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Was denkt die Maus am Donnerstag, 
am Donnerstag, 
am Donnerstag? 
 
Dasselbe wie an jedem Tag, 
an jedem Tag, 
an jedem Tag. 
 
Was denkt die Maus an jedem Tag, 
am Dienstag, Mittwoch, Donnerstag, 
und jeden Tag, 
und jeden Tag? 
 
O hätte ich ein Wurstebrot 
mit ganz viel Wurst und wenig Brot! 
o fände ich, zu meinem Glück, 
ein riesengroßes Schinkenstück! 
Das gäbe Saft, das gäbe Kraft! 
Da wär ich bald nicht mehr 
mäuschenklein, 
da würd ich bald groß wie ein Ochse 
sein. 
Doch wäre ich erst so groß wie ein 
Stier, 
dann würde ein tapferer Held aus 
mir. 
Das wäre herrlich, 
das wäre recht - 
und der Katze dem Mink, 
der Katze dem Mink 
ginge es schlecht! 
 
 
Josef Guggenmos 
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1. INTRODUCTION 

As humans have spread around the globe, they have intentionally or accidentally 
transported a huge variety of plant and animal species to locations beyond their natural 
range (Elton 1958; Williamson 1996; 1999). The earliest evidence of the introduction 
of non-indigenous species dates back to the Neolithic era, c. 6000 BP (Webb 1985). 
The colonization of Hawaii by Polynesians c. 1000 BP and other prehistoric human 
movements were soon connected with the introduction of new species and the 
extinction of local ones (Olson and James 1982; Manchester and Bullock 2000; Burney 
et al. 2001). It was, however, not until the 16th century, when marine transportation 
improved and the rise of the European colonial expansion caused massively increased 
human movements between continents, that introductions became more frequent (Elton 
1958; di Castri et al. 1990; Leppäkoski et al. 2002). Since then they have continued to 
increase; many hundreds of introduced species have established self-sustaining wild 
populations and have caused dramatic changes in many ecosystems worldwide 
(Gurevitch and Padilla 2004). While some species were intentionally introduced (e.g. 
the water hyacinth Eichhornia crassipes or the Nile perch Lates niloticus to Lake 
Victoria, Africa), others stowed away on aircrafts or ships (e.g. the agent of avian 
malaria, Plasmodium relictum, to Hawaii, the brown tree snake Boiga irregularis to 
Guam, or the rat Rattus rattus to Polynesia); yet other invaders have been escaped or 
released domestic animals (e.g. the feral cat Felis catus in Australia or the feral pig Sus 
scrofa in many parts of the world). The damage done by these species now offers 
infamous examples of how devastating the impact of an alien species can be (Lowe et 
al. 2000). 

Not all introduced species are able to establish self-sustaining populations. For a 
majority of plants and animals the “rule of tens” holds: one in ten imported species 
appears in the wild, one in ten of those introduced becomes established, and one in ten 
of those established becomes a pest (Williamson and Fitter 1996a). The factors that 
determine whether or not a species is a successful invader include both species traits 
and ecosystem properties (Williamson and Fitter 1996b; Williamson 1999). Successful 
invaders are usually opportunistic, superior competitors and able to settle in empty 
niches in their new environment. In addition, they often benefit from the absence of 
competitors, predators and parasites in their new environment. Their ability to invade 
depends also on the physical environment and resource availability (Shea and Chesson 
2002).  

1.1 Introduced predators 

The negative impact of alien species on the native fauna may be caused directly 
through three processes: predation, competition, and the transmission of disease, 
parasites or pathogens to native species (Dickman 1992b; 1996). Indirect effects may 
occur at the community level via effects on keystone species (Spiller and Schoener 
1994). Among these processes, alien terrestrial predation is considered to have the 
worst effect on native species (Diamond 1984). Predation by introduced predators has 
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been the cause of some of the most rapid and severe changes in native bird and 
mammal populations all over the world.  

Probably the most notorious example is the introduction of brown tree snakes (Boiga 
irregularis) to the island of Guam in the Western Pacific Ocean. Within a few decades 
of the arrival of brown snakes, Guam lost all but three of its thirteen native bird species 
and several bat and reptile species (Fritts and Rodda 1998). In Australia, the 
introduction of cats (Felis catus), red foxes (Vulpes vulpes) and dingos (Canis lupus 
dingo) is linked to the extinction of several species of mammals, birds and tortoises 
(Dickman 1996). Extinctions are also known in less charismatic taxa, such as the 
extinction of tree snail species on the Hawaiian islands caused by a North American 
predatory snail, Euglandina rosea (Hadfield et al. 1993).  

