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Piirien kompleksisuus kasvaa eksponentiaalisesti puolijohdeteknologian kehityksen nou-
dattaessa Mooren lakina tunnettua trendiä. Perinteisten laitteistokuvauskielten kuten
VHDL:n ja Verilogin ilmaisuvoima alkaa käydä riittämättömäksi, eikä kyseisistä kielistä
löydy suoraa tukea mm. laitteiston ja ohjelmiston yhteissuunnittelulle. SystemC:n kaltai-
set kielet on suunniteltu ratkaisemaan nämä ongelmat yhdistämällä korkean tason ohjel-
mointikielten ilmaisuvoiman laitteistokuvauskielten laitteistoläheisiin rakenteisiin. Jotta
nämä korkeamman abstraktiotason kielet pystyisivät korvaamaan vanhat kielet digitaa-
lijärjestelmien suunnitteluvuossa tulisi niiden olla myös tehokkaasti syntetisoitavissa lait-
teistoksi.

Nykyaikaiset nopeat verkkotekniikat asettavat verkkolaitteille usein erittäin kireitä reaa-
liaikaisuuteen ja palvelun laatuun liittyvä vaatimuksia. Samaan aikaan vaaditaan usein
matalaa hintaa, pientä kokoa, sekä vähäistä energiankulutusta. Usein laite pitää myös saa-
da nopeasti markkinoille. Näitä vaatimuksia on yhä vaikeampi täyttää perinteisellä tavalla
yleiskäyttöisellä prosessorilla. Yksi tapa yhdistää energiatehokkuus ja suuri suorituskyky
mutta silti säilyttää joustavuus ja nopea suunnitteluvuo on käyttää ASIP-prosessoreita.
Koska eri verkkoprotokollien prosessoinnista voidaan löytää samanlaisia tehtäviä, on
mahdollista kehittää protokollaprosessointiin optimoituja arkkitehtuureita. Yksi tällainen
on TTA-pohjainen TACO, jonka etuja ovat mm. tehokas rinnakkaisuus, modulaarisuus
sekä tehokas ja yksinkertainen käskyjen purkaminen.

Tätä tutkielmaa varten kehitettiin SystemC 2.2 -pohjainen laitteistosimulointiympäristö
TACO-arkkitehtuurille käyttäen pohjana edellisellä SystemC-versiolla tehtyä ympäristöä.
Ympäristö mahdollistaa simulointimallien nopean konstruktoinnin laitteistolohkoista
koostuvan kirjaston ja lohkojen automaattisen konfiguroinnin ja kytkeytymisen ansiosta.
Malli mahdollistaa laitteiston ja ohjelmiston samanaikaisen simuloinnin ja verifioinnin.
Lisäksi tutkittiin SystemC 1.0:n ja 2.2:n eroja laitteistomallinnuksen kannalta, ja Sys-
temC:llä kirjoitettujen simulointimallien muuntamista synteesikelpoiseksi VHDL:ksi
Celoxica Agility SystemC Compiler -työkalulla. Testikäyttöä varten ympäristön avulla
kehitettiin simulointimalli TCP/IP-paketteja validoivalle prosessorille.

Asiasanat: SystemC, TTA, protokollaprosessori, systeemitason mallinnus
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As the development of integrated circuit technology continues to follow Moore’s law
the complexity of circuits increases exponentially. Traditional hardware description lan-
guages such as VHDL and Verilog are no longer powerful enough to cope with this level
of complexity and do not provide facilities for hardware/software codesign. Languages
such as SystemC are intended to solve these problems by combining the powerful expres-
sion of high level programming languages and hardware oriented facilities of hardware
description languages. To fully replace older languages in the desing flow of digital sys-
tems SystemC should also be synthesizable.

The devices required by modern high speed networks often share the same tight con-
straints for e.g. size, power consumption and price with embedded systems but have also
very demanding real time and quality of service requirements that are difficult to satisfy
with general purpose processors. Dedicated hardware blocks of an application specific
instruction set processor are one way to combine fast processing speed, energy efficiency,
flexibility and relatively low time-to-market. Common features can be identified in the
network processing domain making it possible to develop specialized but configurable
processor architectures. One such architecture is the TACO which is based on transport
triggered architecture. The architecture offers a high degree of parallelism and modularity
and greatly simplified instruction decoding.

For this M.Sc.(Tech) thesis, a simulation environment for the TACO architecture was de-
veloped with SystemC 2.2 using an old version written with SystemC 1.0 as a starting
point. The environment enables rapid design space exploration by providing facilities
for hw/sw codesign and simulation and an extendable library of automatically config-
ured reusable hardware blocks. Other topics that are covered are the differences between
SystemC 1.0 and 2.2 from the viewpoint of hardware modeling, and compilation of a
SystemC model into synthesizable VHDL with Celoxica Agility SystemC Compiler. A
simulation model for a processor for TCP/IP packet validation was designed and tested as
a test case for the environment.

Keywords: SystemC, TTA, protocol processor, system level modeling
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Chapter 1

Introduction

As the integrated circuit technology continues to follow the trend known as Moore’s law

the complexity of the circuits increases exponentially. Due to this it is now possible to

integrate whole systems on one chip. These kinds of circuits are called System-on-a-

Chip or SoC. SoC desing often involves designing both hardware and software portions

together.

Traditional hardware description languages such as VHDL and Verilog are no longer

powerful enough to cope with this level of complexity and do not provide facilities for

hardware/software codesign. Languages such as SystemC are intended to close this gap

between desing capacity and integrated circuit capacity and to solve problems with hard-

ware/software codesign and integration by combining the powerful expression of high

level programming languages and hardware oriented facilities of hardware description

languages. SystemC includes a C++ class library and a simulation kernel that can be used

for digital system modeling and verification.

Hardware description languages have an important role in electronic design automa-

tion. Models written with VHDL and Verilog are used in hardware synthesis where the

model is transformed e.g. into a programming file for a programmable logic circuit or

a floorplan for a more or less custom manufactured application specific circuit using a

software tool. To fully replace these older languages in the design flow of digital systems
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SystemC should also be synthesizable. Tools for this have lately begun to appear.

Computer networks have become a crucial backbone for modern information society.

The devices required by these networks often share the same requirements for low price,

energy consumption and small size with embedded systems but have also very demand-

ing real time and quality of service requirements that are difficult to satisfy with general

purpose processors. As a result dedicated hardware blocks are needed to combine fast pro-

cessing speed and energy efficiency. Common features can be indentified in the network

processing domain, making it possible to develop specialized but configurable processor

architectures for network protocol processing. With this kind of platforms it is possible to

keep some of the flexibility of general purpose processors while keeping time-to-market

reasonable, and also achieve better performance and lower power consumption. One such

architecture is the transport triggered TACO architecture.

In this M.Sc.(Tech) thesis a SystemC based simulation environment was designed, im-

plemented and extended using an old version as a starting point. The environment enables

simulation and verification of configurable processor instances by means of easy creation

of custom hardware blocks and software development with a device specific assembly

language. As a test case a simulation model for a processor for TCP/IP packet validation

was developed and tested. Synthesizability of this model was also investigated.

Chapter two gives an overview of the TCP/IP protocols and their basic features. Chap-

ter three discusses processor design in general and discusses the TACO architecture in

detail. Chapter four gives an overview of SystemC and its features from the standpoint

of this thesis. Chapter five describes the goal and the structure of the old and new sim-

ulation models, and in chapter six results and observations made during the process of

updating the model and testing its synthesizability are presented. Chapter seven provides

concluding remarks for the work presented in this thesis.



Chapter 2

Protocols of the Internet

2.1 Layered network architectures

Due to the complexity of modern networks and the need to interconnect different types of

computer networks, a monolithic protocol structure is no longer feasible. Instead, most

network protocols are organized as a stack of layers that each provide services to the

layer above and utilize services provided by the layer below. With each layer the level of

abstraction is increased by hiding away technical details. As a result, for example network

programming for a high level protocol is possible without taking low level details such

as voltage levels or packet routing into consideration. Connecting two peers using a high

level protocol is also possible even if the actual physical network topography is complex

and consists of a number of different kinds of networks. [1]

Each layer adds at least a header field before the actual data to be transmitted. The

header contains control information needed by the protocol, such as sequence numbering,

checksums for error detection and possibly correction, timestamps etc. Some protocols

add also a trailer to the end of the data.
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2.1.1 ISO/OSI reference model

In the beginning of the 1980’s an effort was made by the International Standards Orga-

nization (ISO) to standardize the functions of protocols used in the various layers [2].

The result was a model that is called the Open Systems Interconnection (OSI) reference

model. In this model the protocol stack is divided into seven layers. ISO does not specify

the exact services and protocols used in each layer, but it defines what each layer should

do [1].

On the bottom in the model is the physical layer that is concerned with sending bits

over a physical medium. The second layer is the data link layer whose responsibility is to

send data frames with reasonable reliability between two physically connected peers. The

third layer, the network layer, routes packets of data in a subnet taking also requirements

for quality of service into consideration. Above the network layer is the transport layer

that creates an end-to-end connection between source and destination and delivers the data

between them reliably. The fifth layer is the session layer that allows different machines to

establish sessions between them and handles the needed synchronization. The second last

layer is the presentation layer that allows definition and exchange of abstract high level

data structures between machines that might have different internal data representations.

The highest level is the application layer that contains the protocols that are used by user

applications for networking. [1]

2.1.2 TCP/IP reference model

Development of the TCP/IP reference model [3] begun when problems emerged with the

ARPANET, a research network sponsored by the U.S. Department of Defense. Intercon-

nected networks that formed the ARPANET were originally connected using telephone

lines and existing protocols faced problems when satellite and radio networks were added

later. Because of this one of the major design goals was to enable seamless interconnec-

tion of multiple types of networks. Another important goal was the ability to maintain
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functionality and keep connections intact even in situations where some of the network

devices on the route are lost, for example due to malfunctions or especially enemy activity

during war [1].

The TCP/IP model divides the protocol stack into four layers. The lowest layer is the

host-to-network layer. The model does not however give an exact definition of it other

than that it must be able to deliver the packets coming from the internet layer that lays

above it. The internet layer is responsible for delivering packets to the destination. Major

issues are efficient and robust routing and congestion avoidance and therefore it is similar

to the network layer found in OSI model. Above the internet layer is the transport layer

that forms end-to-end connections between two machines and is similar to the layer with

the same name in OSI model. Two protocols are defined: Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP). TCP is a connection-oriented protocol that

enables sender to reliably form a connection to the receiver and to send a stream of bytes

that arrive in correct order to the receiver. UDP is a much simpler connectionless protocol

that can be used when features of the TCP are not needed or wanted. TCP/IP model does

not have the session and presentation layers found in the OSI-model. The topmost layer,

application layer, is on top of the transport layer. It contains a wide variety of different

protocols for hypertext and file transfer (HTTP, FTP), electronic mail (SMTP) etc. [1]

2.1.3 Hybrid model

The OSI and TCP/IP models are not suitable for describing modern computer networks

alone. The OSI model and its protocols appeared when TCP/IP protocols were already

in widespread use. Also the number of layers is somewhat excessive resulting in un-

necessary complexity. The TCP/IP reference model on the other hand is based almost

completely on existing protocols and does not make distinction between specification and

implementation. Therefore it is of little use for designing new network architectures. It

also does not define layers below the internet layer and thus makes no distinction between
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Figure 2.1: Reference models.

the data link and physical layers. As a result a so called hybrid model containing layers

1-4 and 7 from the OSI model suits better for describing existing networks. If IEEE local

area network protocols are used as often is the case, the data link layer can be further

divided into two parts: Logical Link Control (LLC) and Medium Access Control (MAC).

[1]

2.2 Internet Protocol

The Internet is essentially a collection of different types of networks that are intercon-

nected, and the protocol that connects these networks and holds them together is the

Internet Protocol. It was developed by Cerf and Kahn during the 1970’s and version 4

that is currently used got its RFC specification in 1981. [1][4]

A stream of data that needs to be sent is broken into datagrams with a size of normally

1500 bytes by the transport layer and then these datagrams are given to the IP protocol.

The IP protocol’s responsibility is to deliver the datagram through the Internet to the

destination host. Usually this route consist of numerous intermediate nodes. Some of

the nodes might require data to be fragmented further into smaller units that must be
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reconstructed later when they reach the destination. Every datagram is routed dynamically

as it travels trough the Internet, and because of this, sent datagrams may often travel

different routes and arrive out of order. It is up to the IP protocol to reorder and defragment

received datagrams before delivering the data to the upper layer. [1]

2.2.1 IPv4 packet

The first field of the packet is the version field which is used to determine the version of

the IP protocol. For IPv4 it will always be 4. [1]

The next field, IHL or IP Header Length, tells how many 32 bit words the header

contains. It is needed since the length of the IPv4 header is not fixed. [1]

The type of service field can be used for indicating special combinations of speed and

reliability requirements. In practice this field is often ignored though. [1]

The last 16 bits of the first word are used by Total length field, which indicates the

total length of the packet in bytes (octets), that is the length of the header and data. [1]

Next field is Identification, which is used in determining in which packet arriving

fragments belong to. When a packet is fragmented, each fragment of that particular packet

has the same identification value. [1]

After this comes one unused bit and two control bits. First one is DF or Do Not

Fragment that means the packet must not be fragmented. The second bit is MF or More

Fragments which indicates that there are more fragments of this packet still coming after

this fragment. [1]

The Fragment offset field tells the location of this fragment in the packet. Elementary

fragment unit is 8 bytes, and offset is given as a multiple of it. [1]

The Time to live field is used to limit the lifetime of the packet in the network. The

value of the field was originally intended to be decremented with the interval of one

second, but in practice it is done on every hop. [1]

The protocol field tells which transport layer protocol handler the payload should be
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Figure 2.2: The IP version 4 header.

delivered to (for example TCP or UDP). [1]

The Header checksum field contains a checksum for header validation. The algorithm

for this is the Internet checksum. Every 16-bit word is added using one’s complement

arithmetic, and then the one’s complement is taken from the sum. The checksum field is

zeroed before doing the calculation. [1]

The Options field is a variable length field used for various options concerning secu-

rity, routing etc. Length of this field is limited to 40 bytes due to 4 bits used for IHL field.

[1]

The Source address and Destination address fields contain 32-bit addresses of the

source and destination. Every network interface has an unique address. Addresses contain

two parts: a network identifier and a host identifier. Lengths of these parts depend on the

class of the address. The three first classes are A, B,and C, and the lengths are 8 and 24,

16 and 16, and 24 and 8 bits respectively. Class D is used for multicasting and class E

is reserved for future use. Addresses are usually written in dotted decimal notation. The

32-bit address is divided into four 8-bit bytes that are written in decimal and separated

with dots. For example address 82E8CA8C is written as 130.232.202.140. [1]
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2.2.2 IPv4 versus IPv6

The biggest flaw of the IPv4 protocol is its 32-bit addressing. As the number of computers

connected to the Internet is growing at fast pace the 32 bit address space has proven to be

too small. This problem has been avoided at short term by introducing technologies such

as Classless Inter-Domain Routing (CIDR) [5] and Network Address Translation (NAT)

[6]. Work for a new version of the protocol was started in the early 1990’s. Other goals

were among others to reduce the size of routing tables, simplify the protocol for faster

packet processing in high speed networks, improve security features, and improve quality

of service especially for real-time data. [7]

The biggest change in IPv6 is the 16 byte, or 128 bit, address space. This enables in

theory to for example give 5∗108 addresses for each of the 6.5 billion people living today.

Another big improvement is a simplified fixed sized header that contains seven fields

compared with 14 found from IPv4 header. Optional extension headers with more options

can be added after the required header but they can be skipped easily by routers that do not

need them. Checksum calculation is not part of the protocol either anymore. Checksums

at this level were deemed unnecessary since current networks are fairly reliable and both

lower data link layer and upper transport layer have their own checksums. Also a field

concerning fragmentation has been left out since a different approach to fragmentation

has been taken. Hosts are required to dynamically determine the datagram size in order

to avoid need for fragmentation in the first place. If a too large packet is still received it

will not be fragmented at the spot but an error message is sent to the sender. This way

the sender knows to send smaller packets to that destination in the future. These features

simplify and thus speed up processing.

IPv6 also has improved support for authentication and payload encryption which is a

major security improvement. [1]
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2.2.3 IPv6 packet

The first field of the header is the version field which will always have the value six. Since

transition from IPv4 to IPv6 will take a decade or more this field is required for network

hardware to recognice the type of the packet. [1]

The traffic class field can be used to give higher priority for real-time transmissions.

Field specifies value 0-15 with higher value indicating higher priority. [1]

The flow label field is used when a connection with special properties such as in-

creased bandwidth requirements is set up between two hosts. The field contains an identi-

fier for this connection. The identifier acts as an index to flow tables in routers that contain

the information what kind of special service is needed. [1]

The payload length field tells how many bytes will follow the 40 bytes long header

field. [1]

The next header field indicates the type of the following extension header if one exists.

Extension headers are located between the header and payload. If an extension header

does not exist, the field will tell which transport layer protocol is used in the payload. [1]

The hop limit field indicates the life time of the packet. Each node in the network

reduces this value by one and when it reaches zero the packet is discarded. This is to

prevent packets from travelling in the network forever. [1]

The last two fields are the source and destination address fields. They contain two 128-

bit addresses. These addresses are written in eight groups of four hexadecimal digits with

colons between the groups. Groups containing zeros may be replaced with two colons

and leading zeros in groups can be left out. For example, address

1234:5678:0000:0000:0000:0000:ABCD:00EF

may be written as

1234:5678::ABCD:EF. [1]
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Figure 2.3: The IP version 6 header.

2.3 Transmission Control Protocol

2.3.1 Introduction

Network layer protocols such as IP do not provide reliable end-to-end communication.

