I, = {abla|i=1,2,...,n}, so that I';, C ¥5. As the encoding we will use
the morphism

Y 1 X5 =T 4(a;) = abla.

Since 1, is clearly a bijection from ¥} to I'},
=1 T% — ¥* which is also bijective.

it has an inverse mapping
Lemma 3.1. For any languages X,Y C X7 the implication
XY =YX = o (X)n(Y) = (V) (X)

holds. In other words, the encoding 1, preserves commutation.

Proof. Since 1), is a morphism, the result is straightforward. If X and Y
commute, then

Lemma 3.2. For any languages X,Y C I'y the implication
XY =YX = ¢ (X)p (V) =97 (YV)p~ (X)
holds.

Proof. This result is also straightforward, since v is a bijective morphism.
Assume that X and Y commute but ~!(X) and ¥~ *(Y") do not. Then

XY = ¢ ' (X)) '(Y)) =y (X)y (V)
£ P Y)Y X)) =T () v (v HX))
= YX

This contradicts the assumption XY = Y X. Hence ¢~ (X) and ¢y~ (Y)
commute also. O

19

Lemma 3.3. For any languages L C I'y, and X C 35, if L and X commute,
then X C T},

Proof. Assume that LX = X L. Then X is a subset of the centralizer C(L),
which is a subset of (Pref(L™) N Suf(L1))\ {a} C I';}. Hence X is also a
subset of T} 0

Theorem 3.8. Any language L over an n-letter alphabet ¥, can be en-
coded by a morphism 1 into a 2-letter alphabet o so that the centralizer is
preserved, in other words, so that C(¢(L)) = (C(L)).

Proof. Let L be an arbitrary language over ¥,,. We use the same morphism
¢ as in the previous lemmas. Naturally ¢(L) and ¢(C(L)) are subsets of
[;7. From Lemma 3.3 we note that also C(¢(L)) C I';’. Then by Lemma 3.1
¥(C(L)) commutes with ¢(L) and hence (C(L)) C C(x(L)). On the other
hand, by Lemma 3.2 ¢~1(C(¥(L))) commutes with ¢)~!(x)(L)) = L and
hence ¥~ 1(C(¢(L))) C C(L) and furthermore C(¢)(L)) C (C(L)).

So, in conclusion, C(¢(L)) = ¥ (C(L)) O

This implies that when we study the centralizer of a language L over an
arbitrary finite alphabet, we can encode L into a binary alphabet and study
the centralizer of the encoded language. Hence we can concentrate on the
study of centralizers of binary languages without losing generality.

3.3 Conway’s problem

There is one interesting problem on centralizers that has drawn wide atten-
tion recently. This so-called Conway’s problem was originally introduced in
1971 by J.H. Conway in [7], and remained open for more than 30 years.

Conway’s problem. Is the centralizer of a rational language always
rational?

The problem has been studied in several papers. Many basic results and
conjectures are from [30]. A positive answer was given for several special
cases. In [6] for languages with at most two elements, for rational codes
in [15] and for three-element languages in [16]. A positive answer was aslo
given for languages with certain special elements [26]. For the general case,
it was proved that the centralizer of a recursive language has a recursively
enumerable complement [20].

The problem was finally solved in 2004 by M. Kunc [22]. He proved that
the general answer was negative in a very strong sense. He showed that the
centralizer of a rational language need not be even recursively enumerable.
He continued by showing that there even exist finite languages having non-
recursively enumerable centralizers [23]. The proof is done by constructing
a language encoding computations of a given Minsky machine [27].

20

Later in 2005 E. Jeandel and N. Ollinger gave another proof of the exis-
tence of rational languages with non-recursively enumerable centralizers [11].
Their proof is based on Kunc’s argument, but their construction is more in-
tuitive. For example, instead of Minsky machines, they use Post tag systems,
which are closer to the way centralizers work. The proof is formulated as a
combinatorial game between two players.

3.4 Fixed point approach for commutation

We describe a method for finding the centralizer of a given rational language.
This so-called fized point approach has been previously introduced for exam-
ple in [12] and in [10]. It seems that for most rational languages this gives
us a method to compute the centralizer of a rational language. However for
some languages this method does not terminate, even if the language itself
is finite and the centralizer is a simple rational language. In any case, this
approach gives us a sequence of upper bounds for the centralizer and this
sequence converges to the centralizer.

The main idea of this approach is to define a mapping ¢, : p(¥*) —
©(X*), which has the centralizer C(L) as a fixed point for a given language
L. Our mapping is such that when we start from a language Xy, which
includes the centralizer, and use this mapping repeatedly, each step gets us
closer to the fixed point, the centralizer. In most cases the fixed point is
reached in a finite number of steps, but unfortunately, as we shall see, in
some cases the sequence of steps is infinite.

Let L be an e-free language. Let us define a sequence of languages X;
by setting recursively

Xo = Pref(L™) N Suf (L) (3.3)
and
X1 = X\ (LTHLX;AX L) U (LXG;AX L)LY, i >0. (3.4)

Intuitively this means that we find from languages LX; and X;L all words
that are not in both languages, in other words, those words that make
L and X; not commute. Then by taking left and right quotients we find
corresponding words of X;. These words are removed from X; to obtain the
language X;y1.

We will also use the notation

Z = ﬂ X; (3.5)

i>0

for the infinite intersection of all languages Xj.

21

Theorem 3.9. The language Z is the centralizer C(L) of a given e-free
language L.

Proof. For every integer ¢ > (0 we obtain the language X; 1 by taking some
elements away from the previous language X;. Hence it is clear, that X; 1 C
X;. In Theorem 3.5 we already noted, that C(L) C Xy. Now if C(L) C X;
for some index 4, then

C(L)L = LC(L) C LX; N X;L,

and hence

C(L)LN(LX;AX;L) =0,
and further
C(L) N (LY (LX;AX;L) U (LX;AX; L)L) = 0.

This means that also C(L) € X;41. By induction C(L) C X; for every
index 7 > 0 and hence the centralizer is also included in the intersection of
languages X;, i.e., C(L) C Z.

Next we show that ZL = LZ and Z C C(L) by the maximality of C(L).
If ZL and LZ were not equal, then there would exist a word w € Z, such
that either wL € LZ or Lw € ZL. By symmetry, we assume the former case
holds. By the definition of Z, this means that for some [€ L and beginning
from some index k there is wl ¢ LX;, when ¢ > k. However, w € Z C X;
for every i > 0, especially for k, and hence wl € X,L. This means that
wl € LXAXiL and then w € (LXAX,L)L™. Thus w ¢ Xy and
w ¢ Z, which contradicts the assumption.

This proves that Z = C(L). O

Formula 3.4 defines the next step of iteration, when the previous one is
given. Therefore it can be viewed as the mapping ¢r, : p(X*) — p(X*),

or(X) =X\ (L YLXAXL)U(LXAXL)L™Y). (3.6)

The fixed points of this mapping are exactly those languages X fulfilling the
condition X LALX = (), that is all languages commuting with language L.
Hence the centralizer C(L) is the maximal fixed point of mapping ¢y, .

The centralizer of L can be found by starting from Xy and using the
mapping ¢y, iteratively, until the set LX;AX;L is empty, in other words,
until X;11 = X;. Our computations on several examples lead us to believe
that for many rational languages this gives the centralizer in just a few steps,
around six or less. However, there also exist rational languages for which
centralizer cannot be reached in a finite number of steps with this method.
In these cases the centralizer is unfortunately reached only as the limit of
formula 3.5.

As the initial language Xy we can use any language that contains the
desired centralizer as a subset. In fact, we obtain the following theorem.

22

Theorem 3.10. For an arbitrary initial language Xg, the language Z =
Ni>0X; s the mazimal language which commutes with L and is subset of
Xo.

Proof. We can use the same proof as for Theorem 3.9. In the proof we
replace the centralizer C(L) with the maximal language that commutes with
L and is contained in Xy. The proof shows that if this maximal language
is subset of X; then it is contained also in X;;; and hence in the language
Z = miZOXi- O

This theorem shows that whatever language we choose as X, this method
always searches the maximal language that commutes with L and is subset
of the initial language Xy. As we shall later show the chosen initial language
can make a difference as to whether the computation of this method halts
or not.

It is also important to note that if we choose to use operators Pref and
Suf in formula 3.3, while defining the starting point Xg, then the centralizer
we obtain is the semigroup centralizer C; (L). On the other hand, if operators
Pref, and Suf, are used, then the result is the monoid centralizer C,(L).

If the centralizer of a rational language is reached in a finite number
of steps, then it is a finite intersection of languages achieved from rational
language with rational operations, and hence it is rational itself. However, if
the centralizer is reached only as the limit, then the rationality is not guar-
anteed, since the infinite intersection might result in the loss of rationality.
For example languages

Ai={a®1<k<ijud®a’, i=1,23,...

are all rational, but their intersection

[e.e]
A= ﬂ A; ={a,a? a* a8 a'®,.. Y ={a¥]i=1,2,3,...}
i=1

is not.

This means that the fixed point approach does not give the final answer
to the question on the rationality of the centralizer of a rational language.
For the complement of the centralizer of a rational language we, however,
obtain the following result.

Theorem 3.11 ([19],]20]). The complement of the centralizer C(L) of the
rational language L is recursively enumerable.

Proof. The fixed point approach gives us a semialgorithm, which tells us,
whether the given word is in the language ¥ \ C(L). This semialgorithm
halts for every input word from this language, since for each such word there

23

exists an index k > 0 for which w ¢ X;, whenever ¢ > k. However, if the
input word is in the centralizer, the procedure does not necessarily halt. In
fact, in that case the procedure halts only if the iteration reaches some fixed
point, which in this case is the centralizer. O

Formula 3.4 uses the symmetric difference A, but both of its occurences
can be replaced by a simple difference.

Theorem 3.12. The iteration step in the fixed point approach can be written
without symmetric the differences as

Xiy1 =X\ (L7 (LX) \ X, L) U(XGL\ LX;) L7

Proof. Symmetric differences in the original formula can be written as unions
of ordinary differences:

Xiy1 = X
- X

\ (L7 (LX;AX,L) U (LXAXG;L) L)
\ (L7 ((LX0 \ XiL) U (XL \ LX)
U ((LX; \ X;L) U (X, L\ LX;)) L")

Right and left quotients can be taken separately:
Xiy1 = X\ (LH(ILX\ X L) UL (XL)\ LX;)
U(LX; \X;L) L7 U (X;L\ LX;) LY.

Next we notice that, since X; L\ LX; does not include any words from LX;
and respectively LX; \ X;L does not include words from X; L, their left and
right quotients, respectively, do not have any words in Xj, i.e.,

LY XL\ LX)NX; =0

and
(LX;\ ;L) L' nX; = 0.

Hence corresponding terms can be ignored in the formula and we obtain

Xiy1 =X\ (L7 (LX) \ X, L) U(X;L\ LX;) L7

3.5 Singular languages

In this section we consider the centralizer of a finite singular language.
The notion of (left) singular languages was first introduced by Ratoandro-
manana [30]. We call a language L (left) singular if there exists a word
v € L such that vX*N (L \ {v})X* = 0. In other words this means that in L

24

there exists a special word v that is not a proper prefix of any other word in
L and that doesn’t have any other word of L as its proper prefix. A third
way to express this is to say that v is incomparable in L with respect to the
(proper) prefix relation. In this case the word v is said to be (left) singular
in L. Notions of right singular languages and words are defined dually. In
particular, we note that the only singular language containing the empty
word is the language {e}. The following theorems hold also in that case.
However, we consider here only languages that do not include the empty
word.

In [14], Karhumaiki, Latteux and Petre define a slightly different notion.
For a language L C Y7 they call a word v € L weakly singular in L if
vL* N (L \ {v})L* = (). The language L is called weakly singular if it has a
weakly singular word v. Every singular language is also weakly singular.

The connection between the notions of weakly singular and singular lan-
guages is the same as the connection between the notions of code and prefix
code. In fact, a language L is a prefix code if and only if every word in L is
singular in L and the language L is a code if and only if every word in L is
weakly singular in L.

We formulate as a lemma the following simple observation.

Lemma 3.4. Let w be a left singular word in L. Then for any word y € ¥*
and language Y C 3%, the inclusion wy € LY implies that y € Y.

Proof. Since w is left singular in L, the only possible left L-factor of wy
is the word w. Hence the only way to factorize wy in LY is w € L and
yeyY. Ol

For languages that commute with a singular language we find the fol-
lowing result.

Theorem 3.13. Let a word v be singular in L. If LX = XL and w € X,
then, for some integer n > 0, there exist words t € L™ and u € Suf(L) such
that w = ut and uL™ C X.

Proof. If w € X and v is singular in L, then the equation LX = XL implies
vw € XL and vwvfl € X for some v; € L. Repeating this n times we get

V"w(vy, - - vev1) T € X, v; € L,
where t = v, ---v9v; and w = wut. This factorization is illustrated in
Figure 3.1. Then v"u € X for some integer n > 0 and word u € Suf(L) N
Pref(w). Since v is singular in L, we see, by Lemma 3.4, that for every
s € L™, we have
vus € XL" =L"X — us e X.

In other words, uL™ C X. O

25

Figure 3.1: Factorization of v"w.

Since C(L) is a semigroup and L C C(L), we even have that uL"™L* C
C(L).

For every proper suffix u; € Suf,(L), i.e., a word that is a proper suffix of
some word in L, (including the empty word ¢), there either exists a minimal
integer n;, for which w;L™ C C(L), or then w;L™ ¢ C(L) for every integer
n > 0. Theorem 3.13 implies that every word w € C(L) belongs to a set
w; L™ L* where u; is such that the integer n; is minimal. Note that here
and in the following theorem we can use either the monoid or semigroup
centralizer. The integers n; depend on the centralizer used.

We recall the following result from [10].

Theorem 3.14. A finite singular language L has a rational centralizer.
Moreover, the centralizer is even finitely generated.

Proof. If the language L is finite, then the set of its proper suffixes is also
finite. If we use the notation I for the set of indices ¢ of those suffixes u;
that have the minimal number n; mentioned above, then we can see that

cr) = |JwLmrr
i€l

= (JwL™)L*

el

Here the language G is finite. Furthermore, L. C G, since if we choose ug = ¢,
then ng = 1 and hence ugL™ =¢-L =L CG.
Since C(L) is a semigroup and L is included in G, we get

C(L) =C(L)* = (GL*)" = (L + Q) = G™.
Ol

Next we introduce two finite singular languages as examples and use the
construction of Theorem 3.14 to find their semigroup centralizers. In fact,
these two examples are the same languages that we have already used in
Examples 3.1, 3.2 and 3.3.

26

Example 3.4. In the language L = {a,bb,aba,bab,bbb} the word bab is
singular. First we take the set of proper suffixes, which is Suf,(L) =
{e,a,b,ab,ba,bb}. We will discuss all of these words u; separately and decide
if there exists minimal numbers n; for them.

up=c:e-LCCy(L) = np=1
uy=a: a€LCCy(L) = n1 =0

upg=>b:b-a"-a¢ LC4(L) =C4+(L)L = b-a™ ¢ C4(L), for all n > 0.
This means that for any integer n > 0 we have ug L™ ¢ C(L). Hence
2¢ 1.

ug =ab: a-ab- (bab)" ¢ Suf(L") = aab(bab)" ¢ C, (L)
= aab(bab)™ ¢ LCy(L) = ab(bab)™ ¢ C(L), for all n > 0.
Hence 3 ¢ I.

ug="ba: ba-a"-a¢ LCi (L) = ba-a" ¢ Cy(L), for all n > 0,
and hence 4 ¢ [.

us=bb: bbe L CCy(L) = ns=0.

Hereby I = {0,1,5} and G = J;c; wiL™ = ¢- L +a+bb= L. This gives us
the finitely generated centralizer

C.(L)=GL*=LL*=L",

Example 3.5. As the second example we consider the language L = {a, ab, ba, bb},
for which we already mentioned that the centralizer is C; (L) = X1\ {b} #
L*. The set of proper suffixes is {e,a,b}. We conclude that:

u=¢c:e-LCCy(L) = no=1.
uy=a:a€LCCy(L) = n;=0.

CbdCyi(L) = na#£0
ca€ L CCi(L),
-ab€C+(L),

ba € L2 C Cy (L)
-bb e Cy(L)
bLQCJr(L) = ng =1

ug =

oo o &

Hence I = {0,1,2} and G =¢- L + a + bL = {a,ab, ba, bb, bab, bbb}. So the

centralizer is indeed

C,(L) = GL* = G* = {a, ab, ba, bb, bab, bbb} ™ = ST\ {b}.