In addition to global extinctions, many species have become locally extinct, are 
threatened, or have severely declined. Since alien predators are usually generalists, it is 
easily possible for them to exterminate a prey species without exhausting their 
potential food supply (Diamond 1989). 

In co-evolved predator-prey systems, the mere risk of predation can induce behavioural 
changes in potential prey which are assumed to reduce the risk of being killed by a 
predator. These include changes in activity patterns, the use of home ranges and 
habitats, foraging and even reproduction patterns (Lima and Dill 1990; Kats and Dill 
1998). In mammalian predator-prey systems, efficient perception of predation risk is 
often based on residual olfactory cues; this favours avoidance of predators early in the 
sequence of predator-prey interaction (Kats and Dill 1998; Apfelbach et al. 2005).  

Without a long history of coexistence with a comparable predator, however, native 
prey may not be able to recognise alien predators as dangerous (level 1 naïveté), or 
they may lack the appropriate anti-predatory responses (level 2 naïveté) (Banks and 
Dickman 2007). It is this phenomenon that is thought to lie behind the especially 
pronounced negative impact of alien predators in simple systems such as oceanic 
islands or archipelagos, since these are usually predator-free systems or have only a 
few ground-living mammalian predators (Atkinson 1985; Dickman 1992a; Atkinson 
1996). Moreover, dispersal and re-colonization rates in island systems are low, so that 
losses to alien predation can not be redressed by immigration (Tamarin 1978; Peltonen 
and Hanski 1991; Adler and Levins 1994). In a recent world-wide review of predator-
removal experiments, Salo et al. (2007) showed that the impact of alien predators was 
indeed worst in insular ecosystems, provided that Australia was considered an island; 
this is reasonable given Australia’s unique evolutionary history. 

The relationship between an introduced predator and a native prey, however, may have 
several different outcomes (Ebenhard 1988; Dickman 1996). The one most often 
observed is the severe decimation or extinction of the prey species. But if the predator 
population is small, or if for instance only juveniles are predated while breeding 
animals are unaffected, the effect of alien predation on the native prey population may 
be minor (Banks 1999). If interactions occur among introduced predators and other 
exotic species, the negative effects on prey populations may be more pronounced or on 
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the contrary diluted (Zavaleta et al. 2001). In some cases, predation may have a 
positive impact on prey populations. On small islands, for example, high herbivore 
densities are often promoted by the absence or low densities of predators and limited 
dispersal (the so called "fence effect"; Boonstra and Krebs 1977;  but see Ostfeld 
1994). Overexploitation of food resources is often the main cause of population crashes 
or complete extinction of island populations (Pokki 1981). If predators enter such 
island systems, they may prevent the complete extinction of their prey populations by 
limiting herbivore numbers before they completely exhaust their resources (Wilmers et 
al. 2006); this on the other hand removes the motivation for dispersal and thus 
interrupts meta-population processes. Information on the causes of extinctions and 
threats due to alien predators, however, is in many cases anecdotal, speculative or 
based on limited field observation (Williamson 1996; 1999). 

It is also possible for alien predation to have an impact throughout a whole ecosystem. 
Changes in predator abundance, by altering the abundance of herbivores, can modify 
the distribution and abundance of plants on a community-wide basis, an effect known 
as a trophic cascade (Carpenter et al. 1985). Trophic cascades have been shown to 
occur following the removal of predators preying upon herbivores (Schmitz et al. 2000; 
Norrdahl et al. 2002), but there is still disagreement as to whether community-level 
trophic cascades might be widespread and strong in terrestrial ecosystems (Polis and 
Strong 1996; Polis et al. 2000; Schmitz et al. 2000). A cross-ecosystem comparison of 
the strength of 102 trophic cascade experiments showed that plants in aquatic 
ecosystems responded more strongly to predator reductions than those in terrestrial 
ecosystems (Shurin et al. 2002). The issue, however, is debated, and some authors 
maintain that trophic cascades also commonly occur in vertebrate terrestrial food webs 
(Oksanen and Oksanen 2000; Terborgh et al. 2006; Aunapuu et al. 2008), which are 
greatly under-represented in the material underlying the recent meta-analyses (Halaj 
and Wise 2001; Shurin et al. 2002; Borer et al. 2005; Shurin et al. 2006). Possible 
reasons for the rarity of community-level trophic cascades in terrestrial systems include 
self-regulation or abiotic limitation of herbivores and the diversity of defense strategies 
in plants (Polis 1999; Schmitz et al. 2000). The main reason, however, may be the 
architecture of high-diversity terrestrial ecosystems, which forms a complex web rather 
than a simple chain (Polis 1991). Island ecosystems are usually simpler systems with a 
more chain-like structure, thus having greater potential for trophic cascades. Moreover, 
biodiversity is usually lower on islands than on the mainland. Herbivore populations on 
small islands often have high densities, since they suffer little or no predation. In 
addition, they have limited dispersal; thus the so-called fence effect may lead to 
abnormally high population growth (Boonstra and Krebs 1977; but see Ostfeld 1994). 
Thus overgrazing can have a widespread impact on island plant communities.  