This is left for transport layer protocols such as the Transmission Control Protocol (TCP)

[8]. TCP provides a standardized way to transmit a reliable byte stream over an internet-

work that is unreliable and may have different kinds of topologies, delays, bandwidths,

packet sizes etc. TCP is used through a TCP entity that can be for example a library pro-

cedure, user process or part of the kernel of the operating system. The TCP entity accepts

a stream of data from the user, breaks it up into pieces with suitable size (often 1460 bytes

in order to fit in an Ethernet frame) and gives them to the IP protocol for delivery. In the

receiving end the data stream is reconstructed and can be used by the destination process

[1].

A TCP connection is formed between points which are called sockets. Every socket

has an identifier consisting of the IP address of the host and a 16-bit number called port.

Connections are identified by pairs of socket identifiers and a socket can be an end point
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Figure 2.4: The TCP header.

for multiple connections. Port numbers 0-1024 are called well-known ports and are used

for certain standard services (such as FTP, HTTP etc.). Other ports can be freely used. [1]

2.3.2 TCP segment

The protocol data unit of the TCP protocol is called segment. A TCP segment consists

of a 20-byte header, an optional part and a varying number of data bytes. A size of the

segment is decided dynamically by the protocol. The maximum size is limited either by

the IP protocol that has a maximum payload size of 65515 bytes or by the maximum

payload size of the used by data link layer protocol (often 1500 bytes of Ethernet). [1]

The first 32-bit word of the header consists of source and destination port numbers.

Next two words are the sequence number and the acknowledgement number. Concep-

tually each byte of transmitted data has its own 32 bit sequence number. The sequence

number found in the header tells the sequence number of the first byte in the payload.

The Acknowledgement number field is used by the receiver to tell which bytes have been

received correctly, and contains the next sequence number the receiver expects to receive.

[1]

The TCP header length field tells the length of the header in 32-bit words. This field

is needed because of the variable length options field. [1]
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After six unused bits come six 1-bit flags. When the URG bit is set the Urgent pointer

field points to urgent data in the payload. The ACK bit indicates that the Acknowledge-

ment field contains a valid acknowledgement number. The PSH bit indicates that the data

has been pushed by the sender and should be delivered to the application immediately

without buffering. The RST bit is used to reset a connection in errorneus situation. The

SYN bit is used when establishing connection. A connection request has SYN = 1 and

ACK = 0, and the reply to this has SYN = 1 and ACK = 1. The FIN bit is used to close

connection. [1]

TCP uses a variable-sized sliding window algorithm for flow control. The Window

size field indicates how many bytes can be sent starting at the byte acknowledged. [1]

The Options field can be used for defining various extra options that can be used for

example to optimize performance. [1]

The Checksum field contains the Internet checksum of the TCP header, payload and

parts of IP header. [1]

2.3.3 TCP checksum calculation

TCP does not calculate the checksum only for its own header and payload but also for

parts of the IP header. A special pseudoheader containing some fields from the IP header

is constructed for this purpose. Since there are two different versions of the IP protocol,

and their headers are different, they also require different kinds of pseudoheaders. [1]

The checksum algorithm sums up all 16-bit words of the pseudoheader, the TCP

header and the data in one’s complement, and finally takes one’s complement of the sum.

The checksum field in the TCP header is zeroed before calculation and if the length of the

data is an odd number of bytes it is padded with zeroes. [1]
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Chapter 3

Protocol processors

3.1 Processors

The heart of every digital computer is the processor, often called the central processing

unit (CPU). In general processor is attached to some amount of memory (or memories)

that is used for storing program code and data, and input/output devices that are used for

interfacing with peripheral devices and ultimately the surrounding world. A processor

manipulates data stored in the memory according to instructions that are given to it in

the form of program code. The interface for the programmer is the Instruction Set Ar-

chitecture (ISA) which defines a specific set of instructions for controlling the processor,

including data types, addressing modes, registers and memory spaces. [9]

Internals of the processor can be divided into datapath and control logic. The datapath

(or datapaths) handles the manipulation of data including string manipulation and arith-

metic and logical operations etc. The heart of the datapath is the Arithmetic Logical Unit

(ALU) where the actual processing takes place. [9]

Control logic fetches the instructions, decodes them, controls the operation of the dat-

apath, and handles transfers in the flow of control such as jumps, branches and subroutine

calls. [9]
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3.1.1 Processor technologies

There are several types of processors that all have their weaknesses and strengths. General-

purpose processors are fully programmable processors that are designed for a wide variety

of applications. They usually have a large register file and one or more ALUs that can

perform different types of operations. They are highly flexible since they are fully pro-

grammable and not designed only for some specific function. Their shortcoming is that

when a general-purpose processor is used exclusively for some specific application in for

example an embedded system, performance is rarely optimal and power consumption and

size can be excessive. [10]

Single purpose processing blocks on the contrary are not programmable at all but

perform some specific algorithm entirely on hardware. As a result the architecture is easy

to optimize and minimize. Reusability and flexibility of the design is however low since

even small alterations to the algorithm require a slow and costly redesign process. [10]

Application specific instruction set processors (ASIP) are a compromise between

these two extremities. They offer programmability but can also have a highly opti-

mized datapath for computations needed in some specific application area. This is often

achieved by coupling a programmable general purpose processor core with single purpose

co-processors. [10]

3.1.2 Parallelism

The most simple processors can be called subscalar. Subscalar processors execute only

one instruction at the time in its entirety before starting to process the next one. Needed

control logic is very simple to implement but as a serious shortcoming most parts of the

processor are idle at any given time leading to very inefficient use of hardware resources.

One relatively simple and widely used way to improve parallelism is pipelining. In-

structions are divided into several short subinstructions that can be executed sequentially.

As a result multiple instructions can be processed at the same time at different stages of
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the pipeline and hardware is used more efficiently. The problem is that consecutive in-

structions may have dependencies, for example the next instructions may use data that

is manipulated by the previous one. This requires additional control circuitry to avoid

inconsistencies. [9]

Another more complex way to improve parallelism is to make the processor super-

scalar. A superscalar processor has many pipelines enabling parallel execution of multi-

ple instructions not only in different stages of the pipeline but at the same stages. This

requires a dispatcher unit to be added which fetches many instructions at the time and

evaluates whether or not they can be executed in parallel or in some cases out of order. In

order to be efficient the dispatcher must employ complex techniques such as branch pre-

diction and speculative execution that may require a substantial amount of extra circuitry.

[9]

Other ways to improve parallelism at instruction level are used in architectures such as

VLIW and TTA which will be described in detail in the next section. These methods fall

into the category of Instruction Level Parallelism (ILP). Parallelism can be improved also

at higher levels. ILP does not require programmers’ attention but with Thread and Process

Level Parallelism (TLP and PLP) programmers must organize their code so that it has

multiple threads of execution. On a single core processor these threads can be run virtually

parallel by switching the thread periodically, for example on fixed time intervals or when

a thread gets blocked by an I/O operation. This creates an illusion of real parallelism.

Thread level parallelism can be improved with hardware e.g. by increasing the amount

of processor cores [9]. Cores can be identical, each executing a thread, or they may be

optimized for different types of tasks. The first approach is utilized e.g. in current (as

of 2008) x86 PC processors by Intel and AMD while the latter is found e.g. in the Cell

processor by IBM.
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3.1.3 Architectures

Many early computer architectures can today be characterized as Complex Instruction Set

Computers (CISC). As computers were starting to be used for increasingly complex duties

starting from the 1960’s it was felt that there is a need for more expressive instructions

that could almost be described being high-level. This made programming with assembly

language easier and also simplified the development of efficient compilers for high-level

programming languages. Since a lot of work could be done with a single instruction

this also reduced the size of program code and the number of memory accesses. This

was especially beneficial during the 1960’s and 1970’s when memory was both slow and

expensive. [9]

The problem with CISC is that it requires relatively complex circuitry for instruction

decoding. A low cost solution is to first translate CISC instructions to simpler microcode

and execute that on hardware, but this has a negative impact on performance. It was

also observed that complex instructions that were originally intended to speed up execu-

tion could sometimes be replaced by a few simple instructions to improve performance.

These observations led to development of Reduced Instruction Set Computers starting

from the 1980’s. A RISC has a set of simple fixed sized instructions that can be effi-

ciently executed on hardware in one machine cycle and are also easy to pipeline. Today

the difference between CISC and RISC is in practice blurred, for example Intel’s widely

used x86 architecture is CISC by definition but the latest compatible processors function

internally a lot like a RISC processor would. [9]

As said before, superscalar processors require complex circuitry to evaluate and re-

order instructions at run time. VLIW (Very Long Instruction Word) architecture on the

other hand takes a different approach. In VLIW architecture the instructions are statically

scheduled already at compile time and thus the processor design is simplified. VLIW

instruction consist of several operations that are executed in parallel on relatively sim-

ple execution units. As a result instruction decoding is easier and more efficient than on
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superscalar processors. [11]

TTA (Transport Triggered Architecture) is yet another way to achieve parallelism. In

conventional architectures the processor is programmed by specifying operations that as

a side effect cause data transfers during which the data is processed. A TTA processor

is programmed by specifying data transfers between functional units that as a side effect

process the data. To achieve this a TTA processor has only one instruction: data move

between two registers. Therefore TTA can be seen as the ultimate RISC processor since

the instruction set is reduced to the minimum. The instruction structure is somewhat sim-

ilar with VLIW but contains move instructions instead of operations. Since data transfers

in TTA are visible to the programmer or compiler, there is more room for optimization

in comparison to VLIW [11]. The requirement however is that all dependencies must be

resolved at compile time [9].

3.1.4 Memory

In modern computers there are many physically different kinds of memories in use. Mem-

ory types have different access times, area requirements, power consumption and volatil-

ity [9]. There are two fundamental memory architectures that are used: Princeton ar-

chitecture (also known as von Neumann architecture) and Harvard architecture. In the

Princeton architecture data and program code share the same memory space. This sim-

plifies the needed circuitry since the processor has only one connection to the memory.

The Harvard architecture separates data and program memory. This requires two connec-

tions but may also speed up execution since both instruction and data fetches can be done

simultaneously [10].

The fastest available memory type is Synchronous Random Access Memory (SRAM).

1-bit SRAM is usually constructed of six transistors and can be accessed very fast. It is

also costly to manufacture due to the area it requires, and because of this it is used only

for processors’ internal registers and caches. [9]
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Read-only Memory (ROM) is significantly more dense than SRAM requiring only one

transistor per bit and is still relatively fast but cannot be rewritten. Therefore ROM can be

only used for constant data that is fixed on design-time. Various Electronically Erasable

and Programmable ROM types also exist today ((E)EPROM, Flash) that introduce some

amount of rewritability but are generally slow to rewrite. [9]

A storage element of Dynamic Random Access Memory (DRAM) consists of one ca-

pacitor and transistor and can be packed densely. Large DRAM memories suffer however

from long access delays of several clock cycles despite the efforts to improve the per-

formance (SDRAM, DDR-SDRAM, Rambus) [9]. DRAM is generally used as data and

program memory due to its low price and high capacity.

Various mass storage devices such as hard disc drives and large Flash memories are

used for storing large amount of data and programs that are not currently used. They

can also be used to extend available memory address space with techniques such as vir-

tual memory. Mass storage devices offer huge storage space but access times are many

decades worse than with DRAM.

Due to the physical characteristics of memories it is clear that memory cannot be both

fast and large at the same time. Illusion of this can however be created by construct-

ing a hierarchy of memories. This is possible because of temporal and spatial locality

that are present in programs. Temporal locality means that the referenced data item or

instruction is likely to be referenced soon again. Spatial locality means that after read-

ing an instruction or data word it is probable that the next item after it will be needed

soon also. Therefore keeping some selected data in small but fast memories - caches - can

speed up execution significantly. Cache policies, algorithms and sizes need to be carefully

optimized though in order to be efficient. [9]



CHAPTER 3. PROTOCOL PROCESSORS 21

3.1.5 IC Technology

Processors are ultimately implemented on an integrated circuit (IC). Integrated circuits

are devices that consist of numerous semiconductor components packet densely on one

chip. Processor design can be mapped to a physical level IC device in a number of ways.

In application specific integrated circuits (ASICs) the whole circuit is optimized for

the design. Transistors are placed to minimize interconnection lengths and size of transis-

tors and wire routing is optimized for signaling. ASICs can be very expensive to design

but yield excellent performance, size and power consumption. Unit price is often low

making them suitable for high volume products. [10]

Programmable Logic Devices (PLD) have all the circuitry already built but logic

blocks can be connected with programmable switches. Simple PLDs consist of arrays

of logic gates such as AND and OR. Field Programmable Gate Array (FPGA) devices

that can have blocks with complex combinatorial functions have become popular. PLDs

are fast and cheap to design and implement but are usually slower and bigger than full

and semi-custom chips and have a higher unit cost. Therefore they are often used for

prototyping or when low time-to-market is required. [10]

3.2 Protocol processors

3.2.1 Introduction

General purpose processors have been popular in embedded systems since they offer short

time-to-market and cost-efficient development cycles. However for networking hardware

they are a suboptimal solution since they lack optimized execution units for network pro-

cessing. All functionality must be implemented on software level which leads to very

high clock rate requirements in modern high speed networking. General purpose proces-

sors that are fast enough are often expensive, consume too much power and occupy too

much space. They also have features such as floating point units that are dead weight
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considering network applications. [9]

These problems have often been solved with complex single purpose processors de-

signed for certain network protocols. These processors often offer high performance,

reduced power consumption and smaller area, but their design process is demanding and

expensive. They also lack flexibility that is often needed in dynamic market segments. [9]

Another solution are application specific instruction-set processors that have a pro-

grammable general purpose core along with optimized single purpose co-processors for

protocol processing. They offer significantly improved performance and better cost effi-

ciency compared to general purpose processors, and have better flexibility and reusability

than single purpose processors. [9]

3.2.2 Characteristics

There are some typical characteristics that have been identified as typical for protocol

processors. Pattern matching and replacement in bit strings is often needed especially

when analyzing protocol headers. Protocols have also control dominated operation with

large finite state machines and nested branch structures. Memory access is irregular due

to need for managing tables and buffers of various sizes [12]. Other typical character-

istics are high bitrate, need for buffering, boolean evaluations and bitwise manipulation,

and often also counter and timer functions and checksum calculations. Some protocols

may also need random numbers for for example CSMA/CD. Protocol processing can be

done also using only unsigned integer arithmetic resulting in considerably simpler hard-

ware implementations [11]. Protocols at OSI layers 1-3 that require intermediate stations

between source and destination devices suit best for application-specific hardware imple-

mentations while higher level protocols are often implemented in software [9].
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Figure 3.1: General structure of the processor.

3.3 TACO architecture

The TACO architecture is a TTA-based protocol processor architecture developed at the

Turku Center for Computer Science. One important goal of the architecture is to take as

much advantage of design automation as possible. Modularity and scalability were also

pursued. These requirements led to choosing transport triggered architecture as basis for

the processor. Functionality of the processor is implemented in functional units (FUs)

that perform application specific operations. FUs with suitable functionality can be easily

added to the architecture, and because of this they are reusable and a library of them can

be constructed. Data transfers between FUs are programmed using assembly language

consisting of only move instructions. FUs are connected by interconnection network

that can contain configurable number of buses. Every bus can handle one data transfer

operation per cycle leading to high level of parallelism. [11]

3.3.1 Functional units

Functional units perform operations to the data. A FU has a set of input and output

registers. Input registers can be divided into two subtypes: operand and trigger registers.
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bit in a processor with three 32/8-bit buses.

Output registers are called result registers. A FU can have multiple operand and result

registers but only one trigger register. A data transfer to a trigger register triggers the

operation of the FU. A FU can have many operations that are selected with operation

codes (details in Socket section). If a FU has operand registers, data has to be transferred

to those before triggering the FU. When triggered, a FU performs the selected operation

using data found from its trigger register and possible operand registers, and places the

result into its result register. A FU can also have a guard bit for signaling some special

situations to the network controller. [11]

A FU can perform general purpose functions such as arithmetic or logical operations,

but in the TACO architecture FUs perform solely specific operations needed in protocol

processing. Operations performed by single FUs include checksum calculation, masking,

comparison, counting and memory management among others. [11]
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3.3.2 Interconnection network

The interconnection network connects FUs to each other and to the Network controller.

Network consists of various number of buses. Each bus has a line for data and source

and destination addresses. The data line carries the data while source and destination

addresses indicate the source and destination registers. [11]

3.3.3 Sockets

Sockets are modules that connect FUs and the Interconnection network. A socket can be

connected to all or some of the buses. Like FU registers, sockets are also divided to three

categories: input, output and trigger sockets. Each socket is connected to one register of

an FU and has an unique identifier. [11]

Input sockets are connected to the data and destination address lines. The socket

compares the value of the destination address line, and if it matches its own identifier

content of the data line is read and passed to the operand register of the FU. [11]

Output sockets read the value of the source address line, and if it matches the identifier

contents of the result register is written to the data bus. [11]

A trigger socket functions like an input socket except that it also has a one bit signal

line to the FU that is set when identifiers match. Setting the bit triggers the operation of

the FU. If the FU has more than one operations, its trigger socket has the same amount

of identifiers. These extra identifiers are used to separate operation from each others.

Information about which operation is triggered is stored in the operation code register.

[11]

3.3.4 Interconnection network controller

The Interconnection network controller controls the operation of the processor. It has an

own program memory where the program code is stored. [11]
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One instruction word consists of one subinstruction for every bus in the processor.

Subinstruction has two address fields, source and destination, that are placed on corre-

sponding lines of the bus. The addresses trigger a data transfer between two registers.

A subinstruction also has a guard field, that contains identification for guard expressions

that are used for conditional execution. In addition to subinstructions, the instruction

word has also a field that enables dispatching of immediate values. This field specifies

the subinstruction(s) that contains an immediate value. When for example the first bit of

the immediate field is set, the source address field in the first subinstruction contains an

immediate value that will be placed on the data line of the bus instead of source address.