27

An even more interesting example is the following generalization of Ex-
ample 3.5.

Example 3.6. Let us consider languages L, = ¥="\ (a" + b<"). Now, for
example, with n = 2 we obtain the language of Example 3.5 and with n = 3
we have the language

Ls = {a,aa, ab, ba, aab, aba, abb, baa, bab, bba, bbb}.
We shall show that the centralizer of the language L, is
Ci(Ly) =%\ b

Firstly, it is easy to see that words b’ are not in the centralizer when
i < n. If they were, the word a - b* would be in L,Cy (L) = Cy(Ly)Ln
which is not the case since any proper suffix of ab’ is not in L,,.

Next we see that ¥ \ =" commutes with L,. It is easy to see that

E*(Egn \ b<n) — E+ \ b<n — (Egn \ b<n)2
Now we can use these equations to obtain

(SO, = (SF\B) (557 (a7 +6°)
= (ST BT)EE b

(5 B (R0 5

(B BT\ b)

(S5 (" + b)) (ZF\ b<7)

= L,(ZT\b<").

Hence the centralizer is C1 (L) = X7\ b~".

As the language L, is singular, we also know that the centralizer is
finitely generated. As a finitely generated semigroup we can express the
centralizer as

Ci(Ln) = ((b="E0=") \ 0=") .
From this example we can draw the following conclusion.

Theorem 3.15. For any positive integer n there exists a language Ly, such
that the centralizer is C4(Ly,) = X1\ A where the cardinality of A is n.

3.6 Conway’s problem for 4-element sets

As was mentioned earlier, Conway’s problem has been proved to have a
positive answer for languages with at most three elements, [6, 16]. In these

28

cases the centralizer has only two simple possibilities. It is always either p*
for some primitive word p or L™, where L is the language considered.

For four element sets the case is dramatically different. The centralizer
does not need to be p™ or L*. Tt is not necessarily even p(L)*. One easy
example, has already been mentioned, is the language L = {a,ab,ba,bb}.
This language has the centralizer C(L) = X7\ {b} = {a, ab, ba, bb, bab, bbb} T,
which is clearly not of any of the forms mentioned. There is an infinite
number of such four element languages. For example, languages of the form

L, = {a,bb,ab(bb)", (bb)"ba}, n >0
have the semigroup centralizers
C.(Ly) = {a,bb,ab(bb)™, (bb)"ba, (bb)"bab(bb)™, bbb(bb)"} .

We also note that these languages L,, are also very different in the sense
that they cannot be obtained as morphic images of one another. However,
they are all morphic images of the language {a,bb, abe, cba} over the three
letter alphabet.

In this section we analyze languages with four elements and find the
solution to Conway’s problem for most of them. We also give some reasons
for the difference between four element sets and smaller sets. We start by
recalling a result from [18]. This result is intuitively easy to understand, but
a detailed proof is more complicated. The result was originally proved for
the semigroup centralizer, but here we have extended it also for the monoid
centralizer.

We say that the language L is branching, if it has words starting with
different letters. In other words, if there are words u,v € L such that

Prefy (u) # Pref;(v).

Theorem 3.16. For any non-periodic e-free language L, there exists a
branching language L' such that C (L) (or C.(L)) is rational if and only
if Co(L') (resp. C«(L')) is rational. Moreover, C4(L) = LT if and only if
Ci(L") = L'* (resp. C(L) = L* if and only if C.(L') = L'™*).

Proof. 1f language L is branching, we can choose L' = L and we are done.

If L is not branching, then all words in L start with same letter, in
other words, we have L = alL; for some letter a and language L;. Since
Ci(L) C Pref (L") (resp. Ci(L) C Pref.(LT)), we note that C.(L) =
aY (resp. C«(L) = aY U {e}) for the same letter a and some language
Y. Now since L and C4(L) (resp. C«(L)) commute, we obtain aLiaY =
aYalL; (resp. aLi(aY U{e}) = (aY U{e})aL;) and also L1aYa = Yalja
(resp. Lia(YaU{e}) = (YaU{e})Lia). This implies that Ya C C4(Lia) =
Za (resp. YaU{e} C Ci(L1a) = ZaU{e}) for some language Z and further
Y CZ.

29

Next we do the very same reasoning for the language Lia and its cen-
tralizer Cy(Lia) = Za (resp. C«(L1a) = Za U {e}) and see that

aZ CCy(aly) =aY

(resp. aZ U{e} C Ci(aLly) = aY U{e}).

This implies that Z C Y, and together with Y C Z we obtain ¥ = Z. As
the result we conclude that

ClaLy) = aY = a((Ya)a™) = a((Za)a™') = a(C(Lia)a™)

<resp. ClaLy) = aY U{e}=a((Ya)a ') Uaa™?
= (a(YaU{e})a™" = (a(ZaU{e}))a™"
= (aCy(L1a))a™! >

Then clearly we also have that C;(aL) = (aL;)" if and only if C4(Lya) =
(Lia)* (vesp. Cu(aLy) = (aLy)* if and only if Cy(L1a) = (L1a)*).

This means that each centralizer of the language L = al is rational
if and only if the corresponding centralizer of Lqia is rational. If Lqia is
branching, we choose L' = Lja and we are done. If Lia is not branching,
we continue with the same procedure until we reach a branching language.
The branching language is reached with a finite number of steps, since the
language L is non-periodic. Moreover, C. (L) = L™ if and only if Cy (L) =
L't (resp. C«(L) = L* if and only if C,(L') = L™). O

The prefix-relation between words in the language L can be represented
as a graph. In this graph an arrow from a word u to a word v means
that u is a prefix of v. For example the prefix-graph of the language L =
{a, aa, ab,bb, aba,bba} is presented in the Figure 3.2.

AT
ab aa bba

aba

Figure 3.2: An example of a prefix-graph.

30

Figure 3.3: Prefix-graphs of all 4-element languages.

For the language L = {«,3,7,0} with four elements there exists nine
different possible prefix graphs (up to renaming elements). See Figure 3.3.

If the language is periodic, i.e., L C p™ for some primitive word p, then
the centralizer is pT, see [18]. However, if the language is not periodic,
then the first four cases (1-4), where the graph is a tree with one root,
can be reduced to the last five ones (5-9) by Theorem 3.16. Cases 6-9 all
have singular elements and hence by Theorem 3.14 yield finitely generated
centralizers. Case 5 is the only case that needs closer consideration.

By Theorem 3.16 we can assume that « and « start with different letters,
i.e., Prefy(a) # Prefi(y). Assume that o = au and vy = bv for some letters
a,b € ¥ and words u,v € ¥X*. We have three different subcases.

First of all we assume that § = abr = aubr and § = yay = bvay for
some words z,y € ¥*. Now we can use words « and ~ together in the same
way as we used the singular word in Theorems 3.13 and 3.14. Let w € C(L).
If Prefi(w) = a, then for some integer n, word z € Pref(L™) N Suf(L) and
words vy, ...,v, € L we have w = zv; - - - v, and "z € C(L), see Figure 3.4.
This implies that zL™ C C(L), since all words in azL"™ have a unique left
factor @™ in L™. Similarly, if Pref;(w) = b, we can use the word v = bv

31

instead of the word a. As in Theorem 3.14 this implies that C(L) is finitely
generated.

eL” e€C(L)
€ C(L) eL”

Figure 3.4: a"w =a"z vy -+ v, € L"C(L) =C(L)L"

In the second subcase we assume that 8 = car = auax and § = by =
buby. In this case, we have to use both words a and ~y. If Pref; (w) = a, then
for some integer n we have w = zvy - - - v, and y(ay)L2)z € C(L) or (va)2 2 €
C(L), depending on the parity of n. Symmetrically, if Pref;(w) = b, then
for some n we have w = zv; - - v, and a(ya)l2)z € C(L) or (a)2 2z € C(L).
Now these words have again unique left factors in L™ yielding once more
that zL™ C C(L). As before, the centralizer of L is finitely generated.

The third subcase, where both 3 and 0 continue with the same letter
after their prefixes a and =, is harder. If, for example, o = au, v = bv,
8 = aubr and § = bvby, for some letters a # b and words w,v,z,y € ¥*,
then all words w € C(L) N a¥X* can easily be handled using o as before.
However, the case for words w € C(L) N bYX* still remains open.

Recalling that the argument above can be considered either from the
prefix or suffix side, we can summarize our conclusions in the following
theorem, which leaves the last-mentioned case open.

Theorem 3.17. For binary a alphabet ¥ = {a,b} the centralizer of a 4-
element language L is finitely generated when L cannot be reduced with cir-
cular shifting to the language

K = wflel = {auq, bvy, auityzy, buitiy1 }
and with reverse circular shifting to the language

M = wyLwy ' = {uga, vab, xatausa, yatavad},
where w;, wi, vi, i, y; € X and t; € X fori € {1,2}.

Note, that for languages with bigger alphabets we can always apply
Theorem 3.8 to encode the language into a binary alphabet.

32

Example 3.7. The language L = {a,ab, ba,bab} is an example of the last,
open case. It has two words, a and ba, that begin with different letters and
that are prefixes of the other two words ab and bab. Both of these words
then continue with the same letter b. This language has the same structure
when the words are read from right to left, i.e., from the suffix side. See
the Figure 3.5, where the prefix relation is indicated with a solid arrow and
the suffix relation with a dashed arrow. This is important, since otherwise

Figure 3.5: Prefix (solid arrows) and suffix (dashed arrows) graph of lan-
guage L = {a, ab, ba, bab}

we would be able to apply previously given methods to the language, using
suffixes instead of prefixes. The centralizer Cy (L) of this language is LT =
(Pref . (LT) N Sufy (L)) \ {b} and can hence be easily found.

There are also languages that have same prefix and suffix structure,
but are not branching, either from prefix or suffix side. However, with
circular shifting these languages can be reduced to branching languages.
The language L = {a, aab, aba, abaab}, for example, has the same structure
as the previous one, except that the beginning a must be shifted circularly
to obtain a branching language. See prefix and suffix graphs in Figure 3.6.

Figure 3.6: The prefix (solid arrows) and suffix (dashed arrows) graph of
language L = {a, aaab, aaba, aabab} before and after a circular shifting.

Prefix and suffix relations of languages in this class can also form different
graphs.

33

Example 3.8. Languages L = {ab,bab,babba,abbabba}, K = {ab,abab,
baba, babaababa} and M = {a,abab,bab,baba} have the prefix and suffix
graphs as in Figure 3.7 and they are all different from the previous example.
The centralizers of these languages are Cy(L) = LT, C.(K) = KT and

ab - bab ab baba a . . bab

v

abbabba ~— babba) | abab babaababa | | abab” baba

Figure 3.7: The prefix and suffix graphs of the languages L, K and M.
Ci(M)=MT.

The main difference between languages with four elements and languages
with fewer elements is the fact that languages with less than four elements
are always either periodic or reducible, with circular shifting, to a singular
language.

3.7 Commutation and lexicographic order

Next we show that for a certain subset of the family of singular languages,
the centralizer of a given language L in this subset is always simply the
semigroup LT. (Or monoid L* in the case of the monoid centralizer.)

We call a word w in language L (left) root singular in L (or root prefiz
distinguishable in L, see [26]) if the primitive root p of w is singular in
(L \ u) Up. In other words, this means that u is the only word in L with p
as its prefix and that no word in L is a prefix of p.

In this section we assume that L is a language with at least two elements
and such that the element v = minyey (L) is left root singular. The following
theorem was originally given in [26] and it generalizes the result from Mas-
sazza [25] which states that Cy(L) = L* if minye(L) is primitive and left
singular in L. Note that if u is primitive, then it is left root singular if and
only if it is left singular.

We must also note that if the alphabet > has more than one letter, then
there is more than one way to choose the lexicographical order.

Theorem 3.18. Let L C X7 be a language with at least two elements such
that the element u = minyex (L) is left root singular in L. Then C(L) = L*
(and respectively C(L) = LT).

Proof. To prove that C,(L) = L*, we prove that the set C,(L)\ L* is empty.
This will also yield the result for the semigroup centralizer, since C (L) is a

34

proper subset of C,(L). We start by assuming that C.(L) # L* and conclude
that then C.(L)L # LC.(L), since we would find a word in C.(L)L which
does not have a prefix in L. For simplicity, in this proof we will use the
notation C(L) for C,(L).

Let z9 € C(L) \ L*, ny, = |u| and n,, = |29|. Since L and C(L) commute,
uzg = z10q for some suitable words z; € C(L) and a1 € L. Note that z is
also in C(L) \ L*, since if z; was in L*, then uzp would be in LL* and by
Lemma 3.4 this would mean that zy was also in L*. We can apply this same

idea n > n, + n,, times and we see that there are words a1, a9,...,a, € L
such that
n _ . n—1 .o n—2 _ _
U 20 =1u 2101 = U 29000001 = = ZpQip - 020
with

e 2, €C(L)\ L* for 0 <i <m;
e 2z, =u"v for some 0 <m <n—2;

o u=vw (v,w # €);

n—m—1

o w(vw) 20 = ap ooy € LY.

Let us set y = w(vw)"‘m_lzo =, - -+ aop. Here the integer n was chosen

to ensure that ay, - - - agrp is longer than uzg and hence covers uzg at the end
of word equation u"*zg = z,ay, - - - aocr1. Hence also the exponent n —m — 1
in w(vw)™ "™ 1z is at least one, which gives the upper bound of n — 2 for
the integer m. See Figure 3.8 below.

U U u (TR) U 20
VARVARN A N~
(7% 1
Zn
y = w(vw)" "™ 1z

Figure 3.8: u"zg = 2z, - - - oy

Next we consider the word z,u = u™vu € C(L)L = LC(L). From
Lemma 3.4, we see that v 'vu € C(L) and with m — 1 similar steps we get

some word z
z=vu™ =v(vw)™ € C(L).

With one more step we have zu = a2 for some suitable « € L and 2 € C(L).
We note that « is a prefix of v(vw)™*! and we also remember that, by
minimality, u <jex @. Hence the word a cannot be a prefix of u, and v must
be a common prefix of v and «. Let k = |w| and observe that

w <jex Prefy(vw).

35

If this were not the case, we would have « <jex u, which is not true. On the
other hand, if we consider the previously defined word y € L* we see, again
by the minimality of u = uw, that

Prefy (vw) <jex Prefi(y) = w.

Hence w = Prefy(vw). This means that w is both a prefix and a suffix of
u. In other words u = vw = wx for some word x € ¥*. We note also that
x| = [v].

Next we use once more the minimality of u and note that y cannot have
a prefix which is lexicographically smaller than u = wz. Since wv is a prefix
of y, we obtain u = wx <jex wv and hence z <} v. On the other hand, by
the singularity of u in L, we obtain from zu = v(vw)™ " = v(wz)™*! = a2
that « = vw = u and 2 = z(wz)™. Then the word 2u = z(wz)™t! €
C(L)L = LC(L) has a prefix in L, which cannot be smaller than u = vw.
Hence v <jox . So, as a conclusion we obtain v = z and u = vw = ww.
Thus by Theorem 3.1, we can find a primitive word p and integers p and ¢
such that

v=p" w=pl, u=p’te
Note that the primitive root of a word is unique.

Finally we can consider the word z, = p®t9™+P We recall that since
the language L has at least two elements and the word w is left root singular,
for any word 5 € L\ {u} we have p Lpet 3, i.€., p is not a prefix of any
other word of L other than u. Next we use the equation C(L)L = LC(L)
consecutively and find words y; € C(L) such that we can write equations

Znﬁ = uyi
np = uys
ym—lﬁ = UYm

with g, = pP3™ € C(L). With one more step we get that y,,3 = pP™ ! is
in C(L)L. However, none of the words in L can be a prefix of p?3"™. Indeed,
since the word u = pP*4 is left root singular, none of the words in L\ {u} is
a prefix of pPA™. The word u = pP™4 on the other hand is the only one in
L having p as a prefix, but p?3" only has p pieces of p as prefix, since p is
not a prefix of 5. This contradicts the fact C(L)L = LC(L). Hence the set
C(L)\ L* must be empty and C(L) = L*. O

The above theorem yields an alternative proof for the result on the cen-
tralizer of three-element languages [14].