Herbivores affect the structure and diversity of plant communities by reducing the 
abundance of preferred forage species and by modifying competitive interactions  
between plant species (Whitham et al. 1991). It is not clear, however, whether plant 
communities benefit from a drastic reduction of herbivores. Plant diversity may be 
positively influenced by disturbance, which prevents competitive exclusion by creating 
resources for subordinate species (Connell 1978; Mack and D'Antonio 1998; Kondoh 
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2001). If so, predation may not only limit prey populations, but also reduce the 
biodiversity of communities and whole ecosystems.  

A worldwide meta-analysis of the responses of vertebrate prey in field experiments in 
which the population densities of mammalian and avian predators had been 
manipulated showed that alien predators had a suppressive impact on prey which was 
double that of native predators (Salo et al. 2007). This finding in turn suggests that 
alien predators may induce stronger trophic cascades in plant communities than do 
native predators. However, there are no previous experimental studies on possible 
trophic cascades induced by alien predators. 

1.2. Predator removal experiments 

Removing predators has turned out to be a convenient method for revealing the effects 
of predation on prey populations (Sih et al. 1985; Korpimäki and Norrdahl 1998; 
Korpimäki et al. 2002; Korpimäki et al. 2005). Unlike predator exclusion for instance 
by nets or fences, in predator removal experiments prey populations are not influenced 
by any other factor than the presence or absence of the predator in question. Permanent 
removal of vertebrate predators on a landscape scale, however, is almost impossible, 
except perhaps for isolated islands (Myers et al. 2000).   

The outcomes of large-scale predator removal experiments may be affected by at least 
three important mechanisms. First, it may be extremely difficult to remove all 
individuals of a predator species (Zavaleta et al. 2001). Moreover, in the absence of 
intra-specific competition for resources, remaining or re-colonising predator 
individuals may show increased reproductive success and/or survival. This may lead to 
an actual increase in the predation rate compared to pre-removal conditions (Boyce et 
al. 1999). The predator population may also be quickly restored by dispersing 
individuals from the surroundings (Byrom 2002; Korpimäki et al. 2002). Continuous 
and year-round removal is thus essential; otherwise the predator reduction period will 
remain short. Second, if only one predator species is removed, the remaining predators 
may increase their predation rate or shift their diet, which will dilute the effect of 
removal (Norrdahl and Korpimäki 1995; Korpimäki and Norrdahl 1998). Finally, 
reduced predation pressure may lead to an increase in both intra- and inter-specific 
competition among prey individuals, and a stronger competitor may start to dominate 
the system (Paine 1966; Henke and Bryant 1999).  

Thus islands and insular systems, which generally have fewer predator species and 
slower re-colonisation rates than mainland habitats, are well suited for large-scale 
predator removal, since the effects of predator removal may be more distinct there 
(Marcström et al. 1988; Côté and Sutherland 1997; Macdonald et al. 2002).  

1.3 Aims of the thesis 

The American mink (Mustela vison, hereafter mink), is a medium-sized mustelid 
which since the first half of the twentieth century has been transported far beyond its 
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native range in North America for purposes of fur farming. Through accidental escapes 
or deliberate releases mink have become established in semi-aquatic ecosystems of 
Northern and Eastern Europe, including archipelagos and the British Isles (Bonesi and 
Palazon 2007). Almost everywhere it has been introduced, the mink has been suspected 
of having a notable negative impact on some of its prey species. One such case is the 
dramatic decline of water voles (Arvicola terrestris) in the U.K. (Woodroffe et al. 
1990; Aars et al. 2001; Macdonald and Harrington 2003). The effect of mink on water 
voles in the U.K. is confounded by the post-war intensification of agriculture that has 
led to the destruction of riverside and flood plain habitats, but mink has also been 
shown to limit water vole populations in unmanaged wetland systems in Belarus 
(Macdonald et al. 2002). There is concern over mink impact on ground-nesting birds in 
the U.K. (Ferreras and Macdonald 1999; Moore et al. 2003), Poland (Bartoszewicz and 
Zalewski 2003), and the mainland of Finland (Kauhala 1996). The disappearance of 
vole cycles in Lapland has been attributed to the invasion of the generalist mink 
(Oksanen et al. 2001). Despite these concerns, there have been surprisingly few large 
scale experimental studies on the possible detrimental effects of mink predation on its 
prey populations. A long-term mink removal program in the Finnish archipelago 
revealed negative impacts of mink on the breeding densities of 14 out of 22 bird 
species, including water fowl, larids, waders and passerines (Nordström et al. 2002; 
2003); on the diversity of breeding bird assemblages (Nordström and Korpimäki 
2004); and on frog populations (Ahola et al. 2006). Banks et al. (2004) found that mink 
predation suppressed vole populations on small islands under conditions which 
otherwise would allow large population increases, suggesting that mink can potentially 
disrupt meta-population processes in the archipelago. Except for the present study, 
experimental approaches to investigating the impact of mink on mammalian prey, 
especially their anti-predatory behaviour, have so far been lacking (Macdonald and 
Harrington 2003), nor has there been any investigation as to whether mink may induce 
trophic cascades by reducing the abundance of mammalian herbivores. 