[11]

The Network controller fetches instructions, maintains the program counter, evalu-

ates guard expressions and dispatches subinstructions and immediates onto buses. The

operation of the processor is pipelined and consists of four stages. [11]

Fetch In the fetch stage Network controller fetches instruction from program mem-

ory. [11]

Decode The decode stage divides into to substages. At first the Network controller

places source and destination identifiers on the address bus. After this sockets read the

contents of the bus, and if there is a match between a socket’s own identifier and the

identifier on the bus a data move on this bus is scheduled. [11]
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of source address.

Move In the move stage the actual data move between the output socket and the

input or trigger socket of two functional units takes place on the data bus. [11]

Execute In the execute stage functional units execute their operations and write the

result in the result register. [11]

All instruction scheduling is done by the programmer or the compiler resulting in

very simple instruction decoding. As a result the structure of the Network controller is

relatively simple. [11]

The program counter is implemented as a socket that is connected to the Network con-

troller. It has three operation codes that make jumps possible. With these operations the

program counter can be loaded with the given value or a value can be added or subtracted
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from it. When the program counter is updated the Network controller must wait a period

of three cycles to allow pipelined instructions to complete. [11]
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SystemC

4.1 Introduction

SystemC is a C++ based hardware modeling language. The ever increasing level of com-

plexity if digital systems has created the need for higher abstraction level tools than tra-

ditional hardware description languages (HDL) such as VHDL and Verilog for system

specification, modelling, and verification. High level programming languages such as

C++ offer a suitable level of abstraction but lack structures that are needed for accurate

modeling of hardware. SystemC is intended to close this gap by introducing HDL struc-

tures and concurrency modeling to C++. This enables the use of one language at various

levels of abstraction in projects that require hardware/software integration and codesign

[13]. SystemC is not only a language but it also includes a simulation kernel on which

the code is executed. This enables accurate modeling of concurrency that is typical for

hardware instances, as opposed to software that is inherently sequential [14].

4.2 Features

SystemC introduces several hardware oriented data types in addition to those found in

standard C/C++ and structural components found from traditional HDLs such as modules,
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sc bit binary = ’0’;

sc logic high impedance = ’Z’;

sc bv<8> bitvector = "11110000"; // 8-bit vector

sc uint<32> integer = 12345; // 32-bit unsigned integer

sc bigint<128> = -234124; // 128-bit signed integer

Figure 4.1: Examples of SystemC data types.

ports and signals.

4.2.1 Data types

SystemC provides several data types in addition to native C/C++ data types. For binary

representation there are two types: sc bit and sc logic. Sc bit is a two valued logic type

which can have values true (’1’) and false (’0’). Sc logic adds two additional values, high

impedance (’Z’) and unknown (’X’), that are needed e.g. for accurate modeling of buses

with multiple drivers. There are also vector types with adjustable width available of both

types, sc bv and sc lv. [14]

In addition to binary types, SystemC has signed and unsigned integer types and fixed

point types. The length of the standard C++ integer is not fixed but depends on the com-

puter architecture on which the code is compiled. When describing hardware it is however

very important to be able to specify the length exactly. Therefore SystemC integer types

have fixed precision that is defined explicitly. The length of integers is given as a template

parameter when variable is declared. Types sc int (signed) and sc uint (unsigned) can

have width of 1 to 64 bits. Sc bigint and sc biguint are used for larger integers. SystemC

integer types also include several operators and functions that enable hardware oriented

operations. For example several binary operations and bit ranges selections can be per-

formed easily. [14]
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SC MODULE(ExampleModule1){

...

};

class ExampleModule2: public sc module {

...

};

Figure 4.2: Two ways to declare a SystemC module.

4.2.2 Module

Modules are the basic building blocks of a system. In SystemC modules correspond

largely to classes in object oriented software design. In fact a SystemC module is a C++

class that inherits library class sc module. A module’s internal implementation can be

encapsulated and a public interface offered through which the module is connected to the

surrounding system. The nature of the interface depends on the abstraction level of the

model. SystemC allows register transfer level (RTL) modeling using ports and signals but

also transaction level modeling (TLM) which operates on a higher level of abstraction, is

possible. [14]

Modules can be declared two ways: using the SystemC keyword SC MODULE or

explicitly inheriting class sc module which is the parent class of every module, in normal

C++ style. [14]

A constructor is used to create and initialize the module. There are two different ways

to declare the constructor. The SC CTOR keyword may be used, or C++ style can be

used in which case the keyword SC HAS PROCESS(modulename) must be present in

the code. SC CTOR allows only one constructor parameter to be passed which is also

obligatory for every module constructor: module name. In SystemC every module must

have a unique name. If the user does not want or cannot provide unique names SystemC

offers a name generator function. [14]
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SC CTOR(Adder){

// constructor body

}

SC HAS PROCESS(Adder);

Adder(const sc module name& name):sc module(name){

// constructor body

}

Figure 4.3: Two ways for declaring a module constructor.

4.2.3 Processes

Processes are the part of the module that provide the functionality. Processes are sensitive

to certain signals and are executed when an event happens on one of these signals. A

typical event type is a change of value. The process body contains statements that are

executed sequentially until the end is reached or process is suspended (e.g. by calling the

wait() function) [14]. Processes in a module can run virtually in parallel thereby enabling

the modeling of parallelism.

In simplicity, processes are C++ functions that are registered with the SystemC ker-

nel, and can therefore be invoked when necessary and be executed concurrently with other

processes. There is no hierarchy between processes but they are all equal and cannot in-

voke each other. Modules can however have normal C++ functions that are not processes

and that can be called by processes. [14]

There are three types of processes in SystemC. Method processes execute their body

sequentially from start to end and when complete, control is returned to the simulation

kernel. Therefore a method process cannot have e.g. infinite loops but the execution must

always terminate. [14]

Thread processes execute until they are suspended by calling wait() within the process

body. Execution is resumed from that point the next time process is triggered. [14]
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Clocked thread processes are like thread processes but they are sensitive to exactly one

signal, the clock signal that is given to it when the process is declared. The clock signal

triggers the process on every clock edge, and execution is suspended by calling either

wait() or wait until() function. Sensitivity to the positive or the negative clock edge can

be defined. The wait until() function can be used to halt the execution of the process until

a certain condition becomes true. These features make clocked threads especially suitable

for describing finite state machines in a hardware oriented way [14]. Unlike methods,

threads and clocked threads require an own execution stack in the simulation kernel. This

makes context switching slightly heavier and introduces some overhead in comparison to

method processes [15].

4.2.4 Ports and channels

In SystemC ports are the interface between a module and the rest of the system. Ports are

connected to other ports via channels.

There are three types of ports. Input and output ports are one directional. Input ports

carry data to the module and can only be read and output port transfers data out and can

therefore be only written. Inout ports allow two-directional transfer. Ports are accessed

with two self-explanatory functions, read() and write() [14]. SystemC allows creation of

ports only within modules [15].

Channels are the means to interconnect ports. The simplest channel type is signal that

models a wire in the physical circuit. Other more advanced channel types include buffers,

FIFOs and semaphores. In SystemC there are many ways to bind the ports to a channel.

Earlier versions supported positional binding, where a channels could be bound to ports

in the order the ports were declared in the module using operator <<. This feature has

been deprecated since SystemC 2.x however. Currently the two best ways are to either

use operator() or in a more explicit manner use function bind(). The SystemC simulation

kernel requires every port to be bound to exactly one channel (or in some cases directly
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SC MODULE(Example){

void exampleProc1(){

cout << "This is a method process" << endl;

}

void exampleProc2(){

while(true){

cout << "This is a thread process" << endl;

wait();

}

}

void exampleProc3(){

while(true){

cout << "This is a clocked thread process" << endl;

wait();

}

}

SC HAS PROCESS(Example);

Example(const sc module name& name, sc clock& clk): sc module(name){

SC METHOD(exampleProc1);

sensitive << clk.pos();

SC THREAD(exampleProc2);

sensitive << clk.pos();

SC CTHREAD(exampleProc3, clk.pos());

}

};

Figure 4.4: Example of three different process types.
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SC MODULE(PortExample){

public:

sc in<sc bit> input; // input port

sc out<sc bit> output; // output port

// constructor, variables, processes, functions etc.

};

// code in higher level module constructor or main function:

// creation of two instances of PortExample module:

PortExample one("Ex1"), two("Ex2");

// creation of two signals for interconnecting these modules

sc signal<sc bit> sig1, sig2;

// signal binding using operator() and function bind():

one.input(sig1); one.output(sig2);

two.input.bind(sig2); two.output.bind(sig1);

Figure 4.5: Example of port binding.

to another port) [14]. Channels can be created only within modules or the main function

[15]. This means that port binding must happen either within module constructors or in

the main function.

The port type must match the type of the channel to which it is bound, for example

a port of type sc uint cannot be bound to a channel of type sc bv. When a port is read,

the value of the channel connected to it is returned. When a port is written to, value is

assigned to the channel. To solve timing problems that might occur during simulation,

new channel values are assigned only after the writing process has stopped executing

[14]. As a result, when the writing and reading processes are synchronized by the same

clock and are therefore executing concurrently, a new channel value cannot be read until

the next clock cycle.

Signals can have multiple drivers (i.e. output ports connected to it). To model col-

lisions accurately, SystemC 2.x requires resolved four-valued logic to be used as a data
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type for the ports and signals instead of higher level data types. [14]

4.2.5 Simulation

When a SystemC description of the system is ready, it can be simulated. Prior to the

simulation every module must be constructed properly and ports must be bound. Simu-

lation is started with the sc start() function that takes the simulation time as a parameter

or runs indefinitely if none is given. Simulation can be stopped with function sc stop()

and during the simulation the elapsed simulation time can be queried with the function

sc simulation time(). Waveforms of selected signals can be traced during the simulation,

and results are stored in a file in VCD, WIF or ISDB format and are viewable with any

waveform viewer supporting some of these file formats. [14]

The execution of SystemC code consists of two parts: elaboration and simulation.

During the elaboration module hierarchy is created and integrity of modules and con-

nections of ports is checked [16]. This includes creation of modules and their ports and

signals. After the elaboration this structure is fixed, meaning that additional modules,

ports or signals cannot be created dynamically during the simulation as this would make

little sense from hardware point of view. If the system passes elaboration, the actual sim-

ulation is started under the control of the scheduler of the simulation kernel. SystemC

has a non-preemptive scheduler that schedules the execution of processes based on events

created by e.g. changes in the signal values. After the simulation module hierarchy is

automatically destructed [15].

4.3 Hardware synthesis

Efforts have been made to standardize a synthesizable subset of SystemC to ensure com-

patibility of different synthesis tools. The Subset is currently however at draft state and

much of the details are dependent on the tool that is used.
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Improved expressiveness of SystemC compared with traditional hardware description

languages could speed up hardware design significantly by simplifying the design flow

provided that efficient synthesis is possible. The synthesizable subset however has many

severe restrictions in comparison to normal SystemC/C++.

One of the biggest limitations is that the member variables and functions cannot be ref-

erenced from outside the module [17]. Intermodule communication must be implemented

exclusively using ports and signals in a similar manner as with traditional hardware de-

scription languages. In effect this means that the modules must be fully initialized in their

constructors and must communicate strictly at register transfer level with other modules.

There are also limitations for data types. Most integer and bit types of C++ and

SystemC are supported, but floating point types are not. Also pointers have restrictions

that have a significant impact. Pointers are allowed only in cases where they point to a

statically determinable object. For example pointer arithmetics and arrays of pointers are

not allowed [17]. Because of this most of C/C++ standard libraries are not supported,

containers among the most important ones. The only synthesizable data structure is a

normal C array of supported data type. Because the C array is a very restricted, unsafe

and low level structure this imposes serious limitations that are discussed later.

There are many details which the draft for synthesizable subset does not address. For

example inheritance is a significant issue that is largely left open. The tool used for

synthesis tests was Celoxica Agility SystemC Compiler, and many additional restrictions

were found from it. E.g. inheriting processes does not work and virtual inheritance is

not supported. In practice inheritance works only with data members making an object

oriented design approach practically impossible.



Chapter 5

TACO simulation model

5.1 Introduction

To enable rapid simulations, evaluation and design space exploration, a SystemC based

simulation environment was constructed for the TACO processor. SystemC also makes it

easy to construct libraries of functional units. Designers can easily construct models for

a certain protocol processing application from a set of readily available functional units

and possibly implement some new ones, write program code for the processor instance,

simulate it, and evaluate results for both the hardware and software. Design tools used

are also free, for example C++ compilers such as GCC (GNU Compiler Collection) are

available under open license.

5.2 Previous version

The previous version of the TACO simulation model was developed for SystemC 1.0. It

was hoped that object oriented techniques could have been employed, but due to limita-

tions in that version of SystemC this was not fully achieved. [11]

The model contains SystemC descriptions for functional units, sockets, the intercon-

nection network and the interconnection network controller. It also has certain elements
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that are used for automating model constructions as much as possible. Program code for

the modeled processor can be written with an assembly language which is compiled to

hexadecimal form into an ASCII file with an assembler/compiler. The simulation model

loads the program code from this file automatically when it is run. [11]

Abstraction level of the model is heterogeneous. Communication in the interconnec-

tion network is modeled at RTL level while functionality of the functional units can be

given with C++. The functional units have a very similar interface towards the intercon-

nection network. Therefore much of this code can be gathered to a parent class making

the code more manageable which simplifies the implementation of new functional units.

[11]

During the elaboration phase module hierarchy is created. Sockets are created and

addresses are distributed to the sockets automatically, and functional units are connected

to the buses automatically. After the elaboration phase module hierarchy is fixed and sim-

ulation is started [11]. Since much of the variability of the TACO architecture comes from

an undisclosed number of functional units, dynamic creation of FUs and their sockets is

an essential part of the simulation model.

A simulation model is constructed by creating the basic elements of the model and

desired functional units in the main function, and connecting functional units to buses.

When a FU is constructed, the correct amount of sockets and all the needed signals for it

are automatically created partially in the constructor and partially in the SocketManager

class. Buses have functions that take a pointer to a FU as a parameter and automatically

connect a FU’s sockets to the right lines of the bus. After this the code is compiled and

simulation is automatically started provided that everything was done in the main function

correctly. [11]

Due to the immaturity of SystemC 1.0 several problems were encountered during the

development of the previous model which required suboptimal solutions to be corrected.

Use of inheritance especially in the functional units was required to enable extendability
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and reusablity. This however was difficult to achieve, and required a threefold class hier-

archy to be created for the functional units including use of class templates. Also common

C++ practice of separating declarations and implementations to different .h and .cpp files

was not possible. [11]

5.3 Updated version

Due to advancements in SystemC a need for an updated TACO simulation model was

felt. The previous simulation model also did not simulate the four stage pipeline that

was introduced to the architecture later. Also the possibility to synthesize a simulation

model was considered an interesting topic. A synthesizable VHDL model for the TACO

architecture was created earlier and comparing it to a synthesizable SystemC model would

be a valid research topic.

After thorough examination of the model it was however apparent that due to vast

changes in SystemC and certain problematic features in the model it would not be possible

to bring it up to date without major overhaul and rewriting large parts of the model.

One big problem were the signals. SystemC 1.0 did not model traffic in the signals as

accurately as SystemC 2.2 and did not enforce collisions. A signal in SystemC 2.2 must

be of a type sc logic if the signal has multiple drivers, therefore forcing the developer to

consider collisions. In the old model signals were of type sc uint and essentially used like

shared variables where the last written value can be read and overwritten if desired. This

simplified the model and enabled higher level programming, but was totally incompatible

with SystemC 2.2 and not accurate enough when considering synthesis.

Other big problems were dynamic creation of signals and ports. The sequence of

creating and connecting the ports and needed signals of sockets to buses and to FUs was

complex, and during it signals and ports were created outside module constructors. Since

this is enforced more strictly by SystemC 2.2 it caused errors and some of the ports were
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not properly bound. This complexity also hindered creation of new FUs. The base class

only included code for creating and connecting one of each type of sockets. However

many FUs have more input and output sockets than just one, and the code for creating

and connecting these extra sockets had to be placed in the child class. This made the code

bloated with functions that conceptually should be in the parent class.

There were also smaller problems. The synthesizable subset of SystemC does not

allow e.g. pointer arithmetic and dynamic memory allocation which are used by classes

of the C++ standard library. This is especially problematic since large parts of the func-

tionality of the model was implemented using STL container classes that rely heavily on

these features. Another problem was that the synthesizable subset allows intermodule

communication only via ports. Member functions and variables of a module cannot be

accessed outside the scope of that module. Some parts of the model were implemented in

a normal high level C++ manner which would have been very difficult to synthesize later.

5.3.1 Design principles

To remedy the problems faced with the old model and to overcome the limitations of

SystemC and especially its synthesizable subset, removal of all unnecessary complexity

was taken as a design principle. Also recommended SystemC 2.x coding style was used

and synthesizable subset was followed whenever feasible rather than higher level software

engineering oriented approach. In order to keep the design clear from hardware oriented

point of view, the abstraction level was chosen to follow system level block structure and

to introduce only few complex software structures to the model. In addition, to make the

model even more usable, implementation of new functional units and construction of a

new simulation model instance was simplified even further by automating as much of the

module initialization as possible.

In effect this meant that all the necessary initializations and submodule constructions

had to be done in the module constructors, and necessary information be given as param-
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eters. It soon became obvious that choice had to be made between an elegant and user

friendly model and a synthesizable model. The first one was chosen and as a result some

non-synthesizable features were added to make the model more usable. They were how-

ever implemented in a way that their removal and replacement is easy. To improve reuse,

certain features such as width of the buses and variables can be parametrized in a global

level definition file. Variable widths were also considered when implementing all parts of

the model, making transition from e.g. a 32-bit width to 64 bits only a matter of changing

the value of one macro and recompiling the code.