Corollary 3.1. If L is a nonperiodic ternary language over the alphabet %
and € ¢ L, then
C.(L) =L~

36

Proof. If L is branching, then, since L is ternary, there exists a word u € L
such that Pref;(u) # Pref;(y) for any y € L\ {u}. Then we can impose an
order on ¥ such that Pref;(u) is the least element in the alphabet ¥ and
use the lexicographical order of ¥* induced by this order of letters. Hence
u = minjex (L). Tt is also immediate that w is left root singular in L.

If L is not branching, then Theorem 3.16 and its proof give us a branching
ternary language L’ which has the centralizer C,(L') = L™ and implies that
C«(L) = L*. O

Example 3.9. Let us consider the ternary language L = {a,aba,ababa}.
This language is not branching nor left root singular. However, by shifting
the first letter a circularly to the end of each word we get the language L' =
a~'(La) = {a,baa,babaa}, which is both branching and left root singular.
Hence the centralizer of L is C,(L') = L™ and the centralizer of the original
language L is

C*(L) = (ac*(L,))G_l = (a{a, baa, babaa}*)a_l = {a, aba,ababa}* = L*.

37

38

Chapter 4
Conjugacy of languages

Another interesting language equation, closely related to commutation, is
the conjugacy equation XZ = ZY. For words, the commutation equation
has a simple solution and the same applies also for the conjugacy equation.
The conjugacy equation for words has a well-known solution. Words x and
y are conjugates, i.e., they satisfy the conjugacy equation xz = zy for some
word z if and only if and y have factorizations x = pq and y = ¢p for some
words p and ¢, and then the word z can be expressed as z = (pq)‘p for some
integer 1.

For languages, the conjugacy equation does not have such an easy so-
lution. This is because, compared to words, languages have the additional
union operation. In other words, the set 3X* of all words is a monoid, but the
set p(X*) of all languages is a semiring. We say that two languages X and
Y are conjugates, if they satisfy the conjugacy equation for some non-empty
language Z. If the language Z is empty, the equation X7 = 7Y is always
true, regardless of what languages X and Y are.

The difference between conjugacy equation for words and languages
can be illustrated with an example, as we did for commutation equation.
One good example is the following one from [2|. Let Z = {a,ba}, X =
{a, ab, abb, ba,babb} and Y = {a,ba,bba,bbba}. These languages satisfy the
conjugacy equation X7 = ZY, but it is not obvious. This example is dis-
cussed more closely later in Example 4.5.

The commutation equation is a special case of conjugacy, where X =Y,
and hence some results on commutation can be generalized for the conjugacy
equation. On the other hand, problems that are undecidable for commuta-
tion (a special case) are of course also undecidable for conjugacy (the general
case). In particular, since the centralizer of a rational language can be non-
recursively enumerable, for the conjugacy equation the largest solution Z
with given rational languages X and Y can also be non-recursively enumer-
able. In the commutation equation XY = Y X there are only two variables

39

X and Y and they are in symmetric positions. In the conjugacy equation
there is one more variable Z and furthermore it is in a different position to
the other two variables. This gives us the opportunity to formulate several
different problems depending on which variables are fixed and which are
unknown. Our main attention will be on the equation LX = XK, where
languages K and L are fixed and X is unknown.

In this chapter we will define the conjugator, the generalization of the
centralizer, and present some results that can also be generalized from com-
mutation to conjugacy. We show that for certain families of languages, the
conjugacy can be defined using the same kind of formulation as for words.
We will also discuss some other aspects and special cases of conjugacy.

4.1 Conjugator

The centralizers C,(L) and C4 (L) of a given language L were defined as the
largest subsets of ¥* and ¥ which commutes with L. When we fix two
variables in the conjugacy equation and search for the largest solution, we
obtain a generalization of the centralizer, the conjugator.

Definition 4.1. For the conjugacy equation LX = XK with given lan-
guages K, L C ¥* we call the unique largest solution in p(¥*) the conjugator
of L and K and we use the notation C(L, K) for it. In the case where L
and K are not conjugates, i.e., there does not exist a non-empty solution
X, the conjugator is the empty set, which is always a trivial solution of the
conjugacy equation.

For the commutation equation we have both monoid and semigroup cen-
tralizers and they are always different to each other. The monoid centralizer
always includes the empty word while the semigroup centralizer never does.
For the conjugacy equation we could also study separately maximal solu-
tions that are subsets of the monoid ¥* and the semigroup 7. However,
these maximal solutions are not always different. In fact, it is common that
for pairs of languages L and K, solutions including the empty word do not
exist. and in these cases both maximal solutions would be the same. Hence
we choose to define and discuss only one conjugator, the largest solution
that is a subset of ¥*.

The existence and uniqueness of the conjugator can be shown as for
the centralizer. If L and K are conjugates, and conjugated over languages
X;, ie., LX; = X;K for each i in some index set I, then they are, by
the distributivity law of catenation and union operations over languages,
conjugated also over the union | J,c; X;. Hence the unique greatest solution
is the union of all solutions X. The special case where L = K gives the
monoid centralizer of L. In other words, C(L, L) = C.(L).

40

The same kind of questions can be asked for the conjugator as we asked
for the centralizer. If languages L and K are rational, is the conjugator
rational? The general answer is of course negative, since a special case, the
original Conway’s problem, has a negative answer. However, we can still
study this problem for various special cases. In particular, we will study the
case where languages L and K are finite biprefix codes. We will find that this
special case has a simple answer. The proof, however, is not straightforward.

Lemma 4.1. Any solution X of the conjugacy equation LX = X K satisfies
the following conditions. If € ¢ L, then

X C Pref, (L")
and if e ¢ K, then

X C Suf,(K™).
Together these yield that if L, K € ¥, then

X C Pref, (L") N Suf,(K™*).

Proof. If LX = XK holds, then obviously the equation L"X = X K" also
holds for any integer n. Now if € ¢ L, then for any words z € X and u € K
there exist words v; € L and 2/ € X such that zul*l = vy - --v|$|x’. This
means, since x| < [vi]+ -+ |y [, that = is a prefix of vy - v}y € L=l ie.,
x € Pref, (L*). Hence X C Pref,(L*).

Dually, if ¢ ¢ K, then we obtain X C Suf,(K*) and if L and K are both
e-free, then X C Pref, (L*) N Suf, (K*). O

In what follows, we will apply a similar reasoning to the case of conjugacy
as was used in [18] for commutation. First we prove the following lemma.

Lemma 4.2 (Interchange lemma). If L, K C X" are e-free languages such
that K has a right singular element v and LX = XK for some language X,
then for each word x € X there exists an integer n and a word u € Pref,(L)\
L such that © = wyws - - - wupu for some words w; € L and L"u C X.

Proof. Let L and K be e-free languages, v a right singular element in K,
and X such that LX = XK. Then for each x € X there exist an integer n
and factorization x = wyws - - - wyu such that w; € L, u € Pref, (L) \ L and

20" = wjwe - wpuv € XK' = L"X
with uv™ € X. Then again
wijwh - wuw™ € L"X = XK"

where w) are arbitrary elements from L. This shows that L"u C X, since v
is right singular in K. U

41

The interchange lemma gives us a tool to show the rationality of the
conjugator in the following case.

Theorem 4.1. For e-free languages L and K, such that L is finite and K
has a right singular word v, the conjugator is rational.

Proof. Let L and K be finite languages, v a right singular word in K, and X
their conjugator C(L, K). By Lemma 4.2 for each word = € X we have x €
L™y C X for some integer n and word u € Pref,(L). Since LLX = LXK
the language LX is included in the conjugator X. Hence also L*X C X
and L*L"u C X.

Let U C Pref, (L) be the set of all words u occurring in the construction
of Lemma 4.2. Since the language L is finite, so is U. Now, for each word
u € U, there exists minimal integer n, such that L*L™wu C X and each
word z € X is in one of these sets. Hence we conclude that the conjugator

of L and K is
aLKan:U<ULM0.

uelU

This set is rational, since the set U,y L™ u is finite. Note that if L and K
are not conjugates, then the conjugator is the empty set. O

The proof of the previous theorem is not constructive, since it requires
the conjugator to be given. The case where language L is rational, but not
finite, does not necessarily yield a rational conjugator, since the sets U and
Uyerr L™ are not necessarily rational.

Corollary 4.1. The conjugator C(L, K) of finite biprefix codes L and K is
rational, since in a suffix set all elements are right singular.

4.2 Word type solutions

We recall that the conjugacy equation xz = zy for non-empty words has the
general solution:

xz =2y <= Ip,q € X" s.t. x =pq,y = qp and z € (pq)*p. (4.1)

This motivates the notion of a word type solution of the conjugacy equa-
tion for languages. In [2] this has been defined in the obvious manner as
follows:

X =PQ,Y =QP and Z = (PQ)'P (4.2)

for languages P, @ C ¥* and set I C N. We call such solutions word type 1
solutions.

42

However, there is also a slightly more general way to define word type
solutions of the conjugacy equation for languages. The condition (4.1), in
the case of words, can be equivalently formulated as the condition

xz =2y (4.3)
<
Jp,q € ¥,k € Nsit. = (pg)*,y = (qp)* and z € (pq)*p,

where pg and gp are primitive words. This formulation motivates the follow-
ing alternative definition of word type solutions of the conjugacy equation
of languages:

X = (PQ)*,Y = (QP)* and Z = (PQ)' P (4.4)

for languages P,(Q C X* such that PQ and QP are primitive, integer k& and
set index set I C N.

We call such solutions word type 2 solutions and they clearly include all
word type 1 solutions. Unlike in the case of words, these notions are not
equivalent in the case of languages. The difference arises due to the union
operation of languages. As we see in the following example, different word
type 1 solutions can, in some cases, be combined using the union operation
so that the resulting solution is of word type 2, but not of word type 1.

Example 4.1. Let X = BCBC and Y = CBCB for B = {b} and C = {¢}
(or some other biprefix codes B and C'). Now both solutions

Pl = B7 Ql = CBCa
X =PQ, Y=0Q1P, Zy =PQ:P, = (BCBC)B
and
P, =BCB, Q2=C,
X = POy, Y = QuP, Z = PyQ2Py — (BCBC)BCB

are word type 1 solutions in the sense of (4.2), but their union Z; U Zy =
BCBCBUBCBCBCB is not. However, if we use (4.4) as the definition of
word type solution, we obtain

P=B,Q=CX=(PQ)Y = (QP)*,Z1 = (PQ)*P = (BC)’B,
P=B,Q=C,X = (PQ)*Y = (QP)* Z, = (PQ)*P = (BC)*B

and

Z =7,UZy = (PQ)23 P,

Based on the above, we choose the more general version (4.4) as our
definition of a word type solution to the conjugacy of languages.

43

4.3 Finite biprefix codes

In this section we consider the conjugacy of finite biprefix codes L and K.
We give a complete characterization of the conjugacy of these languages. We
show that if finite biprefix codes L and K are conjugates, then all solutions
of the conjugacy equation LX = X K are word type solutions. This is done
by first characterizing L and K as products of biprefix codes P and @), and
then showing that the language X is also a product of these same biprefix
codes. Most of these results were originally published in [3].

In this section we assume that L and K are finite biprefix codes such
that LX = X K for some nonempty language X.

We begin with an improved version of a lemma from [2]. In the original
version the difference between word type 1 and word type 2 solutions was
overlooked.

Lemma 4.3. If sets L, K and X satisfy the conjugacy equation LX = XK
and L and K are uniform, with L, K # {e} then there exist uniform sets
P,Q C X%, an integer k > 0 and I C N such that L = (PQ)*, K = (QP)F
and X = (PQ)'P.

Proof. Any uniform language M is a prefix code and hence has a unique
factorization as the catenation of elements in the base of the free monoid
of prefix codes. Hence the language M is uniform, all of these factors must
also be uniform and we conclude that the set of all uniform languages is a
free submonoid of the monoid of all prefix codes.

Now, L and K are uniform and the language X can be decomposed into
uniform subsets X,, = {w € X | |w| = n}. Clearly languages L, K and
X, are solutions of the conjugacy equation as well. All of these languages
are uniform and the set of all uniform languages is a free monoid. Hence
these languages can be considered as words over a special alphabet and, for
nonempty languages X,,, characterized as

L=(PQ)F, K=(@QP) X,=(PQ"P
for some integers k, i, and uniform languages P and). Then the whole
solution can be obtained as the union X = |J°°,X,, = (PQ)!P with the
index set I = {iy, | X;, # 0,n > 0}. O
Corollary 4.2. If sets L, K and X satisfy the conjugacy equation LX =
XK and L, K and X are uniform, with L, K # {€}, then there exist uniform
sets U,V C ¥* and integer m > 0 such that

L=UV, K=VU, X=UV)"U. (4.5)

44

Proof. If languages L, K and X are all uniform, we have L = (PQ)*,
K = (QP)* and Z = (PQ)'P. We can choose integers a,b and m so
that a + b+ 1 = k and km + a = i. Then we obtain uniform languages
U = (PQ)*P and V = (QP)’Q and sece that L = UV, K = VU and

X = (PQ)'P = (PQ)*™**P = (PQ)*"(PQ)"P = (UV)"U.
O

We start by characterizing biprefix codes L and K. From [3] we obtain
the following lemma.

Lemma 4.4. Suppose that L and K are biprefix codes and LX = XK for
X # (. Then, for every integer n > min{|a||«a € L} there exist finite
biprefix codes U, and V,, satisfying

LNy = U, V,NES" and

Kny=" = V,U,ny=" (4.6)
with
maxycp, |u| + mingey, [v] < n and @7
mln’U,EUn ’u‘ + ma*X’UEVn ’U’ S n. .

Proof. Let Ly, Ky and X be the sets of elements in L, K and X of minimal
length and let ng = min{|a||a € L}. Then LoXo = X¢K(holds and, since
Lo, Ky and X are uniform languages, we can apply Corollary 4.2. This
means that Lo = Upy Vs, Ko = Vo Upy and Xo = (Up, V)" Uy, for some
languages Uy, and V,, and integer m > 0. Languages U,, and V,, are
uniform and hence also biprefix codes. Therefore (4.6) and (4.7) hold for
n = ng. We also note that np = min{|a| | a € K}.

Next we will use induction on the integer n. We will construct languages
U, and V,, for each step and show that conditions (4.6) and (4.7) hold
for these languages. First we show that languages U,_1V,_1 N =" and
Vpo1Up—1 N =" are included in L and K respectively. Then we form U,
and V, by adding some necessary elements to languages U,_; and V,,_;.
Finally we show that languages U,, and V,, are also biprefix codes.

Let us choose ug € Uy, vo € Vi, and xo = (upvg)"ug € Xo. We
assume, inductively, that we have already constructed U; and V; satisfying
conditions (4.6) and (4.7) for integers ng < i < n. Let u € U,_1 and
v € Vj,—1 such that |uv| = n, if such elements exist. Then |uvg| < n and
|lugv| < n, by conditions (4.7), so that uvg,ugv € L and vou,vuy € K. Now
rououvug € X K? = L?X, by regrouping elements we have

xovouvug(voug)™ = (uovo)m+1uvxo e XKM?2 = [mT2x

and since L is biprefix, we get wvzrg € LX. Hence wvrg = ax for some
a € Land z € X. Here |x| > |zgl, i.e., a is a prefix of uwv € Up_1V,,—1. If

45

|a] < n,i.e., ais a proper prefix of uv, then we also have that o € Uy, 1V}, 1
giving a contradiction, since U,_1V,_1 is a biprefix. Therefore |a| = n
and @ = wv € L. Similarly vu € K and so U,_1V,—1 N <" C L and
Vie1Up—1 N ysn CK.

Next we deal with the words in LNX"\U,,_1V,,—1 and KNX"\V,,_1U,,—1
and show that some words can be added to U,_1 and V,,_1 to the form
desired languages U,, and V;, in such a way that (4.6) and (4.7) still hold.

If there exists a word o € LN Y™\ Up,—1V,,—1, then

(upvg)™ oy = zovoaug(voug)™ € L™T2X = X K™2

and since K is biprefix, zqugaug € XK?2. Therefore zgvgaug = x84 for
some words 3,3 € K and = € X, with |z| > |zg|. See Figure 4.1 for an
illustration. Now (33 is a suffix of vpaug and |ug| < ng < |3 < |voaug| —
18] =n+mno—1|8] <n. So ' = v'ug, where v/ is a suffix of . We have two
cases:

Zo Vo u v Uo

Figure 4.1: Illustration of equation zgvpaug = (3.