This study has therefore focused on the impact of American mink on voles on small 
islands in the Baltic Sea archipelago. I studied the outcomes of a large-scale, long-term 
mink removal experiment at the level of the individual (I, II), the population (III, IV) 
and the ecosystem (V), addressing the following questions: 

(1) Are voles able to recognize the threat posed by the alien mink, and do they respond 
with the appropriate anti-predatory behaviours? More specifically, how does the 
presence or absence of mink influence the foraging pattern of voles? Do they alter their 
microhabitat use (I) or their activity timing (II) when mink are present? Are odour cues 
sufficient to induce the appropriate anti-predatory behaviour, and do voles perceive a 
co-evolved native predator as more risky than an alien predator (II)? 

(2) Does mink play an important role in regulating vole populations on small islands, 
or is the generally very limited food abundance on these islands more important for the 
limitation of vole populations (III)? Are vole meta-population processes among 
islands, especially dispersal and colonisation, influenced by mink presence (IV)? 
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(3) Does mink induce trophic cascades in the simple ecosystem of small islands? Does 
mink have an indirect effect on the plant species diversity of the islands via reducing 
the grazing pressure from voles (V)? 

Answering these questions may help us to understand whether and why mink has a 
detrimental impact on the whole archipelago ecosystem, and may help in finding 
appropriate management solutions. 
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2. METHODS 

2.1. Study area and species 

2.1.1. Study area 
The study was conducted on small islands of the Baltic Sea in the outer and outermost 
zones of the Archipelago National Park in the vicinity of Turku, SW Finland (Fig. 1). 
The islands are exposed rocky skerries, all smaller than 4 ha in size. Vegetation on 
these islands is sparse and characterized by grasses (Poaceae, Cyperaceae), dwarf 
shrubs (bog bilberry Vaccinium uliginosum and crowberry Empetrum nigrum), heather 
(Calluna vulgaris) and mosses (Bryophyta). The largest islands have solitary trees, 
while low juniper (Juniperus communis) bushes occur on most of the islands.  

We conducted experiments in four different areas of the archipelago sea (Fig. 1). Each 
study area covers 72 – 130 km2 and consists of 60 – 77 islands. Two of the study areas 
had all mink removed, while the other two served as control areas. In removal area R1 
around Trunsö near Nauvo (59º49'N, 21º48'E) mink have been consistently removed 
by gamekeepers since the autumn of 1992; control area C1 around Vänö near 
Dragsfjärd (59º48'N, 22º11'E), with mink present, has been monitored since spring 
1994.  Corresponding areas – removal area R2 and control area C2 – were established 
around Utö near Korppoo (59º47'N, 21º30'E) and Brunskär (60º01'N, 21º23'E) in 1998. 
In each study area ten islands were defined for the purposes of the present studies as 
experimental islands. The islands were chosen so to be as similar as possible in size 

allocate islands randomly to either mink removal or not, but for practical reasons that 
was not attainable. Thus this design was the only one that was possible. 

 
Figure 1. Map showing the study areas in the Archipelago Sea in SW Finland. R1 = 

10 Kilometers

R1 C1

C2

R2

removal area 1 (Trunsö), R2 = removal area 2 (Utö), C1 = control area 1 (Vänö), 

and vegetation cover to support voles. Theoretically it would have been desirable to 

C2 = control area 2 (Brunskär). 
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2.1.2 American mink 
The mink is a North American mustelid species whose native distribution area ranges 
throughout most of the United States and Canada (Hall 1982). It is a predominantly 
nocturnal, semi-aquatic species, found in inland wetland habitats and along the coasts 
(Arnold and Fritzell 1987; 1990). Its diet consists of birds, eggs, mammals, fish, 
insects, crustaceans and plants (Gilbert and Nancekivell 1982; Jennings et al. 1982).  