Coding style was also changed a little. Due to limitations of SystemC 1.0 typical

C/C++ practice of separation of declaration and definition in separate .h and .cpp files

was not possible. Since SystemC 2.x no longer suffers from this the practice was taken

into use. There is one limitation however: the module constructor still has to be written

in the header file. Another decision concerning style was not to use SystemC macros

such as SC MODULE and SC CTOR but to replace them with standard C++ code. Read-

ability of standard C++ code is better, some limitations can be diverted (e.g. number of

constructor parameters), and it also e.g. simplifies the use of C++ compliant code docu-

mentation tools. Code documentation was formatted compatible with the Doxygen tool

that automatically generates HTML documentation of the code.

5.3.2 Structure

Basic class structure was largely kept the same despite the fact that the actual implemen-

tation changed a lot due to application of new design principles and introduction of new

features.

The class FunctionalUnit is an abstract parent class of every functional unit. It cre-

ates and configures a parametrizable number of different types of sockets, and contains

one process. The checkTrigger process is a clocked thread process that executes on every

clock cycle and checks if the functional unit is triggered. If it is, it executes the triggerOp-
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Figure 5.1: UML class diagram of the new version of simulation model.

eration function. This function is a virtual function and the specific implementation for

it is given in the inheriting class. Since checkTrigger is a thread process in contrast to a

method process, it is possible to add wait-statements into the implementation of trigger-

Operation if needed (e.g. a FU has a non-trivial execution unit that needs several clock

cycles to complete execution). In principle implementing a specific functional unit is very

simple task, it only includes giving parameters (mainly the number of input and output

sockets) for the constructor of the parent class and giving an implementation for func-

tion triggerOperation. Also existing functional units implemented for the old version of

the simulation model are relatively easy to convert to the new model, it just requires the

functional description to be copied inside the triggerOperation function. Certain func-

tional units may also have guard bits that are connected to the NetworkController. Since

they are very implementation specific, the simulation model does not provide any general

facilities for them. Implementation of FUs is discussed in detail later.
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The Socket class is the parent class of the three types of sockets in the processor archi-

tecture; input, output and trigger sockets. Sockets have one process: decodeId. DecodeId

is a method process that is sensitive to the clock. A suitable implementation for this is

given in child classes. Contents of the address bus (src in output socket, dst in input and

trigger socket) are inspected. If a matching address is found the socket reacts, e.g. an

output socket writes its contents to the data bus. A socket is connected to the buses in the

child classes since they do not have a common interface towards the buses. OutputSocket

has output ports that are connected to the data buses, and input ports that are connected

to the source address buses. TriggerSocket and InputSocket have input ports that are con-

nected to data buses and destination address buses. In addition, TriggerSocket has a one

bit output port that is connected to the functional unit and used to trigger it. Sockets are

always a solid part of some FunctionalUnit instance. There is one exception though, Net-

workController also has one TriggerSocket that is connected to the program counter and

used for programmed jumps.

The NetworkController is the third and last elemental component of the system. The

program memory is modeled as an array of instruction words. When an instance is cre-

ated, contents of the program memory are loaded from an ASCII text file containing

program code created by a separate compiler tool (discussed in detail later). Network-

Controller is connected to all the buses and in addition some of the FUs have guard bits

that are also connected to the NetworkController. Bus configurations are automatic but

guard signals must be connected manually in the top level file. NetworkController also

has one TriggerSocket that is used for updating program counter. It has two method pro-

cesses that are sensitive to the positive edge of the clock. The updatePc process checks

the trigger bit coming from the trigger socket and loads a new program counter value if

one is present. The other process if fetch. It fetches a new instruction word from the

memory on every clock cycle unless a programmed jump has occurred in which case it

waits for three cycles. Instruction words are decoded, guard expressions are evaluated,
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Figure 5.2: UML sequence diagram of the creation and initialization of a functional unit

using Buscontroller.

and subinstructions are dispatched to the buses. Finally it is checked whether the end

of the program memory is reached in which case execution is halted. Guard evaluation

is separated into an own function to clarify the code and since the implementation of

different guard expressions may change from processor instance to another.

The two remaining classes, Buscontroller and Bus, are not hardware modules and exist

to make the simulation model easier to configure by allowing automatic bus binding. Bus

is a simple class that simply encapsulates the “wiring” or signals of one bus, i.e. source

and destination address lines and data line. Buscontroller is a static class that manages

Bus objects. Buscontroller is called by constructors of the modules. It returns a pointer

to a Bus object, and the ports of the module are bound to it in the module constructor.

Buscontroller also attaches all signals to a tracer object that creates a VCD trace file of
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bus traffic when a simulation is run. In addition, Buscontroller is used to give unique

ID:s or addresses to the sockets. Because Buscontroller is not synthesizable, its removal

from the system was done simple. When the Buscontroller is missing bus signals need to

be manually created in a top level file and connected to the ports of the functional units

(or sockets to be exact) and network controller. Also socket addresses need to be given

manually as a parameter to constructors of each functional unit. This is a trivial task but

makes simulation model construction significantly slower and more prone for errors, and

is therefore feasible only when the model is to be synthesized.

5.4 Implementing a new functional unit

When the processor architecture is used on a new application area it may be necessary

to implement new functional units. This is a relatively straight-forward task. A trivial

case, a new FU must inherit from class FunctionalUnit and give implementation for the

triggerOperation function. An example of a simple FU is seen in fig 5.3. The constructor

takes five parameters. The first one is the name that has to be a unique string of characters.

Reference to the clock signal is also needed. The rest of the parameters are pointers to

arrays of integers that are the addresses for each type of sockets. They can be left blank

in which case they are initialized with a constant array that contains only a zero. The

reason for using this array with zero instead of initializing the pointer to zero is that the

synthesizable subset does not allow a pointer to be checked for the value zero.

These parameters are passed to the constructor of the parent class, as well as integer

values that define how many input and output sockets need to be created and how many

operation codes the trigger socket has. In this example the FU has two input sockets and

one output socket and two operation codes. When a FU has more than one operation code

it may be useful to give them specific names rather than let the simulation model generate

generic names. It makes the virtual assembly code more readable since these names will
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ExampleFU(sc module name name,

sc clock &c,

sc uint<ADDRESSWIDTH>* opId = zero,

sc uint<ADDRESSWIDTH>* resId = zero,

sc uint<ADDRESSWIDTH>* trigIds = zero

) : FunctionalUnit(name, c, 2, 1, 2, opId,

resId, trigIds, opNames)

{ // constructor body }

void triggerOperation(){

resultReg[0].write(operandReg[1].read());

}

Figure 5.3: Example of a constructor and triggerOperation function of a simple functional

unit.

be used as mnemonics for these registers. In that case a pointer to an array of character

strings can be given as a parameter to the parent class constructor. Care must be taken

though that the pointer does not point to a freed address space. This can be achieved by

for example introducing a constant and static member variable containing these strings.

Simple FUs rarely need any initializations for themselves and the constructor body

can be left empty.

The functionality of the FU is given in the triggerOperation() function. In the example

case the FU reads the contents of the second operand register (i.e. contents of the input

socket) and writes it to the first and only output. Input and output registers are found in

arrays created by the constructor of the parent class. Some care must be taken not to read

or write outside their boundaries since C/C++ arrays are not protected against this and

doing so leads to errors that may be hard to debug.

In some cases however it might also be feasible to extend some existing FU. In the

FUs found from the current library there is one such case. The Data Memory Management
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Unit (DMMU) shares the same interface towards the interconnection network with the

normal MMU but is also directly connected to two other FUs: InputFU and OutputFU

that connect the processor to the surrounding world through e.g. a network interface.

However, in general FUs rarely have such features.

5.5 Writing software for the processor

The software for the processor is written with a virtual assembly language just as with

the older version of the simulation model. Assembly code for the processor consists only

of data transfers between registers (or sockets to be exact) and guard expressions that

are used for conditional execution. Names of the registers and the guard expressions are

always specific for a certain processor architecture instance. When the model is con-

structed, compiled and run once it will create a file named socks.txt. This file contains

the names of every socket and their corresponding addresses. The names found from this

file are used in the assembly code. Names are generated by the model by taking a part of

the name of a FU and adding a suitable prefix to it. For example the first output socket of

a Counter instance “C1” will get the name “RC1”. The guard expressions can be defined

freely and must be manually placed to the file guards.txt. This file will contain the as-

sembly notation for the expression and the index that points to the implementation found

from the NetworkController.

Once the code is written with assembly notation that corresponds to mnemonics found

from socks.txt and guards.txt in the code is compiled or assembled to binary form. This is

done with a separate compiler tool. The compiler uses the same global definition file with

the simulation model and can therefore assemble the code to instruction words of right

dimensions. The compiler program must be recompiled though every time the definitions

are changed. When it is executed it creates a file code.bin which is an ASCII file that

contains the program code in binary form. This code file is then placed in the same
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Generated by

simulation model

TPC: 253

TUPC: 254

TDPC: 255

OPSH1: 1

RSH1: 2

a: 0

!a: 1

b: 2

!b: 3

c: 4

!d: +03>TPC; !d: +00>TIN1;

+01>TPC; NOP;

# sample code

+00>OPUMMU1; +06>TRUMMU1;

Compiler

Code.bin

111111111000001100011101111111111100000000001110000011

000000111000000000100010100000011100000011111111010011

111111111000000000000000011111111100000001111111010001

Written by designers

Socks.txt Guards.txt Code.asm

Figure 5.4: Inputs and outputs of compiler. The model creates the socks.txt file while the

developers write the assembly code and design the guard expressions.

folder with the simulation model, and it is loaded from there every time the simulation is

executed.

The compiler was updated only slightly in comparison to the previous version. Since

several features of the new model are easily configurable and some of them, such as the

address bus width, affect the width of the instruction word, these parameters were added

also to the compiler. The compiler uses the same definition file as the simulation model

and has to be recompiled when the definitions change. The old compiler and simulation

model exchanged the program code in hexadecimal format. This was changed to binary

since then there is no need to first do decimal and binary to hexadecimal conversion in the

compiler and hexadecimal to binary conversion in the simulation model. Readability of

the compiled program code is also improved since the fields in the instruction words are

not usually multiples of four bits making hexadecimal representation next to impossible
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to read for a human.

5.6 Instantiating a model instance

Simulation is instantiated by creating instances of wanted modules and support classes

inside sc main function in the top level main.cpp file. An example of this is seen in

figure 5.5. The first object to create is the system clock. It is of type sc clock and takes

a few parameters including period, start time etc. Then exactly one NetworkController

and Buscontroller instance are needed. In addition, a Testbench that creates stimuli for

the model is created. This is discussed in detail in the next chapter. After these objects

the needed functional units can be created. The guard bits in the FUs are connected

manually to preferred signals going to the network controller. Other initializations are

done automatically. When all the FUs are created simulation is started by calling sc start

and giving the run time as a parameter. If no parameters are passed the simulation runs

forever or until some severe error is detected.

Constructing a synthesizable model is otherwise similar but Buscontroller cannot be

used. This means that the signals of the interconnection network need to be created man-

ually in the main function. Then the ports of the network controller and FUs are bound

to these signals manually. The ports are public member variables of the classes and the

task in general is trivial but has to be done very carefully. Also the amount of work can

be large. For example a processor with three buses and ten functional units needs nine

signals for the buses and in addition one signal per guard. The network controller has nine

ports for the buses and one for each guard bit, and the functional units may be estimated

to have an average of 25 ports per FU. As a result there will be over 250 ports that need

to be bound to correct signals.
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//include needed headers

int sc main(int argc, char argv[]){

sc time simPeriod(20, SC US); sc time simStartTime(5, SC US);

sc clock clk("clock", simPeriod, 0.5, simStartTime, true);

Testbench tb("Testbench", clk);

Buscontroller bctrl(clk);

NetworkController ntc("Netc", clk);

Shifter sh1("SH1", clk);

sh1.guardBit(bctrl.getGuard(3));

// creation of rest of the FUs similarily

sc time runtime(60000, SC US);

sc start(runtime);

return 0;

};

Figure 5.5: Example of a top level simulation file.

5.7 Simulation model outputs

The primary purpose of the simulation model is to verify and analyze the functionality of

the system. To enable this the simulator produces many kinds of outputs.

For every clock cycle the simulation model outputs in text format the number of the

cycle, contents of the buses and miscellaneous debugging information about active func-

tional units. Therefore it is possible to easily analyze and verify the behavior of for exam-

ple new functional units by printing out verbose debugging messages. When this output

is printed on the screen it however becomes a major performance bottleneck for the exe-

cution speed of the simulation so it is advisable to redirect it to a text file or to null device

if it is not needed. It is also possible to calculate accurately how many clock cycles are

needed to execute the given algorithm written in assembly.

The simulation model also generates a VCD file containing the waveforms of every

bus and guard signal and clock signal. This file can be viewed with any waveform viewer
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supporting this format. Contents of the data buses are also dumped to an ASCII file and

the utilization percentage can be calculated based on this information with a separate tool.



Chapter 6

Testing and results

In order to test the functionality of the model a simple test case was implemented. A

processor was designed for verifying the header structure of an IPv6 packet, calculating

and verifying the checksum for its TCP payload and extracting the payload of the TCP

packet. For this task, the following functional units were needed for protocol prosessing:

shifter, masker, matcher, counter, comparator and checksum calculator. A user memory

management unit was needed for storing a few 32-bit values that cannot be dispatched

as immediate values on an 8-bit address buses, input and output FUs were needed for

connecting the processor to the network interface and a data memory management unit

with DMA support and direct connections to input and output FUs was used for storing

and retrieving incoming and outgoing data. In addition four general purpose registers

were needed for storing temporary results.

To simulate the network interface of the processor the testbench of the old simulation

model was utilized. It was connected to the input and output FUs, and it read simulated

packed data from text files and fed them to the input FU. Test packets were hand crafted

to the file to verify functionality with different types of packets with different types of

payloads and errors. The data from the output interface was written to another file to

verify that incoherent packets were dealt with and that correct ones remained intact during

and after the processing.
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After analyzing the task it soon became apparent that two buses is the optimal amount

for this task. One bus would severally slow down processing while at least one of three

buses would be idle at least 90% of the time. Two buses allow suitable amount of paral-

lelism in calculations though the speed of the task is ultimately limited by the memory.

Due to DMA it is however possible to start processing a packet immediately when the

first words arrive without going to have to wait until it is entirely stored to the memory.

A slightly simplified flow chart of the software part can be seen in in figure 6.1. First

the validity of fields in the IPv6 header is checked, then the pseudo header is constructed

and finally the checksum is calculated for the TCP packet. If the checksum is correct,

the payload is written out, in other cases the data is discarded. This code fits in 128

instruction words, or 864 bytes (instruction word width for this processor is 54 bits).

Approximately 2030 processor cycles are needed to process one 1500 bytes long packet.

The program code leaves however much room for optimization since it was designed for

testing purposes only.

The execution speed of the simulator was also analyzed by running this algorithm.

An almost legacy PC with two 1GHz Pentium III processors, 256 MB of RAM and Linux

can simulate some 35 000 processor cycles per minute. The simulation speed however de-

pends heavily on the architecture of the processor design under test (number of buses and

FUs) and also the software portion which defines the number of operations per simulated

cycle.

6.1 Synthesis

As discussed before the simulation model was constructed following the synthesizable

subset where feasible to simplify synthesis later. However the used tool, Celoxica Agility

SystemC Compiler, was not available until months after the task had been completed so as

a result the synthesizability could not be verified during the implementation. This proved
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fatal as the limitations were far more severe than anticipated.

The synthesis tests were done by using the tool to compile the SystemC modules one

by one into synthesizable VHDL. The starting point were the simplest modules which in

this case were the sockets. The functionality of the VHDL code was verified by construct-

ing a VHDL testbench for each module, simulating the behaviour with Mentor Modelsim,

and restructuring the SystemC code until desired behaviour was achieved.

The tool did not support inheritance for other than data members, and since much of

the model was constructed with object oriented methodology in mind, the code had to

be restructured extensively by removing nearly all the object orientation. Every process

declaration had to be moved to the bottom level in the inheritance hierarchy effectively

making the top level classes next to useless. The only possible function the parent modules

could be used is to act as interface classes with no functionality. In hardware design this

is especially of limited value since the modules are always decoupled due to the use of

RTL or transaction level ports as an interface mechanism. This very restricted relation

between parent and child class resembles that of entity and architecture in VHDL and

cannot really be called inheritance since it does not offer almost any of the benefits of

object orientation.

Lack of proper synthesizable data structures also proved to be a big problem. In

the simulation model the functional units constructed automatically needed a number of

sockets for themselves and this rid the designer from this monotonous task. In general

this kind of dynamic instantiation of configurable hierarchical module structures could

simplify hardware design by making the modules more reusable and removing trivial

manual work. While this can be achieved e.g. in VHDL with the generate statement, in

synthesizable SystemC it is not possible as there are no data structures where the module

references or pointers could be stored. Natural choice would be to use an array of pointers

but for some reason they are excluded from the subset. Creating an array of modules

themselves does not work since SystemC requires each module to have a unique name
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given as a constructor parameter and because of this writing a default constructor for a

module is not possible. There exists a library function for generating these names but its

use is not supported by the tool. This situation could be though easily remedied in the

future when the synthesis tools are developed further.

Because of these limitations the code eventually had to be completely restructured

in order to be synthesized. The three socket types that were the simplest modules in

the system were successfully synthesized, but even the simplest functional units proved

to be problematic. Eventually it became apparent that synthesizing them would require

them to be rewritten almost from scratch since first of all as mentioned before the code

had to be restructured and second the functionality of the processes did not compile into

working VHDL. It would seem that in order to write synthesizable SystemC code the

most important considerations are about structuring, but also the functional descriptions

should be very carefully implemented. A software oriented approach should be mostly

avoided and principles used in traditional hardware description language based should be

followed. When the modules are independent and have a very clear block chart structure

the synthesis should cause less problems. Generally an algorithm written with SystemC

does not necessarily synthesize even if the guidelines given by the manuals are followed,

and the abstraction level of synthesizable SystemC appears to be close to that of traditional

HDLs. These limitations effectively negate many of the advantages SystemC could offer.