(i) If |#'] < n, then ' = v'ug € V;,_1U,,—1 and, since U,,_1 is a biprefix
code, v' € V,,_1. Now a = u/v, where v’ ¢ U,,_1, and (3 is a suffix of vgu'. For
the lengths we now have ng < |3] < |vou/| = |vgaug|— || = n+no—|F'| < n.
There are two subcases for different lengths of 3:

If | 5] < n, then g = v"u” for v" € V,,_1 and v” € U,,_1. Now [v"u"] <
lvgu/|, since 8 = v"u” is a suffix of vou', and also [v"| > |vg|. Hence |u”| < |u/|
and vu” is a suffix of u/. In fact «’' # u”, since v’ ¢ U,,_1 and v’ € U,_;.
Now u’v" € U,_1V,_1 and, using the following inequality of lengths

|| < Jwoauo| — 0] = |u| < m

we also have that «”v’ € L. This means that u”v" and o = v/v’ are both in
L and u”v' is a proper suffix of o = w/v’. This contradicts the fact that L is
biprefix code.

On the other hand, if || = n = |a|, then |f'| = ng, |z| = |xo| and
B = vou'. In this case we add word v to language U, so that o € U, V,,,.
Note that this agrees with condition (4.7).

(ii) If |8/ = n (= |a]), then oo = w/v" with |u'| = |up| and |3| = |voaug| —
|5’| = no, so that 8 = vou’. Hence € V,, U, and u’ € U,,. In this case we
add v to V;, so that a € Uy, V,,. Here condition (4.7) is also satisfied.

46

We proceed similarly for 5 € K NX" \ V;,_1U,—1. Note that by the
construction of U,, and V,,, conditions (4.6) and (4.7) are both true. Now
for each element w in U, \ U,,—; there exist elements v' and v in V,,, such
that uv’ € LNYX"™ and v"u € K N X", We have to show that this is true for
all elements of V,,, i.e., that uV,,, C L and V,,u C K.

Let v € V},,. Then vug € K and ugv € L. Since
(uovo) ™ upv" uvzy = xo(v"u)(vug) (voug)™ € X K™ = M2 X,

we have that ugv’uvzy € L2X. Since ugv” € U,yVyn, € L, we obtain
uvzrg € LX, so that uvxg = ax for some o € L and x € X.

If |a| < n = |uwv|, then « € U,,—1V,,—1 C U,V,, and « is a proper prefix
of wv € U,V,,. However, this can not be the case, since U,, and V,, are both
biprefix codes (see below).

If |a] > n, then |z| < |zg|, which contradicts the minimality of |zg|.
Hence |a] = n = |uv| and thus o = uv € L. The proof for V,,, is obtained
dually.

Similarly, for each element v in V,, C V,,_; there exist elements u/ and
u” in Uy, such that v'v € LNY" and vu” € K NX", and we can prove that
Upyv € L and vU,, C K.

So far we have constructed sets U, and V,, satisfying conditions (4.6)
and (4.7). Hence it remains to conclude that these sets are biprefix codes.
If ' € U, is a proper prefix of u € U,, we can assume that |u] = n — |ug|
(otherwise we are in U,_1 which is biprefix by yhe induction assumption)
and so v € U,_1. Then there exists a v” € V,, such that v"u € K, but
then we also have that v""v’ € V,,,U,—1 C K. Since K is biprefix, we have a
contradiction and U,, must be a prefix code.

A similar reasoning applies if u’ € U, is a proper suffix of u € U,,. Hence
U, is also a suffix code and therefore it is a biprefix.

We can show that Vj, is a biprefix code in a similar manner.]

Theorem 4.2. If finite biprefix codes L and K are conjugates, then L = UV
and K = VU for some biprefix codes U and V.

Proof. By applying Lemma 4.4 for n = maxaer, |o| + maxgeg || — ng, we
obtain:

for all u € Uy,,uvg € L, so |u| < maxaer || — |vg
for all v € V,,,vug € K, so |v| < maxgek |B] — |uo| |’

and thus |uv| = |u| + |v] < (maxaer |o — |vo]) + (maxgek |B] — |uo]) = n.

47

Clearly also maxqcr, |a] <n and maxgeg [3| < n. Hence we obtain:

UV, N3=" = U,V,

VU, N2 = VU,
LNYS" = L and
KNnyst = K

implying that L = U,V,, and K = V,,U,. O

Theorem 4.2 deserves a few comments. It shows that if finite biprefix
codes L and K are conjugates, i.e., satisfy the conjugacy equation LX = XK
with a nonempty X, then they can be decomposed into the form

L = PQ and K = QP for some biprefix codes P and Q.

Of course, the reverse also holds, namely that languages L and K with such
decompositions satisfy the conjugacy equation, e.g., for X = P(QP)’, with
I € N. Hence conjugacy in the case of finite biprefix codes can be defined
equivalently in the above two ways. These definitions are not equivalent in
general, as discussed in [4].

To continue our analysis, let us see what happens if the biprefixes L and
K have two different factorizations:

L=UV, K=VU and L=UYV'S K=V'U.

This is indeed possible, if L and K are not primitive, as pointed out in
Example 4.1. We show that a unique factorization can also be given for L
and K. For this we need the following simple lemma on words. This is a
basic result in combinatorics on words, but the proof is given here for the
sake of completeness.

Lemma 4.5. All solutions of the pair of word equations

Ty = wv

yr = vu
over the alphabet ¥ are of the form x = B(aB), y = (aB) a, u = B(aB)”
and v = (af)la with i + j = k + 1 for integers i, j, k,1 and words o, 3 € ¥*.

Proof. 1f we assume that |u| < |z|, the first equation implies that for some
word ¢
T = ut

and hence
v =ty and yut = tyu.

48

The latter condition means that yu and ¢ commute, i.e., we can write

t=(ap), y=(ap)’a, andu=pB(af)",
where a, 8 € ¥* and d, e, f > 0. This leads to the solutions

= Blap)t!
(o) a
Blof)”
= (0B)/ .

S
I

The case when |z| < |u| is symmetric and the solutions are the same up to
a renaming of z,y,u and v. O

Since biprefix codes can be viewed as words over the alphabet of all
indecomposable biprefixes, we conclude from Theorem 4.2 and Lemma 4.5
the following theorem.

Theorem 4.3. If finite biprefiz codes L and K are conjugates, then L =
(PQ)" and K = (QP)" for some integer i, primitive languages PQ and QP
and unique biprefix codes P and Q).

Proof. Theorem 4.2 implies that L and K have some factorization L = UV
and K = VU with biprefix codes U and V. If L = UV = U'V’ and
K = VU = V'U’ are two different such factorizations of L and K, then we
can

v = uv'v’
vu = V'U.

Biprefix codes are now viewed as words over the alphabet of the appropriate
finite set of indecomposable biprefix codes. This gives that U = P(QP)/,
V = (QP)*Q, U = P(QP)" and V' = (QP)™Q for some integers j, k, 1
and m. Then L = (PQ)" and K = (QP)" for some integer i. Naturally P
and () can be chosen so that PQ and QP are primitive roots of L and K,
respectively.

Hence all different factorizations L = UV, K = VU can be given in
the form described in the theorem, that is as products of the same unique
biprefix codes P and Q. O

The above theorem means that L and K are conjugates of the form
given in the word type 2 solution in formula (4.4). Next we complete our
characterization by showing that the form of X in conjugacy equation LX =
XK is also in the form of formula 4.4, that is X = (PQ)!P for some
nonempty set I C N. In other words, we show that the conjugacy of finite
biprefix codes L and K is always word type 2. This proof is based on some
nontrivial results originally proved in [30], see also [15].

49

Lemma 4.6. Let L be a prefiz code, p(L) its primitive root, and Cy(L) its
centralizer. Then C,(L) = p(L)*.

Lemma 4.7. For any prefix code L, if the set X of words commutes with
L, then X = p(L)!, for some set I C N.

With the help of above lemmas we can characterize the conjugator of
two finite biprefix codes.

Theorem 4.4. For given finite biprefiz codes L and K, the conjugator
C(L,K) is X = (PQ)*P, where P and @ are biprefiz codes such that
p(L) = PQ and p(K) = QP.
Proof. From previous theorems we know that L = (PQ)* and K = (QP)F
for some biprefix codes P and @ such that p(L) = PQ and p(K) = QP.
Lemma 4.6 shows us that the centralizer of L is C(L) = (PQ)*.

Let X be the conjugator of L and K. When we catenate the language
@ on both sides of equation LX = XK and notice that KQ = (QP)*Q =
Q(PQ)* = QL, we obtain

LXQ=XKQ = XQL.

This means that language X @ commutes with L. Now, Lemma 4.6 implies
that XQ C C(L) = p(L)* = (PQ)*. Since the empty word is clearly not in
X(@Q, we can write

XQ C (PQ)*.

The language @ is a biprefix code, so we can eliminate the right factor @
and hence we obtain:

X C (PQ)*P.

On the other hand, we know that (PQ)*P is a solution of the equation
LX = XK and hence included in the greatest solution X, i.e., (PQ)*P C X.
As a conclusion we see that the conjugator C(L, K) is

C(L,K) = X = (PQ)*P.
O

More generally we can characterize all solutions X in the equation LX =
X K for finite biprefix codes L and K as follows.

Theorem 4.5. If a nonempty solution of the conjugacy equation LX = XK
for finite biprefiz codes L and K exists, it is of word type 2, i.e.,

L=(PQ)', K=(QP) and X=(PQ'P,

for languages P and Q and some set of integers I < N.

20

Proof. As in the previous proof, we know that L = (PQ)*, Y = (QP)* and
languages PQ and QP are primitive. Let X be an arbitrary language such
that LX = XK. Now, as above, LXQ = XQL and, by Lemma 4.7, we
have

XQ = (PQ)’ (4.8)
for some J C N. Clearly 0 ¢ J, since X@Q does not include the empty
word, and we can again eliminate the right factor, biprefix code @), from the
equation (4.8). This gives us the solution X = (PQ)! P with some index set
I={ieN|i+1eJ}. O

The conjugacy problem, [13], can be stated as follows: “Are given finite
languages L and K conjugates?” In general, the decidability status of this
problem is not known. Our results allow us to answer it in the case of
biprefix codes.

Theorem 4.6. The conjugacy problem for finite biprefix codes is decidable.

Proof. Let L and K be finite biprefix codes. Languages L and K have
unique factorizations as catenations of indecomposable biprefix codes. These
factorizations can be found, for example, by finding the minimal DFA for
these biprefixes [1]. Theorem 4.2 shows that if L and K are conjugates,
then L = UV and K = VU for some biprefix codes U and V. Since the
“prime factorizations” of L and K are finite, there are only a finite number
of candidates for U and V. If U and V can be found, then the equation
LX = XK has at the very least word type 2 solutions for the given L and
K. If on the other hand, suitable U and V' can not be found, then L and K
are not conjugates.]

It is interesting to ask how much the condition “L and K are finite
biprefix codes” can be relaxed whilst still preserving the word type conju-
gacy. The following example shows that the condition “L is a finite prefix
code and K is a finite suffix code” is not strong enough.

Example 4.2. Let L = {baa,abaa} and K = {aab,aaba}. The language L
is a prefix code and K is a suffix code. These languages have the conjugator

C(L,K) = (Pref4 (L") nSuf (K1) \ {a} = {baa, abaa}*{b, ab, ba, aba}.

This is the conjugator, since first of all it is a solution of the conjugacy
equation, secondly from earlier results we know that C(L, K) C Pref,(LT)N
Suf,(K*) and thirdly it is easy to note that words € and a are not in the
conjugator.

Now, L and K are conjugates, but it is important to note that the
conjugacy is clearly not of word type. In fact, L and K can be factorized as
follows:

L = {baa,abaa} = {e,a}{b}{aa} K = {aab,aaba} = {aa}{b}{e,a}.

51

As we can see, languages L and K are constructed from the same factors
in a different order, but we do not get word type factorization. Also the
conjugator can be constructed using these same factors:

C(L,K) = L*{b,ab,ba,aba}
= ({e.a}{oHaa})" {e,a}{b}H{e, a}
= {e,al{d} ({aa}{e,a}{b})" {e,a}
= {e,al{d} ({e,a}{aa}{b})" {e,a}
= {e,a}{dHe, a} ({aa}{b}{e, a})"
= {b,ab,ba,aba} K*.

It is also worth noting that even though the conjugacy of L and K is not
of word type, there exists a third language M = {aab, aaab} that is a word
type conjugate of both L and K. This can be seen easily when we factorize
it:

M = {aa} - {&, a}{b} = {e.a} - {aa}{b}

The corresponding conjugators are:

C(L, M) = L*{e,a}{b} = ({e,a}{b}H{aa})" {e,a}{b} = {e,a}{b} M~

and

C(M,K) = M*"{e,a} = ({&,a}{aa}{b})" {e,a} = {&,a} K*.

Another notable thing is that languages L? and K? also have word type
factorizations L? = UV and K? = VU. If we denote

P={ea}, Q={b} and R = {aa},

we can write L2 = PQRPQR and K? = RQPRQP. The crucial point here
is the fact that P = {¢,a} and R = {aa} commute. Hence we can write

L? = PQP - RQR = {b,ab, ba, aba} - {aabaa}

and
K? = RQR - PQP = {aabaa} - {b, ab, ba, aba}

and this gives us factors U = PQP and V = RQR. However, the solution
X of the conjugacy equation L?X = XK? is not necessarily of the word
type form. In particular, the conjugator of these languages is the same as
for languages L and K

C(L* K*) =C(L,K) = (PQR)*PQP = L*{b,ab, ba, aba}.

52

Figure 4.2: Automaton of the conjugator C(L, K) = C(L?, K?) for languages
L = {baa,abaa} and K = {aab,aaba}.

4.4 Examples

We conclude this chapter with a few examples on the conjugacy of finite
languages that are not of word type. Examples 4.3 and 4.5 are taken from [2].

Example 4.3. Let L = K = {a,aaa} and X = {aa}. These languages
satisfy the conjugacy equation, but the solution is not of word type. For
languages L and K the word type factorization is easily given as P = {a},
Q = {e,aa}, L = PQ and K = QP. However the third language X is not
of word type.

We can note that these languages L and K can be seen as unions of two
languages, L1 = K1 = {a} and Ly = Ky = {aaa}. Now conjugacy equations

LlX = XK1 and
Ly X = XKo

both hold. These are both also word type solutions, since Ly = P;Q1,
K1 =Q1P1, Ly = (P1Q1)*, Ky = (Q1P1)? and X = P1(Q1Py) for languages
Py = {a} and Q, = {=}.

Example 4.4. We extend the idea of the previous example as follows. Let
P = {ab,bb} and Q = {a,aba}. Let us consider languages L = PQ + (PQ)>
and K = QP + (QP)3. With the language X = P(QP)? they give us a
solution of the conjugacy equation LX = XK. Again, this is not a word
type solution in the sense of the definitions at the beginning of this chapter.
However, the pairs of languages L1 = PQ, K1 = QP and Ly = (PQ)3,
K> = (QP)? with X give us word type 2 solutions.
The conjugator of languages L and K is C(L, K) = P(QP)*.

For solutions of the conjugacy equation
XZ=7Y

the definition of the word type 1 solution allows Z to be a union of languages
of the form P(QP)* with different exponents i. The definition of word type

o3

2 solutions extends this by making factors PQ and QP primitive and hence
allowing Z to be a union of previously incompatible word type 1 solutions.
The previous two examples suggest that it might be reasonable to further
extend the notion of word type solutions from the definition of word type 2
in equation 4.4 to an even more general definition.

Definition 4.2. We call a solution of equation XZ = ZY a word type 3
solution, if

X =(PQ), Y=(QP) and Z=(PQ)P

for languages P,) € ¥* such that PQ and QP are primitive and index sets
I,J CN.

Such word type 3 solutions would allow languages X and Y to be unions
of different powers of word type 2 solutions. If languages X and Y both
have the same index set J, then for each integer k € J languages (PQ)* and
(QP)* are word type 2 conjugates over Z and hence, by the distributivity
of catenation and union, X and Y are also conjugates. However, languages
with different exponent sets, for example (PQ)M and (QP)N with M # N
are not necessarily conjugates.