First introduced into Europe in the early twentieth century, mink has become a 
successful invader of lakes and along the coastlines of the Baltic Sea. Feral American 
mink have been present in Finland since the 1950s and have been reported in the 
Finnish archipelago since the 1970s (Kauhala 1996). The invasion success of mink in 
Finland was apparently fostered by the absence of natural competitors and enemies. 

European mink (Mustela lutreola) and American mink are closely related species with 
similar habitat and food requirements. Since both species have lived in their natural 
environments on different continents, there has been no need to avoid competition. The 
lower habitat requirements of American mink, and its ability to thrive well by all kinds 
of eutrophic waters, while European mink prefers small rivers and brooks, make the 
larger American species a superior competitor (Westman 1968). Indeed, mink has been 
blamed for the extinction of European mink in Finland (Maran and Henttonen 1995). 
In the archipelago, however, European mink has probably never occurred (Westman 
1968).  

The only natural predator of mink in the archipelago is the white-tailed sea eagle 
(Haliaeetus albicilla), which was absent when mink started to invade the archipelago, 
but is now returning to breed everywhere in Finnish coastal areas, largely due to 
effective conservation programmes (Helander et al. 2003; Stjernberg et al. 2005; Salo 
et al. ms). 

2.1.3 Voles 
In the archipelago two vole species are found: the field vole (Microtus agrestis) and the 
bank vole (Myodes glareolus, earlier Clethrionomys glareolus). The field vole is the 
most common herbivorous small mammal in the archipelago. The bank vole is more 
patchily distributed and generally more abundant closer to the mainland (Kostian 1970; 
Ebenhard 1988), but it also occurs in remote areas (Banks et al. 2004). Both species are 
generalist herbivores subsisting on herbs and grasses, but bank voles are more 
omnivorous (Henttonen et al. 1977; Myllymäki 1977).  

Mink is the main and in fact essentially only mammalian predator of voles in the study 
area. Other mammalian predators, such as the red fox (Vulpes vulpes) and the raccoon 
dog (Nyctereutes procyonoides), are extremely rare on the islands of the outer 
archipelago, which are too small to sustain permanent populations of these predators 
(Nordström et al. 2002; 2003). Some predation pressure on voles may be exerted by 
black adders (Vipera berus) and (during the spring and autumn migrations) by short- 
and long-eared owls (Asio flammeus and A. otus) and Eurasian kestrels (Falco 
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tinnunculus) (Korpimäki and Norrdahl 1991; Lindell and Forsman 1996; Forsman and 
Lindell 1997).  

On sparsely vegetated small islands, food availability for herbivorous small rodents is 
severely limited (Pokki 1981; Crone et al. 2001; Banks et al. 2004). Banks et al. (2004) 
found that vole densities were higher in years with above-average summer rainfall, 
which increases food availability, than in years with less rainfall. Islands with high 
summer vole densities showed signs of overgrazing and were also more prone to 
extinction over the winter, suggesting chronic food limitation.   

Vole populations in the archipelago are subject to meta-population dynamics. Island 
populations are connected by immigration and emigration processes and may 
experience local extinctions and re-colonisations (Pokki 1981; Crone et al. 2001). In 
contrast to mainland populations in Fennoscandia (Huitu et al. 2003; Sundell et al. 
2004), isolated island populations do not necessarily show synchronisation of 
population cycles over large areas (Heikkila et al. 1994; Crone et al. 2001).  

2.2. Experimental procedures  

2.2.1 Mink removal 
For the large-scale removal of mink in the Finnish archipelago, a specific method was 
developed by Nummelin and Högmander (1998). Mink are tracked by a trained scent 
hound that is able to quickly find mink on the small islands. After detection, mink 
usually hide under boulders, rocks or dense junipers. They are chased from these 
refuges with a leaf-blower, and subsequently killed with a shotgun. Mink removal has 
been carried out on all the islands in spring and autumn every year. Lethal traps have 
been used as an additional method. During the first three years, relatively many mink 
were removed (28–47 / year in both areas); after that the numbers were constantly 
small (3–12 / year; see Nordström et al. 2003 for exact numbers removed). 