6.2 Criticism

During the project it became apparent that C++ is not the optimal choice for high level

hardware modeling in every aspect. Its biggest advantages might be that the same lan-

guage can be used for hardware and software design in projects concerning HW/SW

codesign. However there are some problematic features, mostly because the age of the

language and tools are clearly showing and adding unnecessary complexity.
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First of all, the exclusive use of the standard C array as the sole data structure in the

synthesizable subset is somewhat problematic. The array is a very low level structure

and while in software domain it is extremely effective since it compiles efficiently into

assembly, this benefit has no value in hardware modeling. Since it lacks basic features

such as boundary checks and the size has to be known statically at compile time, it causes

some unnecessary awkwardness and may introduce bugs that are hard to detect. Ironically

the C array is more low level than the one found from e.g. VHDL even though one of the

most important goals of the SystemC is to increase the level of abstraction and expression.

There are also other kind of features in C++ that are dead weight in hardware design.

The pointers and references and memory management in general are useless features that

offer nothing for hardware design but are a huge source of bugs. The compilation model

of the language and the compilers themselves, mostly GCC, could also be better. The

biggest problem is that the designer has to use effort for determining dependencies and

linking. While in software development better control over the compiler may be useful in

some cases, in hardware modeling it is only a hindrance.

Because of these issues one could argue that a modern language with similar refer-

ence semantics with e.g. Java, better synthesizable data structures, automatic garbage

collection and modern compiler technology could be a better choice as basis for a high

level hardware description language. Advanced integrated development environments

with SystemC support may offer some improvements in the future though.
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Figure 6.1: A flow chart of the software part of the test case.



Chapter 7

Conclusion

This thesis covered object oriented SystemC 2.x based hardware simulation especially in

the protocol processing domain. A SystemC based simulation environment was developed

for a TTA based protocol processor architecture using an old version as a starting point.

A simulation model for a simple processor for TCP/IP packet validation was developed

and tested with the environment for testing purposes. Synthesizability of the environment

was also explored.

It was observed that SystemC 2.x has evolved significantly from the version 1.0 and

now has good support for an object oriented approach to hardware modeling. This enables

the creation of configurable and reusable module descriptions and testbenches. It also

makes it easy to construct simulation environments for hardware platforms such as the

one used in this thesis. These kind of environments simplify and speed up desing tasks as

they enable rapid prototyping and design space exploration.

SystemC synthesis proved problematic. The synthesizable subset of SystemC is very

limited. Many if not most of the powerful features that give significant advantage to

SystemC compared with traditional HDLs are excluded from this subset. Inheritance is

one of the biggest missing features and this severely restricts the level of expression. Also

higher level data structures than the standard C array cannot be used, and e.g. advanced

channel types such as FIFOs and buffers are not supported. In practice this means that
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synthesizable SystemC does not offer as high level of abstraction as could be hoped for.

The difference to e.g. VHDL becomes remarkable only when the functional complexity

of the modules grows significantly. Although synthesizable SystemC offers increased

level of expression compared with VHDL, the latter has the advantage of giving more

control over the hardware and therefore giving more room for optimization.

It was also observed that the exact limitations of the synthesizable subset are not well

defined, and much of the details depend on the tool that is used since the draft provided

by OSCI only gives vague outlines. Since the synthesis tool was not available during

the development of the simulation environment, synthesizability of its basic structures

could not be tested until months after. Then it was obseved that much of the code had

to be once again rewritten or at least extensively restructured even though the draft for

the subset was followed. Therefore it would appear that if both simulation and synthesis

are done with SystemC this decision should be done already in an early phase, and the

model should be tested also with the synthesis tool on every major increment. There also

exists a trade-off between utilizing the powerful expression of C++ in its full extent and

pursuing synthesizability of the model since it appears they are very difficult to fit into the

same model, and refining a high level simulation model towards synthesis requirements

requires significant effort.

To conclude, new versions of SystemC offer powerful features for hardware simula-

tion and verification and hardware/software codesign, but current synthesis tools leave

room for improvement. In the future, incorporating object orientation and facilities such

as higher level data types and structures to the synthesizable subset could offer significant

benefits for hardware design.
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Appendix A

Simulation model text file inputs

Contents of the file socks.txt

TPC : 253

TUPC : 254

TDPC : 255

OPSH1 : 1

RSH1 : 2

TLRSH1 : 3

TLLSH1 : 4

TLSH1 : 5

OPCM1: 6

RCM1: 7

TEQCM1: 8

TLZCM1: 9

TGZCM1: 10

TEQZCM1: 11

TLEQCM1: 12

TLTCM1: 13

TGEQCM1: 14

TGTCM1: 15

RC1 : 16

TSCC1 : 17

TICC1 : 18

TDCC1 : 19

OPM1: 20

ODM1: 21

RM1: 22

TM1: 23

OPMS1: 24

ODMS1: 25

RMS1: 26

TMS1 : 27

OPCH1 : 28

ODCH1: 29

RCH1 : 30
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TRCCH1 : 31

TCCCH1 : 32

OPRLI : 33

ODRLI : 34

RRLI : 35

TMTURLI : 36

TLLARLI : 37

TUNIRLI : 38

TCSTRLI : 39

TSMTURLI : 40

TSLLARLI : 41

TSUNIRLI : 42

TSCSTRLI : 43

OPIC : 44

ODIC : 45

RIC : 46

TIC : 47

RR1 : 48

TR1 : 49

RR2 : 50

TR2 : 51

RR3 : 52

TR3 : 53

RR4 : 54

TR4 : 55

OPUMMU1: 56

ODUMMU1: 57

RUMMU1: 58

TRMMUMMU1: 59

TWMMUMMU1: 60

OPDMMU1: 61

ODDMMU1: 62

RDMMU1: 63

TRMMDMMU1: 64

TWMMDMMU1: 65

RIN10 : 66

RIN11 : 67

RIN12 : 68

TIN1 : 69

OPOUT1 : 70

ODOUT1: 71

TOUT1 : 72

Contents of the file guards.txt
a : 0

! a : 1

b : 2

! b : 3

c : 4

! c : 5

d : 6

! d : 7

e : 8

! e : 9

a . b : 10
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! a . b : 11

a . ! b : 12

! a . ! b : 13



Appendix B

Signal trace file

An example of a signal trace file viewed with GTKWave.



Appendix C

Source code

Source code of the model is listed on the following pages in alphabetical order, one source

file per page. To save space source code for most of the trivial functional units in the

library is omitted.



1 /**
2  * Bus is class modelling a bus in a transport triggered processor. It is a collection 

of needed signals, that are connected elsewhere to network controller and sockets 
of functional units.

3  */
4

5 #ifndef Bus_H
6 #define Bus_H
7

8 #include "globaldefs.h"
9

10 #include "systemc.h"
11 class Bus: public sc_module {
12

13   public:
14

15   //////////////////////////////////////////////////////
16   // Signals
17   //////////////////////////////////////////////////////
18

19   /**
20    * Data bus.
21    */
22   sc_signal_rv<BUSWIDTH> sigData;
23

24   /**
25    * Source address bus.
26    */
27   sc_signal<sc_uint<ADDRESSWIDTH> > sigSrc;
28

29   /**
30    * Destination address bus.
31    */
32   sc_signal<sc_uint<ADDRESSWIDTH> > sigDst;
33

34   SC_HAS_PROCESS(Bus);
35   /**
36    * Constructor.
37    *
38    * \param name Name of this module.
39    */
40   Bus(const sc_module_name name): sc_module(name){
41   }
42

43 };
44 #endif // Bus_H
45



1 #include "bus.h"

2

3 int Bus::busCnt = 0;

4

5 char* Bus::names[BUSES];

6

7 char* Bus::generateName(){

8   char name[] = "Busx";

9   name[3] = busCnt;

10   names[busCnt] = name;

11   return names[busCnt++];

12 }

13



1 /**
2  * Buscontroller is a static class that handles the buses of the system.
3  */
4

5 #ifndef Buscontroller_H
6 #define Buscontroller_H
7

8 #include "globaldefs.h"
9 #include "bus.h"

10 #include "systemc.h"
11 #include <fstream>
12

13 class Buscontroller {
14

15   private:
16

17   /**
18    * Tracer for VCD file output.
19    */
20   static sc_trace_file* bustracer;
21

22   /**
23    * Array of bus pointers, initialized in constructor.
24    */
25   static Bus* buses[];
26

27   /**
28    * Number of sockets in the system.
29    */
30   static int socketCnt;
31

32   /**
33    * File writer for socket ID output.
34    */
35   static ofstream fileWriter;
36

37   /**
38    * Array of guard signals.
39    */
40   static sc_signal<bool> guards[];
41

42   public:
43

44   //////////////////////////////////////////////////////
45   // Functions
46   //////////////////////////////////////////////////////
47

48   /**
49    * Returns a pointer to bus i. 
50    *
51    * \pre (0 <= i <= BUSES-1 )
52    * \return (0 <= i <= BUSES) ? (pointer to bus i) : 0
53    * \param i Number of the bus.
54    */
55   static Bus* getBus(int i);
56

57   /**
58    * Returns a reference to guard i.
59    */
60   static sc_signal<bool>& getGuard(int i);
61

62   /**
63    * Returns an id for a socket. If number of sockets exceeds the range
64    * of address bus, error message is displayed in simulation is stopped.
65    *
66    * \param socketName Name of the socket.
67    */
68   static sc_uint<ADDRESSWIDTH> getSocketId(const char* socketName);
69

70   /**
71    * Constructor.
72    */
73   Buscontroller(sc_clock &c);
74

75   ~Buscontroller();
76

77 };
78 #endif // Buscontroller_H
79
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1 #ifndef Checksum_H
2 #define Checksum_H
3

4 #include "globaldefs.h"
5 #include "fu.h"
6 #include "systemc.h"
7

8 /**
9  * Checksum calculates the Internet checksum. 

10  */
11

12 class Checksum: public FunctionalUnit{
13

14   private:
15

16   /**
17    * Holds temporary result needed in consequtive calculations.
18    */
19   sc_uint<32> result_storage;
20

21   /**
22    * Array of strings that represent the name of operations.
23    */
24   static char* opNames[];
25

26   public:
27

28   /**
29    * Calculate checksum.
30    *
31    * msw = 16 most significant bits
32    * lsw = 16 least significant bits
33    * A = OP_msw + OP_lsw + OD_msw + OD_lsw + TR_msw + R'
34    * B = A_msw + A_lsw
35    * R' = B + B_carry
36    * RESULT = (R')'
37    *
38    */
39   void triggerOperation();
40

41   SC_HAS_PROCESS(Checksum);
42   Checksum(sc_module_name name, 
43                 sc_clock &c, 
44                 sc_uint<ADDRESSWIDTH>* opId = zero, 
45                 sc_uint<ADDRESSWIDTH>* resId = zero, 
46                 sc_uint<ADDRESSWIDTH>* trigIds = zero) : FunctionalUnit(name, c, 2, 1, 

2, opId, resId, trigIds, opNames){
47     if(BUSWIDTH < 32){
48       cout << name << ": ERROR: this FU functions properly only when bus width is at 

least 32" << endl;
49       exit(1); 
50     }
51     else{
52       if(BUSWIDTH > 32){
53         cout << name << ": Warning: this FU operates internally with 32 bits."
54              << endl;
55       }
56     }
57   }
58

59 };
60 #endif // Checksum_H
61



1 #include "chksum.h"
2

3 char* Checksum::opNames[] = {"TRC", "TCC"};
4

5 void Checksum::triggerOperation(){
6   int opC = 0;
7   sc_uint<16> temp[6];
8   sc_uint<32> temp_result = 0;
9   sc_uint<32> temp_result_16b = 0;

10   sc_uint<32> op = 0;
11   sc_uint<32> od = 0;
12   sc_uint<32> tr = 0;
13   sc_uint<32> res = 0;
14

15   opC=opCode.read();
16   switch(opC) {
17     case 0: 
18       // reset checksum unit
19       resultReg[0].write(0);
20       result_storage = 0;
21     break;
22

23     case 1: 
24       // calculate checksum
25       op = operandReg[0].read();
26       od = operandReg[1].read();
27       tr = triggerReg.read();
28

29       op = ~op;
30       od = ~od;
31       tr = ~tr;
32       temp[0] = op.range(31,16);
33       temp[1] = op.range(15,0);
34       temp[2] = od.range(31,16);
35       temp[3] = od.range(15,0);
36       temp[4] = tr.range(31,16);
37       temp[5] = tr.range(15,0);
38

39       temp_result = 0;
40       for(int i = 0; i < 6; i++){
41         temp_result += temp[i];
42       }
43       temp_result += result_storage;
44

45       temp_result_16b = temp_result.range(15,0) + temp_result.range(31,16);
46

47       result_storage = temp_result_16b.range(15,0) + temp_result_16b.range(31,16);
48

49       res = ~result_storage;
50       resultReg[0].write(res.range(15,0));
51     break;
52   }
53

54   cout << name() << " triggered, op:  "<< op << " od : " << od << " trig: "  << tr << "
 result: " << res.range(15,0) << endl;

55

56 }
57



1 #ifndef COMPILER_H
2 #define COMPILER_H
3

4 #include <fstream>
5 #include <string>
6 #include <sstream>
7 #include <iostream>
8 #include <map>
9 #include <vector>

10 #include <systemc.h>
11

12 #include "globaldefs.h"
13 #define INSTRLENGTH ((GUARDCNT + (2*ADDRESSWIDTH))*BUSES)+IMMCNT
14 #define SUBINSTRLENGTH GUARDCNT + (2*ADDRESSWIDTH)
15

16 using namespace std;
17

18 class Compiler{
19

20   private:
21   const string GUARDDELIM;
22   const string INSTRDELIM;
23   const string REGDELIM;
24   const string SPACECHAR;
25   const string IMMIDENTIFIER; 
26   const string COMMENTIDENTIFIER;
27

28   sc_bv<GUARDCNT> GTRUE;
29

30   int lineCounter;
31

32   map<string, sc_bv<ADDRESSWIDTH> > addresses;
33   map<string, sc_bv<GUARDCNT> > guards;
34

35   ofstream* outfile;
36   ifstream* codefile;
37

38   /**
39    * Read guard numbers from given file.
40    */
41   void initGuards(string guardFilename);
42

43   /**
44    * Read socket addresses from given file.
45    */
46   void initAddr(string addrFilename);
47

48   /**
49    * Parse binary instruction word from a vector of subinstructions in string format.
50    */
51   sc_bv<INSTRLENGTH> getInstr(vector<string> subinstructions);
52

53   /**
54    * Parse binary destination address from given string.
55    */
56   sc_bv<ADDRESSWIDTH> extractDst(string* subInstr);
57

58   /**
59    * Parse binary source address or short immediate from given string, clear
60    * this part from the string, and set bit i from immbits to 1 if immediate
61    * was found. 
62    */
63   sc_bv<ADDRESSWIDTH> extractSrc(string* subInstr, int i, sc_bv<IMMCNT>* immbits);
64

65   /**
66    * Parse binary guard word from given string, and clear guard expressions from the string.
67    */
68   sc_bv<GUARDCNT> extractGuards(string* subInstr);
69

70   public:
71   /**
72    * Constructor.
73    *
74    * \param codeFilename Name of the source code file.
75    * \param addrFilename Name of the file containing  socket addresses.
76    * \param guardFilename Name fo the file containing guard numbers. 
77    */
78   Compiler(string codeFilename, string addrFilename, string guardFilename);
79

80   ~Compiler();
81

82   /**
83    * Make compilation and produce code.bin file.
84    */
85   void compile();
86

87 };
88 #endif
89



1 #include "compiler.h"
2

3 void Compiler::initGuards(string guardFilename){
4   ifstream guardfile( guardFilename.c_str() );
5   string line;
6   unsigned int location;
7   string::size_type posBeginIdx = 0, posEndIdx = 0;
8

9   if (!guardfile) cerr << "ERROR: unable to open input file guards.txt!" << endl;
10     else{
11       cout << "Succesfully opened " << guardFilename << endl;
12       while (getline(guardfile,line)) {
13         if (line.empty());  //ignore empty lines
14         else {    
15           location = line.find_first_of( SPACECHAR, 0 ); 
16           while ( location != string::npos ) { // remove spaces
17             line.erase(location,1);
18             location = line.find_first_of( SPACECHAR, 0);
19           }
20           posEndIdx = line.find(GUARDDELIM,posBeginIdx);
21           int ignumber = 0;
22           istringstream ss( line.substr(posEndIdx+1,line.length()) );
23           ss >> ignumber;
24           sc_uint<GUARDCNT> ugnumber = ignumber;
25           sc_bv<GUARDCNT> bgnumber = ugnumber; 
26           guards[line.substr(0,posEndIdx)] = bgnumber;
27         } // else  (not an empty line)
28       } // while lines left
29       guardfile.close();
30     }
31   /*
32   map<string, sc_bv<GUARDCNT> >::iterator pos = guards.begin();
33   do{
34     cout << pos->first << " " << pos->second << endl;
35     pos++;
36   }
37   while(pos != guards.end());
38   */
39 };
40

41 void Compiler::initAddr(string addrFilename){
42   ifstream addressfile( addrFilename.c_str() );
43   string line;
44   unsigned int location;
45   string::size_type posBeginIdx = 0, posEndIdx = 0;
46