Example 4.5. Let L = {a,ab,abb,ba,babb}, K = {a,ba,bba,bbba} and
X = {a,ba}. This is a solution of the conjugacy equation, but it is not of
word type. In this example, languages L and K are of different cardinality.
In [2] it is noted that generally, if there exist sets P,@ and @’ such that
X = ;e (PQ)'P for some I C Nand PQ' C L C PQ and QP C K C Q'P,
then the sets L and K are conjugates, since PQ'P = PQP.

In this case we have P = {a,ba}, Q = {e,bb} and Q" = {e,b,bb}.
Hence PQ = {a,abb,ba,babb} C L C {a,ab,abb,ba,bab,babb} = PQ’ and
K = QP = Q'P. It can also be noted that Pref(L™) = Pref((PQ)") =
Pref((PQ")"), since PQ'P = PQP, and that the conjugator is common for
all of these pairs C(L, K) = C(PQ,QP) =C(PQ',Q'P).

The proof of the following lemma can be found in [2].

Lemma 4.8. The conjugacy relation for languages is reflexive, transitive,
but not symmetric.

The next example, however, shows that word type conjugacy is not tran-
sitive. On the other hand, even if conjugates are not of word type, there
can be a sequence of word type conjugates between them as we already saw
in Example 4.2. The next example will explain this more detailed.

Example 4.6. Let L = {a,aab} and K = {a,baa}. These languages are
clearly conjugates. For example with X = {aa} we have LX = XK. It is
also easy to see that these languages are not word type conjugates.

54

L can be factorized as L = {a}{e,ab} and K as K = {e,ba}{a}. We can
name these factors as P = {a}, Q = {€,ab} and R = {&,ba}. The language
X can also be represented as the catenation X = PP. Next we note that if
we define a third language as M = {a,aba} = PR = QP, then we have two
pairs of conjugate languages with word type factorizations

L=PQ, M=QP=PR, K=RP.

These conjugacies are both word type, since any languages X and Y such
that LX = XM and MY = Y K also have corresponding word type factor-
izations. For example, if LX = XM, we can use a trick similar to the one
used in Theorem 4.4. Now

LXQ = XMQ
(PQ)XQ) = (XQ)(PQ)

and since L = P(Q is a suffix code and primitive, all languages that commute
with it are of the form (PQ)’ for some set I of integers. Therefore XQ =
(PQ)’. Here all integers in I must be positive. Since PQ is a suffix code,
the right PQ-factor of XQ = (PQ)’ must be unambiguous. If w is an
arbitrary word from X(@Q, we have two cases. If w ends with the letter a,
then the right Q-factor of w must be ¢ and w € X. This gives factors of
w in X and (). On the other hand, if the last letter of w is b, then the
right PQ-factor of w must be aab, i.e., w = uaab for some word u. We have
two possibilities for the right Q-factor, either ¢ or ab. If w € X then we
would have wab = uaabab € XQ = (PQ)! which can not be true. Hence
the factorization of w in X and () must be uniquely as ua € X and ab € Q.
Therefore the product X (@ is unambiguous and we can eliminate the right
factor @ from the equation X@Q = (PQ)’. We obtain

X=(PQ)r, (J={ieN|i+lel}),

which is in the form of the word type 2 solution. Solutions for equation
MY =YK are also of word type by symmetry, since K = L and M = M.
Now L and K are conjugates over two word type conjugacies:

LX = (PQ)PP = P(QP)P = P(PR)P = PP(RP) = XK.

As in Example 4.2, here we also note that the second powers of L and
K have word type factorizations

L? = {aa}{e,ab,ba,baab} = (PP)(RQ)

K% = {e,ab,ba,baab}{aa} = (RQ)(PP).
The conjugator of L? and K? is C(L?, K?) = PP(RP)* = P(QP)*P =
(PQ)* PP that is the same as C(L, K) and clearly not of word type. Word

type solutions (PPRQ)' PP = (PQPQ)' PP of course form a subset of all
solutions.

95

The previous example is extended in a natural way to the case where
there is an arbitrary number of conjugacy steps between L and K.

Example 4.7. Let L = {a,a"b} and K = {a,ba"}. These languages are
conjugates for example over language X = {a"}. These languages are not
word type conjugates. L and K have factorizations L = PQy and K = Q.,,P
with languages P = {a}, Q1 = {&,a" 'b} and Q,, = {,ba™ '}. When we
define the languages

Qi = {e,a" "ba" '}, (1<i<n)

we can form the languages

My = P
M, = Q;P= PQH—l (1 <1< n) and
M, = QpP.

For these languages, M; and M, are clearly conjugates with word type
factorizations, since

M;P = PQiy1P = PM,;,,.

Solutions of equations M; X = X M, can be shown to also be of word type.
Here L = My and K = M,, and L and K are conjugates over n word type
conjugacies, rather than just two, as in the previous example:

LP"™ = PQ,P" = P?Q,P" ' =... = P"Q,P = P"K.
Now the nth powers of languages L and K have word type factorizations:

L™ = (PQ1)"=P" QnQn-1- Q21
K" = (Q1P)" =QnQn-1---Q2Q1 - P".
Again the centralizer is C(L",K") = (PQ1)*P" = P"(Q,P)*, which is

not of word type, but which of course includes all word type solutions
(PQu)™)'P™.

4.5 Fixed point approach for conjugacy

In the previous chapter we introduced the fixed point approach for the com-
mutation of languages. It is very natural to generalize this method for the
conjugacy. Recall that the fixed point approach was constructed for the
commutation equation LX = XL by defining a sequence of languages

Xo = Pref(L") N Suf(L™)

o6

and
X1 = X\ (LTYLX;AXL) U (LXAXG L)LY, i>0

and by noting that

c(L) =) Xi.

i>0
Now for the conjugacy equation LX = X K we define the corresponding

sequence
Xo = Pref, (L") N Suf,(K™)

and
X1 = X\ (LY LXAXK) U (LXGALK)K™Y, i>0. (4.9)
We will show that from this construction we get the conjugator C(L, K)

as the language
Z:ﬂ&.

i>0
Naturally, if we choose L = K, we obtain the sequence which we used with
commutation and get the monoid centralizer as the result.
The proof of our claim follows closely the corresponding proof for the
commutation equation and the centralizer.

Theorem 4.7. The language Z is the conjugator C(L,K) of given e-free
languages L and K.

Proof. The chain of languages X; is obviously descending for i > 0, since
each X, is a subset of Xj.
By Lemma 4.1 and the fact that L and K are e-free we know that

C(L,K) C Xy = Pref, (L*) N Suf, (K*).

With small modifications to the proof of Theorem 3.9 we obtain the
following. If C(L, K) is a subset of X; for some integer 4, then

LC(L,K)=C(L,K)K C LX; N X; K,
i.e., all of the elements of LC(L, K) are in both LX; and X;K. Hence
LC(L,K)N(LX;AX,K) =)

and furthermore

C(L,K)NL Y LX;AX;K) =0

and

C(L,K)N (LX;AX; K)K ™ = .

o7

By combining these two we see that
C(L,K) N (L Y(LX;AX,K) U (LX;,AX;K)K 1) = 0.

This emptiness shows that the iteration step in equation 4.9 does not remove
any elements of C(L, K) from X;. Thus the next step X;;1 also includes the
whole conjugator C(L, K), i.e.,

C(L,K) C Xiq1

and by induction C(L, K) C X; for every integer i > 0.

Using an argument similar to that used in the proof for the centralizer the
intersection Z = (1,5, X; is a solution of conjugacy equation and includes
the conjugator. By the maximality of the conjugator we obtain Z = C(L, K).

O

This gives us a more general version of the mapping ¢ : p(X*) — p(X)
in equation 3.6

o(X) =X\ (LTHLXAXK)U(LXAXK)K ™). (4.10)

The fixed points of this mapping are all solutions X of the conjugacy equa-
tion LX = XK for L and K. The conjugator is the unique maximal fixed
point.

o8

Chapter 5

Examples of the fixed point
approach

In this chapter we will have a closer look at different cases of commutation
with some examples. We discuss the fixed point method for these examples
and use the FAFLa computer program as our tool. In this program we
represent languages as corresponding minimal deterministic finite automata
and apply the fixed point method using this alternative representation. We
also show that for some examples the method does not converge in finite
time even if the centralizer is rational.

We start by discussing some rational languages and find the centralizer
for them. First we recall from Theorem 3.6 that the following inclusions

always hold:
LT C S, CCy(L).

With the following examples we show that there exist some languages in
each of the classes LT = S, =Cy (L), LT =S, CcCy(L), LT € S, =Cy(L)
and Lt € S, € C.(L). Some of the languages in these examples are finite
and some infinite.

After these examples, we introduce some languages for which the cen-
tralizer cannot be reached in a finite number of steps using the fixed point
approach.

We start with one property that holds for all singular languages L.

Theorem 5.1. Let L be a language. If L is (left or right) singular, then
Lt=5.

Proof. Let w € Land t € S;,\ L. Then, by the definition of Sy, wt € LL™,
i.e., the word wt has an L-factorization such that the first factor is not w.
This means that the left most factor in this factorization is either a proper
prefix of w or some word wu such that ¢t = us for some s € LT. Now if L
is left singular, we can choose w to be a left singular word in L and we see

29

that Sy \ L™ must be empty. The claim for the right singular case is proved
similarly. U

5.1 The case LT =S, =C.(L)

Example 5.1. We consider the finite language L = {a, bb, aba,bab} as an
example of a language having L™ = S; = C.(L). Theorem 5.1 clearly
implies that L™ = Sy, since, for example, the word bb is singular in L.

With the fixed point approach the centralizer is reached in four steps,
i.e.,, C;(L) = X3. The iteration steps X; can be recognized by the DFAs
given in the following graphs. We computed the procedure and drew the
resulting automata with the FAFLa-software [31]. The equality X3 = LT
was also verfied using the computer.

Ot
OO0

Figure 5.1: The minimal DFA that recognizes the language L =
{a,bb, aba, bab}

Figure 5.2: The minimal DFA that recognizes the language X, for language
L = {a,bb, aba,bab}

60

Figure 5.3: The minimal DFA that recognizes the step X; for language
L = {a,bb, aba,bab}

Figure 5.4: The minimal DFA that recognizes the step Xo for language
L = {a,bb, aba,bab}

Figure 5.5: The minimal DFA that recognizes the step X3 = LT = C, (L)
for language L = {a, bb, aba,bab}

61

From Figures 5.2 to 5.5, we can see that already at step X there exists
a subgraph that stays unchanged at each step and finally forms most of the
final automaton of X3 = LT. This part is highlighted using a dashed line.
In the first steps, the size of the automata grows, as the languages have
more detailed rules for the inclusion of words. In the last step, the number
of states drops, since the rules for the centralizer are “more simple”.

5.2 The case LT =5, C C(L)

For this case we have a couple of nice and easy finite examples.

Example 5.2. One very simple example of a language, for which L™ = S,
but the centralizer is something different, is the language L = {aa} over the
alphabet ¥ = {a}. The whole semigroup 1 = a™ clearly commutes with
L, implying that C, (L) = a™. The language L™ = (aa)" is the language
of all sequences of a of even length. Since the length of catenation of two
words of even length is also even, all words in Sy, also have even length.
Hence LT =S, CCo(L).

The language L is not primitive. Instead it has the primitive root p(L) =
{a} and the centralizer is C1 (L) = p(L)". In general, if L = K* for some
languages L and K and integer ¢ > 1, then clearly

LT C KT CC (K)CC(L)
and hence Lt # C(L).

Example 5.3. Another, less obvious example in this class is, again, the
language L = {a,ab,ba,bb}. We already know, from Theorem 5.1, that
Lt = Sy, since L is a singular language.

For L = {a,ab,ba,bb} we have

Pref, (L) = Suf (L) = {a,b, ab, ba, bb}.
Let us find the language Xy. First we see that
(2*)* = {aa, ab,ba,bb} ™ C L™ C Pref (L") and

(¥?)*L C L*Y C L* Pref, (L) = Pref . (LT).

Hence X = (1) T+(22)*2 C Pref (L1) C BT implying that Pref (LT) =
¥ *. By symmetry, we also have that Suf, (L") = X*. Hence,

Xo = Pref, (L) N Suf (LT) = 2.

Next we find the centralizer as follows. We claim that the centralizer is
the language Z = X1\ {b}. This language can be divided into two parts

62

depending on the first letter of the word. Similarly the division can be done
by the last letter. This means that

Z =St \{b} =aX* + 0" =T"'a+T7b.
The language Z commutes with L, since
ZL=aY" L+ b L=a -S*L+bY-X°L=(a+bS)S*LC LZ
and
LZ =LY a+ LY b=LY*-a+ LX* - Sb= LX*(a + £b) C ZL.

The centralizer is not the whole of Xy = X7, since b is not in it. This can
be seen for example by the fact that ba € XoL, but ba ¢ LXj. In particular,
Lt # Cy(L), since for example bbb € C, (L), but bbb ¢ L*. In conclusion,
we have

Lt =5, cCy(L).

5.3 The case L™ C S, =C,(L)

Example 5.4. We choose the language L = YaX>*a+ b>*bY over the alpha-
bet 3 = {a, b} as an example of the case where we have the proper inclusion
Lt c S, =C.(L). The fixed point approach gives the centralizer again in
four steps.

‘ ‘ final st. states trans. ‘

L 5 13 25
X, 3 5 9
X, 7 18 35
X, 9 22 43
X 11 26 51
X4 11 26 51
S. 11 26 51
L+ 6 14 27

Table 5.1: Number of states, final states and transitions in the automata
recognizing the language L = YaX*a+ bo*bY, the steps L; of the fixed point
approach and languages S;, and L.

Below we illustrate, step by step, how the fixed point approach finds the
centralizer. At the same time this also gives us the equality S, = C1(L). As
we see, the procedure is rather long, when done by hand, but it can be done
very easily using a computer. The first step is to find the starting point

63

of the iteration, i.e., the language Xy = Pref (L) N Suf, (LT). We know
that the inclusion L™ C Xj always holds so we start by finding the language
Xo \ L. The length of the shortest word in LT is 3.

The words in Xy which have length shorter than 3 are a,b, aa,ba and
bb. Longer words can be discussed separately depending on the first letter
of the word. Let w € X\ Lt and assume that w € aXX*. Now, since
the first letter is a, w ¢ Pref, (bX*b3XL*) and hence w € Pref (XaX*aL*)
which means that w € aaX™. On the other hand, w ¢ L implies that
w € aaX*b. Symmetrically, since w ¢ Suf; (L*¥aX*a), it must be true that
w € Suf; (L*bX*bY) which implies that w € aaX*bb. Additionally, since
aaX*ab¥*bb C L?, the word w must be in language aab*a*bb. This language
is entirely included in Xo \ LT.

If we next assume that w € bXXT, then we can make the following
conclusions concerning the word w. Since bX*bY C LT, we get w € bX*aX Y.
Further we get w ¢ Sufy (L*b¥*bY) implying that w € Sufy(L*YaX¥*a) and
hence that w € bX*aa. Now baa + baX*aa C LT which means that the
second letter of w must be b, i.e., w € bbX*aa. In the next step we see that
the word in language bbX*aa is in the language LT if and only if it is of the
form bY*bXX.aX*a, since in this case the beginning of the word should be in
bX*b3 and the rest of it in XaX*a. So, the language we are interested in is

bbYX*aa \ bX*bEYaX a.

We discuss the part %* between the beginning bb and ending aa in se-
quences of three letters. After the beginning bb the next three letters must
be either aab, abb or bab, since bb¥¥aX>*aa + bbbbbX*aa C bX*bXYaX*a.
Further, after aab there can be whichever of these three words, after abb
there can be only abb and after bab only bab. Hence

w € bb(aab)* (abb)* (¢ + ¥ +) aa + bb(aab)* (bab)* (e + X 4 X?)aa.

For this language we must still discuss several different cases to find out
which of them are included in L*. In the following, we have underlined the

64

part that is of the form bXXa for each language that is included in L.

bb(aab)* (abb)*aa C Xo\ LT
bb(aab)* (ab)+Eaa c Lt

bb(aab)*¥aa C Xo\ LTt
bb(aab)*(abb)*¥¥aa C LT
bb(aab)+22aa c Lt
bb¥¥aa C LT
bb(aab)*(bab)taa < LT
bb(aab)*(bab)Taaa C LT

bb(aab)* (bab)Tbaa C Xo\ LT
bb(aab)* (bab)*¥¥aa C LT

Now we can conclude that

Xt N (Xo\ L") = bb(aab)*(abb)*aa + bb(aab)*Xaa + bb(aab)* (bab)*baa
= bb(aab)*(abb)*aa + bb(aab)*a(abb)*aa
+ bb(aab)*b(abb)*aa

and for the language Xy, the starting point of the iteration, we get the
regular expression

Xo = Prefi(LT)NSuf (L")
= LT +aab™a*bb
+ bb(aab)* (abb)*aa
+ bb(aab)*a(abb)*aa
+ bbb(abdb)*aa
+ a+ b+ aa + ba + bbd.