2.2.2. Vole trapping 
Vole trapping was carried out in a grid of 5 x 5 Ugglan multiple-capture live traps with 
a trap distance of 10 m, as is typical of vole studies (Norrdahl and Korpimäki 1993; 
Prévot-Julliard et al. 1999; Klemola et al. 2000). On small islands suitable vegetated 
habitats are more patchily distributed than on continuous mainland. The traps were 
therefore not always set at exact 10 x 10 m distances, but were preferably placed on 
vegetated spots. For a correct assessment of space use by voles (II) we measured inter-
trap distances to the nearest 0.10 m with a measuring tape, and recorded microhabitat 
types within a 1 m radius for each trap (I, II). The traps were baited with standard 
laboratory mouse pellets or oats. To improve trapping efficiency the traps were pre-
baited prior to setting for one day.   

Voles were marked individually, sexed and their reproductive status and body mass 
recorded. The minimum number of individuals known to be alive was used as an index 
of vole abundance (Krebs 1966; Shaner 2006). When poor weather conditions and 
logistic constraints forced us to survey vole populations as quickly as possible (III), we 
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used the number of traps visited (indicated by the loss of bait from these traps) as an 
index for vole abundance. According to both Lambin et al. (2000) and our own data 
(III), there is a linear relationship between vole sign indices and vole density estimates 
derived from live trapping. 

In order to obtain more detailed data about activity, home range sizes, survival and 
microhabitat use of voles, we conducted either intensive trapping, with trap checks 
every 2 hrs for 24 hrs (II), or radio-tracking of voles (IV). Dispersal was simulated by 
translocating voles between islands (IV). Voles from both mink islands and mink-free 
ones were transferred to other islands of both types, to test for the influence of 
predation risk and experience with mink on the voles’ ability to colonise islands. 

2.2.3. Simulating predation risk by odour cues 
Predation risk was simulated by using either fresh faeces or a liquid extract of faeces. 
To test whether voles perceive the predation risk posed by a native predator better than 
that posed by an alien one, laboratory preference tests were conducted in a 
1 x 2 x 0.50 m arena using either least weasel (Mustela nivalis) or mink faeces (II). To 
investigate the anti-predatory behaviour of free-ranging voles, we simulated a 
temporary high predation risk by spraying a liquid extract of mink faeces on the ground 
inside a trapping grid (II). 

2.2.4. Vegetation survey 
To detect possible cascading effects of mink removal at the plant trophic level via 
reducing the grazing pressure of voles (VI), a vegetation survey was conducted on five 
islands of C1 and nine islands of R1 in 2004, 12 years after the start of mink removal. 
Ten plots were randomly chosen on each island, and vegetation inside the plots was 
recorded by a point-intercept method (Levy and Madden 1933; Bråthen and Hagberg 
2004) using a 100 x 50 cm plexiglass table with 100 randomly distributed holes. All 
species hit by a pin passed through the holes were recorded, each species not more than 
once per hole. The abundance of each species was estimated by the number of holes 
through which it was hit. The Shannon diversity index and equitability were calculated 
for each plot as a measure of diversity.  
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3. RESULTS AND DISCUSSION 

The most obvious effect of mink removal was the generally higher vole densities on 
mink-free islands compared to islands with mink present (III, Fig. 2, see also Banks et 
al. 2004), which might have been caused by the naïveté of voles against the alien 
predator and costly anti-predatory behaviours. Differences in vole densities may also 
have consequences for other trophic levels of the ecosystems. In the following sections, 
the effects of mink removal on vole individuals and populations are presented in detail.  

3.1. Microhabitat use under manipulated mink predation risk 

The study showed that voles use different microhabitats on mink-inhabited and mink-
free islands. Field voles responded to the presence of mink by a shift from open 
habitats to juniper bushes, while bank voles avoided juniper in the presence of mink 
and were significantly more often captured in juniper in removal areas (I). These 
responses to experimental mink removal indicate that neither rodent species was 
completely naïve with regard to the predation risk from alien mink. This may be due to 
their historic coevolution on the mainland with other mustelids, such as weasels and 
stoats (Cox and Lima 2006). The results for field voles, however, were surprising, as 
juniper probably provides better shelter against avian predation than against 
mammalian predators, especially mustelids, which can hunt in small narrow spaces. 
Furthermore, mink probably prefer juniper as shelter against their predators, such as 
the sea eagle. The same habitat shift was found in translocated field voles during the 
colonisation process (IV). In contrast to voles from mink-free islands, voles from mink 
islands preferred juniper over other habitat types. Field voles apparently lack the 
appropriate behavioural response, given that they responded with escape tactics against 
avian rather than mammalian predators. This result is consistent with Banks and 
Dickman’s (2007) level 2 naïveté: recognition of the alien predator but response with 
an inappropriate tactic. 