47   if (!addressfile) cerr << "ERROR: unable to open input file socks.txt!" << endl;
48   else{
49     cout << "Succesfully opened " << addrFilename << endl;
50     while (getline(addressfile,line)) {
51       if (line.empty());  //ignore empty lines
52       else {    
53         location = line.find_first_of( SPACECHAR, 0 );      
54         while ( location != string::npos ) { // remove spaces
55           line.erase(location,1);
56           location = line.find_first_of( SPACECHAR, 0);
57         }
58         posEndIdx = line.find(GUARDDELIM,posBeginIdx);
59         int iaddr = 0;
60         istringstream ss( line.substr(posEndIdx+1,line.length()) );
61         ss >> iaddr;
62         sc_uint<ADDRESSWIDTH> uaddr = iaddr;
63         sc_bv<ADDRESSWIDTH> baddr = uaddr; 
64         addresses[line.substr(0,posEndIdx)] = baddr;
65       } // else  (not an empty line)
66     } // while lines left
67     addressfile.close();
68   }
69   /*
70   map<string, sc_bv<ADDRESSWIDTH> >::iterator pos = addresses.begin();
71   do{
72     cout << pos->first << " " << pos->second << endl;
73     pos++;
74   }
75   while(pos != addresses.end());
76   */

77 };
78

79 void Compiler::compile(){
80

81   string line = "";
82   unsigned int location = 0;
83   string::size_type posBeginIdx = 0, posEndIdx = 0;
84

85   while(getline(*codefile,line)){
86     // process line if it isn't empty or a comment line
87     if( (!line.empty()) && !(line.substr(0,1) == COMMENTIDENTIFIER) ){
88       // remove space characters
89       location = line.find_first_of( SPACECHAR, 0 );
90       while ( location != string::npos ) {
91         line.erase(location,1);
92         location = line.find_first_of( SPACECHAR, 0);
93       }
94

95       // exctract subinstructions
96       vector<string> subinstructions;
97       while (line.length() > 0){
98         posBeginIdx = 0;
99         posEndIdx = line.find(INSTRDELIM,posBeginIdx);

100         subinstructions.push_back(line.substr(posBeginIdx,posEndIdx)); 
101         line.erase(posBeginIdx,posEndIdx+1);
102       }
103

104       sc_bv<INSTRLENGTH> instruction = getInstr(subinstructions);
105       *outfile << instruction.to_string() << endl;
106     }
107     lineCounter++;
108   }
109

110 };
111

112 sc_bv<INSTRLENGTH> Compiler::getInstr(vector<string> subinstructions){
113

114   sc_bv<IMMCNT> immediates;
115   sc_bv<SUBINSTRLENGTH> subinstr[BUSES];
116   sc_bv<INSTRLENGTH> instruction;
117

118   for(int i = 0; i < subinstructions.size(); i++){
119     if(!subinstructions.at(i).empty()){
120       string sub = subinstructions.at(i);
121       string src = "", dst = "";
122

123       // find guards
124       subinstr[i].range((SUBINSTRLENGTH)-1, (SUBINSTRLENGTH)-(GUARDCNT)) = 

extractGuards(&sub); 
125

126       unsigned int loc = sub.find( ("NOP"), 0 );
127       if( loc == string::npos ){
128         // not a NOP
129         // extract src or imm
130         subinstr[i].range((2*(ADDRESSWIDTH))-1, ADDRESSWIDTH) = extractSrc(&sub, i, &

immediates);
131

132         // extract dst
133         subinstr[i].range((ADDRESSWIDTH)-1, 0) = extractDst(&sub);
134       }
135

136       int left = IMMCNT+i*(SUBINSTRLENGTH);
137       int right = (i+1)*(SUBINSTRLENGTH) + IMMCNT - 1;
138       instruction.range(right, left) = subinstr[i];
139     }
140   }
141   instruction.range(IMMCNT-1, 0) = immediates;
142   return instruction;
143 };
144

145 sc_bv<ADDRESSWIDTH> Compiler::extractDst(string* subInstr){
146   map<string, sc_bv<ADDRESSWIDTH> >::iterator cur = addresses.find(*subInstr);
147   if (cur != addresses.end())  {
148     //correct DST address
149     return addresses[*subInstr];
150   }

151   else {
152     cout << "\n ERROR: Invalid DST address " << *subInstr << "at line " << lineCounter

 << endl;
153     exit(1);
154   }
155 };
156

157 sc_bv<ADDRESSWIDTH> Compiler::extractSrc(string* subInstr, int i, sc_bv<IMMCNT>* 
immbits){

158   string src = "";
159   unsigned int loc = subInstr->find( REGDELIM, 0 );
160   if( loc != string::npos ) {
161     src = subInstr->substr(0,loc);  //take src out of string
162     subInstr->erase(0,loc+1);
163     // check for immediate
164     if ( src.substr(0,1) == IMMIDENTIFIER){
165       src.erase(0,1);
166       (*immbits)[i] = true;
167       int imm = 0;
168       istringstream ss( src );
169       ss >> imm;
170       sc_uint<ADDRESSWIDTH> uimm = imm;
171       sc_bv<ADDRESSWIDTH> bimm = uimm;
172       return bimm;
173     }
174     else{
175       map<string, sc_bv<ADDRESSWIDTH> >::iterator cur = addresses.find(src);
176       if (cur != addresses.end()) { 
177         //correct SRC address
178         return addresses[src];
179       }
180       else {
181         cout << "\n ERROR: Invalid SRC address " << src << "at line " << lineCounter <

< endl;
182         exit(1); 
183       }
184     }
185   }
186   return 0;
187 };
188

189 sc_bv<GUARDCNT> Compiler::extractGuards(string* subInstr){
190   unsigned int loc = subInstr->find( GUARDDELIM, 0 );
191   string g = "";
192

193   if( loc != string::npos ){ 
194     // found guard bits
195     g = subInstr->substr(0,loc);  //take grds out of string
196     subInstr->erase(0,loc+1);
197     map<string, sc_bv<GUARDCNT> >::iterator cur  = guards.find(g);
198     if (cur != guards.end()){  //correct grd string
199       return guards[g];
200     }
201     else {
202       cout << "\n ERROR: in guard expression " << g << "at line " << lineCounter << 

endl;
203       return GTRUE;
204     }
205   }
206   else {
207     // did not find guard bits
208     return GTRUE; 
209   }
210 };
211

212 Compiler::Compiler(string codeFilename, string addrFilename, string guardFilename):
213   GUARDDELIM(":"), INSTRDELIM(";"), REGDELIM(">"), SPACECHAR(" "), 
214   IMMIDENTIFIER("+"), COMMENTIDENTIFIER("#"){
215

216   outfile = new ofstream("code.bin");
217   codefile = new ifstream(codeFilename.c_str());
218

219   initGuards(guardFilename);
220   initAddr(addrFilename);
221

222   lineCounter = 0;

223

224   for(int i = 0; i < GUARDCNT; i++){
225     GTRUE[i] = true;
226   }
227

228 };
229

230 Compiler::~Compiler(){
231   if(outfile != 0){
232     outfile->close();
233     delete outfile;
234   }
235   if(codefile != 0){
236     codefile->close();
237     delete codefile;
238   }
239 };
240



1 #ifndef DMMU_H
2 #define DMMU_H
3

4 #define PDULENGTH 375
5 #include "globaldefs.h"
6 #include "fu.h"
7 #include "mmu.h"
8 #include "systemc.h"
9

10 /**
11  * dMMU is a protocol data memory management unit for accessing and storing
12  * protocol data.
13  */
14

15 class dMMU: public MMU{
16

17   private:
18

19   /**
20    * Array for storing information which "slots" are in use. Memory is divided to 

slots with
21    * a size of PDULENGTH words.
22    */
23   bool* datagramSlotInUse;
24

25   /**
26    * Number of PDU slots in the memory. Initialized in constructor as amount/PDULENGTH

.
27    */
28   const int SLOTCNT;
29

30   /**
31    * Is there a DMA read operation in progress.
32    */
33   bool isReading;
34

35   /**
36    * Base address for DMA read.
37    */
38   int baseReadAddress;
39

40   /**
41    * Counter for DMA read.
42    */
43   int readCounter;
44

45   /**
46    * Is there a DMA write operation in progress.
47    */
48   bool isWriting;
49

50   /**
51    * Base address for DMA write.
52    */
53   int baseWriteAddress;
54

55   /**
56    * Counter for DMA read.
57    */
58   int writeCounter;
59

60   public:
61

62   /**
63    * Guard bit to the network controller singnalling if the MMU is in the middle of 

read operation.
64    */
65   sc_out<bool> guardBitRead;
66

67   /**
68    * Guard bit to the network controller singnalling if the MMU is in the middle of 

write operation.
69    */
70   sc_out<bool> guardBitWrite;
71

72   //////////////////////////////////////////////////////

73   // Connections for InputFU
74   //////////////////////////////////////////////////////
75   /**
76    * Input data from InputFU.
77    */
78   sc_in<sc_uint<BUSWIDTH> > inData;
79

80   /**
81    * Trigger from InputFU.
82    */
83   sc_in<bool> inTrigger;
84

85   /**
86    * New PDU indication from InputFU.
87    */
88   sc_in<bool> DStart;
89

90   /**
91    * Starting address of the PDU for InputFU.
92    */
93   sc_out<sc_uint<BUSWIDTH> > inAddress;
94

95   //////////////////////////////////////////////////////
96   // Connections for OutputFU
97   //////////////////////////////////////////////////////
98   /**
99    * Starting address of a PDU to be sent.

100    */
101   sc_in<sc_uint<BUSWIDTH> > outAddress;
102

103   /**
104    * Trigger for OutputFU.
105    */
106   sc_in<bool> outTrigger;
107

108   /**
109    * Acknowledge to OutputFU for starting a DMA transfer.
110    */
111   sc_out<bool> outAck;
112

113   /**
114    * Output data to OutputFU.
115    */
116   sc_out<sc_uint<BUSWIDTH> > outData;
117

118   //////////////////////////////////////////////////////
119   // Signals
120   //////////////////////////////////////////////////////
121

122   sc_signal<sc_uint<BUSWIDTH> > sigInData;
123   sc_signal<sc_uint<BUSWIDTH> > sigInAddress;
124   sc_signal<sc_uint<BUSWIDTH> > sigOutData;
125   sc_signal<sc_uint<BUSWIDTH> > sigOutAddress;
126   sc_signal<bool> sigInTrigger;
127   sc_signal<bool> sigDStart;
128   sc_signal<bool> sigOutTrigger;
129   sc_signal<bool> sigOutAck;
130

131   //////////////////////////////////////////////////////
132   // Functions
133   //////////////////////////////////////////////////////
134

135   /**
136    * Read from input FU, or configure a new DMA transfer.
137    */
138   void inputData();
139

140   /**
141    * Write to output FU, or configure a new DMA transfer.
142    */
143   void outputData();
144

145   /**
146    * Perform memory transfer defined by opcode.
147    *
148    * Opcode Operation

149    * 0      if(!isReading) read from memory address OP+TR (base+offset)
150    * 1      if(!isWriting) write OD to memory address OP+TR
151    */
152   void triggerOperation();
153

154   SC_HAS_PROCESS(dMMU);
155   /**
156    * Constructor.
157    *
158    * \param amount Amount of memory (in words).
159    */
160   dMMU(sc_module_name name,
161                 sc_clock &c,
162                 int amount, 
163                 sc_uint<ADDRESSWIDTH>* opId = zero,
164                 sc_uint<ADDRESSWIDTH>* resId = zero,
165                 sc_uint<ADDRESSWIDTH>* trigIds = zero
166        ): MMU(name, c, amount, opId, resId, trigIds), SLOTCNT(amount/(PDULENGTH)){
167

168     isReading = isWriting = false;
169

170     datagramSlotInUse = new bool[SLOTCNT];
171

172     for(int i = 0; i < SLOTCNT; i++){
173       datagramSlotInUse[i] = false;
174     }
175

176     // connect ports to corresponding signals
177     inData(sigInData);
178     inAddress(sigInAddress);
179     inTrigger(sigInTrigger);
180     DStart(sigDStart);
181     outData(sigOutData);
182     outAddress(sigOutAddress);
183     outTrigger(sigOutTrigger);
184     outAck(sigOutAck);
185

186     SC_CTHREAD(inputData, clk.pos());
187

188     SC_CTHREAD(outputData, clk.pos());
189

190   }
191

192   ~dMMU(){
193      delete[] datagramSlotInUse;
194    }
195

196 };
197 #endif // DMMU_H
198
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1 /**
2  * FunctionalUnit is an abstract class modeling a general functional unit in a 

transport triggered processor.
3  */
4

5 #ifndef FunctionalUnit_H
6 #define FunctionalUnit_H
7

8 #include "systemc.h"
9 #include "insocket.h"

10 #include "outsocket.h"
11 #include "trigsocket.h"
12

13 class FunctionalUnit: public sc_module {
14

15   protected:
16

17   /**
18    * Array containing one zero. Can be used for default initialization of constructor 

parameters.
19    */
20   static sc_uint<ADDRESSWIDTH> zero[];
21

22   public:
23   /**
24    * Pointer to an array of pointers to input sockets.
25    */
26   InSocket** operand;
27

28   /**
29    * Pointer to an array of pointers to output sockets.
30    */
31   OutSocket** result;
32

33   /**
34    * Pointer to trigger socket.
35    */
36   TriggerSocket* trigger;
37

38

39   //////////////////////////////////////////////////////
40   // Ports
41   //////////////////////////////////////////////////////
42

43   /**
44    * Clock input.
45    */
46   sc_in_clk clk;
47

48   /**
49    * Trigger bit.
50    */
51   sc_in<bool> trigBit;
52

53   /**
54    * Array of operand registers.
55    */
56   sc_in<sc_uint<BUSWIDTH> >* operandReg;
57

58   /**
59    * Trigger register.
60    */
61   sc_in<sc_uint<BUSWIDTH> > triggerReg;
62

63   /**
64    * Array of result registers.
65    */
66   sc_out<sc_uint<BUSWIDTH> >* resultReg;
67

68   /**
69    * Operation code.
70    */
71   sc_in<sc_uint<OPCODEWIDTH> > opCode;
72

73   //////////////////////////////////////////////////////
74   // Signals

75   //////////////////////////////////////////////////////
76

77   /**
78    * Array of signals connecting operand register and input sockets.
79    */
80   sc_signal<sc_uint<BUSWIDTH> >* sigFuOperand;
81

82   /**
83    * Signal connecting trigger register and trigger socket.
84    */
85   sc_signal<sc_uint<BUSWIDTH> > sigFuTrigger;
86

87   /**
88    * Signal connecting opcode register and trigger socket.
89    */
90   sc_signal<sc_uint<OPCODEWIDTH> > sigOpCode;
91

92   /**
93    * Array of signals connecting result register and output sockets.
94    */
95   sc_signal<sc_uint<BUSWIDTH> >* sigFuResult;
96

97   /**
98    * Trigger signal connecting trigger socket and trigger port
99    */

100   sc_signal<bool> sigTrigBit;
101

102   //////////////////////////////////////////////////////
103   // Functions
104   //////////////////////////////////////////////////////
105

106   /**
107    * Executes function triggerOperation if triggerbit is 1. Since checkTrigger is a
108    * SC_CTHREAD, wait commands may be added inside function triggerOperation for 
109    * additional exection delays. 
110    */
111   void checkTrigger();
112

113   /**
114    * Operation performed when FU is triggered.
115    */
116   virtual void triggerOperation()=0;
117

118   SC_HAS_PROCESS(FunctionalUnit);
119   /**
120    * Constructs the base of functional unit. Given amount of sockets are created
121    * and bound to buses.
122    *
123    * Parameters opId, resId and trigId are used for giving sockets predefined 
124    * addresses. Then lengths must match the amount sockets respectively. Alternatively

,
125    * if automatic address generation is not used, an array with value 0 at the first 
126    * index may be passed.
127    *
128    * \param name Name of this module.
129    * \param c Clock input.
130    * \param inputCnt Amount of input sockets.
131    * \param outputCnt Amount of output sockets.
132    * \param trigIdCnt Amount of trigger IDs.
133    * \param opId Pointer to addresses of input sockets.
134    * \param resId Pointer to addresses of output sockets.
135    * \param trigIds Pointer to addresses of the trigger sockets.
136    * \param trigIdNames Pointer to string array containing names for trigger 

operations.
137    * \pre   (opId.length == inputCnt || opId[0] == 0) 
138    *      & (resId.length == outputCnt || resId[0] == 0) 
139    *      & (trigIds.length == MAXTRIGGERIDS || trigIds[0] == 0)
140    */
141   FunctionalUnit(const sc_module_name& name, 
142                  sc_clock &c,
143    int inputCnt,
144    int outputCnt,
145    int trigIdCnt,
146                  sc_uint<ADDRESSWIDTH>* opId = zero,
147                  sc_uint<ADDRESSWIDTH>* resId = zero,
148                  sc_uint<ADDRESSWIDTH>* trigIds = zero,

149    char** trigIdNames = 0) : sc_module(name){
150

151     clk(c); // bind clock to c
152

153     char operandnames[inputCnt][MAXSOCKNLENGTH];
154     char resultnames[outputCnt][MAXSOCKNLENGTH];
155

156     if(inputCnt > 0){
157       operand = new InSocket*[inputCnt];
158       operandReg = new sc_in<sc_uint<BUSWIDTH> >[inputCnt];
159       sigFuOperand = new sc_signal<sc_uint<BUSWIDTH> >[inputCnt];
160     }
161     else{
162       operand = 0;
163       operandReg = 0;
164       sigFuOperand = 0;
165     }
166

167     if(outputCnt > 0){
168       result = new OutSocket*[outputCnt];
169       resultReg = new sc_out<sc_uint<BUSWIDTH> >[outputCnt];
170       sigFuResult = new sc_signal<sc_uint<BUSWIDTH> >[outputCnt];
171     }
172     else{
173       result = 0;
174       resultReg = 0;
175       sigFuResult = 0;
176     }
177

178     // generate socket names
179     // might not be neccessary, much easier to do with string class if
180     // synthetization allows it to be used in constructors
181    for(int i = 0; i < inputCnt; i++){
182       operandnames[i][0] = 'O';
183       operandnames[i][1] = ( i == 1 ? 'D' : 'P');
184       int j = 2;
185       while( j < (MAXSOCKNLENGTH - 3) ){
186         operandnames[i][j] = name[j-2];
187         j++;
188         if(name[j-2] == '\0') break;
189       }
190       // socket names will be OPXXX, ODXXX and OPXXX3 -> OPXXX9 and OPXXXA->
191       // ASCII codes for 1 and A are 48 and 55+10=65
192       if(i < 3){
193         operandnames[i][j] = '\0';
194       }
195       else{
196         operandnames[i][j] = i + (i < 10 ? 50 : 55);
197         operandnames[i][j+1] = '\0';
198       }
199     }
200