Next we begin the iteration steps. In the step from X to X; the following
words on the left hand side are erased. The corresponding reasons are given
on the right hand side.

65

aa :
bb :
aaa™bb :

aab™bb :

bb(abb)"aa :

bb(aab)"aa :

a- bbb € XoL, but abbb ¢ LX,.

aaa - b € LXy, but aaab ¢ XL.

babba - aa € LXy, but babbaaa ¢ XoL.

bb - baaba € XL, but bbbaaba ¢ LXj.

aaa - aaabb € LXy, but aaaaaa™bb ¢ XoL.
(n>0)

aab™bb - bbb € XL, but aab™bbbbb ¢ LXj.
(n>0)

€L
——

aabba-bb(abb)"aa € LX, but aab(bab)-(bab)’baa ¢ XoL.
n>0,i+j=n+1)

bb(aab)"aa - baabb € XL, but bba(aba)"tabb ¢ LXo.

(n = 0)

No other words are erased, and the resulting language X is

In the same way, when stepping from X7 to X, we erase the following

words:

ba :
bbb(abb)™aa :

bb(aab)aaa :

X, = L™ +aabTatbb
+ bb(aab)™ (abb)Taa
+ bb(aab)*a(abb)*aa
+ bbb(abb)*aa
+ ba.

ba - aaa € X1L, but baaaa ¢ LX;.
aaa - bbb(abb)"aa € LX1,

but aaabbb(abb)™aa ¢ X1 L. (n > 0)
bb(aab)"aaa - bbb € X L,

but bb(aab)"aaabbb ¢ LX;. (n > 0)

bbaabb(abb)"aa : aaa - bbaabb(abb)"aa € LX7,

but aaabbaabb(abb)™ ¢ X L. (n > 0)

bb(aab)"aabbaa : bb(aab)"aabbaa - bbb € X1 L,

but bb(aab)"aabbaabbb ¢ LX;. (n > 0)

The remaining language is

Finally the step from Xo to X3 erases the last words not contained in the

centralizer.

Xy = L +aabTathb
+ bb(aab) ™ (abb) T aa
+ bb(aab) " aabb(abb) " aa.

66

aab™abb : aab™abb - aaa € XsL, but aab™bbaaa ¢ LX,, since the
left factor, contained in X, would be one of the words
aab™a, aab™abba or aab™abbaa, but for the corresponding
right factors bbaaa,aa,a ¢ Xs.
(n > 0)

aab™aabb : aab™aabb - aaa € XoL, but aab™aabbaaa ¢ LX,5 similarly
as previously, since abbaaa, bbaaa, aa,a ¢ Xs.
(n > 0)

aaba™bb : bbb - aababb € LXs, but bbbaaba™bb ¢ X5 again simi-
larly, since the right factor in X should be a word begin-
ning with letter b, i.e. one of the words ba"bb, baaba™bb
or bbaaba™bb, but the corresponding left factors bbbaa, bb
and b are not in Xs.
(n > 0)

aabbabb : bbb - aabbabb € LX5, but bbbaabba™bb ¢ XL exactly as
in the other cases.
(n > 0)

This gives us the language

X3 = LT+ aabbbTaaa™bb
+ bb(aab) ™ (abb)Taa
+ bb(aab) " aabb(abb) " aa.

The procedure stops here, since LX3 = X3L. This can be seen for example

67

as follows

LX3 = X (L' + aabbb*aaa™bb + bb(aab) ™t (abb)* aa + bb(aab)* aabb(abb)" aa)
= LL"
+ YaX*a - aabbb aaa™bb
+ bX*bY. - aabbbT aaatbb
+ YaX*a - bb(aab)™ (abb)taa
+ bX*bY - bb(aab) ™ (abb) T aa
+ Ya¥*a - bb(aab) T aabb(abb)taa
+ bX*bY - bb(aab) T aabb(abb)taa
= LL*
+ YaX*aaa - bbb aaaTbb
+ bX*bXaabb - b aaa™ bb
+ YaX*abbaa - b(aab)* (abb)taa
+ bX*bX0b - (aab)™ (abb)taa
+ YaX*abbaa - b(aab)* aabb(abb)t aa
+ bX*bXbb - (aab) " aabb(abb)taa
C LL™ .

The inclusion X3L C LL™ can be seen similarly. This implies that X3 C Sy,
and, since the inclusions Sy, C C4 (L) C X; always hold, the equality X3 =
S, = C4(L) must hold. Additionally, it is clear that LT # X3, since for
example aabbbaaabb € X3\ L, and hence LT C S = C(L).

5.4 The case L™ C S C C+(L)

Example 5.5. There also exist languages for which the proper inclusion
Lt c S c Cy(L) is true. For this case, we take as an example the infinite
rational language

L=aXtb+bx"a.

Now
Xo = Pref (LT)NSuf (L) = (aX*+bE)N (Z*a+ %) = ST nEt =% .

The language X, is recognized by the automaton in Figure 5.6. This lan-
guage can be expressed as the rational expression

X, = aaa™d+ aaa*bbS* + aaa*baXt + aba*bD*
+ bbb*a + bbb aaX* + bbb abX T + bab*aX*.

68

Figure 5.6: The minimal automaton which recognizes the language Xj.

The same language can also be expressed as a complement:
X1 =Y\ (@ +b" + aba* + bab* + aatba + bbT ab).

These expressions can easily be seen from the given automaton. The lan-
guage X7 is obtained as an iteration step of the fixed point procedure, since

ataabNLX, =

b - bba N LX,
aba® - aabN LX
bab* - bba N LX
baa - aatba N LX
abb-bbtabN LXy =

Il
S S s v = s

which means that
a™+b" +aba* +bab* +aatba+bbTab C LN LXoAXoL)U(XoLALXy)L ™t

The next step erases the rest of the words not in the centralizer. The
minimal DFA of the next iteration step is illustrated in the Figure 5.7. The
regular expression of this language X5 is

X, = aXa*b+ aXa*baXt 4 aXa*bbx*
+ bYb*a + bXb*abE T + bbb aaX*.

This step can also be expressed as a complement of a rather simple language.
From this representation we can see which words are deleted from X7 while

69

Figure 5.7: The automaton which recognizes the language Xs.

taking this step.

Xo = YT\ (at +b" 4 aba* + bab* + aa™ba + bb+ab + aba*ba + bab*ab)
= X1\ (aba*ba + bab*ab). (5.1)

As a justification for erasing the language aba*ba + bab*ab from X7 it is
enough to note that

aba*ba -baaNLX; = 0 and
bab*ab-abbNLX, = 0.
These equalities hold, since the left L-factor of words in aba*ba and bab*ab

are either aba™b or aba™bab and either bab"a or bab™aba, and hence the
corresponding right factors would be abaa, aa, babb and bb which are not in

Xi.
Now Xy is the centralizer C (L), since LXy = XoL. We can see that
XoL = aXa’b-aXth+aXa*b- b3St a+ aXa*baX T - aXTh
+ aXa*baXT b ta + aXa*hbX* - aXTh + aXa*hbX* - b Ta
+ bXb*a-aXTh+ bXb*a - bXTa + bXb*abSt - aXTh
+ bXb*abX T - bXTa + bXb*aaX* - aXTh + bXb*aaX* - bXTa
and here every term is included in LX5. For example aXa*bbX* - aXth C
LXj5, since aXa*bb - aX™b C LL C LX5 and by equation 5.1 aXa*b -

bXTaXth C LX5. In this way we get XoL C LX, and, since L™ = L,
the converse holds by symmetry

LXy = (X5L™)” = (XoL)” C(LX9)” = XL~ = XoL.

The proper inclusion L™ C S € C, (L) can be seen by choosing suitable
example words. For example

abbbaL = abbba - aX b + abbba - bXTa = abbb - aaX b+ abb - bab¥Ta C LLT

70

and
Labbba = aXtb - abbba + bX a - abbba = aX 1 bab - bba + bX T aa - bbba C LL™,

implying that abbba € S, but clearly abbba ¢ L*. On the other hand
abbaa € C4 (L), since the automaton in Figure 5.7 recognizes this word, but
abbaa ¢ S, since for example abbaa - baa ¢ LL™.

5.5 The centralizer as the limit

In many cases the fixed point approach gives the centralizer after only few
steps. However, there are cases, even with finite languages, where the cen-
tralizer is not reached in finitely many steps. In these cases the fixed point
approach gives the centralizer only as the limit

Ci(L) =) X
=0

Naturally, all languages that have a non-recursively enumerable centralizer,
cf. [23], fall into this category. However, there are also languages with very
simple rational centralizers in this category.

Example 5.6. One good example is, again, the language L = {a, bb, aba, bab, bbb}.
This example shows that the fixed point computation can be non-halting
even for a language with only five elements. Another fact, which makes this
example even more interesting, is that the centralizer of L is as simple as
Ci(L)=1L" .

We examine the fixed point approach on this language L by finding
for each iteration step X; the unique minimal DFA that recognizes it and
by comparing these DFAs with previous ones. In these automata we will
find some common patterns and periods. The program computes each step
easily, but we show these results also by hand to illustrate the procedure
and to underline reasons for infinite convergence. The automata recognizing
languages L and LT are shown in Figures 5.8 and 5.9.

Our first step is to construct the starting point Xy = Pref, (LT) N
Suf, (LT) of the procedure. The form of this result highlights the essen-
tial parts of which Xy is constructed.

Lemma 5.1. The language X for L = {a, bb, aba, bab, bbb} can be expressed
as

Xo = LT + (bab)*b(bab)* + (bab)*ab(bab)* + (bab)*ba(bab)*.
Proof. Let us denote

o Vi = (bab)*b(bab)*,

71

e Y5 = (bab)*ab(bab)* and
o Y3 = (bab)*ba(bab)*.

The inclusion LT + Y] + Y5 + Y3 C X can be easily seen. The language
LT is naturally in both its own prefix and in its own suffix. The inclusion
Y1 C X we get by noting that

(bab)*b(bab)* = (bab)*(bb a)*b C L* Pref, (L) = Pref, (L) (5.2)

and
(bab)*b(bab)* = b(a bb)*(bab)* C Suf (L)L* = Suf (LT). (5.3)

This means that Y3 C Pref (L") N Suf, (L") = Xy. We also note that,
since bab is both left and right singular in L and b is not in L, none of the
words in Y; is in LT.

Similarly from equations

(bab)*ab(bab)* = ab(bab)* + ba(bb - a)*(bab)™ = (bab)*(a - bb)*ab

Figure 5.8: The minimal DFA that recognizes the language L =
{a,bb, aba, bab, bbb}

Figure 5.9: The minimal DFA that recognizes the language LT =
{a, bb, aba, bab, bbb}

72

and
(bab)*ba(bab)* = ba(bb - a)*(bab)* = (bab)*ba + (bab)™ (a - bb)*ab

we see that Y2,Ys C Xy. Again, by left and right singularity of bab, and
since ab and ba are not in L, none of elements of Y5 and Y3 are in L+.

Next we prove the inclusion on the other direction, i.e., Xqg C LT +
Y1 + Y, + Y. Since Pref(L) = Suf(L) = {a,b,ab,ba,bb, aba,bab, bbb} =
L+ {b,ab,ba}, we have

Xo = LT+ ({b,ab,ba}L* N L*{b, ab,ba}).

The language L™ is clearly a subset of Xy, hence we look at the words in
{b,ab,ba}L*. First of all, {b,ab,ba} is a subset of L*{b,ab,ba} and all of
these words are clearly in Y7 + Ys + Y3. Next we take all words uvw, where
u € {b,ab,ba}, v € L and w € L*, and find which of them are in L™ and
which are in L*{b, ab,ba}. If u = ab, we get, taking different values of v, the
following five cases:

ev=a = ww=ab-a-w=aba-weL",

e v=>bb = wvw=ab-bb-w=a-bbb-we LT,

e v=aba = wvw=ab-aba-w=a-bab-a-w e LT,
o v=bab = wvw =ab-bab-w = (a bb) - abw and

e v="0bb = uvw=oab-bbb-w=a-bb-bb-w e LT.

Four of these cases end up with the word wvw being in L™. The fifth case
gives us the word (abb)abw, which has first prefix abb in L™ and a suffix
abw, which is in the original form abL*. This means that we can similarly
take left L factors from w one by one until we reach the end of w. Hence, by
this recursive procedure, the word uvw is either in L™ or in ab(bab)*. This
means that

abL* N L*{b,ab,ba} C LT + ab(bab)* C LT + Ys.
Next, if u = ba, we get the following five cases:
e v=a = wow =ba-a-w,
o v=>0bb = wvw =ba-bb-w = (bab) - bw,
e v=aba — wvw = ba - aba - w,

e v =bab = wvw = ba - bab - w = (bab) - abw and

73

e v =>0bbb = uvw ="ba-bbb-w =bab-bb-w e LT.

Of the above cases, two are not possible, namely v = a and v = aba, since
b,ba,baa ¢ L. In those cases uvw can not be in L*{b, ab,ba}. The case with
v = bbb gives us the word wvw which is in L. Only the cases with v = bb
and v = bab give something new. The case with v = bab can be dealt with
as in the previous cases, since uvw = (bab)abw has bab € L as its prefix
and the already solved case abw € abL* as its suffix. This case gives us the
inclusion

(ba)babL* N L*{b,ab,bab} C LT + (bab)ab(bab)* C LT + Y.

The case with v = bb gives uwvw = (bab)bw € LbL* and reduces to the next
case, where u = b.
If u = b, then we obtain these five cases:

e v=a = ww=>b-a-w = baw,

e v=>bb = uwvw=>b-bb-w=>0bbb-w e LT,

e v=aba = wvw=>b-aba-w=>bab-a-w e LT,
o v=bab = wvw ="b-bab-w = (bb) - abw and
o w=>bbb = wvw=">-bbb-w=>bb-bb-we LT.

Here cases v = bb, v = aba and v = bbb are the trivial ones with uvw in
L*. The case v = bab with uvw € LabL* leads to the already solved case of
words in abL* and gives us the language

b babL* N L*{b,ab,ba} C Lt + (bb)ab(bab)* = Lt + b(bab)t C LT + V7.

The only case left is the one with v = b and v = a. This case can be
dealt with as for u = ba, for which only the case v = bb remained unsolved.
This unsolved case, in turn, reduces back to the case where u = b. The
procedure continues until we either reach some previously solved case or the
word w ends. From this we get the following inclusion

bal* N L*{b,ab,ba} C L%t + b(abb)*(bab)* + ba(bba)* (bab)*
LT + (bab)*b(bab)* + (bab)*ba(bab)*
C LT+Y+Ys.

Hence we have the inclusion Xg C LT + Y] + Y5 + V5.

Thge above procedure can be represented as the graph in Figure 5.10.
It shows how we start from state e with a word uvw € {b, ab,ba}L". If we
reach one of the final states, b,ab,ba or L™ with the word, it means that

74

a,bb,aba,bab,bbb

a,bb,aba,bbb

Figure 5.10: The procedure of finding {b, ab,ba} L™ N (LT + L1{b,ab,ba})
as a graph. Input words are from the language {b,ab,ba}L™.

the word is in L™ + L*{b,ab,ba}. The names of states correspond to the
set where the prefix of uvw we have so far read belongs to, {e}, LT, L*{b},
L*{ab} or L*{ba}.

U

The automaton recognizing the language X is given in Figure 5.11.

Figure 5.11: The minimal DFA that recognizes the language Xj.

In the following lemmas we trace the fixed point approach for language
L. In first two lemmas we see what happens on the first step from Xg to
Xi. Next lemma shows the general step from X; to X;41.

75

Lemma 5.2. The words b,ab and ba are not in C(L) for language L =
{a,bb, aba, bab,bbb}.