3.2. Behavioural responses to simulated predation risk 

The predator odour treatment had a variable effect on the range of possible risk-
sensitive behaviours in voles. In the laboratory, voles avoided the odour cues of the 
native weasel but not of the alien mink. In the field, voles reduced their activity during 
typical peak activity times after the mink odour treatment, but no other changes in 
space use or shifts to safer microhabitats or denser vegetation were apparent (II). It is 
possible that the response to mink is a context-dependent learned response, which 
could be induced in the field but not in the laboratory, while the response to weasel is 
innate. Voles appeared to recognise alien mink as predators from their odour in the 
wild, most probably because of their close relationship with other small mustelid 
predators that share a long evolutionary history with voles (Cox and Lima 2006). A 
reduction in activity, however, is likely to be only a short-term direct response to the 
immediate mink presence. Prolonged hiding is not sustainable because prey individuals 
must feed themselves and maintain social activities. The longer-term strategy in 
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response to repeated mink visitation thus appears to be the use of safer, structurally 
more complex microhabitats. Taken together, the results of this study (II) and of that 
on microhabitat use by voles under manipulated mink predation pressure (I) suggest 
that voles vary their anti-predator behaviour between short- and long-term strategies, 
and do in fact use mink odour to trigger rapid anti-predator responses.  

3.3 Effects of mink predation and food limitation  

Study III suggests that vole populations on small islands in the archipelago of the 
Baltic Sea are mainly bottom-up limited during winter (outside the growing season of 
food plants), when food availability is low, and by mink predation during summer 
which slows population growth during the reproductive season of voles. 
Supplementary food during the winter season had a significant positive effect on vole 
densities, while the presence or absence of mink had no obvious effect on density 
changes in vole populations from autumn to next spring. Supplementary feeding during 
winter also resulted in a higher body mass of voles in spring, and voles from mink-free 
islands were heavier than those from mink-inhabited ones. The body mass of females 
was positively influenced by supplementary feeding but unaffected by mink presence, 
whereas males benefited from both supplementary feeding and mink removal.  

Local populations which started to breed with higher densities and better individual 
body condition were expected to grow faster and show higher densities in summer than 
populations which were in poorer condition after the winter, due to their probable 
higher reproductive potential (Ims 1987). In our study system, however, no such long-
term effects of supplementary feeding during the previous winter were observed, 
probably because both natural food abundance and vole densities show high seasonal 
variability, and during early summer there is more food available than the rather small 
vole populations in the increase phase can consume (Hambäck and Ekerholm 1997). 

Mink removal appeared not to affect density estimates of field voles during the winter 
and summer immediately after food addition, probably due to small sample sizes and 
exceptional weather conditions during the study. During an exceptionally mild winter, 
with the sea freezing over late and for only a short time, the impact of mink on vole 
survival was probably dampened by the availability of fish as the main prey of mink. 
Under more adverse weather conditions, the poorer body condition of voles on mink 
islands and costly changes in their behaviour induced by the mink predation risk (I) 
may lead to year-round population limitation. Trapping data from 2004-05 and 2007 
suggested, that in two out of three summers densities of voles were significantly higher 
in the absence than in the presence of mink. Thus vole populations on small islands in 
the archipelago are now under stress year round with limited opportunity to recover. 
Such prolonged population suppression can add to Allee effects and have important 
implications for meta-population processes (Martcheva and Bolker 2007). 
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3.4. Meta-population processes under manipulated mink predation risk 

Study IV provided further evidence that alien mink predation may interrupt the meta-
population processes which appear to determine the dynamics and distribution of voles 
in the archipelagos of the Baltic Sea (Pokki 1981), by inhibiting vole colonisation 
processes. The survival of translocated voles was significantly lower on islands where 
mink was present compared to control islands. Survival was not improved by former 
experience with mink. Microhabitat use by “experienced” and “inexperienced” voles 
revealed the same situation as in study I – voles probably recognised the predation risk 
associated with the alien predator but responded in the wrong way (level 2 naïveté). 
While effective anti-predatory behaviour against an alien predator is always critical 
because of prey naïveté (Cox and Lima 2006; Banks and Dickman 2007), it may be 
even more limited for dispersers which are not yet familiar with the new habitat. The 
establishment of colonising field voles in areas with alien mink may therefore fail, 
leading to the possible extinction of voles in the outer archipelago.  