201     for(int i = 0; i < outputCnt; i++){
202       resultnames[i][0] = 'R';
203       int j = 1;
204       while( j < (MAXSOCKNLENGTH - 2) ){
205         resultnames[i][j] = name[j-1];
206         j++;
207  if(name[j-1] == '\0') break;
208       }
209       // socket names will be XXX1 -> XXX9 and XXXA->
210       // ASCII codes for 1 and A are 48 and 55+10=65
211       if((i == 0) && (outputCnt == 1)) resultnames[i][j] = '\0';
212       else{
213         resultnames[i][j] = i + (i < 10 ? 48 : 55);
214         resultnames[i][j+1] = '\0';
215       }
216     }
217

218     char triggername[MAXSOCKNLENGTH];
219     triggername[0] = 'T';
220     int k = 1;
221     while( k < (MAXSOCKNLENGTH - 2) ){
222       triggername[k] = name[k-1];
223       k++;
224       if(name[k-1] == '\0') break;

225     }
226     triggername[k] = '\0';
227

228     // create and bind input sockets to operand reg
229     for(int k = 0; k < inputCnt; k++){
230       if((opId[0] == (sc_uint<ADDRESSWIDTH>)0) || (opId[k] == (sc_uint<ADDRESSWIDTH>)

0)){ 
231         operand[k] = new InSocket(operandnames[k]);
232       }
233       else{ 
234         operand[k] = new InSocket(operandnames[k], opId[k]);
235       }
236       operand[k]->clock(c);
237       operand[k]->fuData(sigFuOperand[k]);
238       operandReg[k].bind(sigFuOperand[k]);
239     }
240

241     // create and bind output sockets to result reg
242     for(int k = 0; k < outputCnt; k++){
243       if((resId[0] == (sc_uint<ADDRESSWIDTH>)0) || (resId[k] == (sc_uint

<ADDRESSWIDTH>)0)){ 
244         result[k] = new OutSocket(resultnames[k]);
245       }
246       else{ 
247         result[k] = new OutSocket(resultnames[k], resId[k]);
248       }
249       result[k]->clock(c);
250       result[k]->fuData(sigFuResult[k]);
251       resultReg[k].bind(sigFuResult[k]);
252     }
253

254     // create and bind trigger socket
255     trigger = new TriggerSocket(triggername, trigIdCnt, trigIds, trigIdNames);
256     trigger->clock(c);
257     trigger->fuData(sigFuTrigger);
258     triggerReg(sigFuTrigger);
259     trigger->opCode(sigOpCode);
260     opCode(sigOpCode);
261     trigger->trigBit(sigTrigBit);
262     trigBit(sigTrigBit);
263

264     SC_CTHREAD(checkTrigger, clk.pos());
265

266     cout << "FU " << name << " constructed" << endl;
267   }
268

269   ~FunctionalUnit(){
270     cout << "Destructing " << name() << " ... ";
271     if(operand != 0) delete[] operand;
272     if(trigger != 0) delete trigger;
273     if(result != 0) delete[] result;
274     if(resultReg != 0) delete[] resultReg;
275     if(operandReg != 0) delete[] operandReg;
276     if(sigFuOperand != 0) delete[] sigFuOperand;
277     if(sigFuResult != 0) delete[] sigFuResult;
278     cout << "done" << endl;
279   }
280

281 };
282 #endif // FunctionalUnit_H
283



1 #include "fu.h"
2

3 sc_uint<ADDRESSWIDTH> FunctionalUnit::zero[1] = {0};
4

5 void FunctionalUnit::checkTrigger(){
6   while(true){
7     if(trigBit.read()) triggerOperation();
8     wait(1);
9   }

10 }
11



1 #ifndef GLOBALDEFS

2 #define GLOBALDEFS

3

4 // width of data bus

5 #define BUSWIDTH 32

6 // width of address bus

7 #define ADDRESSWIDTH 8

8 // maximum value for address bus

9 #define MAXADDRESS 255

10 // number of buses

11 #define BUSES 2

12 // opcode width

13 #define OPCODEWIDTH 3

14 // number of guard bits in the system

15 #define GUARDCNT 9

16 // number of buses able for immediate dispatching

17 #define IMMCNT 4

18 // instruction word length

19 #define INSTRLENGTH ((GUARDCNT + (2*ADDRESSWIDTH))*BUSES)+IMMCNT 

20 // amount of program memory in instruction words

21 #define PROGRAMMEM 256

22 // minimum length for program counter

23 // must be large enough to address whole program memory

24 #define PCWIDTH 9

25 // maximum length for a socket name

26 // needed in automatic name generation for sockets

27 #define MAXSOCKNLENGTH 20

28 // maximum amount of ids for a trigger socket

29 #define MAXTRIGGERIDS 8

30

31 #endif

32
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1 #include "inputfu.h"
2

3 void InputFU::triggerOperation(){
4   if(!addressFIFO->isEmpty()){
5

6     sc_uint<BUSWIDTH> temp1, temp2, temp3;
7     temp1 = addressFIFO->read();
8     temp2 = interfaceFIFO->read();
9     temp3 = lengthFIFO->read();

10     resultReg[0].write(temp1);
11     resultReg[1].write(temp2);
12     resultReg[2].write(temp3);
13     cout << name() << " executing. Addr: " << temp1 << ", Id: " << temp2 << ", length: " << temp3 << endl;
14 /*
15     resultReg[0].write(addressFIFO->read());
16     resultReg[1].write(interfaceFIFO->read());
17     resultReg[2].write(lengthFIFO->read());
18 */
19   }
20   else { 
21     cout << name() << " executing, but there is no data." << endl;
22     resultReg[0].write(0);
23     resultReg[1].write(0);
24     resultReg[2].write(0);
25   }
26 }
27

28 void InputFU::updateGuards(){
29   if(addressFIFO->isEmpty()){
30     // FIFO is empty
31     guardBitEmpty.write(true);
32   }
33   else{ 
34     if(addressFIFO->isFull()){
35       // FIFO is full 
36       guardBitFull.write(true);
37     }
38     else{
39       // FIFO is neither full nor empty
40       guardBitFull.write(false);
41       guardBitEmpty.write(false);
42     }
43   }
44 }
45

46 void InputFU::pollInterface(){
47

48   sc_uint<BUSWIDTH> data, length, address, interface;
49

50   // only one interface for now
51   interface = 0;
52

53   while(true){
54     if(networkTrigger.read() && !(addressFIFO->isFull())){
55       cout << name() << ": reading PDU." << endl;
56       //new data
57       length = networkLength.read();
58       iTrigger.write(true);
59       networkAck.write(true);
60       wait(2);
61

62       address = iAddress.read();
63       addressFIFO->write(address);
64       interfaceFIFO->write(interface);
65       lengthFIFO->write(length);
66

67       for(int i = 0; i < (int)length; i++){
68         data = networkData.read();
69         cout << name() << ": writing PDU data " << data << endl;
70         iData.write(data);
71         if(i != ((int)length-1)) wait(1);
72       }
73       networkAck.write(false);
74       iTrigger.write(false);
75       cout << name() << ": PDU read successfully." << endl;
76       wait(1);
77       iData.write(0);
78     }
79     else{
80       wait(1);
81     }
82   }
83

84 }
85



1 /**
2  * InSocket is a class modeling input socket connecting buses and a FU in a transport triggered processor.
3  */
4

5 #ifndef InSocket_H
6 #define InSocket_H
7

8 #include "globaldefs.h"
9 #include "socket.h"

10 #include "systemc.h"
11 class InSocket: public Socket {
12

13   private:
14   /**
15    * ID of this socket.
16    */
17   sc_uint<ADDRESSWIDTH> socketId;
18

19   /**
20    * Read data from the bus on next cycle.
21    */
22   bool readData;
23

24   /**
25    * Index of the bus to be read.
26    */
27   int busNumber;
28

29   public:
30

31   //////////////////////////////////////////////////////
32   // Ports
33   //////////////////////////////////////////////////////
34   /**
35    * Array of input ports for buses.
36    */
37   sc_in_rv<BUSWIDTH> inDataPorts[BUSES];
38

39   /**
40    * Output port to the FU.
41    */ 
42   sc_out<sc_uint<BUSWIDTH> > fuData;
43

44   //////////////////////////////////////////////////////
45   // Functions
46   //////////////////////////////////////////////////////
47

48   /**
49    * Decode addresses on address buses and perform actions if neccessary.
50    */
51   void decodeId();
52

53   SC_HAS_PROCESS(InSocket);
54   /**
55    * Constructor.
56    *
57    * \param name_ Name of this module.
58    * \param id Id of this socket.
59    */
60   InSocket(sc_module_name name_, sc_uint<ADDRESSWIDTH> id = 0): Socket(name_){
61     // <NOT SYNTHESIZABLE>
62     // bind input ports to data buses and id ports to Dst buses
63     Bus* bptr;
64     for(int i = 0; i < BUSES; i++){
65       bptr = Buscontroller::getBus(i);
66       inDataPorts[i].bind(bptr->sigData);
67       inIdPorts[i].bind(bptr->sigDst);
68     }
69     // </NOT SYNTHESIZABLE>
70     if(id == (sc_uint<ADDRESSWIDTH>)0){
71       // <NOT SYNTHESIZABLE>
72       socketId = Buscontroller::getSocketId(name_);
73       // </NOT SYNTHESIZABLE>
74     }
75     else{ 
76       socketId = id;
77     }
78

79     readData = false;
80     busNumber = 99;
81   }
82

83 };
84 #endif // InSocket_H
85



1 #include "insocket.h"

2

3 void InSocket::decodeId(){

4     // Data read was scheduled during last cycle

5     if(readData){

6       cout << name() << " reading..." << endl;

7       fuData.write(inDataPorts[busNumber].read());

8       readData = false;

9     }

10

11     // Decode

12     for(int i = 0; i < BUSES; i++) {

13       if (socketId == inIdPorts[i].read()) {

14         cout << name() << " triggered..." << endl;

15  readData = true;

16         busNumber = i;

17       }

18     }

19 }

20
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1 #include "mmu.h"
2

3 char* MMU::opNames[] = {"TRMM", "TWMM"};
4

5 void MMU::triggerOperation(){
6   int opC = 0;
7   sc_uint<32> tr = 0, op = 0, od = 0, r = 0;
8

9   tr = triggerReg.read();
10   op = operandReg[0].read();
11

12   switch(opC){
13     case 0:
14       // read from memory
15       r = read(op, tr);
16       wait(1);
17       resultReg[0].write(r);
18     break;
19

20     case 1:
21       // write to memory
22       od = operandReg[1].read();
23       wait(1);
24       write(op, tr, od);
25     break;
26   }
27 }
28

29 sc_uint<BUSWIDTH> MMU::read(sc_uint<BUSWIDTH> base, sc_uint<BUSWIDTH> offset){
30   long addr = base + offset;
31   if((addr >= DATAMEMORY) | (addr < 0) ){
32     cout << name() << " ERROR: memory address " << addr << " out of bounds" << endl;
33     exit(1);
34   }
35   else{
36     cout << name() <<  " reading " << dataMemory[addr] << " from address " << addr << 

endl;
37     return dataMemory[addr];
38   }
39 }
40

41 void MMU::write(sc_uint<BUSWIDTH> base, sc_uint<BUSWIDTH> offset, sc_uint<BUSWIDTH> 
data){

42   long addr = base + offset;
43   if((addr >= DATAMEMORY) | (addr < 0) ){
44     cout << name() << " ERROR: memory address " << addr << " out of bounds" << endl;
45     exit(1);
46   }
47   else{
48     cout << name() <<  " writing " << data << " to address " << addr << endl;
49     dataMemory[addr] = data;
50   }
51 }
52



1

2

3 #ifndef NetworkController_H
4 #define NetworkController_H
5

6 #include "globaldefs.h"
7 #include "busctrl.h"
8 #include "systemc.h"
9 #include "trigsocket.h"

10

11 #include <fstream>
12 #include <string>
13 using namespace std;
14

15 #define SUBINSTRLENGTH GUARDCNT + (2*ADDRESSWIDTH)
16

17 /**
18  * Network controller of a transport triggered processor.
19  */
20

21 class NetworkController : public sc_module {
22

23   private:
24

25   /**
26    * Output filestream for storing bit patterns on buses.
27    */
28   ofstream outfile;
29

30   /**
31    * Program counter.
32    */
33   sc_uint<PCWIDTH> pc;
34

35   /**
36    * Programmed jump is detected, no new fetches for three cycles.
37    */
38   bool jumpDetected;
39

40   /**
41    * Counter for counting cycles when jump is detected.
42    */
43   sc_uint<2> cycleCnt;
44

45   /**
46    * Specifies the buses where immediate values were written.
47    * Values need to be cleared after two cycles.
48    */
49   sc_bv<BUSES> dirtyBuses;
50

51   /**
52    * Array of 1 bit values for counting one cycle.
53    */
54   sc_uint<1> dirtyCnt[BUSES];
55

56   /**
57    * Temporary storage for immediate values.
58    */
59   sc_uint<ADDRESSWIDTH> immbuffer[BUSES];
60

61   /**
62    * All Z. Needed for clearing data bus after writing immediates.
63    */
64   sc_lv<BUSWIDTH> HIGHIMPEDANCE;
65

66   /**
67    * Bit vector with all ones. Used to evaluate guards.
68    */
69   sc_bv<GUARDCNT> GONES;
70

71   /**
72    * Program memory.
73    */
74   sc_bv<INSTRLENGTH> programMemory[PROGRAMMEM];
75

76   /**
77    * Temporary variable holding loaded instruction.
78    */
79   sc_bv<INSTRLENGTH> instruction;
80

81   /**
82    * Immediate bits of the current instruction.
83    */
84   sc_bv<IMMCNT> immediateBits;
85

86   /**
87    * Temporary storage for current subinstruction.
88    */
89   sc_bv<SUBINSTRLENGTH> subInstruction;
90

91   /**
92    * Guard bits if current subinstruction.
93    */
94   sc_bv<GUARDCNT> guardBits;

95

96   /**
97    * SRC field of current subinstruction.
98    */
99   sc_uint<ADDRESSWIDTH> srcValue;

100

101   /**
102    * DST field of current subinstruction.
103    */
104   sc_uint<ADDRESSWIDTH> dstValue;
105

106   /**
107    * Total number of completed cycles.
108    */
109   int totalCycleCnt;
110

111   /**
112    * IDs of the program counter.
113    */
114   sc_uint<ADDRESSWIDTH> PCTrigIds[4];
115

116   public:
117

118   /**
119    * Trigger socket for programmed jumps.
120    */
121   TriggerSocket* trigger;
122

123   //////////////////////////////////////////////////////
124   // Signals
125   //////////////////////////////////////////////////////
126

127   /**
128    * Trigger signal connecting trigger socket and trigger port
129    */
130   sc_signal<bool> sigTrigBit;
131

132   /**
133    * Signal connecting opcode register and trigger socket.
134    */
135   sc_signal<sc_uint<OPCODEWIDTH> > sigOpCode;
136

137   /**
138    * Signal connecting trigger register and trigger socket.
139    */
140   sc_signal<sc_uint<BUSWIDTH> > sigTrigger;
141

142   //////////////////////////////////////////////////////
143   // Ports
144   //////////////////////////////////////////////////////
145

146   /**
147    * Clock input.
148    */
149   sc_in_clk clock;
150

151   /**
152    * Trigger bit.
153    */
154   sc_in<bool> trigBit;
155

156   /**
157    * Operation code.
158    */
159   sc_in<sc_uint<OPCODEWIDTH> > opCode;
160

161   /**
162    * Trigger register.
163    */
164   sc_in<sc_uint<BUSWIDTH> > triggerReg;
165

166   /**
167    * Array of ports connected to data buses.
168    */
169   sc_inout_rv<BUSWIDTH> data[BUSES];
170

171   /**
172    * Array of ports connected to destination address buses.
173    */
174   sc_out<sc_uint<ADDRESSWIDTH> >dst[BUSES];
175

176   /**
177    * Array of ports connected to source address buses.
178    */
179   sc_out<sc_uint<ADDRESSWIDTH> > src[BUSES];
180

181   /**
182    * Array of guard input ports.
183    */
184   sc_in<bool> guards[GUARDCNT];
185

186   //////////////////////////////////////////////////////
187   // Functions
188   //////////////////////////////////////////////////////

189

190   /**
191    * Operation for updating program counter status.
192    *
193    * \post if (opcode == 0) pc = triggerReg
194    *       else if(opcode = 1) pc += triggerReg
195    *       else if(opcode = 2) pc -= triggerReg 
196    */
197   void updatePc();
198

199   /**
200    * Fetch instruction pointed by pc, evaluate guards, split instruction words,
201    * dispatch addresses and dispatch immediates.
202    */
203   void fetch();
204

205   /**
206    * Evaluate given guards.
207    */
208   bool evaluateGuards(sc_uint<GUARDCNT> guards);
209

210   /**
211    * Constructor.
212    *
213    * \param name_ Name of this module.
214    * \param c Clock input.
215    */
216   SC_HAS_PROCESS(NetworkController);
217   NetworkController(const sc_module_name name_, sc_clock &c) : sc_module(name_){
218

219     // <NOT SYNTHESIZABLE>
220     // bind data and address ports
221     Bus* bptr;
222     for(int i = 0; i < BUSES; i++){
223       bptr = Buscontroller::getBus(i);
224       data[i].bind(bptr->sigData);
225       dst[i].bind(bptr->sigDst);
226       src[i].bind(bptr->sigSrc);
227     }
228     // </NOT SYNTHESIZABLE>
229