Proof. 1t is easily seen that b ¢ C4(L). Clearly
b € (bab)*b(bab)* =Y; C X

and a € L, so ab € LXy. However ab ¢ XL and hence b ¢ C,(L). Similarly
ab € (bab)*ab(bab)* = Yy, C Xg, a € L and aab € LXy, but aab ¢ XL.
Finally ba € (bab)*ba(bab)* = Y3 C Xy, a € L and baa € XoL, but baa ¢
LX,.

Therefore b, ab,ba ¢ C,(L). O

Lemma 5.3. The languages ab(bab)* and (bab)*ba are in the complement
of the centralizer C4(L).

Proof. Let us choose an arbitrary word w = ab(bab)®, with integer k& > 1
in the language ab(bab)*. If we concatenate w with the word a € L, we
get the word a - ab(bab)¥ € LX,. At the end of this word there is only
one L-factor, the word bab. However, the left factor aab(bab)*~! is clearly
not in the language Xo = LT + Y7 + Y3 + Y3. Therefore ab(bab)* ¢ C, (L)
for any k& > 0. This means that ab(bab)* N CL(L) = (. By symmetry,
since L™~=L, the same holds also for the reversed language (bab)*ba, i.e.,

(bab)*ba N C4(L) = 0. O

Lemma 5.4. The languages b(bab)* and (bab)*b are in the complement of
the centralizer C1(L).

Proof. As in the previous lemma, if we have an arbitrary word b(bab)* for
k > 1 in language b(bab)*, we see that a-b(bab)¥ € LXy. But by Lemma 5.3
ab(bab)*~1 - bab ¢ C,(L)L. Hence b(bab)* N Cy(L) = () and, by symmetry,
also (bab)*b N C4 (L) = 0. O

The next lemma proves that the rest of language Y7 + Y5 + Y3 is also in
the complement of C; (L). Note that (bab)*babab(bab)* = (bab) ™ ab(bab)* =
(bab)*ba(bab)™.

Lemma 5.5. The languages (bab)*b(bab)* and (bab)*babab(bab)* are in the
complement of the centralizer Co(L).

Proof. The proof is by induction and it is similar for both of these languages.
We set v € {b, babab} and prove the claim for (bab)*v(bab)*. We prove that
for any integer n > 0, if (bab)'v(bab)"™ ¢ C, (L) for some integer i > 0, then
also (bab)™u(bab)™ ¢ Co(L).

First.y, we know that for ¢ = 0, by Lemma 5.4, b(bab)" ¢ Cy(L) for
every n > 0 and, by Lemma 5.3, that ab(bab)” ¢ C4(L) for every n > 0.

76

babab(bab)™ - bab € XoL, but bab ab(bab)™ ¢ LC, (L) for any n > 0. Hence
v(bab)* is in the complement of the centralizer C, (L) for any v € {b, babab}.

Next we assume that (bab)'v(bab)" ¢ C. (L) for all n > 0, if i < k for
some integer k. If i = k + 1 then we get

(bab)* v (bab)™ - (bab) € XL,

but
(bab) - (bab)*v(bab)"** ¢ LC, (L).

Therefore (bab)*+1v(bab)™ ¢ C (L) and in conclusion (bab)*v(bab)*NCy (L) =
0.

Note, that the induction could also be done symmetrically from the right
hand side of the word (bab)™v(bab)’. O

These lemmas together prove that (Y7 + Y2+ Y3)NC4 (L) = 0 and hence
the centralizer is C4 (L) = LT

Now we can analyse the iterative process of the fixed point approach
on this language. What happens during the process, can be seen from the
previous lemmas. By writing all words of language Y2 = (bab)*ab(bab)* in a
triangle, as in Figure 5.12, we can also illustrate the process.

ab
ab(bab) (bab)ab

ab(bab)? (bab)ab(bab) (bab)2ab
ab(bab)? (bab)ab(bab)? (bab)?ab(bab) (bab)3ab
ab(bab)* (bab)ab(bab)? (bab)2ab(bab)? (bab)3ab(bab) (bab)*ab

Figure 5.12: The language (bab)*ab(bab)* illustrated as a triangle.

Languages Y7 = (bab)*b(bab)* and Y3 = (bab)*ba(bab)* can also be illus-
trated using similar triangles. From Lemmas 5.2 and 5.3 we see, how step-
ping from X to X; takes away all words in language {b}+ab(bab)*+(bab)*ba.
This step is illustrated in the triangles on the far left of Figures 5.13, 5.14
and 5.15.

The next step from X; to Xy removes the languages b(bab)* and (bab)*b,
as shown in Lemma 5.4, and languages (bab)ab(bab)* and (bab)*ba(bab) as
shown in Lemma 5.5. This can be seen in the middle triangles of the figures

below. After that, each step from X; to X, removes similarly the lan-
guage (bab)"~tb(bab)* + (bab)*b(bab)* =t + (bab)iab(bab)* + (bab)*ba(bab)’, as

7

XO_)Xl X1—>X2

Figure 5.13: Deleting parts of (bab)*ab(bab)* during the iteration.

Figure 5.14: Deleting parts of (bab)*ba(bab)* during the iteration.
Xo — X1 X1 — Xo

Figure 5.15: Deleting parts of (bab)*b(bab)* during the iteration.

AR T

(bab)*ab(bab)* (bab)*ba(bab)*

ab(bab)* + (bab)*babab(bab)* + (bab)*ba

Figure 5.16: Languages (bab)*ab(bab)* and (bab)*ba(bab)* have lots in com-
mon.

in Lemma 5.5. Note that languages (bab)*ab(bab)* and (bab)*ba(bab)* have
large set (bab)*babab(bab)* of common words, illustrated in Figure 5.16.

78

Next we compute the first forty steps of the fixed point approach on
language L and get some statistics on the DFAs recognizing these languages.
The numbers of states, final states and transitions for the number of iteration
steps of the fixed point procedure for language L are given in Table 5.2. From
this table we can see that after a few steps, the growth of the automata
becomes constant. Every step adds six more states, three of them final
states, and eleven transitions.

final st. states trans. final st. states trans.
Xo 6 8 15 || Xoo 60 121 222
X3 5 9 17 || X1 63 127 233
X5 6 13 24 || Xoo 66 133 244
X3 9 19 35 || Xoz 69 139 255
Xu 12 25 46 || Xoa 72 145 266
X5 15 31 57 || Xos 75 151 277
X5 18 37 68 || Xog 78 157 288
X7 21 43 79 || Xo7 81 163 299
Xg 24 49 90 || Xog 84 169 310
X 27 55 101 || Xag 87 175 321
X0 30 61 112 || X3¢ 90 181 332
X1 33 67 123 || X351 93 187 343
X0 36 73 134 || X390 96 193 354
Xi3 39 79 145 || X33 99 199 365
X4 42 85 156 || X34 102 205 376
Xis 45 91 167 || X35 105 211 387
X6 48 97 178 || X36 108 217 398
Xq7 51 103 189 || X37 111 223 409
Xig 54 109 200 || Xsg 114 229 420
Xi9 57 115 211 || X39 117 235 431

Table 5.2: Number of states, final states and transitions of automata recog-
nizing first iteration steps of the fixed point approach for language L.

For example, the minimal DFAs of languages X5 and Xg can be drawn
as in Figures 5.17 and 5.18. From these figures, we can already see the
trend in the growth of steps X;. At each step, the DFA increases in size
with three states to the left and three states to the right. Each three state
set corresponds to one bab-factor on the left or right side of b or babab in
languages (bab)*b(bab)* and (bab)*babab(bab)*. The more states the DFA
of X; has, the longer are those words that are in X; \ C4(L). The limit
lim; .~ X; would be an automaton with an infinite number of states, which
is equal to the DFA recognizing L*.

79

@) (9 1) (9 ©

18 15 12 9 4 \
oY Y o10m) o))

Figure 5.17: DFA recognizing Xs.

@) (19) (9) (13) (1) @
|

21 /18 /15 /12 /9 /4
vt/ v/ v v

20 17 14 11 8 2 6@@@@@
3
|
5)

27 33/ 36
Elololo
=] xS
)

Figure 5.18: DFA recognizing Xg.

80

Remark 5.1. In principle, the infinitely long computations can be avoided
by using the idea of Theorem 3.10 and choosing the starting point of the
iteration so that it includes the whole centralizer, but does not include “the
hard part”, those words that lead to the infinite computation. However, in
concrete instances, there does not seem to be a general methods of finding
such a starting point.

The next example shows a case where changing the starting point helps.
Here the centralizer C4 (L) is found using a composition of the fixed point
method and logical considerations.

Example 5.7. There exist also rational languages, for which the fixed point
method does not stop and the centralizer is not L™. One example is the
language L = aXTb+bX*ba. If we compute L™ and Sy, using a computer, we
see that they are different and hence L # C,(L). Table 5.3 lists numbers
of states in DFAs corresponding to the first steps of iteration. The table
shows that beginning from language X7, every step increases the number
of states by eight. A further look at the iteration steps reveals that the

final st. states trans. final st. states trans.
L 2 7 14 || X9 49 107 214
Xo 2 4 8 || Xis 53 115 230
X3 4 15 30 || X4 57 123 246
X5 6 16 32 || Xis 61 131 262
X3 9 24 48 || X6 65 139 278
Xu 13 33 66 || X1i7 69 147 294
X5 18 44 88 || Xis 73 155 310
X5 23 53 106 || X9 7 163 326
X7 29 67 134 || Xog 81 171 342
Xg 33 75 150 || Xo1 85 179 358
Xy 37 83 166 || LT 4 12 24
X10 41 91 182 || S, 8 24 48
X1 45 99 198 || Z 10 28 56

Table 5.3: Numbers of states and transitions of automata corresponding to
iteration steps of L = aX b + bX*ba

main part of the DFAs stay the same, but certain parts grow according to
a regular pattern at every step. Figure 5.19 shows the essential part of the
DFA of step X7;. This automaton has two “chains” of states with four
state periods in each. At every step, both of these chains get four additional
states. Only the last states of both chains do not follow the pattern. When
the iteration proceeds, the chains get longer and longer words are needed to
reach the end of the chain. This means that words in X; \ X;;1 get longer,

81

as 1 gets larger. If ¢ grows infinitely, the chains get infinitely long and can
equivalently be replaced by a finite loop of four states. For example, in
the automaton representing the language Xi1, we could replace transition

98 -2 13 by transition 98 b, 95 and transition 93 —% 13 by transition

93 %+ 87 and minimize the result. Let us call Z the language recognized
by this automaton. The number of states in this automaton is also given in
Table 5.3. We will prove that Z = C(L). With a computer, we can verify
that

LTcS,cZz

and that Z commutes with L. Hence we know that

LT cS,cZcCCy(L).

Figure 5.20: Automaton for L™. (L = aXb + bX*ba)

The equality Z = C4(L) can be proved as follows.

82

Figure 5.21: Automaton for S7,. (L = aX"h+ bX*ba)

Figure 5.22: Automaton for Z = C(L). (L = aXtb+ bX*ba)

83

Lemma 5.6. Let A =aa™(ba™)*. Then
Proof. Firstly aaba € A for n > 1 and aab € L. However
aab - aa™baL ! = {aa},
and since aa ¢ Xy = Pref (L") N Suf, (L") we have aab - aa™ba ¢ C, (L)L
and so aa™ba - C (L) = 0.
Secondly, we see that aa™batba N Cy (L) = 0, since
aab - aa™baTbaL ™! = aa + aabaa™.
Now (aa+ aabaa™) N Suf, (LT) = 0, which means that also (aa + aabaa™) N
Xo = 0.
Finally, we use induction and show that if for some & > 1 we have
aat(bat)"ba N Cy(L) = 0, whenever n < k, then

aab - aa™ (ba") baL ™! = aa + aabaa™t (ba™)SF C R\ €, (L).

Hence aa™(ba™)*ba N C4(L) = 0. Additionally, we can note that X*aa N
Suf, (LT) = (), which gives us

aat(ba™)*NC(L) = 0.

Now, if we choose the language
Yo = Xo \ A= (Pref, (L") N Suf (LT))\ 4

as the starting point of the fixed point procedure, instead of Xy, then the
computation stops after only a few iteration steps. Namely

Yo =Y7r =12,

which gives us the result

C.(L)=2Z

Now we can note that this case was one example where choosing a differ-
ent initial value for the fixed point procedure was successfull. The methods
used in the previous example can be summarized as follows.

Method 1.

1. Use the fixed point method for several steps.

84

2. Analyze the minimal DFAs, in particular the difference of consecutive
steps, and determine the part A of X that is problematic for the fixed
point method. Finding of the language A is not necessarily straight-
forward and may require different means depending on the language
Xy or just a good guess.

3. Show that A is not included in the centralizer.

4. Use the language Yy = X \ A as a new starting point for fixed point
method.

Method 2.

1. Use the fixed point method for several steps and find repeating pat-
terns in the minimal DFAs.

2. Change the repeating patterns to loops and minimize to obtain a guess
for the centralizer.

3. Prove that the guessed candidate is indeed the centralizer.

All languages leading to an infinite computation do not give such clearly
periodic automata. For example, for the language L = YaX*aX + 3bX*D3,
the number of states in the iteration steps grows in alternate phases. For
every second step the addition is twelve states and every other step eighteen
states.

Example 5.8. With the finite language L = {a, bb, aab, aba, abb, baa, bab,
bba,bbb}, on the other hand, the growing speed does not seem to become
constant, at least not within the first fifty steps. Additionally, at every sec-
ond step, the number of states increases and at every other step it decreases.
The decrease is typically around half of the previous increase. However, some
kind of pattern can still be seen from the DFAs of the iteration steps, as in
Figure 5.23.

Since the language L is finite and, for example, the word baa is left
singular in L, we know that the centralizer is finitely generated. In fact,
the centralizer is the language L™, which can be proved as follows, with the
technique that was used in the examples of Chapter 3.5.

The set of proper suffixes of L = {a, bb, aab, aba, abb, baa, bab, bba, bbb} is
{1,a,b,aa,ab,ba,bb} = 1UXUX2 Next we find variables n; for correspond-
ing suffixes u;.

up=-¢: 1-L CC(L) implies that ng = 1.
up =a: a € L CC(L) implies that n; = 0.

85

Figure 5.23: The minimal automaton of the iteration Xy of the language

L = {a,bb,aab,aba,abb,baa, bab, bba, bbb}

86

upg=0b: b-a¢ LC(L) implies that b ¢ C(L),
ba - a ¢ LC(L) implies that ba ¢ C(L),
baab - a ¢ XC(L) implies that baab ¢ C(L),
and, by induction, the fact that b(aab)”-a = baa - (baa)" ‘ba ¢ LC(L)
implies that b(aab)™ ¢ C(L) for any integer n > 0. Therefore for any
integer n > 0 we have b(aab)” ¢ C(L) i.e. the number ng does not
exist.

ug = aa: aa € LT C C(L) implies that ng = 0.

ug = ba : ba(aba)™ - aba = baa - (baa)"ba ¢ LC(L) implies that ba(aba)™ ¢
C(L) for any integer n > 0, as in the case us = b, and hence the
number n4 does not exist.

us = ab : Since L~ = L, we also have that C(L)~ = C(L) and hence aba -
(aba)"ab = ab(aab)™ - aab ¢ C(L)L implies that ab(aab)™ ¢ C(L) for

any integer n > 0. Hence the number ns does not exist.
Now I ={0,1,3}, ng = 1,n; = 0,n3 = 0 and we obtain the result
G = Uuz‘Lni =1-L4+a+aa=L+aa

el
C(L) = GL*=L"+aal*=L".

87

88

Chapter 6

Conclusions and open
problems

We have discussed commutation with finite sets. Conway’s problem for sets
with at most three elements has a positive answer. In this work, we find
that the answer is also positive for all 4-element sets except those in, what
we have called, the last open case. However, the examples we have studied
on the last open case seem to have very simple centralizers. Hence we make
a conjecture for the centralizer of 4-element sets.

Conjecture 6.1. The centralizer of a 4-element language is finitely gener-
ated.

For 5-element sets, we can draw prefix graphs in the same way as we
did for 4-element sets. Most cases are either periodic or reducible to singu-
lar languages. The only cases that need more attention are the ones with
two connected components and no singular words, just as for 4-element lan-
guages, see Figure 6.1. The solution for 5-element languages should not be
that different from the one for 4-element languages. Languages with six
elements are more complicated, since there we can have graphs with even
three connected components and no singular words. The relative simplicity
of solutions for languages with at most three elements can be seen to orig-
inate from the fact that there are no such languages having prefix graphs
with more than one connected component and no singular words.