3.5. Mink impact on a lower trophic level 

Study V suggests that mink not only limits vole populations (Banks et al. 2004; Banks 
et al. 2008), but by weakening or eliminating an important source of disturbance – 
grazing pressure by voles – also reduces plant diversity in the archipelago. Both 
diversity and equitability of plant communities were higher on islands from which 
mink had been continuously removed for twelve years. There was also a trend towards 
changes in plant community structure following mink removal. On the species level, 
we found the largest number of differences between mink islands and mink free island 
in grassy patches. The statistically significant species level differences concerned tall 
herbs and grasses and some palatable species, for which the presence of the mink was a 
positive factor. The species level results to the opposite direction were not statistically 
significant. A likely reason for this apparent contradiction is the large number of plant 
species with good colonizing ability in our study system and the randomness of the 
dispersal process. When voles create gaps in the vegetation, some of these plants 
predictably invade, and this is reflected in diversity and evenness indices. However, the 
identity of invading plants varies between islands and plots, depending on the 
surrounding vegetation. Therefore, it would require very large materials to obtain 
statistically significant positive results on the level of individual species. 

Our results suggest, for the first time, that an alien predator may induce a trophic 
cascade on small islands. Since alien mink has also been shown to reduce the diversity 
of breeding bird assemblages in the outer archipelago (Nordström and Korpimäki 
2004), alien predation is not only devastating for native prey populations but can have 
detrimental effects on the diversity of three trophic levels (piscivorous birds, 
herbivores and plants) of the ecosystem. 
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4. CONCLUSIONS 

Monitoring all major terrestrial prey of mink and studying their responses to mink 
removal provides important insights for the conservation of native fauna and the 
management of feral mink in the Baltic Sea archipelagos and elsewhere. The impact of 
mink on seabirds and amphibians had been studied before; this thesis has filled in one 
of the gaps in the study of the impact of mink on the archipelago vertebrate community 
as a whole. It shows that mink not only has detrimental effects on birds (Nordström et 
al. 2002; 2003) and amphibians (Ahola et al. 2006), but also affects the individual 
behaviour of voles (I, II); it may limit vole populations (Banks et al. 2004, III) and 
disturb their colonisation processes, leading ultimately to the breakdown of vole meta-
population processes in the archipelago (IV).  

Prey naïveté with regard to a novel predator is often cited as a primary factor in the 
acute vulnerability of native species (Dickman 1992c; Banks 1998; Short et al. 2002). 
Voles in the archipelago, however, seem to be able to recognise the predation risk by 
alien mink, but are unable to respond appropriately. This is what Banks and Dickman 
(2007) call level 2 naïveté. This can even have more drastic consequences than level 1 
naïveté, given that the voles in our studies chose habitats where the danger is even 
higher than random (I, IV). This result also seems to support the prediction of Cox and 
Lima (2006) that prey will show similar responses to an alien predator as to a native 
predator of the same archetype, as well as the common constituents hypothesis (Nolte 
et al. 1994), according to which odours from closely related predators share common 
compounds which can be used by prey even when the predators are unfamiliar. Voles 
should thus be expected to show similar responses to alien mink and native mustelids. 
Recognition of olfactory cues in rodents can occur in two places in the olfactory bulb, 
one representing innate recognition and the other an process through prior experience 
(Kobayakawa et al. 2007). The innate avoidance of predators may last a long time; 
learned anti-predatory behaviour, in contrast, is rapidly lost in the absence of predators, 
but is also quickly regained with repeated exposure to the predator (Blumstein 2002). 
Olfactory recognition of native mustelids as the least weasel seems to be innate; voles 
from the archipelago seem to recognise the least weasel as a threat (II), even though 
they have been separated from mustelid predators since the land uplift following the 
ice age, which formed the archipelago, about 10 000 years ago. Recognition of alien 
mink odours, on the other hand, seems to be a context-dependent learned behaviour, 
which works in the field but not in the laboratory (II).  

Yet this lack of naïveté does not prevent mink from impacting on vole populations and 
threatening their long-term persistence in the area. Recognition of an alien predator 
will not necessarily provide protection if the native prey responds with tactics which 
fail to work against the different hunting modes of alien predators. 

Voles are certainly not of the highest conservation interest. However, they play an 
important role in the ecosystem. Reduced grazing pressure also reduced plant diversity 
in the archipelago (V), and if vole populations decline or become locally extinct this 
will probably decrease the abundance of their native predators (black adders, birds of 
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prey), which in turn will have far-reaching consequences for the whole archipelago 
ecosystem.  

American mink should therefore be carefully managed to avoid further damage to the 
archipelago ecosystem. Management should include prevention of further escapes and 
rapid response after releases, continuing local control or eradication, and promotion of 
the natural recovery of native mink predators and competitors (Bonesi and Palazon 
2007). The ongoing increase of the white-tailed sea eagle populations in the 
archipelago area may be effective in mitigating the adverse effects of alien mink (Salo 
et al. ms). 
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