230     for(int i = 0; i < GUARDCNT; i++){
231       guards[i].bind(Buscontroller::getGuard(i));
232     }
233

234     clock(c);
235     pc = 0;
236     jumpDetected = false;
237     cycleCnt = 0;
238     totalCycleCnt = 0;
239

240     // generate PC trigger addresses
241     PCTrigIds[0] = (sc_uint<ADDRESSWIDTH>)(MAXADDRESS-2);
242     PCTrigIds[1] = (sc_uint<ADDRESSWIDTH>)(MAXADDRESS-1);
243     PCTrigIds[2] = (sc_uint<ADDRESSWIDTH>)MAXADDRESS;
244     //PCTrigIds[3] = (sc_uint<ADDRESSWIDTH>)0;
245     trigger = new TriggerSocket("PC", 3, PCTrigIds);
246

247     // connect trigger
248     trigger->clock(c);
249     trigger->fuData(sigTrigger);
250     triggerReg(sigTrigger);
251     trigger->opCode(sigOpCode);
252     opCode(sigOpCode);
253     trigger->trigBit(sigTrigBit);
254     trigBit(sigTrigBit);
255

256     for(int i = 0; i < GUARDCNT; i++){
257       GONES[i] = true;
258     }
259

260     for(int i = 0; i < BUSWIDTH; i++){ 
261       HIGHIMPEDANCE[i] = SC_LOGIC_Z;
262     }
263

264     for(int i = 0; i < BUSES; i++){
265       dirtyBuses[i] = false;
266       dirtyCnt[i] = 0;
267     }
268

269     SC_METHOD(updatePc);
270     sensitive << clock.pos();
271

272     SC_METHOD(fetch);
273     sensitive << clock.pos();
274

275     cout << "Network controller constructed" << endl
276          << "Instruction word length is " << INSTRLENGTH << endl
277          << "Subinstruction word length is " << SUBINSTRLENGTH << endl;
278

279     outfile.open("bit_patterns.txt");
280

281     string b = "Bus";
282     for(int i = 0; i < BUSES; i++){

283       char idx = i+48;
284       string b2 = b + idx;
285       outfile << b2;
286       int b2size = b2.size();
287       for(int j = 0; j < BUSWIDTH - b2size + 1; j++){
288         outfile << " ";
289       }
290     }
291     outfile << endl;
292

293     ifstream infile( "code.bin" );
294     string word;
295     int i = 0;
296     if (!infile) cerr << "ERROR: unable to open input file code.bin!" << endl;
297     while (infile >> word) {
298       cout << "NetControl: read word " << i << " : " << word << endl; 
299       //sc_bv<INSTRLENGTH> instr = axtoi(word.c_str());
300       sc_bv<INSTRLENGTH> instr = word.c_str();
301       programMemory[i] = instr;
302       i++;
303       if(i == PROGRAMMEM){
304         cout << "ERROR: Out of program memory, program code is too large." << endl;
305       }
306     }
307

308     int codeLength = i;
309     cout << "NetControl: Read " << codeLength << " instructions to memory." << endl; 
310     cout << "NetControl: program memory contents:" << endl; 
311     for (i=0; i < codeLength; i++) {
312       cout << "NetControl: " << programMemory[i] << endl; 
313     }
314

315   }
316

317   ~NetworkController(){
318      cout << "Destructing " << name() << " ... "; 
319      if(trigger != 0) delete trigger;
320      cout << "done" << endl;
321    }
322 };
323 #endif // NetworkController_H
324



1 #include "netctrl.h"
2

3 void NetworkController::updatePc(){
4

5   if(trigBit.read()){
6

7     cout << name() << "Updating PC" << endl; 
8

9     sc_uint<BUSWIDTH> TR = triggerReg.read();
10     sc_uint<OPCODEWIDTH> OP = opCode.read();
11

12     switch((int)OP){
13       case(0):
14         pc = TR;
15         cout << "PC is now " << pc << endl;
16       break;
17

18       case(1):
19         pc += TR;
20         cout << "PC is now " << pc << endl;
21       break;
22

23       case(2):
24         if((int)pc < (int)TR){
25           cout << "ERROR: Trying to subtract " << TR 
26                << " from " << pc << "! PC cannot be negative." << endl;
27           exit(1);
28         }
29         pc -= TR;
30         cout << "PC is now " << pc << endl;
31       break;
32

33       default:
34         cout << "WARNING: undefined opcode for Network controller" << endl;
35       break;
36     }
37   }
38 }
39

40 void NetworkController::fetch(){
41   // clear address buses
42   for(int i = 0; i < BUSES; i++){
43     dst[i].write(0);
44     src[i].write(0);
45   }
46

47   cout << "===========================================================" << endl
48        << "Starting cycle " << totalCycleCnt << endl;
49   totalCycleCnt++;
50

51   for(int i = 0; i < BUSES; i++){
52     cout << "SRC" << i << ": " << src[i] << endl
53          << "DST" << i << ": " << dst[i] << endl
54          << "DATA" << i << ": " << data[i] << endl;
55

56     outfile << data[i] << " ";
57   }
58   outfile << endl;
59

60   // if immediate values were written two cycles ago, clear them out
61   for(int i = 0; i < BUSES; i++){
62     if(dirtyBuses[i] == true){ 
63       if(dirtyCnt[i] == (sc_uint<1>)1){
64         cout << "Clearing data buses" << endl;
65         data[i].write(HIGHIMPEDANCE);
66         dirtyCnt[i] = 0;
67         dirtyBuses[i] = false;
68       }
69       else{ 
70         dirtyCnt[i]++;
71         data[i].write(immbuffer[i]);
72       }
73     }
74   }
75

76   // if programmed jump was detected, clear the pipeline by waiting for three cycles

77   if(jumpDetected){ 
78     if(cycleCnt < (sc_uint<2>)2){
79       cycleCnt++;
80       return;
81     }
82     else{
83       cycleCnt = 0;
84       jumpDetected = false;
85       return;
86     }
87   }
88

89   instruction = programMemory[pc];
90

91   immediateBits = instruction.range(IMMCNT-1,0);
92

93   cout << "Instruction " << pc << " : " << instruction << endl;
94   cout << "Immediate bits : " << immediateBits << endl;
95

96   // divide & dispatch instructions 
97   for(int i = 0; i < BUSES; i++){
98     subInstruction = instruction.range(((i+1)*(SUBINSTRLENGTH))+IMMCNT-1, (i*

(SUBINSTRLENGTH))+IMMCNT);
99     guardBits = subInstruction.range(SUBINSTRLENGTH-1, 2*ADDRESSWIDTH);

100     dstValue = (sc_bv<ADDRESSWIDTH>)subInstruction.range(ADDRESSWIDTH-1,0);
101     srcValue = (sc_bv<ADDRESSWIDTH>)subInstruction.range(2*ADDRESSWIDTH-1,

ADDRESSWIDTH);
102

103     cout << "Subinstruction " << i << " is: " << subInstruction << endl;
104

105     bool guardeval = true;
106     if(guardBits != GONES){
107       guardeval = evaluateGuards(guardBits);
108     }
109

110     cout << "Guard evaluation " << (guardeval ? "true" : "false") << endl;
111

112     if(guardeval){
113

114       // check if this is a jump command
115       for(int k = 0; k < 3; k++){
116         if(dstValue == PCTrigIds[k]){
117           jumpDetected = true;
118         }
119       }
120

121       if((i < IMMCNT) && (immediateBits[i] == true)){
122         // write immediate value to buffer and dispatch address
123         dst[i].write(dstValue);
124         src[i].write(0); // clear old address from src
125         immbuffer[i] = srcValue;
126         dirtyBuses[i] = true;
127         dirtyCnt[i] = 0;
128         cout << "Writing immediate " << srcValue << " to " << dstValue << endl;
129       }
130       else{
131         cout << "Moving from " << srcValue << " to " << dstValue << endl;
132         dst[i].write(dstValue);
133         src[i].write(srcValue);
134       }
135     }
136     else{
137       // old addresses need to be cleared
138       dst[i].write(0);
139       src[i].write(0);
140     }
141   }
142

143   pc++;
144   if((int)pc == (PROGRAMMEM-1)){
145   //if((int)pc == 4){
146     cout << "PC has reached the end of program memory" << endl;
147     exit(0);
148   }
149

150 }

151

152 bool NetworkController::evaluateGuards(sc_uint<GUARDCNT> grd){
153   int iguard = grd;
154   bool value = false;
155

156   switch (iguard){
157     case 0: 
158       // matcher 1 true, a
159       if (guards[0] == true) {
160         value = true;
161       }
162     break;
163

164     case 1: 
165       // matcher 1 false, !a
166       if (guards[0] == false) {
167        value = true;
168       }
169     break;
170

171     case 2: 
172       // compare 1 true, b
173       if (guards[1] == true) {
174         value = true;
175       }
176     break;
177

178     case 3: 
179       // compare 1 false, !b
180       if (guards[1] == false) {
181         value = true;
182       }
183     break;
184

185     case 4: 
186       // counter 1 zero, c
187       if (guards[2] == true) {
188         value = true;
189       }
190     break;
191

192     case 5:  
193       // counter 1 not  zero, !c
194       if (guards[2] == false) {
195         value = true;
196       }
197     break;
198

199     case 6: 
200       // inputFU empty
201       if (guards[4] == true) {
202         value = true;
203       }
204     break;
205

206     case 7:
207       // inputFU not empty
208       if (guards[4] == false) {
209         value = true;
210       }
211     break;
212

213     case 8:
214       // outputFU full
215       if (guards[4] == true) {
216         value = true;
217       }
218     break;
219

220     case 9:
221       // outputFU not full
222       if (guards[4] == false) {
223         value = true;
224       }
225     break;
226

227     case 10: 
228       // matcher 1 and compare 1 true, a.b
229       if ( (guards[0] == true) && (guards[1] == true) ) {
230         value = true;
231       }
232     break;
233

234     case 11: 
235       // matcher 1 false and compare 1 true, !a.b
236       if ( (guards[0] == false) && (guards[1] == true) ) {
237         value = true;
238       }
239     break;
240

241     case 12: 
242       // matcher 1 true and compare 1 false, a.!b
243       if ( (guards[0] == true) && (guards[1] == false) ) {
244         value = true;
245       }
246     break;
247

248     case 13: 
249       // matcher 1 false and compare 1 false, !a.!b
250       if ( (guards[0] == false) && (guards[1] == false) ) {
251         value = true;
252       }
253     break;
254

255     default:
256       value = true;
257     break;
258   }
259

260   return value;
261 }
262
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1 #include "outputfu.h"
2

3 void OutputFU::triggerOperation(){
4

5   if(!addressFIFO->isFull()){
6     sc_uint<BUSWIDTH> op, tr, od;
7     op = operandReg[0].read();
8     tr = triggerReg.read();
9     od = operandReg[1].read();

10     cout << name() << " executing with values " << op << " " << od << " " << tr << endl;
11

12     if(od != (sc_uint<BUSWIDTH>)0){
13       addressFIFO->write(operandReg[0].read());
14       interfaceFIFO->write(triggerReg.read());
15       lengthFIFO->write(operandReg[1].read());
16     }
17   }
18 }
19

20 void OutputFU::updateGuards(){
21   if(addressFIFO->isFull()){
22     guardBit.write(true);
23   }
24   else{
25     guardBit.write(false);
26   }
27 }
28

29 void OutputFU::sendData(){
30

31   sc_uint<BUSWIDTH> address, id, length, data;
32

33   while(true){
34     if(addressFIFO->isEmpty()){
35       // nothing to do
36       cout << name() << ": idle" << endl;
37       wait(1);
38     }
39     else{
40

41       address = addressFIFO->read();
42       id = interfaceFIFO->read();
43       length = lengthFIFO->read();
44

45       cout << name() << " writing PDU from address " << address << " with length " 
46            << length << " to interface " << id << endl;
47

48

49

50       if(id >= (sc_uint<BUSWIDTH>)4){
51         // writing to interface 5 discards PDU
52         cout << name() << " discarding PDU" << endl;
53         oAddress.write(address);
54         oTrigger.write(true);
55         wait(1);
56         oTrigger.write(false);
57         oAddress.write(0);
58       }
59       else{
60         oTrigger.write(true);
61         oAddress.write(address);
62         networkTrigger.write(true);
63         networkLength.write(length);
64

65         // wait until dMMU is ready
66         while(!oAck.read() || !networkAck.read()){
67           wait(1);
68         }
69         wait(1);
70

71         for(int i = 0; i < (int)length; i++){
72           data = oData.read();
73           networkData.write(data);
74           cout << name() << " wrote " << data << " from dMMU to network interface." << endl;
75           wait(1);
76         }
77         // transfer complete
78         oTrigger.write(false);
79         networkTrigger.write(false);
80         wait(1);
81         networkData.write(0);
82         networkLength.write(0);
83         oAddress.write(0);
84         cout << name() << ": PDU written successfully." << endl;
85         wait(1);
86       }
87     }
88   }
89 }
90



1 /**
2  * OutSocket is a class modeling output socket connecting buses and a FU in a transport triggered processor.
3  */
4

5 #ifndef OutSocket_H
6 #define OutSocket_H
7

8 #include "globaldefs.h"
9 #include "socket.h"

10 #include "systemc.h"
11 class OutSocket: public Socket {
12

13   private:
14   /**
15    * ID of this socket.
16    */
17   sc_uint<ADDRESSWIDTH> socketId;
18

19   /**
20    * Logic vector containing Z values. Used for disconnecting socket from data buses.
21    */
22   sc_lv<BUSWIDTH> HIGHIMPEDANCE;
23

24   public:
25

26   //////////////////////////////////////////////////////
27   // Ports
28   //////////////////////////////////////////////////////
29   /**
30    * Array of output ports to buses.
31    */
32   sc_out_rv<BUSWIDTH> outDataPorts[BUSES];
33

34   /**
35    * Input port for the FU.
36    */ 
37   sc_in<sc_uint<BUSWIDTH> > fuData;
38

39   //////////////////////////////////////////////////////
40   // Functions
41   //////////////////////////////////////////////////////
42

43   /**
44    * Decode addresses on address buses and perform actions if neccessary.
45    */
46   void decodeId();
47

48   SC_HAS_PROCESS(OutSocket);
49   /**
50    * Constructor.
51    *
52    * \param name_ Name of this module.
53    * \param id Id of this socket.
54    */
55   OutSocket(sc_module_name name_, sc_uint<ADDRESSWIDTH> id = 0): Socket(name_){
56

57     // <NOT SYNTHESIZABLE>
58     // bind output ports to data buses and id ports to src buses
59     Bus* bptr;
60     for(int i = 0; i < BUSES; i++){
61       bptr = Buscontroller::getBus(i);
62       outDataPorts[i].bind(bptr->sigData);
63       inIdPorts[i].bind(bptr->sigSrc);
64     }
65     // </NOT SYNTHESIZABLE>
66

67     if(id == (sc_uint<ADDRESSWIDTH>)0){
68       // <NOT SYNTHESIZABLE>
69       socketId = Buscontroller::getSocketId(name_);
70       // </NOT SYNTHESIZABLE>
71     }
72     else{ 
73       socketId = id;
74     }
75

76   for(int i = 0; i < BUSWIDTH; i++){ 
77     HIGHIMPEDANCE[i] = SC_LOGIC_Z;
78   }
79

80   }
81

82 };
83 #endif // OutSocket_H
84



1 #include "outsocket.h"

2

3 void OutSocket::decodeId(){

4

5     for(int i = 0; i < BUSES; i++) {

6       if(socketId == inIdPorts[i].read()) {

7         cout << name() << " writing..." << endl;

8         outDataPorts[i].write(fuData.read());

9       }

10       else{

11         outDataPorts[i].write(HIGHIMPEDANCE);

12       }

13     }

14

15 }

16



1 /**
2  * Socket is an abstract class modeling a general socket connecting buses and a FU in a

 transport triggered processor.
3  */
4

5 #ifndef Socket_H
6 #define Socket_H
7

8 #include "globaldefs.h"
9 #include "busctrl.h"

10 #include "systemc.h"
11 class Socket: public sc_module {
12

13   public:
14

15   //////////////////////////////////////////////////////
16   // Ports
17   //////////////////////////////////////////////////////
18   /**
19    *  Clock input.
20    */
21   sc_in_clk clock;
22

23   /**
24    * Address buses.
25    */
26   sc_in<sc_uint<ADDRESSWIDTH> > inIdPorts[BUSES];
27

28   //////////////////////////////////////////////////////
29   // Functions
30   //////////////////////////////////////////////////////
31

32   /**
33    * Decode addresses on address buses and perform actions if neccessary.
34    */
35   virtual void decodeId()=0;
36

37   SC_HAS_PROCESS(Socket);
38   /**
39    * Constructor.
40    *
41    * \param name Name of this module.
42    */
43   Socket(const sc_module_name& name): sc_module(name){
44

45     SC_METHOD(decodeId);
46     sensitive << clock.pos();
47

48     cout << "Socket " << name << " constructed" << endl;
49

50   }
51

52 };
53 #endif // Socket_H
54
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1 #include "trigsocket.h"

2

3 void TriggerSocket::decodeId(){

4   if(trigBit.read()) trigBit.write(false);

5

6   // read data if a data read was scheduled during last cycle

7   if(readData){

8     cout << name() << " reading..." << endl;

9     fuData.write(inDataPorts[busNumber].read());

10     opCode.write(tempOpCode);

11     trigBit.write(true);

12     readData = false;

13   }

14

15   // decode

16   for(int i = 0; i < BUSES; i++) {

17     int k = 0;

18     while(k < idCnt){

19       if (socketIds[k] == inIdPorts[i].read()) {

20         cout << name() << " triggered with opcode " << k << endl;

21         tempOpCode = socketIds[k] - socketIds[0];

22         readData = true;

23         busNumber = i;

24       }

25       k++;

26     }

27   }

28 }

29
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