Commutation with codes has been solved in some special cases, for ex-
ample for prefix, suffix and biprefix codes. For general codes the question
is still open. However, the following conjectures have been proposed in [30]
and in [15]. These four conjectures are equivalent.

e Conjecture 1: Two codes commute if and only if they have a common
root.

89

™——R
MNe— —=

=

]

Figure 6.1: Prefix graphs of 5-element sets with two connected components
and no singular words

e Conjecture 2: Any code has a unique primitive root.

e Conjecture 3: For any code L, if LX = XL, then there is a code R
such that L = R™ and X = R!, for somem > 1,1 C N. (L satisfies the
BTC-property, i.e., Bergman-type characterization.) This was proved
for prefix codes by Ratoandromanana.

e Conjecture 4: The (monoid) centralizer of a code is a free monoid.

If the above conjectures hold for codes, what does it mean for conju-
gacy? Can we use solutions for the commutation equation as a tool, when
solving the conjugacy equation for codes? For biprefix codes we did this.
We catenated the language) on the right side of the conjugacy equation
LX = XK and obtained the commutation equation LXQ = XKQ = XQL.
This method was used also in some examples. To use this method success-
fully we need to have a suitable language) such that K@) = QL and such
that @ can be eliminated from X @, when it has been solved. Can this kind
of method be used, if the code has a bounded delay?

The method mentioned above reminds us of the standard method that
is used to solve the word equation xzy = yzx. This equation is solved by
catenating the word z at the end on both sides of the equation and solving
the resulting commutation equation xzyz = yzxz. We can ask what other
techniques on word equations could be applied to language equations. These
kind of methods can be effective in particular for different types of codes.

The fixed point approach can be successfully applied for many languages,
for both commutation and conjugacy equations. In some cases, however, it
does not halt and the centralizer or conjugator is obtained only as a limit.
We have also introduced some additional methods which can be used in the
cases where the fixed point approach alone does not give the solution in
finite time.

90

Appendix A

FAFLa — Finite Automata
and Formal Languages

FAFLa [31] is a computer program which we wrote to study finite automata
and rational languages. The program is implemented as a Python module
and uses the Python command line as its user interface. In FAFLa, the
notion of the finite automaton is implemented as a class and we can apply
several operations on such automata. We can even draw these automata as
graphs.

The original idea for the program came from the program named Grail+,
which is a project of the Department of Computer Science, University of
Western Ontario, Canada. FAFLa was written from scratch, but several
methods were named as in Grail+. FAFLa also uses a compatible file format
to save finite automata. The Python command line is used as the interface,
since it has, for example, a built in command history. Python also makes
it easy to write more complicated functions and programs that use FAFLa,
either directly in the command line or as separate script files. The program
is also able to use a program called Graphviz to draw pictures of finite
automata. Graphviz tries to position the nodes and arcs in such a way that
the graph looks as nice as possible.

We have used the following functions together with FAFLa to implement
the fixed point method. The initial language X for given languages L and
K is computed using the function conjo ()
def conjoO(x, y):

"""Conjugation start step."""
return (x.fplus().fpref() & y.fplus() .fsuff()).femptyoff().fminrev()

For given languages L and K, this function can be called as follows:
>>> X=[conjO(L,K)]

The above command computes the language Xg. For the next steps we
use the function conj ().

91

def conj(x, y, zi):
"""Conjugation iteration step."""
xzi = x * zi
ziy = zi x y
xziDziy = xzi = ziy
xleft = xziDziy.flquot (x)
yright = xziDziy.frquot(y)
xytotal = xleft + yright
zii = zi - xytotal
return zii

This function computes the language X, for given languages L, K and
X,; and we call it as follows.

>>> X += [conj(L,K,X[-1]1)]

This command computes the next X; from languages L and K and the last
language in the list X of all previously computed steps. In this way, we
get the sequence of languages X; as the list X and the language X,, can be
referred to as X|[n].

The equality of the two last steps can then be compared with the com-
mand:

>>> X[-1]1==X[-2]
This command returns either True or False.

Example A.1. For example, the centralizer of language L = {a, ab, ba, bb}
can be computed as follows. Before we begin, we have defined conjo() and
conj () as mentioned above.

>>> L=retofm("a+ab+ba+bb")
>>> X=[conjO(L,L)]

>>> X+=[conj(L,L,X[-11)]
>>> X+=[conj(L,L,X[-1])]
>>> X[-1]==X[-2]

True

>>> X[-1] .stat()

S: 3 SS: 1 F: 1 T: 6 A: 2 DFA
>>> print X[-1]

(START) |- 0

0alil

0b 2

l1al

1bi1

92

2 al

2b1

1 -| (FINAL)

>>> X[-1] .gv("X2.svg")

On the first line we input the language in the variable L. Next we compute
Xo and two steps of iteration. Then finally we compare the two last steps
and see that they are equal. Next we get the statistics of the variable X [—1]
using the stats()-method. The output tells us that the variable represents
automaton with three states, one of which is the start state and one of which
is the final state. The automaton has six transitions and the size of the used
alphabet is two. The automaton is a deterministic finite automaton. The
structure of the automaton is also printed using the print-command in the
file format of Grail+4-. This format shows us all starting and final states of the
automaton and all transitions between these states. With the gv ()-method,
the picture of the automaton of Xy is written in the file X2.svg with the
help of Graphviz. This image can be seen in Figure A.1

.
O

Figure A.1: The centralizer of L = {a, ab, ba,bb}.

Example A.2. As another example we compute the first 21 steps of the
fixed point method for the language L = {a, bb, aba, bab, bbb} from Exam-
ple 5.6. For this language we know that the method does not stop.

>>> L=retofm("a+bb+aba+bab+bbb")
>>> X=[conjO(L,L)]
>>> for i in range(20):
print i
X+=[conj(L,L,X[-11)]

93

— AN M 0O O N~ 0O

o
i

i
i

(a\)
i

o
i

<
~

Lo
i

e
i

N~
—

[o0]
i

19

>>> for Z in X:

Z.stat()

DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA
DFA

SS:

13
19
25

SS:

46

12
15
18
21

SS:

57
68
79

SS:

31

SS:

37
43

SS:

90

24
27
30

SS:

49

101 A: 2

F: T:

SS:

55
61

112 A: 2

F: T:

SS:

33 T: 123 A: 2
36

F:

SS:

67
73
79

134 A: 2

F: T:

SS:

T: 145 A: 2

39

F:

SS:

SS: F: 42 T: 156 A: 2

85

SS: F: 45 T: 167 A: 2

91

T: 178 A: 2

48

F:

SS:

97

189 A: 2
T: 200 A: 2

F: 51 T:

1
1
1
1

103 88S:

S:

54
57
60

F:

109 SS:

S:

F: T: 211 A: 2

115 SS:
121

S:

T: 222 A: 2

SS: F:

S:

94

>>> Z=(X[5]-X[6]).fmin()

>>> Z.stat ()

S: 47 SS: 1 F: 2 T: 50 A: 2 DFA

>>> Y=retofm("babbabbabbab (b+babab)babbabbabbab (bab) *
+(bab) *babbabbabbab (b+babab) babbabbabbab")

>>> Z==

True

>>> 719=(X[19]-X[20]) .fmin ()

>>> 7Z19.stat ()

S: 173 SS: 1 F: 2 T: 176 A: 2 DFA

>>> A=retofm("b+babab")

>>> bab=retofm("bab")

>>> bab18=((bab)**18) .fmin()

>>> Y19=bab18*A*bab18*bab.fstar() + bab.fstar()*bab18*A*babl8
>>> 719==Y19

True

Again, we begin by inputting the language in the variable L and compute
the language Xy. Next we make a loop that computes the next 20 iteration
steps of the fixed point method. After that we output the statistics for the
minimal DFA of each language from X to Xo9. We see that these statistics
are the same as in Table 5.2. Next we compute the difference of languages
X5 and X, minimize the DFA of this language and put the result in the
variable Z. The statistics of this automaton show that it has 47 states with
only one starting state, two final states and 50 transitions. Next we assign
the language (bab)?*(b+ babab)(bab)*(bab)* + (bab)* (bab)* (b + babab)(bab)* in
the variable Y and show that Z =Y, i.e., this is the difference.

In the last lines we compute the difference of X719 and X5y and show
that this difference is equal to the language (bab)'®(b+babab)(bab)'® (bab)* +
(bab)* (bab)*® (b + babab)(bab)'®. From this we can guess that the difference
of consecutive iteration steps X; and X;;; will always be

(bab) (b + babab)(bab)" ! (bab)* + (bab)* (bab)' ! (b + babab)(bab)' .

95

96

Bibliography

1]

J. Berstel and D. Perrin. Theory of Codes. Academic Press, New York,
1985.

J. Cassaigne, J. Karhumaki, and J. Maniuch. On conjugacy of languages.
Theoret. Informatics Appl., 35:535-550, 2001.

J. Cassaigne, J. Karhumiki, and P. Salmela. Conjugacy of finite biprefix
codes. In Proceedings of the 1st International Workshop on Theory
and Applications of Language Equations, pages 33-42. Turku Centre
for Computer Science, TUCS General Publication 44, 2007 (revisited
version to appear in Theoret. Comput. Sci.).

C. Choffrut. Conjugacy in free inverse monoids. In Proceedings of the
Second International Workshop on Word Equations and Related Topics,
LNCS 677, pages 6-22. Springer—Verlag, London, UK, 1991.

C. Choffrut and J. Karhumaki. On Fatou properties of rational lan-
guages. In C. Martin-Vide and V. Mitrana, editors, Where mathe-
matics, computer science, linguistics and biology meet, pages 227-235.
Kluwer Acad. Publ., Dordrecht, 2001.

C. Choffrut, J. Karhumaki, and N. Ollinger. The commutation of finite
sets: a challenging problem. Theoret. Comput. Sci., 273(1-2):69-79,
2002.

J. H. Conway. Regular Algebra and Finite Machines. Chapman & Hall,
London, 1971.

A. Frid. Commutation of binary factorial languages. In Proc. of De-
velopments in Language Theory, LNCS 4588, pages 193-204. Springer—
Verlag, 2007.

T. Harju and I. Petre. On commutation and primitive roots of codes.
Technical Report 402, Turku Centre for Computer Science, 2001.

97

[10]

[11]

[12]

[13]

[14]

K. Culik II, J. Karhumaki, and P. Salmela. Fixed point approach to
commutation of languages. In N. Jonoska, Gh. Paun, and G. Rozenberg,
editors, Aspects of Molecular Computing, — Essays dedicated to Tom
Head on the occasion of His 70th Birthday, LNCS 2950, Festschrift,
pages 119-131. Springer—Verlag, Berlin Heidelberg, 2004.

E. Jeandel and N. Ollinger. Playing with Conway’s problem. Tech-
nical Report ccsd-00013788, Laboratoire d’Informatique Fondamentale
de Marseille, 2005. Available at
http://hal.archives-ouvertes.fr/hal-00013788.

J. Karhumaéki. Challenges of commutation — an advertisement. In
R. Freivalds, editor, Fundamentals of Computation Theory 2001, LNCS
2138, pages 15-23. Springer—Verlag, New York, 2001.

J. Karhuméki. Combinatorial and computational problems on finite
sets of words. In Machines, computations, and universality, LNCS 2055,
pages 69-81. 2001.

J. Karhumaki, M. Latteux, and I. Petre. The commutation with codes
and ternary sets of words. In Proceedings of STACS 2003, LNCS 2607,
pages 74-84, Berlin Heidelberg, 2003. Springer—Verlag.

J. Karhumaki, M. Latteux, and I. Petre. The commutation with codes.
Theoret. Comput. Sci., 340(2):322-333, 2005.

J. Karhumaki, M. Latteux, and I. Petre. The commutation with ternary
sets of words. Theoret. Comput. Syst., 38(2):161-169, 2005.

J. Karhumaki and I. Petre. On the centralizer of a finite set. In Proc.
ICALP 2000, LNCS 1853, pages 536-546, Berlin, 2000. Springer.

J. Karhuméki and I. Petre. The branching point approach to Con-
way’s problem. In W. Brauer, H. Ehrig, J. Karhuméki, and A. Salo-
maa, editors, Formal and Natural Computing, LNCS 2300, pages 69-76.
Springer—Verlag, Berlin Heidelberg, 2002.

J. Karhumaéki and I. Petre. Conway’s problem for three-word sets.
Theoret. Comput. Sci., 289(1):705-725, 2002.

J. Karhumaki and I. Petre. Two problems on commutation of languages.
In G. Paun, G. Rozenberg, and A. Salomaa, editors, Current Trends
in Theoretical Computer Science, The Challenges of the New Century,
pages 477-494. World Scientific, Singapore, 2004.

L. Kari, K. Mahalingam, and S. Seki. Twin-roots of words and their
properties. Theoret. Comput. Sci., 2008.

98

[22]

[23]

[24]

M. Kunc. Regular solutions of language inequalities and well quasi-
orders. In Proceedings of ICALP 2004, LNCS 3142, pages 870881,
Berlin Heidelberg, 2004. Springer—Verlag.

M. Kunc. The power of commuting with finite sets of words. Theo-
ret. Comput. Syst., 40(4):521-551, 2007.

M. Lothaire. Combinatorics on words. Addison-Wesley, Reading, MA .,
1983.

P. Massazza. On the equation XL = LX. In Proc. of WORDS
2005, Publications du Laboratoire de Combinatoire et d’Informatique
Mathématique, Montréal 36, pages 315-322, 2005.

P. Massazza and P. Salmela. On the simplest centralizer of a language.
Theoret. Inform. Appl., 40(2):295-301, 2006.

M. Minksky. Computation: Finite and Infinite Machines. Prentice Hall,
1967.

D. Perrin. Codes conjugués. Inform. and Control, 20:222-231, 1972.

I. Petre. Commutation Problems on Sets of Words and Formal Power
Series. PhD thesis, University of Turku, 2002.

B. Ratoandromanana. Codes et motifs. RAIRO Inform. Theor.,
23(4):425-444, 1989,

P. Salmela. FAFLa computer program.
http://www.iki.fi/pesasa/fafla/.

S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, volume 1, pages 41-110. Springer,
Berlin, 1997.

99

82.

83.

84.
85.

86.
87.
88.
89.
90.
91.

92.

94.

95.

97.
98.

100.

101.

102.
103.

104.
105.
106.
107.
108.

109.
110.

111.

112,
113.

114.
115.

Turku Centre for Computer Science
TUCS Dissertations

Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft
Applications

Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in
Relation to Software and Other Digitally Distributable Media

Dragos Truscan, Model Driven Development of Programmable Architectures
Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch
Sets in Automata Theory

Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

Elena Czeizler, Intricacies of Word Equations

Marcus Alanen, A Metamodeling Framework for Software Engineering

Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods
and Resources

Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated
Synchronous DS-CDMA Systems

Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational
Databases

Dubravka Ili¢, Formal Reasoning about Dependability in Model-Driven
Development

Kim Solin, Abstract Algebra of Program Refinement

Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
Kalle Saari, On the Frequency and Periodicity of Infinite Words

Tomi Karki, Similarity Relations on Words: Relational Codes and Periods
Markus M. Mdkeld, Essays on Software Product Development: A Strategic
Management Viewpoint

Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal
Constellations

Anne-Maria Ernvall-Hyténen, On Short Exponential Sums Involving Fourier
Coefficients of Holomorphic Cusp Forms

Chang Li, Parallelism and Complexity in Gene Assembly

Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data
Mining

Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
Anna Sell, Mobile Digital Calendars in Knowledge Work

Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data
Mining Tasks

Tero Santti, A Co-Processor Approach for Efficient Java Execution in Embedded
Systems

Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
Pontus Bostrom, Formal Design and Verification of Systems Using Domain-
Specific Languages

Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric
and Asymmetric Designs

Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption
Estimation

Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods

Petri Salmela, On Commutation and Conjugacy of Rational Languages and the
Fixed Point Method

TURKU

CENTRE for

COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

V1] —
é ‘4 niversity of Turku '
? -\‘- ® Department of Information Technology
%]” “\% ® Department of Mathematics
O

Abo Akademi University
® Department of Information Technologies

Turku School of Economics
® Institute of Information Systems Sciences

ISBN 978-952-12-2259-7
ISSN 1239-1883

Petri Salmela On Commutation and Conjugacy of Rational Languages and the Fixed Point Method

